Loading...
1/*
2 * VMAC: Message Authentication Code using Universal Hashing
3 *
4 * Reference: https://tools.ietf.org/html/draft-krovetz-vmac-01
5 *
6 * Copyright (c) 2009, Intel Corporation.
7 * Copyright (c) 2018, Google Inc.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms and conditions of the GNU General Public License,
11 * version 2, as published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
20 * Place - Suite 330, Boston, MA 02111-1307 USA.
21 */
22
23/*
24 * Derived from:
25 * VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai.
26 * This implementation is herby placed in the public domain.
27 * The authors offers no warranty. Use at your own risk.
28 * Last modified: 17 APR 08, 1700 PDT
29 */
30
31#include <asm/unaligned.h>
32#include <linux/init.h>
33#include <linux/types.h>
34#include <linux/crypto.h>
35#include <linux/module.h>
36#include <linux/scatterlist.h>
37#include <asm/byteorder.h>
38#include <crypto/scatterwalk.h>
39#include <crypto/internal/hash.h>
40
41/*
42 * User definable settings.
43 */
44#define VMAC_TAG_LEN 64
45#define VMAC_KEY_SIZE 128/* Must be 128, 192 or 256 */
46#define VMAC_KEY_LEN (VMAC_KEY_SIZE/8)
47#define VMAC_NHBYTES 128/* Must 2^i for any 3 < i < 13 Standard = 128*/
48#define VMAC_NONCEBYTES 16
49
50/* per-transform (per-key) context */
51struct vmac_tfm_ctx {
52 struct crypto_cipher *cipher;
53 u64 nhkey[(VMAC_NHBYTES/8)+2*(VMAC_TAG_LEN/64-1)];
54 u64 polykey[2*VMAC_TAG_LEN/64];
55 u64 l3key[2*VMAC_TAG_LEN/64];
56};
57
58/* per-request context */
59struct vmac_desc_ctx {
60 union {
61 u8 partial[VMAC_NHBYTES]; /* partial block */
62 __le64 partial_words[VMAC_NHBYTES / 8];
63 };
64 unsigned int partial_size; /* size of the partial block */
65 bool first_block_processed;
66 u64 polytmp[2*VMAC_TAG_LEN/64]; /* running total of L2-hash */
67 union {
68 u8 bytes[VMAC_NONCEBYTES];
69 __be64 pads[VMAC_NONCEBYTES / 8];
70 } nonce;
71 unsigned int nonce_size; /* nonce bytes filled so far */
72};
73
74/*
75 * Constants and masks
76 */
77#define UINT64_C(x) x##ULL
78static const u64 p64 = UINT64_C(0xfffffffffffffeff); /* 2^64 - 257 prime */
79static const u64 m62 = UINT64_C(0x3fffffffffffffff); /* 62-bit mask */
80static const u64 m63 = UINT64_C(0x7fffffffffffffff); /* 63-bit mask */
81static const u64 m64 = UINT64_C(0xffffffffffffffff); /* 64-bit mask */
82static const u64 mpoly = UINT64_C(0x1fffffff1fffffff); /* Poly key mask */
83
84#define pe64_to_cpup le64_to_cpup /* Prefer little endian */
85
86#ifdef __LITTLE_ENDIAN
87#define INDEX_HIGH 1
88#define INDEX_LOW 0
89#else
90#define INDEX_HIGH 0
91#define INDEX_LOW 1
92#endif
93
94/*
95 * The following routines are used in this implementation. They are
96 * written via macros to simulate zero-overhead call-by-reference.
97 *
98 * MUL64: 64x64->128-bit multiplication
99 * PMUL64: assumes top bits cleared on inputs
100 * ADD128: 128x128->128-bit addition
101 */
102
103#define ADD128(rh, rl, ih, il) \
104 do { \
105 u64 _il = (il); \
106 (rl) += (_il); \
107 if ((rl) < (_il)) \
108 (rh)++; \
109 (rh) += (ih); \
110 } while (0)
111
112#define MUL32(i1, i2) ((u64)(u32)(i1)*(u32)(i2))
113
114#define PMUL64(rh, rl, i1, i2) /* Assumes m doesn't overflow */ \
115 do { \
116 u64 _i1 = (i1), _i2 = (i2); \
117 u64 m = MUL32(_i1, _i2>>32) + MUL32(_i1>>32, _i2); \
118 rh = MUL32(_i1>>32, _i2>>32); \
119 rl = MUL32(_i1, _i2); \
120 ADD128(rh, rl, (m >> 32), (m << 32)); \
121 } while (0)
122
123#define MUL64(rh, rl, i1, i2) \
124 do { \
125 u64 _i1 = (i1), _i2 = (i2); \
126 u64 m1 = MUL32(_i1, _i2>>32); \
127 u64 m2 = MUL32(_i1>>32, _i2); \
128 rh = MUL32(_i1>>32, _i2>>32); \
129 rl = MUL32(_i1, _i2); \
130 ADD128(rh, rl, (m1 >> 32), (m1 << 32)); \
131 ADD128(rh, rl, (m2 >> 32), (m2 << 32)); \
132 } while (0)
133
134/*
135 * For highest performance the L1 NH and L2 polynomial hashes should be
136 * carefully implemented to take advantage of one's target architecture.
137 * Here these two hash functions are defined multiple time; once for
138 * 64-bit architectures, once for 32-bit SSE2 architectures, and once
139 * for the rest (32-bit) architectures.
140 * For each, nh_16 *must* be defined (works on multiples of 16 bytes).
141 * Optionally, nh_vmac_nhbytes can be defined (for multiples of
142 * VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two
143 * NH computations at once).
