Linux Audio

Check our new training course

Loading...
v5.9
  1/*
  2 * VMAC: Message Authentication Code using Universal Hashing
  3 *
  4 * Reference: https://tools.ietf.org/html/draft-krovetz-vmac-01
  5 *
  6 * Copyright (c) 2009, Intel Corporation.
  7 * Copyright (c) 2018, Google Inc.
  8 *
  9 * This program is free software; you can redistribute it and/or modify it
 10 * under the terms and conditions of the GNU General Public License,
 11 * version 2, as published by the Free Software Foundation.
 12 *
 13 * This program is distributed in the hope it will be useful, but WITHOUT
 14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 15 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 16 * more details.
 17 *
 18 * You should have received a copy of the GNU General Public License along with
 19 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 20 * Place - Suite 330, Boston, MA 02111-1307 USA.
 21 */
 22
 23/*
 24 * Derived from:
 25 *	VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai.
 26 *	This implementation is herby placed in the public domain.
 27 *	The authors offers no warranty. Use at your own risk.
 28 *	Last modified: 17 APR 08, 1700 PDT
 29 */
 30
 31#include <asm/unaligned.h>
 32#include <linux/init.h>
 33#include <linux/types.h>
 34#include <linux/crypto.h>
 35#include <linux/module.h>
 36#include <linux/scatterlist.h>
 37#include <asm/byteorder.h>
 38#include <crypto/scatterwalk.h>
 
 39#include <crypto/internal/hash.h>
 40
 41/*
 42 * User definable settings.
 43 */
 44#define VMAC_TAG_LEN	64
 45#define VMAC_KEY_SIZE	128/* Must be 128, 192 or 256			*/
 46#define VMAC_KEY_LEN	(VMAC_KEY_SIZE/8)
 47#define VMAC_NHBYTES	128/* Must 2^i for any 3 < i < 13 Standard = 128*/
 48#define VMAC_NONCEBYTES	16
 49
 50/* per-transform (per-key) context */
 51struct vmac_tfm_ctx {
 52	struct crypto_cipher *cipher;
 53	u64 nhkey[(VMAC_NHBYTES/8)+2*(VMAC_TAG_LEN/64-1)];
 54	u64 polykey[2*VMAC_TAG_LEN/64];
 55	u64 l3key[2*VMAC_TAG_LEN/64];
 56};
 57
 58/* per-request context */
 59struct vmac_desc_ctx {
 60	union {
 61		u8 partial[VMAC_NHBYTES];	/* partial block */
 62		__le64 partial_words[VMAC_NHBYTES / 8];
 63	};
 64	unsigned int partial_size;	/* size of the partial block */
 65	bool first_block_processed;
 66	u64 polytmp[2*VMAC_TAG_LEN/64];	/* running total of L2-hash */
 67	union {
 68		u8 bytes[VMAC_NONCEBYTES];
 69		__be64 pads[VMAC_NONCEBYTES / 8];
 70	} nonce;
 71	unsigned int nonce_size; /* nonce bytes filled so far */
 72};
 73
 74/*
 75 * Constants and masks
 76 */
 77#define UINT64_C(x) x##ULL
 78static const u64 p64   = UINT64_C(0xfffffffffffffeff);	/* 2^64 - 257 prime  */
 79static const u64 m62   = UINT64_C(0x3fffffffffffffff);	/* 62-bit mask       */
 80static const u64 m63   = UINT64_C(0x7fffffffffffffff);	/* 63-bit mask       */
 81static const u64 m64   = UINT64_C(0xffffffffffffffff);	/* 64-bit mask       */
 82static const u64 mpoly = UINT64_C(0x1fffffff1fffffff);	/* Poly key mask     */
 83
 84#define pe64_to_cpup le64_to_cpup		/* Prefer little endian */
 85
 86#ifdef __LITTLE_ENDIAN
 87#define INDEX_HIGH 1
 88#define INDEX_LOW 0
 89#else
 90#define INDEX_HIGH 0
 91#define INDEX_LOW 1
 92#endif
 93
 94/*
 95 * The following routines are used in this implementation. They are
 96 * written via macros to simulate zero-overhead call-by-reference.
 97 *
 98 * MUL64: 64x64->128-bit multiplication
 99 * PMUL64: assumes top bits cleared on inputs
100 * ADD128: 128x128->128-bit addition
101 */
102
103#define ADD128(rh, rl, ih, il)						\
104	do {								\
105		u64 _il = (il);						\
106		(rl) += (_il);						\
107		if ((rl) < (_il))					\
108			(rh)++;						\
109		(rh) += (ih);						\
110	} while (0)
111
112#define MUL32(i1, i2)	((u64)(u32)(i1)*(u32)(i2))
113
114#define PMUL64(rh, rl, i1, i2)	/* Assumes m doesn't overflow */	\
115	do {								\
116		u64 _i1 = (i1), _i2 = (i2);				\
117		u64 m = MUL32(_i1, _i2>>32) + MUL32(_i1>>32, _i2);	\
118		rh = MUL32(_i1>>32, _i2>>32);				\
119		rl = MUL32(_i1, _i2);					\
120		ADD128(rh, rl, (m >> 32), (m << 32));			\
121	} while (0)
122
123#define MUL64(rh, rl, i1, i2)						\
124	do {								\
125		u64 _i1 = (i1), _i2 = (i2);				\
126		u64 m1 = MUL32(_i1, _i2>>32);				\
127		u64 m2 = MUL32(_i1>>32, _i2);				\
128		rh = MUL32(_i1>>32, _i2>>32);				\
129		rl = MUL32(_i1, _i2);					\
130		ADD128(rh, rl, (m1 >> 32), (m1 << 32));			\
131		ADD128(rh, rl, (m2 >> 32), (m2 << 32));			\
132	} while (0)
133
134/*
135 * For highest performance the L1 NH and L2 polynomial hashes should be
136 * carefully implemented to take advantage of one's target architecture.
137 * Here these two hash functions are defined multiple time; once for
138 * 64-bit architectures, once for 32-bit SSE2 architectures, and once
139 * for the rest (32-bit) architectures.
140 * For each, nh_16 *must* be defined (works on multiples of 16 bytes).
141 * Optionally, nh_vmac_nhbytes can be defined (for multiples of
142 * VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two
143 * NH computations at once).
