Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/swap.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 */
   7
   8/*
   9 * This file contains the default values for the operation of the
  10 * Linux VM subsystem. Fine-tuning documentation can be found in
  11 * Documentation/admin-guide/sysctl/vm.rst.
  12 * Started 18.12.91
  13 * Swap aging added 23.2.95, Stephen Tweedie.
  14 * Buffermem limits added 12.3.98, Rik van Riel.
  15 */
  16
  17#include <linux/mm.h>
  18#include <linux/sched.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/swap.h>
  21#include <linux/mman.h>
  22#include <linux/pagemap.h>
  23#include <linux/pagevec.h>
  24#include <linux/init.h>
  25#include <linux/export.h>
  26#include <linux/mm_inline.h>
  27#include <linux/percpu_counter.h>
  28#include <linux/memremap.h>
  29#include <linux/percpu.h>
  30#include <linux/cpu.h>
  31#include <linux/notifier.h>
  32#include <linux/backing-dev.h>
  33#include <linux/memcontrol.h>
  34#include <linux/gfp.h>
  35#include <linux/uio.h>
  36#include <linux/hugetlb.h>
  37#include <linux/page_idle.h>
  38#include <linux/local_lock.h>
 
  39
  40#include "internal.h"
  41
  42#define CREATE_TRACE_POINTS
  43#include <trace/events/pagemap.h>
  44
  45/* How many pages do we try to swap or page in/out together? */
  46int page_cluster;
 
  47
  48/* Protecting only lru_rotate.pvec which requires disabling interrupts */
  49struct lru_rotate {
  50	local_lock_t lock;
  51	struct pagevec pvec;
  52};
  53static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
  54	.lock = INIT_LOCAL_LOCK(lock),
  55};
  56
  57/*
  58 * The following struct pagevec are grouped together because they are protected
  59 * by disabling preemption (and interrupts remain enabled).
  60 */
  61struct lru_pvecs {
  62	local_lock_t lock;
  63	struct pagevec lru_add;
  64	struct pagevec lru_deactivate_file;
  65	struct pagevec lru_deactivate;
  66	struct pagevec lru_lazyfree;
  67#ifdef CONFIG_SMP
  68	struct pagevec activate_page;
  69#endif
 
 
 
  70};
  71static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
 
  72	.lock = INIT_LOCAL_LOCK(lock),
 
  73};
  74
  75/*
  76 * This path almost never happens for VM activity - pages are normally
  77 * freed via pagevecs.  But it gets used by networking.
  78 */
  79static void __page_cache_release(struct page *page)
  80{
  81	if (PageLRU(page)) {
  82		pg_data_t *pgdat = page_pgdat(page);
  83		struct lruvec *lruvec;
  84		unsigned long flags;
  85
  86		spin_lock_irqsave(&pgdat->lru_lock, flags);
  87		lruvec = mem_cgroup_page_lruvec(page, pgdat);
  88		VM_BUG_ON_PAGE(!PageLRU(page), page);
  89		__ClearPageLRU(page);
  90		del_page_from_lru_list(page, lruvec, page_off_lru(page));
  91		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
  92	}
  93	__ClearPageWaiters(page);
  94}
  95
  96static void __put_single_page(struct page *page)
 
 
 
 
  97{
  98	__page_cache_release(page);
  99	mem_cgroup_uncharge(page);
 100	free_unref_page(page);
 101}
 102
 103static void __put_compound_page(struct page *page)
 104{
 105	/*
 106	 * __page_cache_release() is supposed to be called for thp, not for
 107	 * hugetlb. This is because hugetlb page does never have PageLRU set
 108	 * (it's never listed to any LRU lists) and no memcg routines should
 109	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
 110	 */
 111	if (!PageHuge(page))
 112		__page_cache_release(page);
 113	destroy_compound_page(page);
 114}
 115
 116void __put_page(struct page *page)
 117{
 118	if (is_zone_device_page(page)) {
 119		put_dev_pagemap(page->pgmap);
 
 
 120
 121		/*
 122		 * The page belongs to the device that created pgmap. Do
 123		 * not return it to page allocator.
 124		 */
 125		return;
 126	}
 127
 128	if (unlikely(PageCompound(page)))
 129		__put_compound_page(page);
 130	else
 131		__put_single_page(page);
 132}
 133EXPORT_SYMBOL(__put_page);
 134
 135/**
 136 * put_pages_list() - release a list of pages
 137 * @pages: list of pages threaded on page->lru
 138 *
 139 * Release a list of pages which are strung together on page.lru.  Currently
 140 * used by read_cache_pages() and related error recovery code.
 141 */
 142void put_pages_list(struct list_head *pages)
 143{
 144	while (!list_empty(pages)) {
 145		struct page *victim;
 
 
 146
 147		victim = lru_to_page(pages);
 148		list_del(&victim->lru);
 149		put_page(victim);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 150	}
 
 
 
 151}
 152EXPORT_SYMBOL(put_pages_list);
 153
 154/*
 155 * get_kernel_pages() - pin kernel pages in memory
 156 * @kiov:	An array of struct kvec structures
 157 * @nr_segs:	number of segments to pin
 158 * @write:	pinning for read/write, currently ignored
 159 * @pages:	array that receives pointers to the pages pinned.
 160 *		Should be at least nr_segs long.
 161 *
 162 * Returns number of pages pinned. This may be fewer than the number
 163 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 164 * were pinned, returns -errno. Each page returned must be released
 165 * with a put_page() call when it is finished with.
 166 */
 167int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
 168		struct page **pages)
 169{
 170	int seg;
 
 
 171
 172	for (seg = 0; seg < nr_segs; seg++) {
 173		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
 174			return seg;
 175
 176		pages[seg] = kmap_to_page(kiov[seg].iov_base);
 177		get_page(pages[seg]);
 
 
 178	}
 179
 180	return seg;
 
 
 181}
 182EXPORT_SYMBOL_GPL(get_kernel_pages);
 183
 184/*
 185 * get_kernel_page() - pin a kernel page in memory
 186 * @start:	starting kernel address
 187 * @write:	pinning for read/write, currently ignored
 188 * @pages:	array that receives pointer to the page pinned.
 189 *		Must be at least nr_segs long.
 190 *
 191 * Returns 1 if page is pinned. If the page was not pinned, returns
 192 * -errno. The page returned must be released with a put_page() call
 193 * when it is finished with.
 194 */
 195int get_kernel_page(unsigned long start, int write, struct page **pages)
 196{
 197	const struct kvec kiov = {
 198		.iov_base = (void *)start,
 199		.iov_len = PAGE_SIZE
 200	};
 201
 202	return get_kernel_pages(&kiov, 1, write, pages);
 203}
 204EXPORT_SYMBOL_GPL(get_kernel_page);
 205
 206static void pagevec_lru_move_fn(struct pagevec *pvec,
 207	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
 208	void *arg)
 209{
 210	int i;
 211	struct pglist_data *pgdat = NULL;
 212	struct lruvec *lruvec;
 213	unsigned long flags = 0;
 214
 215	for (i = 0; i < pagevec_count(pvec); i++) {
 216		struct page *page = pvec->pages[i];
 217		struct pglist_data *pagepgdat = page_pgdat(page);
 218
 219		if (pagepgdat != pgdat) {
 220			if (pgdat)
 221				spin_unlock_irqrestore(&pgdat->lru_lock, flags);
 222			pgdat = pagepgdat;
 223			spin_lock_irqsave(&pgdat->lru_lock, flags);
 224		}
 225
 226		lruvec = mem_cgroup_page_lruvec(page, pgdat);
 227		(*move_fn)(page, lruvec, arg);
 228	}
 229	if (pgdat)
 230		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
 231	release_pages(pvec->pages, pvec->nr);
 232	pagevec_reinit(pvec);
 233}
 234
 235static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
 236				 void *arg)
 237{
 238	int *pgmoved = arg;
 239
 240	if (PageLRU(page) && !PageUnevictable(page)) {
 241		del_page_from_lru_list(page, lruvec, page_lru(page));
 242		ClearPageActive(page);
 243		add_page_to_lru_list_tail(page, lruvec, page_lru(page));
 244		(*pgmoved) += thp_nr_pages(page);
 245	}
 246}
 247
 248/*
 249 * pagevec_move_tail() must be called with IRQ disabled.
 250 * Otherwise this may cause nasty races.
 251 */
 252static void pagevec_move_tail(struct pagevec *pvec)
 
 
 
 
 
 253{
 254	int pgmoved = 0;
 
 255
 256	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
 257	__count_vm_events(PGROTATED, pgmoved);
 
 
 258}
 259
 260/*
 261 * Writeback is about to end against a page which has been marked for immediate
 262 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 263 * inactive list.
 
