Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/swap.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 */
   7
   8/*
   9 * This file contains the default values for the operation of the
  10 * Linux VM subsystem. Fine-tuning documentation can be found in
  11 * Documentation/admin-guide/sysctl/vm.rst.
  12 * Started 18.12.91
  13 * Swap aging added 23.2.95, Stephen Tweedie.
  14 * Buffermem limits added 12.3.98, Rik van Riel.
  15 */
  16
  17#include <linux/mm.h>
  18#include <linux/sched.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/swap.h>
  21#include <linux/mman.h>
  22#include <linux/pagemap.h>
  23#include <linux/pagevec.h>
  24#include <linux/init.h>
  25#include <linux/export.h>
  26#include <linux/mm_inline.h>
  27#include <linux/percpu_counter.h>
  28#include <linux/memremap.h>
  29#include <linux/percpu.h>
  30#include <linux/cpu.h>
  31#include <linux/notifier.h>
  32#include <linux/backing-dev.h>
  33#include <linux/memcontrol.h>
  34#include <linux/gfp.h>
  35#include <linux/uio.h>
  36#include <linux/hugetlb.h>
  37#include <linux/page_idle.h>
  38#include <linux/local_lock.h>
  39
  40#include "internal.h"
  41
  42#define CREATE_TRACE_POINTS
  43#include <trace/events/pagemap.h>
  44
  45/* How many pages do we try to swap or page in/out together? */
  46int page_cluster;
  47
  48/* Protecting only lru_rotate.pvec which requires disabling interrupts */
  49struct lru_rotate {
  50	local_lock_t lock;
  51	struct pagevec pvec;
  52};
  53static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
  54	.lock = INIT_LOCAL_LOCK(lock),
  55};
  56
  57/*
  58 * The following struct pagevec are grouped together because they are protected
  59 * by disabling preemption (and interrupts remain enabled).
  60 */
  61struct lru_pvecs {
  62	local_lock_t lock;
  63	struct pagevec lru_add;
  64	struct pagevec lru_deactivate_file;
  65	struct pagevec lru_deactivate;
  66	struct pagevec lru_lazyfree;
  67#ifdef CONFIG_SMP
  68	struct pagevec activate_page;
  69#endif
  70};
  71static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
  72	.lock = INIT_LOCAL_LOCK(lock),
  73};
  74
  75/*
  76 * This path almost never happens for VM activity - pages are normally
  77 * freed via pagevecs.  But it gets used by networking.
  78 */
  79static void __page_cache_release(struct page *page)
  80{
  81	if (PageLRU(page)) {
  82		pg_data_t *pgdat = page_pgdat(page);
  83		struct lruvec *lruvec;
  84		unsigned long flags;
  85
  86		spin_lock_irqsave(&pgdat->lru_lock, flags);
  87		lruvec = mem_cgroup_page_lruvec(page, pgdat);
  88		VM_BUG_ON_PAGE(!PageLRU(page), page);
  89		__ClearPageLRU(page);
  90		del_page_from_lru_list(page, lruvec, page_off_lru(page));
  91		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
  92	}
  93	__ClearPageWaiters(page);
  94}
  95
  96static void __put_single_page(struct page *page)
  97{
  98	__page_cache_release(page);
  99	mem_cgroup_uncharge(page);
 100	free_unref_page(page);
 101}
 102
 103static void __put_compound_page(struct page *page)
 104{
 105	/*
 106	 * __page_cache_release() is supposed to be called for thp, not for
 107	 * hugetlb. This is because hugetlb page does never have PageLRU set
 108	 * (it's never listed to any LRU lists) and no memcg routines should
 109	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
 110	 */
 111	if (!PageHuge(page))
 112		__page_cache_release(page);
 113	destroy_compound_page(page);
 114}
 115
 116void __put_page(struct page *page)
 117{
 118	if (is_zone_device_page(page)) {
 119		put_dev_pagemap(page->pgmap);
 
 120
 121		/*
 122		 * The page belongs to the device that created pgmap. Do
 123		 * not return it to page allocator.
 124		 */
 125		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 126	}
 
 127
 
 
 128	if (unlikely(PageCompound(page)))
 129		__put_compound_page(page);
 130	else
 131		__put_single_page(page);
 132}
 133EXPORT_SYMBOL(__put_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 134
 135/**
 136 * put_pages_list() - release a list of pages
 137 * @pages: list of pages threaded on page->lru
 138 *
 139 * Release a list of pages which are strung together on page.lru.  Currently
 140 * used by read_cache_pages() and related error recovery code.
 141 */
 142void put_pages_list(struct list_head *pages)
 143{
 144	while (!list_empty(pages)) {
 145		struct page *victim;
 146
 147		victim = lru_to_page(pages);
 148		list_del(&victim->lru);
 149		put_page(victim);
 150	}
 151}
 152EXPORT_SYMBOL(put_pages_list);
 153
 154/*
 155 * get_kernel_pages() - pin kernel pages in memory
 156 * @kiov:	An array of struct kvec structures
 157 * @nr_segs:	number of segments to pin
 158 * @write:	pinning for read/write, currently ignored
 159 * @pages:	array that receives pointers to the pages pinned.
 160 *		Should be at least nr_segs long.
 161 *
 162 * Returns number of pages pinned. This may be fewer than the number
 163 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 164 * were pinned, returns -errno. Each page returned must be released
 165 * with a put_page() call when it is finished with.
 166 */
 167int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
 168		struct page **pages)
 169{
 170	int seg;
 171
 172	for (seg = 0; seg < nr_segs; seg++) {
 173		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
 174			return seg;
 175
 176		pages[seg] = kmap_to_page(kiov[seg].iov_base);
 177		get_page(pages[seg]);
 178	}
 179
 180	return seg;
 181}
 182EXPORT_SYMBOL_GPL(get_kernel_pages);
 183
 184/*
 185 * get_kernel_page() - pin a kernel page in memory
 186 * @start:	starting kernel address
 187 * @write:	pinning for read/write, currently ignored
 188 * @pages:	array that receives pointer to the page pinned.
 189 *		Must be at least nr_segs long.
 190 *
 191 * Returns 1 if page is pinned. If the page was not pinned, returns
 192 * -errno. The page returned must be released with a put_page() call
 193 * when it is finished with.
 194 */
 195int get_kernel_page(unsigned long start, int write, struct page **pages)
 196{
 197	const struct kvec kiov = {
 198		.iov_base = (void *)start,
 199		.iov_len = PAGE_SIZE
 200	};
 201
 202	return get_kernel_pages(&kiov, 1, write, pages);
 203}
 204EXPORT_SYMBOL_GPL(get_kernel_page);
 205
 206static void pagevec_lru_move_fn(struct pagevec *pvec,
 207	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
 208	void *arg)
 209{
 210	int i;
 211	struct pglist_data *pgdat = NULL;
 212	struct lruvec *lruvec;
 213	unsigned long flags = 0;
 214
 215	for (i = 0; i < pagevec_count(pvec); i++) {
 216		struct page *page = pvec->pages[i];
 217		struct pglist_data *pagepgdat = page_pgdat(page);
 218
 219		if (pagepgdat != pgdat) {
 220			if (pgdat)
 221				spin_unlock_irqrestore(&pgdat->lru_lock, flags);
 222			pgdat = pagepgdat;
 223			spin_lock_irqsave(&pgdat->lru_lock, flags);
 224		}
 225
 226		lruvec = mem_cgroup_page_lruvec(page, pgdat);
 227		(*move_fn)(page, lruvec, arg);
 228	}
 229	if (pgdat)
 230		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
 231	release_pages(pvec->pages, pvec->nr);
 232	pagevec_reinit(pvec);
 233}
 234
 235static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
 236				 void *arg)
 237{
 238	int *pgmoved = arg;
 239
 240	if (PageLRU(page) && !PageUnevictable(page)) {
 241		del_page_from_lru_list(page, lruvec, page_lru(page));
 242		ClearPageActive(page);
 243		add_page_to_lru_list_tail(page, lruvec, page_lru(page));
 244		(*pgmoved) += thp_nr_pages(page);
 245	}
 246}
 247
 248/*
 249 * pagevec_move_tail() must be called with IRQ disabled.
 250 * Otherwise this may cause nasty races.
 251 */
 252static void pagevec_move_tail(struct pagevec *pvec)
 253{
 254	int pgmoved = 0;
 255
 256	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
 257	__count_vm_events(PGROTATED, pgmoved);
 258}
 259
 260/*
 261 * Writeback is about to end against a page which has been marked for immediate
 262 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 263 * inactive list.
 264 */
 265void rotate_reclaimable_page(struct page *page)
 266{
 267	if (!PageLocked(page) && !PageDirty(page) &&
 268	    !PageUnevictable(page) && PageLRU(page)) {
 269		struct pagevec *pvec;
 270		unsigned long flags;
 271
 272		get_page(page);
 273		local_lock_irqsave(&lru_rotate.lock, flags);
 274		pvec = this_cpu_ptr(&lru_rotate.pvec);
 275		if (!pagevec_add(pvec, page) || PageCompound(page))
 276			pagevec_move_tail(pvec);
 277		local_unlock_irqrestore(&lru_rotate.lock, flags);
 278	}
 279}
 280
 281void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
 