144 */
145
146#ifdef CONFIG_64BIT
147
148#define nh_16(mp, kp, nw, rh, rl)					\
149	do {								\
150		int i; u64 th, tl;					\
151		rh = rl = 0;						\
152		for (i = 0; i < nw; i += 2) {				\
153			MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],	\
154				pe64_to_cpup((mp)+i+1)+(kp)[i+1]);	\
155			ADD128(rh, rl, th, tl);				\
156		}							\
157	} while (0)
158
159#define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1)				\
160	do {								\
161		int i; u64 th, tl;					\
162		rh1 = rl1 = rh = rl = 0;				\
163		for (i = 0; i < nw; i += 2) {				\
164			MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],	\
165				pe64_to_cpup((mp)+i+1)+(kp)[i+1]);	\
166			ADD128(rh, rl, th, tl);				\
167			MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2],	\
168				pe64_to_cpup((mp)+i+1)+(kp)[i+3]);	\
169			ADD128(rh1, rl1, th, tl);			\
170		}							\
171	} while (0)
172
173#if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */
174#define nh_vmac_nhbytes(mp, kp, nw, rh, rl)				\
175	do {								\
176		int i; u64 th, tl;					\
177		rh = rl = 0;						\
178		for (i = 0; i < nw; i += 8) {				\
179			MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],	\
180				pe64_to_cpup((mp)+i+1)+(kp)[i+1]);	\
181			ADD128(rh, rl, th, tl);				\
182			MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2],	\
183				pe64_to_cpup((mp)+i+3)+(kp)[i+3]);	\
184			ADD128(rh, rl, th, tl);				\
185			MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4],	\
186				pe64_to_cpup((mp)+i+5)+(kp)[i+5]);	\
187			ADD128(rh, rl, th, tl);				\
188			MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6],	\
189				pe64_to_cpup((mp)+i+7)+(kp)[i+7]);	\
190			ADD128(rh, rl, th, tl);				\
191		}							\
192	} while (0)
193
194#define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1)			\
195	do {								\
196		int i; u64 th, tl;					\
197		rh1 = rl1 = rh = rl = 0;				\
198		for (i = 0; i < nw; i += 8) {				\
199			MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],	\
200				pe64_to_cpup((mp)+i+1)+(kp)[i+1]);	\
201			ADD128(rh, rl, th, tl);				\
202			MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2],	\
203				pe64_to_cpup((mp)+i+1)+(kp)[i+3]);	\
204			ADD128(rh1, rl1, th, tl);			\
205			MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2],	\
206				pe64_to_cpup((mp)+i+3)+(kp)[i+3]);	\
207			ADD128(rh, rl, th, tl);				\
208			MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+4],	\
209				pe64_to_cpup((mp)+i+3)+(kp)[i+5]);	\
210			ADD128(rh1, rl1, th, tl);			\
211			MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4],	\
212				pe64_to_cpup((mp)+i+5)+(kp)[i+5]);	\
213			ADD128(rh, rl, th, tl);				\
214			MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+6],	\
215				pe64_to_cpup((mp)+i+5)+(kp)[i+7]);	\
216			ADD128(rh1, rl1, th, tl);			\
217			MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6],	\
218				pe64_to_cpup((mp)+i+7)+(kp)[i+7]);	\
219			ADD128(rh, rl, th, tl);				\
220			MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+8],	\
221				pe64_to_cpup((mp)+i+7)+(kp)[i+9]);	\
222			ADD128(rh1, rl1, th, tl);			\
223		}							\
224	} while (0)
225#endif
226
227#define poly_step(ah, al, kh, kl, mh, ml)				\
228	do {								\
229		u64 t1h, t1l, t2h, t2l, t3h, t3l, z = 0;		\
230		/* compute ab*cd, put bd into result registers */	\
231		PMUL64(t3h, t3l, al, kh);				\
232		PMUL64(t2h, t2l, ah, kl);				\
233		PMUL64(t1h, t1l, ah, 2*kh);				\
234		PMUL64(ah, al, al, kl);					\
235		/* add 2 * ac to result */				\
236		ADD128(ah, al, t1h, t1l);				\
237		/* add together ad + bc */				\
238		ADD128(t2h, t2l, t3h, t3l);				\
239		/* now (ah,al), (t2l,2*t2h) need summing */		\
240		/* first add the high registers, carrying into t2h */	\
241		ADD128(t2h, ah, z, t2l);				\
242		/* double t2h and add top bit of ah */			\
243		t2h = 2 * t2h + (ah >> 63);				\
244		ah &= m63;						\
245		/* now add the low registers */				\
246		ADD128(ah, al, mh, ml);					\
247		ADD128(ah, al, z, t2h);					\
248	} while (0)
249
250#else /* ! CONFIG_64BIT */
251
252#ifndef nh_16
253#define nh_16(mp, kp, nw, rh, rl)					\
254	do {								\
255		u64 t1, t2, m1, m2, t;					\
256		int i;							\
257		rh = rl = t = 0;					\
258		for (i = 0; i < nw; i += 2)  {				\
259			t1 = pe64_to_cpup(mp+i) + kp[i];		\
260			t2 = pe64_to_cpup(mp+i+1) + kp[i+1];		\
261			m2 = MUL32(t1 >> 32, t2);			\
262			m1 = MUL32(t1, t2 >> 32);			\
263			ADD128(rh, rl, MUL32(t1 >> 32, t2 >> 32),	\
264				MUL32(t1, t2));				\
265			rh += (u64)(u32)(m1 >> 32)			\
266				+ (u32)(m2 >> 32);			\
267			t += (u64)(u32)m1 + (u32)m2;			\
268		}							\
269		ADD128(rh, rl, (t >> 32), (t << 32));			\
270	} while (0)
271#endif
272
273static void poly_step_func(u64 *ahi, u64 *alo,
274			const u64 *kh, const u64 *kl,
275			const u64 *mh, const u64 *ml)
276{
277#define a0 (*(((u32 *)alo)+INDEX_LOW))
278#define a1 (*(((u32 *)alo)+INDEX_HIGH))
279#define a2 (*(((u32 *)ahi)+INDEX_LOW))
280#define a3 (*(((u32 *)ahi)+INDEX_HIGH))
281#define k0 (*(((u32 *)kl)+INDEX_LOW))
282#define k1 (*(((u32 *)kl)+INDEX_HIGH))
283#define k2 (*(((u32 *)kh)+INDEX_LOW))
284#define k3 (*(((u32 *)kh)+INDEX_HIGH))
285
286	u64 p, q, t;
287	u32 t2;
288
289	p = MUL32(a3, k3);
290	p += p;
291	p += *(u64 *)mh;
292	p += MUL32(a0, k2);
293	p += MUL32(a1, k1);
294	p += MUL32(a2, k0);
295	t = (u32)(p);
296	p >>= 32;
297	p += MUL32(a0, k3);
298	p += MUL32(a1, k2);
299	p += MUL32(a2, k1);
300	p += MUL32(a3, k0);
301	t |= ((u64)((u32)p & 0x7fffffff)) << 32;
302	p >>= 31;
303	p += (u64)(((u32 *)ml)[INDEX_LOW]);
304	p += MUL32(a0, k0);
305	q =  MUL32(a1, k3);