144 */
145
146#ifdef CONFIG_64BIT
147
148#define nh_16(mp, kp, nw, rh, rl) \
149 do { \
150 int i; u64 th, tl; \
151 rh = rl = 0; \
152 for (i = 0; i < nw; i += 2) { \
153 MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \
154 pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \
155 ADD128(rh, rl, th, tl); \
156 } \
157 } while (0)
158
159#define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1) \
160 do { \
161 int i; u64 th, tl; \
162 rh1 = rl1 = rh = rl = 0; \
163 for (i = 0; i < nw; i += 2) { \
164 MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \
165 pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \
166 ADD128(rh, rl, th, tl); \
167 MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2], \
168 pe64_to_cpup((mp)+i+1)+(kp)[i+3]); \
169 ADD128(rh1, rl1, th, tl); \
170 } \
171 } while (0)
172
173#if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */
174#define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \
175 do { \
176 int i; u64 th, tl; \
177 rh = rl = 0; \
178 for (i = 0; i < nw; i += 8) { \
179 MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \
180 pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \
181 ADD128(rh, rl, th, tl); \
182 MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \
183 pe64_to_cpup((mp)+i+3)+(kp)[i+3]); \
184 ADD128(rh, rl, th, tl); \
185 MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \
186 pe64_to_cpup((mp)+i+5)+(kp)[i+5]); \
187 ADD128(rh, rl, th, tl); \
188 MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \
189 pe64_to_cpup((mp)+i+7)+(kp)[i+7]); \
190 ADD128(rh, rl, th, tl); \
191 } \
192 } while (0)
193
194#define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1) \
195 do { \
196 int i; u64 th, tl; \
197 rh1 = rl1 = rh = rl = 0; \
198 for (i = 0; i < nw; i += 8) { \
199 MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \
200 pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \
201 ADD128(rh, rl, th, tl); \
202 MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2], \
203 pe64_to_cpup((mp)+i+1)+(kp)[i+3]); \
204 ADD128(rh1, rl1, th, tl); \
205 MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \
206 pe64_to_cpup((mp)+i+3)+(kp)[i+3]); \
207 ADD128(rh, rl, th, tl); \
208 MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+4], \
209 pe64_to_cpup((mp)+i+3)+(kp)[i+5]); \
210 ADD128(rh1, rl1, th, tl); \
211 MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \
212 pe64_to_cpup((mp)+i+5)+(kp)[i+5]); \
213 ADD128(rh, rl, th, tl); \
214 MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+6], \
215 pe64_to_cpup((mp)+i+5)+(kp)[i+7]); \
216 ADD128(rh1, rl1, th, tl); \
217 MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \
218 pe64_to_cpup((mp)+i+7)+(kp)[i+7]); \
219 ADD128(rh, rl, th, tl); \
220 MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+8], \
221 pe64_to_cpup((mp)+i+7)+(kp)[i+9]); \
222 ADD128(rh1, rl1, th, tl); \
223 } \
224 } while (0)
225#endif
226
227#define poly_step(ah, al, kh, kl, mh, ml) \
228 do { \
229 u64 t1h, t1l, t2h, t2l, t3h, t3l, z = 0; \
230 /* compute ab*cd, put bd into result registers */ \
231 PMUL64(t3h, t3l, al, kh); \
232 PMUL64(t2h, t2l, ah, kl); \
233 PMUL64(t1h, t1l, ah, 2*kh); \
234 PMUL64(ah, al, al, kl); \
235 /* add 2 * ac to result */ \
236 ADD128(ah, al, t1h, t1l); \
237 /* add together ad + bc */ \
238 ADD128(t2h, t2l, t3h, t3l); \
239 /* now (ah,al), (t2l,2*t2h) need summing */ \
240 /* first add the high registers, carrying into t2h */ \
241 ADD128(t2h, ah, z, t2l); \
242 /* double t2h and add top bit of ah */ \
243 t2h = 2 * t2h + (ah >> 63); \
244 ah &= m63; \
245 /* now add the low registers */ \
246 ADD128(ah, al, mh, ml); \
247 ADD128(ah, al, z, t2h); \
248 } while (0)
249
250#else /* ! CONFIG_64BIT */
251
252#ifndef nh_16
253#define nh_16(mp, kp, nw, rh, rl) \
254 do { \
255 u64 t1, t2, m1, m2, t; \
256 int i; \
257 rh = rl = t = 0; \
258 for (i = 0; i < nw; i += 2) { \
259 t1 = pe64_to_cpup(mp+i) + kp[i]; \
260 t2 = pe64_to_cpup(mp+i+1) + kp[i+1]; \
261 m2 = MUL32(t1 >> 32, t2); \
262 m1 = MUL32(t1, t2 >> 32); \
263 ADD128(rh, rl, MUL32(t1 >> 32, t2 >> 32), \
264 MUL32(t1, t2)); \
265 rh += (u64)(u32)(m1 >> 32) \
266 + (u32)(m2 >> 32); \
267 t += (u64)(u32)m1 + (u32)m2; \
268 } \
269 ADD128(rh, rl, (t >> 32), (t << 32)); \
270 } while (0)
271#endif
272
273static void poly_step_func(u64 *ahi, u64 *alo,
274 const u64 *kh, const u64 *kl,
275 const u64 *mh, const u64 *ml)
276{
277#define a0 (*(((u32 *)alo)+INDEX_LOW))
278#define a1 (*(((u32 *)alo)+INDEX_HIGH))
279#define a2 (*(((u32 *)ahi)+INDEX_LOW))
280#define a3 (*(((u32 *)ahi)+INDEX_HIGH))
281#define k0 (*(((u32 *)kl)+INDEX_LOW))
282#define k1 (*(((u32 *)kl)+INDEX_HIGH))
283#define k2 (*(((u32 *)kh)+INDEX_LOW))
284#define k3 (*(((u32 *)kh)+INDEX_HIGH))
285
286 u64 p, q, t;
287 u32 t2;
288
289 p = MUL32(a3, k3);
290 p += p;
291 p += *(u64 *)mh;
292 p += MUL32(a0, k2);
293 p += MUL32(a1, k1);
294 p += MUL32(a2, k0);
295 t = (u32)(p);
296 p >>= 32;
297 p += MUL32(a0, k3);
298 p += MUL32(a1, k2);
299 p += MUL32(a2, k1);
300 p += MUL32(a3, k0);
301 t |= ((u64)((u32)p & 0x7fffffff)) << 32;
302 p >>= 31;
303 p += (u64)(((u32 *)ml)[INDEX_LOW]);
304 p += MUL32(a0, k0);
305 q = MUL32(a1, k3);
306 q += MUL32(a2, k2);
307 q += MUL32(a3, k1);
308 q += q;
309 p += q;
310 t2 = (u32)(p);
311 p >>= 32;
312 p += (u64)(((u32 *)ml)[INDEX_HIGH]);
313 p += MUL32(a0, k1);
314 p += MUL32(a1, k0);
315 q = MUL32(a2, k3);