 282{
 283	do {
 284		unsigned long lrusize;
 285
 286		/* Record cost event */
 287		if (file)
 288			lruvec->file_cost += nr_pages;
 289		else
 290			lruvec->anon_cost += nr_pages;
 291
 292		/*
 293		 * Decay previous events
 294		 *
 295		 * Because workloads change over time (and to avoid
 296		 * overflow) we keep these statistics as a floating
 297		 * average, which ends up weighing recent refaults
 298		 * more than old ones.
 299		 */
 300		lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
 301			  lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
 302			  lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
 303			  lruvec_page_state(lruvec, NR_ACTIVE_FILE);
 304
 305		if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
 306			lruvec->file_cost /= 2;
 307			lruvec->anon_cost /= 2;
 308		}
 309	} while ((lruvec = parent_lruvec(lruvec)));
 310}
 311
 312void lru_note_cost_page(struct page *page)
 313{
 314	lru_note_cost(mem_cgroup_page_lruvec(page, page_pgdat(page)),
 315		      page_is_file_lru(page), thp_nr_pages(page));
 316}
 317
 318static void __activate_page(struct page *page, struct lruvec *lruvec,
 319			    void *arg)
 320{
 321	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
 
 322		int lru = page_lru_base_type(page);
 323		int nr_pages = thp_nr_pages(page);
 324
 325		del_page_from_lru_list(page, lruvec, lru);
 326		SetPageActive(page);
 327		lru += LRU_ACTIVE;
 328		add_page_to_lru_list(page, lruvec, lru);
 329		trace_mm_lru_activate(page);
 330
 331		__count_vm_events(PGACTIVATE, nr_pages);
 332		__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
 333				     nr_pages);
 334	}
 335}
 336
 337#ifdef CONFIG_SMP
 
 
 338static void activate_page_drain(int cpu)
 339{
 340	struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
 341
 342	if (pagevec_count(pvec))
 343		pagevec_lru_move_fn(pvec, __activate_page, NULL);
 344}
 345
 346static bool need_activate_page_drain(int cpu)
 347{
 348	return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
 349}
 350
 351void activate_page(struct page *page)
 352{
 353	page = compound_head(page);
 354	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
 355		struct pagevec *pvec;
 356
 357		local_lock(&lru_pvecs.lock);
 358		pvec = this_cpu_ptr(&lru_pvecs.activate_page);
 359		get_page(page);
 360		if (!pagevec_add(pvec, page) || PageCompound(page))
 361			pagevec_lru_move_fn(pvec, __activate_page, NULL);
 362		local_unlock(&lru_pvecs.lock);
 363	}
 364}
 365
 366#else
 367static inline void activate_page_drain(int cpu)
 368{
 369}
 370
 371void activate_page(struct page *page)
 372{
 373	pg_data_t *pgdat = page_pgdat(page);
 374
 375	page = compound_head(page);
 376	spin_lock_irq(&pgdat->lru_lock);
 377	__activate_page(page, mem_cgroup_page_lruvec(page, pgdat), NULL);
 378	spin_unlock_irq(&pgdat->lru_lock);
 379}
 380#endif
 381
 382static void __lru_cache_activate_page(struct page *page)
 383{
 384	struct pagevec *pvec;
 385	int i;
 386
 387	local_lock(&lru_pvecs.lock);
 388	pvec = this_cpu_ptr(&lru_pvecs.lru_add);
 389
 390	/*
 391	 * Search backwards on the optimistic assumption that the page being
 392	 * activated has just been added to this pagevec. Note that only
 393	 * the local pagevec is examined as a !PageLRU page could be in the
 394	 * process of being released, reclaimed, migrated or on a remote
 395	 * pagevec that is currently being drained. Furthermore, marking
 396	 * a remote pagevec's page PageActive potentially hits a race where
 397	 * a page is marked PageActive just after it is added to the inactive
 398	 * list causing accounting errors and BUG_ON checks to trigger.
 399	 */
 400	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
 401		struct page *pagevec_page = pvec->pages[i];
 402
 403		if (pagevec_page == page) {
 404			SetPageActive(page);
 405			break;
 406		}
 407	}
 408
 409	local_unlock(&lru_pvecs.lock);
 410}
 411
 412/*
 413 * Mark a page as having seen activity.
 414 *
 415 * inactive,unreferenced	->	inactive,referenced
 416 * inactive,referenced		->	active,unreferenced
 417 * active,unreferenced		->	active,referenced
 418 *
 419 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
 420 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
 421 */
 422void mark_page_accessed(struct page *page)
 423{
 424	page = compound_head(page);
 425
 426	if (!PageReferenced(page)) {
 427		SetPageReferenced(page);
 428	} else if (PageUnevictable(page)) {
 429		/*
 430		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
 431		 * this list is never rotated or maintained, so marking an
 432		 * evictable page accessed has no effect.
 433		 */
 434	} else if (!PageActive(page)) {
 435		/*
 436		 * If the page is on the LRU, queue it for activation via
 437		 * lru_pvecs.activate_page. Otherwise, assume the page is on a
 438		 * pagevec, mark it active and it'll be moved to the active
 439		 * LRU on the next drain.
 440		 */
 441		if (PageLRU(page))
 442			activate_page(page);
 443		else
 444			__lru_cache_activate_page(page);
 445		ClearPageReferenced(page);
 446		workingset_activation(page);
 
 447	}
 448	if (page_is_idle(page))
 449		clear_page_idle(page);
 450}
 451EXPORT_SYMBOL(mark_page_accessed);
 452
 
 
 
 
 
 
 
 
 
 
 
 453/**
 454 * lru_cache_add - add a page to a page list
 455 * @page: the page to be added to the LRU.
 456 *
 457 * Queue the page for addition to the LRU via pagevec. The decision on whether
 458 * to add the page to the [in]active [file|anon] list is deferred until the
 459 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
 460 * have the page added to the active list using mark_page_accessed().
 461 */
 462void lru_cache_add(struct page *page)
 463{
 464	struct pagevec *pvec;
 465
 466	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
 467	VM_BUG_ON_PAGE(PageLRU(page), page);
 
 
 
 468
 469	get_page(page);
 470	local_lock(&lru_pvecs.lock);
 471	pvec = this_cpu_ptr(&lru_pvecs.lru_add);
 472	if (!pagevec_add(pvec, page) || PageCompound(page))
 473		__pagevec_lru_add(pvec);
 474	local_unlock(&lru_pvecs.lock);
 475}
 476EXPORT_SYMBOL(lru_cache_add);
 477
 478/**
 479 * lru_cache_add_inactive_or_unevictable
 480 * @page:  the page to be added to LRU
 481 * @vma:   vma in which page is mapped for determining reclaimability
 482 *
 483 * Place @page on the inactive or unevictable LRU list, depending on its
 484 * evictability.  Note that if the page is not evictable, it goes
 485 * directly back onto it's zone's unevictable list, it does NOT use a
 486 * per cpu pagevec.
 