306	q += MUL32(a2, k2);
307	q += MUL32(a3, k1);
308	q += q;
309	p += q;
310	t2 = (u32)(p);
311	p >>= 32;
312	p += (u64)(((u32 *)ml)[INDEX_HIGH]);
313	p += MUL32(a0, k1);
314	p += MUL32(a1, k0);
315	q =  MUL32(a2, k3);
316	q += MUL32(a3, k2);
317	q += q;
318	p += q;
319	*(u64 *)(alo) = (p << 32) | t2;
320	p >>= 32;
321	*(u64 *)(ahi) = p + t;
322
323#undef a0
324#undef a1
325#undef a2
326#undef a3
327#undef k0
328#undef k1
329#undef k2
330#undef k3
331}
332
333#define poly_step(ah, al, kh, kl, mh, ml)				\
334	poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml))
335
336#endif  /* end of specialized NH and poly definitions */
337
338/* At least nh_16 is defined. Defined others as needed here */
339#ifndef nh_16_2
340#define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2)				\
341	do { 								\
342		nh_16(mp, kp, nw, rh, rl);				\
343		nh_16(mp, ((kp)+2), nw, rh2, rl2);			\
344	} while (0)
345#endif
346#ifndef nh_vmac_nhbytes
347#define nh_vmac_nhbytes(mp, kp, nw, rh, rl)				\
348	nh_16(mp, kp, nw, rh, rl)
349#endif
350#ifndef nh_vmac_nhbytes_2
351#define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2)			\
352	do {								\
353		nh_vmac_nhbytes(mp, kp, nw, rh, rl);			\
354		nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2);		\
355	} while (0)
356#endif
357
358static u64 l3hash(u64 p1, u64 p2, u64 k1, u64 k2, u64 len)
359{
360	u64 rh, rl, t, z = 0;
361
362	/* fully reduce (p1,p2)+(len,0) mod p127 */
363	t = p1 >> 63;
364	p1 &= m63;
365	ADD128(p1, p2, len, t);
366	/* At this point, (p1,p2) is at most 2^127+(len<<64) */
367	t = (p1 > m63) + ((p1 == m63) && (p2 == m64));
368	ADD128(p1, p2, z, t);
369	p1 &= m63;
370
371	/* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */
372	t = p1 + (p2 >> 32);
373	t += (t >> 32);
374	t += (u32)t > 0xfffffffeu;
375	p1 += (t >> 32);
376	p2 += (p1 << 32);
377
378	/* compute (p1+k1)%p64 and (p2+k2)%p64 */
379	p1 += k1;
380	p1 += (0 - (p1 < k1)) & 257;
381	p2 += k2;
382	p2 += (0 - (p2 < k2)) & 257;
383
384	/* compute (p1+k1)*(p2+k2)%p64 */
385	MUL64(rh, rl, p1, p2);
386	t = rh >> 56;
387	ADD128(t, rl, z, rh);
388	rh <<= 8;
389	ADD128(t, rl, z, rh);
390	t += t << 8;
391	rl += t;
392	rl += (0 - (rl < t)) & 257;
393	rl += (0 - (rl > p64-1)) & 257;
394	return rl;
395}
396
397/* L1 and L2-hash one or more VMAC_NHBYTES-byte blocks */
398static void vhash_blocks(const struct vmac_tfm_ctx *tctx,
399			 struct vmac_desc_ctx *dctx,
400			 const __le64 *mptr, unsigned int blocks)
401{
402	const u64 *kptr = tctx->nhkey;
403	const u64 pkh = tctx->polykey[0];
404	const u64 pkl = tctx->polykey[1];
405	u64 ch = dctx->polytmp[0];
406	u64 cl = dctx->polytmp[1];
407	u64 rh, rl;
408
409	if (!dctx->first_block_processed) {
410		dctx->first_block_processed = true;
411		nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
412		rh &= m62;
413		ADD128(ch, cl, rh, rl);
414		mptr += (VMAC_NHBYTES/sizeof(u64));
415		blocks--;
416	}
417
418	while (blocks--) {
419		nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
420		rh &= m62;
421		poly_step(ch, cl, pkh, pkl, rh, rl);
422		mptr += (VMAC_NHBYTES/sizeof(u64));
423	}
424
425	dctx->polytmp[0] = ch;
426	dctx->polytmp[1] = cl;
427}
428
429static int vmac_setkey(struct crypto_shash *tfm,
430		       const u8 *key, unsigned int keylen)
431{
432	struct vmac_tfm_ctx *tctx = crypto_shash_ctx(tfm);
433	__be64 out[2];
434	u8 in[16] = { 0 };
435	unsigned int i;
436	int err;
437
438	if (keylen != VMAC_KEY_LEN)
439		return -EINVAL;
440
441	err = crypto_cipher_setkey(tctx->cipher, key, keylen);
442	if (err)
443		return err;
444
445	/* Fill nh key */
446	in[0] = 0x80;
447	for (i = 0; i < ARRAY_SIZE(tctx->nhkey); i += 2) {
448		crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in);
449		tctx->nhkey[i] = be64_to_cpu(out[0]);
450		tctx->nhkey[i+1] = be64_to_cpu(out[1]);
451		in[15]++;
452	}
453
454	/* Fill poly key */
455	in[0] = 0xC0;
456	in[15] = 0;
457	for (i = 0; i < ARRAY_SIZE(tctx->polykey); i += 2) {
458		crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in);
459		tctx->polykey[i] = be64_to_cpu(out[0]) & mpoly;
460		tctx->polykey[i+1] = be64_to_cpu(out[1]) & mpoly;
461		in[15]++;
462	}
463
464	/* Fill ip key */
465	in[0] = 0xE0;
466	in[15] = 0;
467	for (i = 0; i < ARRAY_SIZE(tctx->l3key); i += 2) {
468		do {
469			crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in);
470			tctx->l3key[i] = be64_to_cpu(out[0]);
471			tctx->l3key[i+1] = be64_to_cpu(out[1]);
472			in[15]++;
473		} while (tctx->l3key[i] >= p64 || tctx->l3key[i+1] >= p64);
474	}
475
476	return 0;
477}
478
479static int vmac_init(struct shash_desc *desc)
480{
481	const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
482	struct vmac_desc_ctx *dctx = shash_desc_ctx(desc);
483
484	dctx->partial_size = 0;
485	dctx->first_block_processed = false;
486	memcpy(dctx->polytmp, tctx->polykey, sizeof(dctx->polytmp));
487	dctx->nonce_size = 0;
488	return 0;
489}
490
491static int vmac_update(struct shash_desc *desc, const u8 *p, unsigned int len)
492{
493	const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
494	struct vmac_desc_ctx *dctx = shash_desc_ctx(desc);
495	unsigned int n;
496
497	/* Nonce is passed as first VMAC_NONCEBYTES bytes of data */
498	if (dctx->nonce_size < VMAC_NONCEBYTES) {
499		n = min(len, VMAC_NONCEBYTES - dctx->nonce_size);
500		memcpy(&dctx->nonce.bytes[dctx->nonce_size], p, n);
501		dctx->nonce_size += n;
502		p += n;
503		len -= n;
504	}
505
506	if (dctx->partial_size) {
507		n = min(len, VMAC_NHBYTES - dctx->partial_size);
508		memcpy(&dctx->partial[dctx->partial_size], p, n);