316 q += MUL32(a3, k2);
317 q += q;
318 p += q;
319 *(u64 *)(alo) = (p << 32) | t2;
320 p >>= 32;
321 *(u64 *)(ahi) = p + t;
322
323#undef a0
324#undef a1
325#undef a2
326#undef a3
327#undef k0
328#undef k1
329#undef k2
330#undef k3
331}
332
333#define poly_step(ah, al, kh, kl, mh, ml) \
334 poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml))
335
336#endif /* end of specialized NH and poly definitions */
337
338/* At least nh_16 is defined. Defined others as needed here */
339#ifndef nh_16_2
340#define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2) \
341 do { \
342 nh_16(mp, kp, nw, rh, rl); \
343 nh_16(mp, ((kp)+2), nw, rh2, rl2); \
344 } while (0)
345#endif
346#ifndef nh_vmac_nhbytes
347#define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \
348 nh_16(mp, kp, nw, rh, rl)
349#endif
350#ifndef nh_vmac_nhbytes_2
351#define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2) \
352 do { \
353 nh_vmac_nhbytes(mp, kp, nw, rh, rl); \
354 nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2); \
355 } while (0)
356#endif
357
358static u64 l3hash(u64 p1, u64 p2, u64 k1, u64 k2, u64 len)
359{
360 u64 rh, rl, t, z = 0;
361
362 /* fully reduce (p1,p2)+(len,0) mod p127 */
363 t = p1 >> 63;
364 p1 &= m63;
365 ADD128(p1, p2, len, t);
366 /* At this point, (p1,p2) is at most 2^127+(len<<64) */
367 t = (p1 > m63) + ((p1 == m63) && (p2 == m64));
368 ADD128(p1, p2, z, t);
369 p1 &= m63;
370
371 /* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */
372 t = p1 + (p2 >> 32);
373 t += (t >> 32);
374 t += (u32)t > 0xfffffffeu;
375 p1 += (t >> 32);
376 p2 += (p1 << 32);
377
378 /* compute (p1+k1)%p64 and (p2+k2)%p64 */
379 p1 += k1;
380 p1 += (0 - (p1 < k1)) & 257;
381 p2 += k2;
382 p2 += (0 - (p2 < k2)) & 257;
383
384 /* compute (p1+k1)*(p2+k2)%p64 */
385 MUL64(rh, rl, p1, p2);
386 t = rh >> 56;
387 ADD128(t, rl, z, rh);
388 rh <<= 8;
389 ADD128(t, rl, z, rh);
390 t += t << 8;
391 rl += t;
392 rl += (0 - (rl < t)) & 257;
393 rl += (0 - (rl > p64-1)) & 257;
394 return rl;
395}
396
397/* L1 and L2-hash one or more VMAC_NHBYTES-byte blocks */
398static void vhash_blocks(const struct vmac_tfm_ctx *tctx,
399 struct vmac_desc_ctx *dctx,
400 const __le64 *mptr, unsigned int blocks)
401{
402 const u64 *kptr = tctx->nhkey;
403 const u64 pkh = tctx->polykey[0];
404 const u64 pkl = tctx->polykey[1];
405 u64 ch = dctx->polytmp[0];
406 u64 cl = dctx->polytmp[1];
407 u64 rh, rl;
408
409 if (!dctx->first_block_processed) {
410 dctx->first_block_processed = true;
411 nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
412 rh &= m62;
413 ADD128(ch, cl, rh, rl);
414 mptr += (VMAC_NHBYTES/sizeof(u64));
415 blocks--;
416 }
417
418 while (blocks--) {
419 nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
420 rh &= m62;
421 poly_step(ch, cl, pkh, pkl, rh, rl);
422 mptr += (VMAC_NHBYTES/sizeof(u64));
423 }
424
425 dctx->polytmp[0] = ch;
426 dctx->polytmp[1] = cl;
427}
428
429static int vmac_setkey(struct crypto_shash *tfm,
430 const u8 *key, unsigned int keylen)
431{
432 struct vmac_tfm_ctx *tctx = crypto_shash_ctx(tfm);
433 __be64 out[2];
434 u8 in[16] = { 0 };
435 unsigned int i;
436 int err;
437
438 if (keylen != VMAC_KEY_LEN)
439 return -EINVAL;
440
441 err = crypto_cipher_setkey(tctx->cipher, key, keylen);
442 if (err)
443 return err;
444
445 /* Fill nh key */
446 in[0] = 0x80;
447 for (i = 0; i < ARRAY_SIZE(tctx->nhkey); i += 2) {
448 crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in);
449 tctx->nhkey[i] = be64_to_cpu(out[0]);
450 tctx->nhkey[i+1] = be64_to_cpu(out[1]);
451 in[15]++;
452 }
453
454 /* Fill poly key */
455 in[0] = 0xC0;
456 in[15] = 0;
457 for (i = 0; i < ARRAY_SIZE(tctx->polykey); i += 2) {
458 crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in);
459 tctx->polykey[i] = be64_to_cpu(out[0]) & mpoly;
460 tctx->polykey[i+1] = be64_to_cpu(out[1]) & mpoly;
461 in[15]++;
462 }
463
464 /* Fill ip key */
465 in[0] = 0xE0;
466 in[15] = 0;
467 for (i = 0; i < ARRAY_SIZE(tctx->l3key); i += 2) {
468 do {
469 crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in);
470 tctx->l3key[i] = be64_to_cpu(out[0]);
471 tctx->l3key[i+1] = be64_to_cpu(out[1]);
472 in[15]++;
473 } while (tctx->l3key[i] >= p64 || tctx->l3key[i+1] >= p64);
474 }
475
476 return 0;
477}
478
479static int vmac_init(struct shash_desc *desc)
480{
481 const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
482 struct vmac_desc_ctx *dctx = shash_desc_ctx(desc);
483
484 dctx->partial_size = 0;
485 dctx->first_block_processed = false;
486 memcpy(dctx->polytmp, tctx->polykey, sizeof(dctx->polytmp));
487 dctx->nonce_size = 0;
488 return 0;
489}
490
491static int vmac_update(struct shash_desc *desc, const u8 *p, unsigned int len)
492{
493 const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
494 struct vmac_desc_ctx *dctx = shash_desc_ctx(desc);
495 unsigned int n;
496
497 /* Nonce is passed as first VMAC_NONCEBYTES bytes of data */
498 if (dctx->nonce_size < VMAC_NONCEBYTES) {
499 n = min(len, VMAC_NONCEBYTES - dctx->nonce_size);
500 memcpy(&dctx->nonce.bytes[dctx->nonce_size], p, n);
501 dctx->nonce_size += n;
502 p += n;
503 len -= n;
504 }
505
506 if (dctx->partial_size) {
507 n = min(len, VMAC_NHBYTES - dctx->partial_size);
508 memcpy(&dctx->partial[dctx->partial_size], p, n);
509 dctx->partial_size += n;
510 p += n;
511 len -= n;
512 if (dctx->partial_size == VMAC_NHBYTES) {
513 vhash_blocks(tctx, dctx, dctx->partial_words, 1);
