Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * ARC Cache Management
   4 *
   5 * Copyright (C) 2014-15 Synopsys, Inc. (www.synopsys.com)
   6 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
 
 
 
 
   7 */
   8
   9#include <linux/module.h>
  10#include <linux/mm.h>
  11#include <linux/sched.h>
  12#include <linux/cache.h>
  13#include <linux/mmu_context.h>
  14#include <linux/syscalls.h>
  15#include <linux/uaccess.h>
  16#include <linux/pagemap.h>
  17#include <asm/cacheflush.h>
  18#include <asm/cachectl.h>
  19#include <asm/setup.h>
  20
  21#ifdef CONFIG_ISA_ARCV2
  22#define USE_RGN_FLSH	1
  23#endif
  24
  25static int l2_line_sz;
  26static int ioc_exists;
  27int slc_enable = 1, ioc_enable = 1;
  28unsigned long perip_base = ARC_UNCACHED_ADDR_SPACE; /* legacy value for boot */
  29unsigned long perip_end = 0xFFFFFFFF; /* legacy value */
  30
  31void (*_cache_line_loop_ic_fn)(phys_addr_t paddr, unsigned long vaddr,
  32			       unsigned long sz, const int op, const int full_page);
  33
  34void (*__dma_cache_wback_inv)(phys_addr_t start, unsigned long sz);
  35void (*__dma_cache_inv)(phys_addr_t start, unsigned long sz);
  36void (*__dma_cache_wback)(phys_addr_t start, unsigned long sz);
  37
  38char *arc_cache_mumbojumbo(int c, char *buf, int len)
  39{
  40	int n = 0;
  41	struct cpuinfo_arc_cache *p;
  42
  43#define PR_CACHE(p, cfg, str)						\
  44	if (!(p)->line_len)						\
  45		n += scnprintf(buf + n, len - n, str"\t\t: N/A\n");	\
  46	else								\
  47		n += scnprintf(buf + n, len - n,			\
  48			str"\t\t: %uK, %dway/set, %uB Line, %s%s%s\n",	\
  49			(p)->sz_k, (p)->assoc, (p)->line_len,		\
  50			(p)->vipt ? "VIPT" : "PIPT",			\
  51			(p)->alias ? " aliasing" : "",			\
  52			IS_USED_CFG(cfg));
  53
  54	PR_CACHE(&cpuinfo_arc700[c].icache, CONFIG_ARC_HAS_ICACHE, "I-Cache");
  55	PR_CACHE(&cpuinfo_arc700[c].dcache, CONFIG_ARC_HAS_DCACHE, "D-Cache");
  56
 
 
 
  57	p = &cpuinfo_arc700[c].slc;
  58	if (p->line_len)
  59		n += scnprintf(buf + n, len - n,
  60			       "SLC\t\t: %uK, %uB Line%s\n",
  61			       p->sz_k, p->line_len, IS_USED_RUN(slc_enable));
  62
  63	n += scnprintf(buf + n, len - n, "Peripherals\t: %#lx%s%s\n",
  64		       perip_base,
  65		       IS_AVAIL3(ioc_exists, ioc_enable, ", IO-Coherency (per-device) "));
  66
  67	return buf;
  68}
  69
  70/*
  71 * Read the Cache Build Confuration Registers, Decode them and save into
  72 * the cpuinfo structure for later use.
  73 * No Validation done here, simply read/convert the BCRs
  74 */
  75static void read_decode_cache_bcr_arcv2(int cpu)
  76{
  77	struct cpuinfo_arc_cache *p_slc = &cpuinfo_arc700[cpu].slc;
 
  78	struct bcr_generic sbcr;
  79
  80	struct bcr_slc_cfg {
  81#ifdef CONFIG_CPU_BIG_ENDIAN
  82		unsigned int pad:24, way:2, lsz:2, sz:4;
  83#else
  84		unsigned int sz:4, lsz:2, way:2, pad:24;
  85#endif
  86	} slc_cfg;
  87
  88	struct bcr_clust_cfg {
  89#ifdef CONFIG_CPU_BIG_ENDIAN
  90		unsigned int pad:7, c:1, num_entries:8, num_cores:8, ver:8;
  91#else
  92		unsigned int ver:8, num_cores:8, num_entries:8, c:1, pad:7;
  93#endif
  94	} cbcr;
  95
  96	struct bcr_volatile {
  97#ifdef CONFIG_CPU_BIG_ENDIAN
  98		unsigned int start:4, limit:4, pad:22, order:1, disable:1;
  99#else
 100		unsigned int disable:1, order:1, pad:22, limit:4, start:4;
 101#endif
 102	} vol;
 103
 104
 105	READ_BCR(ARC_REG_SLC_BCR, sbcr);
 106	if (sbcr.ver) {
 107		READ_BCR(ARC_REG_SLC_CFG, slc_cfg);
 
 108		p_slc->sz_k = 128 << slc_cfg.sz;
 109		l2_line_sz = p_slc->line_len = (slc_cfg.lsz == 0) ? 128 : 64;
 110	}
 111
 112	READ_BCR(ARC_REG_CLUSTER_BCR, cbcr);
 113	if (cbcr.c) {
 114		ioc_exists = 1;
 115
 116		/*
 117		 * As for today we don't support both IOC and ZONE_HIGHMEM enabled
 118		 * simultaneously. This happens because as of today IOC aperture covers
 119		 * only ZONE_NORMAL (low mem) and any dma transactions outside this
 120		 * region won't be HW coherent.
 121		 * If we want to use both IOC and ZONE_HIGHMEM we can use
 122		 * bounce_buffer to handle dma transactions to HIGHMEM.
 123		 * Also it is possible to modify dma_direct cache ops or increase IOC
 124		 * aperture size if we are planning to use HIGHMEM without PAE.
 125		 */
 126		if (IS_ENABLED(CONFIG_HIGHMEM) || is_pae40_enabled())
 127			ioc_enable = 0;
 128	} else {
 129		ioc_enable = 0;
 130	}
 131
 132	/* HS 2.0 didn't have AUX_VOL */
 133	if (cpuinfo_arc700[cpu].core.family > 0x51) {
 134		READ_BCR(AUX_VOL, vol);
 135		perip_base = vol.start << 28;
 136		/* HS 3.0 has limit and strict-ordering fields */
 137		if (cpuinfo_arc700[cpu].core.family > 0x52)
 138			perip_end = (vol.limit << 28) - 1;
 139	}
 140}
 141
 142void read_decode_cache_bcr(void)
 143{
 144	struct cpuinfo_arc_cache *p_ic, *p_dc;
 145	unsigned int cpu = smp_processor_id();
 146	struct bcr_cache {
 147#ifdef CONFIG_CPU_BIG_ENDIAN
 148		unsigned int pad:12, line_len:4, sz:4, config:4, ver:8;
 149#else
 150		unsigned int ver:8, config:4, sz:4, line_len:4, pad:12;
 151#endif
 152	} ibcr, dbcr;
 153
 154	p_ic = &cpuinfo_arc700[cpu].icache;
 155	READ_BCR(ARC_REG_IC_BCR, ibcr);
 156
 157	if (!ibcr.ver)
 158		goto dc_chk;
 159
 160	if (ibcr.ver <= 3) {
 161		BUG_ON(ibcr.config != 3);
 162		p_ic->assoc = 2;		/* Fixed to 2w set assoc */
 163	} else if (ibcr.ver >= 4) {
 164		p_ic->assoc = 1 << ibcr.config;	/* 1,2,4,8 */
 165	}
 166
 167	p_ic->line_len = 8 << ibcr.line_len;
 168	p_ic->sz_k = 1 << (ibcr.sz - 1);
 
 169	p_ic->vipt = 1;
 170	p_ic->alias = p_ic->sz_k/p_ic->assoc/TO_KB(PAGE_SIZE) > 1;
 171
 172dc_chk:
 173	p_dc = &cpuinfo_arc700[cpu].dcache;
 174	READ_BCR(ARC_REG_DC_BCR, dbcr);
 175
 176	if (!dbcr.ver)
 177		goto slc_chk;
 178
 179	if (dbcr.ver <= 3) {
 180		BUG_ON(dbcr.config != 2);
 181		p_dc->assoc = 4;		/* Fixed to 4w set assoc */
 182		p_dc->vipt = 1;
 183		p_dc->alias = p_dc->sz_k/p_dc->assoc/TO_KB(PAGE_SIZE) > 1;
 184	} else if (dbcr.ver >= 4) {
 185		p_dc->assoc = 1 << dbcr.config;	/* 1,2,4,8 */
 186		p_dc->vipt = 0;
 187		p_dc->alias = 0;		/* PIPT so can't VIPT alias */
 188	}
 189
 190	p_dc->line_len = 16 << dbcr.line_len;
 191	p_dc->sz_k = 1 << (dbcr.sz - 1);
 
 192
 193slc_chk:
 194	if (is_isa_arcv2())
 195                read_decode_cache_bcr_arcv2(cpu);
 196}
 197
 198/*
 199 * Line Operation on {I,D}-Cache
 200 */
 201
 202#define OP_INV		0x1
 203#define OP_FLUSH	0x2
 204#define OP_FLUSH_N_INV	0x3
 205#define OP_INV_IC	0x4
 206
 207/*
 208 *		I-Cache Aliasing in ARC700 VIPT caches (MMU v1-v3)
 209 *
 210 * ARC VIPT I-cache uses vaddr to index into cache and paddr to match the tag.
 211 * The orig Cache Management Module "CDU" only required paddr to invalidate a
 212 * certain line since it sufficed as index in Non-Aliasing VIPT cache-geometry.
 213 * Infact for distinct V1,V2,P: all of {V1-P},{V2-P},{P-P} would end up fetching
 214 * the exact same line.
 215 *
 216 * However for larger Caches (way-size > page-size) - i.e. in Aliasing config,
 217 * paddr alone could not be used to correctly index the cache.
 218 *
 219 * ------------------
 220 * MMU v1/v2 (Fixed Page Size 8k)
 221 * ------------------
 222 * The solution was to provide CDU with these additonal vaddr bits. These
 223 * would be bits [x:13], x would depend on cache-geometry, 13 comes from
 224 * standard page size of 8k.
 225 * H/w folks chose [17:13] to be a future safe range, and moreso these 5 bits
 226 * of vaddr could easily be "stuffed" in the paddr as bits [4:0] since the
 227 * orig 5 bits of paddr were anyways ignored by CDU line ops, as they
 228 * represent the offset within cache-line. The adv of using this "clumsy"
 229 * interface for additional info was no new reg was needed in CDU programming
 230 * model.
 231 *
 232 * 17:13 represented the max num of bits passable, actual bits needed were
 233 * fewer, based on the num-of-aliases possible.
 234 * -for 2 alias possibility, only bit 13 needed (32K cache)
 235 * -for 4 alias possibility, bits 14:13 needed (64K cache)
 236 *
 237 * ------------------
 238 * MMU v3
 239 * ------------------
 240 * This ver of MMU supports variable page sizes (1k-16k): although Linux will
 241 * only support 8k (default), 16k and 4k.
 242 * However from hardware perspective, smaller page sizes aggravate aliasing
 243 * meaning more vaddr bits needed to disambiguate the cache-line-op ;
 244 * the existing scheme of piggybacking won't work for certain configurations.
 245 * Two new registers IC_PTAG and DC_PTAG inttoduced.
 246 * "tag" bits are provided in PTAG, index bits in existing IVIL/IVDL/FLDL regs
 247 */
 248
 249static inline
 250void __cache_line_loop_v2(phys_addr_t paddr, unsigned long vaddr,
 251			  unsigned long sz, const int op, const int full_page)
 252{
 253	unsigned int aux_cmd;
 254	int num_lines;
 