509		dctx->partial_size += n;
510		p += n;
511		len -= n;
512		if (dctx->partial_size == VMAC_NHBYTES) {
513			vhash_blocks(tctx, dctx, dctx->partial_words, 1);
514			dctx->partial_size = 0;
515		}
516	}
517
518	if (len >= VMAC_NHBYTES) {
519		n = round_down(len, VMAC_NHBYTES);
520		/* TODO: 'p' may be misaligned here */
521		vhash_blocks(tctx, dctx, (const __le64 *)p, n / VMAC_NHBYTES);
522		p += n;
523		len -= n;
524	}
525
526	if (len) {
527		memcpy(dctx->partial, p, len);
528		dctx->partial_size = len;
529	}
530
531	return 0;
532}
533
534static u64 vhash_final(const struct vmac_tfm_ctx *tctx,
535		       struct vmac_desc_ctx *dctx)
536{
537	unsigned int partial = dctx->partial_size;
538	u64 ch = dctx->polytmp[0];
539	u64 cl = dctx->polytmp[1];
540
541	/* L1 and L2-hash the final block if needed */
542	if (partial) {
543		/* Zero-pad to next 128-bit boundary */
544		unsigned int n = round_up(partial, 16);
545		u64 rh, rl;
546
547		memset(&dctx->partial[partial], 0, n - partial);
548		nh_16(dctx->partial_words, tctx->nhkey, n / 8, rh, rl);
549		rh &= m62;
550		if (dctx->first_block_processed)
551			poly_step(ch, cl, tctx->polykey[0], tctx->polykey[1],
552				  rh, rl);
553		else
554			ADD128(ch, cl, rh, rl);
555	}
556
557	/* L3-hash the 128-bit output of L2-hash */
558	return l3hash(ch, cl, tctx->l3key[0], tctx->l3key[1], partial * 8);
559}
560
561static int vmac_final(struct shash_desc *desc, u8 *out)
562{
563	const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
564	struct vmac_desc_ctx *dctx = shash_desc_ctx(desc);
565	int index;
566	u64 hash, pad;
567
568	if (dctx->nonce_size != VMAC_NONCEBYTES)
569		return -EINVAL;
570
571	/*
572	 * The VMAC specification requires a nonce at least 1 bit shorter than
573	 * the block cipher's block length, so we actually only accept a 127-bit
574	 * nonce.  We define the unused bit to be the first one and require that
575	 * it be 0, so the needed prepending of a 0 bit is implicit.
576	 */
577	if (dctx->nonce.bytes[0] & 0x80)
578		return -EINVAL;
579
580	/* Finish calculating the VHASH of the message */
581	hash = vhash_final(tctx, dctx);
582
583	/* Generate pseudorandom pad by encrypting the nonce */
584	BUILD_BUG_ON(VMAC_NONCEBYTES != 2 * (VMAC_TAG_LEN / 8));
585	index = dctx->nonce.bytes[VMAC_NONCEBYTES - 1] & 1;
586	dctx->nonce.bytes[VMAC_NONCEBYTES - 1] &= ~1;
587	crypto_cipher_encrypt_one(tctx->cipher, dctx->nonce.bytes,
588				  dctx->nonce.bytes);
589	pad = be64_to_cpu(dctx->nonce.pads[index]);
590
591	/* The VMAC is the sum of VHASH and the pseudorandom pad */
592	put_unaligned_be64(hash + pad, out);
593	return 0;
594}
595
596static int vmac_init_tfm(struct crypto_tfm *tfm)
597{
598	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
599	struct crypto_cipher_spawn *spawn = crypto_instance_ctx(inst);
600	struct vmac_tfm_ctx *tctx = crypto_tfm_ctx(tfm);
601	struct crypto_cipher *cipher;
602
603	cipher = crypto_spawn_cipher(spawn);
604	if (IS_ERR(cipher))
605		return PTR_ERR(cipher);
606
607	tctx->cipher = cipher;
608	return 0;
609}
610
611static void vmac_exit_tfm(struct crypto_tfm *tfm)
612{
613	struct vmac_tfm_ctx *tctx = crypto_tfm_ctx(tfm);
614
615	crypto_free_cipher(tctx->cipher);
616}
617
618static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb)
619{
620	struct shash_instance *inst;
621	struct crypto_cipher_spawn *spawn;
622	struct crypto_alg *alg;
623	u32 mask;
624	int err;
625
626	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH, &mask);
627	if (err)
628		return err;
629
630	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
631	if (!inst)
632		return -ENOMEM;
633	spawn = shash_instance_ctx(inst);
634
635	err = crypto_grab_cipher(spawn, shash_crypto_instance(inst),
636				 crypto_attr_alg_name(tb[1]), 0, mask);
637	if (err)
638		goto err_free_inst;
639	alg = crypto_spawn_cipher_alg(spawn);
640
641	err = -EINVAL;
642	if (alg->cra_blocksize != VMAC_NONCEBYTES)
643		goto err_free_inst;
644
645	err = crypto_inst_setname(shash_crypto_instance(inst), tmpl->name, alg);
646	if (err)
647		goto err_free_inst;
648
649	inst->alg.base.cra_priority = alg->cra_priority;
650	inst->alg.base.cra_blocksize = alg->cra_blocksize;
651	inst->alg.base.cra_alignmask = alg->cra_alignmask;
652
653	inst->alg.base.cra_ctxsize = sizeof(struct vmac_tfm_ctx);
654	inst->alg.base.cra_init = vmac_init_tfm;
655	inst->alg.base.cra_exit = vmac_exit_tfm;
656
657	inst->alg.descsize = sizeof(struct vmac_desc_ctx);
658	inst->alg.digestsize = VMAC_TAG_LEN / 8;
659	inst->alg.init = vmac_init;
660	inst->alg.update = vmac_update;
661	inst->alg.final = vmac_final;
662	inst->alg.setkey = vmac_setkey;
663
664	inst->free = shash_free_singlespawn_instance;
665
666	err = shash_register_instance(tmpl, inst);
667	if (err) {
668err_free_inst:
669		shash_free_singlespawn_instance(inst);
670	}
671	return err;
672}
673
674static struct crypto_template vmac64_tmpl = {
675	.name = "vmac64",
676	.create = vmac_create,
677	.module = THIS_MODULE,
678};
679
680static int __init vmac_module_init(void)
681{
682	return crypto_register_template(&vmac64_tmpl);
683}
684
685static void __exit vmac_module_exit(void)
686{
687	crypto_unregister_template(&vmac64_tmpl);
688}
689
690subsys_initcall(vmac_module_init);
691module_exit(vmac_module_exit);
692
693MODULE_LICENSE("GPL");
694MODULE_DESCRIPTION("VMAC hash algorithm");
695MODULE_ALIAS_CRYPTO("vmac64");
v6.2
  1/*
  2 * VMAC: Message Authentication Code using Universal Hashing
  3 *
  4 * Reference: https://tools.ietf.org/html/draft-krovetz-vmac-01
  5 *
  6 * Copyright (c) 2009, Intel Corporation.