514 dctx->partial_size = 0;
515 }
516 }
517
518 if (len >= VMAC_NHBYTES) {
519 n = round_down(len, VMAC_NHBYTES);
520 /* TODO: 'p' may be misaligned here */
521 vhash_blocks(tctx, dctx, (const __le64 *)p, n / VMAC_NHBYTES);
522 p += n;
523 len -= n;
524 }
525
526 if (len) {
527 memcpy(dctx->partial, p, len);
528 dctx->partial_size = len;
529 }
530
531 return 0;
532}
533
534static u64 vhash_final(const struct vmac_tfm_ctx *tctx,
535 struct vmac_desc_ctx *dctx)
536{
537 unsigned int partial = dctx->partial_size;
538 u64 ch = dctx->polytmp[0];
539 u64 cl = dctx->polytmp[1];
540
541 /* L1 and L2-hash the final block if needed */
542 if (partial) {
543 /* Zero-pad to next 128-bit boundary */
544 unsigned int n = round_up(partial, 16);
545 u64 rh, rl;
546
547 memset(&dctx->partial[partial], 0, n - partial);
548 nh_16(dctx->partial_words, tctx->nhkey, n / 8, rh, rl);
549 rh &= m62;
550 if (dctx->first_block_processed)
551 poly_step(ch, cl, tctx->polykey[0], tctx->polykey[1],
552 rh, rl);
553 else
554 ADD128(ch, cl, rh, rl);
555 }
556
557 /* L3-hash the 128-bit output of L2-hash */
558 return l3hash(ch, cl, tctx->l3key[0], tctx->l3key[1], partial * 8);
559}
560
561static int vmac_final(struct shash_desc *desc, u8 *out)
562{
563 const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
564 struct vmac_desc_ctx *dctx = shash_desc_ctx(desc);
565 int index;
566 u64 hash, pad;
567
568 if (dctx->nonce_size != VMAC_NONCEBYTES)
569 return -EINVAL;
570
571 /*
572 * The VMAC specification requires a nonce at least 1 bit shorter than
573 * the block cipher's block length, so we actually only accept a 127-bit
574 * nonce. We define the unused bit to be the first one and require that
575 * it be 0, so the needed prepending of a 0 bit is implicit.
576 */
577 if (dctx->nonce.bytes[0] & 0x80)
578 return -EINVAL;
579
580 /* Finish calculating the VHASH of the message */
581 hash = vhash_final(tctx, dctx);
582
583 /* Generate pseudorandom pad by encrypting the nonce */
584 BUILD_BUG_ON(VMAC_NONCEBYTES != 2 * (VMAC_TAG_LEN / 8));
585 index = dctx->nonce.bytes[VMAC_NONCEBYTES - 1] & 1;
586 dctx->nonce.bytes[VMAC_NONCEBYTES - 1] &= ~1;
587 crypto_cipher_encrypt_one(tctx->cipher, dctx->nonce.bytes,
588 dctx->nonce.bytes);
589 pad = be64_to_cpu(dctx->nonce.pads[index]);
590
591 /* The VMAC is the sum of VHASH and the pseudorandom pad */
592 put_unaligned_be64(hash + pad, out);
593 return 0;
594}
595
596static int vmac_init_tfm(struct crypto_tfm *tfm)
597{
598 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
599 struct crypto_cipher_spawn *spawn = crypto_instance_ctx(inst);
600 struct vmac_tfm_ctx *tctx = crypto_tfm_ctx(tfm);
601 struct crypto_cipher *cipher;
602
603 cipher = crypto_spawn_cipher(spawn);
604 if (IS_ERR(cipher))
605 return PTR_ERR(cipher);
606
607 tctx->cipher = cipher;
608 return 0;
609}
610
611static void vmac_exit_tfm(struct crypto_tfm *tfm)
612{
613 struct vmac_tfm_ctx *tctx = crypto_tfm_ctx(tfm);
614
615 crypto_free_cipher(tctx->cipher);
616}
617
618static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb)
619{
620 struct shash_instance *inst;
621 struct crypto_cipher_spawn *spawn;
622 struct crypto_alg *alg;
623 u32 mask;
624 int err;
625
626 err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH, &mask);
627 if (err)
628 return err;
629
630 inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
631 if (!inst)
632 return -ENOMEM;
633 spawn = shash_instance_ctx(inst);
634
635 err = crypto_grab_cipher(spawn, shash_crypto_instance(inst),
636 crypto_attr_alg_name(tb[1]), 0, mask);
637 if (err)
638 goto err_free_inst;
639 alg = crypto_spawn_cipher_alg(spawn);
640
641 err = -EINVAL;
642 if (alg->cra_blocksize != VMAC_NONCEBYTES)
643 goto err_free_inst;
644
645 err = crypto_inst_setname(shash_crypto_instance(inst), tmpl->name, alg);
646 if (err)
647 goto err_free_inst;
648
649 inst->alg.base.cra_priority = alg->cra_priority;
650 inst->alg.base.cra_blocksize = alg->cra_blocksize;
651 inst->alg.base.cra_alignmask = alg->cra_alignmask;
652
653 inst->alg.base.cra_ctxsize = sizeof(struct vmac_tfm_ctx);
654 inst->alg.base.cra_init = vmac_init_tfm;
655 inst->alg.base.cra_exit = vmac_exit_tfm;
656
657 inst->alg.descsize = sizeof(struct vmac_desc_ctx);
658 inst->alg.digestsize = VMAC_TAG_LEN / 8;
659 inst->alg.init = vmac_init;
660 inst->alg.update = vmac_update;
661 inst->alg.final = vmac_final;
662 inst->alg.setkey = vmac_setkey;
663
664 inst->free = shash_free_singlespawn_instance;
665
666 err = shash_register_instance(tmpl, inst);
667 if (err) {
668err_free_inst:
669 shash_free_singlespawn_instance(inst);
670 }
671 return err;
672}
673
674static struct crypto_template vmac64_tmpl = {
675 .name = "vmac64",
676 .create = vmac_create,
677 .module = THIS_MODULE,
678};
679
680static int __init vmac_module_init(void)
681{
682 return crypto_register_template(&vmac64_tmpl);
683}
684
685static void __exit vmac_module_exit(void)
686{
687 crypto_unregister_template(&vmac64_tmpl);
688}
689
690subsys_initcall(vmac_module_init);
691module_exit(vmac_module_exit);
692
693MODULE_LICENSE("GPL");
694MODULE_DESCRIPTION("VMAC hash algorithm");
695MODULE_ALIAS_CRYPTO("vmac64");
1/*
2 * Modified to interface to the Linux kernel
3 * Copyright (c) 2009, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 */
18
19/* --------------------------------------------------------------------------
20 * VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai.
