Loading...
1// SPDX-License-Identifier: GPL-2.0
2//
3// regmap based irq_chip
4//
5// Copyright 2011 Wolfson Microelectronics plc
6//
7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9#include <linux/device.h>
10#include <linux/export.h>
11#include <linux/interrupt.h>
12#include <linux/irq.h>
13#include <linux/irqdomain.h>
14#include <linux/pm_runtime.h>
15#include <linux/regmap.h>
16#include <linux/slab.h>
17
18#include "internal.h"
19
20struct regmap_irq_chip_data {
21 struct mutex lock;
22 struct irq_chip irq_chip;
23
24 struct regmap *map;
25 const struct regmap_irq_chip *chip;
26
27 int irq_base;
28 struct irq_domain *domain;
29
30 int irq;
31 int wake_count;
32
33 void *status_reg_buf;
34 unsigned int *main_status_buf;
35 unsigned int *status_buf;
36 unsigned int *mask_buf;
37 unsigned int *mask_buf_def;
38 unsigned int *wake_buf;
39 unsigned int *type_buf;
40 unsigned int *type_buf_def;
41
42 unsigned int irq_reg_stride;
43 unsigned int type_reg_stride;
44
45 bool clear_status:1;
46};
47
48static inline const
49struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
50 int irq)
51{
52 return &data->chip->irqs[irq];
53}
54
55static void regmap_irq_lock(struct irq_data *data)
56{
57 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
58
59 mutex_lock(&d->lock);
60}
61
62static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
63 unsigned int reg, unsigned int mask,
64 unsigned int val)
65{
66 if (d->chip->mask_writeonly)
67 return regmap_write_bits(d->map, reg, mask, val);
68 else
69 return regmap_update_bits(d->map, reg, mask, val);
70}
71
72static void regmap_irq_sync_unlock(struct irq_data *data)
73{
74 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
75 struct regmap *map = d->map;
76 int i, ret;
77 u32 reg;
78 u32 unmask_offset;
79 u32 val;
80
81 if (d->chip->runtime_pm) {
82 ret = pm_runtime_get_sync(map->dev);
83 if (ret < 0)
84 dev_err(map->dev, "IRQ sync failed to resume: %d\n",
85 ret);
86 }
87
88 if (d->clear_status) {
89 for (i = 0; i < d->chip->num_regs; i++) {
90 reg = d->chip->status_base +
91 (i * map->reg_stride * d->irq_reg_stride);
92
93 ret = regmap_read(map, reg, &val);
94 if (ret)
95 dev_err(d->map->dev,
96 "Failed to clear the interrupt status bits\n");
97 }
98
99 d->clear_status = false;
100 }
101
102 /*
103 * If there's been a change in the mask write it back to the
104 * hardware. We rely on the use of the regmap core cache to
105 * suppress pointless writes.
106 */
107 for (i = 0; i < d->chip->num_regs; i++) {
108 if (!d->chip->mask_base)
109 continue;
110
111 reg = d->chip->mask_base +
112 (i * map->reg_stride * d->irq_reg_stride);
113 if (d->chip->mask_invert) {
114 ret = regmap_irq_update_bits(d, reg,
115 d->mask_buf_def[i], ~d->mask_buf[i]);
116 } else if (d->chip->unmask_base) {
117 /* set mask with mask_base register */
118 ret = regmap_irq_update_bits(d, reg,
119 d->mask_buf_def[i], ~d->mask_buf[i]);
120 if (ret < 0)
121 dev_err(d->map->dev,
122 "Failed to sync unmasks in %x\n",
123 reg);
124 unmask_offset = d->chip->unmask_base -
125 d->chip->mask_base;
126 /* clear mask with unmask_base register */
127 ret = regmap_irq_update_bits(d,
128 reg + unmask_offset,
129 d->mask_buf_def[i],
130 d->mask_buf[i]);
131 } else {
132 ret = regmap_irq_update_bits(d, reg,
133 d->mask_buf_def[i], d->mask_buf[i]);
134 }
135 if (ret != 0)
136 dev_err(d->map->dev, "Failed to sync masks in %x\n",
137 reg);
138
139 reg = d->chip->wake_base +
140 (i * map->reg_stride * d->irq_reg_stride);
141 if (d->wake_buf) {
142 if (d->chip->wake_invert)
143 ret = regmap_irq_update_bits(d, reg,
144 d->mask_buf_def[i],
145 ~d->wake_buf[i]);
146 else
147 ret = regmap_irq_update_bits(d, reg,
148 d->mask_buf_def[i],
149 d->wake_buf[i]);
150 if (ret != 0)
151 dev_err(d->map->dev,
152 "Failed to sync wakes in %x: %d\n",
153 reg, ret);
154 }
155
156 if (!d->chip->init_ack_masked)
157 continue;
158 /*
159 * Ack all the masked interrupts unconditionally,
160 * OR if there is masked interrupt which hasn't been Acked,
161 * it'll be ignored in irq handler, then may introduce irq storm
162 */
163 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
164 reg = d->chip->ack_base +
165 (i * map->reg_stride * d->irq_reg_stride);
166 /* some chips ack by write 0 */
167 if (d->chip->ack_invert)
168 ret = regmap_write(map, reg, ~d->mask_buf[i]);
169 else
170 ret = regmap_write(map, reg, d->mask_buf[i]);
171 if (ret != 0)
172 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
173 reg, ret);
174 }
175 }
176
177 /* Don't update the type bits if we're using mask bits for irq type. */
178 if (!d->chip->type_in_mask) {
179 for (i = 0; i < d->chip->num_type_reg; i++) {
180 if (!d->type_buf_def[i])
181 continue;
182 reg = d->chip->type_base +
183 (i * map->reg_stride * d->type_reg_stride);
184 if (d->chip->type_invert)
185 ret = regmap_irq_update_bits(d, reg,
186 d->type_buf_def[i], ~d->type_buf[i]);
187 else
188 ret = regmap_irq_update_bits(d, reg,
189 d->type_buf_def[i], d->type_buf[i]);
190 if (ret != 0)
191 dev_err(d->map->dev, "Failed to sync type in %x\n",
192 reg);
193 }
194 }
195
196 if (d->chip->runtime_pm)
197 pm_runtime_put(map->dev);
198