  7 * Copyright (c) 2018, Google Inc.
  8 *
  9 * This program is free software; you can redistribute it and/or modify it
 10 * under the terms and conditions of the GNU General Public License,
 11 * version 2, as published by the Free Software Foundation.
 12 *
 13 * This program is distributed in the hope it will be useful, but WITHOUT
 14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 15 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 16 * more details.
 17 *
 18 * You should have received a copy of the GNU General Public License along with
 19 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 20 * Place - Suite 330, Boston, MA 02111-1307 USA.
 21 */
 22
 23/*
 24 * Derived from:
 25 *	VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai.
 26 *	This implementation is herby placed in the public domain.
 27 *	The authors offers no warranty. Use at your own risk.
 28 *	Last modified: 17 APR 08, 1700 PDT
 29 */
 30
 31#include <asm/unaligned.h>
 32#include <linux/init.h>
 33#include <linux/types.h>
 34#include <linux/crypto.h>
 35#include <linux/module.h>
 36#include <linux/scatterlist.h>
 37#include <asm/byteorder.h>
 38#include <crypto/scatterwalk.h>
 39#include <crypto/internal/cipher.h>
 40#include <crypto/internal/hash.h>
 41
 42/*
 43 * User definable settings.
 44 */
 45#define VMAC_TAG_LEN	64
 46#define VMAC_KEY_SIZE	128/* Must be 128, 192 or 256			*/
 47#define VMAC_KEY_LEN	(VMAC_KEY_SIZE/8)
 48#define VMAC_NHBYTES	128/* Must 2^i for any 3 < i < 13 Standard = 128*/
 49#define VMAC_NONCEBYTES	16
 50
 51/* per-transform (per-key) context */
 52struct vmac_tfm_ctx {
 53	struct crypto_cipher *cipher;
 54	u64 nhkey[(VMAC_NHBYTES/8)+2*(VMAC_TAG_LEN/64-1)];
 55	u64 polykey[2*VMAC_TAG_LEN/64];
 56	u64 l3key[2*VMAC_TAG_LEN/64];
 57};
 58
 59/* per-request context */
 60struct vmac_desc_ctx {
 61	union {
 62		u8 partial[VMAC_NHBYTES];	/* partial block */
 63		__le64 partial_words[VMAC_NHBYTES / 8];
 64	};
 65	unsigned int partial_size;	/* size of the partial block */
 66	bool first_block_processed;
 67	u64 polytmp[2*VMAC_TAG_LEN/64];	/* running total of L2-hash */
 68	union {
 69		u8 bytes[VMAC_NONCEBYTES];
 70		__be64 pads[VMAC_NONCEBYTES / 8];
 71	} nonce;
 72	unsigned int nonce_size; /* nonce bytes filled so far */
 73};
 74
 75/*
 76 * Constants and masks
 77 */
 78#define UINT64_C(x) x##ULL
 79static const u64 p64   = UINT64_C(0xfffffffffffffeff);	/* 2^64 - 257 prime  */
 80static const u64 m62   = UINT64_C(0x3fffffffffffffff);	/* 62-bit mask       */
 81static const u64 m63   = UINT64_C(0x7fffffffffffffff);	/* 63-bit mask       */
 82static const u64 m64   = UINT64_C(0xffffffffffffffff);	/* 64-bit mask       */
 83static const u64 mpoly = UINT64_C(0x1fffffff1fffffff);	/* Poly key mask     */
 84
 85#define pe64_to_cpup le64_to_cpup		/* Prefer little endian */
 86
 87#ifdef __LITTLE_ENDIAN
 88#define INDEX_HIGH 1
 89#define INDEX_LOW 0
 90#else
 91#define INDEX_HIGH 0
 92#define INDEX_LOW 1
 93#endif
 94
 95/*
 96 * The following routines are used in this implementation. They are
 97 * written via macros to simulate zero-overhead call-by-reference.
 98 *
 99 * MUL64: 64x64->128-bit multiplication
100 * PMUL64: assumes top bits cleared on inputs
101 * ADD128: 128x128->128-bit addition
102 */
103
104#define ADD128(rh, rl, ih, il)						\
105	do {								\
106		u64 _il = (il);						\
107		(rl) += (_il);						\
108		if ((rl) < (_il))					\
109			(rh)++;						\
110		(rh) += (ih);						\
111	} while (0)
112
113#define MUL32(i1, i2)	((u64)(u32)(i1)*(u32)(i2))
114
115#define PMUL64(rh, rl, i1, i2)	/* Assumes m doesn't overflow */	\
116	do {								\
117		u64 _i1 = (i1), _i2 = (i2);				\
118		u64 m = MUL32(_i1, _i2>>32) + MUL32(_i1>>32, _i2);	\
119		rh = MUL32(_i1>>32, _i2>>32);				\
120		rl = MUL32(_i1, _i2);					\
121		ADD128(rh, rl, (m >> 32), (m << 32));			\
122	} while (0)
123
124#define MUL64(rh, rl, i1, i2)						\
125	do {								\
126		u64 _i1 = (i1), _i2 = (i2);				\
127		u64 m1 = MUL32(_i1, _i2>>32);				\
128		u64 m2 = MUL32(_i1>>32, _i2);				\
129		rh = MUL32(_i1>>32, _i2>>32);				\
130		rl = MUL32(_i1, _i2);					\
131		ADD128(rh, rl, (m1 >> 32), (m1 << 32));			\
132		ADD128(rh, rl, (m2 >> 32), (m2 << 32));			\
133	} while (0)
134
135/*
136 * For highest performance the L1 NH and L2 polynomial hashes should be
137 * carefully implemented to take advantage of one's target architecture.
138 * Here these two hash functions are defined multiple time; once for
139 * 64-bit architectures, once for 32-bit SSE2 architectures, and once
140 * for the rest (32-bit) architectures.
141 * For each, nh_16 *must* be defined (works on multiples of 16 bytes).
142 * Optionally, nh_vmac_nhbytes can be defined (for multiples of
143 * VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two
144 * NH computations at once).