 487 */
 488void lru_cache_add_inactive_or_unevictable(struct page *page,
 489					 struct vm_area_struct *vma)
 490{
 491	bool unevictable;
 492
 493	VM_BUG_ON_PAGE(PageLRU(page), page);
 494
 495	unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
 496	if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
 497		int nr_pages = thp_nr_pages(page);
 498		/*
 499		 * We use the irq-unsafe __mod_zone_page_stat because this
 500		 * counter is not modified from interrupt context, and the pte
 501		 * lock is held(spinlock), which implies preemption disabled.
 502		 */
 503		__mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
 504		count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
 505	}
 506	lru_cache_add(page);
 507}
 508
 509/*
 510 * If the page can not be invalidated, it is moved to the
 511 * inactive list to speed up its reclaim.  It is moved to the
 512 * head of the list, rather than the tail, to give the flusher
 513 * threads some time to write it out, as this is much more
 514 * effective than the single-page writeout from reclaim.
 515 *
 516 * If the page isn't page_mapped and dirty/writeback, the page
 517 * could reclaim asap using PG_reclaim.
 518 *
 519 * 1. active, mapped page -> none
 520 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
 521 * 3. inactive, mapped page -> none
 522 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
 523 * 5. inactive, clean -> inactive, tail
 524 * 6. Others -> none
 525 *
 526 * In 4, why it moves inactive's head, the VM expects the page would
 527 * be write it out by flusher threads as this is much more effective
 528 * than the single-page writeout from reclaim.
 529 */
 530static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
 531			      void *arg)
 532{
 533	int lru;
 534	bool active;
 535	int nr_pages = thp_nr_pages(page);
 536
 537	if (!PageLRU(page))
 538		return;
 539
 540	if (PageUnevictable(page))
 541		return;
 542
 543	/* Some processes are using the page */
 544	if (page_mapped(page))
 545		return;
 546
 547	active = PageActive(page);
 
 548	lru = page_lru_base_type(page);
 549
 550	del_page_from_lru_list(page, lruvec, lru + active);
 551	ClearPageActive(page);
 552	ClearPageReferenced(page);
 
 553
 554	if (PageWriteback(page) || PageDirty(page)) {
 555		/*
 556		 * PG_reclaim could be raced with end_page_writeback
 557		 * It can make readahead confusing.  But race window
 558		 * is _really_ small and  it's non-critical problem.
 559		 */
 560		add_page_to_lru_list(page, lruvec, lru);
 561		SetPageReclaim(page);
 562	} else {
 563		/*
 564		 * The page's writeback ends up during pagevec
 565		 * We moves tha page into tail of inactive.
 566		 */
 567		add_page_to_lru_list_tail(page, lruvec, lru);
 568		__count_vm_events(PGROTATED, nr_pages);
 569	}
 570
 571	if (active) {
 572		__count_vm_events(PGDEACTIVATE, nr_pages);
 573		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
 574				     nr_pages);
 575	}
 576}
 577
 578static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
 579			    void *arg)
 580{
 581	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
 582		int lru = page_lru_base_type(page);
 583		int nr_pages = thp_nr_pages(page);
 584
 585		del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE);
 586		ClearPageActive(page);
 587		ClearPageReferenced(page);
 588		add_page_to_lru_list(page, lruvec, lru);
 589
 590		__count_vm_events(PGDEACTIVATE, nr_pages);
 591		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
 592				     nr_pages);
 593	}
 594}
 595
 596static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
 597			    void *arg)
 598{
 599	if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
 600	    !PageSwapCache(page) && !PageUnevictable(page)) {
 601		bool active = PageActive(page);
 602		int nr_pages = thp_nr_pages(page);
 603
 604		del_page_from_lru_list(page, lruvec,
 605				       LRU_INACTIVE_ANON + active);
 606		ClearPageActive(page);
 607		ClearPageReferenced(page);
 608		/*
 609		 * Lazyfree pages are clean anonymous pages.  They have
 610		 * PG_swapbacked flag cleared, to distinguish them from normal
 611		 * anonymous pages
 612		 */
 613		ClearPageSwapBacked(page);
 614		add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
 615
 616		__count_vm_events(PGLAZYFREE, nr_pages);
 617		__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
 618				     nr_pages);
 619	}
 620}
 621
 622/*
 623 * Drain pages out of the cpu's pagevecs.
 624 * Either "cpu" is the current CPU, and preemption has already been
 625 * disabled; or "cpu" is being hot-unplugged, and is already dead.
 626 */
 627void lru_add_drain_cpu(int cpu)
 628{
 629	struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
 
 
 630
 631	if (pagevec_count(pvec))
 632		__pagevec_lru_add(pvec);
 
 
 
 633
 634	pvec = &per_cpu(lru_rotate.pvec, cpu);
 635	/* Disabling interrupts below acts as a compiler barrier. */
 636	if (data_race(pagevec_count(pvec))) {
 637		unsigned long flags;
 638
 639		/* No harm done if a racing interrupt already did this */
 640		local_lock_irqsave(&lru_rotate.lock, flags);
 641		pagevec_move_tail(pvec);
 642		local_unlock_irqrestore(&lru_rotate.lock, flags);
 643	}
 644
 645	pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
 646	if (pagevec_count(pvec))
 647		pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
 648
 649	pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
 650	if (pagevec_count(pvec))
 651		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
 652
 653	pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
 654	if (pagevec_count(pvec))
 655		pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
 656
 657	activate_page_drain(cpu);
 658}
 659
 660/**
 661 * deactivate_file_page - forcefully deactivate a file page
 662 * @page: page to deactivate
 663 *
 664 * This function hints the VM that @page is a good reclaim candidate,
 665 * for example if its invalidation fails due to the page being dirty
 666 * or under writeback.
 667 */
 668void deactivate_file_page(struct page *page)
 669{
 670	/*
 671	 * In a workload with many unevictable page such as mprotect,
 672	 * unevictable page deactivation for accelerating reclaim is pointless.
 673	 */
 674	if (PageUnevictable(page))
 675		return;
 676
 677	if (likely(get_page_unless_zero(page))) {
 678		struct pagevec *pvec;
 679
 680		local_lock(&lru_pvecs.lock);
 681		pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
 682
 683		if (!pagevec_add(pvec, page) || PageCompound(page))
 684			pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
 685		local_unlock(&lru_pvecs.lock);
 686	}
 687}
 688
 689/*
 690 * deactivate_page - deactivate a page
 691 * @page: page to deactivate
 692 *
 693 * deactivate_page() moves @page to the inactive list if @page was on the active
 694 * list and was not an unevictable page.  This is done to accelerate the reclaim
 695 * of @page.
 696 */
 697void deactivate_page(struct page *page)
 698{
 699	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
 700		struct pagevec *pvec;
 701
 702		local_lock(&lru_pvecs.lock);
 703		pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
 704		get_page(page);
 705		if (!pagevec_add(pvec, page) || PageCompound(page))
 706			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
 707		local_unlock(&lru_pvecs.lock);
 708	}
 709}
 710
 711/**
 712 * mark_page_lazyfree - make an anon page lazyfree
 713 * @page: page to deactivate
 714 *
 715 * mark_page_lazyfree() moves @page to the inactive file list.
 716 * This is done to accelerate the reclaim of @page.
 717 */
 718void mark_page_lazyfree(struct page *page)
 719{
 720	if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
 721	    !PageSwapCache(page) && !PageUnevictable(page)) {
 722		struct pagevec *pvec;
 723
 724		local_lock(&lru_pvecs.lock);
 725		pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
 726		get_page(page);
 727		if (!pagevec_add(pvec, page) || PageCompound(page))
 728			pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
 729		local_unlock(&lru_pvecs.lock);
 730	}
 731}
 732
 733void lru_add_drain(void)
 734{
 735	local_lock(&lru_pvecs.lock);
 736	lru_add_drain_cpu(smp_processor_id());
 737	local_unlock(&lru_pvecs.lock);
 738}
 739
 740void lru_add_drain_cpu_zone(struct zone *zone)
 741{
 742	local_lock(&lru_pvecs.lock);
 743	lru_add_drain_cpu(smp_processor_id());
 744	drain_local_pages(zone);
 745	local_unlock(&lru_pvecs.lock);
 746}
 747
 748#ifdef CONFIG_SMP
 749
 750static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
 751
 752static void lru_add_drain_per_cpu(struct work_struct *dummy)
 753{
 754	lru_add_drain();
 755}
 756
 757/*
 758 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
 759 * kworkers being shut down before our page_alloc_cpu_dead callback is
 760 * executed on the offlined cpu.
 761 * Calling this function with cpu hotplug locks held can actually lead
 762 * to obscure indirect dependencies via WQ context.
 763 */
 764void lru_add_drain_all(void)
 765{
 766	static seqcount_t seqcount = SEQCNT_ZERO(seqcount);
 767	static DEFINE_MUTEX(lock);
 768	static struct cpumask has_work;
 769	int cpu, seq;
 770
 771	/*
 772	 * Make sure nobody triggers this path before mm_percpu_wq is fully
 773	 * initialized.
 774	 */
 775	if (WARN_ON(!mm_percpu_wq))
 776		return;
 777
 778	seq = raw_read_seqcount_latch(&seqcount);
 779
 780	mutex_lock(&lock);
 781
 782	/*
 783	 * Piggyback on drain started and finished while we waited for lock:
 784	 * all pages pended at the time of our enter were drained from vectors.
 785	 */
 786	if (__read_seqcount_retry(&seqcount, seq))
 787		goto done;
 788
 789	raw_write_seqcount_latch(&seqcount);
 790
 791	cpumask_clear(&has_work);
 792
 793	for_each_online_cpu(cpu) {
 794		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
 795
 796		if (pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
 797		    data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
 798		    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
 799		    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
 800		    pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
 801		    need_activate_page_drain(cpu)) {
 802			INIT_WORK(work, lru_add_drain_per_cpu);
 803			queue_work_on(cpu, mm_percpu_wq, work);
 804			cpumask_set_cpu(cpu, &has_work);
 805		}
 806	}
 807
 808	for_each_cpu(cpu, &has_work)
 809		flush_work(&per_cpu(lru_add_drain_work, cpu));
 810
 811done:
 812	mutex_unlock(&lock);
 813}
 814#else
 815void lru_add_drain_all(void)
 816{
 817	lru_add_drain();
 818}
 819#endif
 820
 821/**
 822 * release_pages - batched put_page()
 823 * @pages: array of pages to release
 824 * @nr: number of pages
 