 255
 256	if (op == OP_INV_IC) {
 257		aux_cmd = ARC_REG_IC_IVIL;
 258	} else {
 259		/* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
 260		aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
 261	}
 262
 263	/* Ensure we properly floor/ceil the non-line aligned/sized requests
 264	 * and have @paddr - aligned to cache line and integral @num_lines.
 265	 * This however can be avoided for page sized since:
 266	 *  -@paddr will be cache-line aligned already (being page aligned)
 267	 *  -@sz will be integral multiple of line size (being page sized).
 268	 */
 269	if (!full_page) {
 270		sz += paddr & ~CACHE_LINE_MASK;
 271		paddr &= CACHE_LINE_MASK;
 272		vaddr &= CACHE_LINE_MASK;
 273	}
 274
 275	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
 276
 277	/* MMUv2 and before: paddr contains stuffed vaddrs bits */
 278	paddr |= (vaddr >> PAGE_SHIFT) & 0x1F;
 279
 280	while (num_lines-- > 0) {
 281		write_aux_reg(aux_cmd, paddr);
 282		paddr += L1_CACHE_BYTES;
 283	}
 284}
 285
 286/*
 287 * For ARC700 MMUv3 I-cache and D-cache flushes
 288 *  - ARC700 programming model requires paddr and vaddr be passed in seperate
 289 *    AUX registers (*_IV*L and *_PTAG respectively) irrespective of whether the
 290 *    caches actually alias or not.
 291 * -  For HS38, only the aliasing I-cache configuration uses the PTAG reg
 292 *    (non aliasing I-cache version doesn't; while D-cache can't possibly alias)
 293 */
 294static inline
 295void __cache_line_loop_v3(phys_addr_t paddr, unsigned long vaddr,
 296			  unsigned long sz, const int op, const int full_page)
 297{
 298	unsigned int aux_cmd, aux_tag;
 299	int num_lines;
 
 300
 301	if (op == OP_INV_IC) {
 302		aux_cmd = ARC_REG_IC_IVIL;
 303		aux_tag = ARC_REG_IC_PTAG;
 304	} else {
 305		aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
 306		aux_tag = ARC_REG_DC_PTAG;
 307	}
 308
 309	/* Ensure we properly floor/ceil the non-line aligned/sized requests
 310	 * and have @paddr - aligned to cache line and integral @num_lines.
 311	 * This however can be avoided for page sized since:
 312	 *  -@paddr will be cache-line aligned already (being page aligned)
 313	 *  -@sz will be integral multiple of line size (being page sized).
 314	 */
 315	if (!full_page) {
 316		sz += paddr & ~CACHE_LINE_MASK;
 317		paddr &= CACHE_LINE_MASK;
 318		vaddr &= CACHE_LINE_MASK;
 319	}
 320	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
 321
 322	/*
 323	 * MMUv3, cache ops require paddr in PTAG reg
 324	 * if V-P const for loop, PTAG can be written once outside loop
 325	 */
 326	if (full_page)
 327		write_aux_reg(aux_tag, paddr);
 328
 329	/*
 330	 * This is technically for MMU v4, using the MMU v3 programming model
 331	 * Special work for HS38 aliasing I-cache configuration with PAE40
 332	 *   - upper 8 bits of paddr need to be written into PTAG_HI
 333	 *   - (and needs to be written before the lower 32 bits)
 334	 * Note that PTAG_HI is hoisted outside the line loop
 335	 */
 336	if (is_pae40_enabled() && op == OP_INV_IC)
 337		write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
 338
 339	while (num_lines-- > 0) {
 340		if (!full_page) {
 341			write_aux_reg(aux_tag, paddr);
 342			paddr += L1_CACHE_BYTES;
 343		}
 344
 345		write_aux_reg(aux_cmd, vaddr);
 346		vaddr += L1_CACHE_BYTES;
 347	}
 348}
 349
 350#ifndef USE_RGN_FLSH
 351
 352/*
 353 * In HS38x (MMU v4), I-cache is VIPT (can alias), D-cache is PIPT
 354 * Here's how cache ops are implemented
 355 *
 356 *  - D-cache: only paddr needed (in DC_IVDL/DC_FLDL)
 357 *  - I-cache Non Aliasing: Despite VIPT, only paddr needed (in IC_IVIL)
 358 *  - I-cache Aliasing: Both vaddr and paddr needed (in IC_IVIL, IC_PTAG
 359 *    respectively, similar to MMU v3 programming model, hence
 360 *    __cache_line_loop_v3() is used)
 361 *
 362 * If PAE40 is enabled, independent of aliasing considerations, the higher bits
 363 * needs to be written into PTAG_HI
 364 */
 365static inline
 366void __cache_line_loop_v4(phys_addr_t paddr, unsigned long vaddr,
 367			  unsigned long sz, const int op, const int full_page)
 368{
 369	unsigned int aux_cmd;
 370	int num_lines;
 