145 */
146
147#ifdef CONFIG_64BIT
148
149#define nh_16(mp, kp, nw, rh, rl)					\
150	do {								\
151		int i; u64 th, tl;					\
152		rh = rl = 0;						\
153		for (i = 0; i < nw; i += 2) {				\
154			MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],	\
155				pe64_to_cpup((mp)+i+1)+(kp)[i+1]);	\
156			ADD128(rh, rl, th, tl);				\
157		}							\
158	} while (0)
159
160#define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1)				\
161	do {								\
162		int i; u64 th, tl;					\
163		rh1 = rl1 = rh = rl = 0;				\
164		for (i = 0; i < nw; i += 2) {				\
165			MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],	\
166				pe64_to_cpup((mp)+i+1)+(kp)[i+1]);	\
167			ADD128(rh, rl, th, tl);				\
168			MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2],	\
169				pe64_to_cpup((mp)+i+1)+(kp)[i+3]);	\
170			ADD128(rh1, rl1, th, tl);			\
171		}							\
172	} while (0)
173
174#if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */
175#define nh_vmac_nhbytes(mp, kp, nw, rh, rl)				\
176	do {								\
177		int i; u64 th, tl;					\
178		rh = rl = 0;						\
179		for (i = 0; i < nw; i += 8) {				\
180			MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],	\
181				pe64_to_cpup((mp)+i+1)+(kp)[i+1]);	\
182			ADD128(rh, rl, th, tl);				\
183			MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2],	\
184				pe64_to_cpup((mp)+i+3)+(kp)[i+3]);	\
185			ADD128(rh, rl, th, tl);				\
186			MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4],	\
187				pe64_to_cpup((mp)+i+5)+(kp)[i+5]);	\
188			ADD128(rh, rl, th, tl);				\
189			MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6],	\
190				pe64_to_cpup((mp)+i+7)+(kp)[i+7]);	\
191			ADD128(rh, rl, th, tl);				\
192		}							\
193	} while (0)
194
195#define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1)			\
196	do {								\
197		int i; u64 th, tl;					\
198		rh1 = rl1 = rh = rl = 0;				\
199		for (i = 0; i < nw; i += 8) {				\
200			MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],	\
201				pe64_to_cpup((mp)+i+1)+(kp)[i+1]);	\
202			ADD128(rh, rl, th, tl);				\
203			MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2],	\
204				pe64_to_cpup((mp)+i+1)+(kp)[i+3]);	\
205			ADD128(rh1, rl1, th, tl);			\
206			MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2],	\
207				pe64_to_cpup((mp)+i+3)+(kp)[i+3]);	\
208			ADD128(rh, rl, th, tl);				\
209			MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+4],	\
210				pe64_to_cpup((mp)+i+3)+(kp)[i+5]);	\
211			ADD128(rh1, rl1, th, tl);			\
212			MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4],	\
213				pe64_to_cpup((mp)+i+5)+(kp)[i+5]);	\
214			ADD128(rh, rl, th, tl);				\
215			MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+6],	\
216				pe64_to_cpup((mp)+i+5)+(kp)[i+7]);	\
217			ADD128(rh1, rl1, th, tl);			\
218			MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6],	\
219				pe64_to_cpup((mp)+i+7)+(kp)[i+7]);	\
220			ADD128(rh, rl, th, tl);				\
221			MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+8],	\
222				pe64_to_cpup((mp)+i+7)+(kp)[i+9]);	\
223			ADD128(rh1, rl1, th, tl);			\
224		}							\
225	} while (0)
226#endif
227
228#define poly_step(ah, al, kh, kl, mh, ml)				\
229	do {								\
230		u64 t1h, t1l, t2h, t2l, t3h, t3l, z = 0;		\
231		/* compute ab*cd, put bd into result registers */	\
232		PMUL64(t3h, t3l, al, kh);				\
233		PMUL64(t2h, t2l, ah, kl);				\
234		PMUL64(t1h, t1l, ah, 2*kh);				\
235		PMUL64(ah, al, al, kl);					\
236		/* add 2 * ac to result */				\
237		ADD128(ah, al, t1h, t1l);				\
238		/* add together ad + bc */				\
239		ADD128(t2h, t2l, t3h, t3l);				\
240		/* now (ah,al), (t2l,2*t2h) need summing */		\
241		/* first add the high registers, carrying into t2h */	\
242		ADD128(t2h, ah, z, t2l);				\
243		/* double t2h and add top bit of ah */			\
244		t2h = 2 * t2h + (ah >> 63);				\
245		ah &= m63;						\
246		/* now add the low registers */				\
247		ADD128(ah, al, mh, ml);					\
248		ADD128(ah, al, z, t2h);					\
249	} while (0)
250
251#else /* ! CONFIG_64BIT */
252
253#ifndef nh_16
254#define nh_16(mp, kp, nw, rh, rl)					\
255	do {								\
256		u64 t1, t2, m1, m2, t;					\
257		int i;							\
258		rh = rl = t = 0;					\
259		for (i = 0; i < nw; i += 2)  {				\
260			t1 = pe64_to_cpup(mp+i) + kp[i];		\
261			t2 = pe64_to_cpup(mp+i+1) + kp[i+1];		\
262			m2 = MUL32(t1 >> 32, t2);			\
263			m1 = MUL32(t1, t2 >> 32);			\
264			ADD128(rh, rl, MUL32(t1 >> 32, t2 >> 32),	\
265				MUL32(t1, t2));				\
266			rh += (u64)(u32)(m1 >> 32)			\
267				+ (u32)(m2 >> 32);			\
268			t += (u64)(u32)m1 + (u32)m2;			\
269		}							\
270		ADD128(rh, rl, (t >> 32), (t << 32));			\
271	} while (0)
272#endif
273
274static void poly_step_func(u64 *ahi, u64 *alo,
275			const u64 *kh, const u64 *kl,
276			const u64 *mh, const u64 *ml)
277{
278#define a0 (*(((u32 *)alo)+INDEX_LOW))
279#define a1 (*(((u32 *)alo)+INDEX_HIGH))
280#define a2 (*(((u32 *)ahi)+INDEX_LOW))
281#define a3 (*(((u32 *)ahi)+INDEX_HIGH))
282#define k0 (*(((u32 *)kl)+INDEX_LOW))
283#define k1 (*(((u32 *)kl)+INDEX_HIGH))
284#define k2 (*(((u32 *)kh)+INDEX_LOW))
285#define k3 (*(((u32 *)kh)+INDEX_HIGH))
286
287	u64 p, q, t;
288	u32 t2;
289
290	p = MUL32(a3, k3);
291	p += p;
292	p += *(u64 *)mh;
293	p += MUL32(a0, k2);
294	p += MUL32(a1, k1);
295	p += MUL32(a2, k0);
296	t = (u32)(p);
297	p >>= 32;
298	p += MUL32(a0, k3);
299	p += MUL32(a1, k2);
300	p += MUL32(a2, k1);
301	p += MUL32(a3, k0);
302	t |= ((u64)((u32)p & 0x7fffffff)) << 32;
303	p >>= 31;
304	p += (u64)(((u32 *)ml)[INDEX_LOW]);