21 * This implementation is herby placed in the public domain.
22 * The authors offers no warranty. Use at your own risk.
23 * Please send bug reports to the authors.
24 * Last modified: 17 APR 08, 1700 PDT
25 * ----------------------------------------------------------------------- */
26
27#include <linux/init.h>
28#include <linux/types.h>
29#include <linux/crypto.h>
30#include <linux/scatterlist.h>
31#include <asm/byteorder.h>
32#include <crypto/scatterwalk.h>
33#include <crypto/vmac.h>
34#include <crypto/internal/hash.h>
35
36/*
37 * Constants and masks
38 */
39#define UINT64_C(x) x##ULL
40const u64 p64 = UINT64_C(0xfffffffffffffeff); /* 2^64 - 257 prime */
41const u64 m62 = UINT64_C(0x3fffffffffffffff); /* 62-bit mask */
42const u64 m63 = UINT64_C(0x7fffffffffffffff); /* 63-bit mask */
43const u64 m64 = UINT64_C(0xffffffffffffffff); /* 64-bit mask */
44const u64 mpoly = UINT64_C(0x1fffffff1fffffff); /* Poly key mask */
45
46#define pe64_to_cpup le64_to_cpup /* Prefer little endian */
47
48#ifdef __LITTLE_ENDIAN
49#define INDEX_HIGH 1
50#define INDEX_LOW 0
51#else
52#define INDEX_HIGH 0
53#define INDEX_LOW 1
54#endif
55
56/*
57 * The following routines are used in this implementation. They are
58 * written via macros to simulate zero-overhead call-by-reference.
59 *
60 * MUL64: 64x64->128-bit multiplication
61 * PMUL64: assumes top bits cleared on inputs
62 * ADD128: 128x128->128-bit addition
63 */
64
65#define ADD128(rh, rl, ih, il) \
66 do { \
67 u64 _il = (il); \
68 (rl) += (_il); \
69 if ((rl) < (_il)) \
70 (rh)++; \
71 (rh) += (ih); \
72 } while (0)
73
74#define MUL32(i1, i2) ((u64)(u32)(i1)*(u32)(i2))
75
76#define PMUL64(rh, rl, i1, i2) /* Assumes m doesn't overflow */ \
77 do { \
78 u64 _i1 = (i1), _i2 = (i2); \
79 u64 m = MUL32(_i1, _i2>>32) + MUL32(_i1>>32, _i2); \
80 rh = MUL32(_i1>>32, _i2>>32); \
81 rl = MUL32(_i1, _i2); \
82 ADD128(rh, rl, (m >> 32), (m << 32)); \
83 } while (0)
84
85#define MUL64(rh, rl, i1, i2) \
86 do { \
87 u64 _i1 = (i1), _i2 = (i2); \
88 u64 m1 = MUL32(_i1, _i2>>32); \
89 u64 m2 = MUL32(_i1>>32, _i2); \
90 rh = MUL32(_i1>>32, _i2>>32); \
91 rl = MUL32(_i1, _i2); \
92 ADD128(rh, rl, (m1 >> 32), (m1 << 32)); \
93 ADD128(rh, rl, (m2 >> 32), (m2 << 32)); \
94 } while (0)
95
96/*
97 * For highest performance the L1 NH and L2 polynomial hashes should be
98 * carefully implemented to take advantage of one's target architecture.
99 * Here these two hash functions are defined multiple time; once for
100 * 64-bit architectures, once for 32-bit SSE2 architectures, and once
101 * for the rest (32-bit) architectures.
102 * For each, nh_16 *must* be defined (works on multiples of 16 bytes).
103 * Optionally, nh_vmac_nhbytes can be defined (for multiples of
104 * VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two
105 * NH computations at once).
106 */
107
108#ifdef CONFIG_64BIT
109
110#define nh_16(mp, kp, nw, rh, rl) \
111 do { \
112 int i; u64 th, tl; \
113 rh = rl = 0; \
114 for (i = 0; i < nw; i += 2) { \
115 MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \
116 pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \
117 ADD128(rh, rl, th, tl); \
118 } \
119 } while (0)
120
121#define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1) \
122 do { \
123 int i; u64 th, tl; \
124 rh1 = rl1 = rh = rl = 0; \
125 for (i = 0; i < nw; i += 2) { \
126 MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \
127 pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \
128 ADD128(rh, rl, th, tl); \
129 MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2], \
130 pe64_to_cpup((mp)+i+1)+(kp)[i+3]); \
131 ADD128(rh1, rl1, th, tl); \
132 } \
133 } while (0)
134
135#if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */
136#define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \
137 do { \
138 int i; u64 th, tl; \
139 rh = rl = 0; \
140 for (i = 0; i < nw; i += 8) { \
141 MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \
142 pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \
143 ADD128(rh, rl, th, tl); \
144 MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \
145 pe64_to_cpup((mp)+i+3)+(kp)[i+3]); \
146 ADD128(rh, rl, th, tl); \
147 MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \
148 pe64_to_cpup((mp)+i+5)+(kp)[i+5]); \
149 ADD128(rh, rl, th, tl); \
150 MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \
151 pe64_to_cpup((mp)+i+7)+(kp)[i+7]); \
152 ADD128(rh, rl, th, tl); \
153 } \
154 } while (0)
155
156#define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1) \
157 do { \
158 int i; u64 th, tl; \
159 rh1 = rl1 = rh = rl = 0; \
160 for (i = 0; i < nw; i += 8) { \
161 MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \
162 pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \
