Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * ARC Cache Management
   4 *
   5 * Copyright (C) 2014-15 Synopsys, Inc. (www.synopsys.com)
   6 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
   7 */
   8
   9#include <linux/module.h>
  10#include <linux/mm.h>
  11#include <linux/sched.h>
  12#include <linux/cache.h>
  13#include <linux/mmu_context.h>
  14#include <linux/syscalls.h>
  15#include <linux/uaccess.h>
  16#include <linux/pagemap.h>
  17#include <asm/cacheflush.h>
  18#include <asm/cachectl.h>
  19#include <asm/setup.h>
  20
  21#ifdef CONFIG_ISA_ARCV2
  22#define USE_RGN_FLSH	1
  23#endif
  24
  25static int l2_line_sz;
  26static int ioc_exists;
  27int slc_enable = 1, ioc_enable = 1;
  28unsigned long perip_base = ARC_UNCACHED_ADDR_SPACE; /* legacy value for boot */
  29unsigned long perip_end = 0xFFFFFFFF; /* legacy value */
  30
  31void (*_cache_line_loop_ic_fn)(phys_addr_t paddr, unsigned long vaddr,
  32			       unsigned long sz, const int op, const int full_page);
  33
  34void (*__dma_cache_wback_inv)(phys_addr_t start, unsigned long sz);
  35void (*__dma_cache_inv)(phys_addr_t start, unsigned long sz);
  36void (*__dma_cache_wback)(phys_addr_t start, unsigned long sz);
  37
  38char *arc_cache_mumbojumbo(int c, char *buf, int len)
  39{
  40	int n = 0;
  41	struct cpuinfo_arc_cache *p;
  42
  43#define PR_CACHE(p, cfg, str)						\
  44	if (!(p)->line_len)						\
  45		n += scnprintf(buf + n, len - n, str"\t\t: N/A\n");	\
  46	else								\
  47		n += scnprintf(buf + n, len - n,			\
  48			str"\t\t: %uK, %dway/set, %uB Line, %s%s%s\n",	\
  49			(p)->sz_k, (p)->assoc, (p)->line_len,		\
  50			(p)->vipt ? "VIPT" : "PIPT",			\
  51			(p)->alias ? " aliasing" : "",			\
  52			IS_USED_CFG(cfg));
  53
  54	PR_CACHE(&cpuinfo_arc700[c].icache, CONFIG_ARC_HAS_ICACHE, "I-Cache");
  55	PR_CACHE(&cpuinfo_arc700[c].dcache, CONFIG_ARC_HAS_DCACHE, "D-Cache");
  56
  57	p = &cpuinfo_arc700[c].slc;
  58	if (p->line_len)
  59		n += scnprintf(buf + n, len - n,
  60			       "SLC\t\t: %uK, %uB Line%s\n",
  61			       p->sz_k, p->line_len, IS_USED_RUN(slc_enable));
  62
  63	n += scnprintf(buf + n, len - n, "Peripherals\t: %#lx%s%s\n",
  64		       perip_base,
  65		       IS_AVAIL3(ioc_exists, ioc_enable, ", IO-Coherency (per-device) "));
  66
  67	return buf;
  68}
  69
  70/*
  71 * Read the Cache Build Confuration Registers, Decode them and save into
  72 * the cpuinfo structure for later use.
  73 * No Validation done here, simply read/convert the BCRs
  74 */
  75static void read_decode_cache_bcr_arcv2(int cpu)
  76{
  77	struct cpuinfo_arc_cache *p_slc = &cpuinfo_arc700[cpu].slc;
  78	struct bcr_generic sbcr;
  79
  80	struct bcr_slc_cfg {
  81#ifdef CONFIG_CPU_BIG_ENDIAN
  82		unsigned int pad:24, way:2, lsz:2, sz:4;
  83#else
  84		unsigned int sz:4, lsz:2, way:2, pad:24;
  85#endif
  86	} slc_cfg;
  87
  88	struct bcr_clust_cfg {
  89#ifdef CONFIG_CPU_BIG_ENDIAN
  90		unsigned int pad:7, c:1, num_entries:8, num_cores:8, ver:8;
  91#else
  92		unsigned int ver:8, num_cores:8, num_entries:8, c:1, pad:7;
  93#endif
  94	} cbcr;
  95
  96	struct bcr_volatile {
  97#ifdef CONFIG_CPU_BIG_ENDIAN
  98		unsigned int start:4, limit:4, pad:22, order:1, disable:1;
  99#else
 100		unsigned int disable:1, order:1, pad:22, limit:4, start:4;
 101#endif
 102	} vol;
 103
 104
 105	READ_BCR(ARC_REG_SLC_BCR, sbcr);
 106	if (sbcr.ver) {
 107		READ_BCR(ARC_REG_SLC_CFG, slc_cfg);
 108		p_slc->sz_k = 128 << slc_cfg.sz;
 109		l2_line_sz = p_slc->line_len = (slc_cfg.lsz == 0) ? 128 : 64;
 110	}
 111
 112	READ_BCR(ARC_REG_CLUSTER_BCR, cbcr);
 113	if (cbcr.c) {
 114		ioc_exists = 1;
 115
 116		/*
 117		 * As for today we don't support both IOC and ZONE_HIGHMEM enabled
 118		 * simultaneously. This happens because as of today IOC aperture covers
 119		 * only ZONE_NORMAL (low mem) and any dma transactions outside this
 120		 * region won't be HW coherent.
 121		 * If we want to use both IOC and ZONE_HIGHMEM we can use
 122		 * bounce_buffer to handle dma transactions to HIGHMEM.
 123		 * Also it is possible to modify dma_direct cache ops or increase IOC
 124		 * aperture size if we are planning to use HIGHMEM without PAE.
 125		 */
 126		if (IS_ENABLED(CONFIG_HIGHMEM) || is_pae40_enabled())
 127			ioc_enable = 0;
 128	} else {
 129		ioc_enable = 0;
 130	}
 131
 132	/* HS 2.0 didn't have AUX_VOL */
 133	if (cpuinfo_arc700[cpu].core.family > 0x51) {
 134		READ_BCR(AUX_VOL, vol);
 135		perip_base = vol.start << 28;
 136		/* HS 3.0 has limit and strict-ordering fields */
 137		if (cpuinfo_arc700[cpu].core.family > 0x52)
 138			perip_end = (vol.limit << 28) - 1;
 139	}
 140}
 141
 142void read_decode_cache_bcr(void)
 143{
 144	struct cpuinfo_arc_cache *p_ic, *p_dc;
 145	unsigned int cpu = smp_processor_id();
 146	struct bcr_cache {
 147#ifdef CONFIG_CPU_BIG_ENDIAN
 148		unsigned int pad:12, line_len:4, sz:4, config:4, ver:8;
 149#else
 150		unsigned int ver:8, config:4, sz:4, line_len:4, pad:12;
 151#endif
 152	} ibcr, dbcr;
 153
 154	p_ic = &cpuinfo_arc700[cpu].icache;
 155	READ_BCR(ARC_REG_IC_BCR, ibcr);
 156
 157	if (!ibcr.ver)
 158		goto dc_chk;
 159
 160	if (ibcr.ver <= 3) {
 161		BUG_ON(ibcr.config != 3);
 162		p_ic->assoc = 2;		/* Fixed to 2w set assoc */
 163	} else if (ibcr.ver >= 4) {
 164		p_ic->assoc = 1 << ibcr.config;	/* 1,2,4,8 */
 165	}
 166
 167	p_ic->line_len = 8 << ibcr.line_len;
 168	p_ic->sz_k = 1 << (ibcr.sz - 1);
 169	p_ic->vipt = 1;
 170	p_ic->alias = p_ic->sz_k/p_ic->assoc/TO_KB(PAGE_SIZE) > 1;
 171
 172dc_chk:
 173	p_dc = &cpuinfo_arc700[cpu].dcache;
 174	READ_BCR(ARC_REG_DC_BCR, dbcr);
 175
 176	if (!dbcr.ver)
 177		goto slc_chk;
 178
 179	if (dbcr.ver <= 3) {
 180		BUG_ON(dbcr.config != 2);
 181		p_dc->assoc = 4;		/* Fixed to 4w set assoc */
 182		p_dc->vipt = 1;
 183		p_dc->alias = p_dc->sz_k/p_dc->assoc/TO_KB(PAGE_SIZE) > 1;
 184	} else if (dbcr.ver >= 4) {
 185		p_dc->assoc = 1 << dbcr.config;	/* 1,2,4,8 */
 186		p_dc->vipt = 0;
 187		p_dc->alias = 0;		/* PIPT so can't VIPT alias */
 188	}
 189
 190	p_dc->line_len = 16 << dbcr.line_len;
 191	p_dc->sz_k = 1 << (dbcr.sz - 1);
 192
 193slc_chk:
 194	if (is_isa_arcv2())
 195                read_decode_cache_bcr_arcv2(cpu);
 196}
 197
 198/*
 199 * Line Operation on {I,D}-Cache
 200 */
 201
 202#define OP_INV		0x1
 203#define OP_FLUSH	0x2
 204#define OP_FLUSH_N_INV	0x3
 205#define OP_INV_IC	0x4
 206
 207/*
 208 *		I-Cache Aliasing in ARC700 VIPT caches (MMU v1-v3)
 209 *
 210 * ARC VIPT I-cache uses vaddr to index into cache and paddr to match the tag.
 211 * The orig Cache Management Module "CDU" only required paddr to invalidate a
 212 * certain line since it sufficed as index in Non-Aliasing VIPT cache-geometry.
 213 * Infact for distinct V1,V2,P: all of {V1-P},{V2-P},{P-P} would end up fetching
 214 * the exact same line.
 215 *
 216 * However for larger Caches (way-size > page-size) - i.e. in Aliasing config,
 217 * paddr alone could not be used to correctly index the cache.
 
 
 218 *
 219 * ------------------
 220 * MMU v1/v2 (Fixed Page Size 8k)
 221 * ------------------
 222 * The solution was to provide CDU with these additonal vaddr bits. These
 223 * would be bits [x:13], x would depend on cache-geometry, 13 comes from
 224 * standard page size of 8k.
 225 * H/w folks chose [17:13] to be a future safe range, and moreso these 5 bits
 226 * of vaddr could easily be "stuffed" in the paddr as bits [4:0] since the
 227 * orig 5 bits of paddr were anyways ignored by CDU line ops, as they
 228 * represent the offset within cache-line. The adv of using this "clumsy"
 229 * interface for additional info was no new reg was needed in CDU programming
 230 * model.
 231 *
 232 * 17:13 represented the max num of bits passable, actual bits needed were
 233 * fewer, based on the num-of-aliases possible.
 234 * -for 2 alias possibility, only bit 13 needed (32K cache)
 235 * -for 4 alias possibility, bits 14:13 needed (64K cache)
 236 *
 237 * ------------------
 238 * MMU v3
 239 * ------------------
 240 * This ver of MMU supports variable page sizes (1k-16k): although Linux will
 241 * only support 8k (default), 16k and 4k.
 242 * However from hardware perspective, smaller page sizes aggravate aliasing
 243 * meaning more vaddr bits needed to disambiguate the cache-line-op ;
 244 * the existing scheme of piggybacking won't work for certain configurations.
 245 * Two new registers IC_PTAG and DC_PTAG inttoduced.
 246 * "tag" bits are provided in PTAG, index bits in existing IVIL/IVDL/FLDL regs
 247 */
 248
 249static inline
 250void __cache_line_loop_v2(phys_addr_t paddr, unsigned long vaddr,
 251			  unsigned long sz, const int op, const int full_page)
 252{
 253	unsigned int aux_cmd;
 254	int num_lines;
 255
 256	if (op == OP_INV_IC) {
 257		aux_cmd = ARC_REG_IC_IVIL;
 258	} else {
 259		/* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
 260		aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
 261	}
 262
 263	/* Ensure we properly floor/ceil the non-line aligned/sized requests
 264	 * and have @paddr - aligned to cache line and integral @num_lines.
 265	 * This however can be avoided for page sized since:
 266	 *  -@paddr will be cache-line aligned already (being page aligned)
 267	 *  -@sz will be integral multiple of line size (being page sized).
 268	 */
 269	if (!full_page) {
 270		sz += paddr & ~CACHE_LINE_MASK;
 271		paddr &= CACHE_LINE_MASK;
 272		vaddr &= CACHE_LINE_MASK;
 273	}
 274
 275	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
 276
 277	/* MMUv2 and before: paddr contains stuffed vaddrs bits */
 278	paddr |= (vaddr >> PAGE_SHIFT) & 0x1F;
 279
 280	while (num_lines-- > 0) {
 281		write_aux_reg(aux_cmd, paddr);
 282		paddr += L1_CACHE_BYTES;
 283	}
 284}
 285
 286/*
 287 * For ARC700 MMUv3 I-cache and D-cache flushes
 288 *  - ARC700 programming model requires paddr and vaddr be passed in seperate
 289 *    AUX registers (*_IV*L and *_PTAG respectively) irrespective of whether the
 290 *    caches actually alias or not.