305	p += MUL32(a0, k0);
306	q =  MUL32(a1, k3);
307	q += MUL32(a2, k2);
308	q += MUL32(a3, k1);
309	q += q;
310	p += q;
311	t2 = (u32)(p);
312	p >>= 32;
313	p += (u64)(((u32 *)ml)[INDEX_HIGH]);
314	p += MUL32(a0, k1);
315	p += MUL32(a1, k0);
316	q =  MUL32(a2, k3);
317	q += MUL32(a3, k2);
318	q += q;
319	p += q;
320	*(u64 *)(alo) = (p << 32) | t2;
321	p >>= 32;
322	*(u64 *)(ahi) = p + t;
323
324#undef a0
325#undef a1
326#undef a2
327#undef a3
328#undef k0
329#undef k1
330#undef k2
331#undef k3
332}
333
334#define poly_step(ah, al, kh, kl, mh, ml)				\
335	poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml))
336
337#endif  /* end of specialized NH and poly definitions */
338
339/* At least nh_16 is defined. Defined others as needed here */
340#ifndef nh_16_2
341#define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2)				\
342	do { 								\
343		nh_16(mp, kp, nw, rh, rl);				\
344		nh_16(mp, ((kp)+2), nw, rh2, rl2);			\
345	} while (0)
346#endif
347#ifndef nh_vmac_nhbytes
348#define nh_vmac_nhbytes(mp, kp, nw, rh, rl)				\
349	nh_16(mp, kp, nw, rh, rl)
350#endif
351#ifndef nh_vmac_nhbytes_2
352#define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2)			\
353	do {								\
354		nh_vmac_nhbytes(mp, kp, nw, rh, rl);			\
355		nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2);		\
356	} while (0)
357#endif
358
359static u64 l3hash(u64 p1, u64 p2, u64 k1, u64 k2, u64 len)
360{
361	u64 rh, rl, t, z = 0;
362
363	/* fully reduce (p1,p2)+(len,0) mod p127 */
364	t = p1 >> 63;
365	p1 &= m63;
366	ADD128(p1, p2, len, t);
367	/* At this point, (p1,p2) is at most 2^127+(len<<64) */
368	t = (p1 > m63) + ((p1 == m63) && (p2 == m64));
369	ADD128(p1, p2, z, t);
370	p1 &= m63;
371
372	/* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */
373	t = p1 + (p2 >> 32);
374	t += (t >> 32);
375	t += (u32)t > 0xfffffffeu;
376	p1 += (t >> 32);
377	p2 += (p1 << 32);
378
379	/* compute (p1+k1)%p64 and (p2+k2)%p64 */
380	p1 += k1;
381	p1 += (0 - (p1 < k1)) & 257;
382	p2 += k2;
383	p2 += (0 - (p2 < k2)) & 257;
384
385	/* compute (p1+k1)*(p2+k2)%p64 */
386	MUL64(rh, rl, p1, p2);
387	t = rh >> 56;
388	ADD128(t, rl, z, rh);
389	rh <<= 8;
390	ADD128(t, rl, z, rh);
391	t += t << 8;
392	rl += t;
393	rl += (0 - (rl < t)) & 257;
394	rl += (0 - (rl > p64-1)) & 257;
395	return rl;
396}
397
398/* L1 and L2-hash one or more VMAC_NHBYTES-byte blocks */
399static void vhash_blocks(const struct vmac_tfm_ctx *tctx,
400			 struct vmac_desc_ctx *dctx,
401			 const __le64 *mptr, unsigned int blocks)
402{
403	const u64 *kptr = tctx->nhkey;
404	const u64 pkh = tctx->polykey[0];
405	const u64 pkl = tctx->polykey[1];
406	u64 ch = dctx->polytmp[0];
407	u64 cl = dctx->polytmp[1];
408	u64 rh, rl;
409
410	if (!dctx->first_block_processed) {
411		dctx->first_block_processed = true;
412		nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
413		rh &= m62;
414		ADD128(ch, cl, rh, rl);
415		mptr += (VMAC_NHBYTES/sizeof(u64));
416		blocks--;
417	}
418
419	while (blocks--) {
420		nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
421		rh &= m62;
422		poly_step(ch, cl, pkh, pkl, rh, rl);
423		mptr += (VMAC_NHBYTES/sizeof(u64));
424	}
425
426	dctx->polytmp[0] = ch;
427	dctx->polytmp[1] = cl;
428}
429
430static int vmac_setkey(struct crypto_shash *tfm,
431		       const u8 *key, unsigned int keylen)
432{
433	struct vmac_tfm_ctx *tctx = crypto_shash_ctx(tfm);
434	__be64 out[2];
435	u8 in[16] = { 0 };
436	unsigned int i;
437	int err;
438
439	if (keylen != VMAC_KEY_LEN)
440		return -EINVAL;
441
442	err = crypto_cipher_setkey(tctx->cipher, key, keylen);
443	if (err)
444		return err;
445
446	/* Fill nh key */
447	in[0] = 0x80;
448	for (i = 0; i < ARRAY_SIZE(tctx->nhkey); i += 2) {
449		crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in);
450		tctx->nhkey[i] = be64_to_cpu(out[0]);
451		tctx->nhkey[i+1] = be64_to_cpu(out[1]);
452		in[15]++;
453	}
454
455	/* Fill poly key */
456	in[0] = 0xC0;
457	in[15] = 0;
458	for (i = 0; i < ARRAY_SIZE(tctx->polykey); i += 2) {
459		crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in);
460		tctx->polykey[i] = be64_to_cpu(out[0]) & mpoly;
461		tctx->polykey[i+1] = be64_to_cpu(out[1]) & mpoly;
462		in[15]++;
463	}
464
465	/* Fill ip key */
466	in[0] = 0xE0;
467	in[15] = 0;
468	for (i = 0; i < ARRAY_SIZE(tctx->l3key); i += 2) {
469		do {
470			crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in);
471			tctx->l3key[i] = be64_to_cpu(out[0]);
472			tctx->l3key[i+1] = be64_to_cpu(out[1]);
473			in[15]++;
474		} while (tctx->l3key[i] >= p64 || tctx->l3key[i+1] >= p64);
475	}
476
477	return 0;
478}
479
480static int vmac_init(struct shash_desc *desc)
481{
482	const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
483	struct vmac_desc_ctx *dctx = shash_desc_ctx(desc);
484
485	dctx->partial_size = 0;
486	dctx->first_block_processed = false;
487	memcpy(dctx->polytmp, tctx->polykey, sizeof(dctx->polytmp));
488	dctx->nonce_size = 0;
489	return 0;
490}
491
492static int vmac_update(struct shash_desc *desc, const u8 *p, unsigned int len)
493{
494	const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
495	struct vmac_desc_ctx *dctx = shash_desc_ctx(desc);
496	unsigned int n;
497
498	/* Nonce is passed as first VMAC_NONCEBYTES bytes of data */
499	if (dctx->nonce_size < VMAC_NONCEBYTES) {
500		n = min(len, VMAC_NONCEBYTES - dctx->nonce_size);
501		memcpy(&dctx->nonce.bytes[dctx->nonce_size], p, n);
502		dctx->nonce_size += n;
503		p += n;
504		len -= n;
505	}
506
507	if (dctx->partial_size) {