199 /* If we've changed our wakeup count propagate it to the parent */
200 if (d->wake_count < 0)
201 for (i = d->wake_count; i < 0; i++)
202 irq_set_irq_wake(d->irq, 0);
203 else if (d->wake_count > 0)
204 for (i = 0; i < d->wake_count; i++)
205 irq_set_irq_wake(d->irq, 1);
206
207 d->wake_count = 0;
208
209 mutex_unlock(&d->lock);
210}
211
212static void regmap_irq_enable(struct irq_data *data)
213{
214 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
215 struct regmap *map = d->map;
216 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
217 unsigned int mask, type;
218
219 type = irq_data->type.type_falling_val | irq_data->type.type_rising_val;
220
221 /*
222 * The type_in_mask flag means that the underlying hardware uses
223 * separate mask bits for rising and falling edge interrupts, but
224 * we want to make them into a single virtual interrupt with
225 * configurable edge.
226 *
227 * If the interrupt we're enabling defines the falling or rising
228 * masks then instead of using the regular mask bits for this
229 * interrupt, use the value previously written to the type buffer
230 * at the corresponding offset in regmap_irq_set_type().
231 */
232 if (d->chip->type_in_mask && type)
233 mask = d->type_buf[irq_data->reg_offset / map->reg_stride];
234 else
235 mask = irq_data->mask;
236
237 if (d->chip->clear_on_unmask)
238 d->clear_status = true;
239
240 d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~mask;
241}
242
243static void regmap_irq_disable(struct irq_data *data)
244{
245 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
246 struct regmap *map = d->map;
247 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
248
249 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
250}
251
252static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
253{
254 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
255 struct regmap *map = d->map;
256 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
257 int reg;
258 const struct regmap_irq_type *t = &irq_data->type;
259
260 if ((t->types_supported & type) != type)
261 return 0;
262
263 reg = t->type_reg_offset / map->reg_stride;
264
265 if (t->type_reg_mask)
266 d->type_buf[reg] &= ~t->type_reg_mask;
267 else
268 d->type_buf[reg] &= ~(t->type_falling_val |
269 t->type_rising_val |
270 t->type_level_low_val |
271 t->type_level_high_val);
272 switch (type) {
273 case IRQ_TYPE_EDGE_FALLING:
274 d->type_buf[reg] |= t->type_falling_val;
275 break;
276
277 case IRQ_TYPE_EDGE_RISING:
278 d->type_buf[reg] |= t->type_rising_val;
279 break;
280
281 case IRQ_TYPE_EDGE_BOTH:
282 d->type_buf[reg] |= (t->type_falling_val |
283 t->type_rising_val);
284 break;
285
286 case IRQ_TYPE_LEVEL_HIGH:
287 d->type_buf[reg] |= t->type_level_high_val;
288 break;
289
290 case IRQ_TYPE_LEVEL_LOW:
291 d->type_buf[reg] |= t->type_level_low_val;
292 break;
293 default:
294 return -EINVAL;
295 }
296 return 0;
297}
298
299static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
300{
301 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
302 struct regmap *map = d->map;
303 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
304
305 if (on) {
306 if (d->wake_buf)
307 d->wake_buf[irq_data->reg_offset / map->reg_stride]
308 &= ~irq_data->mask;
309 d->wake_count++;
310 } else {
311 if (d->wake_buf)
312 d->wake_buf[irq_data->reg_offset / map->reg_stride]
313 |= irq_data->mask;
314 d->wake_count--;
315 }
316
317 return 0;
318}
319
320static const struct irq_chip regmap_irq_chip = {
321 .irq_bus_lock = regmap_irq_lock,
322 .irq_bus_sync_unlock = regmap_irq_sync_unlock,
323 .irq_disable = regmap_irq_disable,
324 .irq_enable = regmap_irq_enable,
325 .irq_set_type = regmap_irq_set_type,
326 .irq_set_wake = regmap_irq_set_wake,
327};
328
329static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
330 unsigned int b)
331{
332 const struct regmap_irq_chip *chip = data->chip;
333 struct regmap *map = data->map;
334 struct regmap_irq_sub_irq_map *subreg;
335 int i, ret = 0;
336
337 if (!chip->sub_reg_offsets) {
338 /* Assume linear mapping */
339 ret = regmap_read(map, chip->status_base +
340 (b * map->reg_stride * data->irq_reg_stride),
341 &data->status_buf[b]);
342 } else {
343 subreg = &chip->sub_reg_offsets[b];
344 for (i = 0; i < subreg->num_regs; i++) {
345 unsigned int offset = subreg->offset[i];
346
347 ret = regmap_read(map, chip->status_base + offset,
348 &data->status_buf[offset]);
349 if (ret)
350 break;
351 }
352 }
353 return ret;
354}
355
356static irqreturn_t regmap_irq_thread(int irq, void *d)
357{
358 struct regmap_irq_chip_data *data = d;
359 const struct regmap_irq_chip *chip = data->chip;
360 struct regmap *map = data->map;
361 int ret, i;
362 bool handled = false;
363 u32 reg;
364
365 if (chip->handle_pre_irq)
366 chip->handle_pre_irq(chip->irq_drv_data);
367
368 if (chip->runtime_pm) {
369 ret = pm_runtime_get_sync(map->dev);
370 if (ret < 0) {
371 dev_err(map->dev, "IRQ thread failed to resume: %d\n",
372 ret);
373 goto exit;
374 }
375 }
376
377 /*
378 * Read only registers with active IRQs if the chip has 'main status
379 * register'. Else read in the statuses, using a single bulk read if
380 * possible in order to reduce the I/O overheads.