 291 * -  For HS38, only the aliasing I-cache configuration uses the PTAG reg
 292 *    (non aliasing I-cache version doesn't; while D-cache can't possibly alias)
 293 */
 294static inline
 295void __cache_line_loop_v3(phys_addr_t paddr, unsigned long vaddr,
 296			  unsigned long sz, const int op, const int full_page)
 297{
 298	unsigned int aux_cmd, aux_tag;
 299	int num_lines;
 300
 301	if (op == OP_INV_IC) {
 302		aux_cmd = ARC_REG_IC_IVIL;
 303		aux_tag = ARC_REG_IC_PTAG;
 304	} else {
 305		aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
 306		aux_tag = ARC_REG_DC_PTAG;
 307	}
 308
 309	/* Ensure we properly floor/ceil the non-line aligned/sized requests
 310	 * and have @paddr - aligned to cache line and integral @num_lines.
 311	 * This however can be avoided for page sized since:
 312	 *  -@paddr will be cache-line aligned already (being page aligned)
 313	 *  -@sz will be integral multiple of line size (being page sized).
 314	 */
 315	if (!full_page) {
 316		sz += paddr & ~CACHE_LINE_MASK;
 317		paddr &= CACHE_LINE_MASK;
 318		vaddr &= CACHE_LINE_MASK;
 319	}
 320	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
 321
 322	/*
 323	 * MMUv3, cache ops require paddr in PTAG reg
 324	 * if V-P const for loop, PTAG can be written once outside loop
 325	 */
 326	if (full_page)
 327		write_aux_reg(aux_tag, paddr);
 328
 329	/*
 330	 * This is technically for MMU v4, using the MMU v3 programming model
 331	 * Special work for HS38 aliasing I-cache configuration with PAE40
 332	 *   - upper 8 bits of paddr need to be written into PTAG_HI
 333	 *   - (and needs to be written before the lower 32 bits)
 334	 * Note that PTAG_HI is hoisted outside the line loop
 335	 */
 336	if (is_pae40_enabled() && op == OP_INV_IC)
 337		write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
 338
 339	while (num_lines-- > 0) {
 340		if (!full_page) {
 341			write_aux_reg(aux_tag, paddr);
 342			paddr += L1_CACHE_BYTES;
 343		}
 344
 345		write_aux_reg(aux_cmd, vaddr);
 346		vaddr += L1_CACHE_BYTES;
 347	}
 348}
 349
 350#ifndef USE_RGN_FLSH
 351
 352/*
 353 * In HS38x (MMU v4), I-cache is VIPT (can alias), D-cache is PIPT
 354 * Here's how cache ops are implemented
 355 *
 356 *  - D-cache: only paddr needed (in DC_IVDL/DC_FLDL)
 357 *  - I-cache Non Aliasing: Despite VIPT, only paddr needed (in IC_IVIL)
 358 *  - I-cache Aliasing: Both vaddr and paddr needed (in IC_IVIL, IC_PTAG
 359 *    respectively, similar to MMU v3 programming model, hence
 360 *    __cache_line_loop_v3() is used)
 361 *
 362 * If PAE40 is enabled, independent of aliasing considerations, the higher bits
 363 * needs to be written into PTAG_HI
 364 */
 365static inline
 366void __cache_line_loop_v4(phys_addr_t paddr, unsigned long vaddr,
 367			  unsigned long sz, const int op, const int full_page)
 368{
 369	unsigned int aux_cmd;
 370	int num_lines;
 371
 372	if (op == OP_INV_IC) {
 373		aux_cmd = ARC_REG_IC_IVIL;
 374	} else {
 375		/* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
 376		aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
 377	}
 378
 379	/* Ensure we properly floor/ceil the non-line aligned/sized requests
 380	 * and have @paddr - aligned to cache line and integral @num_lines.
 381	 * This however can be avoided for page sized since:
 382	 *  -@paddr will be cache-line aligned already (being page aligned)
 383	 *  -@sz will be integral multiple of line size (being page sized).
 384	 */
 385	if (!full_page) {
 386		sz += paddr & ~CACHE_LINE_MASK;
 387		paddr &= CACHE_LINE_MASK;
 388	}
 389
 390	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
 391
 392	/*
 393	 * For HS38 PAE40 configuration
 394	 *   - upper 8 bits of paddr need to be written into PTAG_HI
 395	 *   - (and needs to be written before the lower 32 bits)
 396	 */
 397	if (is_pae40_enabled()) {
 398		if (op == OP_INV_IC)
 399			/*
 400			 * Non aliasing I-cache in HS38,
 401			 * aliasing I-cache handled in __cache_line_loop_v3()
 402			 */
 403			write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
 404		else
 405			write_aux_reg(ARC_REG_DC_PTAG_HI, (u64)paddr >> 32);
 406	}
 407
 408	while (num_lines-- > 0) {
 409		write_aux_reg(aux_cmd, paddr);
 410		paddr += L1_CACHE_BYTES;
 411	}
 412}
 413
 414#else
 415
 416/*
 417 * optimized flush operation which takes a region as opposed to iterating per line
 418 */
 419static inline
 420void __cache_line_loop_v4(phys_addr_t paddr, unsigned long vaddr,
 421			  unsigned long sz, const int op, const int full_page)
 422{
 423	unsigned int s, e;
 424
 425	/* Only for Non aliasing I-cache in HS38 */
 426	if (op == OP_INV_IC) {
 427		s = ARC_REG_IC_IVIR;
 428		e = ARC_REG_IC_ENDR;
 429	} else {
 430		s = ARC_REG_DC_STARTR;
 431		e = ARC_REG_DC_ENDR;
 432	}
 433
 434	if (!full_page) {
 435		/* for any leading gap between @paddr and start of cache line */
 436		sz += paddr & ~CACHE_LINE_MASK;
 437		paddr &= CACHE_LINE_MASK;
 438
 439		/*
 440		 *  account for any trailing gap to end of cache line
 441		 *  this is equivalent to DIV_ROUND_UP() in line ops above
 442		 */
 443		sz += L1_CACHE_BYTES - 1;
 444	}
 445
 446	if (is_pae40_enabled()) {
 447		/* TBD: check if crossing 4TB boundary */
 448		if (op == OP_INV_IC)
 449			write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
 450		else
 451			write_aux_reg(ARC_REG_DC_PTAG_HI, (u64)paddr >> 32);
 452	}
 453
 454	/* ENDR needs to be set ahead of START */
 455	write_aux_reg(e, paddr + sz);	/* ENDR is exclusive */
 456	write_aux_reg(s, paddr);
 457
 458	/* caller waits on DC_CTRL.FS */
 459}
 460
 461#endif
 462
 463#if (CONFIG_ARC_MMU_VER < 3)
 464#define __cache_line_loop	__cache_line_loop_v2
 465#elif (CONFIG_ARC_MMU_VER == 3)
 466#define __cache_line_loop	__cache_line_loop_v3
 467#elif (CONFIG_ARC_MMU_VER > 3)
 468#define __cache_line_loop	__cache_line_loop_v4
 469#endif
 470
 471#ifdef CONFIG_ARC_HAS_DCACHE
 472
 473/***************************************************************
 474 * Machine specific helpers for Entire D-Cache or Per Line ops
 475 */
 476
 477#ifndef USE_RGN_FLSH
 478/*
 479 * this version avoids extra read/write of DC_CTRL for flush or invalid ops
 480 * in the non region flush regime (such as for ARCompact)
 481 */
 482static inline void __before_dc_op(const int op)
 483{
 484	if (op == OP_FLUSH_N_INV) {
 485		/* Dcache provides 2 cmd: FLUSH or INV
 486		 * INV inturn has sub-modes: DISCARD or FLUSH-BEFORE
 487		 * flush-n-inv is achieved by INV cmd but with IM=1
 488		 * So toggle INV sub-mode depending on op request and default
 489		 */
 490		const unsigned int ctl = ARC_REG_DC_CTRL;
 491		write_aux_reg(ctl, read_aux_reg(ctl) | DC_CTRL_INV_MODE_FLUSH);
 492	}
 493}
 494
 495#else
 496
 497static inline void __before_dc_op(const int op)
 498{
 499	const unsigned int ctl = ARC_REG_DC_CTRL;
 500	unsigned int val = read_aux_reg(ctl);
 501
 502	if (op == OP_FLUSH_N_INV) {
 503		val |= DC_CTRL_INV_MODE_FLUSH;
 504	}
 505
 506	if (op != OP_INV_IC) {
 507		/*
 508		 * Flush / Invalidate is provided by DC_CTRL.RNG_OP 0 or 1
 509		 * combined Flush-n-invalidate uses DC_CTRL.IM = 1 set above
 510		 */
 511		val &= ~DC_CTRL_RGN_OP_MSK;
 512		if (op & OP_INV)
 513			val |= DC_CTRL_RGN_OP_INV;
 514	}
 515	write_aux_reg(ctl, val);
 516}
 517
 518#endif
 519
 520
 521static inline void __after_dc_op(const int op)
 522{
 523	if (op & OP_FLUSH) {
 524		const unsigned int ctl = ARC_REG_DC_CTRL;
 525		unsigned int reg;
 526
 527		/* flush / flush-n-inv both wait */
 528		while ((reg = read_aux_reg(ctl)) & DC_CTRL_FLUSH_STATUS)
 529			;
 530
 531		/* Switch back to default Invalidate mode */
 532		if (op == OP_FLUSH_N_INV)
 533			write_aux_reg(ctl, reg & ~DC_CTRL_INV_MODE_FLUSH);
 534	}
 535}
 536
 537/*
 538 * Operation on Entire D-Cache
 539 * @op = {OP_INV, OP_FLUSH, OP_FLUSH_N_INV}
 540 * Note that constant propagation ensures all the checks are gone
 541 * in generated code
 542 */
 543static inline void __dc_entire_op(const int op)
 544{
 545	int aux;
 546
 547	__before_dc_op(op);
 548
 549	if (op & OP_INV)	/* Inv or flush-n-inv use same cmd reg */
 550		aux = ARC_REG_DC_IVDC;
 551	else
 552		aux = ARC_REG_DC_FLSH;
 553
 554	write_aux_reg(aux, 0x1);
 555
 556	__after_dc_op(op);
 557}
 558
 559static inline void __dc_disable(void)
 560{
 561	const int r = ARC_REG_DC_CTRL;
 562
 563	__dc_entire_op(OP_FLUSH_N_INV);
 564	write_aux_reg(r, read_aux_reg(r) | DC_CTRL_DIS);
 565}
 566
 567static void __dc_enable(void)
 568{
 569	const int r = ARC_REG_DC_CTRL;
 570
 571	write_aux_reg(r, read_aux_reg(r) & ~DC_CTRL_DIS);
 572}
 573
 574/* For kernel mappings cache operation: index is same as paddr */
 575#define __dc_line_op_k(p, sz, op)	__dc_line_op(p, p, sz, op)
 576
 577/*
 578 * D-Cache Line ops: Per Line INV (discard or wback+discard) or FLUSH (wback)
 579 */
 580static inline void __dc_line_op(phys_addr_t paddr, unsigned long vaddr,
 581				unsigned long sz, const int op)
 582{
 583	const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
 584	unsigned long flags;
 585
 586	local_irq_save(flags);
 587
 588	__before_dc_op(op);
 589
 590	__cache_line_loop(paddr, vaddr, sz, op, full_page);
 591
 592	__after_dc_op(op);
 593
 594	local_irq_restore(flags);
 595}
 596
 597#else
 598
 599#define __dc_entire_op(op)
 600#define __dc_disable()
 601#define __dc_enable()
 602#define __dc_line_op(paddr, vaddr, sz, op)
 603#define __dc_line_op_k(paddr, sz, op)
 604
 605#endif /* CONFIG_ARC_HAS_DCACHE */
 606
 607#ifdef CONFIG_ARC_HAS_ICACHE
 608
 609static inline void __ic_entire_inv(void)
 610{
 611	write_aux_reg(ARC_REG_IC_IVIC, 1);
 612	read_aux_reg(ARC_REG_IC_CTRL);	/* blocks */
 613}
 614
 615static inline void
 616__ic_line_inv_vaddr_local(phys_addr_t paddr, unsigned long vaddr,
 617			  unsigned long sz)
 618{
 619	const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
 620	unsigned long flags;
 621
 622	local_irq_save(flags);
 623	(*_cache_line_loop_ic_fn)(paddr, vaddr, sz, OP_INV_IC, full_page);
 624	local_irq_restore(flags);
 625}
 626
 627#ifndef CONFIG_SMP
 628
 629#define __ic_line_inv_vaddr(p, v, s)	__ic_line_inv_vaddr_local(p, v, s)