 
 
 825 *
 826 * Decrement the reference count on all the pages in @pages.  If it
 827 * fell to zero, remove the page from the LRU and free it.
 
 
 828 */
 829void release_pages(struct page **pages, int nr)
 830{
 831	int i;
 832	LIST_HEAD(pages_to_free);
 833	struct pglist_data *locked_pgdat = NULL;
 834	struct lruvec *lruvec;
 835	unsigned long flags;
 836	unsigned int lock_batch;
 837
 838	for (i = 0; i < nr; i++) {
 839		struct page *page = pages[i];
 840
 841		/*
 842		 * Make sure the IRQ-safe lock-holding time does not get
 843		 * excessive with a continuous string of pages from the
 844		 * same pgdat. The lock is held only if pgdat != NULL.
 845		 */
 846		if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
 847			spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
 848			locked_pgdat = NULL;
 849		}
 850
 851		if (is_huge_zero_page(page))
 852			continue;
 853
 854		if (is_zone_device_page(page)) {
 855			if (locked_pgdat) {
 856				spin_unlock_irqrestore(&locked_pgdat->lru_lock,
 857						       flags);
 858				locked_pgdat = NULL;
 859			}
 860			/*
 861			 * ZONE_DEVICE pages that return 'false' from
 862			 * put_devmap_managed_page() do not require special
 863			 * processing, and instead, expect a call to
 864			 * put_page_testzero().
 865			 */
 866			if (page_is_devmap_managed(page)) {
 867				put_devmap_managed_page(page);
 868				continue;
 869			}
 
 
 870		}
 871
 872		page = compound_head(page);
 873		if (!put_page_testzero(page))
 874			continue;
 875
 876		if (PageCompound(page)) {
 877			if (locked_pgdat) {
 878				spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
 879				locked_pgdat = NULL;
 880			}
 881			__put_compound_page(page);
 882			continue;
 883		}
 884
 885		if (PageLRU(page)) {
 886			struct pglist_data *pgdat = page_pgdat(page);
 887
 888			if (pgdat != locked_pgdat) {
 889				if (locked_pgdat)
 890					spin_unlock_irqrestore(&locked_pgdat->lru_lock,
 891									flags);
 892				lock_batch = 0;
 893				locked_pgdat = pgdat;
 894				spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
 895			}
 896
 897			lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
 898			VM_BUG_ON_PAGE(!PageLRU(page), page);
 899			__ClearPageLRU(page);
 900			del_page_from_lru_list(page, lruvec, page_off_lru(page));
 901		}
 902
 903		/* Clear Active bit in case of parallel mark_page_accessed */
 904		__ClearPageActive(page);
 905		__ClearPageWaiters(page);
 906
 907		list_add(&page->lru, &pages_to_free);
 908	}
 909	if (locked_pgdat)
 910		spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
 911
 912	mem_cgroup_uncharge_list(&pages_to_free);
 913	free_unref_page_list(&pages_to_free);
 914}
 915EXPORT_SYMBOL(release_pages);
 916
 917/*
 918 * The pages which we're about to release may be in the deferred lru-addition
 919 * queues.  That would prevent them from really being freed right now.  That's
 920 * OK from a correctness point of view but is inefficient - those pages may be
 921 * cache-warm and we want to give them back to the page allocator ASAP.
 922 *
 923 * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
 924 * and __pagevec_lru_add_active() call release_pages() directly to avoid
 925 * mutual recursion.
 926 */
 927void __pagevec_release(struct pagevec *pvec)
 928{
 929	if (!pvec->percpu_pvec_drained) {
 930		lru_add_drain();
 931		pvec->percpu_pvec_drained = true;
 932	}
 933	release_pages(pvec->pages, pagevec_count(pvec));
 934	pagevec_reinit(pvec);
 935}
 936EXPORT_SYMBOL(__pagevec_release);
 937
 938#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 939/* used by __split_huge_page_refcount() */
 940void lru_add_page_tail(struct page *page, struct page *page_tail,
 941		       struct lruvec *lruvec, struct list_head *list)
 942{
 943	VM_BUG_ON_PAGE(!PageHead(page), page);
 944	VM_BUG_ON_PAGE(PageCompound(page_tail), page);
 945	VM_BUG_ON_PAGE(PageLRU(page_tail), page);
 946	lockdep_assert_held(&lruvec_pgdat(lruvec)->lru_lock);
 947
 948	if (!list)
 949		SetPageLRU(page_tail);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 950
 951	if (likely(PageLRU(page)))
 952		list_add_tail(&page_tail->lru, &page->lru);
 953	else if (list) {
 954		/* page reclaim is reclaiming a huge page */
 955		get_page(page_tail);
 956		list_add_tail(&page_tail->lru, list);
 957	} else {
 958		/*
 959		 * Head page has not yet been counted, as an hpage,
 960		 * so we must account for each subpage individually.
 961		 *
 962		 * Put page_tail on the list at the correct position
 963		 * so they all end up in order.
 964		 */
 965		add_page_to_lru_list_tail(page_tail, lruvec,
 966					  page_lru(page_tail));
 
 967	}
 
 
 
 968}
 969#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 970
 971static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
 972				 void *arg)
 973{
 974	enum lru_list lru;
 975	int was_unevictable = TestClearPageUnevictable(page);
 976	int nr_pages = thp_nr_pages(page);
 
 
 