 371
 372	if (op == OP_INV_IC) {
 373		aux_cmd = ARC_REG_IC_IVIL;
 374	} else {
 375		/* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
 376		aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
 377	}
 378
 379	/* Ensure we properly floor/ceil the non-line aligned/sized requests
 380	 * and have @paddr - aligned to cache line and integral @num_lines.
 381	 * This however can be avoided for page sized since:
 382	 *  -@paddr will be cache-line aligned already (being page aligned)
 383	 *  -@sz will be integral multiple of line size (being page sized).
 384	 */
 385	if (!full_page) {
 386		sz += paddr & ~CACHE_LINE_MASK;
 387		paddr &= CACHE_LINE_MASK;
 388	}
 389
 390	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
 391
 392	/*
 393	 * For HS38 PAE40 configuration
 394	 *   - upper 8 bits of paddr need to be written into PTAG_HI
 395	 *   - (and needs to be written before the lower 32 bits)
 396	 */
 397	if (is_pae40_enabled()) {
 398		if (op == OP_INV_IC)
 399			/*
 400			 * Non aliasing I-cache in HS38,
 401			 * aliasing I-cache handled in __cache_line_loop_v3()
 402			 */
 403			write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
 404		else
 405			write_aux_reg(ARC_REG_DC_PTAG_HI, (u64)paddr >> 32);
 406	}
 407
 408	while (num_lines-- > 0) {
 409		write_aux_reg(aux_cmd, paddr);
 410		paddr += L1_CACHE_BYTES;
 411	}
 412}
 413
 414#else
 415
 416/*
 417 * optimized flush operation which takes a region as opposed to iterating per line
 418 */
 419static inline
 420void __cache_line_loop_v4(phys_addr_t paddr, unsigned long vaddr,
 421			  unsigned long sz, const int op, const int full_page)
 422{
 423	unsigned int s, e;
 424
 425	/* Only for Non aliasing I-cache in HS38 */
 426	if (op == OP_INV_IC) {
 427		s = ARC_REG_IC_IVIR;
 428		e = ARC_REG_IC_ENDR;
 429	} else {
 430		s = ARC_REG_DC_STARTR;
 431		e = ARC_REG_DC_ENDR;
 432	}
 433
 434	if (!full_page) {
 435		/* for any leading gap between @paddr and start of cache line */
 436		sz += paddr & ~CACHE_LINE_MASK;
 437		paddr &= CACHE_LINE_MASK;
 438
 439		/*
 440		 *  account for any trailing gap to end of cache line
 441		 *  this is equivalent to DIV_ROUND_UP() in line ops above
 442		 */
 443		sz += L1_CACHE_BYTES - 1;
 444	}
 445
 446	if (is_pae40_enabled()) {
 447		/* TBD: check if crossing 4TB boundary */
 448		if (op == OP_INV_IC)
 449			write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
 450		else
 451			write_aux_reg(ARC_REG_DC_PTAG_HI, (u64)paddr >> 32);
 452	}
 453
 454	/* ENDR needs to be set ahead of START */
 455	write_aux_reg(e, paddr + sz);	/* ENDR is exclusive */
 456	write_aux_reg(s, paddr);
 457
 458	/* caller waits on DC_CTRL.FS */
 459}
 460
 461#endif
 462
 463#if (CONFIG_ARC_MMU_VER < 3)
 464#define __cache_line_loop	__cache_line_loop_v2
 465#elif (CONFIG_ARC_MMU_VER == 3)
 466#define __cache_line_loop	__cache_line_loop_v3
 467#elif (CONFIG_ARC_MMU_VER > 3)
 468#define __cache_line_loop	__cache_line_loop_v4
 469#endif
 470
 471#ifdef CONFIG_ARC_HAS_DCACHE
 472
 473/***************************************************************
 474 * Machine specific helpers for Entire D-Cache or Per Line ops
 475 */
 476
 477#ifndef USE_RGN_FLSH
 478/*
 479 * this version avoids extra read/write of DC_CTRL for flush or invalid ops
 480 * in the non region flush regime (such as for ARCompact)
 481 */
 482static inline void __before_dc_op(const int op)
 483{
 484	if (op == OP_FLUSH_N_INV) {
 485		/* Dcache provides 2 cmd: FLUSH or INV
 486		 * INV inturn has sub-modes: DISCARD or FLUSH-BEFORE
 487		 * flush-n-inv is achieved by INV cmd but with IM=1
 488		 * So toggle INV sub-mode depending on op request and default
 489		 */
 490		const unsigned int ctl = ARC_REG_DC_CTRL;
 491		write_aux_reg(ctl, read_aux_reg(ctl) | DC_CTRL_INV_MODE_FLUSH);
 492	}
 493}
 494
 495#else
 496
 497static inline void __before_dc_op(const int op)
 498{
 499	const unsigned int ctl = ARC_REG_DC_CTRL;
 500	unsigned int val = read_aux_reg(ctl);
 501
 502	if (op == OP_FLUSH_N_INV) {
 503		val |= DC_CTRL_INV_MODE_FLUSH;
 504	}
 505
 506	if (op != OP_INV_IC) {
 507		/*
 508		 * Flush / Invalidate is provided by DC_CTRL.RNG_OP 0 or 1
 509		 * combined Flush-n-invalidate uses DC_CTRL.IM = 1 set above
 510		 */
 511		val &= ~DC_CTRL_RGN_OP_MSK;
 512		if (op & OP_INV)
 513			val |= DC_CTRL_RGN_OP_INV;
 514	}
 515	write_aux_reg(ctl, val);
 516}
 517
 518#endif
 519
 520
 521static inline void __after_dc_op(const int op)
 522{
 523	if (op & OP_FLUSH) {
 524		const unsigned int ctl = ARC_REG_DC_CTRL;
 525		unsigned int reg;
 526
 527		/* flush / flush-n-inv both wait */
 528		while ((reg = read_aux_reg(ctl)) & DC_CTRL_FLUSH_STATUS)
 529			;
 530
 531		/* Switch back to default Invalidate mode */
 532		if (op == OP_FLUSH_N_INV)
 533			write_aux_reg(ctl, reg & ~DC_CTRL_INV_MODE_FLUSH);
 534	}
 535}
 536
 537/*
 538 * Operation on Entire D-Cache
 539 * @op = {OP_INV, OP_FLUSH, OP_FLUSH_N_INV}
 540 * Note that constant propagation ensures all the checks are gone
 541 * in generated code
 542 */
 543static inline void __dc_entire_op(const int op)
 544{
 545	int aux;
 546
 547	__before_dc_op(op);
 548
 549	if (op & OP_INV)	/* Inv or flush-n-inv use same cmd reg */
 550		aux = ARC_REG_DC_IVDC;
 551	else
 552		aux = ARC_REG_DC_FLSH;
 553
 554	write_aux_reg(aux, 0x1);
 555
 556	__after_dc_op(op);
 557}
 558
 559static inline void __dc_disable(void)
 560{
 561	const int r = ARC_REG_DC_CTRL;
 562
 563	__dc_entire_op(OP_FLUSH_N_INV);
 564	write_aux_reg(r, read_aux_reg(r) | DC_CTRL_DIS);
 565}
 566
 567static void __dc_enable(void)
 568{
 569	const int r = ARC_REG_DC_CTRL;
 570
 571	write_aux_reg(r, read_aux_reg(r) & ~DC_CTRL_DIS);
 572}
 573
 574/* For kernel mappings cache operation: index is same as paddr */
 575#define __dc_line_op_k(p, sz, op)	__dc_line_op(p, p, sz, op)
 576
 577/*
 578 * D-Cache Line ops: Per Line INV (discard or wback+discard) or FLUSH (wback)
 579 */
 580static inline void __dc_line_op(phys_addr_t paddr, unsigned long vaddr,
 581				unsigned long sz, const int op)
 582{
 583	const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
 584	unsigned long flags;
 585
 586	local_irq_save(flags);
 587
 588	__before_dc_op(op);
 589
 590	__cache_line_loop(paddr, vaddr, sz, op, full_page);
 591
 592	__after_dc_op(op);
 593
 594	local_irq_restore(flags);
 595}
 596
 597#else
 598
 599#define __dc_entire_op(op)
 600#define __dc_disable()
 601#define __dc_enable()
 602#define __dc_line_op(paddr, vaddr, sz, op)
 603#define __dc_line_op_k(paddr, sz, op)
 604
 605#endif /* CONFIG_ARC_HAS_DCACHE */
 606
 607#ifdef CONFIG_ARC_HAS_ICACHE
 608
 609static inline void __ic_entire_inv(void)
 610{
 611	write_aux_reg(ARC_REG_IC_IVIC, 1);
 612	read_aux_reg(ARC_REG_IC_CTRL);	/* blocks */
 613}
 614
 615static inline void
 616__ic_line_inv_vaddr_local(phys_addr_t paddr, unsigned long vaddr,
 617			  unsigned long sz)
 618{
 619	const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
 620	unsigned long flags;
 621
 622	local_irq_save(flags);
 623	(*_cache_line_loop_ic_fn)(paddr, vaddr, sz, OP_INV_IC, full_page);
 624	local_irq_restore(flags);
 625}
 626
 627#ifndef CONFIG_SMP
 628
 629#define __ic_line_inv_vaddr(p, v, s)	__ic_line_inv_vaddr_local(p, v, s)
 630
 631#else
 632
 633struct ic_inv_args {
 634	phys_addr_t paddr, vaddr;
 635	int sz;
 636};
 637
 638static void __ic_line_inv_vaddr_helper(void *info)
 639{
 640        struct ic_inv_args *ic_inv = info;
 641
 642        __ic_line_inv_vaddr_local(ic_inv->paddr, ic_inv->vaddr, ic_inv->sz);
 643}
 644
 645static void __ic_line_inv_vaddr(phys_addr_t paddr, unsigned long vaddr,
 646				unsigned long sz)
 647{
 648	struct ic_inv_args ic_inv = {
 649		.paddr = paddr,
 650		.vaddr = vaddr,
 651		.sz    = sz
 652	};
 653
 654	on_each_cpu(__ic_line_inv_vaddr_helper, &ic_inv, 1);
 655}
 656
 657#endif	/* CONFIG_SMP */
 658
 659#else	/* !CONFIG_ARC_HAS_ICACHE */
 660
 661#define __ic_entire_inv()
 662#define __ic_line_inv_vaddr(pstart, vstart, sz)
 663
 664#endif /* CONFIG_ARC_HAS_ICACHE */
 665
 666noinline void slc_op_rgn(phys_addr_t paddr, unsigned long sz, const int op)
 667{
 668#ifdef CONFIG_ISA_ARCV2
 669	/*
 670	 * SLC is shared between all cores and concurrent aux operations from
 671	 * multiple cores need to be serialized using a spinlock
 672	 * A concurrent operation can be silently ignored and/or the old/new
 673	 * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop
 674	 * below)
 675	 */
 676	static DEFINE_SPINLOCK(lock);
 677	unsigned long flags;
 678	unsigned int ctrl;
 679	phys_addr_t end;
 680
 681	spin_lock_irqsave(&lock, flags);
 682
 683	/*
 684	 * The Region Flush operation is specified by CTRL.RGN_OP[11..9]
 685	 *  - b'000 (default) is Flush,
 686	 *  - b'001 is Invalidate if CTRL.IM == 0
 687	 *  - b'001 is Flush-n-Invalidate if CTRL.IM == 1
 688	 */
 689	ctrl = read_aux_reg(ARC_REG_SLC_CTRL);
 690
 691	/* Don't rely on default value of IM bit */
 692	if (!(op & OP_FLUSH))		/* i.e. OP_INV */
 693		ctrl &= ~SLC_CTRL_IM;	/* clear IM: Disable flush before Inv */
 694	else
 695		ctrl |= SLC_CTRL_IM;
 696
 697	if (op & OP_INV)
 698		ctrl |= SLC_CTRL_RGN_OP_INV;	/* Inv or flush-n-inv */
 699	else
 700		ctrl &= ~SLC_CTRL_RGN_OP_INV;
 701
 702	write_aux_reg(ARC_REG_SLC_CTRL, ctrl);
 703
 704	/*
 705	 * Lower bits are ignored, no need to clip
 706	 * END needs to be setup before START (latter triggers the operation)
 707	 * END can't be same as START, so add (l2_line_sz - 1) to sz
 708	 */
 709	end = paddr + sz + l2_line_sz - 1;
 710	if (is_pae40_enabled())
 711		write_aux_reg(ARC_REG_SLC_RGN_END1, upper_32_bits(end));
 712
 713	write_aux_reg(ARC_REG_SLC_RGN_END, lower_32_bits(end));
 714
 715	if (is_pae40_enabled())
 716		write_aux_reg(ARC_REG_SLC_RGN_START1, upper_32_bits(paddr));
 717
 718	write_aux_reg(ARC_REG_SLC_RGN_START, lower_32_bits(paddr));
 719
 720	/* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */
 721	read_aux_reg(ARC_REG_SLC_CTRL);
 722
 723	while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY);
 724
 725	spin_unlock_irqrestore(&lock, flags);
 726#endif
 727}
 728
 729noinline void slc_op_line(phys_addr_t paddr, unsigned long sz, const int op)
 730{
 731#ifdef CONFIG_ISA_ARCV2
 732	/*
 733	 * SLC is shared between all cores and concurrent aux operations from
 734	 * multiple cores need to be serialized using a spinlock
 735	 * A concurrent operation can be silently ignored and/or the old/new
 736	 * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop
 737	 * below)
 738	 */
 739	static DEFINE_SPINLOCK(lock);
 740
 741	const unsigned long SLC_LINE_MASK = ~(l2_line_sz - 1);
 742	unsigned int ctrl, cmd;
 743	unsigned long flags;
 744	int num_lines;
 745
 746	spin_lock_irqsave(&lock, flags);
 747
 748	ctrl = read_aux_reg(ARC_REG_SLC_CTRL);
 749
 750	/* Don't rely on default value of IM bit */
 751	if (!(op & OP_FLUSH))		/* i.e. OP_INV */
 752		ctrl &= ~SLC_CTRL_IM;	/* clear IM: Disable flush before Inv */
 753	else
 754		ctrl |= SLC_CTRL_IM;
 755
 756	write_aux_reg(ARC_REG_SLC_CTRL, ctrl);
 757
 758	cmd = op & OP_INV ? ARC_AUX_SLC_IVDL : ARC_AUX_SLC_FLDL;
 759
 760	sz += paddr & ~SLC_LINE_MASK;
 761	paddr &= SLC_LINE_MASK;
 762
 763	num_lines = DIV_ROUND_UP(sz, l2_line_sz);
 764
 765	while (num_lines-- > 0) {
 766		write_aux_reg(cmd, paddr);
 767		paddr += l2_line_sz;
 768	}
 769
 770	/* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */
 771	read_aux_reg(ARC_REG_SLC_CTRL);
 772
 773	while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY);
 774
 775	spin_unlock_irqrestore(&lock, flags);
 776#endif
 777}
 778
 779#define slc_op(paddr, sz, op)	slc_op_rgn(paddr, sz, op)
 780
 781noinline static void slc_entire_op(const int op)
 782{
 783	unsigned int ctrl, r = ARC_REG_SLC_CTRL;
 784
 785	ctrl = read_aux_reg(r);
 786
 787	if (!(op & OP_FLUSH))		/* i.e. OP_INV */
 788		ctrl &= ~SLC_CTRL_IM;	/* clear IM: Disable flush before Inv */
 789	else
 790		ctrl |= SLC_CTRL_IM;
 791
 792	write_aux_reg(r, ctrl);
 793
 794	if (op & OP_INV)	/* Inv or flush-n-inv use same cmd reg */
 795		write_aux_reg(ARC_REG_SLC_INVALIDATE, 0x1);
 796	else
 797		write_aux_reg(ARC_REG_SLC_FLUSH, 0x1);
 798
 799	/* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */
 800	read_aux_reg(r);
 801
 802	/* Important to wait for flush to complete */
 803	while (read_aux_reg(r) & SLC_CTRL_BUSY);
 804}
 805
 806static inline void arc_slc_disable(void)
 807{
 808	const int r = ARC_REG_SLC_CTRL;
 809
 810	slc_entire_op(OP_FLUSH_N_INV);
 811	write_aux_reg(r, read_aux_reg(r) | SLC_CTRL_DIS);
 812}
 813
 814static inline void arc_slc_enable(void)
 815{
 816	const int r = ARC_REG_SLC_CTRL;
 817
 818	write_aux_reg(r, read_aux_reg(r) & ~SLC_CTRL_DIS);
 819}
 820
 821/***********************************************************
 822 * Exported APIs
 823 */
 824
 825/*
 826 * Handle cache congruency of kernel and userspace mappings of page when kernel
 827 * writes-to/reads-from
 828 *
 829 * The idea is to defer flushing of kernel mapping after a WRITE, possible if:
 830 *  -dcache is NOT aliasing, hence any U/K-mappings of page are congruent
 831 *  -U-mapping doesn't exist yet for page (finalised in update_mmu_cache)
 832 *  -In SMP, if hardware caches are coherent
 833 *
 834 * There's a corollary case, where kernel READs from a userspace mapped page.
 835 * If the U-mapping is not congruent to to K-mapping, former needs flushing.
 836 */
 837void flush_dcache_page(struct page *page)
 838{
 839	struct address_space *mapping;
 840
 841	if (!cache_is_vipt_aliasing()) {
 842		clear_bit(PG_dc_clean, &page->flags);
 843		return;
 844	}
 845
 846	/* don't handle anon pages here */
 847	mapping = page_mapping_file(page);
 848	if (!mapping)
 849		return;
 850
 851	/*
 852	 * pagecache page, file not yet mapped to userspace
 853	 * Make a note that K-mapping is dirty
 854	 */
 855	if (!mapping_mapped(mapping)) {
 856		clear_bit(PG_dc_clean, &page->flags);
 857	} else if (page_mapcount(page)) {
 858
 859		/* kernel reading from page with U-mapping */
 860		phys_addr_t paddr = (unsigned long)page_address(page);
 861		unsigned long vaddr = page->index << PAGE_SHIFT;
 862
 863		if (addr_not_cache_congruent(paddr, vaddr))
 864			__flush_dcache_page(paddr, vaddr);
 865	}
 866}
 867EXPORT_SYMBOL(flush_dcache_page);
 868
 869/*
 870 * DMA ops for systems with L1 cache only
 871 * Make memory coherent with L1 cache by flushing/invalidating L1 lines
 872 */
 873static void __dma_cache_wback_inv_l1(phys_addr_t start, unsigned long sz)
 874{
 875	__dc_line_op_k(start, sz, OP_FLUSH_N_INV);
 876}
 877
 878static void __dma_cache_inv_l1(phys_addr_t start, unsigned long sz)
 879{
 880	__dc_line_op_k(start, sz, OP_INV);
 881}
 882
 883static void __dma_cache_wback_l1(phys_addr_t start, unsigned long sz)
 884{
 885	__dc_line_op_k(start, sz, OP_FLUSH);
 886}
 887
 888/*
 889 * DMA ops for systems with both L1 and L2 caches, but without IOC
 890 * Both L1 and L2 lines need to be explicitly flushed/invalidated
 891 */
 892static void __dma_cache_wback_inv_slc(phys_addr_t start, unsigned long sz)
 893{
 894	__dc_line_op_k(start, sz, OP_FLUSH_N_INV);
 895	slc_op(start, sz, OP_FLUSH_N_INV);
 896}
 897
 898static void __dma_cache_inv_slc(phys_addr_t start, unsigned long sz)
 899{
 900	__dc_line_op_k(start, sz, OP_INV);
 901	slc_op(start, sz, OP_INV);
 902}
 903
 904static void __dma_cache_wback_slc(phys_addr_t start, unsigned long sz)
 905{
 906	__dc_line_op_k(start, sz, OP_FLUSH);
 907	slc_op(start, sz, OP_FLUSH);
 908}
 909
 910/*
 