 
 264 */
 265void rotate_reclaimable_page(struct page *page)
 266{
 267	if (!PageLocked(page) && !PageDirty(page) &&
 268	    !PageUnevictable(page) && PageLRU(page)) {
 269		struct pagevec *pvec;
 270		unsigned long flags;
 271
 272		get_page(page);
 273		local_lock_irqsave(&lru_rotate.lock, flags);
 274		pvec = this_cpu_ptr(&lru_rotate.pvec);
 275		if (!pagevec_add(pvec, page) || PageCompound(page))
 276			pagevec_move_tail(pvec);
 277		local_unlock_irqrestore(&lru_rotate.lock, flags);
 278	}
 279}
 280
 281void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
 
 282{
 
 
 
 
 
 
 
 
 
 
 
 283	do {
 284		unsigned long lrusize;
 285
 
 
 
 
 
 
 
 
 286		/* Record cost event */
 287		if (file)
 288			lruvec->file_cost += nr_pages;
 289		else
 290			lruvec->anon_cost += nr_pages;
 291
 292		/*
 293		 * Decay previous events
 294		 *
 295		 * Because workloads change over time (and to avoid
 296		 * overflow) we keep these statistics as a floating
 297		 * average, which ends up weighing recent refaults
 298		 * more than old ones.
 299		 */
 300		lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
 301			  lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
 302			  lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
 303			  lruvec_page_state(lruvec, NR_ACTIVE_FILE);
 304
 305		if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
 306			lruvec->file_cost /= 2;
 307			lruvec->anon_cost /= 2;
 308		}
 
 309	} while ((lruvec = parent_lruvec(lruvec)));
 310}
 311
 312void lru_note_cost_page(struct page *page)
 313{
 314	lru_note_cost(mem_cgroup_page_lruvec(page, page_pgdat(page)),
 315		      page_is_file_lru(page), thp_nr_pages(page));
 316}
 317
 318static void __activate_page(struct page *page, struct lruvec *lruvec,
 319			    void *arg)
 320{
 321	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
 322		int lru = page_lru_base_type(page);
 323		int nr_pages = thp_nr_pages(page);
 324
 325		del_page_from_lru_list(page, lruvec, lru);
 326		SetPageActive(page);
 327		lru += LRU_ACTIVE;
 328		add_page_to_lru_list(page, lruvec, lru);
 329		trace_mm_lru_activate(page);
 330
 331		__count_vm_events(PGACTIVATE, nr_pages);
 332		__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
 333				     nr_pages);
 334	}
 335}
 336
 337#ifdef CONFIG_SMP
 338static void activate_page_drain(int cpu)
 339{
 340	struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
 341
 342	if (pagevec_count(pvec))
 343		pagevec_lru_move_fn(pvec, __activate_page, NULL);
 344}
 345
 346static bool need_activate_page_drain(int cpu)
 
 347{
 348	return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
 
 
 
 349}
 350
 351void activate_page(struct page *page)
 352{
 353	page = compound_head(page);
 354	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
 355		struct pagevec *pvec;
 356
 357		local_lock(&lru_pvecs.lock);
 358		pvec = this_cpu_ptr(&lru_pvecs.activate_page);
 359		get_page(page);
 360		if (!pagevec_add(pvec, page) || PageCompound(page))
 361			pagevec_lru_move_fn(pvec, __activate_page, NULL);
 362		local_unlock(&lru_pvecs.lock);
 363	}
 364}
 365
 366#else
 367static inline void activate_page_drain(int cpu)
 368{
 369}
 370
 371void activate_page(struct page *page)
 372{
 373	pg_data_t *pgdat = page_pgdat(page);
 374
 375	page = compound_head(page);
 376	spin_lock_irq(&pgdat->lru_lock);
 377	__activate_page(page, mem_cgroup_page_lruvec(page, pgdat), NULL);
 378	spin_unlock_irq(&pgdat->lru_lock);
 
 
 
 379}
 380#endif
 381
 382static void __lru_cache_activate_page(struct page *page)
 383{
 384	struct pagevec *pvec;
 385	int i;
 386
 387	local_lock(&lru_pvecs.lock);
 388	pvec = this_cpu_ptr(&lru_pvecs.lru_add);
 389
 390	/*
 391	 * Search backwards on the optimistic assumption that the page being
 392	 * activated has just been added to this pagevec. Note that only
 393	 * the local pagevec is examined as a !PageLRU page could be in the
 394	 * process of being released, reclaimed, migrated or on a remote
 395	 * pagevec that is currently being drained. Furthermore, marking
 396	 * a remote pagevec's page PageActive potentially hits a race where
 397	 * a page is marked PageActive just after it is added to the inactive
 398	 * list causing accounting errors and BUG_ON checks to trigger.
 399	 */
 400	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
 401		struct page *pagevec_page = pvec->pages[i];
 402
 403		if (pagevec_page == page) {
 404			SetPageActive(page);
 405			break;
 406		}
 407	}
 408
 409	local_unlock(&lru_pvecs.lock);
 410}
 411
 412/*
 413 * Mark a page as having seen activity.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 414 *
 415 * inactive,unreferenced	->	inactive,referenced
 416 * inactive,referenced		->	active,unreferenced
 417 * active,unreferenced		->	active,referenced
 418 *
 419 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
 420 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
 
 
 
 
 421 */
 422void mark_page_accessed(struct page *page)
 423{
 424	page = compound_head(page);
 
 
 
 425
 426	if (!PageReferenced(page)) {
 427		SetPageReferenced(page);
 428	} else if (PageUnevictable(page)) {
 429		/*
 430		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
 431		 * this list is never rotated or maintained, so marking an
 432		 * evictable page accessed has no effect.
 433		 */
 434	} else if (!PageActive(page)) {
 435		/*
 436		 * If the page is on the LRU, queue it for activation via
 437		 * lru_pvecs.activate_page. Otherwise, assume the page is on a
 438		 * pagevec, mark it active and it'll be moved to the active
 439		 * LRU on the next drain.
 440		 */
 441		if (PageLRU(page))
 442			activate_page(page);
 443		else
 444			__lru_cache_activate_page(page);
 445		ClearPageReferenced(page);
 446		workingset_activation(page);
 447	}
 448	if (page_is_idle(page))
 449		clear_page_idle(page);
 450}
 451EXPORT_SYMBOL(mark_page_accessed);
 452
 453/**
 454 * lru_cache_add - add a page to a page list
 455 * @page: the page to be added to the LRU.
 456 *
 457 * Queue the page for addition to the LRU via pagevec. The decision on whether
 458 * to add the page to the [in]active [file|anon] list is deferred until the
 459 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
 460 * have the page added to the active list using mark_page_accessed().
 461 */
 462void lru_cache_add(struct page *page)
 463{
 464	struct pagevec *pvec;
 
 
 465
 466	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
 467	VM_BUG_ON_PAGE(PageLRU(page), page);
 
 
 468
 469	get_page(page);
 470	local_lock(&lru_pvecs.lock);
 471	pvec = this_cpu_ptr(&lru_pvecs.lru_add);
 472	if (!pagevec_add(pvec, page) || PageCompound(page))
 473		__pagevec_lru_add(pvec);
 474	local_unlock(&lru_pvecs.lock);
 475}
 476EXPORT_SYMBOL(lru_cache_add);
 477
 478/**
 479 * lru_cache_add_inactive_or_unevictable
 480 * @page:  the page to be added to LRU
 481 * @vma:   vma in which page is mapped for determining reclaimability
 482 *
 483 * Place @page on the inactive or unevictable LRU list, depending on its
 484 * evictability.  Note that if the page is not evictable, it goes
 485 * directly back onto it's zone's unevictable list, it does NOT use a
 486 * per cpu pagevec.
 487 */
 488void lru_cache_add_inactive_or_unevictable(struct page *page,
 489					 struct vm_area_struct *vma)
 490{
 491	bool unevictable;
 492
 493	VM_BUG_ON_PAGE(PageLRU(page), page);
 494
 495	unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
 496	if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
 497		int nr_pages = thp_nr_pages(page);
 498		/*
 499		 * We use the irq-unsafe __mod_zone_page_stat because this
 500		 * counter is not modified from interrupt context, and the pte
 501		 * lock is held(spinlock), which implies preemption disabled.
 502		 */
 503		__mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
 504		count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
 505	}
 506	lru_cache_add(page);
 507}
 508
 509/*
 510 * If the page can not be invalidated, it is moved to the
 511 * inactive list to speed up its reclaim.  It is moved to the
 512 * head of the list, rather than the tail, to give the flusher
 513 * threads some time to write it out, as this is much more
 514 * effective than the single-page writeout from reclaim.
 515 *
 516 * If the page isn't page_mapped and dirty/writeback, the page
 517 * could reclaim asap using PG_reclaim.
 518 *
 519 * 1. active, mapped page -> none
 520 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
 521 * 3. inactive, mapped page -> none
 522 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
 523 * 5. inactive, clean -> inactive, tail
 524 * 6. Others -> none
 525 *
 526 * In 4, why it moves inactive's head, the VM expects the page would
 527 * be write it out by flusher threads as this is much more effective
 528 * than the single-page writeout from reclaim.
 529 */
 530static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
 531			      void *arg)
 532{
 533	int lru;
 534	bool active;
 535	int nr_pages = thp_nr_pages(page);
 536
 537	if (!PageLRU(page))
 538		return;
 539
 540	if (PageUnevictable(page))
 541		return;
 542
 543	/* Some processes are using the page */
 544	if (page_mapped(page))
 545		return;
 546
 547	active = PageActive(page);
 548	lru = page_lru_base_type(page);
 549
 550	del_page_from_lru_list(page, lruvec, lru + active);
 551	ClearPageActive(page);
 552	ClearPageReferenced(page);
 553
 554	if (PageWriteback(page) || PageDirty(page)) {
 555		/*
 556		 * PG_reclaim could be raced with end_page_writeback
 557		 * It can make readahead confusing.  But race window
 558		 * is _really_ small and  it's non-critical problem.
 