381 */
382
383 if (chip->num_main_regs) {
384 unsigned int max_main_bits;
385 unsigned long size;
386
387 size = chip->num_regs * sizeof(unsigned int);
388
389 max_main_bits = (chip->num_main_status_bits) ?
390 chip->num_main_status_bits : chip->num_regs;
391 /* Clear the status buf as we don't read all status regs */
392 memset(data->status_buf, 0, size);
393
394 /* We could support bulk read for main status registers
395 * but I don't expect to see devices with really many main
396 * status registers so let's only support single reads for the
397 * sake of simplicity. and add bulk reads only if needed
398 */
399 for (i = 0; i < chip->num_main_regs; i++) {
400 ret = regmap_read(map, chip->main_status +
401 (i * map->reg_stride
402 * data->irq_reg_stride),
403 &data->main_status_buf[i]);
404 if (ret) {
405 dev_err(map->dev,
406 "Failed to read IRQ status %d\n",
407 ret);
408 goto exit;
409 }
410 }
411
412 /* Read sub registers with active IRQs */
413 for (i = 0; i < chip->num_main_regs; i++) {
414 unsigned int b;
415 const unsigned long mreg = data->main_status_buf[i];
416
417 for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
418 if (i * map->format.val_bytes * 8 + b >
419 max_main_bits)
420 break;
421 ret = read_sub_irq_data(data, b);
422
423 if (ret != 0) {
424 dev_err(map->dev,
425 "Failed to read IRQ status %d\n",
426 ret);
427 goto exit;
428 }
429 }
430
431 }
432 } else if (!map->use_single_read && map->reg_stride == 1 &&
433 data->irq_reg_stride == 1) {
434
435 u8 *buf8 = data->status_reg_buf;
436 u16 *buf16 = data->status_reg_buf;
437 u32 *buf32 = data->status_reg_buf;
438
439 BUG_ON(!data->status_reg_buf);
440
441 ret = regmap_bulk_read(map, chip->status_base,
442 data->status_reg_buf,
443 chip->num_regs);
444 if (ret != 0) {
445 dev_err(map->dev, "Failed to read IRQ status: %d\n",
446 ret);
447 goto exit;
448 }
449
450 for (i = 0; i < data->chip->num_regs; i++) {
451 switch (map->format.val_bytes) {
452 case 1:
453 data->status_buf[i] = buf8[i];
454 break;
455 case 2:
456 data->status_buf[i] = buf16[i];
457 break;
458 case 4:
459 data->status_buf[i] = buf32[i];
460 break;
461 default:
462 BUG();
463 goto exit;
464 }
465 }
466
467 } else {
468 for (i = 0; i < data->chip->num_regs; i++) {
469 ret = regmap_read(map, chip->status_base +
470 (i * map->reg_stride
471 * data->irq_reg_stride),
472 &data->status_buf[i]);
473
474 if (ret != 0) {
475 dev_err(map->dev,
476 "Failed to read IRQ status: %d\n",
477 ret);
478 goto exit;
479 }
480 }
481 }
482
483 /*
484 * Ignore masked IRQs and ack if we need to; we ack early so
485 * there is no race between handling and acknowleding the
486 * interrupt. We assume that typically few of the interrupts
487 * will fire simultaneously so don't worry about overhead from
488 * doing a write per register.