 
 
 
 
 
 
 
 
 911 * Exported DMA API
 912 */
 913void dma_cache_wback_inv(phys_addr_t start, unsigned long sz)
 914{
 915	__dma_cache_wback_inv(start, sz);
 916}
 917EXPORT_SYMBOL(dma_cache_wback_inv);
 918
 919void dma_cache_inv(phys_addr_t start, unsigned long sz)
 920{
 921	__dma_cache_inv(start, sz);
 922}
 923EXPORT_SYMBOL(dma_cache_inv);
 924
 925void dma_cache_wback(phys_addr_t start, unsigned long sz)
 926{
 927	__dma_cache_wback(start, sz);
 928}
 929EXPORT_SYMBOL(dma_cache_wback);
 930
 931/*
 932 * This is API for making I/D Caches consistent when modifying
 933 * kernel code (loadable modules, kprobes, kgdb...)
 934 * This is called on insmod, with kernel virtual address for CODE of
 935 * the module. ARC cache maintenance ops require PHY address thus we
 936 * need to convert vmalloc addr to PHY addr
 937 */
 938void flush_icache_range(unsigned long kstart, unsigned long kend)
 939{
 940	unsigned int tot_sz;
 941
 942	WARN(kstart < TASK_SIZE, "%s() can't handle user vaddr", __func__);
 943
 944	/* Shortcut for bigger flush ranges.
 945	 * Here we don't care if this was kernel virtual or phy addr
 946	 */
 947	tot_sz = kend - kstart;
 948	if (tot_sz > PAGE_SIZE) {
 949		flush_cache_all();
 950		return;
 951	}
 952
 953	/* Case: Kernel Phy addr (0x8000_0000 onwards) */
 954	if (likely(kstart > PAGE_OFFSET)) {
 955		/*
 956		 * The 2nd arg despite being paddr will be used to index icache
 957		 * This is OK since no alternate virtual mappings will exist
 958		 * given the callers for this case: kprobe/kgdb in built-in
 959		 * kernel code only.
 960		 */
 961		__sync_icache_dcache(kstart, kstart, kend - kstart);
 962		return;
 963	}
 964
 965	/*
 966	 * Case: Kernel Vaddr (0x7000_0000 to 0x7fff_ffff)
 967	 * (1) ARC Cache Maintenance ops only take Phy addr, hence special
 968	 *     handling of kernel vaddr.
 969	 *
 970	 * (2) Despite @tot_sz being < PAGE_SIZE (bigger cases handled already),
 971	 *     it still needs to handle  a 2 page scenario, where the range
 972	 *     straddles across 2 virtual pages and hence need for loop
 973	 */
 974	while (tot_sz > 0) {
 975		unsigned int off, sz;
 976		unsigned long phy, pfn;
 977
 978		off = kstart % PAGE_SIZE;
 979		pfn = vmalloc_to_pfn((void *)kstart);
 980		phy = (pfn << PAGE_SHIFT) + off;
 981		sz = min_t(unsigned int, tot_sz, PAGE_SIZE - off);
 982		__sync_icache_dcache(phy, kstart, sz);
 983		kstart += sz;
 984		tot_sz -= sz;
 985	}
 986}
 987EXPORT_SYMBOL(flush_icache_range);
 988
 989/*
 990 * General purpose helper to make I and D cache lines consistent.
 991 * @paddr is phy addr of region
 992 * @vaddr is typically user vaddr (breakpoint) or kernel vaddr (vmalloc)
 993 *    However in one instance, when called by kprobe (for a breakpt in
 994 *    builtin kernel code) @vaddr will be paddr only, meaning CDU operation will
 995 *    use a paddr to index the cache (despite VIPT). This is fine since since a
 996 *    builtin kernel page will not have any virtual mappings.
 997 *    kprobe on loadable module will be kernel vaddr.
 998 */
 999void __sync_icache_dcache(phys_addr_t paddr, unsigned long vaddr, int len)
1000{
1001	__dc_line_op(paddr, vaddr, len, OP_FLUSH_N_INV);
1002	__ic_line_inv_vaddr(paddr, vaddr, len);
1003}
1004
1005/* wrapper to compile time eliminate alignment checks in flush loop */
1006void __inv_icache_page(phys_addr_t paddr, unsigned long vaddr)
1007{
1008	__ic_line_inv_vaddr(paddr, vaddr, PAGE_SIZE);
1009}
1010
1011/*
1012 * wrapper to clearout kernel or userspace mappings of a page
1013 * For kernel mappings @vaddr == @paddr
1014 */
1015void __flush_dcache_page(phys_addr_t paddr, unsigned long vaddr)
1016{
1017	__dc_line_op(paddr, vaddr & PAGE_MASK, PAGE_SIZE, OP_FLUSH_N_INV);
1018}
1019
1020noinline void flush_cache_all(void)
1021{
1022	unsigned long flags;
1023
1024	local_irq_save(flags);
1025
1026	__ic_entire_inv();
1027	__dc_entire_op(OP_FLUSH_N_INV);
1028
1029	local_irq_restore(flags);
1030
1031}
1032
1033#ifdef CONFIG_ARC_CACHE_VIPT_ALIASING
1034
1035void flush_cache_mm(struct mm_struct *mm)
1036{
1037	flush_cache_all();
1038}
1039
1040void flush_cache_page(struct vm_area_struct *vma, unsigned long u_vaddr,
1041		      unsigned long pfn)
1042{
1043	phys_addr_t paddr = pfn << PAGE_SHIFT;
1044
1045	u_vaddr &= PAGE_MASK;
1046
1047	__flush_dcache_page(paddr, u_vaddr);
1048
1049	if (vma->vm_flags & VM_EXEC)
1050		__inv_icache_page(paddr, u_vaddr);
1051}
1052
1053void flush_cache_range(struct vm_area_struct *vma, unsigned long start,
1054		       unsigned long end)
1055{
1056	flush_cache_all();
1057}
1058
1059void flush_anon_page(struct vm_area_struct *vma, struct page *page,
1060		     unsigned long u_vaddr)
1061{
1062	/* TBD: do we really need to clear the kernel mapping */
1063	__flush_dcache_page((phys_addr_t)page_address(page), u_vaddr);
1064	__flush_dcache_page((phys_addr_t)page_address(page),
1065			    (phys_addr_t)page_address(page));
1066
1067}
1068
1069#endif
1070
1071void copy_user_highpage(struct page *to, struct page *from,
1072	unsigned long u_vaddr, struct vm_area_struct *vma)
1073{
1074	void *kfrom = kmap_atomic(from);
1075	void *kto = kmap_atomic(to);
1076	int clean_src_k_mappings = 0;
1077
1078	/*
1079	 * If SRC page was already mapped in userspace AND it's U-mapping is
1080	 * not congruent with K-mapping, sync former to physical page so that
1081	 * K-mapping in memcpy below, sees the right data
1082	 *
1083	 * Note that while @u_vaddr refers to DST page's userspace vaddr, it is
1084	 * equally valid for SRC page as well
1085	 *
1086	 * For !VIPT cache, all of this gets compiled out as
1087	 * addr_not_cache_congruent() is 0
1088	 */
1089	if (page_mapcount(from) && addr_not_cache_congruent(kfrom, u_vaddr)) {
1090		__flush_dcache_page((unsigned long)kfrom, u_vaddr);
1091		clean_src_k_mappings = 1;
1092	}
1093
1094	copy_page(kto, kfrom);
1095
1096	/*
1097	 * Mark DST page K-mapping as dirty for a later finalization by
1098	 * update_mmu_cache(). Although the finalization could have been done
1099	 * here as well (given that both vaddr/paddr are available).
1100	 * But update_mmu_cache() already has code to do that for other
1101	 * non copied user pages (e.g. read faults which wire in pagecache page
1102	 * directly).
1103	 */
1104	clear_bit(PG_dc_clean, &to->flags);
1105
1106	/*
1107	 * if SRC was already usermapped and non-congruent to kernel mapping
1108	 * sync the kernel mapping back to physical page
1109	 */
1110	if (clean_src_k_mappings) {
1111		__flush_dcache_page((unsigned long)kfrom, (unsigned long)kfrom);
1112		set_bit(PG_dc_clean, &from->flags);
1113	} else {
1114		clear_bit(PG_dc_clean, &from->flags);
1115	}
1116
1117	kunmap_atomic(kto);
1118	kunmap_atomic(kfrom);
1119}
1120
1121void clear_user_page(void *to, unsigned long u_vaddr, struct page *page)
1122{
1123	clear_page(to);
1124	clear_bit(PG_dc_clean, &page->flags);
1125}
1126
1127
1128/**********************************************************************
1129 * Explicit Cache flush request from user space via syscall
1130 * Needed for JITs which generate code on the fly
1131 */
1132SYSCALL_DEFINE3(cacheflush, uint32_t, start, uint32_t, sz, uint32_t, flags)
1133{
1134	/* TBD: optimize this */
1135	flush_cache_all();
1136	return 0;
1137}
1138
1139/*
1140 * IO-Coherency (IOC) setup rules:
1141 *
1142 * 1. Needs to be at system level, so only once by Master core
1143 *    Non-Masters need not be accessing caches at that time
1144 *    - They are either HALT_ON_RESET and kick started much later or
1145 *    - if run on reset, need to ensure that arc_platform_smp_wait_to_boot()
1146 *      doesn't perturb caches or coherency unit
1147 *
1148 * 2. caches (L1 and SLC) need to be purged (flush+inv) before setting up IOC,
1149 *    otherwise any straggler data might behave strangely post IOC enabling
1150 *
1151 * 3. All Caches need to be disabled when setting up IOC to elide any in-flight
1152 *    Coherency transactions
1153 */
1154noinline void __init arc_ioc_setup(void)
1155{
1156	unsigned int ioc_base, mem_sz;
1157
1158	/*
1159	 * If IOC was already enabled (due to bootloader) it technically needs to
1160	 * be reconfigured with aperture base,size corresponding to Linux memory map
1161	 * which will certainly be different than uboot's. But disabling and
1162	 * reenabling IOC when DMA might be potentially active is tricky business.
1163	 * To avoid random memory issues later, just panic here and ask user to
1164	 * upgrade bootloader to one which doesn't enable IOC
1165	 */
1166	if (read_aux_reg(ARC_REG_IO_COH_ENABLE) & ARC_IO_COH_ENABLE_BIT)
1167		panic("IOC already enabled, please upgrade bootloader!\n");
1168
1169	if (!ioc_enable)
1170		return;
1171
1172	/* Flush + invalidate + disable L1 dcache */
1173	__dc_disable();
1174
1175	/* Flush + invalidate SLC */
1176	if (read_aux_reg(ARC_REG_SLC_BCR))
1177		slc_entire_op(OP_FLUSH_N_INV);
1178
1179	/*
1180	 * currently IOC Aperture covers entire DDR
1181	 * TBD: fix for PGU + 1GB of low mem
1182	 * TBD: fix for PAE
1183	 */
1184	mem_sz = arc_get_mem_sz();
1185
1186	if (!is_power_of_2(mem_sz) || mem_sz < 4096)
1187		panic("IOC Aperture size must be power of 2 larger than 4KB");
1188
1189	/*
1190	 * IOC Aperture size decoded as 2 ^ (SIZE + 2) KB,
1191	 * so setting 0x11 implies 512MB, 0x12 implies 1GB...
1192	 */
1193	write_aux_reg(ARC_REG_IO_COH_AP0_SIZE, order_base_2(mem_sz >> 10) - 2);
1194
1195	/* for now assume kernel base is start of IOC aperture */
1196	ioc_base = CONFIG_LINUX_RAM_BASE;
1197
1198	if (ioc_base % mem_sz != 0)
1199		panic("IOC Aperture start must be aligned to the size of the aperture");
1200
1201	write_aux_reg(ARC_REG_IO_COH_AP0_BASE, ioc_base >> 12);
1202	write_aux_reg(ARC_REG_IO_COH_PARTIAL, ARC_IO_COH_PARTIAL_BIT);
1203	write_aux_reg(ARC_REG_IO_COH_ENABLE, ARC_IO_COH_ENABLE_BIT);
1204
1205	/* Re-enable L1 dcache */
1206	__dc_enable();
1207}
1208
1209/*
1210 * Cache related boot time checks/setups only needed on master CPU:
1211 *  - Geometry checks (kernel build and hardware agree: e.g. L1_CACHE_BYTES)
1212 *    Assume SMP only, so all cores will have same cache config. A check on
1213 *    one core suffices for all
1214 *  - IOC setup / dma callbacks only need to be done once
1215 */
1216void __init arc_cache_init_master(void)
1217{
1218	unsigned int __maybe_unused cpu = smp_processor_id();
 