 559		 */
 560		add_page_to_lru_list(page, lruvec, lru);
 561		SetPageReclaim(page);
 562	} else {
 563		/*
 564		 * The page's writeback ends up during pagevec
 565		 * We moves tha page into tail of inactive.
 566		 */
 567		add_page_to_lru_list_tail(page, lruvec, lru);
 568		__count_vm_events(PGROTATED, nr_pages);
 569	}
 570
 571	if (active) {
 572		__count_vm_events(PGDEACTIVATE, nr_pages);
 573		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
 574				     nr_pages);
 575	}
 576}
 577
 578static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
 579			    void *arg)
 580{
 581	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
 582		int lru = page_lru_base_type(page);
 583		int nr_pages = thp_nr_pages(page);
 584
 585		del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE);
 586		ClearPageActive(page);
 587		ClearPageReferenced(page);
 588		add_page_to_lru_list(page, lruvec, lru);
 589
 590		__count_vm_events(PGDEACTIVATE, nr_pages);
 591		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
 592				     nr_pages);
 593	}
 
 
 
 
 
 
 594}
 595
 596static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
 597			    void *arg)
 598{
 599	if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
 600	    !PageSwapCache(page) && !PageUnevictable(page)) {
 601		bool active = PageActive(page);
 602		int nr_pages = thp_nr_pages(page);
 603
 604		del_page_from_lru_list(page, lruvec,
 605				       LRU_INACTIVE_ANON + active);
 606		ClearPageActive(page);
 607		ClearPageReferenced(page);
 608		/*
 609		 * Lazyfree pages are clean anonymous pages.  They have
 610		 * PG_swapbacked flag cleared, to distinguish them from normal
 611		 * anonymous pages
 612		 */
 613		ClearPageSwapBacked(page);
 614		add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
 615
 616		__count_vm_events(PGLAZYFREE, nr_pages);
 617		__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
 618				     nr_pages);
 619	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 620}
 621
 622/*
 623 * Drain pages out of the cpu's pagevecs.
 624 * Either "cpu" is the current CPU, and preemption has already been
 625 * disabled; or "cpu" is being hot-unplugged, and is already dead.
 626 */
 627void lru_add_drain_cpu(int cpu)
 628{
 629	struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
 
 630
 631	if (pagevec_count(pvec))
 632		__pagevec_lru_add(pvec);
 633
 634	pvec = &per_cpu(lru_rotate.pvec, cpu);
 635	/* Disabling interrupts below acts as a compiler barrier. */
 636	if (data_race(pagevec_count(pvec))) {
 637		unsigned long flags;
 638
 639		/* No harm done if a racing interrupt already did this */
 640		local_lock_irqsave(&lru_rotate.lock, flags);
 641		pagevec_move_tail(pvec);
 642		local_unlock_irqrestore(&lru_rotate.lock, flags);
 643	}
 644
 645	pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
 646	if (pagevec_count(pvec))
 647		pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
 648
 649	pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
 650	if (pagevec_count(pvec))
 651		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
 652
 653	pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
 654	if (pagevec_count(pvec))
 655		pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
 656
 657	activate_page_drain(cpu);
 
 
 
 
 
 
 
 
 658}
 659
 660/**
 661 * deactivate_file_page - forcefully deactivate a file page
 662 * @page: page to deactivate
 663 *
 664 * This function hints the VM that @page is a good reclaim candidate,
 665 * for example if its invalidation fails due to the page being dirty
 666 * or under writeback.
 
 
 667 */
 668void deactivate_file_page(struct page *page)
 669{
 670	/*
 671	 * In a workload with many unevictable page such as mprotect,
 672	 * unevictable page deactivation for accelerating reclaim is pointless.
 673	 */
 674	if (PageUnevictable(page))
 675		return;
 676
 677	if (likely(get_page_unless_zero(page))) {
 678		struct pagevec *pvec;
 679
 680		local_lock(&lru_pvecs.lock);
 681		pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
 682
 683		if (!pagevec_add(pvec, page) || PageCompound(page))
 684			pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
 685		local_unlock(&lru_pvecs.lock);
 686	}
 687}
 688
 689/*
 690 * deactivate_page - deactivate a page
 691 * @page: page to deactivate
 692 *
 693 * deactivate_page() moves @page to the inactive list if @page was on the active
 694 * list and was not an unevictable page.  This is done to accelerate the reclaim
 695 * of @page.
 696 */
 697void deactivate_page(struct page *page)
 698{
 699	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
 700		struct pagevec *pvec;
 701
 702		local_lock(&lru_pvecs.lock);
 703		pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
 704		get_page(page);
 705		if (!pagevec_add(pvec, page) || PageCompound(page))
 706			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
 707		local_unlock(&lru_pvecs.lock);
 708	}
 709}
 710
 711/**
 712 * mark_page_lazyfree - make an anon page lazyfree
 713 * @page: page to deactivate
 714 *
 715 * mark_page_lazyfree() moves @page to the inactive file list.
 716 * This is done to accelerate the reclaim of @page.
 717 */
 718void mark_page_lazyfree(struct page *page)
 719{
 720	if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
 721	    !PageSwapCache(page) && !PageUnevictable(page)) {
 722		struct pagevec *pvec;
 723
 724		local_lock(&lru_pvecs.lock);
 725		pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
 726		get_page(page);
 727		if (!pagevec_add(pvec, page) || PageCompound(page))
 728			pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
 729		local_unlock(&lru_pvecs.lock);
 730	}
 731}
 732
 733void lru_add_drain(void)
 734{
 735	local_lock(&lru_pvecs.lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 736	lru_add_drain_cpu(smp_processor_id());
 737	local_unlock(&lru_pvecs.lock);
 
 
 738}
 739
 740void lru_add_drain_cpu_zone(struct zone *zone)
 741{
 742	local_lock(&lru_pvecs.lock);
 743	lru_add_drain_cpu(smp_processor_id());
 744	drain_local_pages(zone);
 745	local_unlock(&lru_pvecs.lock);
 
 746}
 747
 748#ifdef CONFIG_SMP
 749
 750static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
 751
 752static void lru_add_drain_per_cpu(struct work_struct *dummy)
 753{
 754	lru_add_drain();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 755}
 756
 757/*
 758 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
 759 * kworkers being shut down before our page_alloc_cpu_dead callback is
 760 * executed on the offlined cpu.
 761 * Calling this function with cpu hotplug locks held can actually lead
 762 * to obscure indirect dependencies via WQ context.
 763 */
 764void lru_add_drain_all(void)
 765{
 766	static seqcount_t seqcount = SEQCNT_ZERO(seqcount);
 767	static DEFINE_MUTEX(lock);
 
 
 
 
 
 
 
 
 
 768	static struct cpumask has_work;
 769	int cpu, seq;
 
 770
 771	/*
 772	 * Make sure nobody triggers this path before mm_percpu_wq is fully
 773	 * initialized.
 774	 */
 775	if (WARN_ON(!mm_percpu_wq))
 776		return;
 777
 778	seq = raw_read_seqcount_latch(&seqcount);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 779
 780	mutex_lock(&lock);
 781
 782	/*
 783	 * Piggyback on drain started and finished while we waited for lock:
 784	 * all pages pended at the time of our enter were drained from vectors.
 785	 */
 786	if (__read_seqcount_retry(&seqcount, seq))
 787		goto done;
 788
 789	raw_write_seqcount_latch(&seqcount);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 790
 791	cpumask_clear(&has_work);
 792
 793	for_each_online_cpu(cpu) {
 794		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
 795
 796		if (pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
 797		    data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
 798		    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
 799		    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
 800		    pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
 801		    need_activate_page_drain(cpu)) {
 802			INIT_WORK(work, lru_add_drain_per_cpu);
 803			queue_work_on(cpu, mm_percpu_wq, work);
 804			cpumask_set_cpu(cpu, &has_work);
 805		}
 806	}
 807
 808	for_each_cpu(cpu, &has_work)
 809		flush_work(&per_cpu(lru_add_drain_work, cpu));
 810
 811done:
 812	mutex_unlock(&lock);
 813}
 
 
 
 
 
 814#else
 815void lru_add_drain_all(void)
 816{
 817	lru_add_drain();
 818}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 819#endif
 
 820
 821/**
 822 * release_pages - batched put_page()
 823 * @pages: array of pages to release
 824 * @nr: number of pages
 
 
 
 
 
 
 
 825 *
 826 * Decrement the reference count on all the pages in @pages.  If it
 827 * fell to zero, remove the page from the LRU and free it.
 828 */
 829void release_pages(struct page **pages, int nr)
 830{
 831	int i;
 832	LIST_HEAD(pages_to_free);
 833	struct pglist_data *locked_pgdat = NULL;
 834	struct lruvec *lruvec;
 835	unsigned long flags;
 836	unsigned int lock_batch;
 837
 838	for (i = 0; i < nr; i++) {
 839		struct page *page = pages[i];
 840
 841		/*
 842		 * Make sure the IRQ-safe lock-holding time does not get
 843		 * excessive with a continuous string of pages from the
 844		 * same pgdat. The lock is held only if pgdat != NULL.
 845		 */
 846		if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
 847			spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
 848			locked_pgdat = NULL;
 849		}
 850
 851		if (is_huge_zero_page(page))
 852			continue;
 853
 854		if (is_zone_device_page(page)) {
 855			if (locked_pgdat) {
 856				spin_unlock_irqrestore(&locked_pgdat->lru_lock,
 857						       flags);
 858				locked_pgdat = NULL;
 859			}
 860			/*
 861			 * ZONE_DEVICE pages that return 'false' from
 862			 * put_devmap_managed_page() do not require special
 863			 * processing, and instead, expect a call to
 864			 * put_page_testzero().
 865			 */
 866			if (page_is_devmap_managed(page)) {
 867				put_devmap_managed_page(page);
 868				continue;
 869			}
 
 
 870		}
 871
 872		page = compound_head(page);
 873		if (!put_page_testzero(page))
 874			continue;
 875
 876		if (PageCompound(page)) {
 877			if (locked_pgdat) {
 878				spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
 879				locked_pgdat = NULL;
 
 880			}
 881			__put_compound_page(page);
 882			continue;
 883		}
 
 
 884
 885		if (PageLRU(page)) {
 886			struct pglist_data *pgdat = page_pgdat(page);
 
 
 
 
 
 
 