489 */
490 for (i = 0; i < data->chip->num_regs; i++) {
491 data->status_buf[i] &= ~data->mask_buf[i];
492
493 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
494 reg = chip->ack_base +
495 (i * map->reg_stride * data->irq_reg_stride);
496 ret = regmap_write(map, reg, data->status_buf[i]);
497 if (ret != 0)
498 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
499 reg, ret);
500 }
501 }
502
503 for (i = 0; i < chip->num_irqs; i++) {
504 if (data->status_buf[chip->irqs[i].reg_offset /
505 map->reg_stride] & chip->irqs[i].mask) {
506 handle_nested_irq(irq_find_mapping(data->domain, i));
507 handled = true;
508 }
509 }
510
511exit:
512 if (chip->runtime_pm)
513 pm_runtime_put(map->dev);
514
515 if (chip->handle_post_irq)
516 chip->handle_post_irq(chip->irq_drv_data);
517
518 if (handled)
519 return IRQ_HANDLED;
520 else
521 return IRQ_NONE;
522}
523
524static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
525 irq_hw_number_t hw)
526{
527 struct regmap_irq_chip_data *data = h->host_data;
528
529 irq_set_chip_data(virq, data);
530 irq_set_chip(virq, &data->irq_chip);
531 irq_set_nested_thread(virq, 1);
532 irq_set_parent(virq, data->irq);
533 irq_set_noprobe(virq);
534
535 return 0;
536}
537
538static const struct irq_domain_ops regmap_domain_ops = {
539 .map = regmap_irq_map,
540 .xlate = irq_domain_xlate_onetwocell,
541};
542
543/**
544 * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
545 *
546 * @fwnode: The firmware node where the IRQ domain should be added to.
547 * @map: The regmap for the device.
548 * @irq: The IRQ the device uses to signal interrupts.
549 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
550 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
551 * @chip: Configuration for the interrupt controller.
552 * @data: Runtime data structure for the controller, allocated on success.
553 *
554 * Returns 0 on success or an errno on failure.
555 *
556 * In order for this to be efficient the chip really should use a
557 * register cache. The chip driver is responsible for restoring the
558 * register values used by the IRQ controller over suspend and resume.
559 */
560int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
561 struct regmap *map, int irq,
562 int irq_flags, int irq_base,
563 const struct regmap_irq_chip *chip,
564 struct regmap_irq_chip_data **data)
565{
566 struct regmap_irq_chip_data *d;
567 int i;
568 int ret = -ENOMEM;
569 int num_type_reg;
570 u32 reg;
571 u32 unmask_offset;
572
573 if (chip->num_regs <= 0)
574 return -EINVAL;
575
576 if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
577 return -EINVAL;
578
579 for (i = 0; i < chip->num_irqs; i++) {
580 if (chip->irqs[i].reg_offset % map->reg_stride)
581 return -EINVAL;
582 if (chip->irqs[i].reg_offset / map->reg_stride >=
583 chip->num_regs)
584 return -EINVAL;
585 }
586
587 if (irq_base) {
588 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
589 if (irq_base < 0) {
590 dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
591 irq_base);
592 return irq_base;
593 }
594 }
595
596 d = kzalloc(sizeof(*d), GFP_KERNEL);
597 if (!d)
598 return -ENOMEM;
599
600 if (chip->num_main_regs) {
601 d->main_status_buf = kcalloc(chip->num_main_regs,
602 sizeof(unsigned int),
603 GFP_KERNEL);
604
605 if (!d->main_status_buf)
606 goto err_alloc;
607 }
608
609 d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
610 GFP_KERNEL);
611 if (!d->status_buf)
612 goto err_alloc;
613
614 d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
615 GFP_KERNEL);
616 if (!d->mask_buf)
617 goto err_alloc;
618
619 d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
620 GFP_KERNEL);
621 if (!d->mask_buf_def)
622 goto err_alloc;
623
624 if (chip->wake_base) {
625 d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
626 GFP_KERNEL);
627 if (!d->wake_buf)
628 goto err_alloc;
629 }
630
631 num_type_reg = chip->type_in_mask ? chip->num_regs : chip->num_type_reg;
632 if (num_type_reg) {
633 d->type_buf_def = kcalloc(num_type_reg,
634 sizeof(unsigned int), GFP_KERNEL);
635 if (!d->type_buf_def)
636 goto err_alloc;
637
638 d->type_buf = kcalloc(num_type_reg, sizeof(unsigned int),
639 GFP_KERNEL);
640 if (!d->type_buf)
641 goto err_alloc;
642 }
643
644 d->irq_chip = regmap_irq_chip;
645 d->irq_chip.name = chip->name;
646 d->irq = irq;
647 d->map = map;
648 d->chip = chip;
649 d->irq_base = irq_base;
650
651 if (chip->irq_reg_stride)
652 d->irq_reg_stride = chip->irq_reg_stride;
653 else
654 d->irq_reg_stride = 1;
655
656 if (chip->type_reg_stride)
657 d->type_reg_stride = chip->type_reg_stride;
658 else
659 d->type_reg_stride = 1;
660
661 if (!map->use_single_read && map->reg_stride == 1 &&
662 d->irq_reg_stride == 1) {
663 d->status_reg_buf = kmalloc_array(chip->num_regs,
664 map->format.val_bytes,
665 GFP_KERNEL);
666 if (!d->status_reg_buf)
667 goto err_alloc;
668 }
669
670 mutex_init(&d->lock);