 
 
1219
1220	if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE)) {
1221		struct cpuinfo_arc_cache *ic = &cpuinfo_arc700[cpu].icache;
1222
1223		if (!ic->line_len)
1224			panic("cache support enabled but non-existent cache\n");
1225
1226		if (ic->line_len != L1_CACHE_BYTES)
1227			panic("ICache line [%d] != kernel Config [%d]",
1228			      ic->line_len, L1_CACHE_BYTES);
1229
 
 
 
 
1230		/*
1231		 * In MMU v4 (HS38x) the aliasing icache config uses IVIL/PTAG
1232		 * pair to provide vaddr/paddr respectively, just as in MMU v3
1233		 */
1234		if (is_isa_arcv2() && ic->alias)
1235			_cache_line_loop_ic_fn = __cache_line_loop_v3;
1236		else
1237			_cache_line_loop_ic_fn = __cache_line_loop;
1238	}
1239
1240	if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE)) {
1241		struct cpuinfo_arc_cache *dc = &cpuinfo_arc700[cpu].dcache;
1242
1243		if (!dc->line_len)
1244			panic("cache support enabled but non-existent cache\n");
1245
1246		if (dc->line_len != L1_CACHE_BYTES)
1247			panic("DCache line [%d] != kernel Config [%d]",
1248			      dc->line_len, L1_CACHE_BYTES);
1249
1250		/* check for D-Cache aliasing on ARCompact: ARCv2 has PIPT */
1251		if (is_isa_arcompact()) {
1252			int handled = IS_ENABLED(CONFIG_ARC_CACHE_VIPT_ALIASING);
1253			int num_colors = dc->sz_k/dc->assoc/TO_KB(PAGE_SIZE);
1254
1255			if (dc->alias) {
1256				if (!handled)
1257					panic("Enable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
1258				if (CACHE_COLORS_NUM != num_colors)
1259					panic("CACHE_COLORS_NUM not optimized for config\n");
1260			} else if (!dc->alias && handled) {
1261				panic("Disable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
1262			}
1263		}
1264	}
1265
1266	/*
1267	 * Check that SMP_CACHE_BYTES (and hence ARCH_DMA_MINALIGN) is larger
1268	 * or equal to any cache line length.
1269	 */
1270	BUILD_BUG_ON_MSG(L1_CACHE_BYTES > SMP_CACHE_BYTES,
1271			 "SMP_CACHE_BYTES must be >= any cache line length");
1272	if (is_isa_arcv2() && (l2_line_sz > SMP_CACHE_BYTES))
1273		panic("L2 Cache line [%d] > kernel Config [%d]\n",
1274		      l2_line_sz, SMP_CACHE_BYTES);
1275
1276	/* Note that SLC disable not formally supported till HS 3.0 */
1277	if (is_isa_arcv2() && l2_line_sz && !slc_enable)
1278		arc_slc_disable();
1279
1280	if (is_isa_arcv2() && ioc_exists)
1281		arc_ioc_setup();
1282
1283	if (is_isa_arcv2() && l2_line_sz && slc_enable) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1284		__dma_cache_wback_inv = __dma_cache_wback_inv_slc;
1285		__dma_cache_inv = __dma_cache_inv_slc;
1286		__dma_cache_wback = __dma_cache_wback_slc;
1287	} else {
1288		__dma_cache_wback_inv = __dma_cache_wback_inv_l1;
1289		__dma_cache_inv = __dma_cache_inv_l1;
1290		__dma_cache_wback = __dma_cache_wback_l1;
1291	}
1292	/*
1293	 * In case of IOC (say IOC+SLC case), pointers above could still be set
1294	 * but end up not being relevant as the first function in chain is not
1295	 * called at all for devices using coherent DMA.
1296	 *     arch_sync_dma_for_cpu() -> dma_cache_*() -> __dma_cache_*()
1297	 */
1298}
1299
1300void __ref arc_cache_init(void)
1301{
1302	unsigned int __maybe_unused cpu = smp_processor_id();
1303	char str[256];
1304
1305	pr_info("%s", arc_cache_mumbojumbo(0, str, sizeof(str)));
1306
1307	if (!cpu)
1308		arc_cache_init_master();
1309
1310	/*
1311	 * In PAE regime, TLB and cache maintenance ops take wider addresses
1312	 * And even if PAE is not enabled in kernel, the upper 32-bits still need
1313	 * to be zeroed to keep the ops sane.
1314	 * As an optimization for more common !PAE enabled case, zero them out
1315	 * once at init, rather than checking/setting to 0 for every runtime op
1316	 */
1317	if (is_isa_arcv2() && pae40_exist_but_not_enab()) {
1318
1319		if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE))
1320			write_aux_reg(ARC_REG_IC_PTAG_HI, 0);
1321
1322		if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE))
1323			write_aux_reg(ARC_REG_DC_PTAG_HI, 0);
1324
1325		if (l2_line_sz) {
1326			write_aux_reg(ARC_REG_SLC_RGN_END1, 0);
1327			write_aux_reg(ARC_REG_SLC_RGN_START1, 0);
1328		}
1329	}
1330}
v4.6
 
   1/*
   2 * ARC Cache Management
   3 *
   4 * Copyright (C) 2014-15 Synopsys, Inc. (www.synopsys.com)
   5 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/mm.h>
  14#include <linux/sched.h>
  15#include <linux/cache.h>
  16#include <linux/mmu_context.h>
  17#include <linux/syscalls.h>
  18#include <linux/uaccess.h>
  19#include <linux/pagemap.h>
  20#include <asm/cacheflush.h>
  21#include <asm/cachectl.h>
  22#include <asm/setup.h>
  23
 
 
 
 
  24static int l2_line_sz;
  25int ioc_exists;
  26volatile int slc_enable = 1, ioc_enable = 1;
  27unsigned long perip_base = ARC_UNCACHED_ADDR_SPACE; /* legacy value for boot */
 
  28
  29void (*_cache_line_loop_ic_fn)(phys_addr_t paddr, unsigned long vaddr,
  30			       unsigned long sz, const int cacheop);
  31
  32void (*__dma_cache_wback_inv)(phys_addr_t start, unsigned long sz);
  33void (*__dma_cache_inv)(phys_addr_t start, unsigned long sz);
  34void (*__dma_cache_wback)(phys_addr_t start, unsigned long sz);
  35
  36char *arc_cache_mumbojumbo(int c, char *buf, int len)
  37{
  38	int n = 0;
  39	struct cpuinfo_arc_cache *p;
  40
  41#define PR_CACHE(p, cfg, str)						\
  42	if (!(p)->ver)							\
  43		n += scnprintf(buf + n, len - n, str"\t\t: N/A\n");	\
  44	else								\
  45		n += scnprintf(buf + n, len - n,			\
  46			str"\t\t: %uK, %dway/set, %uB Line, %s%s%s\n",	\
  47			(p)->sz_k, (p)->assoc, (p)->line_len,		\
  48			(p)->vipt ? "VIPT" : "PIPT",			\
  49			(p)->alias ? " aliasing" : "",			\
  50			IS_USED_CFG(cfg));
  51
  52	PR_CACHE(&cpuinfo_arc700[c].icache, CONFIG_ARC_HAS_ICACHE, "I-Cache");
  53	PR_CACHE(&cpuinfo_arc700[c].dcache, CONFIG_ARC_HAS_DCACHE, "D-Cache");
  54
  55	if (!is_isa_arcv2())
  56                return buf;
  57
  58	p = &cpuinfo_arc700[c].slc;
  59	if (p->ver)
  60		n += scnprintf(buf + n, len - n,
  61			       "SLC\t\t: %uK, %uB Line%s\n",
  62			       p->sz_k, p->line_len, IS_USED_RUN(slc_enable));
  63
  64	if (ioc_exists)
  65		n += scnprintf(buf + n, len - n, "IOC\t\t:%s\n",
  66				IS_DISABLED_RUN(ioc_enable));
  67
  68	return buf;
  69}
  70
  71/*
  72 * Read the Cache Build Confuration Registers, Decode them and save into
  73 * the cpuinfo structure for later use.
  74 * No Validation done here, simply read/convert the BCRs
  75 */
  76static void read_decode_cache_bcr_arcv2(int cpu)
  77{
  78	struct cpuinfo_arc_cache *p_slc = &cpuinfo_arc700[cpu].slc;
  79	struct bcr_generic uncached_space;
  80	struct bcr_generic sbcr;
  81
  82	struct bcr_slc_cfg {
  83#ifdef CONFIG_CPU_BIG_ENDIAN
  84		unsigned int pad:24, way:2, lsz:2, sz:4;
  85#else
  86		unsigned int sz:4, lsz:2, way:2, pad:24;
  87#endif
  88	} slc_cfg;
  89
  90	struct bcr_clust_cfg {
  91#ifdef CONFIG_CPU_BIG_ENDIAN
  92		unsigned int pad:7, c:1, num_entries:8, num_cores:8, ver:8;
  93#else
  94		unsigned int ver:8, num_cores:8, num_entries:8, c:1, pad:7;
  95#endif
  96	} cbcr;
  97
 
 
 
 
 
 
 
 
 