 
 887
 888			if (pgdat != locked_pgdat) {
 889				if (locked_pgdat)
 890					spin_unlock_irqrestore(&locked_pgdat->lru_lock,
 891									flags);
 892				lock_batch = 0;
 893				locked_pgdat = pgdat;
 894				spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
 895			}
 896
 897			lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
 898			VM_BUG_ON_PAGE(!PageLRU(page), page);
 899			__ClearPageLRU(page);
 900			del_page_from_lru_list(page, lruvec, page_off_lru(page));
 901		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 902
 903		/* Clear Active bit in case of parallel mark_page_accessed */
 904		__ClearPageActive(page);
 905		__ClearPageWaiters(page);
 
 
 906
 907		list_add(&page->lru, &pages_to_free);
 
 
 908	}
 909	if (locked_pgdat)
 910		spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
 911
 912	mem_cgroup_uncharge_list(&pages_to_free);
 913	free_unref_page_list(&pages_to_free);
 914}
 915EXPORT_SYMBOL(release_pages);
 916
 917/*
 918 * The pages which we're about to release may be in the deferred lru-addition
 919 * queues.  That would prevent them from really being freed right now.  That's
 920 * OK from a correctness point of view but is inefficient - those pages may be
 921 * cache-warm and we want to give them back to the page allocator ASAP.
 922 *
 923 * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
 924 * and __pagevec_lru_add_active() call release_pages() directly to avoid
 925 * mutual recursion.
 926 */
 927void __pagevec_release(struct pagevec *pvec)
 928{
 929	if (!pvec->percpu_pvec_drained) {
 930		lru_add_drain();
 931		pvec->percpu_pvec_drained = true;
 932	}
 933	release_pages(pvec->pages, pagevec_count(pvec));
 934	pagevec_reinit(pvec);
 935}
 936EXPORT_SYMBOL(__pagevec_release);
 937
 938#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 939/* used by __split_huge_page_refcount() */
 940void lru_add_page_tail(struct page *page, struct page *page_tail,
 941		       struct lruvec *lruvec, struct list_head *list)
 942{
 943	VM_BUG_ON_PAGE(!PageHead(page), page);
 944	VM_BUG_ON_PAGE(PageCompound(page_tail), page);
 945	VM_BUG_ON_PAGE(PageLRU(page_tail), page);
 946	lockdep_assert_held(&lruvec_pgdat(lruvec)->lru_lock);
 947
 948	if (!list)
 949		SetPageLRU(page_tail);
 950
 951	if (likely(PageLRU(page)))
 952		list_add_tail(&page_tail->lru, &page->lru);
 953	else if (list) {
 954		/* page reclaim is reclaiming a huge page */
 955		get_page(page_tail);
 956		list_add_tail(&page_tail->lru, list);
 957	} else {
 958		/*
 959		 * Head page has not yet been counted, as an hpage,
 960		 * so we must account for each subpage individually.
 961		 *
 962		 * Put page_tail on the list at the correct position
 963		 * so they all end up in order.
 964		 */
 965		add_page_to_lru_list_tail(page_tail, lruvec,
 966					  page_lru(page_tail));
 967	}
 968}
 969#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 970
 971static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
 972				 void *arg)
 973{
 974	enum lru_list lru;
 975	int was_unevictable = TestClearPageUnevictable(page);
 976	int nr_pages = thp_nr_pages(page);
 977
 978	VM_BUG_ON_PAGE(PageLRU(page), page);
 979
 980	/*
 981	 * Page becomes evictable in two ways:
 982	 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
 983	 * 2) Before acquiring LRU lock to put the page to correct LRU and then
 984	 *   a) do PageLRU check with lock [check_move_unevictable_pages]
 985	 *   b) do PageLRU check before lock [clear_page_mlock]
 986	 *
 987	 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
 988	 * following strict ordering:
 989	 *
 990	 * #0: __pagevec_lru_add_fn		#1: clear_page_mlock
 991	 *
 992	 * SetPageLRU()				TestClearPageMlocked()
 993	 * smp_mb() // explicit ordering	// above provides strict
 994	 *					// ordering
 995	 * PageMlocked()			PageLRU()
 996	 *
 997	 *
 998	 * if '#1' does not observe setting of PG_lru by '#0' and fails
 999	 * isolation, the explicit barrier will make sure that page_evictable
1000	 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
1001	 * can be reordered after PageMlocked check and can make '#1' to fail
1002	 * the isolation of the page whose Mlocked bit is cleared (#0 is also
1003	 * looking at the same page) and the evictable page will be stranded
1004	 * in an unevictable LRU.
1005	 */
1006	SetPageLRU(page);
1007	smp_mb__after_atomic();
1008
1009	if (page_evictable(page)) {
1010		lru = page_lru(page);
1011		if (was_unevictable)
1012			__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
1013	} else {
1014		lru = LRU_UNEVICTABLE;
1015		ClearPageActive(page);
1016		SetPageUnevictable(page);
1017		if (!was_unevictable)
1018			__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
1019	}
1020
1021	add_page_to_lru_list(page, lruvec, lru);
1022	trace_mm_lru_insertion(page, lru);
1023}
1024
1025/*
1026 * Add the passed pages to the LRU, then drop the caller's refcount
1027 * on them.  Reinitialises the caller's pagevec.
1028 */
1029void __pagevec_lru_add(struct pagevec *pvec)
1030{
1031	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1032}
1033
1034/**
1035 * pagevec_lookup_entries - gang pagecache lookup
1036 * @pvec:	Where the resulting entries are placed
1037 * @mapping:	The address_space to search
1038 * @start:	The starting entry index
1039 * @nr_entries:	The maximum number of pages
1040 * @indices:	The cache indices corresponding to the entries in @pvec
1041 *
1042 * pagevec_lookup_entries() will search for and return a group of up
1043 * to @nr_pages pages and shadow entries in the mapping.  All
1044 * entries are placed in @pvec.  pagevec_lookup_entries() takes a
1045 * reference against actual pages in @pvec.
1046 *
1047 * The search returns a group of mapping-contiguous entries with
1048 * ascending indexes.  There may be holes in the indices due to
1049 * not-present entries.
1050 *
1051 * Only one subpage of a Transparent Huge Page is returned in one call:
1052 * allowing truncate_inode_pages_range() to evict the whole THP without
1053 * cycling through a pagevec of extra references.
1054 *
1055 * pagevec_lookup_entries() returns the number of entries which were
1056 * found.
1057 */
1058unsigned pagevec_lookup_entries(struct pagevec *pvec,
1059				struct address_space *mapping,
1060				pgoff_t start, unsigned nr_entries,
1061				pgoff_t *indices)
1062{
1063	pvec->nr = find_get_entries(mapping, start, nr_entries,
1064				    pvec->pages, indices);
1065	return pagevec_count(pvec);
1066}
 
1067
1068/**
1069 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1070 * @pvec:	The pagevec to prune
1071 *
1072 * pagevec_lookup_entries() fills both pages and exceptional radix
1073 * tree entries into the pagevec.  This function prunes all
1074 * exceptionals from @pvec without leaving holes, so that it can be
1075 * passed on to page-only pagevec operations.
1076 */
1077void pagevec_remove_exceptionals(struct pagevec *pvec)
1078{
1079	int i, j;
1080
1081	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1082		struct page *page = pvec->pages[i];
1083		if (!xa_is_value(page))
1084			pvec->pages[j++] = page;
1085	}
1086	pvec->nr = j;
1087}
1088
1089/**
1090 * pagevec_lookup_range - gang pagecache lookup
1091 * @pvec:	Where the resulting pages are placed
1092 * @mapping:	The address_space to search
1093 * @start:	The starting page index
1094 * @end:	The final page index
1095 *
1096 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1097 * pages in the mapping starting from index @start and upto index @end
1098 * (inclusive).  The pages are placed in @pvec.  pagevec_lookup() takes a
1099 * reference against the pages in @pvec.
1100 *
1101 * The search returns a group of mapping-contiguous pages with ascending
1102 * indexes.  There may be holes in the indices due to not-present pages. We
1103 * also update @start to index the next page for the traversal.
1104 *
1105 * pagevec_lookup_range() returns the number of pages which were found. If this
1106 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1107 * reached.
1108 */
1109unsigned pagevec_lookup_range(struct pagevec *pvec,
1110		struct address_space *mapping, pgoff_t *start, pgoff_t end)
1111{
1112	pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1113					pvec->pages);
1114	return pagevec_count(pvec);
1115}
1116EXPORT_SYMBOL(pagevec_lookup_range);
1117
1118unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1119		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1120		xa_mark_t tag)
1121{
1122	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1123					PAGEVEC_SIZE, pvec->pages);
1124	return pagevec_count(pvec);
1125}
1126EXPORT_SYMBOL(pagevec_lookup_range_tag);
1127
1128unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec,
1129		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1130		xa_mark_t tag, unsigned max_pages)
1131{
1132	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1133		min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages);
1134	return pagevec_count(pvec);
1135}
1136EXPORT_SYMBOL(pagevec_lookup_range_nr_tag);
1137/*
1138 * Perform any setup for the swap system
1139 */
1140void __init swap_setup(void)
1141{
1142	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1143
1144	/* Use a smaller cluster for small-memory machines */
1145	if (megs < 16)
1146		page_cluster = 2;
1147	else
1148		page_cluster = 3;
1149	/*
1150	 * Right now other parts of the system means that we
1151	 * _really_ don't want to cluster much more
1152	 */
1153}
1154
1155#ifdef CONFIG_DEV_PAGEMAP_OPS
1156void put_devmap_managed_page(struct page *page)
1157{
1158	int count;
1159
1160	if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1161		return;
1162
1163	count = page_ref_dec_return(page);
1164
1165	/*
1166	 * devmap page refcounts are 1-based, rather than 0-based: if
1167	 * refcount is 1, then the page is free and the refcount is
1168	 * stable because nobody holds a reference on the page.
1169	 */
1170	if (count == 1)
1171		free_devmap_managed_page(page);
1172	else if (!count)
1173		__put_page(page);
1174}
1175EXPORT_SYMBOL(put_devmap_managed_page);
1176#endif
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/swap.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 */
   7
   8/*
   9 * This file contains the default values for the operation of the
  10 * Linux VM subsystem. Fine-tuning documentation can be found in
  11 * Documentation/admin-guide/sysctl/vm.rst.
  12 * Started 18.12.91
  13 * Swap aging added 23.2.95, Stephen Tweedie.
  14 * Buffermem limits added 12.3.98, Rik van Riel.
  15 */
  16
  17#include <linux/mm.h>
  18#include <linux/sched.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/swap.h>
  21#include <linux/mman.h>
  22#include <linux/pagemap.h>
  23#include <linux/pagevec.h>
  24#include <linux/init.h>
  25#include <linux/export.h>
  26#include <linux/mm_inline.h>
  27#include <linux/percpu_counter.h>
  28#include <linux/memremap.h>
  29#include <linux/percpu.h>
  30#include <linux/cpu.h>
  31#include <linux/notifier.h>
  32#include <linux/backing-dev.h>
  33#include <linux/memcontrol.h>
  34#include <linux/gfp.h>
  35#include <linux/uio.h>
  36#include <linux/hugetlb.h>
  37#include <linux/page_idle.h>
  38#include <linux/local_lock.h>
  39#include <linux/buffer_head.h>
  40
  41#include "internal.h"
  42
  43#define CREATE_TRACE_POINTS
  44#include <trace/events/pagemap.h>
  45
  46/* How many pages do we try to swap or page in/out together? As a power of 2 */
  47int page_cluster;
  48const int page_cluster_max = 31;
  49
  50struct cpu_fbatches {
  51	/*
  52	 * The following folio batches are grouped together because they are protected
  53	 * by disabling preemption (and interrupts remain enabled).
  54	 */
 