671
672 for (i = 0; i < chip->num_irqs; i++)
673 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
674 |= chip->irqs[i].mask;
675
676 /* Mask all the interrupts by default */
677 for (i = 0; i < chip->num_regs; i++) {
678 d->mask_buf[i] = d->mask_buf_def[i];
679 if (!chip->mask_base)
680 continue;
681
682 reg = chip->mask_base +
683 (i * map->reg_stride * d->irq_reg_stride);
684 if (chip->mask_invert)
685 ret = regmap_irq_update_bits(d, reg,
686 d->mask_buf[i], ~d->mask_buf[i]);
687 else if (d->chip->unmask_base) {
688 unmask_offset = d->chip->unmask_base -
689 d->chip->mask_base;
690 ret = regmap_irq_update_bits(d,
691 reg + unmask_offset,
692 d->mask_buf[i],
693 d->mask_buf[i]);
694 } else
695 ret = regmap_irq_update_bits(d, reg,
696 d->mask_buf[i], d->mask_buf[i]);
697 if (ret != 0) {
698 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
699 reg, ret);
700 goto err_alloc;
701 }
702
703 if (!chip->init_ack_masked)
704 continue;
705
706 /* Ack masked but set interrupts */
707 reg = chip->status_base +
708 (i * map->reg_stride * d->irq_reg_stride);
709 ret = regmap_read(map, reg, &d->status_buf[i]);
710 if (ret != 0) {
711 dev_err(map->dev, "Failed to read IRQ status: %d\n",
712 ret);
713 goto err_alloc;
714 }
715
716 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
717 reg = chip->ack_base +
718 (i * map->reg_stride * d->irq_reg_stride);
719 if (chip->ack_invert)
720 ret = regmap_write(map, reg,
721 ~(d->status_buf[i] & d->mask_buf[i]));
722 else
723 ret = regmap_write(map, reg,
724 d->status_buf[i] & d->mask_buf[i]);
725 if (ret != 0) {
726 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
727 reg, ret);
728 goto err_alloc;
729 }
730 }
731 }
732
733 /* Wake is disabled by default */
734 if (d->wake_buf) {
735 for (i = 0; i < chip->num_regs; i++) {
736 d->wake_buf[i] = d->mask_buf_def[i];
737 reg = chip->wake_base +
738 (i * map->reg_stride * d->irq_reg_stride);
739
740 if (chip->wake_invert)
741 ret = regmap_irq_update_bits(d, reg,
742 d->mask_buf_def[i],
743 0);
744 else
745 ret = regmap_irq_update_bits(d, reg,
746 d->mask_buf_def[i],
747 d->wake_buf[i]);
748 if (ret != 0) {
749 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
750 reg, ret);
751 goto err_alloc;
752 }
753 }
754 }
755
756 if (chip->num_type_reg && !chip->type_in_mask) {
757 for (i = 0; i < chip->num_type_reg; ++i) {
758 reg = chip->type_base +
759 (i * map->reg_stride * d->type_reg_stride);
760
761 ret = regmap_read(map, reg, &d->type_buf_def[i]);
762
763 if (d->chip->type_invert)
764 d->type_buf_def[i] = ~d->type_buf_def[i];
765
766 if (ret) {
767 dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
768 reg, ret);
769 goto err_alloc;
770 }
771 }
772 }
773
774 if (irq_base)
775 d->domain = irq_domain_add_legacy(to_of_node(fwnode),
776 chip->num_irqs, irq_base,
777 0, ®map_domain_ops, d);
778 else
779 d->domain = irq_domain_add_linear(to_of_node(fwnode),
780 chip->num_irqs,
781 ®map_domain_ops, d);
782 if (!d->domain) {
783 dev_err(map->dev, "Failed to create IRQ domain\n");
784 ret = -ENOMEM;
785 goto err_alloc;
786 }
787
788 ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
789 irq_flags | IRQF_ONESHOT,
790 chip->name, d);
791 if (ret != 0) {
792 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
793 irq, chip->name, ret);
794 goto err_domain;
795 }
796
797 *data = d;
798
799 return 0;
800
801err_domain:
802 /* Should really dispose of the domain but... */
803err_alloc:
804 kfree(d->type_buf);
805 kfree(d->type_buf_def);
806 kfree(d->wake_buf);
807 kfree(d->mask_buf_def);
808 kfree(d->mask_buf);
809 kfree(d->status_buf);
810 kfree(d->status_reg_buf);
811 kfree(d);
812 return ret;
813}
814EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
815
816/**
817 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
818 *
819 * @map: The regmap for the device.
820 * @irq: The IRQ the device uses to signal interrupts.
821 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
822 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
823 * @chip: Configuration for the interrupt controller.
824 * @data: Runtime data structure for the controller, allocated on success.
825 *
826 * Returns 0 on success or an errno on failure.
827 *
828 * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
829 * node of the regmap is used.
830 */
831int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
832 int irq_base, const struct regmap_irq_chip *chip,
833 struct regmap_irq_chip_data **data)
834{
835 return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
836 irq_flags, irq_base, chip, data);
837}
838EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
839
840/**
841 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
842 *
843 * @irq: Primary IRQ for the device
844 * @d: ®map_irq_chip_data allocated by regmap_add_irq_chip()
845 *
846 * This function also disposes of all mapped IRQs on the chip.