 630
 631#else
 632
 633struct ic_inv_args {
 634	phys_addr_t paddr, vaddr;
 635	int sz;
 636};
 637
 638static void __ic_line_inv_vaddr_helper(void *info)
 639{
 640        struct ic_inv_args *ic_inv = info;
 641
 642        __ic_line_inv_vaddr_local(ic_inv->paddr, ic_inv->vaddr, ic_inv->sz);
 643}
 644
 645static void __ic_line_inv_vaddr(phys_addr_t paddr, unsigned long vaddr,
 646				unsigned long sz)
 647{
 648	struct ic_inv_args ic_inv = {
 649		.paddr = paddr,
 650		.vaddr = vaddr,
 651		.sz    = sz
 652	};
 653
 654	on_each_cpu(__ic_line_inv_vaddr_helper, &ic_inv, 1);
 655}
 656
 657#endif	/* CONFIG_SMP */
 658
 659#else	/* !CONFIG_ARC_HAS_ICACHE */
 660
 661#define __ic_entire_inv()
 662#define __ic_line_inv_vaddr(pstart, vstart, sz)
 663
 664#endif /* CONFIG_ARC_HAS_ICACHE */
 665
 666noinline void slc_op_rgn(phys_addr_t paddr, unsigned long sz, const int op)
 667{
 668#ifdef CONFIG_ISA_ARCV2
 669	/*
 670	 * SLC is shared between all cores and concurrent aux operations from
 671	 * multiple cores need to be serialized using a spinlock
 672	 * A concurrent operation can be silently ignored and/or the old/new
 673	 * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop
 674	 * below)
 675	 */
 676	static DEFINE_SPINLOCK(lock);
 677	unsigned long flags;
 678	unsigned int ctrl;
 679	phys_addr_t end;
 680
 681	spin_lock_irqsave(&lock, flags);
 682
 683	/*
 684	 * The Region Flush operation is specified by CTRL.RGN_OP[11..9]
 685	 *  - b'000 (default) is Flush,
 686	 *  - b'001 is Invalidate if CTRL.IM == 0
 687	 *  - b'001 is Flush-n-Invalidate if CTRL.IM == 1
 688	 */
 689	ctrl = read_aux_reg(ARC_REG_SLC_CTRL);
 690
 691	/* Don't rely on default value of IM bit */
 692	if (!(op & OP_FLUSH))		/* i.e. OP_INV */
 693		ctrl &= ~SLC_CTRL_IM;	/* clear IM: Disable flush before Inv */
 694	else
 695		ctrl |= SLC_CTRL_IM;
 696
 697	if (op & OP_INV)
 698		ctrl |= SLC_CTRL_RGN_OP_INV;	/* Inv or flush-n-inv */
 699	else
 700		ctrl &= ~SLC_CTRL_RGN_OP_INV;
 701
 702	write_aux_reg(ARC_REG_SLC_CTRL, ctrl);
 703
 704	/*
 705	 * Lower bits are ignored, no need to clip
 706	 * END needs to be setup before START (latter triggers the operation)
 707	 * END can't be same as START, so add (l2_line_sz - 1) to sz
 708	 */
 709	end = paddr + sz + l2_line_sz - 1;
 710	if (is_pae40_enabled())
 711		write_aux_reg(ARC_REG_SLC_RGN_END1, upper_32_bits(end));
 712
 713	write_aux_reg(ARC_REG_SLC_RGN_END, lower_32_bits(end));
 714
 715	if (is_pae40_enabled())
 716		write_aux_reg(ARC_REG_SLC_RGN_START1, upper_32_bits(paddr));
 717
 718	write_aux_reg(ARC_REG_SLC_RGN_START, lower_32_bits(paddr));
 719
 720	/* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */
 721	read_aux_reg(ARC_REG_SLC_CTRL);
 722
 723	while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY);
 724
 725	spin_unlock_irqrestore(&lock, flags);
 726#endif
 727}
 728
 729noinline void slc_op_line(phys_addr_t paddr, unsigned long sz, const int op)
 730{
 731#ifdef CONFIG_ISA_ARCV2
 732	/*
 733	 * SLC is shared between all cores and concurrent aux operations from
 734	 * multiple cores need to be serialized using a spinlock
 735	 * A concurrent operation can be silently ignored and/or the old/new
 736	 * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop
 737	 * below)
 738	 */
 739	static DEFINE_SPINLOCK(lock);
 740
 741	const unsigned long SLC_LINE_MASK = ~(l2_line_sz - 1);
 742	unsigned int ctrl, cmd;
 743	unsigned long flags;
 744	int num_lines;
 745
 746	spin_lock_irqsave(&lock, flags);
 747
 748	ctrl = read_aux_reg(ARC_REG_SLC_CTRL);
 749
 750	/* Don't rely on default value of IM bit */
 751	if (!(op & OP_FLUSH))		/* i.e. OP_INV */
 752		ctrl &= ~SLC_CTRL_IM;	/* clear IM: Disable flush before Inv */
 753	else
 754		ctrl |= SLC_CTRL_IM;
 755
 756	write_aux_reg(ARC_REG_SLC_CTRL, ctrl);
 757
 758	cmd = op & OP_INV ? ARC_AUX_SLC_IVDL : ARC_AUX_SLC_FLDL;
 759
 760	sz += paddr & ~SLC_LINE_MASK;
 761	paddr &= SLC_LINE_MASK;
 762
 763	num_lines = DIV_ROUND_UP(sz, l2_line_sz);
 764
 765	while (num_lines-- > 0) {
 766		write_aux_reg(cmd, paddr);
 767		paddr += l2_line_sz;
 768	}
 769
 770	/* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */
 771	read_aux_reg(ARC_REG_SLC_CTRL);
 772
 773	while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY);
 774
 775	spin_unlock_irqrestore(&lock, flags);
 776#endif
 777}
 778
 779#define slc_op(paddr, sz, op)	slc_op_rgn(paddr, sz, op)
 780
 781noinline static void slc_entire_op(const int op)
 782{
 783	unsigned int ctrl, r = ARC_REG_SLC_CTRL;
 784
 785	ctrl = read_aux_reg(r);
 786
 787	if (!(op & OP_FLUSH))		/* i.e. OP_INV */
 788		ctrl &= ~SLC_CTRL_IM;	/* clear IM: Disable flush before Inv */
 789	else
 790		ctrl |= SLC_CTRL_IM;
 791
 792	write_aux_reg(r, ctrl);
 793
 794	if (op & OP_INV)	/* Inv or flush-n-inv use same cmd reg */
 795		write_aux_reg(ARC_REG_SLC_INVALIDATE, 0x1);
 796	else
 797		write_aux_reg(ARC_REG_SLC_FLUSH, 0x1);
 798
 799	/* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */
 800	read_aux_reg(r);
 801
 802	/* Important to wait for flush to complete */
 803	while (read_aux_reg(r) & SLC_CTRL_BUSY);
 804}
 805
 806static inline void arc_slc_disable(void)
 807{
 808	const int r = ARC_REG_SLC_CTRL;
 809
 810	slc_entire_op(OP_FLUSH_N_INV);
 811	write_aux_reg(r, read_aux_reg(r) | SLC_CTRL_DIS);
 812}
 813
 814static inline void arc_slc_enable(void)
 815{
 816	const int r = ARC_REG_SLC_CTRL;
 817
 818	write_aux_reg(r, read_aux_reg(r) & ~SLC_CTRL_DIS);
 819}
 820
 821/***********************************************************
 822 * Exported APIs
 823 */
 824
 825/*
 826 * Handle cache congruency of kernel and userspace mappings of page when kernel
 827 * writes-to/reads-from
 828 *
 829 * The idea is to defer flushing of kernel mapping after a WRITE, possible if:
 830 *  -dcache is NOT aliasing, hence any U/K-mappings of page are congruent
 831 *  -U-mapping doesn't exist yet for page (finalised in update_mmu_cache)
 832 *  -In SMP, if hardware caches are coherent
 833 *
 834 * There's a corollary case, where kernel READs from a userspace mapped page.
 835 * If the U-mapping is not congruent to to K-mapping, former needs flushing.
 836 */
 837void flush_dcache_page(struct page *page)
 838{
 839	struct address_space *mapping;
 840
 841	if (!cache_is_vipt_aliasing()) {
 842		clear_bit(PG_dc_clean, &page->flags);
 843		return;
 844	}
 845
 846	/* don't handle anon pages here */
 847	mapping = page_mapping_file(page);
 848	if (!mapping)
 849		return;
 850
 851	/*
 852	 * pagecache page, file not yet mapped to userspace
 853	 * Make a note that K-mapping is dirty
 854	 */
 855	if (!mapping_mapped(mapping)) {
 856		clear_bit(PG_dc_clean, &page->flags);
 857	} else if (page_mapcount(page)) {
 858
 859		/* kernel reading from page with U-mapping */
 860		phys_addr_t paddr = (unsigned long)page_address(page);
 861		unsigned long vaddr = page->index << PAGE_SHIFT;
 862
 863		if (addr_not_cache_congruent(paddr, vaddr))
 864			__flush_dcache_page(paddr, vaddr);
 865	}
 866}
 867EXPORT_SYMBOL(flush_dcache_page);
 868
 869/*
 870 * DMA ops for systems with L1 cache only
 871 * Make memory coherent with L1 cache by flushing/invalidating L1 lines
 872 */
 873static void __dma_cache_wback_inv_l1(phys_addr_t start, unsigned long sz)
 874{
 875	__dc_line_op_k(start, sz, OP_FLUSH_N_INV);
 876}
 877
 878static void __dma_cache_inv_l1(phys_addr_t start, unsigned long sz)
 879{
 880	__dc_line_op_k(start, sz, OP_INV);
 881}
 882
 883static void __dma_cache_wback_l1(phys_addr_t start, unsigned long sz)
 884{
 885	__dc_line_op_k(start, sz, OP_FLUSH);
 886}
 887
 888/*
 889 * DMA ops for systems with both L1 and L2 caches, but without IOC
 890 * Both L1 and L2 lines need to be explicitly flushed/invalidated
 891 */
 892static void __dma_cache_wback_inv_slc(phys_addr_t start, unsigned long sz)
 893{
 894	__dc_line_op_k(start, sz, OP_FLUSH_N_INV);
 895	slc_op(start, sz, OP_FLUSH_N_INV);
 896}
 897
 898static void __dma_cache_inv_slc(phys_addr_t start, unsigned long sz)
 899{
 900	__dc_line_op_k(start, sz, OP_INV);
 901	slc_op(start, sz, OP_INV);
 902}
 903
 904static void __dma_cache_wback_slc(phys_addr_t start, unsigned long sz)
 905{
 906	__dc_line_op_k(start, sz, OP_FLUSH);
 907	slc_op(start, sz, OP_FLUSH);
 908}
 909
 910/*
 911 * Exported DMA API
 912 */
 913void dma_cache_wback_inv(phys_addr_t start, unsigned long sz)
 914{
 915	__dma_cache_wback_inv(start, sz);
 916}
 917EXPORT_SYMBOL(dma_cache_wback_inv);
 918
 919void dma_cache_inv(phys_addr_t start, unsigned long sz)
 920{
 921	__dma_cache_inv(start, sz);
 922}
 923EXPORT_SYMBOL(dma_cache_inv);
 924
 925void dma_cache_wback(phys_addr_t start, unsigned long sz)
 926{
 927	__dma_cache_wback(start, sz);
 928}
 929EXPORT_SYMBOL(dma_cache_wback);
 930
 931/*
 932 * This is API for making I/D Caches consistent when modifying
 933 * kernel code (loadable modules, kprobes, kgdb...)
 934 * This is called on insmod, with kernel virtual address for CODE of
 935 * the module. ARC cache maintenance ops require PHY address thus we
 936 * need to convert vmalloc addr to PHY addr
 937 */
 938void flush_icache_range(unsigned long kstart, unsigned long kend)
 939{
 940	unsigned int tot_sz;
 941
 942	WARN(kstart < TASK_SIZE, "%s() can't handle user vaddr", __func__);
 943
 944	/* Shortcut for bigger flush ranges.
 945	 * Here we don't care if this was kernel virtual or phy addr
 946	 */
 947	tot_sz = kend - kstart;
 948	if (tot_sz > PAGE_SIZE) {
 949		flush_cache_all();
 950		return;
 951	}
 952
 953	/* Case: Kernel Phy addr (0x8000_0000 onwards) */
 954	if (likely(kstart > PAGE_OFFSET)) {
 955		/*
 956		 * The 2nd arg despite being paddr will be used to index icache
 957		 * This is OK since no alternate virtual mappings will exist
 958		 * given the callers for this case: kprobe/kgdb in built-in
 959		 * kernel code only.
 960		 */
 961		__sync_icache_dcache(kstart, kstart, kend - kstart);
 962		return;
 963	}
 964
 965	/*
 966	 * Case: Kernel Vaddr (0x7000_0000 to 0x7fff_ffff)
 967	 * (1) ARC Cache Maintenance ops only take Phy addr, hence special
 968	 *     handling of kernel vaddr.