 
 
 
 
 
 
 
 
  55	local_lock_t lock;
  56	struct folio_batch lru_add;
  57	struct folio_batch lru_deactivate_file;
  58	struct folio_batch lru_deactivate;
  59	struct folio_batch lru_lazyfree;
  60#ifdef CONFIG_SMP
  61	struct folio_batch lru_activate;
  62#endif
  63	/* Protecting the following batches which require disabling interrupts */
  64	local_lock_t lock_irq;
  65	struct folio_batch lru_move_tail;
  66};
  67
  68static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = {
  69	.lock = INIT_LOCAL_LOCK(lock),
  70	.lock_irq = INIT_LOCAL_LOCK(lock_irq),
  71};
  72
  73static void __page_cache_release(struct folio *folio, struct lruvec **lruvecp,
  74		unsigned long *flagsp)
 
 
 
  75{
  76	if (folio_test_lru(folio)) {
  77		folio_lruvec_relock_irqsave(folio, lruvecp, flagsp);
  78		lruvec_del_folio(*lruvecp, folio);
  79		__folio_clear_lru_flags(folio);
 
 
 
 
 
 
 
  80	}
 
  81}
  82
  83/*
  84 * This path almost never happens for VM activity - pages are normally freed
  85 * in batches.  But it gets used by networking - and for compound pages.
  86 */
  87static void page_cache_release(struct folio *folio)
  88{
  89	struct lruvec *lruvec = NULL;
  90	unsigned long flags;
 
 
  91
  92	__page_cache_release(folio, &lruvec, &flags);
  93	if (lruvec)
  94		unlock_page_lruvec_irqrestore(lruvec, flags);
 
 
 
 
 
 
 
 
  95}
  96
  97void __folio_put(struct folio *folio)
  98{
  99	if (unlikely(folio_is_zone_device(folio))) {
 100		free_zone_device_folio(folio);
 101		return;
 102	}
 103
 104	if (folio_test_hugetlb(folio)) {
 105		free_huge_folio(folio);
 
 
 106		return;
 107	}
 108
 109	page_cache_release(folio);
 110	folio_unqueue_deferred_split(folio);
 111	mem_cgroup_uncharge(folio);
 112	free_unref_page(&folio->page, folio_order(folio));
 113}
 114EXPORT_SYMBOL(__folio_put);
 115
 116typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio);
 117
 118static void lru_add(struct lruvec *lruvec, struct folio *folio)
 
 
 
 
 
 119{
 120	int was_unevictable = folio_test_clear_unevictable(folio);
 121	long nr_pages = folio_nr_pages(folio);
 122
 123	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
 124
 125	/*
 126	 * Is an smp_mb__after_atomic() still required here, before
 127	 * folio_evictable() tests the mlocked flag, to rule out the possibility
 128	 * of stranding an evictable folio on an unevictable LRU?  I think
 129	 * not, because __munlock_folio() only clears the mlocked flag
 130	 * while the LRU lock is held.
 131	 *
 132	 * (That is not true of __page_cache_release(), and not necessarily
 133	 * true of folios_put(): but those only clear the mlocked flag after
 134	 * folio_put_testzero() has excluded any other users of the folio.)
 135	 */
 136	if (folio_evictable(folio)) {
 137		if (was_unevictable)
 138			__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
 139	} else {
 140		folio_clear_active(folio);
 141		folio_set_unevictable(folio);
 142		/*
 143		 * folio->mlock_count = !!folio_test_mlocked(folio)?
 144		 * But that leaves __mlock_folio() in doubt whether another
 145		 * actor has already counted the mlock or not.  Err on the
 146		 * safe side, underestimate, let page reclaim fix it, rather
 147		 * than leaving a page on the unevictable LRU indefinitely.
 148		 */
 149		folio->mlock_count = 0;
 150		if (!was_unevictable)
 151			__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
 152	}
 153
 154	lruvec_add_folio(lruvec, folio);
 155	trace_mm_lru_insertion(folio);
 156}
 
 157
 158static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 159{
 160	int i;
 161	struct lruvec *lruvec = NULL;
 162	unsigned long flags = 0;
 163
 164	for (i = 0; i < folio_batch_count(fbatch); i++) {
 165		struct folio *folio = fbatch->folios[i];
 
 166
 167		folio_lruvec_relock_irqsave(folio, &lruvec, &flags);
 168		move_fn(lruvec, folio);
 169
 170		folio_set_lru(folio);
 171	}
 172
 173	if (lruvec)
 174		unlock_page_lruvec_irqrestore(lruvec, flags);
 175	folios_put(fbatch);
 176}
 
 177
 178static void __folio_batch_add_and_move(struct folio_batch __percpu *fbatch,
 179		struct folio *folio, move_fn_t move_fn,
 180		bool on_lru, bool disable_irq)
 
 
 
 
 
 
 
 
 
 181{
 182	unsigned long flags;
 
 
 
 183
 184	if (on_lru && !folio_test_clear_lru(folio))
 185		return;
 
 186
 187	folio_get(folio);
 
 
 
 
 
 
 
 188
 189	if (disable_irq)
 190		local_lock_irqsave(&cpu_fbatches.lock_irq, flags);
 191	else
 192		local_lock(&cpu_fbatches.lock);
 
 
 
 
 
 
 193
 194	if (!folio_batch_add(this_cpu_ptr(fbatch), folio) || folio_test_large(folio) ||
 195	    lru_cache_disabled())
 196		folio_batch_move_lru(this_cpu_ptr(fbatch), move_fn);
 197
 198	if (disable_irq)
 199		local_unlock_irqrestore(&cpu_fbatches.lock_irq, flags);
 200	else
 201		local_unlock(&cpu_fbatches.lock);
 
 
 
 
 
 
 
 
 
 
 
 
 202}
 203
 204#define folio_batch_add_and_move(folio, op, on_lru)						\
 205	__folio_batch_add_and_move(								\
 206		&cpu_fbatches.op,								\
 207		folio,										\
 208		op,										\
 209		on_lru,										\
 210		offsetof(struct cpu_fbatches, op) >= offsetof(struct cpu_fbatches, lock_irq)	\
 211	)
 212
 213static void lru_move_tail(struct lruvec *lruvec, struct folio *folio)
 214{
 215	if (folio_test_unevictable(folio))
 216		return;
 217
 218	lruvec_del_folio(lruvec, folio);
 219	folio_clear_active(folio);
 220	lruvec_add_folio_tail(lruvec, folio);
 221	__count_vm_events(PGROTATED, folio_nr_pages(folio));
 222}
 223
 224/*
 225 * Writeback is about to end against a folio which has been marked for
 226 * immediate reclaim.  If it still appears to be reclaimable, move it
 227 * to the tail of the inactive list.
 228 *
 229 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
 230 */
 231void folio_rotate_reclaimable(struct folio *folio)
 232{
 233	if (folio_test_locked(folio) || folio_test_dirty(folio) ||
 234	    folio_test_unevictable(folio))
 235		return;
 
 236
 237	folio_batch_add_and_move(folio, lru_move_tail, true);
 
 
 
 
 