847 */
848void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
849{
850 unsigned int virq;
851 int hwirq;
852
853 if (!d)
854 return;
855
856 free_irq(irq, d);
857
858 /* Dispose all virtual irq from irq domain before removing it */
859 for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
860 /* Ignore hwirq if holes in the IRQ list */
861 if (!d->chip->irqs[hwirq].mask)
862 continue;
863
864 /*
865 * Find the virtual irq of hwirq on chip and if it is
866 * there then dispose it
867 */
868 virq = irq_find_mapping(d->domain, hwirq);
869 if (virq)
870 irq_dispose_mapping(virq);
871 }
872
873 irq_domain_remove(d->domain);
874 kfree(d->type_buf);
875 kfree(d->type_buf_def);
876 kfree(d->wake_buf);
877 kfree(d->mask_buf_def);
878 kfree(d->mask_buf);
879 kfree(d->status_reg_buf);
880 kfree(d->status_buf);
881 kfree(d);
882}
883EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
884
885static void devm_regmap_irq_chip_release(struct device *dev, void *res)
886{
887 struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
888
889 regmap_del_irq_chip(d->irq, d);
890}
891
892static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
893
894{
895 struct regmap_irq_chip_data **r = res;
896
897 if (!r || !*r) {
898 WARN_ON(!r || !*r);
899 return 0;
900 }
901 return *r == data;
902}
903
904/**
905 * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
906 *
907 * @dev: The device pointer on which irq_chip belongs to.
908 * @fwnode: The firmware node where the IRQ domain should be added to.
909 * @map: The regmap for the device.
910 * @irq: The IRQ the device uses to signal interrupts
911 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
912 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
913 * @chip: Configuration for the interrupt controller.
914 * @data: Runtime data structure for the controller, allocated on success
915 *
916 * Returns 0 on success or an errno on failure.
917 *
918 * The ®map_irq_chip_data will be automatically released when the device is
919 * unbound.
920 */
921int devm_regmap_add_irq_chip_fwnode(struct device *dev,
922 struct fwnode_handle *fwnode,
923 struct regmap *map, int irq,
924 int irq_flags, int irq_base,
925 const struct regmap_irq_chip *chip,
926 struct regmap_irq_chip_data **data)
927{
928 struct regmap_irq_chip_data **ptr, *d;
929 int ret;
930
931 ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
932 GFP_KERNEL);
933 if (!ptr)
934 return -ENOMEM;
935
936 ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
937 chip, &d);
938 if (ret < 0) {
939 devres_free(ptr);
940 return ret;
941 }
942
943 *ptr = d;
944 devres_add(dev, ptr);
945 *data = d;
946 return 0;
947}
948EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
949
950/**
951 * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip()
952 *
953 * @dev: The device pointer on which irq_chip belongs to.
954 * @map: The regmap for the device.
955 * @irq: The IRQ the device uses to signal interrupts
956 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
957 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
958 * @chip: Configuration for the interrupt controller.
959 * @data: Runtime data structure for the controller, allocated on success
960 *
961 * Returns 0 on success or an errno on failure.
962 *
963 * The ®map_irq_chip_data will be automatically released when the device is
964 * unbound.
965 */
966int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
967 int irq_flags, int irq_base,
968 const struct regmap_irq_chip *chip,
969 struct regmap_irq_chip_data **data)
970{
971 return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
972 irq, irq_flags, irq_base, chip,
973 data);
974}
975EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
976
977/**
978 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
979 *
980 * @dev: Device for which which resource was allocated.
981 * @irq: Primary IRQ for the device.
982 * @data: ®map_irq_chip_data allocated by regmap_add_irq_chip().
983 *
984 * A resource managed version of regmap_del_irq_chip().
985 */
986void devm_regmap_del_irq_chip(struct device *dev, int irq,
987 struct regmap_irq_chip_data *data)
988{
989 int rc;
990
991 WARN_ON(irq != data->irq);
992 rc = devres_release(dev, devm_regmap_irq_chip_release,
993 devm_regmap_irq_chip_match, data);
994
995 if (rc != 0)
996 WARN_ON(rc);
997}
998EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
999
1000/**
1001 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1002 *
1003 * @data: regmap irq controller to operate on.
1004 *
1005 * Useful for drivers to request their own IRQs.
1006 */
1007int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1008{
1009 WARN_ON(!data->irq_base);
1010 return data->irq_base;
1011}
1012EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1013
1014/**
1015 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1016 *
1017 * @data: regmap irq controller to operate on.
1018 * @irq: index of the interrupt requested in the chip IRQs.
1019 *
1020 * Useful for drivers to request their own IRQs.
1021 */
1022int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1023{
1024 /* Handle holes in the IRQ list */
1025 if (!data->chip->irqs[irq].mask)
1026 return -EINVAL;
1027
1028 return irq_create_mapping(data->domain, irq);
1029}
1030EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1031
1032/**
1033 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1034 *
1035 * @data: regmap_irq controller to operate on.
1036 *
1037 * Useful for drivers to request their own IRQs and for integration
1038 * with subsystems. For ease of integration NULL is accepted as a
1039 * domain, allowing devices to just call this even if no domain is
1040 * allocated.