163 ADD128(rh, rl, th, tl); \
164 MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2], \
165 pe64_to_cpup((mp)+i+1)+(kp)[i+3]); \
166 ADD128(rh1, rl1, th, tl); \
167 MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \
168 pe64_to_cpup((mp)+i+3)+(kp)[i+3]); \
169 ADD128(rh, rl, th, tl); \
170 MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+4], \
171 pe64_to_cpup((mp)+i+3)+(kp)[i+5]); \
172 ADD128(rh1, rl1, th, tl); \
173 MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \
174 pe64_to_cpup((mp)+i+5)+(kp)[i+5]); \
175 ADD128(rh, rl, th, tl); \
176 MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+6], \
177 pe64_to_cpup((mp)+i+5)+(kp)[i+7]); \
178 ADD128(rh1, rl1, th, tl); \
179 MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \
180 pe64_to_cpup((mp)+i+7)+(kp)[i+7]); \
181 ADD128(rh, rl, th, tl); \
182 MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+8], \
183 pe64_to_cpup((mp)+i+7)+(kp)[i+9]); \
184 ADD128(rh1, rl1, th, tl); \
185 } \
186 } while (0)
187#endif
188
189#define poly_step(ah, al, kh, kl, mh, ml) \
190 do { \
191 u64 t1h, t1l, t2h, t2l, t3h, t3l, z = 0; \
192 /* compute ab*cd, put bd into result registers */ \
193 PMUL64(t3h, t3l, al, kh); \
194 PMUL64(t2h, t2l, ah, kl); \
195 PMUL64(t1h, t1l, ah, 2*kh); \
196 PMUL64(ah, al, al, kl); \
197 /* add 2 * ac to result */ \
198 ADD128(ah, al, t1h, t1l); \
199 /* add together ad + bc */ \
200 ADD128(t2h, t2l, t3h, t3l); \
201 /* now (ah,al), (t2l,2*t2h) need summing */ \
202 /* first add the high registers, carrying into t2h */ \
203 ADD128(t2h, ah, z, t2l); \
204 /* double t2h and add top bit of ah */ \
205 t2h = 2 * t2h + (ah >> 63); \
206 ah &= m63; \
207 /* now add the low registers */ \
208 ADD128(ah, al, mh, ml); \
209 ADD128(ah, al, z, t2h); \
210 } while (0)
211
212#else /* ! CONFIG_64BIT */
213
214#ifndef nh_16
215#define nh_16(mp, kp, nw, rh, rl) \
216 do { \
217 u64 t1, t2, m1, m2, t; \
218 int i; \
219 rh = rl = t = 0; \
220 for (i = 0; i < nw; i += 2) { \
221 t1 = pe64_to_cpup(mp+i) + kp[i]; \
222 t2 = pe64_to_cpup(mp+i+1) + kp[i+1]; \
223 m2 = MUL32(t1 >> 32, t2); \
224 m1 = MUL32(t1, t2 >> 32); \
225 ADD128(rh, rl, MUL32(t1 >> 32, t2 >> 32), \
226 MUL32(t1, t2)); \
227 rh += (u64)(u32)(m1 >> 32) \
228 + (u32)(m2 >> 32); \
229 t += (u64)(u32)m1 + (u32)m2; \
230 } \
231 ADD128(rh, rl, (t >> 32), (t << 32)); \
232 } while (0)
233#endif
234
235static void poly_step_func(u64 *ahi, u64 *alo,
236 const u64 *kh, const u64 *kl,
237 const u64 *mh, const u64 *ml)
238{
239#define a0 (*(((u32 *)alo)+INDEX_LOW))
240#define a1 (*(((u32 *)alo)+INDEX_HIGH))
241#define a2 (*(((u32 *)ahi)+INDEX_LOW))
242#define a3 (*(((u32 *)ahi)+INDEX_HIGH))
243#define k0 (*(((u32 *)kl)+INDEX_LOW))
244#define k1 (*(((u32 *)kl)+INDEX_HIGH))
245#define k2 (*(((u32 *)kh)+INDEX_LOW))
246#define k3 (*(((u32 *)kh)+INDEX_HIGH))
247
248 u64 p, q, t;
249 u32 t2;
250
251 p = MUL32(a3, k3);
252 p += p;
253 p += *(u64 *)mh;
254 p += MUL32(a0, k2);
255 p += MUL32(a1, k1);
256 p += MUL32(a2, k0);
257 t = (u32)(p);
258 p >>= 32;
259 p += MUL32(a0, k3);
260 p += MUL32(a1, k2);
261 p += MUL32(a2, k1);
262 p += MUL32(a3, k0);
263 t |= ((u64)((u32)p & 0x7fffffff)) << 32;
264 p >>= 31;
265 p += (u64)(((u32 *)ml)[INDEX_LOW]);
266 p += MUL32(a0, k0);
267 q = MUL32(a1, k3);
268 q += MUL32(a2, k2);
269 q += MUL32(a3, k1);
270 q += q;
271 p += q;
272 t2 = (u32)(p);
273 p >>= 32;
274 p += (u64)(((u32 *)ml)[INDEX_HIGH]);
275 p += MUL32(a0, k1);
276 p += MUL32(a1, k0);
277 q = MUL32(a2, k3);
278 q += MUL32(a3, k2);
279 q += q;
280 p += q;
281 *(u64 *)(alo) = (p << 32) | t2;
282 p >>= 32;
283 *(u64 *)(ahi) = p + t;
284
285#undef a0
286#undef a1
287#undef a2
288#undef a3
289#undef k0
290#undef k1
291#undef k2
292#undef k3
293}
294
295#define poly_step(ah, al, kh, kl, mh, ml) \
296 poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml))
297
298#endif /* end of specialized NH and poly definitions */
299
300/* At least nh_16 is defined. Defined others as needed here */
301#ifndef nh_16_2
302#define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2) \
303 do { \
304 nh_16(mp, kp, nw, rh, rl); \
305 nh_16(mp, ((kp)+2), nw, rh2, rl2); \
306 } while (0)
307#endif
308#ifndef nh_vmac_nhbytes
309#define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \
310 nh_16(mp, kp, nw, rh, rl)
311#endif
312#ifndef nh_vmac_nhbytes_2
313#define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2) \
314 do { \
315 nh_vmac_nhbytes(mp, kp, nw, rh, rl); \
316 nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2); \
317 } while (0)
318#endif
319
320static void vhash_abort(struct vmac_ctx *ctx)
321{
322 ctx->polytmp[0] = ctx->polykey[0] ;
323 ctx->polytmp[1] = ctx->polykey[1] ;