 969	 *
 970	 * (2) Despite @tot_sz being < PAGE_SIZE (bigger cases handled already),
 971	 *     it still needs to handle  a 2 page scenario, where the range
 972	 *     straddles across 2 virtual pages and hence need for loop
 973	 */
 974	while (tot_sz > 0) {
 975		unsigned int off, sz;
 976		unsigned long phy, pfn;
 977
 978		off = kstart % PAGE_SIZE;
 979		pfn = vmalloc_to_pfn((void *)kstart);
 980		phy = (pfn << PAGE_SHIFT) + off;
 981		sz = min_t(unsigned int, tot_sz, PAGE_SIZE - off);
 982		__sync_icache_dcache(phy, kstart, sz);
 983		kstart += sz;
 984		tot_sz -= sz;
 985	}
 986}
 987EXPORT_SYMBOL(flush_icache_range);
 988
 989/*
 990 * General purpose helper to make I and D cache lines consistent.
 991 * @paddr is phy addr of region
 992 * @vaddr is typically user vaddr (breakpoint) or kernel vaddr (vmalloc)
 993 *    However in one instance, when called by kprobe (for a breakpt in
 994 *    builtin kernel code) @vaddr will be paddr only, meaning CDU operation will
 995 *    use a paddr to index the cache (despite VIPT). This is fine since since a
 996 *    builtin kernel page will not have any virtual mappings.
 997 *    kprobe on loadable module will be kernel vaddr.
 998 */
 999void __sync_icache_dcache(phys_addr_t paddr, unsigned long vaddr, int len)
1000{
1001	__dc_line_op(paddr, vaddr, len, OP_FLUSH_N_INV);
1002	__ic_line_inv_vaddr(paddr, vaddr, len);
1003}
1004
1005/* wrapper to compile time eliminate alignment checks in flush loop */
1006void __inv_icache_page(phys_addr_t paddr, unsigned long vaddr)
1007{
1008	__ic_line_inv_vaddr(paddr, vaddr, PAGE_SIZE);
1009}
1010
1011/*
1012 * wrapper to clearout kernel or userspace mappings of a page
1013 * For kernel mappings @vaddr == @paddr
1014 */
1015void __flush_dcache_page(phys_addr_t paddr, unsigned long vaddr)
1016{
1017	__dc_line_op(paddr, vaddr & PAGE_MASK, PAGE_SIZE, OP_FLUSH_N_INV);
1018}
1019
1020noinline void flush_cache_all(void)
1021{
1022	unsigned long flags;
1023
1024	local_irq_save(flags);
1025
1026	__ic_entire_inv();
1027	__dc_entire_op(OP_FLUSH_N_INV);
1028
1029	local_irq_restore(flags);
1030
1031}
1032
1033#ifdef CONFIG_ARC_CACHE_VIPT_ALIASING
1034
1035void flush_cache_mm(struct mm_struct *mm)
1036{
1037	flush_cache_all();
1038}
1039
1040void flush_cache_page(struct vm_area_struct *vma, unsigned long u_vaddr,
1041		      unsigned long pfn)
1042{
1043	phys_addr_t paddr = pfn << PAGE_SHIFT;
1044
1045	u_vaddr &= PAGE_MASK;
1046
1047	__flush_dcache_page(paddr, u_vaddr);
1048
1049	if (vma->vm_flags & VM_EXEC)
1050		__inv_icache_page(paddr, u_vaddr);
1051}
1052
1053void flush_cache_range(struct vm_area_struct *vma, unsigned long start,
1054		       unsigned long end)
1055{
1056	flush_cache_all();
1057}
1058
1059void flush_anon_page(struct vm_area_struct *vma, struct page *page,
1060		     unsigned long u_vaddr)
1061{
1062	/* TBD: do we really need to clear the kernel mapping */
1063	__flush_dcache_page((phys_addr_t)page_address(page), u_vaddr);
1064	__flush_dcache_page((phys_addr_t)page_address(page),
1065			    (phys_addr_t)page_address(page));
1066
1067}
1068
1069#endif
1070
1071void copy_user_highpage(struct page *to, struct page *from,
1072	unsigned long u_vaddr, struct vm_area_struct *vma)
1073{
1074	void *kfrom = kmap_atomic(from);
1075	void *kto = kmap_atomic(to);
1076	int clean_src_k_mappings = 0;
1077
1078	/*
1079	 * If SRC page was already mapped in userspace AND it's U-mapping is
1080	 * not congruent with K-mapping, sync former to physical page so that
1081	 * K-mapping in memcpy below, sees the right data
1082	 *
1083	 * Note that while @u_vaddr refers to DST page's userspace vaddr, it is
1084	 * equally valid for SRC page as well
1085	 *
1086	 * For !VIPT cache, all of this gets compiled out as
1087	 * addr_not_cache_congruent() is 0
1088	 */
1089	if (page_mapcount(from) && addr_not_cache_congruent(kfrom, u_vaddr)) {
1090		__flush_dcache_page((unsigned long)kfrom, u_vaddr);
1091		clean_src_k_mappings = 1;
1092	}
1093
1094	copy_page(kto, kfrom);
1095
1096	/*
1097	 * Mark DST page K-mapping as dirty for a later finalization by
1098	 * update_mmu_cache(). Although the finalization could have been done
1099	 * here as well (given that both vaddr/paddr are available).
1100	 * But update_mmu_cache() already has code to do that for other
1101	 * non copied user pages (e.g. read faults which wire in pagecache page
1102	 * directly).
1103	 */
1104	clear_bit(PG_dc_clean, &to->flags);
1105
1106	/*
1107	 * if SRC was already usermapped and non-congruent to kernel mapping
1108	 * sync the kernel mapping back to physical page
1109	 */
1110	if (clean_src_k_mappings) {
1111		__flush_dcache_page((unsigned long)kfrom, (unsigned long)kfrom);
1112		set_bit(PG_dc_clean, &from->flags);
1113	} else {
1114		clear_bit(PG_dc_clean, &from->flags);
1115	}
1116
1117	kunmap_atomic(kto);
1118	kunmap_atomic(kfrom);
1119}
1120
1121void clear_user_page(void *to, unsigned long u_vaddr, struct page *page)
1122{
1123	clear_page(to);
1124	clear_bit(PG_dc_clean, &page->flags);
1125}
1126
1127
1128/**********************************************************************
1129 * Explicit Cache flush request from user space via syscall
1130 * Needed for JITs which generate code on the fly
1131 */
1132SYSCALL_DEFINE3(cacheflush, uint32_t, start, uint32_t, sz, uint32_t, flags)
1133{
1134	/* TBD: optimize this */
1135	flush_cache_all();
1136	return 0;
1137}
1138
1139/*
1140 * IO-Coherency (IOC) setup rules:
1141 *
1142 * 1. Needs to be at system level, so only once by Master core
1143 *    Non-Masters need not be accessing caches at that time
1144 *    - They are either HALT_ON_RESET and kick started much later or
1145 *    - if run on reset, need to ensure that arc_platform_smp_wait_to_boot()
1146 *      doesn't perturb caches or coherency unit
1147 *
1148 * 2. caches (L1 and SLC) need to be purged (flush+inv) before setting up IOC,
1149 *    otherwise any straggler data might behave strangely post IOC enabling
1150 *
1151 * 3. All Caches need to be disabled when setting up IOC to elide any in-flight
1152 *    Coherency transactions
1153 */
1154noinline void __init arc_ioc_setup(void)
1155{
1156	unsigned int ioc_base, mem_sz;
1157
1158	/*
1159	 * If IOC was already enabled (due to bootloader) it technically needs to
1160	 * be reconfigured with aperture base,size corresponding to Linux memory map
1161	 * which will certainly be different than uboot's. But disabling and
1162	 * reenabling IOC when DMA might be potentially active is tricky business.
1163	 * To avoid random memory issues later, just panic here and ask user to
1164	 * upgrade bootloader to one which doesn't enable IOC
1165	 */
1166	if (read_aux_reg(ARC_REG_IO_COH_ENABLE) & ARC_IO_COH_ENABLE_BIT)
1167		panic("IOC already enabled, please upgrade bootloader!\n");
1168
1169	if (!ioc_enable)
1170		return;
1171
1172	/* Flush + invalidate + disable L1 dcache */
1173	__dc_disable();
1174
1175	/* Flush + invalidate SLC */
1176	if (read_aux_reg(ARC_REG_SLC_BCR))
1177		slc_entire_op(OP_FLUSH_N_INV);
1178
1179	/*
1180	 * currently IOC Aperture covers entire DDR
1181	 * TBD: fix for PGU + 1GB of low mem
1182	 * TBD: fix for PAE
1183	 */
1184	mem_sz = arc_get_mem_sz();
1185
1186	if (!is_power_of_2(mem_sz) || mem_sz < 4096)
1187		panic("IOC Aperture size must be power of 2 larger than 4KB");
1188
1189	/*
1190	 * IOC Aperture size decoded as 2 ^ (SIZE + 2) KB,
1191	 * so setting 0x11 implies 512MB, 0x12 implies 1GB...
1192	 */
1193	write_aux_reg(ARC_REG_IO_COH_AP0_SIZE, order_base_2(mem_sz >> 10) - 2);
1194
1195	/* for now assume kernel base is start of IOC aperture */
1196	ioc_base = CONFIG_LINUX_RAM_BASE;
1197
1198	if (ioc_base % mem_sz != 0)
1199		panic("IOC Aperture start must be aligned to the size of the aperture");
1200
1201	write_aux_reg(ARC_REG_IO_COH_AP0_BASE, ioc_base >> 12);
1202	write_aux_reg(ARC_REG_IO_COH_PARTIAL, ARC_IO_COH_PARTIAL_BIT);
1203	write_aux_reg(ARC_REG_IO_COH_ENABLE, ARC_IO_COH_ENABLE_BIT);
1204
1205	/* Re-enable L1 dcache */
1206	__dc_enable();
1207}
1208
1209/*
1210 * Cache related boot time checks/setups only needed on master CPU:
1211 *  - Geometry checks (kernel build and hardware agree: e.g. L1_CACHE_BYTES)
1212 *    Assume SMP only, so all cores will have same cache config. A check on
1213 *    one core suffices for all
1214 *  - IOC setup / dma callbacks only need to be done once
1215 */
1216void __init arc_cache_init_master(void)
1217{
1218	unsigned int __maybe_unused cpu = smp_processor_id();
1219
1220	if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE)) {
1221		struct cpuinfo_arc_cache *ic = &cpuinfo_arc700[cpu].icache;
1222
1223		if (!ic->line_len)
1224			panic("cache support enabled but non-existent cache\n");
1225
1226		if (ic->line_len != L1_CACHE_BYTES)
1227			panic("ICache line [%d] != kernel Config [%d]",
1228			      ic->line_len, L1_CACHE_BYTES);
1229
1230		/*
1231		 * In MMU v4 (HS38x) the aliasing icache config uses IVIL/PTAG
1232		 * pair to provide vaddr/paddr respectively, just as in MMU v3
1233		 */
1234		if (is_isa_arcv2() && ic->alias)
1235			_cache_line_loop_ic_fn = __cache_line_loop_v3;
1236		else
1237			_cache_line_loop_ic_fn = __cache_line_loop;
1238	}
1239
1240	if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE)) {
1241		struct cpuinfo_arc_cache *dc = &cpuinfo_arc700[cpu].dcache;
1242
1243		if (!dc->line_len)
1244			panic("cache support enabled but non-existent cache\n");
1245
1246		if (dc->line_len != L1_CACHE_BYTES)
1247			panic("DCache line [%d] != kernel Config [%d]",
1248			      dc->line_len, L1_CACHE_BYTES);
1249
1250		/* check for D-Cache aliasing on ARCompact: ARCv2 has PIPT */
1251		if (is_isa_arcompact()) {
1252			int handled = IS_ENABLED(CONFIG_ARC_CACHE_VIPT_ALIASING);
1253			int num_colors = dc->sz_k/dc->assoc/TO_KB(PAGE_SIZE);
1254
1255			if (dc->alias) {
1256				if (!handled)
1257					panic("Enable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
1258				if (CACHE_COLORS_NUM != num_colors)
1259					panic("CACHE_COLORS_NUM not optimized for config\n");
1260			} else if (!dc->alias && handled) {
1261				panic("Disable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
1262			}
1263		}
1264	}
1265
1266	/*
1267	 * Check that SMP_CACHE_BYTES (and hence ARCH_DMA_MINALIGN) is larger
1268	 * or equal to any cache line length.
1269	 */
1270	BUILD_BUG_ON_MSG(L1_CACHE_BYTES > SMP_CACHE_BYTES,
1271			 "SMP_CACHE_BYTES must be >= any cache line length");
1272	if (is_isa_arcv2() && (l2_line_sz > SMP_CACHE_BYTES))
1273		panic("L2 Cache line [%d] > kernel Config [%d]\n",
1274		      l2_line_sz, SMP_CACHE_BYTES);
1275
1276	/* Note that SLC disable not formally supported till HS 3.0 */
1277	if (is_isa_arcv2() && l2_line_sz && !slc_enable)
1278		arc_slc_disable();
1279
1280	if (is_isa_arcv2() && ioc_exists)
1281		arc_ioc_setup();
1282
1283	if (is_isa_arcv2() && l2_line_sz && slc_enable) {
1284		__dma_cache_wback_inv = __dma_cache_wback_inv_slc;
1285		__dma_cache_inv = __dma_cache_inv_slc;
1286		__dma_cache_wback = __dma_cache_wback_slc;
1287	} else {
1288		__dma_cache_wback_inv = __dma_cache_wback_inv_l1;
1289		__dma_cache_inv = __dma_cache_inv_l1;
1290		__dma_cache_wback = __dma_cache_wback_l1;
1291	}
1292	/*
1293	 * In case of IOC (say IOC+SLC case), pointers above could still be set
1294	 * but end up not being relevant as the first function in chain is not
1295	 * called at all for devices using coherent DMA.