 
 977
 978	VM_BUG_ON_PAGE(PageLRU(page), page);
 979
 980	/*
 981	 * Page becomes evictable in two ways:
 982	 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
 983	 * 2) Before acquiring LRU lock to put the page to correct LRU and then
 984	 *   a) do PageLRU check with lock [check_move_unevictable_pages]
 985	 *   b) do PageLRU check before lock [clear_page_mlock]
 986	 *
 987	 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
 988	 * following strict ordering:
 989	 *
 990	 * #0: __pagevec_lru_add_fn		#1: clear_page_mlock
 991	 *
 992	 * SetPageLRU()				TestClearPageMlocked()
 993	 * smp_mb() // explicit ordering	// above provides strict
 994	 *					// ordering
 995	 * PageMlocked()			PageLRU()
 996	 *
 997	 *
 998	 * if '#1' does not observe setting of PG_lru by '#0' and fails
 999	 * isolation, the explicit barrier will make sure that page_evictable
1000	 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
1001	 * can be reordered after PageMlocked check and can make '#1' to fail
1002	 * the isolation of the page whose Mlocked bit is cleared (#0 is also
1003	 * looking at the same page) and the evictable page will be stranded
1004	 * in an unevictable LRU.
1005	 */
1006	SetPageLRU(page);
1007	smp_mb__after_atomic();
1008
1009	if (page_evictable(page)) {
1010		lru = page_lru(page);
1011		if (was_unevictable)
1012			__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
1013	} else {
1014		lru = LRU_UNEVICTABLE;
1015		ClearPageActive(page);
1016		SetPageUnevictable(page);
1017		if (!was_unevictable)
1018			__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
1019	}
1020
1021	add_page_to_lru_list(page, lruvec, lru);
1022	trace_mm_lru_insertion(page, lru);
1023}
1024
1025/*
1026 * Add the passed pages to the LRU, then drop the caller's refcount
1027 * on them.  Reinitialises the caller's pagevec.
1028 */
1029void __pagevec_lru_add(struct pagevec *pvec)
1030{
1031	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1032}
1033
1034/**
1035 * pagevec_lookup_entries - gang pagecache lookup
1036 * @pvec:	Where the resulting entries are placed
1037 * @mapping:	The address_space to search
1038 * @start:	The starting entry index
1039 * @nr_entries:	The maximum number of pages
1040 * @indices:	The cache indices corresponding to the entries in @pvec
1041 *
1042 * pagevec_lookup_entries() will search for and return a group of up
1043 * to @nr_pages pages and shadow entries in the mapping.  All
1044 * entries are placed in @pvec.  pagevec_lookup_entries() takes a
1045 * reference against actual pages in @pvec.
1046 *
1047 * The search returns a group of mapping-contiguous entries with
1048 * ascending indexes.  There may be holes in the indices due to
1049 * not-present entries.
1050 *
1051 * Only one subpage of a Transparent Huge Page is returned in one call:
1052 * allowing truncate_inode_pages_range() to evict the whole THP without
1053 * cycling through a pagevec of extra references.
1054 *
1055 * pagevec_lookup_entries() returns the number of entries which were
1056 * found.
1057 */
1058unsigned pagevec_lookup_entries(struct pagevec *pvec,
1059				struct address_space *mapping,
1060				pgoff_t start, unsigned nr_entries,
1061				pgoff_t *indices)
1062{
1063	pvec->nr = find_get_entries(mapping, start, nr_entries,
1064				    pvec->pages, indices);
1065	return pagevec_count(pvec);
1066}
1067
1068/**
1069 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1070 * @pvec:	The pagevec to prune
1071 *
1072 * pagevec_lookup_entries() fills both pages and exceptional radix
1073 * tree entries into the pagevec.  This function prunes all
1074 * exceptionals from @pvec without leaving holes, so that it can be
1075 * passed on to page-only pagevec operations.
1076 */
1077void pagevec_remove_exceptionals(struct pagevec *pvec)
1078{
1079	int i, j;
1080
1081	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1082		struct page *page = pvec->pages[i];
1083		if (!xa_is_value(page))
1084			pvec->pages[j++] = page;
1085	}
1086	pvec->nr = j;
1087}
 
1088
1089/**
1090 * pagevec_lookup_range - gang pagecache lookup
1091 * @pvec:	Where the resulting pages are placed
1092 * @mapping:	The address_space to search
1093 * @start:	The starting page index
1094 * @end:	The final page index
1095 *
1096 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1097 * pages in the mapping starting from index @start and upto index @end
1098 * (inclusive).  The pages are placed in @pvec.  pagevec_lookup() takes a
1099 * reference against the pages in @pvec.
1100 *
1101 * The search returns a group of mapping-contiguous pages with ascending
1102 * indexes.  There may be holes in the indices due to not-present pages. We
1103 * also update @start to index the next page for the traversal.
1104 *
1105 * pagevec_lookup_range() returns the number of pages which were found. If this
1106 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1107 * reached.
1108 */
1109unsigned pagevec_lookup_range(struct pagevec *pvec,
1110		struct address_space *mapping, pgoff_t *start, pgoff_t end)
1111{
1112	pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1113					pvec->pages);
1114	return pagevec_count(pvec);
1115}
1116EXPORT_SYMBOL(pagevec_lookup_range);
1117
1118unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1119		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1120		xa_mark_t tag)
1121{
1122	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1123					PAGEVEC_SIZE, pvec->pages);
1124	return pagevec_count(pvec);
1125}
1126EXPORT_SYMBOL(pagevec_lookup_range_tag);
1127
1128unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec,
1129		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1130		xa_mark_t tag, unsigned max_pages)
1131{
1132	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1133		min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages);
1134	return pagevec_count(pvec);
1135}
1136EXPORT_SYMBOL(pagevec_lookup_range_nr_tag);
1137/*
1138 * Perform any setup for the swap system
1139 */
1140void __init swap_setup(void)
1141{
1142	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
 
 
 
 
1143
1144	/* Use a smaller cluster for small-memory machines */
1145	if (megs < 16)
1146		page_cluster = 2;
1147	else
1148		page_cluster = 3;
1149	/*
1150	 * Right now other parts of the system means that we
1151	 * _really_ don't want to cluster much more
1152	 */
1153}
1154
1155#ifdef CONFIG_DEV_PAGEMAP_OPS
1156void put_devmap_managed_page(struct page *page)
1157{
1158	int count;
1159
1160	if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1161		return;
1162
1163	count = page_ref_dec_return(page);
1164
1165	/*
1166	 * devmap page refcounts are 1-based, rather than 0-based: if
1167	 * refcount is 1, then the page is free and the refcount is
1168	 * stable because nobody holds a reference on the page.
1169	 */
1170	if (count == 1)
1171		free_devmap_managed_page(page);
1172	else if (!count)
1173		__put_page(page);
1174}
1175EXPORT_SYMBOL(put_devmap_managed_page);
1176#endif
v3.5.6
 
  1/*
  2 *  linux/mm/swap.c
  3 *
  4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  5 */
  6
  7/*
  8 * This file contains the default values for the operation of the
  9 * Linux VM subsystem. Fine-tuning documentation can be found in
 10 * Documentation/sysctl/vm.txt.
 11 * Started 18.12.91
 12 * Swap aging added 23.2.95, Stephen Tweedie.
 13 * Buffermem limits added 12.3.98, Rik van Riel.
 14 */
 15
 16#include <linux/mm.h>
 17#include <linux/sched.h>
 18#include <linux/kernel_stat.h>
 19#include <linux/swap.h>
 20#include <linux/mman.h>
 21#include <linux/pagemap.h>
 22#include <linux/pagevec.h>
 23#include <linux/init.h>
 24#include <linux/export.h>
 25#include <linux/mm_inline.h>
 26#include <linux/percpu_counter.h>
 
 27#include <linux/percpu.h>
 28#include <linux/cpu.h>
 29#include <linux/notifier.h>
 30#include <linux/backing-dev.h>
 31#include <linux/memcontrol.h>
 32#include <linux/gfp.h>
 
 
 
 
 33
 34#include "internal.h"
 35
 
 
 