  98	READ_BCR(ARC_REG_SLC_BCR, sbcr);
  99	if (sbcr.ver) {
 100		READ_BCR(ARC_REG_SLC_CFG, slc_cfg);
 101		p_slc->ver = sbcr.ver;
 102		p_slc->sz_k = 128 << slc_cfg.sz;
 103		l2_line_sz = p_slc->line_len = (slc_cfg.lsz == 0) ? 128 : 64;
 104	}
 105
 106	READ_BCR(ARC_REG_CLUSTER_BCR, cbcr);
 107	if (cbcr.c && ioc_enable)
 108		ioc_exists = 1;
 109
 110	/* Legacy Data Uncached BCR is deprecated from v3 onwards */
 111	READ_BCR(ARC_REG_D_UNCACH_BCR, uncached_space);
 112	if (uncached_space.ver > 2)
 113		perip_base = read_aux_reg(AUX_NON_VOL) & 0xF0000000;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 114}
 115
 116void read_decode_cache_bcr(void)
 117{
 118	struct cpuinfo_arc_cache *p_ic, *p_dc;
 119	unsigned int cpu = smp_processor_id();
 120	struct bcr_cache {
 121#ifdef CONFIG_CPU_BIG_ENDIAN
 122		unsigned int pad:12, line_len:4, sz:4, config:4, ver:8;
 123#else
 124		unsigned int ver:8, config:4, sz:4, line_len:4, pad:12;
 125#endif
 126	} ibcr, dbcr;
 127
 128	p_ic = &cpuinfo_arc700[cpu].icache;
 129	READ_BCR(ARC_REG_IC_BCR, ibcr);
 130
 131	if (!ibcr.ver)
 132		goto dc_chk;
 133
 134	if (ibcr.ver <= 3) {
 135		BUG_ON(ibcr.config != 3);
 136		p_ic->assoc = 2;		/* Fixed to 2w set assoc */
 137	} else if (ibcr.ver >= 4) {
 138		p_ic->assoc = 1 << ibcr.config;	/* 1,2,4,8 */
 139	}
 140
 141	p_ic->line_len = 8 << ibcr.line_len;
 142	p_ic->sz_k = 1 << (ibcr.sz - 1);
 143	p_ic->ver = ibcr.ver;
 144	p_ic->vipt = 1;
 145	p_ic->alias = p_ic->sz_k/p_ic->assoc/TO_KB(PAGE_SIZE) > 1;
 146
 147dc_chk:
 148	p_dc = &cpuinfo_arc700[cpu].dcache;
 149	READ_BCR(ARC_REG_DC_BCR, dbcr);
 150
 151	if (!dbcr.ver)
 152		goto slc_chk;
 153
 154	if (dbcr.ver <= 3) {
 155		BUG_ON(dbcr.config != 2);
 156		p_dc->assoc = 4;		/* Fixed to 4w set assoc */
 157		p_dc->vipt = 1;
 158		p_dc->alias = p_dc->sz_k/p_dc->assoc/TO_KB(PAGE_SIZE) > 1;
 159	} else if (dbcr.ver >= 4) {
 160		p_dc->assoc = 1 << dbcr.config;	/* 1,2,4,8 */
 161		p_dc->vipt = 0;
 162		p_dc->alias = 0;		/* PIPT so can't VIPT alias */
 163	}
 164
 165	p_dc->line_len = 16 << dbcr.line_len;
 166	p_dc->sz_k = 1 << (dbcr.sz - 1);
 167	p_dc->ver = dbcr.ver;
 168
 169slc_chk:
 170	if (is_isa_arcv2())
 171                read_decode_cache_bcr_arcv2(cpu);
 172}
 173
 174/*
 175 * Line Operation on {I,D}-Cache
 176 */
 177
 178#define OP_INV		0x1
 179#define OP_FLUSH	0x2
 180#define OP_FLUSH_N_INV	0x3
 181#define OP_INV_IC	0x4
 182
 183/*
 184 *		I-Cache Aliasing in ARC700 VIPT caches (MMU v1-v3)
 185 *
 186 * ARC VIPT I-cache uses vaddr to index into cache and paddr to match the tag.
 187 * The orig Cache Management Module "CDU" only required paddr to invalidate a
 188 * certain line since it sufficed as index in Non-Aliasing VIPT cache-geometry.
 189 * Infact for distinct V1,V2,P: all of {V1-P},{V2-P},{P-P} would end up fetching
 190 * the exact same line.
 191 *
 192 * However for larger Caches (way-size > page-size) - i.e. in Aliasing config,
 193 * paddr alone could not be used to correctly index the cache.
 194 *
 195 * ------------------
 196 * MMU v1/v2 (Fixed Page Size 8k)
 197 * ------------------
 198 * The solution was to provide CDU with these additonal vaddr bits. These
 199 * would be bits [x:13], x would depend on cache-geometry, 13 comes from
 200 * standard page size of 8k.
 201 * H/w folks chose [17:13] to be a future safe range, and moreso these 5 bits
 202 * of vaddr could easily be "stuffed" in the paddr as bits [4:0] since the
 203 * orig 5 bits of paddr were anyways ignored by CDU line ops, as they
 204 * represent the offset within cache-line. The adv of using this "clumsy"
 205 * interface for additional info was no new reg was needed in CDU programming
 206 * model.
 207 *
 208 * 17:13 represented the max num of bits passable, actual bits needed were
 209 * fewer, based on the num-of-aliases possible.
 210 * -for 2 alias possibility, only bit 13 needed (32K cache)
 211 * -for 4 alias possibility, bits 14:13 needed (64K cache)
 212 *
 213 * ------------------
 214 * MMU v3
 215 * ------------------
 216 * This ver of MMU supports variable page sizes (1k-16k): although Linux will
 217 * only support 8k (default), 16k and 4k.
 218 * However from hardware perspective, smaller page sizes aggrevate aliasing
 219 * meaning more vaddr bits needed to disambiguate the cache-line-op ;
 220 * the existing scheme of piggybacking won't work for certain configurations.
 221 * Two new registers IC_PTAG and DC_PTAG inttoduced.
 222 * "tag" bits are provided in PTAG, index bits in existing IVIL/IVDL/FLDL regs
 223 */
 224
 225static inline
 226void __cache_line_loop_v2(phys_addr_t paddr, unsigned long vaddr,
 227			  unsigned long sz, const int op)
 228{
 229	unsigned int aux_cmd;
 230	int num_lines;
 231	const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
 232
 233	if (op == OP_INV_IC) {
 234		aux_cmd = ARC_REG_IC_IVIL;
 235	} else {
 236		/* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
 237		aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
 238	}
 239
 240	/* Ensure we properly floor/ceil the non-line aligned/sized requests
 241	 * and have @paddr - aligned to cache line and integral @num_lines.
 242	 * This however can be avoided for page sized since:
 243	 *  -@paddr will be cache-line aligned already (being page aligned)
 244	 *  -@sz will be integral multiple of line size (being page sized).
 245	 */
 246	if (!full_page) {
 247		sz += paddr & ~CACHE_LINE_MASK;
 248		paddr &= CACHE_LINE_MASK;
 249		vaddr &= CACHE_LINE_MASK;
 250	}
 251
 252	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
 253
 254	/* MMUv2 and before: paddr contains stuffed vaddrs bits */
 255	paddr |= (vaddr >> PAGE_SHIFT) & 0x1F;
 256
 257	while (num_lines-- > 0) {
 258		write_aux_reg(aux_cmd, paddr);
 259		paddr += L1_CACHE_BYTES;
 260	}
 261}
 262
 263/*
 264 * For ARC700 MMUv3 I-cache and D-cache flushes
 265 * Also reused for HS38 aliasing I-cache configuration
 
 
 
 
 266 */
 267static inline
 268void __cache_line_loop_v3(phys_addr_t paddr, unsigned long vaddr,
 269			  unsigned long sz, const int op)
 270{
 271	unsigned int aux_cmd, aux_tag;
 272	int num_lines;
 273	const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
 274
 275	if (op == OP_INV_IC) {
 276		aux_cmd = ARC_REG_IC_IVIL;
 277		aux_tag = ARC_REG_IC_PTAG;
 278	} else {
 279		aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
 280		aux_tag = ARC_REG_DC_PTAG;
 281	}
 282
 283	/* Ensure we properly floor/ceil the non-line aligned/sized requests
 284	 * and have @paddr - aligned to cache line and integral @num_lines.
 285	 * This however can be avoided for page sized since:
 286	 *  -@paddr will be cache-line aligned already (being page aligned)
 287	 *  -@sz will be integral multiple of line size (being page sized).
 288	 */
 289	if (!full_page) {
 290		sz += paddr & ~CACHE_LINE_MASK;
 291		paddr &= CACHE_LINE_MASK;
 292		vaddr &= CACHE_LINE_MASK;
 293	}
 294	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
 295
 296	/*
 297	 * MMUv3, cache ops require paddr in PTAG reg
 298	 * if V-P const for loop, PTAG can be written once outside loop
 299	 */
 300	if (full_page)
 301		write_aux_reg(aux_tag, paddr);
 302
 303	/*
 304	 * This is technically for MMU v4, using the MMU v3 programming model
 305	 * Special work for HS38 aliasing I-cache configuratino with PAE40
 306	 *   - upper 8 bits of paddr need to be written into PTAG_HI
 307	 *   - (and needs to be written before the lower 32 bits)
 308	 * Note that PTAG_HI is hoisted outside the line loop
 309	 */
 310	if (is_pae40_enabled() && op == OP_INV_IC)
 311		write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
 312
 313	while (num_lines-- > 0) {
 314		if (!full_page) {
 315			write_aux_reg(aux_tag, paddr);
 316			paddr += L1_CACHE_BYTES;
 317		}
 318
 319		write_aux_reg(aux_cmd, vaddr);
 320		vaddr += L1_CACHE_BYTES;
 321	}
 322}
 323
 
 
 324/*
 325 * In HS38x (MMU v4), I-cache is VIPT (can alias), D-cache is PIPT
 326 * Here's how cache ops are implemented
 327 *
 328 *  - D-cache: only paddr needed (in DC_IVDL/DC_FLDL)
 329 *  - I-cache Non Aliasing: Despite VIPT, only paddr needed (in IC_IVIL)
 330 *  - I-cache Aliasing: Both vaddr and paddr needed (in IC_IVIL, IC_PTAG
 331 *    respectively, similar to MMU v3 programming model, hence
 332 *    __cache_line_loop_v3() is used)
 333 *
 334 * If PAE40 is enabled, independent of aliasing considerations, the higher bits
 335 * needs to be written into PTAG_HI
 336 */
 337static inline
 338void __cache_line_loop_v4(phys_addr_t paddr, unsigned long vaddr,
 339			  unsigned long sz, const int cacheop)
 340{
 341	unsigned int aux_cmd;
 342	int num_lines;
 343	const int full_page_op = __builtin_constant_p(sz) && sz == PAGE_SIZE;
 344
 345	if (cacheop == OP_INV_IC) {
 346		aux_cmd = ARC_REG_IC_IVIL;
 347	} else {
 348		/* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
 349		aux_cmd = cacheop & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
 350	}
 351
 352	/* Ensure we properly floor/ceil the non-line aligned/sized requests
 353	 * and have @paddr - aligned to cache line and integral @num_lines.
 354	 * This however can be avoided for page sized since:
 355	 *  -@paddr will be cache-line aligned already (being page aligned)
 356	 *  -@sz will be integral multiple of line size (being page sized).
 357	 */
 358	if (!full_page_op) {
 359		sz += paddr & ~CACHE_LINE_MASK;
 360		paddr &= CACHE_LINE_MASK;
 361	}
 362
 363	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
 364
 365	/*
 366	 * For HS38 PAE40 configuration
 367	 *   - upper 8 bits of paddr need to be written into PTAG_HI
 368	 *   - (and needs to be written before the lower 32 bits)
 369	 */
 370	if (is_pae40_enabled()) {
 371		if (cacheop == OP_INV_IC)
 372			/*
 373			 * Non aliasing I-cache in HS38,
 374			 * aliasing I-cache handled in __cache_line_loop_v3()
 375			 */
 376			write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
 377		else
 378			write_aux_reg(ARC_REG_DC_PTAG_HI, (u64)paddr >> 32);
 379	}
 380
 381	while (num_lines-- > 0) {
 382		write_aux_reg(aux_cmd, paddr);
 383		paddr += L1_CACHE_BYTES;
 384	}
 385}
 386
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 387#if (CONFIG_ARC_MMU_VER < 3)
 388#define __cache_line_loop	__cache_line_loop_v2
 389#elif (CONFIG_ARC_MMU_VER == 3)
 390#define __cache_line_loop	__cache_line_loop_v3
 391#elif (CONFIG_ARC_MMU_VER > 3)
 392#define __cache_line_loop	__cache_line_loop_v4
 393#endif
 394
 395#ifdef CONFIG_ARC_HAS_DCACHE
 396
 397/***************************************************************
 398 * Machine specific helpers for Entire D-Cache or Per Line ops
 399 */
 400
 
 
 
 
 