1296	 *     arch_sync_dma_for_cpu() -> dma_cache_*() -> __dma_cache_*()
1297	 */
1298}
1299
1300void __ref arc_cache_init(void)
1301{
1302	unsigned int __maybe_unused cpu = smp_processor_id();
1303	char str[256];
1304
1305	pr_info("%s", arc_cache_mumbojumbo(0, str, sizeof(str)));
1306
1307	if (!cpu)
1308		arc_cache_init_master();
1309
1310	/*
1311	 * In PAE regime, TLB and cache maintenance ops take wider addresses
1312	 * And even if PAE is not enabled in kernel, the upper 32-bits still need
1313	 * to be zeroed to keep the ops sane.
1314	 * As an optimization for more common !PAE enabled case, zero them out
1315	 * once at init, rather than checking/setting to 0 for every runtime op
1316	 */
1317	if (is_isa_arcv2() && pae40_exist_but_not_enab()) {
1318
1319		if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE))
1320			write_aux_reg(ARC_REG_IC_PTAG_HI, 0);
1321
1322		if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE))
1323			write_aux_reg(ARC_REG_DC_PTAG_HI, 0);
1324
1325		if (l2_line_sz) {
1326			write_aux_reg(ARC_REG_SLC_RGN_END1, 0);
1327			write_aux_reg(ARC_REG_SLC_RGN_START1, 0);
1328		}
1329	}
1330}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * ARC Cache Management
   4 *
   5 * Copyright (C) 2014-15 Synopsys, Inc. (www.synopsys.com)
   6 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
   7 */
   8
   9#include <linux/module.h>
  10#include <linux/mm.h>
  11#include <linux/sched.h>
  12#include <linux/cache.h>
  13#include <linux/mmu_context.h>
  14#include <linux/syscalls.h>
  15#include <linux/uaccess.h>
  16#include <linux/pagemap.h>
  17#include <asm/cacheflush.h>
  18#include <asm/cachectl.h>
  19#include <asm/setup.h>
  20
  21#ifdef CONFIG_ISA_ARCV2
  22#define USE_RGN_FLSH	1
  23#endif
  24
  25static int l2_line_sz;
  26static int ioc_exists;
  27int slc_enable = 1, ioc_enable = 1;
  28unsigned long perip_base = ARC_UNCACHED_ADDR_SPACE; /* legacy value for boot */
  29unsigned long perip_end = 0xFFFFFFFF; /* legacy value */
  30
  31void (*_cache_line_loop_ic_fn)(phys_addr_t paddr, unsigned long vaddr,
  32			       unsigned long sz, const int op, const int full_page);
  33
  34void (*__dma_cache_wback_inv)(phys_addr_t start, unsigned long sz);
  35void (*__dma_cache_inv)(phys_addr_t start, unsigned long sz);
  36void (*__dma_cache_wback)(phys_addr_t start, unsigned long sz);
  37
  38char *arc_cache_mumbojumbo(int c, char *buf, int len)
  39{
  40	int n = 0;
  41	struct cpuinfo_arc_cache *p;
  42
  43#define PR_CACHE(p, cfg, str)						\
  44	if (!(p)->line_len)						\
  45		n += scnprintf(buf + n, len - n, str"\t\t: N/A\n");	\
  46	else								\
  47		n += scnprintf(buf + n, len - n,			\
  48			str"\t\t: %uK, %dway/set, %uB Line, %s%s%s\n",	\
  49			(p)->sz_k, (p)->assoc, (p)->line_len,		\
  50			(p)->vipt ? "VIPT" : "PIPT",			\
  51			(p)->alias ? " aliasing" : "",			\
  52			IS_USED_CFG(cfg));
  53
  54	PR_CACHE(&cpuinfo_arc700[c].icache, CONFIG_ARC_HAS_ICACHE, "I-Cache");
  55	PR_CACHE(&cpuinfo_arc700[c].dcache, CONFIG_ARC_HAS_DCACHE, "D-Cache");
  56
  57	p = &cpuinfo_arc700[c].slc;
  58	if (p->line_len)
  59		n += scnprintf(buf + n, len - n,
  60			       "SLC\t\t: %uK, %uB Line%s\n",
  61			       p->sz_k, p->line_len, IS_USED_RUN(slc_enable));
  62
  63	n += scnprintf(buf + n, len - n, "Peripherals\t: %#lx%s%s\n",
  64		       perip_base,
  65		       IS_AVAIL3(ioc_exists, ioc_enable, ", IO-Coherency (per-device) "));
  66
  67	return buf;
  68}
  69
  70/*
  71 * Read the Cache Build Confuration Registers, Decode them and save into
  72 * the cpuinfo structure for later use.
  73 * No Validation done here, simply read/convert the BCRs
  74 */
  75static void read_decode_cache_bcr_arcv2(int cpu)
  76{
  77	struct cpuinfo_arc_cache *p_slc = &cpuinfo_arc700[cpu].slc;
  78	struct bcr_generic sbcr;
  79
  80	struct bcr_slc_cfg {
  81#ifdef CONFIG_CPU_BIG_ENDIAN
  82		unsigned int pad:24, way:2, lsz:2, sz:4;
  83#else
  84		unsigned int sz:4, lsz:2, way:2, pad:24;
  85#endif
  86	} slc_cfg;
  87
  88	struct bcr_clust_cfg {
  89#ifdef CONFIG_CPU_BIG_ENDIAN
  90		unsigned int pad:7, c:1, num_entries:8, num_cores:8, ver:8;
  91#else
  92		unsigned int ver:8, num_cores:8, num_entries:8, c:1, pad:7;
  93#endif
  94	} cbcr;
  95
  96	struct bcr_volatile {
  97#ifdef CONFIG_CPU_BIG_ENDIAN
  98		unsigned int start:4, limit:4, pad:22, order:1, disable:1;
  99#else
 100		unsigned int disable:1, order:1, pad:22, limit:4, start:4;
 101#endif
 102	} vol;
 103
 104
 105	READ_BCR(ARC_REG_SLC_BCR, sbcr);
 106	if (sbcr.ver) {
 107		READ_BCR(ARC_REG_SLC_CFG, slc_cfg);
 108		p_slc->sz_k = 128 << slc_cfg.sz;
 109		l2_line_sz = p_slc->line_len = (slc_cfg.lsz == 0) ? 128 : 64;
 110	}
 111
 112	READ_BCR(ARC_REG_CLUSTER_BCR, cbcr);
 113	if (cbcr.c) {
 114		ioc_exists = 1;
 115
 116		/*
 117		 * As for today we don't support both IOC and ZONE_HIGHMEM enabled
 118		 * simultaneously. This happens because as of today IOC aperture covers
 119		 * only ZONE_NORMAL (low mem) and any dma transactions outside this
 120		 * region won't be HW coherent.
 121		 * If we want to use both IOC and ZONE_HIGHMEM we can use
 122		 * bounce_buffer to handle dma transactions to HIGHMEM.
 123		 * Also it is possible to modify dma_direct cache ops or increase IOC
 124		 * aperture size if we are planning to use HIGHMEM without PAE.
 125		 */
 126		if (IS_ENABLED(CONFIG_HIGHMEM) || is_pae40_enabled())
 127			ioc_enable = 0;
 128	} else {
 129		ioc_enable = 0;
 130	}
 131
 132	/* HS 2.0 didn't have AUX_VOL */
 133	if (cpuinfo_arc700[cpu].core.family > 0x51) {
 134		READ_BCR(AUX_VOL, vol);
 135		perip_base = vol.start << 28;
 136		/* HS 3.0 has limit and strict-ordering fields */
 137		if (cpuinfo_arc700[cpu].core.family > 0x52)
 138			perip_end = (vol.limit << 28) - 1;
 139	}
 140}
 141
 142void read_decode_cache_bcr(void)
 143{
 144	struct cpuinfo_arc_cache *p_ic, *p_dc;
 145	unsigned int cpu = smp_processor_id();
 146	struct bcr_cache {
 147#ifdef CONFIG_CPU_BIG_ENDIAN
 148		unsigned int pad:12, line_len:4, sz:4, config:4, ver:8;
 149#else
 150		unsigned int ver:8, config:4, sz:4, line_len:4, pad:12;
 151#endif
 152	} ibcr, dbcr;
 153
 154	p_ic = &cpuinfo_arc700[cpu].icache;
 155	READ_BCR(ARC_REG_IC_BCR, ibcr);
 156
 157	if (!ibcr.ver)
 158		goto dc_chk;
 159
 160	if (ibcr.ver <= 3) {
 161		BUG_ON(ibcr.config != 3);
 162		p_ic->assoc = 2;		/* Fixed to 2w set assoc */
 163	} else if (ibcr.ver >= 4) {
 164		p_ic->assoc = 1 << ibcr.config;	/* 1,2,4,8 */
 165	}
 166
 167	p_ic->line_len = 8 << ibcr.line_len;
 168	p_ic->sz_k = 1 << (ibcr.sz - 1);
 169	p_ic->vipt = 1;
 170	p_ic->alias = p_ic->sz_k/p_ic->assoc/TO_KB(PAGE_SIZE) > 1;
 171
 172dc_chk:
 173	p_dc = &cpuinfo_arc700[cpu].dcache;
 174	READ_BCR(ARC_REG_DC_BCR, dbcr);
 175
 176	if (!dbcr.ver)
 177		goto slc_chk;
 178
 179	if (dbcr.ver <= 3) {
 180		BUG_ON(dbcr.config != 2);
 181		p_dc->assoc = 4;		/* Fixed to 4w set assoc */
 182		p_dc->vipt = 1;
 183		p_dc->alias = p_dc->sz_k/p_dc->assoc/TO_KB(PAGE_SIZE) > 1;
 184	} else if (dbcr.ver >= 4) {
 185		p_dc->assoc = 1 << dbcr.config;	/* 1,2,4,8 */
 186		p_dc->vipt = 0;
 187		p_dc->alias = 0;		/* PIPT so can't VIPT alias */
 188	}
 189
 190	p_dc->line_len = 16 << dbcr.line_len;
 191	p_dc->sz_k = 1 << (dbcr.sz - 1);
 192
 193slc_chk:
 194	if (is_isa_arcv2())
 195                read_decode_cache_bcr_arcv2(cpu);
 196}
 197
 198/*
 199 * Line Operation on {I,D}-Cache
 200 */
 201
 202#define OP_INV		0x1
 203#define OP_FLUSH	0x2
 204#define OP_FLUSH_N_INV	0x3
 205#define OP_INV_IC	0x4
 206
 207/*
 208 * Cache Flush programming model
 209 *
 210 * ARC700 MMUv3 I$ and D$ are both VIPT and can potentially alias.
 211 * Programming model requires both paddr and vaddr irrespecive of aliasing
 212 * considerations:
 213 *  - vaddr in {I,D}C_IV?L
 214 *  - paddr in {I,D}C_PTAG
 215 *
 216 * In HS38x (MMUv4), D$ is PIPT, I$ is VIPT and can still alias.
 217 * Programming model is different for aliasing vs. non-aliasing I$
 218 *  - D$ / Non-aliasing I$: only paddr in {I,D}C_IV?L
 219 *  - Aliasing I$: same as ARC700 above (so MMUv3 routine used for MMUv4 I$)
 220 *
 221 *  - If PAE40 is enabled, independent of aliasing considerations, the higher
 222 *    bits needs to be written into PTAG_HI
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223 */
 224
 225static inline
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 226void __cache_line_loop_v3(phys_addr_t paddr, unsigned long vaddr,
 227			  unsigned long sz, const int op, const int full_page)
 228{
 229	unsigned int aux_cmd, aux_tag;
 230	int num_lines;
 231
 232	if (op == OP_INV_IC) {
 233		aux_cmd = ARC_REG_IC_IVIL;
 234		aux_tag = ARC_REG_IC_PTAG;
 235	} else {
 236		aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
 237		aux_tag = ARC_REG_DC_PTAG;
 238	}
 239
 240	/* Ensure we properly floor/ceil the non-line aligned/sized requests
 241	 * and have @paddr - aligned to cache line and integral @num_lines.
 242	 * This however can be avoided for page sized since:
 243	 *  -@paddr will be cache-line aligned already (being page aligned)
 244	 *  -@sz will be integral multiple of line size (being page sized).