 
 238}
 239
 240void lru_note_cost(struct lruvec *lruvec, bool file,
 241		   unsigned int nr_io, unsigned int nr_rotated)
 242{
 243	unsigned long cost;
 244
 245	/*
 246	 * Reflect the relative cost of incurring IO and spending CPU
 247	 * time on rotations. This doesn't attempt to make a precise
 248	 * comparison, it just says: if reloads are about comparable
 249	 * between the LRU lists, or rotations are overwhelmingly
 250	 * different between them, adjust scan balance for CPU work.
 251	 */
 252	cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated;
 253
 254	do {
 255		unsigned long lrusize;
 256
 257		/*
 258		 * Hold lruvec->lru_lock is safe here, since
 259		 * 1) The pinned lruvec in reclaim, or
 260		 * 2) From a pre-LRU page during refault (which also holds the
 261		 *    rcu lock, so would be safe even if the page was on the LRU
 262		 *    and could move simultaneously to a new lruvec).
 263		 */
 264		spin_lock_irq(&lruvec->lru_lock);
 265		/* Record cost event */
 266		if (file)
 267			lruvec->file_cost += cost;
 268		else
 269			lruvec->anon_cost += cost;
 270
 271		/*
 272		 * Decay previous events
 273		 *
 274		 * Because workloads change over time (and to avoid
 275		 * overflow) we keep these statistics as a floating
 276		 * average, which ends up weighing recent refaults
 277		 * more than old ones.
 278		 */
 279		lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
 280			  lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
 281			  lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
 282			  lruvec_page_state(lruvec, NR_ACTIVE_FILE);
 283
 284		if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
 285			lruvec->file_cost /= 2;
 286			lruvec->anon_cost /= 2;
 287		}
 288		spin_unlock_irq(&lruvec->lru_lock);
 289	} while ((lruvec = parent_lruvec(lruvec)));
 290}
 291
 292void lru_note_cost_refault(struct folio *folio)
 293{
 294	lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
 295		      folio_nr_pages(folio), 0);
 296}
 297
 298static void lru_activate(struct lruvec *lruvec, struct folio *folio)
 
 299{
 300	long nr_pages = folio_nr_pages(folio);
 
 
 301
 302	if (folio_test_active(folio) || folio_test_unevictable(folio))
 303		return;
 
 
 
 304
 
 
 
 
 
 305
 306	lruvec_del_folio(lruvec, folio);
 307	folio_set_active(folio);
 308	lruvec_add_folio(lruvec, folio);
 309	trace_mm_lru_activate(folio);
 310
 311	__count_vm_events(PGACTIVATE, nr_pages);
 312	__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE, nr_pages);
 313}
 314
 315#ifdef CONFIG_SMP
 316static void folio_activate_drain(int cpu)
 317{
 318	struct folio_batch *fbatch = &per_cpu(cpu_fbatches.lru_activate, cpu);
 319
 320	if (folio_batch_count(fbatch))
 321		folio_batch_move_lru(fbatch, lru_activate);
 322}
 323
 324void folio_activate(struct folio *folio)
 325{
 326	if (folio_test_active(folio) || folio_test_unevictable(folio))
 327		return;
 
 328
 329	folio_batch_add_and_move(folio, lru_activate, true);
 
 
 
 
 
 
 330}
 331
 332#else
 333static inline void folio_activate_drain(int cpu)
 334{
 335}
 336
 337void folio_activate(struct folio *folio)
 338{
 339	struct lruvec *lruvec;
 340
 341	if (!folio_test_clear_lru(folio))
 342		return;
 343
 344	lruvec = folio_lruvec_lock_irq(folio);
 345	lru_activate(lruvec, folio);
 346	unlock_page_lruvec_irq(lruvec);
 347	folio_set_lru(folio);
 348}
 349#endif
 350
 351static void __lru_cache_activate_folio(struct folio *folio)
 352{
 353	struct folio_batch *fbatch;
 354	int i;
 355
 356	local_lock(&cpu_fbatches.lock);
 357	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
 358
 359	/*
 360	 * Search backwards on the optimistic assumption that the folio being
 361	 * activated has just been added to this batch. Note that only
 362	 * the local batch is examined as a !LRU folio could be in the
 363	 * process of being released, reclaimed, migrated or on a remote
 364	 * batch that is currently being drained. Furthermore, marking
 365	 * a remote batch's folio active potentially hits a race where
 366	 * a folio is marked active just after it is added to the inactive
 367	 * list causing accounting errors and BUG_ON checks to trigger.
 368	 */
 369	for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) {
 370		struct folio *batch_folio = fbatch->folios[i];
 371
 372		if (batch_folio == folio) {
 373			folio_set_active(folio);
 374			break;
 375		}
 376	}
 377
 378	local_unlock(&cpu_fbatches.lock);
 379}
 380
 381#ifdef CONFIG_LRU_GEN
 382static void folio_inc_refs(struct folio *folio)
 383{
 384	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
 385
 386	if (folio_test_unevictable(folio))
 387		return;
 388
 389	if (!folio_test_referenced(folio)) {
 390		folio_set_referenced(folio);
 391		return;
 392	}
 393
 394	if (!folio_test_workingset(folio)) {
 395		folio_set_workingset(folio);
 396		return;
 397	}
 398
 399	/* see the comment on MAX_NR_TIERS */
 400	do {
 401		new_flags = old_flags & LRU_REFS_MASK;
 402		if (new_flags == LRU_REFS_MASK)
 403			break;
 404
 405		new_flags += BIT(LRU_REFS_PGOFF);
 406		new_flags |= old_flags & ~LRU_REFS_MASK;
 407	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
 408}
 409#else
 410static void folio_inc_refs(struct folio *folio)
 411{
 412}
 413#endif /* CONFIG_LRU_GEN */
 414
 415/**
 416 * folio_mark_accessed - Mark a folio as having seen activity.
 417 * @folio: The folio to mark.
 418 *
 419 * This function will perform one of the following transitions:
 
 
 420 *
 421 * * inactive,unreferenced	->	inactive,referenced
 422 * * inactive,referenced	->	active,unreferenced
 423 * * active,unreferenced	->	active,referenced
 424 *
 425 * When a newly allocated folio is not yet visible, so safe for non-atomic ops,
 426 * __folio_set_referenced() may be substituted for folio_mark_accessed().
 427 */
 428void folio_mark_accessed(struct folio *folio)
 429{
 430	if (lru_gen_enabled()) {
 431		folio_inc_refs(folio);
 432		return;
 433	}
 434
 435	if (!folio_test_referenced(folio)) {
 436		folio_set_referenced(folio);
 437	} else if (folio_test_unevictable(folio)) {
 438		/*
 439		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
 440		 * this list is never rotated or maintained, so marking an
 441		 * unevictable page accessed has no effect.
 442		 */
 443	} else if (!folio_test_active(folio)) {
 444		/*
 445		 * If the folio is on the LRU, queue it for activation via
 446		 * cpu_fbatches.lru_activate. Otherwise, assume the folio is in a
 447		 * folio_batch, mark it active and it'll be moved to the active
 448		 * LRU on the next drain.
 449		 */
 450		if (folio_test_lru(folio))
 451			folio_activate(folio);
 452		else
 453			__lru_cache_activate_folio(folio);
 454		folio_clear_referenced(folio);
 455		workingset_activation(folio);
 456	}
 457	if (folio_test_idle(folio))
 458		folio_clear_idle(folio);
 459}
 460EXPORT_SYMBOL(folio_mark_accessed);
 461
 462/**
 463 * folio_add_lru - Add a folio to an LRU list.
 464 * @folio: The folio to be added to the LRU.
 465 *
 466 * Queue the folio for addition to the LRU. The decision on whether
 467 * to add the page to the [in]active [file|anon] list is deferred until the
 468 * folio_batch is drained. This gives a chance for the caller of folio_add_lru()
 469 * have the folio added to the active list using folio_mark_accessed().
 470 */
 471void folio_add_lru(struct folio *folio)
 472{
 473	VM_BUG_ON_FOLIO(folio_test_active(folio) &&
 474			folio_test_unevictable(folio), folio);
 475	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
 476
 477	/* see the comment in lru_gen_add_folio() */
 478	if (lru_gen_enabled() && !folio_test_unevictable(folio) &&
 479	    lru_gen_in_fault() && !(current->flags & PF_MEMALLOC))
 480		folio_set_active(folio);
 481
 482	folio_batch_add_and_move(folio, lru_add, false);
 
 
 
 
 
 483}
 484EXPORT_SYMBOL(folio_add_lru);
 485
 486/**
 487 * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA.
 488 * @folio: The folio to be added to the LRU.
 489 * @vma: VMA in which the folio is mapped.
 490 *
 491 * If the VMA is mlocked, @folio is added to the unevictable list.
 492 * Otherwise, it is treated the same way as folio_add_lru().
 
 
 493 */
 494void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma)
 
 495{
 496	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
 497
 498	if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED))
 499		mlock_new_folio(folio);
 500	else
 501		folio_add_lru(folio);
 
 
 
 
 
 
 
 
 
 
 502}
 503
 504/*
 505 * If the folio cannot be invalidated, it is moved to the
 506 * inactive list to speed up its reclaim.  It is moved to the
 507 * head of the list, rather than the tail, to give the flusher
 508 * threads some time to write it out, as this is much more
 509 * effective than the single-page writeout from reclaim.
 510 *
 511 * If the folio isn't mapped and dirty/writeback, the folio
 512 * could be reclaimed asap using the reclaim flag.
 513 *
 514 * 1. active, mapped folio -> none
 515 * 2. active, dirty/writeback folio -> inactive, head, reclaim
 516 * 3. inactive, mapped folio -> none
 517 * 4. inactive, dirty/writeback folio -> inactive, head, reclaim
 518 * 5. inactive, clean -> inactive, tail
 519 * 6. Others -> none
 520 *
 521 * In 4, it moves to the head of the inactive list so the folio is
 522 * written out by flusher threads as this is much more efficient
 523 * than the single-page writeout from reclaim.
 524 */
 525static void lru_deactivate_file(struct lruvec *lruvec, struct folio *folio)
 
 526{
 527	bool active = folio_test_active(folio);
 528	long nr_pages = folio_nr_pages(folio);
 
 
 
 
 529
 530	if (folio_test_unevictable(folio))
 531		return;
 532
 533	/* Some processes are using the folio */
 534	if (folio_mapped(folio))
 535		return;
 536
 537	lruvec_del_folio(lruvec, folio);
 538	folio_clear_active(folio);
 539	folio_clear_referenced(folio);
 
 
 