 36/* How many pages do we try to swap or page in/out together? */
 37int page_cluster;
 38
 39static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
 40static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
 41static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 42
 43/*
 44 * This path almost never happens for VM activity - pages are normally
 45 * freed via pagevecs.  But it gets used by networking.
 46 */
 47static void __page_cache_release(struct page *page)
 48{
 49	if (PageLRU(page)) {
 50		struct zone *zone = page_zone(page);
 51		struct lruvec *lruvec;
 52		unsigned long flags;
 53
 54		spin_lock_irqsave(&zone->lru_lock, flags);
 55		lruvec = mem_cgroup_page_lruvec(page, zone);
 56		VM_BUG_ON(!PageLRU(page));
 57		__ClearPageLRU(page);
 58		del_page_from_lru_list(page, lruvec, page_off_lru(page));
 59		spin_unlock_irqrestore(&zone->lru_lock, flags);
 60	}
 
 61}
 62
 63static void __put_single_page(struct page *page)
 64{
 65	__page_cache_release(page);
 66	free_hot_cold_page(page, 0);
 
 67}
 68
 69static void __put_compound_page(struct page *page)
 70{
 71	compound_page_dtor *dtor;
 72
 73	__page_cache_release(page);
 74	dtor = get_compound_page_dtor(page);
 75	(*dtor)(page);
 
 
 
 
 76}
 77
 78static void put_compound_page(struct page *page)
 79{
 80	if (unlikely(PageTail(page))) {
 81		/* __split_huge_page_refcount can run under us */
 82		struct page *page_head = compound_trans_head(page);
 83
 84		if (likely(page != page_head &&
 85			   get_page_unless_zero(page_head))) {
 86			unsigned long flags;
 87
 88			/*
 89			 * THP can not break up slab pages so avoid taking
 90			 * compound_lock().  Slab performs non-atomic bit ops
 91			 * on page->flags for better performance.  In particular
 92			 * slab_unlock() in slub used to be a hot path.  It is
 93			 * still hot on arches that do not support
 94			 * this_cpu_cmpxchg_double().
 95			 */
 96			if (PageSlab(page_head)) {
 97				if (PageTail(page)) {
 98					if (put_page_testzero(page_head))
 99						VM_BUG_ON(1);
100
101					atomic_dec(&page->_mapcount);
102					goto skip_lock_tail;
103				} else
104					goto skip_lock;
105			}
106			/*
107			 * page_head wasn't a dangling pointer but it
108			 * may not be a head page anymore by the time
109			 * we obtain the lock. That is ok as long as it
110			 * can't be freed from under us.
111			 */
112			flags = compound_lock_irqsave(page_head);
113			if (unlikely(!PageTail(page))) {
114				/* __split_huge_page_refcount run before us */
115				compound_unlock_irqrestore(page_head, flags);
116skip_lock:
117				if (put_page_testzero(page_head))
118					__put_single_page(page_head);
119out_put_single:
120				if (put_page_testzero(page))
121					__put_single_page(page);
122				return;
123			}
124			VM_BUG_ON(page_head != page->first_page);
125			/*
126			 * We can release the refcount taken by
127			 * get_page_unless_zero() now that
128			 * __split_huge_page_refcount() is blocked on
129			 * the compound_lock.
130			 */
131			if (put_page_testzero(page_head))
132				VM_BUG_ON(1);
133			/* __split_huge_page_refcount will wait now */
134			VM_BUG_ON(page_mapcount(page) <= 0);
135			atomic_dec(&page->_mapcount);
136			VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
137			VM_BUG_ON(atomic_read(&page->_count) != 0);
138			compound_unlock_irqrestore(page_head, flags);
139
140skip_lock_tail:
141			if (put_page_testzero(page_head)) {
142				if (PageHead(page_head))
143					__put_compound_page(page_head);
144				else
145					__put_single_page(page_head);
146			}
147		} else {
148			/* page_head is a dangling pointer */
149			VM_BUG_ON(PageTail(page));
150			goto out_put_single;
151		}
152	} else if (put_page_testzero(page)) {
153		if (PageHead(page))
154			__put_compound_page(page);
155		else
156			__put_single_page(page);
157	}
158}
159
160void put_page(struct page *page)
161{
162	if (unlikely(PageCompound(page)))
163		put_compound_page(page);
164	else if (put_page_testzero(page))
165		__put_single_page(page);
166}
167EXPORT_SYMBOL(put_page);
168
169/*
170 * This function is exported but must not be called by anything other
171 * than get_page(). It implements the slow path of get_page().
172 */
173bool __get_page_tail(struct page *page)
174{
175	/*
176	 * This takes care of get_page() if run on a tail page
177	 * returned by one of the get_user_pages/follow_page variants.
178	 * get_user_pages/follow_page itself doesn't need the compound
179	 * lock because it runs __get_page_tail_foll() under the
180	 * proper PT lock that already serializes against
181	 * split_huge_page().
182	 */
183	unsigned long flags;
184	bool got = false;
185	struct page *page_head = compound_trans_head(page);
186
187	if (likely(page != page_head && get_page_unless_zero(page_head))) {
188
189		/* Ref to put_compound_page() comment. */
190		if (PageSlab(page_head)) {
191			if (likely(PageTail(page))) {
192				__get_page_tail_foll(page, false);
193				return true;
194			} else {
195				put_page(page_head);
196				return false;
197			}
198		}
199
200		/*
201		 * page_head wasn't a dangling pointer but it
202		 * may not be a head page anymore by the time
203		 * we obtain the lock. That is ok as long as it
204		 * can't be freed from under us.
205		 */
206		flags = compound_lock_irqsave(page_head);
207		/* here __split_huge_page_refcount won't run anymore */
208		if (likely(PageTail(page))) {
209			__get_page_tail_foll(page, false);
210			got = true;
211		}
212		compound_unlock_irqrestore(page_head, flags);
213		if (unlikely(!got))
214			put_page(page_head);
215	}
216	return got;
217}
218EXPORT_SYMBOL(__get_page_tail);
219
220/**
221 * put_pages_list() - release a list of pages
222 * @pages: list of pages threaded on page->lru
223 *
224 * Release a list of pages which are strung together on page.lru.  Currently
225 * used by read_cache_pages() and related error recovery code.
226 */
227void put_pages_list(struct list_head *pages)
228{
229	while (!list_empty(pages)) {
230		struct page *victim;
231
232		victim = list_entry(pages->prev, struct page, lru);
233		list_del(&victim->lru);
234		page_cache_release(victim);
235	}
236}
237EXPORT_SYMBOL(put_pages_list);
238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
239static void pagevec_lru_move_fn(struct pagevec *pvec,
240	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
241	void *arg)
242{
243	int i;
244	struct zone *zone = NULL;
245	struct lruvec *lruvec;
246	unsigned long flags = 0;
247
248	for (i = 0; i < pagevec_count(pvec); i++) {
249		struct page *page = pvec->pages[i];
250		struct zone *pagezone = page_zone(page);
251
252		if (pagezone != zone) {
253			if (zone)
254				spin_unlock_irqrestore(&zone->lru_lock, flags);
255			zone = pagezone;
256			spin_lock_irqsave(&zone->lru_lock, flags);
257		}
258
259		lruvec = mem_cgroup_page_lruvec(page, zone);
260		(*move_fn)(page, lruvec, arg);
261	}
262	if (zone)
263		spin_unlock_irqrestore(&zone->lru_lock, flags);
264	release_pages(pvec->pages, pvec->nr, pvec->cold);
265	pagevec_reinit(pvec);
266}
267
268static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
269				 void *arg)
270{
271	int *pgmoved = arg;
272
273	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
274		enum lru_list lru = page_lru_base_type(page);
275		list_move_tail(&page->lru, &lruvec->lists[lru]);
276		(*pgmoved)++;
 