1041 */
1042struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1043{
1044 if (data)
1045 return data->domain;
1046 else
1047 return NULL;
1048}
1049EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
1/*
2 * regmap based irq_chip
3 *
4 * Copyright 2011 Wolfson Microelectronics plc
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/export.h>
14#include <linux/device.h>
15#include <linux/regmap.h>
16#include <linux/irq.h>
17#include <linux/interrupt.h>
18#include <linux/irqdomain.h>
19#include <linux/slab.h>
20
21#include "internal.h"
22
23struct regmap_irq_chip_data {
24 struct mutex lock;
25
26 struct regmap *map;
27 struct regmap_irq_chip *chip;
28
29 int irq_base;
30 struct irq_domain *domain;
31
32 unsigned int *status_buf;
33 unsigned int *mask_buf;
34 unsigned int *mask_buf_def;
35
36 unsigned int irq_reg_stride;
37};
38
39static inline const
40struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
41 int irq)
42{
43 return &data->chip->irqs[irq];
44}
45
46static void regmap_irq_lock(struct irq_data *data)
47{
48 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
49
50 mutex_lock(&d->lock);
51}
52
53static void regmap_irq_sync_unlock(struct irq_data *data)
54{
55 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
56 struct regmap *map = d->map;
57 int i, ret;
58
59 /*
60 * If there's been a change in the mask write it back to the
61 * hardware. We rely on the use of the regmap core cache to
62 * suppress pointless writes.
63 */
64 for (i = 0; i < d->chip->num_regs; i++) {
65 ret = regmap_update_bits(d->map, d->chip->mask_base +
66 (i * map->reg_stride *
67 d->irq_reg_stride),
68 d->mask_buf_def[i], d->mask_buf[i]);
69 if (ret != 0)
70 dev_err(d->map->dev, "Failed to sync masks in %x\n",
71 d->chip->mask_base + (i * map->reg_stride));
72 }
73
74 mutex_unlock(&d->lock);
75}
76
77static void regmap_irq_enable(struct irq_data *data)
78{
79 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
80 struct regmap *map = d->map;
81 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
82
83 d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask;
84}
85
86static void regmap_irq_disable(struct irq_data *data)
87{
88 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
89 struct regmap *map = d->map;
90 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
91
92 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
93}
94
95static struct irq_chip regmap_irq_chip = {
96 .name = "regmap",
97 .irq_bus_lock = regmap_irq_lock,
98 .irq_bus_sync_unlock = regmap_irq_sync_unlock,
99 .irq_disable = regmap_irq_disable,
100 .irq_enable = regmap_irq_enable,
101};
102
103static irqreturn_t regmap_irq_thread(int irq, void *d)
104{
105 struct regmap_irq_chip_data *data = d;
106 struct regmap_irq_chip *chip = data->chip;
107 struct regmap *map = data->map;
108 int ret, i;
109 bool handled = false;
110
111 /*
112 * Ignore masked IRQs and ack if we need to; we ack early so
113 * there is no race between handling and acknowleding the
114 * interrupt. We assume that typically few of the interrupts
115 * will fire simultaneously so don't worry about overhead from
116 * doing a write per register.
117 */
118 for (i = 0; i < data->chip->num_regs; i++) {
119 ret = regmap_read(map, chip->status_base + (i * map->reg_stride
120 * data->irq_reg_stride),
121 &data->status_buf[i]);
122
123 if (ret != 0) {
124 dev_err(map->dev, "Failed to read IRQ status: %d\n",
125 ret);
126 return IRQ_NONE;
127 }
128
129 data->status_buf[i] &= ~data->mask_buf[i];
130
131 if (data->status_buf[i] && chip->ack_base) {
132 ret = regmap_write(map, chip->ack_base +
133 (i * map->reg_stride *
134 data->irq_reg_stride),
135 data->status_buf[i]);
136 if (ret != 0)
137 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
138 chip->ack_base + (i * map->reg_stride),
139 ret);
140 }
141 }
142
143 for (i = 0; i < chip->num_irqs; i++) {
144 if (data->status_buf[chip->irqs[i].reg_offset /
145 map->reg_stride] & chip->irqs[i].mask) {
146 handle_nested_irq(irq_find_mapping(data->domain, i));
147 handled = true;
148 }
149 }
150
151 if (handled)
152 return IRQ_HANDLED;
153 else
154 return IRQ_NONE;
155}
156
157static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
158 irq_hw_number_t hw)
159{
160 struct regmap_irq_chip_data *data = h->host_data;
161
162 irq_set_chip_data(virq, data);
163 irq_set_chip_and_handler(virq, ®map_irq_chip, handle_edge_irq);
164 irq_set_nested_thread(virq, 1);
165
166 /* ARM needs us to explicitly flag the IRQ as valid
167 * and will set them noprobe when we do so. */
168#ifdef CONFIG_ARM
169 set_irq_flags(virq, IRQF_VALID);
170#else
171 irq_set_noprobe(virq);
172#endif
173
174 return 0;
175}
176
177static struct irq_domain_ops regmap_domain_ops = {
178 .map = regmap_irq_map,
179 .xlate = irq_domain_xlate_twocell,
180};
181
182/**
183 * regmap_add_irq_chip(): Use standard regmap IRQ controller handling
184 *
185 * map: The regmap for the device.