 540
 541	if (folio_test_writeback(folio) || folio_test_dirty(folio)) {
 542		/*
 543		 * Setting the reclaim flag could race with
 544		 * folio_end_writeback() and confuse readahead.  But the
 545		 * race window is _really_ small and  it's not a critical
 546		 * problem.
 547		 */
 548		lruvec_add_folio(lruvec, folio);
 549		folio_set_reclaim(folio);
 550	} else {
 551		/*
 552		 * The folio's writeback ended while it was in the batch.
 553		 * We move that folio to the tail of the inactive list.
 554		 */
 555		lruvec_add_folio_tail(lruvec, folio);
 556		__count_vm_events(PGROTATED, nr_pages);
 557	}
 558
 559	if (active) {
 560		__count_vm_events(PGDEACTIVATE, nr_pages);
 561		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
 562				     nr_pages);
 563	}
 564}
 565
 566static void lru_deactivate(struct lruvec *lruvec, struct folio *folio)
 
 567{
 568	long nr_pages = folio_nr_pages(folio);
 
 
 
 
 
 
 
 569
 570	if (folio_test_unevictable(folio) || !(folio_test_active(folio) || lru_gen_enabled()))
 571		return;
 572
 573	lruvec_del_folio(lruvec, folio);
 574	folio_clear_active(folio);
 575	folio_clear_referenced(folio);
 576	lruvec_add_folio(lruvec, folio);
 577
 578	__count_vm_events(PGDEACTIVATE, nr_pages);
 579	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_pages);
 580}
 581
 582static void lru_lazyfree(struct lruvec *lruvec, struct folio *folio)
 
 583{
 584	long nr_pages = folio_nr_pages(folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 585
 586	if (!folio_test_anon(folio) || !folio_test_swapbacked(folio) ||
 587	    folio_test_swapcache(folio) || folio_test_unevictable(folio))
 588		return;
 589
 590	lruvec_del_folio(lruvec, folio);
 591	folio_clear_active(folio);
 592	folio_clear_referenced(folio);
 593	/*
 594	 * Lazyfree folios are clean anonymous folios.  They have
 595	 * the swapbacked flag cleared, to distinguish them from normal
 596	 * anonymous folios
 597	 */
 598	folio_clear_swapbacked(folio);
 599	lruvec_add_folio(lruvec, folio);
 600
 601	__count_vm_events(PGLAZYFREE, nr_pages);
 602	__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE, nr_pages);
 603}
 604
 605/*
 606 * Drain pages out of the cpu's folio_batch.
 607 * Either "cpu" is the current CPU, and preemption has already been
 608 * disabled; or "cpu" is being hot-unplugged, and is already dead.
 609 */
 610void lru_add_drain_cpu(int cpu)
 611{
 612	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
 613	struct folio_batch *fbatch = &fbatches->lru_add;
 614
 615	if (folio_batch_count(fbatch))
 616		folio_batch_move_lru(fbatch, lru_add);
 617
 618	fbatch = &fbatches->lru_move_tail;
 619	/* Disabling interrupts below acts as a compiler barrier. */
 620	if (data_race(folio_batch_count(fbatch))) {
 621		unsigned long flags;
 622
 623		/* No harm done if a racing interrupt already did this */
 624		local_lock_irqsave(&cpu_fbatches.lock_irq, flags);
 625		folio_batch_move_lru(fbatch, lru_move_tail);
 626		local_unlock_irqrestore(&cpu_fbatches.lock_irq, flags);
 627	}
 628
 629	fbatch = &fbatches->lru_deactivate_file;
 630	if (folio_batch_count(fbatch))
 631		folio_batch_move_lru(fbatch, lru_deactivate_file);
 
 
 
 
 
 
 
 
 632
 633	fbatch = &fbatches->lru_deactivate;
 634	if (folio_batch_count(fbatch))
 635		folio_batch_move_lru(fbatch, lru_deactivate);
 636
 637	fbatch = &fbatches->lru_lazyfree;
 638	if (folio_batch_count(fbatch))
 639		folio_batch_move_lru(fbatch, lru_lazyfree);
 640
 641	folio_activate_drain(cpu);
 642}
 643
 644/**
 645 * deactivate_file_folio() - Deactivate a file folio.
 646 * @folio: Folio to deactivate.
 647 *
 648 * This function hints to the VM that @folio is a good reclaim candidate,
 649 * for example if its invalidation fails due to the folio being dirty
 650 * or under writeback.
 651 *
 652 * Context: Caller holds a reference on the folio.
 653 */
 654void deactivate_file_folio(struct folio *folio)
 655{
 656	/* Deactivating an unevictable folio will not accelerate reclaim */
 657	if (folio_test_unevictable(folio))
 
 
 
 658		return;
 659
 660	folio_batch_add_and_move(folio, lru_deactivate_file, true);
 
 
 
 
 
 
 
 
 
 661}
 662
 663/*
 664 * folio_deactivate - deactivate a folio
 665 * @folio: folio to deactivate
 666 *
 667 * folio_deactivate() moves @folio to the inactive list if @folio was on the
 668 * active list and was not unevictable. This is done to accelerate the
 669 * reclaim of @folio.
 670 */
 671void folio_deactivate(struct folio *folio)
 672{
 673	if (folio_test_unevictable(folio) || !(folio_test_active(folio) || lru_gen_enabled()))
 674		return;
 675
 676	folio_batch_add_and_move(folio, lru_deactivate, true);
 
 
 
 
 
 
 677}
 678
 679/**
 680 * folio_mark_lazyfree - make an anon folio lazyfree
 681 * @folio: folio to deactivate
 682 *
 683 * folio_mark_lazyfree() moves @folio to the inactive file list.
 684 * This is done to accelerate the reclaim of @folio.
 685 */
 686void folio_mark_lazyfree(struct folio *folio)
 687{
 688	if (!folio_test_anon(folio) || !folio_test_swapbacked(folio) ||
 689	    folio_test_swapcache(folio) || folio_test_unevictable(folio))
 690		return;
 691
 692	folio_batch_add_and_move(folio, lru_lazyfree, true);
 
 
 
 
 
 
 693}
 694
 695void lru_add_drain(void)
 696{
 697	local_lock(&cpu_fbatches.lock);
 698	lru_add_drain_cpu(smp_processor_id());
 699	local_unlock(&cpu_fbatches.lock);
 700	mlock_drain_local();
 701}
 702
 703/*
 704 * It's called from per-cpu workqueue context in SMP case so
 705 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
 706 * the same cpu. It shouldn't be a problem in !SMP case since
 707 * the core is only one and the locks will disable preemption.
 708 */
 709static void lru_add_and_bh_lrus_drain(void)
 710{
 711	local_lock(&cpu_fbatches.lock);
 712	lru_add_drain_cpu(smp_processor_id());
 713	local_unlock(&cpu_fbatches.lock);
 714	invalidate_bh_lrus_cpu();
 715	mlock_drain_local();
 716}
 717
 718void lru_add_drain_cpu_zone(struct zone *zone)
 719{
 720	local_lock(&cpu_fbatches.lock);
 721	lru_add_drain_cpu(smp_processor_id());
 722	drain_local_pages(zone);
 723	local_unlock(&cpu_fbatches.lock);
 724	mlock_drain_local();
 725}
 726
 727#ifdef CONFIG_SMP
 728
 729static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
 730
 731static void lru_add_drain_per_cpu(struct work_struct *dummy)
 732{
 733	lru_add_and_bh_lrus_drain();
 734}
 735
 736static bool cpu_needs_drain(unsigned int cpu)
 737{
 738	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
 739
 740	/* Check these in order of likelihood that they're not zero */
 741	return folio_batch_count(&fbatches->lru_add) ||
 742		folio_batch_count(&fbatches->lru_move_tail) ||
 743		folio_batch_count(&fbatches->lru_deactivate_file) ||
 744		folio_batch_count(&fbatches->lru_deactivate) ||
 745		folio_batch_count(&fbatches->lru_lazyfree) ||
 746		folio_batch_count(&fbatches->lru_activate) ||
 747		need_mlock_drain(cpu) ||
 748		has_bh_in_lru(cpu, NULL);
 749}
 750
 751/*
 752 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
 753 * kworkers being shut down before our page_alloc_cpu_dead callback is
 754 * executed on the offlined cpu.
 755 * Calling this function with cpu hotplug locks held can actually lead
 756 * to obscure indirect dependencies via WQ context.
 757 */
 758static inline void __lru_add_drain_all(bool force_all_cpus)
 759{
 760	/*
 761	 * lru_drain_gen - Global pages generation number
 762	 *
 763	 * (A) Definition: global lru_drain_gen = x implies that all generations
 764	 *     0 < n <= x are already *scheduled* for draining.
 765	 *
 766	 * This is an optimization for the highly-contended use case where a
 767	 * user space workload keeps constantly generating a flow of pages for
 768	 * each CPU.
 769	 */
 770	static unsigned int lru_drain_gen;
 771	static struct cpumask has_work;
 772	static DEFINE_MUTEX(lock);
 773	unsigned cpu, this_gen;
 774
 775	/*
 776	 * Make sure nobody triggers this path before mm_percpu_wq is fully
 777	 * initialized.
 778	 */
 779	if (WARN_ON(!mm_percpu_wq))
 780		return;
 781
 782	/*
 783	 * Guarantee folio_batch counter stores visible by this CPU
 784	 * are visible to other CPUs before loading the current drain
 785	 * generation.
 786	 */
 787	smp_mb();
 788
 789	/*
 790	 * (B) Locally cache global LRU draining generation number
 791	 *
 792	 * The read barrier ensures that the counter is loaded before the mutex
 793	 * is taken. It pairs with smp_mb() inside the mutex critical section
 794	 * at (D).
 795	 */
 796	this_gen = smp_load_acquire(&lru_drain_gen);
 797
 798	mutex_lock(&lock);
 799
 800	/*
 801	 * (C) Exit the draining operation if a newer generation, from another
 802	 * lru_add_drain_all(), was already scheduled for draining. Check (A).
 803	 */
 804	if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
 805		goto done;
 806
 807	/*
 808	 * (D) Increment global generation number
 809	 *
 810	 * Pairs with smp_load_acquire() at (B), outside of the critical
 811	 * section. Use a full memory barrier to guarantee that the
 812	 * new global drain generation number is stored before loading
 813	 * folio_batch counters.
 814	 *
 815	 * This pairing must be done here, before the for_each_online_cpu loop
 816	 * below which drains the page vectors.
 817	 *
 818	 * Let x, y, and z represent some system CPU numbers, where x < y < z.
 819	 * Assume CPU #z is in the middle of the for_each_online_cpu loop
 820	 * below and has already reached CPU #y's per-cpu data. CPU #x comes
 821	 * along, adds some pages to its per-cpu vectors, then calls
 822	 * lru_add_drain_all().
 823	 *
 824	 * If the paired barrier is done at any later step, e.g. after the
 825	 * loop, CPU #x will just exit at (C) and miss flushing out all of its
 826	 * added pages.
 827	 */
 828	WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
 829	smp_mb();
 830
 831	cpumask_clear(&has_work);
 