324 ctx->first_block_processed = 0;
325}
326
327static u64 l3hash(u64 p1, u64 p2, u64 k1, u64 k2, u64 len)
328{
329 u64 rh, rl, t, z = 0;
330
331 /* fully reduce (p1,p2)+(len,0) mod p127 */
332 t = p1 >> 63;
333 p1 &= m63;
334 ADD128(p1, p2, len, t);
335 /* At this point, (p1,p2) is at most 2^127+(len<<64) */
336 t = (p1 > m63) + ((p1 == m63) && (p2 == m64));
337 ADD128(p1, p2, z, t);
338 p1 &= m63;
339
340 /* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */
341 t = p1 + (p2 >> 32);
342 t += (t >> 32);
343 t += (u32)t > 0xfffffffeu;
344 p1 += (t >> 32);
345 p2 += (p1 << 32);
346
347 /* compute (p1+k1)%p64 and (p2+k2)%p64 */
348 p1 += k1;
349 p1 += (0 - (p1 < k1)) & 257;
350 p2 += k2;
351 p2 += (0 - (p2 < k2)) & 257;
352
353 /* compute (p1+k1)*(p2+k2)%p64 */
354 MUL64(rh, rl, p1, p2);
355 t = rh >> 56;
356 ADD128(t, rl, z, rh);
357 rh <<= 8;
358 ADD128(t, rl, z, rh);
359 t += t << 8;
360 rl += t;
361 rl += (0 - (rl < t)) & 257;
362 rl += (0 - (rl > p64-1)) & 257;
363 return rl;
364}
365
366static void vhash_update(const unsigned char *m,
367 unsigned int mbytes, /* Pos multiple of VMAC_NHBYTES */
368 struct vmac_ctx *ctx)
369{
370 u64 rh, rl, *mptr;
371 const u64 *kptr = (u64 *)ctx->nhkey;
372 int i;
373 u64 ch, cl;
374 u64 pkh = ctx->polykey[0];
375 u64 pkl = ctx->polykey[1];
376
377 mptr = (u64 *)m;
378 i = mbytes / VMAC_NHBYTES; /* Must be non-zero */
379
380 ch = ctx->polytmp[0];
381 cl = ctx->polytmp[1];
382
383 if (!ctx->first_block_processed) {
384 ctx->first_block_processed = 1;
385 nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
386 rh &= m62;
387 ADD128(ch, cl, rh, rl);
388 mptr += (VMAC_NHBYTES/sizeof(u64));
389 i--;
390 }
391
392 while (i--) {
393 nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
394 rh &= m62;
395 poly_step(ch, cl, pkh, pkl, rh, rl);
396 mptr += (VMAC_NHBYTES/sizeof(u64));
397 }
398
399 ctx->polytmp[0] = ch;
400 ctx->polytmp[1] = cl;
401}
402
403static u64 vhash(unsigned char m[], unsigned int mbytes,
404 u64 *tagl, struct vmac_ctx *ctx)
405{
406 u64 rh, rl, *mptr;
407 const u64 *kptr = (u64 *)ctx->nhkey;
408 int i, remaining;
409 u64 ch, cl;
410 u64 pkh = ctx->polykey[0];
411 u64 pkl = ctx->polykey[1];
412
413 mptr = (u64 *)m;
414 i = mbytes / VMAC_NHBYTES;
415 remaining = mbytes % VMAC_NHBYTES;
416
417 if (ctx->first_block_processed) {
418 ch = ctx->polytmp[0];
419 cl = ctx->polytmp[1];
420 } else if (i) {
421 nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, ch, cl);
422 ch &= m62;
423 ADD128(ch, cl, pkh, pkl);
424 mptr += (VMAC_NHBYTES/sizeof(u64));
425 i--;
426 } else if (remaining) {
427 nh_16(mptr, kptr, 2*((remaining+15)/16), ch, cl);
428 ch &= m62;
429 ADD128(ch, cl, pkh, pkl);
430 mptr += (VMAC_NHBYTES/sizeof(u64));
431 goto do_l3;
432 } else {/* Empty String */
433 ch = pkh; cl = pkl;
434 goto do_l3;
435 }
436
437 while (i--) {
438 nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
439 rh &= m62;
440 poly_step(ch, cl, pkh, pkl, rh, rl);
441 mptr += (VMAC_NHBYTES/sizeof(u64));
442 }
443 if (remaining) {
444 nh_16(mptr, kptr, 2*((remaining+15)/16), rh, rl);
445 rh &= m62;
446 poly_step(ch, cl, pkh, pkl, rh, rl);
447 }
448
449do_l3:
450 vhash_abort(ctx);
451 remaining *= 8;
452 return l3hash(ch, cl, ctx->l3key[0], ctx->l3key[1], remaining);
453}
454
455static u64 vmac(unsigned char m[], unsigned int mbytes,
456 unsigned char n[16], u64 *tagl,
457 struct vmac_ctx_t *ctx)
458{
459 u64 *in_n, *out_p;
460 u64 p, h;
461 int i;
462
463 in_n = ctx->__vmac_ctx.cached_nonce;
464 out_p = ctx->__vmac_ctx.cached_aes;
465
466 i = n[15] & 1;
467 if ((*(u64 *)(n+8) != in_n[1]) || (*(u64 *)(n) != in_n[0])) {
468 in_n[0] = *(u64 *)(n);
469 in_n[1] = *(u64 *)(n+8);
470 ((unsigned char *)in_n)[15] &= 0xFE;
471 crypto_cipher_encrypt_one(ctx->child,
472 (unsigned char *)out_p, (unsigned char *)in_n);
473
474 ((unsigned char *)in_n)[15] |= (unsigned char)(1-i);
475 }
476 p = be64_to_cpup(out_p + i);
477 h = vhash(m, mbytes, (u64 *)0, &ctx->__vmac_ctx);
478 return le64_to_cpu(p + h);
479}
480
481static int vmac_set_key(unsigned char user_key[], struct vmac_ctx_t *ctx)
482{
483 u64 in[2] = {0}, out[2];
484 unsigned i;
485 int err = 0;
486
487 err = crypto_cipher_setkey(ctx->child, user_key, VMAC_KEY_LEN);
488 if (err)
489 return err;
490
491 /* Fill nh key */
492 ((unsigned char *)in)[0] = 0x80;
493 for (i = 0; i < sizeof(ctx->__vmac_ctx.nhkey)/8; i += 2) {
494 crypto_cipher_encrypt_one(ctx->child,
495 (unsigned char *)out, (unsigned char *)in);
496 ctx->__vmac_ctx.nhkey[i] = be64_to_cpup(out);
497 ctx->__vmac_ctx.nhkey[i+1] = be64_to_cpup(out+1);
498 ((unsigned char *)in)[15] += 1;
499 }
500
501 /* Fill poly key */
502 ((unsigned char *)in)[0] = 0xC0;
503 in[1] = 0;