186 * irq: The IRQ the device uses to signal interrupts
187 * irq_flags: The IRQF_ flags to use for the primary interrupt.
188 * chip: Configuration for the interrupt controller.
189 * data: Runtime data structure for the controller, allocated on success
190 *
191 * Returns 0 on success or an errno on failure.
192 *
193 * In order for this to be efficient the chip really should use a
194 * register cache. The chip driver is responsible for restoring the
195 * register values used by the IRQ controller over suspend and resume.
196 */
197int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
198 int irq_base, struct regmap_irq_chip *chip,
199 struct regmap_irq_chip_data **data)
200{
201 struct regmap_irq_chip_data *d;
202 int i;
203 int ret = -ENOMEM;
204
205 for (i = 0; i < chip->num_irqs; i++) {
206 if (chip->irqs[i].reg_offset % map->reg_stride)
207 return -EINVAL;
208 if (chip->irqs[i].reg_offset / map->reg_stride >=
209 chip->num_regs)
210 return -EINVAL;
211 }
212
213 if (irq_base) {
214 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
215 if (irq_base < 0) {
216 dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
217 irq_base);
218 return irq_base;
219 }
220 }
221
222 d = kzalloc(sizeof(*d), GFP_KERNEL);
223 if (!d)
224 return -ENOMEM;
225
226 *data = d;
227
228 d->status_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
229 GFP_KERNEL);
230 if (!d->status_buf)
231 goto err_alloc;
232
233 d->mask_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
234 GFP_KERNEL);
235 if (!d->mask_buf)
236 goto err_alloc;
237
238 d->mask_buf_def = kzalloc(sizeof(unsigned int) * chip->num_regs,
239 GFP_KERNEL);
240 if (!d->mask_buf_def)
241 goto err_alloc;
242
243 d->map = map;
244 d->chip = chip;
245 d->irq_base = irq_base;
246
247 if (chip->irq_reg_stride)
248 d->irq_reg_stride = chip->irq_reg_stride;
249 else
250 d->irq_reg_stride = 1;
251
252 mutex_init(&d->lock);
253
254 for (i = 0; i < chip->num_irqs; i++)
255 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
256 |= chip->irqs[i].mask;
257
258 /* Mask all the interrupts by default */
259 for (i = 0; i < chip->num_regs; i++) {
260 d->mask_buf[i] = d->mask_buf_def[i];
261 ret = regmap_write(map, chip->mask_base + (i * map->reg_stride
262 * d->irq_reg_stride),
263 d->mask_buf[i]);
264 if (ret != 0) {
265 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
266 chip->mask_base + (i * map->reg_stride), ret);
267 goto err_alloc;
268 }
269 }
270
271 if (irq_base)
272 d->domain = irq_domain_add_legacy(map->dev->of_node,
273 chip->num_irqs, irq_base, 0,
274 ®map_domain_ops, d);
275 else
276 d->domain = irq_domain_add_linear(map->dev->of_node,
277 chip->num_irqs,
278 ®map_domain_ops, d);
279 if (!d->domain) {
280 dev_err(map->dev, "Failed to create IRQ domain\n");
281 ret = -ENOMEM;
282 goto err_alloc;
283 }
284
285 ret = request_threaded_irq(irq, NULL, regmap_irq_thread, irq_flags,
286 chip->name, d);
287 if (ret != 0) {
288 dev_err(map->dev, "Failed to request IRQ %d: %d\n", irq, ret);
289 goto err_domain;
290 }
291
292 return 0;
293
294err_domain:
295 /* Should really dispose of the domain but... */
296err_alloc:
297 kfree(d->mask_buf_def);
298 kfree(d->mask_buf);
299 kfree(d->status_buf);
300 kfree(d);
301 return ret;
302}
303EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
304
305/**
306 * regmap_del_irq_chip(): Stop interrupt handling for a regmap IRQ chip
307 *
308 * @irq: Primary IRQ for the device
309 * @d: regmap_irq_chip_data allocated by regmap_add_irq_chip()
310 */
311void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
312{
313 if (!d)
314 return;
315
316 free_irq(irq, d);
317 /* We should unmap the domain but... */
318 kfree(d->mask_buf_def);
319 kfree(d->mask_buf);
320 kfree(d->status_buf);
321 kfree(d);
322}
323EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
324
325/**
326 * regmap_irq_chip_get_base(): Retrieve interrupt base for a regmap IRQ chip
327 *
328 * Useful for drivers to request their own IRQs.
329 *
330 * @data: regmap_irq controller to operate on.
331 */
332int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
333{
334 WARN_ON(!data->irq_base);
335 return data->irq_base;
336}
337EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
338
339/**
340 * regmap_irq_get_virq(): Map an interrupt on a chip to a virtual IRQ
341 *
342 * Useful for drivers to request their own IRQs.
343 *
344 * @data: regmap_irq controller to operate on.
345 * @irq: index of the interrupt requested in the chip IRQs
346 */
347int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
348{
349 return irq_create_mapping(data->domain, irq);
350}
351EXPORT_SYMBOL_GPL(regmap_irq_get_virq);