 245	 */
 246	if (!full_page) {
 247		sz += paddr & ~CACHE_LINE_MASK;
 248		paddr &= CACHE_LINE_MASK;
 249		vaddr &= CACHE_LINE_MASK;
 250	}
 251	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
 252
 253	/*
 254	 * MMUv3, cache ops require paddr in PTAG reg
 255	 * if V-P const for loop, PTAG can be written once outside loop
 256	 */
 257	if (full_page)
 258		write_aux_reg(aux_tag, paddr);
 259
 260	/*
 261	 * This is technically for MMU v4, using the MMU v3 programming model
 262	 * Special work for HS38 aliasing I-cache configuration with PAE40
 263	 *   - upper 8 bits of paddr need to be written into PTAG_HI
 264	 *   - (and needs to be written before the lower 32 bits)
 265	 * Note that PTAG_HI is hoisted outside the line loop
 266	 */
 267	if (is_pae40_enabled() && op == OP_INV_IC)
 268		write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
 269
 270	while (num_lines-- > 0) {
 271		if (!full_page) {
 272			write_aux_reg(aux_tag, paddr);
 273			paddr += L1_CACHE_BYTES;
 274		}
 275
 276		write_aux_reg(aux_cmd, vaddr);
 277		vaddr += L1_CACHE_BYTES;
 278	}
 279}
 280
 281#ifndef USE_RGN_FLSH
 282
 283/*
 
 
 
 
 
 
 
 
 
 
 
 284 */
 285static inline
 286void __cache_line_loop_v4(phys_addr_t paddr, unsigned long vaddr,
 287			  unsigned long sz, const int op, const int full_page)
 288{
 289	unsigned int aux_cmd;
 290	int num_lines;
 291
 292	if (op == OP_INV_IC) {
 293		aux_cmd = ARC_REG_IC_IVIL;
 294	} else {
 295		/* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
 296		aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
 297	}
 298
 299	/* Ensure we properly floor/ceil the non-line aligned/sized requests
 300	 * and have @paddr - aligned to cache line and integral @num_lines.
 301	 * This however can be avoided for page sized since:
 302	 *  -@paddr will be cache-line aligned already (being page aligned)
 303	 *  -@sz will be integral multiple of line size (being page sized).
 304	 */
 305	if (!full_page) {
 306		sz += paddr & ~CACHE_LINE_MASK;
 307		paddr &= CACHE_LINE_MASK;
 308	}
 309
 310	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
 311
 312	/*
 313	 * For HS38 PAE40 configuration
 314	 *   - upper 8 bits of paddr need to be written into PTAG_HI
 315	 *   - (and needs to be written before the lower 32 bits)
 316	 */
 317	if (is_pae40_enabled()) {
 318		if (op == OP_INV_IC)
 319			/*
 320			 * Non aliasing I-cache in HS38,
 321			 * aliasing I-cache handled in __cache_line_loop_v3()
 322			 */
 323			write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
 324		else
 325			write_aux_reg(ARC_REG_DC_PTAG_HI, (u64)paddr >> 32);
 326	}
 327
 328	while (num_lines-- > 0) {
 329		write_aux_reg(aux_cmd, paddr);
 330		paddr += L1_CACHE_BYTES;
 331	}
 332}
 333
 334#else
 335
 336/*
 337 * optimized flush operation which takes a region as opposed to iterating per line
 338 */
 339static inline
 340void __cache_line_loop_v4(phys_addr_t paddr, unsigned long vaddr,
 341			  unsigned long sz, const int op, const int full_page)
 342{
 343	unsigned int s, e;
 344
 345	/* Only for Non aliasing I-cache in HS38 */
 346	if (op == OP_INV_IC) {
 347		s = ARC_REG_IC_IVIR;
 348		e = ARC_REG_IC_ENDR;
 349	} else {
 350		s = ARC_REG_DC_STARTR;
 351		e = ARC_REG_DC_ENDR;
 352	}
 353
 354	if (!full_page) {
 355		/* for any leading gap between @paddr and start of cache line */
 356		sz += paddr & ~CACHE_LINE_MASK;
 357		paddr &= CACHE_LINE_MASK;
 358
 359		/*
 360		 *  account for any trailing gap to end of cache line
 361		 *  this is equivalent to DIV_ROUND_UP() in line ops above
 362		 */
 363		sz += L1_CACHE_BYTES - 1;
 364	}
 365
 366	if (is_pae40_enabled()) {
 367		/* TBD: check if crossing 4TB boundary */
 368		if (op == OP_INV_IC)
 369			write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
 370		else
 371			write_aux_reg(ARC_REG_DC_PTAG_HI, (u64)paddr >> 32);
 372	}
 373
 374	/* ENDR needs to be set ahead of START */
 375	write_aux_reg(e, paddr + sz);	/* ENDR is exclusive */
 376	write_aux_reg(s, paddr);
 377
 378	/* caller waits on DC_CTRL.FS */
 379}
 380
 381#endif
 382
 383#ifdef CONFIG_ARC_MMU_V3
 
 
 384#define __cache_line_loop	__cache_line_loop_v3
 385#else
 386#define __cache_line_loop	__cache_line_loop_v4
 387#endif
 388
 389#ifdef CONFIG_ARC_HAS_DCACHE
 390
 391/***************************************************************
 392 * Machine specific helpers for Entire D-Cache or Per Line ops
 393 */
 394
 395#ifndef USE_RGN_FLSH
 396/*
 397 * this version avoids extra read/write of DC_CTRL for flush or invalid ops
 398 * in the non region flush regime (such as for ARCompact)
 399 */
 400static inline void __before_dc_op(const int op)
 401{
 402	if (op == OP_FLUSH_N_INV) {
 403		/* Dcache provides 2 cmd: FLUSH or INV
 404		 * INV in turn has sub-modes: DISCARD or FLUSH-BEFORE
 405		 * flush-n-inv is achieved by INV cmd but with IM=1
 406		 * So toggle INV sub-mode depending on op request and default
 407		 */
 408		const unsigned int ctl = ARC_REG_DC_CTRL;
 409		write_aux_reg(ctl, read_aux_reg(ctl) | DC_CTRL_INV_MODE_FLUSH);
 410	}
 411}
 412
 413#else
 414
 415static inline void __before_dc_op(const int op)
 416{
 417	const unsigned int ctl = ARC_REG_DC_CTRL;
 418	unsigned int val = read_aux_reg(ctl);
 419
 420	if (op == OP_FLUSH_N_INV) {
 421		val |= DC_CTRL_INV_MODE_FLUSH;
 422	}
 423
 424	if (op != OP_INV_IC) {
 425		/*
 426		 * Flush / Invalidate is provided by DC_CTRL.RNG_OP 0 or 1
 427		 * combined Flush-n-invalidate uses DC_CTRL.IM = 1 set above
 428		 */
 429		val &= ~DC_CTRL_RGN_OP_MSK;
 430		if (op & OP_INV)
 431			val |= DC_CTRL_RGN_OP_INV;
 432	}
 433	write_aux_reg(ctl, val);
 434}
 435
 436#endif
 437
 438
 439static inline void __after_dc_op(const int op)
 440{
 441	if (op & OP_FLUSH) {
 442		const unsigned int ctl = ARC_REG_DC_CTRL;
 443		unsigned int reg;
 444
 445		/* flush / flush-n-inv both wait */
 446		while ((reg = read_aux_reg(ctl)) & DC_CTRL_FLUSH_STATUS)
 447			;
 448
 449		/* Switch back to default Invalidate mode */
 450		if (op == OP_FLUSH_N_INV)
 451			write_aux_reg(ctl, reg & ~DC_CTRL_INV_MODE_FLUSH);
 452	}
 453}
 454
 455/*
 456 * Operation on Entire D-Cache
 457 * @op = {OP_INV, OP_FLUSH, OP_FLUSH_N_INV}
 458 * Note that constant propagation ensures all the checks are gone
 459 * in generated code
 460 */
 461static inline void __dc_entire_op(const int op)
 462{
 463	int aux;
 464
 465	__before_dc_op(op);
 466
 467	if (op & OP_INV)	/* Inv or flush-n-inv use same cmd reg */
 468		aux = ARC_REG_DC_IVDC;
 469	else
 470		aux = ARC_REG_DC_FLSH;
 471
 472	write_aux_reg(aux, 0x1);
 473
 474	__after_dc_op(op);
 475}
 476
 477static inline void __dc_disable(void)
 478{
 479	const int r = ARC_REG_DC_CTRL;
 480
 481	__dc_entire_op(OP_FLUSH_N_INV);
 482	write_aux_reg(r, read_aux_reg(r) | DC_CTRL_DIS);
 483}
 484
 485static void __dc_enable(void)
 486{
 487	const int r = ARC_REG_DC_CTRL;
 488
 489	write_aux_reg(r, read_aux_reg(r) & ~DC_CTRL_DIS);
 490}
 491
 492/* For kernel mappings cache operation: index is same as paddr */
 493#define __dc_line_op_k(p, sz, op)	__dc_line_op(p, p, sz, op)
 494
 495/*
 496 * D-Cache Line ops: Per Line INV (discard or wback+discard) or FLUSH (wback)
 497 */
 498static inline void __dc_line_op(phys_addr_t paddr, unsigned long vaddr,
 499				unsigned long sz, const int op)
 500{
 501	const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
 502	unsigned long flags;
 503
 504	local_irq_save(flags);
 505
 506	__before_dc_op(op);
 507
 508	__cache_line_loop(paddr, vaddr, sz, op, full_page);
 509
 510	__after_dc_op(op);
 511
 512	local_irq_restore(flags);
 513}
 514
 515#else
 516
 517#define __dc_entire_op(op)
 518#define __dc_disable()
 519#define __dc_enable()
 520#define __dc_line_op(paddr, vaddr, sz, op)
 521#define __dc_line_op_k(paddr, sz, op)
 522
 523#endif /* CONFIG_ARC_HAS_DCACHE */
 524
 525#ifdef CONFIG_ARC_HAS_ICACHE
 526
 527static inline void __ic_entire_inv(void)
 528{
 529	write_aux_reg(ARC_REG_IC_IVIC, 1);
 530	read_aux_reg(ARC_REG_IC_CTRL);	/* blocks */
 531}
 532
 533static inline void
 534__ic_line_inv_vaddr_local(phys_addr_t paddr, unsigned long vaddr,
 535			  unsigned long sz)
 536{
 537	const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
 538	unsigned long flags;
 539
 540	local_irq_save(flags);
 541	(*_cache_line_loop_ic_fn)(paddr, vaddr, sz, OP_INV_IC, full_page);
 542	local_irq_restore(flags);
 543}
 544
 545#ifndef CONFIG_SMP
 546
 547#define __ic_line_inv_vaddr(p, v, s)	__ic_line_inv_vaddr_local(p, v, s)
 548
 549#else
 550
 551struct ic_inv_args {
 552	phys_addr_t paddr, vaddr;
 553	int sz;
 554};
 555
 556static void __ic_line_inv_vaddr_helper(void *info)
 557{
 558        struct ic_inv_args *ic_inv = info;
 559
 560        __ic_line_inv_vaddr_local(ic_inv->paddr, ic_inv->vaddr, ic_inv->sz);
 561}
 562
 563static void __ic_line_inv_vaddr(phys_addr_t paddr, unsigned long vaddr,
 564				unsigned long sz)
 565{
 566	struct ic_inv_args ic_inv = {
 567		.paddr = paddr,
 568		.vaddr = vaddr,
 569		.sz    = sz
 570	};
 571
 572	on_each_cpu(__ic_line_inv_vaddr_helper, &ic_inv, 1);
 573}
 574
 575#endif	/* CONFIG_SMP */
 576
 577#else	/* !CONFIG_ARC_HAS_ICACHE */
 578
 579#define __ic_entire_inv()
 580#define __ic_line_inv_vaddr(pstart, vstart, sz)
 581
 582#endif /* CONFIG_ARC_HAS_ICACHE */
 583
 584noinline void slc_op_rgn(phys_addr_t paddr, unsigned long sz, const int op)
 585{
 586#ifdef CONFIG_ISA_ARCV2
 587	/*
 588	 * SLC is shared between all cores and concurrent aux operations from
 589	 * multiple cores need to be serialized using a spinlock
 590	 * A concurrent operation can be silently ignored and/or the old/new
 591	 * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop
 592	 * below)
 593	 */
 594	static DEFINE_SPINLOCK(lock);
 595	unsigned long flags;
 596	unsigned int ctrl;
 597	phys_addr_t end;
 598
 599	spin_lock_irqsave(&lock, flags);
 600
 601	/*