504 for (i = 0; i < sizeof(ctx->__vmac_ctx.polykey)/8; i += 2) {
505 crypto_cipher_encrypt_one(ctx->child,
506 (unsigned char *)out, (unsigned char *)in);
507 ctx->__vmac_ctx.polytmp[i] =
508 ctx->__vmac_ctx.polykey[i] =
509 be64_to_cpup(out) & mpoly;
510 ctx->__vmac_ctx.polytmp[i+1] =
511 ctx->__vmac_ctx.polykey[i+1] =
512 be64_to_cpup(out+1) & mpoly;
513 ((unsigned char *)in)[15] += 1;
514 }
515
516 /* Fill ip key */
517 ((unsigned char *)in)[0] = 0xE0;
518 in[1] = 0;
519 for (i = 0; i < sizeof(ctx->__vmac_ctx.l3key)/8; i += 2) {
520 do {
521 crypto_cipher_encrypt_one(ctx->child,
522 (unsigned char *)out, (unsigned char *)in);
523 ctx->__vmac_ctx.l3key[i] = be64_to_cpup(out);
524 ctx->__vmac_ctx.l3key[i+1] = be64_to_cpup(out+1);
525 ((unsigned char *)in)[15] += 1;
526 } while (ctx->__vmac_ctx.l3key[i] >= p64
527 || ctx->__vmac_ctx.l3key[i+1] >= p64);
528 }
529
530 /* Invalidate nonce/aes cache and reset other elements */
531 ctx->__vmac_ctx.cached_nonce[0] = (u64)-1; /* Ensure illegal nonce */
532 ctx->__vmac_ctx.cached_nonce[1] = (u64)0; /* Ensure illegal nonce */
533 ctx->__vmac_ctx.first_block_processed = 0;
534
535 return err;
536}
537
538static int vmac_setkey(struct crypto_shash *parent,
539 const u8 *key, unsigned int keylen)
540{
541 struct vmac_ctx_t *ctx = crypto_shash_ctx(parent);
542
543 if (keylen != VMAC_KEY_LEN) {
544 crypto_shash_set_flags(parent, CRYPTO_TFM_RES_BAD_KEY_LEN);
545 return -EINVAL;
546 }
547
548 return vmac_set_key((u8 *)key, ctx);
549}
550
551static int vmac_init(struct shash_desc *pdesc)
552{
553 return 0;
554}
555
556static int vmac_update(struct shash_desc *pdesc, const u8 *p,
557 unsigned int len)
558{
559 struct crypto_shash *parent = pdesc->tfm;
560 struct vmac_ctx_t *ctx = crypto_shash_ctx(parent);
561
562 vhash_update(p, len, &ctx->__vmac_ctx);
563
564 return 0;
565}
566
567static int vmac_final(struct shash_desc *pdesc, u8 *out)
568{
569 struct crypto_shash *parent = pdesc->tfm;
570 struct vmac_ctx_t *ctx = crypto_shash_ctx(parent);
571 vmac_t mac;
572 u8 nonce[16] = {};
573
574 mac = vmac(NULL, 0, nonce, NULL, ctx);
575 memcpy(out, &mac, sizeof(vmac_t));
576 memset(&mac, 0, sizeof(vmac_t));
577 memset(&ctx->__vmac_ctx, 0, sizeof(struct vmac_ctx));
578 return 0;
579}
580
581static int vmac_init_tfm(struct crypto_tfm *tfm)
582{
583 struct crypto_cipher *cipher;
584 struct crypto_instance *inst = (void *)tfm->__crt_alg;
585 struct crypto_spawn *spawn = crypto_instance_ctx(inst);
586 struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm);
587
588 cipher = crypto_spawn_cipher(spawn);
589 if (IS_ERR(cipher))
590 return PTR_ERR(cipher);
591
592 ctx->child = cipher;
593 return 0;
594}
595
596static void vmac_exit_tfm(struct crypto_tfm *tfm)
597{
598 struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm);
599 crypto_free_cipher(ctx->child);
600}
601
602static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb)
603{
604 struct shash_instance *inst;
605 struct crypto_alg *alg;
606 int err;
607
608 err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH);
609 if (err)
610 return err;
611
612 alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER,
613 CRYPTO_ALG_TYPE_MASK);
614 if (IS_ERR(alg))
615 return PTR_ERR(alg);
616
617 inst = shash_alloc_instance("vmac", alg);
618 err = PTR_ERR(inst);
619 if (IS_ERR(inst))
620 goto out_put_alg;
621
622 err = crypto_init_spawn(shash_instance_ctx(inst), alg,
623 shash_crypto_instance(inst),
624 CRYPTO_ALG_TYPE_MASK);
625 if (err)
626 goto out_free_inst;
627
628 inst->alg.base.cra_priority = alg->cra_priority;
629 inst->alg.base.cra_blocksize = alg->cra_blocksize;
630 inst->alg.base.cra_alignmask = alg->cra_alignmask;
631
632 inst->alg.digestsize = sizeof(vmac_t);
633 inst->alg.base.cra_ctxsize = sizeof(struct vmac_ctx_t);
634 inst->alg.base.cra_init = vmac_init_tfm;
635 inst->alg.base.cra_exit = vmac_exit_tfm;
636
637 inst->alg.init = vmac_init;
638 inst->alg.update = vmac_update;
639 inst->alg.final = vmac_final;
640 inst->alg.setkey = vmac_setkey;
641
642 err = shash_register_instance(tmpl, inst);
643 if (err) {
644out_free_inst:
645 shash_free_instance(shash_crypto_instance(inst));
646 }
647
648out_put_alg:
649 crypto_mod_put(alg);
650 return err;
651}
652
653static struct crypto_template vmac_tmpl = {
654 .name = "vmac",
655 .create = vmac_create,
656 .free = shash_free_instance,
657 .module = THIS_MODULE,
658};
659
660static int __init vmac_module_init(void)
661{
662 return crypto_register_template(&vmac_tmpl);
663}
664
665static void __exit vmac_module_exit(void)
666{
667 crypto_unregister_template(&vmac_tmpl);
668}
669
670module_init(vmac_module_init);
671module_exit(vmac_module_exit);
672
673MODULE_LICENSE("GPL");
674MODULE_DESCRIPTION("VMAC hash algorithm");
675