277	}
278}
279
280/*
281 * pagevec_move_tail() must be called with IRQ disabled.
282 * Otherwise this may cause nasty races.
283 */
284static void pagevec_move_tail(struct pagevec *pvec)
285{
286	int pgmoved = 0;
287
288	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
289	__count_vm_events(PGROTATED, pgmoved);
290}
291
292/*
293 * Writeback is about to end against a page which has been marked for immediate
294 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
295 * inactive list.
296 */
297void rotate_reclaimable_page(struct page *page)
298{
299	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
300	    !PageUnevictable(page) && PageLRU(page)) {
301		struct pagevec *pvec;
302		unsigned long flags;
303
304		page_cache_get(page);
305		local_irq_save(flags);
306		pvec = &__get_cpu_var(lru_rotate_pvecs);
307		if (!pagevec_add(pvec, page))
308			pagevec_move_tail(pvec);
309		local_irq_restore(flags);
310	}
311}
312
313static void update_page_reclaim_stat(struct lruvec *lruvec,
314				     int file, int rotated)
315{
316	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
317
318	reclaim_stat->recent_scanned[file]++;
319	if (rotated)
320		reclaim_stat->recent_rotated[file]++;
 
321}
322
323static void __activate_page(struct page *page, struct lruvec *lruvec,
324			    void *arg)
325{
326	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
327		int file = page_is_file_cache(page);
328		int lru = page_lru_base_type(page);
 
329
330		del_page_from_lru_list(page, lruvec, lru);
331		SetPageActive(page);
332		lru += LRU_ACTIVE;
333		add_page_to_lru_list(page, lruvec, lru);
 
334
335		__count_vm_event(PGACTIVATE);
336		update_page_reclaim_stat(lruvec, file, 1);
 
337	}
338}
339
340#ifdef CONFIG_SMP
341static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
342
343static void activate_page_drain(int cpu)
344{
345	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
346
347	if (pagevec_count(pvec))
348		pagevec_lru_move_fn(pvec, __activate_page, NULL);
349}
350
 
 
 
 
 
351void activate_page(struct page *page)
352{
 
353	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
354		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
355
356		page_cache_get(page);
357		if (!pagevec_add(pvec, page))
 
 
358			pagevec_lru_move_fn(pvec, __activate_page, NULL);
359		put_cpu_var(activate_page_pvecs);
360	}
361}
362
363#else
364static inline void activate_page_drain(int cpu)
365{
366}
367
368void activate_page(struct page *page)
369{
370	struct zone *zone = page_zone(page);
371
372	spin_lock_irq(&zone->lru_lock);
373	__activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
374	spin_unlock_irq(&zone->lru_lock);
 
375}
376#endif
377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
378/*
379 * Mark a page as having seen activity.
380 *
381 * inactive,unreferenced	->	inactive,referenced
382 * inactive,referenced		->	active,unreferenced
383 * active,unreferenced		->	active,referenced
 
 
 
384 */
385void mark_page_accessed(struct page *page)
386{
387	if (!PageActive(page) && !PageUnevictable(page) &&
388			PageReferenced(page) && PageLRU(page)) {
389		activate_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
390		ClearPageReferenced(page);
391	} else if (!PageReferenced(page)) {
392		SetPageReferenced(page);
393	}
 
 
394}
395EXPORT_SYMBOL(mark_page_accessed);
396
397void __lru_cache_add(struct page *page, enum lru_list lru)
398{
399	struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
400
401	page_cache_get(page);
402	if (!pagevec_add(pvec, page))
403		__pagevec_lru_add(pvec, lru);
404	put_cpu_var(lru_add_pvecs);
405}
406EXPORT_SYMBOL(__lru_cache_add);
407
408/**
409 * lru_cache_add_lru - add a page to a page list
410 * @page: the page to be added to the LRU.
411 * @lru: the LRU list to which the page is added.
 
 
 
 
412 */
413void lru_cache_add_lru(struct page *page, enum lru_list lru)
414{
415	if (PageActive(page)) {
416		VM_BUG_ON(PageUnevictable(page));
417		ClearPageActive(page);
418	} else if (PageUnevictable(page)) {
419		VM_BUG_ON(PageActive(page));
420		ClearPageUnevictable(page);
421	}
422
423	VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
424	__lru_cache_add(page, lru);
 
 
 
 
425}
 
426
427/**
428 * add_page_to_unevictable_list - add a page to the unevictable list
429 * @page:  the page to be added to the unevictable list
 
430 *
431 * Add page directly to its zone's unevictable list.  To avoid races with
432 * tasks that might be making the page evictable, through eg. munlock,
433 * munmap or exit, while it's not on the lru, we want to add the page
434 * while it's locked or otherwise "invisible" to other tasks.  This is
435 * difficult to do when using the pagevec cache, so bypass that.
436 */
437void add_page_to_unevictable_list(struct page *page)
 
438{
439	struct zone *zone = page_zone(page);
440	struct lruvec *lruvec;
 
441
442	spin_lock_irq(&zone->lru_lock);
443	lruvec = mem_cgroup_page_lruvec(page, zone);
444	SetPageUnevictable(page);
445	SetPageLRU(page);
446	add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
447	spin_unlock_irq(&zone->lru_lock);
 
 
 
 
 
 
448}
449
450/*
451 * If the page can not be invalidated, it is moved to the
452 * inactive list to speed up its reclaim.  It is moved to the
453 * head of the list, rather than the tail, to give the flusher
454 * threads some time to write it out, as this is much more
455 * effective than the single-page writeout from reclaim.
456 *
457 * If the page isn't page_mapped and dirty/writeback, the page
458 * could reclaim asap using PG_reclaim.
459 *
460 * 1. active, mapped page -> none
461 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
462 * 3. inactive, mapped page -> none
463 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
464 * 5. inactive, clean -> inactive, tail
465 * 6. Others -> none
466 *
467 * In 4, why it moves inactive's head, the VM expects the page would
468 * be write it out by flusher threads as this is much more effective
469 * than the single-page writeout from reclaim.
470 */
471static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
472			      void *arg)
473{
474	int lru, file;
475	bool active;
 
476
477	if (!PageLRU(page))
478		return;
479
480	if (PageUnevictable(page))
481		return;
482
483	/* Some processes are using the page */
484	if (page_mapped(page))
485		return;
486
487	active = PageActive(page);
488	file = page_is_file_cache(page);
489	lru = page_lru_base_type(page);
490
491	del_page_from_lru_list(page, lruvec, lru + active);
492	ClearPageActive(page);
493	ClearPageReferenced(page);
494	add_page_to_lru_list(page, lruvec, lru);
495
496	if (PageWriteback(page) || PageDirty(page)) {
497		/*
498		 * PG_reclaim could be raced with end_page_writeback
499		 * It can make readahead confusing.  But race window
500		 * is _really_ small and  it's non-critical problem.
501		 */
 
502		SetPageReclaim(page);
503	} else {
504		/*
505		 * The page's writeback ends up during pagevec
506		 * We moves tha page into tail of inactive.
507		 */
508		list_move_tail(&page->lru, &lruvec->lists[lru]);
509		__count_vm_event(PGROTATED);
510	}
511
512	if (active)
513		__count_vm_event(PGDEACTIVATE);
514	update_page_reclaim_stat(lruvec, file, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
515}
516
517/*
518 * Drain pages out of the cpu's pagevecs.
519 * Either "cpu" is the current CPU, and preemption has already been
520 * disabled; or "cpu" is being hot-unplugged, and is already dead.
521 */
522void lru_add_drain_cpu(int cpu)
523{
524	struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
525	struct pagevec *pvec;
526	int lru;
527
528	for_each_lru(lru) {
529		pvec = &pvecs[lru - LRU_BASE];
530		if (pagevec_count(pvec))
531			__pagevec_lru_add(pvec, lru);
532	}
533
534	pvec = &per_cpu(lru_rotate_pvecs, cpu);
535	if (pagevec_count(pvec)) {
 
536		unsigned long flags;
537
538		/* No harm done if a racing interrupt already did this */
539		local_irq_save(flags);
540		pagevec_move_tail(pvec);
541		local_irq_restore(flags);
542	}
543
544	pvec = &per_cpu(lru_deactivate_pvecs, cpu);
 
 
 
 
545	if (pagevec_count(pvec))
546		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
547
 
 
 