508		n = min(len, VMAC_NHBYTES - dctx->partial_size);
509		memcpy(&dctx->partial[dctx->partial_size], p, n);
510		dctx->partial_size += n;
511		p += n;
512		len -= n;
513		if (dctx->partial_size == VMAC_NHBYTES) {
514			vhash_blocks(tctx, dctx, dctx->partial_words, 1);
515			dctx->partial_size = 0;
516		}
517	}
518
519	if (len >= VMAC_NHBYTES) {
520		n = round_down(len, VMAC_NHBYTES);
521		/* TODO: 'p' may be misaligned here */
522		vhash_blocks(tctx, dctx, (const __le64 *)p, n / VMAC_NHBYTES);
523		p += n;
524		len -= n;
525	}
526
527	if (len) {
528		memcpy(dctx->partial, p, len);
529		dctx->partial_size = len;
530	}
531
532	return 0;
533}
534
535static u64 vhash_final(const struct vmac_tfm_ctx *tctx,
536		       struct vmac_desc_ctx *dctx)
537{
538	unsigned int partial = dctx->partial_size;
539	u64 ch = dctx->polytmp[0];
540	u64 cl = dctx->polytmp[1];
541
542	/* L1 and L2-hash the final block if needed */
543	if (partial) {
544		/* Zero-pad to next 128-bit boundary */
545		unsigned int n = round_up(partial, 16);
546		u64 rh, rl;
547
548		memset(&dctx->partial[partial], 0, n - partial);
549		nh_16(dctx->partial_words, tctx->nhkey, n / 8, rh, rl);
550		rh &= m62;
551		if (dctx->first_block_processed)
552			poly_step(ch, cl, tctx->polykey[0], tctx->polykey[1],
553				  rh, rl);
554		else
555			ADD128(ch, cl, rh, rl);
556	}
557
558	/* L3-hash the 128-bit output of L2-hash */
559	return l3hash(ch, cl, tctx->l3key[0], tctx->l3key[1], partial * 8);
560}
561
562static int vmac_final(struct shash_desc *desc, u8 *out)
563{
564	const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
565	struct vmac_desc_ctx *dctx = shash_desc_ctx(desc);
566	int index;
567	u64 hash, pad;
568
569	if (dctx->nonce_size != VMAC_NONCEBYTES)
570		return -EINVAL;
571
572	/*
573	 * The VMAC specification requires a nonce at least 1 bit shorter than
574	 * the block cipher's block length, so we actually only accept a 127-bit
575	 * nonce.  We define the unused bit to be the first one and require that
576	 * it be 0, so the needed prepending of a 0 bit is implicit.
577	 */
578	if (dctx->nonce.bytes[0] & 0x80)
579		return -EINVAL;
580
581	/* Finish calculating the VHASH of the message */
582	hash = vhash_final(tctx, dctx);
583
584	/* Generate pseudorandom pad by encrypting the nonce */
585	BUILD_BUG_ON(VMAC_NONCEBYTES != 2 * (VMAC_TAG_LEN / 8));
586	index = dctx->nonce.bytes[VMAC_NONCEBYTES - 1] & 1;
587	dctx->nonce.bytes[VMAC_NONCEBYTES - 1] &= ~1;
588	crypto_cipher_encrypt_one(tctx->cipher, dctx->nonce.bytes,
589				  dctx->nonce.bytes);
590	pad = be64_to_cpu(dctx->nonce.pads[index]);
591
592	/* The VMAC is the sum of VHASH and the pseudorandom pad */
593	put_unaligned_be64(hash + pad, out);
594	return 0;
595}
596
597static int vmac_init_tfm(struct crypto_tfm *tfm)
598{
599	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
600	struct crypto_cipher_spawn *spawn = crypto_instance_ctx(inst);
601	struct vmac_tfm_ctx *tctx = crypto_tfm_ctx(tfm);
602	struct crypto_cipher *cipher;
603
604	cipher = crypto_spawn_cipher(spawn);
605	if (IS_ERR(cipher))
606		return PTR_ERR(cipher);
607
608	tctx->cipher = cipher;
609	return 0;
610}
611
612static void vmac_exit_tfm(struct crypto_tfm *tfm)
613{
614	struct vmac_tfm_ctx *tctx = crypto_tfm_ctx(tfm);
615
616	crypto_free_cipher(tctx->cipher);
617}
618
619static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb)
620{
621	struct shash_instance *inst;
622	struct crypto_cipher_spawn *spawn;
623	struct crypto_alg *alg;
624	u32 mask;
625	int err;
626
627	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH, &mask);
628	if (err)
629		return err;
630
631	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
632	if (!inst)
633		return -ENOMEM;
634	spawn = shash_instance_ctx(inst);
635
636	err = crypto_grab_cipher(spawn, shash_crypto_instance(inst),
637				 crypto_attr_alg_name(tb[1]), 0, mask);
638	if (err)
639		goto err_free_inst;
640	alg = crypto_spawn_cipher_alg(spawn);
641
642	err = -EINVAL;
643	if (alg->cra_blocksize != VMAC_NONCEBYTES)
644		goto err_free_inst;
645
646	err = crypto_inst_setname(shash_crypto_instance(inst), tmpl->name, alg);
647	if (err)
648		goto err_free_inst;
649
650	inst->alg.base.cra_priority = alg->cra_priority;
651	inst->alg.base.cra_blocksize = alg->cra_blocksize;
652	inst->alg.base.cra_alignmask = alg->cra_alignmask;
653
654	inst->alg.base.cra_ctxsize = sizeof(struct vmac_tfm_ctx);
655	inst->alg.base.cra_init = vmac_init_tfm;
656	inst->alg.base.cra_exit = vmac_exit_tfm;
657
658	inst->alg.descsize = sizeof(struct vmac_desc_ctx);
659	inst->alg.digestsize = VMAC_TAG_LEN / 8;
660	inst->alg.init = vmac_init;
661	inst->alg.update = vmac_update;
662	inst->alg.final = vmac_final;
663	inst->alg.setkey = vmac_setkey;
664
665	inst->free = shash_free_singlespawn_instance;
666
667	err = shash_register_instance(tmpl, inst);
668	if (err) {
669err_free_inst:
670		shash_free_singlespawn_instance(inst);
671	}
672	return err;
673}
674
675static struct crypto_template vmac64_tmpl = {
676	.name = "vmac64",
677	.create = vmac_create,
678	.module = THIS_MODULE,
679};
680
681static int __init vmac_module_init(void)
682{
683	return crypto_register_template(&vmac64_tmpl);
684}
685
686static void __exit vmac_module_exit(void)
687{
688	crypto_unregister_template(&vmac64_tmpl);
689}
690
691subsys_initcall(vmac_module_init);
692module_exit(vmac_module_exit);
693
694MODULE_LICENSE("GPL");
695MODULE_DESCRIPTION("VMAC hash algorithm");
696MODULE_ALIAS_CRYPTO("vmac64");
697MODULE_IMPORT_NS(CRYPTO_INTERNAL);