 401static inline void __before_dc_op(const int op)
 402{
 403	if (op == OP_FLUSH_N_INV) {
 404		/* Dcache provides 2 cmd: FLUSH or INV
 405		 * INV inturn has sub-modes: DISCARD or FLUSH-BEFORE
 406		 * flush-n-inv is achieved by INV cmd but with IM=1
 407		 * So toggle INV sub-mode depending on op request and default
 408		 */
 409		const unsigned int ctl = ARC_REG_DC_CTRL;
 410		write_aux_reg(ctl, read_aux_reg(ctl) | DC_CTRL_INV_MODE_FLUSH);
 411	}
 412}
 413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 414static inline void __after_dc_op(const int op)
 415{
 416	if (op & OP_FLUSH) {
 417		const unsigned int ctl = ARC_REG_DC_CTRL;
 418		unsigned int reg;
 419
 420		/* flush / flush-n-inv both wait */
 421		while ((reg = read_aux_reg(ctl)) & DC_CTRL_FLUSH_STATUS)
 422			;
 423
 424		/* Switch back to default Invalidate mode */
 425		if (op == OP_FLUSH_N_INV)
 426			write_aux_reg(ctl, reg & ~DC_CTRL_INV_MODE_FLUSH);
 427	}
 428}
 429
 430/*
 431 * Operation on Entire D-Cache
 432 * @op = {OP_INV, OP_FLUSH, OP_FLUSH_N_INV}
 433 * Note that constant propagation ensures all the checks are gone
 434 * in generated code
 435 */
 436static inline void __dc_entire_op(const int op)
 437{
 438	int aux;
 439
 440	__before_dc_op(op);
 441
 442	if (op & OP_INV)	/* Inv or flush-n-inv use same cmd reg */
 443		aux = ARC_REG_DC_IVDC;
 444	else
 445		aux = ARC_REG_DC_FLSH;
 446
 447	write_aux_reg(aux, 0x1);
 448
 449	__after_dc_op(op);
 450}
 451
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 452/* For kernel mappings cache operation: index is same as paddr */
 453#define __dc_line_op_k(p, sz, op)	__dc_line_op(p, p, sz, op)
 454
 455/*
 456 * D-Cache Line ops: Per Line INV (discard or wback+discard) or FLUSH (wback)
 457 */
 458static inline void __dc_line_op(phys_addr_t paddr, unsigned long vaddr,
 459				unsigned long sz, const int op)
 460{
 
 461	unsigned long flags;
 462
 463	local_irq_save(flags);
 464
 465	__before_dc_op(op);
 466
 467	__cache_line_loop(paddr, vaddr, sz, op);
 468
 469	__after_dc_op(op);
 470
 471	local_irq_restore(flags);
 472}
 473
 474#else
 475
 476#define __dc_entire_op(op)
 
 
 477#define __dc_line_op(paddr, vaddr, sz, op)
 478#define __dc_line_op_k(paddr, sz, op)
 479
 480#endif /* CONFIG_ARC_HAS_DCACHE */
 481
 482#ifdef CONFIG_ARC_HAS_ICACHE
 483
 484static inline void __ic_entire_inv(void)
 485{
 486	write_aux_reg(ARC_REG_IC_IVIC, 1);
 487	read_aux_reg(ARC_REG_IC_CTRL);	/* blocks */
 488}
 489
 490static inline void
 491__ic_line_inv_vaddr_local(phys_addr_t paddr, unsigned long vaddr,
 492			  unsigned long sz)
 493{
 
 494	unsigned long flags;
 495
 496	local_irq_save(flags);
 497	(*_cache_line_loop_ic_fn)(paddr, vaddr, sz, OP_INV_IC);
 498	local_irq_restore(flags);
 499}
 500
 501#ifndef CONFIG_SMP
 502
 503#define __ic_line_inv_vaddr(p, v, s)	__ic_line_inv_vaddr_local(p, v, s)
 504
 505#else
 506
 507struct ic_inv_args {
 508	phys_addr_t paddr, vaddr;
 509	int sz;
 510};
 511
 512static void __ic_line_inv_vaddr_helper(void *info)
 513{
 514        struct ic_inv_args *ic_inv = info;
 515
 516        __ic_line_inv_vaddr_local(ic_inv->paddr, ic_inv->vaddr, ic_inv->sz);
 517}
 518
 519static void __ic_line_inv_vaddr(phys_addr_t paddr, unsigned long vaddr,
 520				unsigned long sz)
 521{
 522	struct ic_inv_args ic_inv = {
 523		.paddr = paddr,
 524		.vaddr = vaddr,
 525		.sz    = sz
 526	};
 527
 528	on_each_cpu(__ic_line_inv_vaddr_helper, &ic_inv, 1);
 529}
 530
 531#endif	/* CONFIG_SMP */
 532
 533#else	/* !CONFIG_ARC_HAS_ICACHE */
 534
 535#define __ic_entire_inv()
 536#define __ic_line_inv_vaddr(pstart, vstart, sz)
 537
 538#endif /* CONFIG_ARC_HAS_ICACHE */
 539
 540noinline void slc_op(phys_addr_t paddr, unsigned long sz, const int op)
 541{
 542#ifdef CONFIG_ISA_ARCV2
 543	/*
 544	 * SLC is shared between all cores and concurrent aux operations from
 545	 * multiple cores need to be serialized using a spinlock
 546	 * A concurrent operation can be silently ignored and/or the old/new
 547	 * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop
 548	 * below)
 549	 */
 550	static DEFINE_SPINLOCK(lock);
 551	unsigned long flags;
 552	unsigned int ctrl;
 
 553
 554	spin_lock_irqsave(&lock, flags);
 555
 556	/*
 557	 * The Region Flush operation is specified by CTRL.RGN_OP[11..9]
 558	 *  - b'000 (default) is Flush,
 559	 *  - b'001 is Invalidate if CTRL.IM == 0
 560	 *  - b'001 is Flush-n-Invalidate if CTRL.IM == 1
 561	 */
 562	ctrl = read_aux_reg(ARC_REG_SLC_CTRL);
 563
 564	/* Don't rely on default value of IM bit */
 565	if (!(op & OP_FLUSH))		/* i.e. OP_INV */
 566		ctrl &= ~SLC_CTRL_IM;	/* clear IM: Disable flush before Inv */
 567	else
 568		ctrl |= SLC_CTRL_IM;
 569
 570	if (op & OP_INV)
 571		ctrl |= SLC_CTRL_RGN_OP_INV;	/* Inv or flush-n-inv */
 572	else
 573		ctrl &= ~SLC_CTRL_RGN_OP_INV;
 574
 575	write_aux_reg(ARC_REG_SLC_CTRL, ctrl);
 576
 577	/*
 578	 * Lower bits are ignored, no need to clip
 579	 * END needs to be setup before START (latter triggers the operation)
 580	 * END can't be same as START, so add (l2_line_sz - 1) to sz
 581	 */
 582	write_aux_reg(ARC_REG_SLC_RGN_END, (paddr + sz + l2_line_sz - 1));
 583	write_aux_reg(ARC_REG_SLC_RGN_START, paddr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 584
 585	while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY);
 586
 587	spin_unlock_irqrestore(&lock, flags);
 588#endif
 589}
 590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 591/***********************************************************
 592 * Exported APIs
 593 */
 594
 595/*
 596 * Handle cache congruency of kernel and userspace mappings of page when kernel
 597 * writes-to/reads-from
 598 *
 599 * The idea is to defer flushing of kernel mapping after a WRITE, possible if:
 600 *  -dcache is NOT aliasing, hence any U/K-mappings of page are congruent
 601 *  -U-mapping doesn't exist yet for page (finalised in update_mmu_cache)
 602 *  -In SMP, if hardware caches are coherent
 603 *
 604 * There's a corollary case, where kernel READs from a userspace mapped page.
 605 * If the U-mapping is not congruent to to K-mapping, former needs flushing.
 606 */
 607void flush_dcache_page(struct page *page)
 608{
 609	struct address_space *mapping;
 610
 611	if (!cache_is_vipt_aliasing()) {
 612		clear_bit(PG_dc_clean, &page->flags);
 613		return;
 614	}
 615
 616	/* don't handle anon pages here */
 617	mapping = page_mapping(page);
 618	if (!mapping)
 619		return;
 620
 621	/*
 622	 * pagecache page, file not yet mapped to userspace
 623	 * Make a note that K-mapping is dirty
 624	 */
 625	if (!mapping_mapped(mapping)) {
 626		clear_bit(PG_dc_clean, &page->flags);
 627	} else if (page_mapcount(page)) {
 628
 629		/* kernel reading from page with U-mapping */
 630		phys_addr_t paddr = (unsigned long)page_address(page);
 631		unsigned long vaddr = page->index << PAGE_SHIFT;
 632
 633		if (addr_not_cache_congruent(paddr, vaddr))
 634			__flush_dcache_page(paddr, vaddr);
 635	}
 636}
 637EXPORT_SYMBOL(flush_dcache_page);
 638
 639/*
 640 * DMA ops for systems with L1 cache only
 641 * Make memory coherent with L1 cache by flushing/invalidating L1 lines
 642 */
 643static void __dma_cache_wback_inv_l1(phys_addr_t start, unsigned long sz)
 644{
 645	__dc_line_op_k(start, sz, OP_FLUSH_N_INV);
 646}
 647
 648static void __dma_cache_inv_l1(phys_addr_t start, unsigned long sz)
 649{
 650	__dc_line_op_k(start, sz, OP_INV);
 651}
 652
 653static void __dma_cache_wback_l1(phys_addr_t start, unsigned long sz)
 654{
 655	__dc_line_op_k(start, sz, OP_FLUSH);
 656}
 657
 658/*
 659 * DMA ops for systems with both L1 and L2 caches, but without IOC
 660 * Both L1 and L2 lines need to be explicitly flushed/invalidated
 661 */
 662static void __dma_cache_wback_inv_slc(phys_addr_t start, unsigned long sz)
 663{
 664	__dc_line_op_k(start, sz, OP_FLUSH_N_INV);
 665	slc_op(start, sz, OP_FLUSH_N_INV);
 666}
 667
 668static void __dma_cache_inv_slc(phys_addr_t start, unsigned long sz)
 669{
 670	__dc_line_op_k(start, sz, OP_INV);
 671	slc_op(start, sz, OP_INV);
 672}
 673
 674static void __dma_cache_wback_slc(phys_addr_t start, unsigned long sz)
 675{
 676	__dc_line_op_k(start, sz, OP_FLUSH);
 677	slc_op(start, sz, OP_FLUSH);
 678}
 679
 680/*
 681 * DMA ops for systems with IOC
 682 * IOC hardware snoops all DMA traffic keeping the caches consistent with
 683 * memory - eliding need for any explicit cache maintenance of DMA buffers
 684 */
 685static void __dma_cache_wback_inv_ioc(phys_addr_t start, unsigned long sz) {}
 686static void __dma_cache_inv_ioc(phys_addr_t start, unsigned long sz) {}
 687static void __dma_cache_wback_ioc(phys_addr_t start, unsigned long sz) {}
 688
 689/*
 690 * Exported DMA API
 691 */
 692void dma_cache_wback_inv(phys_addr_t start, unsigned long sz)
 693{
 694	__dma_cache_wback_inv(start, sz);
 695}
 696EXPORT_SYMBOL(dma_cache_wback_inv);
 697
 698void dma_cache_inv(phys_addr_t start, unsigned long sz)
 699{
 700	__dma_cache_inv(start, sz);
 701}
 702EXPORT_SYMBOL(dma_cache_inv);
 703
 704void dma_cache_wback(phys_addr_t start, unsigned long sz)
 705{
 706	__dma_cache_wback(start, sz);
 707}
 708EXPORT_SYMBOL(dma_cache_wback);
 709
 710/*
 711 * This is API for making I/D Caches consistent when modifying
 712 * kernel code (loadable modules, kprobes, kgdb...)
 713 * This is called on insmod, with kernel virtual address for CODE of
 714 * the module. ARC cache maintenance ops require PHY address thus we
 715 * need to convert vmalloc addr to PHY addr
 716 */
 717void flush_icache_range(unsigned long kstart, unsigned long kend)
 718{
 719	unsigned int tot_sz;
 720
 721	WARN(kstart < TASK_SIZE, "%s() can't handle user vaddr", __func__);
 722
 723	/* Shortcut for bigger flush ranges.
 724	 * Here we don't care if this was kernel virtual or phy addr
 725	 */
 726	tot_sz = kend - kstart;
 727	if (tot_sz > PAGE_SIZE) {
 728		flush_cache_all();
 729		return;
 730	}
 731
 732	/* Case: Kernel Phy addr (0x8000_0000 onwards) */
 733	if (likely(kstart > PAGE_OFFSET)) {
 734		/*
 735		 * The 2nd arg despite being paddr will be used to index icache
 736		 * This is OK since no alternate virtual mappings will exist
 737		 * given the callers for this case: kprobe/kgdb in built-in
 738		 * kernel code only.
 739		 */
 740		__sync_icache_dcache(kstart, kstart, kend - kstart);
 741		return;
 742	}
 743
 744	/*
 745	 * Case: Kernel Vaddr (0x7000_0000 to 0x7fff_ffff)
 746	 * (1) ARC Cache Maintenance ops only take Phy addr, hence special
 747	 *     handling of kernel vaddr.
 748	 *
 749	 * (2) Despite @tot_sz being < PAGE_SIZE (bigger cases handled already),
 750	 *     it still needs to handle  a 2 page scenario, where the range
 751	 *     straddles across 2 virtual pages and hence need for loop
 752	 */
 753	while (tot_sz > 0) {
 754		unsigned int off, sz;
 755		unsigned long phy, pfn;
 756
 757		off = kstart % PAGE_SIZE;
 758		pfn = vmalloc_to_pfn((void *)kstart);
 759		phy = (pfn << PAGE_SHIFT) + off;
 760		sz = min_t(unsigned int, tot_sz, PAGE_SIZE - off);
 761		__sync_icache_dcache(phy, kstart, sz);
 762		kstart += sz;
 763		tot_sz -= sz;
 764	}
 765}
 766EXPORT_SYMBOL(flush_icache_range);
 767
 768/*
 769 * General purpose helper to make I and D cache lines consistent.
 770 * @paddr is phy addr of region
 771 * @vaddr is typically user vaddr (breakpoint) or kernel vaddr (vmalloc)
 772 *    However in one instance, when called by kprobe (for a breakpt in
 773 *    builtin kernel code) @vaddr will be paddr only, meaning CDU operation will
 774 *    use a paddr to index the cache (despite VIPT). This is fine since since a
 775 *    builtin kernel page will not have any virtual mappings.
 776 *    kprobe on loadable module will be kernel vaddr.
 777 */
 778void __sync_icache_dcache(phys_addr_t paddr, unsigned long vaddr, int len)
 779{
 780	__dc_line_op(paddr, vaddr, len, OP_FLUSH_N_INV);
 781	__ic_line_inv_vaddr(paddr, vaddr, len);
 782}
 783
 784/* wrapper to compile time eliminate alignment checks in flush loop */
 785void __inv_icache_page(phys_addr_t paddr, unsigned long vaddr)
 786{
 787	__ic_line_inv_vaddr(paddr, vaddr, PAGE_SIZE);
 788}
 789
 790/*
 791 * wrapper to clearout kernel or userspace mappings of a page
 792 * For kernel mappings @vaddr == @paddr
 793 */
 794void __flush_dcache_page(phys_addr_t paddr, unsigned long vaddr)
 795{
 796	__dc_line_op(paddr, vaddr & PAGE_MASK, PAGE_SIZE, OP_FLUSH_N_INV);
 797}
 798
 799noinline void flush_cache_all(void)
 800{
 801	unsigned long flags;
 802
 803	local_irq_save(flags);
 804
 805	__ic_entire_inv();
 806	__dc_entire_op(OP_FLUSH_N_INV);
 807
 808	local_irq_restore(flags);
 809
 810}
 811
 812#ifdef CONFIG_ARC_CACHE_VIPT_ALIASING
 813
 814void flush_cache_mm(struct mm_struct *mm)
 815{
 816	flush_cache_all();
 817}
 818
 819void flush_cache_page(struct vm_area_struct *vma, unsigned long u_vaddr,
 820		      unsigned long pfn)
 821{
 822	unsigned int paddr = pfn << PAGE_SHIFT;
 823
 824	u_vaddr &= PAGE_MASK;
 825
 826	__flush_dcache_page(paddr, u_vaddr);
 827
 828	if (vma->vm_flags & VM_EXEC)
 829		__inv_icache_page(paddr, u_vaddr);
 830}
 831
 832void flush_cache_range(struct vm_area_struct *vma, unsigned long start,
 833		       unsigned long end)
 834{
 835	flush_cache_all();
 836}
 837
 838void flush_anon_page(struct vm_area_struct *vma, struct page *page,
 839		     unsigned long u_vaddr)
 840{
 841	/* TBD: do we really need to clear the kernel mapping */
 842	__flush_dcache_page(page_address(page), u_vaddr);
 843	__flush_dcache_page(page_address(page), page_address(page));
 