 602	 * The Region Flush operation is specified by CTRL.RGN_OP[11..9]
 603	 *  - b'000 (default) is Flush,
 604	 *  - b'001 is Invalidate if CTRL.IM == 0
 605	 *  - b'001 is Flush-n-Invalidate if CTRL.IM == 1
 606	 */
 607	ctrl = read_aux_reg(ARC_REG_SLC_CTRL);
 608
 609	/* Don't rely on default value of IM bit */
 610	if (!(op & OP_FLUSH))		/* i.e. OP_INV */
 611		ctrl &= ~SLC_CTRL_IM;	/* clear IM: Disable flush before Inv */
 612	else
 613		ctrl |= SLC_CTRL_IM;
 614
 615	if (op & OP_INV)
 616		ctrl |= SLC_CTRL_RGN_OP_INV;	/* Inv or flush-n-inv */
 617	else
 618		ctrl &= ~SLC_CTRL_RGN_OP_INV;
 619
 620	write_aux_reg(ARC_REG_SLC_CTRL, ctrl);
 621
 622	/*
 623	 * Lower bits are ignored, no need to clip
 624	 * END needs to be setup before START (latter triggers the operation)
 625	 * END can't be same as START, so add (l2_line_sz - 1) to sz
 626	 */
 627	end = paddr + sz + l2_line_sz - 1;
 628	if (is_pae40_enabled())
 629		write_aux_reg(ARC_REG_SLC_RGN_END1, upper_32_bits(end));
 630
 631	write_aux_reg(ARC_REG_SLC_RGN_END, lower_32_bits(end));
 632
 633	if (is_pae40_enabled())
 634		write_aux_reg(ARC_REG_SLC_RGN_START1, upper_32_bits(paddr));
 635
 636	write_aux_reg(ARC_REG_SLC_RGN_START, lower_32_bits(paddr));
 637
 638	/* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */
 639	read_aux_reg(ARC_REG_SLC_CTRL);
 640
 641	while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY);
 642
 643	spin_unlock_irqrestore(&lock, flags);
 644#endif
 645}
 646
 647noinline void slc_op_line(phys_addr_t paddr, unsigned long sz, const int op)
 648{
 649#ifdef CONFIG_ISA_ARCV2
 650	/*
 651	 * SLC is shared between all cores and concurrent aux operations from
 652	 * multiple cores need to be serialized using a spinlock
 653	 * A concurrent operation can be silently ignored and/or the old/new
 654	 * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop
 655	 * below)
 656	 */
 657	static DEFINE_SPINLOCK(lock);
 658
 659	const unsigned long SLC_LINE_MASK = ~(l2_line_sz - 1);
 660	unsigned int ctrl, cmd;
 661	unsigned long flags;
 662	int num_lines;
 663
 664	spin_lock_irqsave(&lock, flags);
 665
 666	ctrl = read_aux_reg(ARC_REG_SLC_CTRL);
 667
 668	/* Don't rely on default value of IM bit */
 669	if (!(op & OP_FLUSH))		/* i.e. OP_INV */
 670		ctrl &= ~SLC_CTRL_IM;	/* clear IM: Disable flush before Inv */
 671	else
 672		ctrl |= SLC_CTRL_IM;
 673
 674	write_aux_reg(ARC_REG_SLC_CTRL, ctrl);
 675
 676	cmd = op & OP_INV ? ARC_AUX_SLC_IVDL : ARC_AUX_SLC_FLDL;
 677
 678	sz += paddr & ~SLC_LINE_MASK;
 679	paddr &= SLC_LINE_MASK;
 680
 681	num_lines = DIV_ROUND_UP(sz, l2_line_sz);
 682
 683	while (num_lines-- > 0) {
 684		write_aux_reg(cmd, paddr);
 685		paddr += l2_line_sz;
 686	}
 687
 688	/* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */
 689	read_aux_reg(ARC_REG_SLC_CTRL);
 690
 691	while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY);
 692
 693	spin_unlock_irqrestore(&lock, flags);
 694#endif
 695}
 696
 697#define slc_op(paddr, sz, op)	slc_op_rgn(paddr, sz, op)
 698
 699noinline static void slc_entire_op(const int op)
 700{
 701	unsigned int ctrl, r = ARC_REG_SLC_CTRL;
 702
 703	ctrl = read_aux_reg(r);
 704
 705	if (!(op & OP_FLUSH))		/* i.e. OP_INV */
 706		ctrl &= ~SLC_CTRL_IM;	/* clear IM: Disable flush before Inv */
 707	else
 708		ctrl |= SLC_CTRL_IM;
 709
 710	write_aux_reg(r, ctrl);
 711
 712	if (op & OP_INV)	/* Inv or flush-n-inv use same cmd reg */
 713		write_aux_reg(ARC_REG_SLC_INVALIDATE, 0x1);
 714	else
 715		write_aux_reg(ARC_REG_SLC_FLUSH, 0x1);
 716
 717	/* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */
 718	read_aux_reg(r);
 719
 720	/* Important to wait for flush to complete */
 721	while (read_aux_reg(r) & SLC_CTRL_BUSY);
 722}
 723
 724static inline void arc_slc_disable(void)
 725{
 726	const int r = ARC_REG_SLC_CTRL;
 727
 728	slc_entire_op(OP_FLUSH_N_INV);
 729	write_aux_reg(r, read_aux_reg(r) | SLC_CTRL_DIS);
 730}
 731
 732static inline void arc_slc_enable(void)
 733{
 734	const int r = ARC_REG_SLC_CTRL;
 735
 736	write_aux_reg(r, read_aux_reg(r) & ~SLC_CTRL_DIS);
 737}
 738
 739/***********************************************************
 740 * Exported APIs
 741 */
 742
 743/*
 744 * Handle cache congruency of kernel and userspace mappings of page when kernel
 745 * writes-to/reads-from
 746 *
 747 * The idea is to defer flushing of kernel mapping after a WRITE, possible if:
 748 *  -dcache is NOT aliasing, hence any U/K-mappings of page are congruent
 749 *  -U-mapping doesn't exist yet for page (finalised in update_mmu_cache)
 750 *  -In SMP, if hardware caches are coherent
 751 *
 752 * There's a corollary case, where kernel READs from a userspace mapped page.
 753 * If the U-mapping is not congruent to K-mapping, former needs flushing.
 754 */
 755void flush_dcache_page(struct page *page)
 756{
 757	struct address_space *mapping;
 758
 759	if (!cache_is_vipt_aliasing()) {
 760		clear_bit(PG_dc_clean, &page->flags);
 761		return;
 762	}
 763
 764	/* don't handle anon pages here */
 765	mapping = page_mapping_file(page);
 766	if (!mapping)
 767		return;
 768
 769	/*
 770	 * pagecache page, file not yet mapped to userspace
 771	 * Make a note that K-mapping is dirty
 772	 */
 773	if (!mapping_mapped(mapping)) {
 774		clear_bit(PG_dc_clean, &page->flags);
 775	} else if (page_mapcount(page)) {
 776
 777		/* kernel reading from page with U-mapping */
 778		phys_addr_t paddr = (unsigned long)page_address(page);
 779		unsigned long vaddr = page->index << PAGE_SHIFT;
 780
 781		if (addr_not_cache_congruent(paddr, vaddr))
 782			__flush_dcache_page(paddr, vaddr);
 783	}
 784}
 785EXPORT_SYMBOL(flush_dcache_page);
 786
 787/*
 788 * DMA ops for systems with L1 cache only
 789 * Make memory coherent with L1 cache by flushing/invalidating L1 lines
 790 */
 791static void __dma_cache_wback_inv_l1(phys_addr_t start, unsigned long sz)
 792{
 793	__dc_line_op_k(start, sz, OP_FLUSH_N_INV);
 794}
 795
 796static void __dma_cache_inv_l1(phys_addr_t start, unsigned long sz)
 797{
 798	__dc_line_op_k(start, sz, OP_INV);
 799}
 800
 801static void __dma_cache_wback_l1(phys_addr_t start, unsigned long sz)
 802{
 803	__dc_line_op_k(start, sz, OP_FLUSH);
 804}
 805
 806/*
 807 * DMA ops for systems with both L1 and L2 caches, but without IOC
 808 * Both L1 and L2 lines need to be explicitly flushed/invalidated
 809 */
 810static void __dma_cache_wback_inv_slc(phys_addr_t start, unsigned long sz)
 811{
 812	__dc_line_op_k(start, sz, OP_FLUSH_N_INV);
 813	slc_op(start, sz, OP_FLUSH_N_INV);
 814}
 815
 816static void __dma_cache_inv_slc(phys_addr_t start, unsigned long sz)
 817{
 818	__dc_line_op_k(start, sz, OP_INV);
 819	slc_op(start, sz, OP_INV);
 820}
 821
 822static void __dma_cache_wback_slc(phys_addr_t start, unsigned long sz)
 823{
 824	__dc_line_op_k(start, sz, OP_FLUSH);
 825	slc_op(start, sz, OP_FLUSH);
 826}
 827
 828/*
 829 * Exported DMA API
 830 */
 831void dma_cache_wback_inv(phys_addr_t start, unsigned long sz)
 832{
 833	__dma_cache_wback_inv(start, sz);
 834}
 835EXPORT_SYMBOL(dma_cache_wback_inv);
 836
 837void dma_cache_inv(phys_addr_t start, unsigned long sz)
 838{
 839	__dma_cache_inv(start, sz);
 840}
 841EXPORT_SYMBOL(dma_cache_inv);
 842
 843void dma_cache_wback(phys_addr_t start, unsigned long sz)
 844{
 845	__dma_cache_wback(start, sz);
 846}
 847EXPORT_SYMBOL(dma_cache_wback);
 848
 849/*
 850 * This is API for making I/D Caches consistent when modifying
 851 * kernel code (loadable modules, kprobes, kgdb...)
 852 * This is called on insmod, with kernel virtual address for CODE of
 853 * the module. ARC cache maintenance ops require PHY address thus we
 854 * need to convert vmalloc addr to PHY addr
 855 */
 856void flush_icache_range(unsigned long kstart, unsigned long kend)
 857{
 858	unsigned int tot_sz;
 859
 860	WARN(kstart < TASK_SIZE, "%s() can't handle user vaddr", __func__);
 861
 862	/* Shortcut for bigger flush ranges.
 863	 * Here we don't care if this was kernel virtual or phy addr
 864	 */
 865	tot_sz = kend - kstart;
 866	if (tot_sz > PAGE_SIZE) {
 867		flush_cache_all();
 868		return;
 869	}
 870
 871	/* Case: Kernel Phy addr (0x8000_0000 onwards) */
 872	if (likely(kstart > PAGE_OFFSET)) {
 873		/*
 874		 * The 2nd arg despite being paddr will be used to index icache
 875		 * This is OK since no alternate virtual mappings will exist
 876		 * given the callers for this case: kprobe/kgdb in built-in
 877		 * kernel code only.
 878		 */
 879		__sync_icache_dcache(kstart, kstart, kend - kstart);
 880		return;
 881	}
 882
 883	/*
 884	 * Case: Kernel Vaddr (0x7000_0000 to 0x7fff_ffff)
 885	 * (1) ARC Cache Maintenance ops only take Phy addr, hence special
 886	 *     handling of kernel vaddr.
 887	 *
 888	 * (2) Despite @tot_sz being < PAGE_SIZE (bigger cases handled already),
 889	 *     it still needs to handle  a 2 page scenario, where the range
 890	 *     straddles across 2 virtual pages and hence need for loop
 891	 */
 892	while (tot_sz > 0) {
 893		unsigned int off, sz;
 894		unsigned long phy, pfn;
 895
 896		off = kstart % PAGE_SIZE;
 897		pfn = vmalloc_to_pfn((void *)kstart);
 898		phy = (pfn << PAGE_SHIFT) + off;
 899		sz = min_t(unsigned int, tot_sz, PAGE_SIZE - off);
 900		__sync_icache_dcache(phy, kstart, sz);
 901		kstart += sz;
 902		tot_sz -= sz;
 903	}
 904}
 905EXPORT_SYMBOL(flush_icache_range);
 906
 907/*
 908 * General purpose helper to make I and D cache lines consistent.
 909 * @paddr is phy addr of region
 910 * @vaddr is typically user vaddr (breakpoint) or kernel vaddr (vmalloc)
 911 *    However in one instance, when called by kprobe (for a breakpt in
 912 *    builtin kernel code) @vaddr will be paddr only, meaning CDU operation will
 913 *    use a paddr to index the cache (despite VIPT). This is fine since a
 914 *    builtin kernel page will not have any virtual mappings.
 915 *    kprobe on loadable module will be kernel vaddr.