 832	for_each_online_cpu(cpu) {
 833		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
 834
 835		if (cpu_needs_drain(cpu)) {
 
 
 
 
 
 836			INIT_WORK(work, lru_add_drain_per_cpu);
 837			queue_work_on(cpu, mm_percpu_wq, work);
 838			__cpumask_set_cpu(cpu, &has_work);
 839		}
 840	}
 841
 842	for_each_cpu(cpu, &has_work)
 843		flush_work(&per_cpu(lru_add_drain_work, cpu));
 844
 845done:
 846	mutex_unlock(&lock);
 847}
 848
 849void lru_add_drain_all(void)
 850{
 851	__lru_add_drain_all(false);
 852}
 853#else
 854void lru_add_drain_all(void)
 855{
 856	lru_add_drain();
 857}
 858#endif /* CONFIG_SMP */
 859
 860atomic_t lru_disable_count = ATOMIC_INIT(0);
 861
 862/*
 863 * lru_cache_disable() needs to be called before we start compiling
 864 * a list of folios to be migrated using folio_isolate_lru().
 865 * It drains folios on LRU cache and then disable on all cpus until
 866 * lru_cache_enable is called.
 867 *
 868 * Must be paired with a call to lru_cache_enable().
 869 */
 870void lru_cache_disable(void)
 871{
 872	atomic_inc(&lru_disable_count);
 873	/*
 874	 * Readers of lru_disable_count are protected by either disabling
 875	 * preemption or rcu_read_lock:
 876	 *
 877	 * preempt_disable, local_irq_disable  [bh_lru_lock()]
 878	 * rcu_read_lock		       [rt_spin_lock CONFIG_PREEMPT_RT]
 879	 * preempt_disable		       [local_lock !CONFIG_PREEMPT_RT]
 880	 *
 881	 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
 882	 * preempt_disable() regions of code. So any CPU which sees
 883	 * lru_disable_count = 0 will have exited the critical
 884	 * section when synchronize_rcu() returns.
 885	 */
 886	synchronize_rcu_expedited();
 887#ifdef CONFIG_SMP
 888	__lru_add_drain_all(true);
 889#else
 890	lru_add_and_bh_lrus_drain();
 891#endif
 892}
 893
 894/**
 895 * folios_put_refs - Reduce the reference count on a batch of folios.
 896 * @folios: The folios.
 897 * @refs: The number of refs to subtract from each folio.
 898 *
 899 * Like folio_put(), but for a batch of folios.  This is more efficient
 900 * than writing the loop yourself as it will optimise the locks which need
 901 * to be taken if the folios are freed.  The folios batch is returned
 902 * empty and ready to be reused for another batch; there is no need
 903 * to reinitialise it.  If @refs is NULL, we subtract one from each
 904 * folio refcount.
 905 *
 906 * Context: May be called in process or interrupt context, but not in NMI
 907 * context.  May be called while holding a spinlock.
 908 */
 909void folios_put_refs(struct folio_batch *folios, unsigned int *refs)
 910{
 911	int i, j;
 912	struct lruvec *lruvec = NULL;
 913	unsigned long flags = 0;
 
 
 
 
 
 
 914
 915	for (i = 0, j = 0; i < folios->nr; i++) {
 916		struct folio *folio = folios->folios[i];
 917		unsigned int nr_refs = refs ? refs[i] : 1;
 
 
 
 
 
 
 918
 919		if (is_huge_zero_folio(folio))
 920			continue;
 921
 922		if (folio_is_zone_device(folio)) {
 923			if (lruvec) {
 924				unlock_page_lruvec_irqrestore(lruvec, flags);
 925				lruvec = NULL;
 
 926			}
 927			if (put_devmap_managed_folio_refs(folio, nr_refs))
 
 
 
 
 
 
 
 928				continue;
 929			if (folio_ref_sub_and_test(folio, nr_refs))
 930				free_zone_device_folio(folio);
 931			continue;
 932		}
 933
 934		if (!folio_ref_sub_and_test(folio, nr_refs))
 
 935			continue;
 936
 937		/* hugetlb has its own memcg */
 938		if (folio_test_hugetlb(folio)) {
 939			if (lruvec) {
 940				unlock_page_lruvec_irqrestore(lruvec, flags);
 941				lruvec = NULL;
 942			}
 943			free_huge_folio(folio);
 944			continue;
 945		}
 946		folio_unqueue_deferred_split(folio);
 947		__page_cache_release(folio, &lruvec, &flags);
 948
 949		if (j != i)
 950			folios->folios[j] = folio;
 951		j++;
 952	}
 953	if (lruvec)
 954		unlock_page_lruvec_irqrestore(lruvec, flags);
 955	if (!j) {
 956		folio_batch_reinit(folios);
 957		return;
 958	}
 959
 960	folios->nr = j;
 961	mem_cgroup_uncharge_folios(folios);
 962	free_unref_folios(folios);
 963}
 964EXPORT_SYMBOL(folios_put_refs);
 
 
 
 965
 966/**
 967 * release_pages - batched put_page()
 968 * @arg: array of pages to release
 969 * @nr: number of pages
 970 *
 971 * Decrement the reference count on all the pages in @arg.  If it
 972 * fell to zero, remove the page from the LRU and free it.
 973 *
 974 * Note that the argument can be an array of pages, encoded pages,
 975 * or folio pointers. We ignore any encoded bits, and turn any of
 976 * them into just a folio that gets free'd.
 977 */
 978void release_pages(release_pages_arg arg, int nr)
 979{
 980	struct folio_batch fbatch;
 981	int refs[PAGEVEC_SIZE];
 982	struct encoded_page **encoded = arg.encoded_pages;
 983	int i;
 984
 985	folio_batch_init(&fbatch);
 986	for (i = 0; i < nr; i++) {
 987		/* Turn any of the argument types into a folio */
 988		struct folio *folio = page_folio(encoded_page_ptr(encoded[i]));
 989
 990		/* Is our next entry actually "nr_pages" -> "nr_refs" ? */
 991		refs[fbatch.nr] = 1;
 992		if (unlikely(encoded_page_flags(encoded[i]) &
 993			     ENCODED_PAGE_BIT_NR_PAGES_NEXT))
 994			refs[fbatch.nr] = encoded_nr_pages(encoded[++i]);
 995
 996		if (folio_batch_add(&fbatch, folio) > 0)
 997			continue;
 998		folios_put_refs(&fbatch, refs);
 999	}
 
 
1000
1001	if (fbatch.nr)
1002		folios_put_refs(&fbatch, refs);
1003}
1004EXPORT_SYMBOL(release_pages);
1005
1006/*
1007 * The folios which we're about to release may be in the deferred lru-addition
1008 * queues.  That would prevent them from really being freed right now.  That's
1009 * OK from a correctness point of view but is inefficient - those folios may be
1010 * cache-warm and we want to give them back to the page allocator ASAP.
1011 *
1012 * So __folio_batch_release() will drain those queues here.
1013 * folio_batch_move_lru() calls folios_put() directly to avoid
1014 * mutual recursion.
1015 */
1016void __folio_batch_release(struct folio_batch *fbatch)
1017{
1018	if (!fbatch->percpu_pvec_drained) {
1019		lru_add_drain();
1020		fbatch->percpu_pvec_drained = true;
1021	}
1022	folios_put(fbatch);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1023}
1024EXPORT_SYMBOL(__folio_batch_release);
1025
1026/**
1027 * folio_batch_remove_exceptionals() - Prune non-folios from a batch.
1028 * @fbatch: The batch to prune
1029 *
1030 * find_get_entries() fills a batch with both folios and shadow/swap/DAX
1031 * entries.  This function prunes all the non-folio entries from @fbatch
1032 * without leaving holes, so that it can be passed on to folio-only batch
1033 * operations.
1034 */
1035void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
1036{
1037	unsigned int i, j;
1038
1039	for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
1040		struct folio *folio = fbatch->folios[i];
1041		if (!xa_is_value(folio))
1042			fbatch->folios[j++] = folio;
1043	}
1044	fbatch->nr = j;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1045}
 
1046
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1047/*
1048 * Perform any setup for the swap system
1049 */
1050void __init swap_setup(void)
1051{
1052	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1053
1054	/* Use a smaller cluster for small-memory machines */
1055	if (megs < 16)
1056		page_cluster = 2;
1057	else
1058		page_cluster = 3;
1059	/*
1060	 * Right now other parts of the system means that we
1061	 * _really_ don't want to cluster much more
1062	 */
1063}