 844
 845}
 846
 847#endif
 848
 849void copy_user_highpage(struct page *to, struct page *from,
 850	unsigned long u_vaddr, struct vm_area_struct *vma)
 851{
 852	void *kfrom = kmap_atomic(from);
 853	void *kto = kmap_atomic(to);
 854	int clean_src_k_mappings = 0;
 855
 856	/*
 857	 * If SRC page was already mapped in userspace AND it's U-mapping is
 858	 * not congruent with K-mapping, sync former to physical page so that
 859	 * K-mapping in memcpy below, sees the right data
 860	 *
 861	 * Note that while @u_vaddr refers to DST page's userspace vaddr, it is
 862	 * equally valid for SRC page as well
 863	 *
 864	 * For !VIPT cache, all of this gets compiled out as
 865	 * addr_not_cache_congruent() is 0
 866	 */
 867	if (page_mapcount(from) && addr_not_cache_congruent(kfrom, u_vaddr)) {
 868		__flush_dcache_page((unsigned long)kfrom, u_vaddr);
 869		clean_src_k_mappings = 1;
 870	}
 871
 872	copy_page(kto, kfrom);
 873
 874	/*
 875	 * Mark DST page K-mapping as dirty for a later finalization by
 876	 * update_mmu_cache(). Although the finalization could have been done
 877	 * here as well (given that both vaddr/paddr are available).
 878	 * But update_mmu_cache() already has code to do that for other
 879	 * non copied user pages (e.g. read faults which wire in pagecache page
 880	 * directly).
 881	 */
 882	clear_bit(PG_dc_clean, &to->flags);
 883
 884	/*
 885	 * if SRC was already usermapped and non-congruent to kernel mapping
 886	 * sync the kernel mapping back to physical page
 887	 */
 888	if (clean_src_k_mappings) {
 889		__flush_dcache_page((unsigned long)kfrom, (unsigned long)kfrom);
 890		set_bit(PG_dc_clean, &from->flags);
 891	} else {
 892		clear_bit(PG_dc_clean, &from->flags);
 893	}
 894
 895	kunmap_atomic(kto);
 896	kunmap_atomic(kfrom);
 897}
 898
 899void clear_user_page(void *to, unsigned long u_vaddr, struct page *page)
 900{
 901	clear_page(to);
 902	clear_bit(PG_dc_clean, &page->flags);
 903}
 904
 905
 906/**********************************************************************
 907 * Explicit Cache flush request from user space via syscall
 908 * Needed for JITs which generate code on the fly
 909 */
 910SYSCALL_DEFINE3(cacheflush, uint32_t, start, uint32_t, sz, uint32_t, flags)
 911{
 912	/* TBD: optimize this */
 913	flush_cache_all();
 914	return 0;
 915}
 916
 917void arc_cache_init(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 918{
 919	unsigned int __maybe_unused cpu = smp_processor_id();
 920	char str[256];
 921
 922	printk(arc_cache_mumbojumbo(0, str, sizeof(str)));
 923
 924	if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE)) {
 925		struct cpuinfo_arc_cache *ic = &cpuinfo_arc700[cpu].icache;
 926
 927		if (!ic->ver)
 928			panic("cache support enabled but non-existent cache\n");
 929
 930		if (ic->line_len != L1_CACHE_BYTES)
 931			panic("ICache line [%d] != kernel Config [%d]",
 932			      ic->line_len, L1_CACHE_BYTES);
 933
 934		if (ic->ver != CONFIG_ARC_MMU_VER)
 935			panic("Cache ver [%d] doesn't match MMU ver [%d]\n",
 936			      ic->ver, CONFIG_ARC_MMU_VER);
 937
 938		/*
 939		 * In MMU v4 (HS38x) the alising icache config uses IVIL/PTAG
 940		 * pair to provide vaddr/paddr respectively, just as in MMU v3
 941		 */
 942		if (is_isa_arcv2() && ic->alias)
 943			_cache_line_loop_ic_fn = __cache_line_loop_v3;
 944		else
 945			_cache_line_loop_ic_fn = __cache_line_loop;
 946	}
 947
 948	if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE)) {
 949		struct cpuinfo_arc_cache *dc = &cpuinfo_arc700[cpu].dcache;
 950
 951		if (!dc->ver)
 952			panic("cache support enabled but non-existent cache\n");
 953
 954		if (dc->line_len != L1_CACHE_BYTES)
 955			panic("DCache line [%d] != kernel Config [%d]",
 956			      dc->line_len, L1_CACHE_BYTES);
 957
 958		/* check for D-Cache aliasing on ARCompact: ARCv2 has PIPT */
 959		if (is_isa_arcompact()) {
 960			int handled = IS_ENABLED(CONFIG_ARC_CACHE_VIPT_ALIASING);
 
 961
 962			if (dc->alias && !handled)
 963				panic("Enable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
 964			else if (!dc->alias && handled)
 
 
 
 965				panic("Disable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
 
 966		}
 967	}
 968
 969	if (is_isa_arcv2() && l2_line_sz && !slc_enable) {
 
 
 
 
 
 
 
 
 
 
 
 
 970
 971		/* IM set : flush before invalidate */
 972		write_aux_reg(ARC_REG_SLC_CTRL,
 973			read_aux_reg(ARC_REG_SLC_CTRL) | SLC_CTRL_IM);
 974
 975		write_aux_reg(ARC_REG_SLC_INVALIDATE, 1);
 976
 977		/* Important to wait for flush to complete */
 978		while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY);
 979		write_aux_reg(ARC_REG_SLC_CTRL,
 980			read_aux_reg(ARC_REG_SLC_CTRL) | SLC_CTRL_DISABLE);
 981	}
 982
 983	if (is_isa_arcv2() && ioc_exists) {
 984		/* IO coherency base - 0x8z */
 985		write_aux_reg(ARC_REG_IO_COH_AP0_BASE, 0x80000);
 986		/* IO coherency aperture size - 512Mb: 0x8z-0xAz */
 987		write_aux_reg(ARC_REG_IO_COH_AP0_SIZE, 0x11);
 988		/* Enable partial writes */
 989		write_aux_reg(ARC_REG_IO_COH_PARTIAL, 1);
 990		/* Enable IO coherency */
 991		write_aux_reg(ARC_REG_IO_COH_ENABLE, 1);
 992
 993		__dma_cache_wback_inv = __dma_cache_wback_inv_ioc;
 994		__dma_cache_inv = __dma_cache_inv_ioc;
 995		__dma_cache_wback = __dma_cache_wback_ioc;
 996	} else if (is_isa_arcv2() && l2_line_sz && slc_enable) {
 997		__dma_cache_wback_inv = __dma_cache_wback_inv_slc;
 998		__dma_cache_inv = __dma_cache_inv_slc;
 999		__dma_cache_wback = __dma_cache_wback_slc;
1000	} else {
1001		__dma_cache_wback_inv = __dma_cache_wback_inv_l1;
1002		__dma_cache_inv = __dma_cache_inv_l1;
1003		__dma_cache_wback = __dma_cache_wback_l1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1004	}
1005}