 916 */
 917void __sync_icache_dcache(phys_addr_t paddr, unsigned long vaddr, int len)
 918{
 919	__dc_line_op(paddr, vaddr, len, OP_FLUSH_N_INV);
 920	__ic_line_inv_vaddr(paddr, vaddr, len);
 921}
 922
 923/* wrapper to compile time eliminate alignment checks in flush loop */
 924void __inv_icache_page(phys_addr_t paddr, unsigned long vaddr)
 925{
 926	__ic_line_inv_vaddr(paddr, vaddr, PAGE_SIZE);
 927}
 928
 929/*
 930 * wrapper to clearout kernel or userspace mappings of a page
 931 * For kernel mappings @vaddr == @paddr
 932 */
 933void __flush_dcache_page(phys_addr_t paddr, unsigned long vaddr)
 934{
 935	__dc_line_op(paddr, vaddr & PAGE_MASK, PAGE_SIZE, OP_FLUSH_N_INV);
 936}
 937
 938noinline void flush_cache_all(void)
 939{
 940	unsigned long flags;
 941
 942	local_irq_save(flags);
 943
 944	__ic_entire_inv();
 945	__dc_entire_op(OP_FLUSH_N_INV);
 946
 947	local_irq_restore(flags);
 948
 949}
 950
 951#ifdef CONFIG_ARC_CACHE_VIPT_ALIASING
 952
 953void flush_cache_mm(struct mm_struct *mm)
 954{
 955	flush_cache_all();
 956}
 957
 958void flush_cache_page(struct vm_area_struct *vma, unsigned long u_vaddr,
 959		      unsigned long pfn)
 960{
 961	phys_addr_t paddr = pfn << PAGE_SHIFT;
 962
 963	u_vaddr &= PAGE_MASK;
 964
 965	__flush_dcache_page(paddr, u_vaddr);
 966
 967	if (vma->vm_flags & VM_EXEC)
 968		__inv_icache_page(paddr, u_vaddr);
 969}
 970
 971void flush_cache_range(struct vm_area_struct *vma, unsigned long start,
 972		       unsigned long end)
 973{
 974	flush_cache_all();
 975}
 976
 977void flush_anon_page(struct vm_area_struct *vma, struct page *page,
 978		     unsigned long u_vaddr)
 979{
 980	/* TBD: do we really need to clear the kernel mapping */
 981	__flush_dcache_page((phys_addr_t)page_address(page), u_vaddr);
 982	__flush_dcache_page((phys_addr_t)page_address(page),
 983			    (phys_addr_t)page_address(page));
 984
 985}
 986
 987#endif
 988
 989void copy_user_highpage(struct page *to, struct page *from,
 990	unsigned long u_vaddr, struct vm_area_struct *vma)
 991{
 992	void *kfrom = kmap_atomic(from);
 993	void *kto = kmap_atomic(to);
 994	int clean_src_k_mappings = 0;
 995
 996	/*
 997	 * If SRC page was already mapped in userspace AND it's U-mapping is
 998	 * not congruent with K-mapping, sync former to physical page so that
 999	 * K-mapping in memcpy below, sees the right data
1000	 *
1001	 * Note that while @u_vaddr refers to DST page's userspace vaddr, it is
1002	 * equally valid for SRC page as well
1003	 *
1004	 * For !VIPT cache, all of this gets compiled out as
1005	 * addr_not_cache_congruent() is 0
1006	 */
1007	if (page_mapcount(from) && addr_not_cache_congruent(kfrom, u_vaddr)) {
1008		__flush_dcache_page((unsigned long)kfrom, u_vaddr);
1009		clean_src_k_mappings = 1;
1010	}
1011
1012	copy_page(kto, kfrom);
1013
1014	/*
1015	 * Mark DST page K-mapping as dirty for a later finalization by
1016	 * update_mmu_cache(). Although the finalization could have been done
1017	 * here as well (given that both vaddr/paddr are available).
1018	 * But update_mmu_cache() already has code to do that for other
1019	 * non copied user pages (e.g. read faults which wire in pagecache page
1020	 * directly).
1021	 */
1022	clear_bit(PG_dc_clean, &to->flags);
1023
1024	/*
1025	 * if SRC was already usermapped and non-congruent to kernel mapping
1026	 * sync the kernel mapping back to physical page
1027	 */
1028	if (clean_src_k_mappings) {
1029		__flush_dcache_page((unsigned long)kfrom, (unsigned long)kfrom);
1030		set_bit(PG_dc_clean, &from->flags);
1031	} else {
1032		clear_bit(PG_dc_clean, &from->flags);
1033	}
1034
1035	kunmap_atomic(kto);
1036	kunmap_atomic(kfrom);
1037}
1038
1039void clear_user_page(void *to, unsigned long u_vaddr, struct page *page)
1040{
1041	clear_page(to);
1042	clear_bit(PG_dc_clean, &page->flags);
1043}
1044EXPORT_SYMBOL(clear_user_page);
1045
1046/**********************************************************************
1047 * Explicit Cache flush request from user space via syscall
1048 * Needed for JITs which generate code on the fly
1049 */
1050SYSCALL_DEFINE3(cacheflush, uint32_t, start, uint32_t, sz, uint32_t, flags)
1051{
1052	/* TBD: optimize this */
1053	flush_cache_all();
1054	return 0;
1055}
1056
1057/*
1058 * IO-Coherency (IOC) setup rules:
1059 *
1060 * 1. Needs to be at system level, so only once by Master core
1061 *    Non-Masters need not be accessing caches at that time
1062 *    - They are either HALT_ON_RESET and kick started much later or
1063 *    - if run on reset, need to ensure that arc_platform_smp_wait_to_boot()
1064 *      doesn't perturb caches or coherency unit
1065 *
1066 * 2. caches (L1 and SLC) need to be purged (flush+inv) before setting up IOC,
1067 *    otherwise any straggler data might behave strangely post IOC enabling
1068 *
1069 * 3. All Caches need to be disabled when setting up IOC to elide any in-flight
1070 *    Coherency transactions
1071 */
1072noinline void __init arc_ioc_setup(void)
1073{
1074	unsigned int ioc_base, mem_sz;
1075
1076	/*
1077	 * If IOC was already enabled (due to bootloader) it technically needs to
1078	 * be reconfigured with aperture base,size corresponding to Linux memory map
1079	 * which will certainly be different than uboot's. But disabling and
1080	 * reenabling IOC when DMA might be potentially active is tricky business.
1081	 * To avoid random memory issues later, just panic here and ask user to
1082	 * upgrade bootloader to one which doesn't enable IOC
1083	 */
1084	if (read_aux_reg(ARC_REG_IO_COH_ENABLE) & ARC_IO_COH_ENABLE_BIT)
1085		panic("IOC already enabled, please upgrade bootloader!\n");
1086
1087	if (!ioc_enable)
1088		return;
1089
1090	/* Flush + invalidate + disable L1 dcache */
1091	__dc_disable();
1092
1093	/* Flush + invalidate SLC */
1094	if (read_aux_reg(ARC_REG_SLC_BCR))
1095		slc_entire_op(OP_FLUSH_N_INV);
1096
1097	/*
1098	 * currently IOC Aperture covers entire DDR
1099	 * TBD: fix for PGU + 1GB of low mem
1100	 * TBD: fix for PAE
1101	 */
1102	mem_sz = arc_get_mem_sz();
1103
1104	if (!is_power_of_2(mem_sz) || mem_sz < 4096)
1105		panic("IOC Aperture size must be power of 2 larger than 4KB");
1106
1107	/*
1108	 * IOC Aperture size decoded as 2 ^ (SIZE + 2) KB,
1109	 * so setting 0x11 implies 512MB, 0x12 implies 1GB...
1110	 */
1111	write_aux_reg(ARC_REG_IO_COH_AP0_SIZE, order_base_2(mem_sz >> 10) - 2);
1112
1113	/* for now assume kernel base is start of IOC aperture */
1114	ioc_base = CONFIG_LINUX_RAM_BASE;
1115
1116	if (ioc_base % mem_sz != 0)
1117		panic("IOC Aperture start must be aligned to the size of the aperture");
1118
1119	write_aux_reg(ARC_REG_IO_COH_AP0_BASE, ioc_base >> 12);
1120	write_aux_reg(ARC_REG_IO_COH_PARTIAL, ARC_IO_COH_PARTIAL_BIT);
1121	write_aux_reg(ARC_REG_IO_COH_ENABLE, ARC_IO_COH_ENABLE_BIT);
1122
1123	/* Re-enable L1 dcache */
1124	__dc_enable();
1125}
1126
1127/*
1128 * Cache related boot time checks/setups only needed on master CPU:
1129 *  - Geometry checks (kernel build and hardware agree: e.g. L1_CACHE_BYTES)
1130 *    Assume SMP only, so all cores will have same cache config. A check on
1131 *    one core suffices for all
1132 *  - IOC setup / dma callbacks only need to be done once
1133 */
1134void __init arc_cache_init_master(void)
1135{
1136	unsigned int __maybe_unused cpu = smp_processor_id();
1137
1138	if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE)) {
1139		struct cpuinfo_arc_cache *ic = &cpuinfo_arc700[cpu].icache;
1140
1141		if (!ic->line_len)
1142			panic("cache support enabled but non-existent cache\n");
1143
1144		if (ic->line_len != L1_CACHE_BYTES)
1145			panic("ICache line [%d] != kernel Config [%d]",
1146			      ic->line_len, L1_CACHE_BYTES);
1147
1148		/*
1149		 * In MMU v4 (HS38x) the aliasing icache config uses IVIL/PTAG
1150		 * pair to provide vaddr/paddr respectively, just as in MMU v3
1151		 */
1152		if (is_isa_arcv2() && ic->alias)
1153			_cache_line_loop_ic_fn = __cache_line_loop_v3;
1154		else
1155			_cache_line_loop_ic_fn = __cache_line_loop;
1156	}
1157
1158	if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE)) {
1159		struct cpuinfo_arc_cache *dc = &cpuinfo_arc700[cpu].dcache;
1160
1161		if (!dc->line_len)
1162			panic("cache support enabled but non-existent cache\n");
1163
1164		if (dc->line_len != L1_CACHE_BYTES)
1165			panic("DCache line [%d] != kernel Config [%d]",
1166			      dc->line_len, L1_CACHE_BYTES);
1167
1168		/* check for D-Cache aliasing on ARCompact: ARCv2 has PIPT */
1169		if (is_isa_arcompact()) {
1170			int handled = IS_ENABLED(CONFIG_ARC_CACHE_VIPT_ALIASING);
1171			int num_colors = dc->sz_k/dc->assoc/TO_KB(PAGE_SIZE);
1172
1173			if (dc->alias) {
1174				if (!handled)
1175					panic("Enable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
1176				if (CACHE_COLORS_NUM != num_colors)
1177					panic("CACHE_COLORS_NUM not optimized for config\n");
1178			} else if (!dc->alias && handled) {
1179				panic("Disable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
1180			}
1181		}
1182	}
1183
1184	/*
1185	 * Check that SMP_CACHE_BYTES (and hence ARCH_DMA_MINALIGN) is larger
1186	 * or equal to any cache line length.
1187	 */
1188	BUILD_BUG_ON_MSG(L1_CACHE_BYTES > SMP_CACHE_BYTES,
1189			 "SMP_CACHE_BYTES must be >= any cache line length");
1190	if (is_isa_arcv2() && (l2_line_sz > SMP_CACHE_BYTES))
1191		panic("L2 Cache line [%d] > kernel Config [%d]\n",
1192		      l2_line_sz, SMP_CACHE_BYTES);
1193
1194	/* Note that SLC disable not formally supported till HS 3.0 */
1195	if (is_isa_arcv2() && l2_line_sz && !slc_enable)
1196		arc_slc_disable();
1197
1198	if (is_isa_arcv2() && ioc_exists)
1199		arc_ioc_setup();
1200
1201	if (is_isa_arcv2() && l2_line_sz && slc_enable) {
1202		__dma_cache_wback_inv = __dma_cache_wback_inv_slc;
1203		__dma_cache_inv = __dma_cache_inv_slc;
1204		__dma_cache_wback = __dma_cache_wback_slc;
1205	} else {
1206		__dma_cache_wback_inv = __dma_cache_wback_inv_l1;
1207		__dma_cache_inv = __dma_cache_inv_l1;
1208		__dma_cache_wback = __dma_cache_wback_l1;
1209	}
1210	/*
1211	 * In case of IOC (say IOC+SLC case), pointers above could still be set
1212	 * but end up not being relevant as the first function in chain is not
1213	 * called at all for devices using coherent DMA.
1214	 *     arch_sync_dma_for_cpu() -> dma_cache_*() -> __dma_cache_*()
1215	 */
1216}
1217
1218void __ref arc_cache_init(void)
1219{
1220	unsigned int __maybe_unused cpu = smp_processor_id();
1221	char str[256];
1222
1223	pr_info("%s", arc_cache_mumbojumbo(0, str, sizeof(str)));
1224
1225	if (!cpu)
1226		arc_cache_init_master();
1227
1228	/*
1229	 * In PAE regime, TLB and cache maintenance ops take wider addresses
1230	 * And even if PAE is not enabled in kernel, the upper 32-bits still need
1231	 * to be zeroed to keep the ops sane.
1232	 * As an optimization for more common !PAE enabled case, zero them out
1233	 * once at init, rather than checking/setting to 0 for every runtime op
1234	 */
1235	if (is_isa_arcv2() && pae40_exist_but_not_enab()) {
1236
1237		if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE))
1238			write_aux_reg(ARC_REG_IC_PTAG_HI, 0);
1239
1240		if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE))
1241			write_aux_reg(ARC_REG_DC_PTAG_HI, 0);
1242
1243		if (l2_line_sz) {
1244			write_aux_reg(ARC_REG_SLC_RGN_END1, 0);
1245			write_aux_reg(ARC_REG_SLC_RGN_START1, 0);
1246		}
1247	}
1248}