 
548	activate_page_drain(cpu);
549}
550
551/**
552 * deactivate_page - forcefully deactivate a page
553 * @page: page to deactivate
554 *
555 * This function hints the VM that @page is a good reclaim candidate,
556 * for example if its invalidation fails due to the page being dirty
557 * or under writeback.
558 */
559void deactivate_page(struct page *page)
560{
561	/*
562	 * In a workload with many unevictable page such as mprotect, unevictable
563	 * page deactivation for accelerating reclaim is pointless.
564	 */
565	if (PageUnevictable(page))
566		return;
567
568	if (likely(get_page_unless_zero(page))) {
569		struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
570
571		if (!pagevec_add(pvec, page))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
572			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
573		put_cpu_var(lru_deactivate_pvecs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
574	}
575}
576
577void lru_add_drain(void)
578{
579	lru_add_drain_cpu(get_cpu());
580	put_cpu();
 
581}
582
 
 
 
 
 
 
 
 
 
 
 
 
583static void lru_add_drain_per_cpu(struct work_struct *dummy)
584{
585	lru_add_drain();
586}
587
588/*
589 * Returns 0 for success
 
 
 
 
590 */
591int lru_add_drain_all(void)
592{
593	return schedule_on_each_cpu(lru_add_drain_per_cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
594}
 
 
 
 
 
 
595
596/*
597 * Batched page_cache_release().  Decrement the reference count on all the
598 * passed pages.  If it fell to zero then remove the page from the LRU and
599 * free it.
600 *
601 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
602 * for the remainder of the operation.
603 *
604 * The locking in this function is against shrink_inactive_list(): we recheck
605 * the page count inside the lock to see whether shrink_inactive_list()
606 * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
607 * will free it.
608 */
609void release_pages(struct page **pages, int nr, int cold)
610{
611	int i;
612	LIST_HEAD(pages_to_free);
613	struct zone *zone = NULL;
614	struct lruvec *lruvec;
615	unsigned long uninitialized_var(flags);
 
616
617	for (i = 0; i < nr; i++) {
618		struct page *page = pages[i];
619
620		if (unlikely(PageCompound(page))) {
621			if (zone) {
622				spin_unlock_irqrestore(&zone->lru_lock, flags);
623				zone = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
624			}
625			put_compound_page(page);
626			continue;
627		}
628
 
629		if (!put_page_testzero(page))
630			continue;
631
 
 
 
 
 
 
 
 
 
632		if (PageLRU(page)) {
633			struct zone *pagezone = page_zone(page);
634
635			if (pagezone != zone) {
636				if (zone)
637					spin_unlock_irqrestore(&zone->lru_lock,
638									flags);
639				zone = pagezone;
640				spin_lock_irqsave(&zone->lru_lock, flags);
 
641			}
642
643			lruvec = mem_cgroup_page_lruvec(page, zone);
644			VM_BUG_ON(!PageLRU(page));
645			__ClearPageLRU(page);
646			del_page_from_lru_list(page, lruvec, page_off_lru(page));
647		}
648
 
 
 
 
649		list_add(&page->lru, &pages_to_free);
650	}
651	if (zone)
652		spin_unlock_irqrestore(&zone->lru_lock, flags);
653
654	free_hot_cold_page_list(&pages_to_free, cold);
 
655}
656EXPORT_SYMBOL(release_pages);
657
658/*
659 * The pages which we're about to release may be in the deferred lru-addition
660 * queues.  That would prevent them from really being freed right now.  That's
661 * OK from a correctness point of view but is inefficient - those pages may be
662 * cache-warm and we want to give them back to the page allocator ASAP.
663 *
664 * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
665 * and __pagevec_lru_add_active() call release_pages() directly to avoid
666 * mutual recursion.
667 */
668void __pagevec_release(struct pagevec *pvec)
669{
670	lru_add_drain();
671	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
 
 
 
672	pagevec_reinit(pvec);
673}
674EXPORT_SYMBOL(__pagevec_release);
675
676#ifdef CONFIG_TRANSPARENT_HUGEPAGE
677/* used by __split_huge_page_refcount() */
678void lru_add_page_tail(struct page *page, struct page *page_tail,
679		       struct lruvec *lruvec)
680{
681	int uninitialized_var(active);
682	enum lru_list lru;
683	const int file = 0;
 
684
685	VM_BUG_ON(!PageHead(page));
686	VM_BUG_ON(PageCompound(page_tail));
687	VM_BUG_ON(PageLRU(page_tail));
688	VM_BUG_ON(NR_CPUS != 1 &&
689		  !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
690
691	SetPageLRU(page_tail);
692
693	if (page_evictable(page_tail, NULL)) {
694		if (PageActive(page)) {
695			SetPageActive(page_tail);
696			active = 1;
697			lru = LRU_ACTIVE_ANON;
698		} else {
699			active = 0;
700			lru = LRU_INACTIVE_ANON;
701		}
702	} else {
703		SetPageUnevictable(page_tail);
704		lru = LRU_UNEVICTABLE;
705	}
706
707	if (likely(PageLRU(page)))
708		list_add_tail(&page_tail->lru, &page->lru);
709	else {
710		struct list_head *list_head;
 
 
 
711		/*
712		 * Head page has not yet been counted, as an hpage,
713		 * so we must account for each subpage individually.
714		 *
715		 * Use the standard add function to put page_tail on the list,
716		 * but then correct its position so they all end up in order.
717		 */
718		add_page_to_lru_list(page_tail, lruvec, lru);
719		list_head = page_tail->lru.prev;
720		list_move_tail(&page_tail->lru, list_head);
721	}
722
723	if (!PageUnevictable(page))
724		update_page_reclaim_stat(lruvec, file, active);
725}
726#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
727
728static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
729				 void *arg)
730{
731	enum lru_list lru = (enum lru_list)arg;
732	int file = is_file_lru(lru);
733	int active = is_active_lru(lru);
734
735	VM_BUG_ON(PageActive(page));
736	VM_BUG_ON(PageUnevictable(page));
737	VM_BUG_ON(PageLRU(page));
738
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
739	SetPageLRU(page);
740	if (active)
741		SetPageActive(page);
 
 
 
 
 
 
 
 
 
 
 
 
742	add_page_to_lru_list(page, lruvec, lru);
743	update_page_reclaim_stat(lruvec, file, active);
744}
745
746/*
747 * Add the passed pages to the LRU, then drop the caller's refcount
748 * on them.  Reinitialises the caller's pagevec.
749 */
750void __pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
751{
752	VM_BUG_ON(is_unevictable_lru(lru));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
753
754	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, (void *)lru);
 
 
 
 
 
755}
756EXPORT_SYMBOL(__pagevec_lru_add);
757
758/**
759 * pagevec_lookup - gang pagecache lookup
760 * @pvec:	Where the resulting pages are placed
761 * @mapping:	The address_space to search
762 * @start:	The starting page index
763 * @nr_pages:	The maximum number of pages
764 *
765 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
766 * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
 
767 * reference against the pages in @pvec.
768 *
769 * The search returns a group of mapping-contiguous pages with ascending
770 * indexes.  There may be holes in the indices due to not-present pages.
 
771 *
772 * pagevec_lookup() returns the number of pages which were found.
 
 
773 */
774unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
775		pgoff_t start, unsigned nr_pages)
776{
777	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
 
778	return pagevec_count(pvec);
779}
780EXPORT_SYMBOL(pagevec_lookup);
781
782unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
783		pgoff_t *index, int tag, unsigned nr_pages)
 
784{
785	pvec->nr = find_get_pages_tag(mapping, index, tag,
786					nr_pages, pvec->pages);
787	return pagevec_count(pvec);
788}
789EXPORT_SYMBOL(pagevec_lookup_tag);
790
 
 
 
 
 
 
 
 
 
791/*
792 * Perform any setup for the swap system
793 */
794void __init swap_setup(void)
795{
796	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
797
798#ifdef CONFIG_SWAP
799	bdi_init(swapper_space.backing_dev_info);
800#endif
801
802	/* Use a smaller cluster for small-memory machines */
803	if (megs < 16)
804		page_cluster = 2;
805	else
806		page_cluster = 3;
807	/*
808	 * Right now other parts of the system means that we
809	 * _really_ don't want to cluster much more
810	 */
811}