Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/swap.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * This file contains the default values for the operation of the
10 * Linux VM subsystem. Fine-tuning documentation can be found in
11 * Documentation/admin-guide/sysctl/vm.rst.
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17#include <linux/mm.h>
18#include <linux/sched.h>
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/mman.h>
22#include <linux/pagemap.h>
23#include <linux/pagevec.h>
24#include <linux/init.h>
25#include <linux/export.h>
26#include <linux/mm_inline.h>
27#include <linux/percpu_counter.h>
28#include <linux/memremap.h>
29#include <linux/percpu.h>
30#include <linux/cpu.h>
31#include <linux/notifier.h>
32#include <linux/backing-dev.h>
33#include <linux/memcontrol.h>
34#include <linux/gfp.h>
35#include <linux/uio.h>
36#include <linux/hugetlb.h>
37#include <linux/page_idle.h>
38#include <linux/local_lock.h>
39
40#include "internal.h"
41
42#define CREATE_TRACE_POINTS
43#include <trace/events/pagemap.h>
44
45/* How many pages do we try to swap or page in/out together? */
46int page_cluster;
47
48/* Protecting only lru_rotate.pvec which requires disabling interrupts */
49struct lru_rotate {
50 local_lock_t lock;
51 struct pagevec pvec;
52};
53static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
54 .lock = INIT_LOCAL_LOCK(lock),
55};
56
57/*
58 * The following struct pagevec are grouped together because they are protected
59 * by disabling preemption (and interrupts remain enabled).
60 */
61struct lru_pvecs {
62 local_lock_t lock;
63 struct pagevec lru_add;
64 struct pagevec lru_deactivate_file;
65 struct pagevec lru_deactivate;
66 struct pagevec lru_lazyfree;
67#ifdef CONFIG_SMP
68 struct pagevec activate_page;
69#endif
70};
71static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
72 .lock = INIT_LOCAL_LOCK(lock),
73};
74
75/*
76 * This path almost never happens for VM activity - pages are normally
77 * freed via pagevecs. But it gets used by networking.
78 */
79static void __page_cache_release(struct page *page)
80{
81 if (PageLRU(page)) {
82 pg_data_t *pgdat = page_pgdat(page);
83 struct lruvec *lruvec;
84 unsigned long flags;
85
86 spin_lock_irqsave(&pgdat->lru_lock, flags);
87 lruvec = mem_cgroup_page_lruvec(page, pgdat);
88 VM_BUG_ON_PAGE(!PageLRU(page), page);
89 __ClearPageLRU(page);
90 del_page_from_lru_list(page, lruvec, page_off_lru(page));
91 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
92 }
93 __ClearPageWaiters(page);
94}
95
96static void __put_single_page(struct page *page)
97{
98 __page_cache_release(page);
99 mem_cgroup_uncharge(page);
100 free_unref_page(page);
101}
102
103static void __put_compound_page(struct page *page)
104{
105 /*
106 * __page_cache_release() is supposed to be called for thp, not for
107 * hugetlb. This is because hugetlb page does never have PageLRU set
108 * (it's never listed to any LRU lists) and no memcg routines should
109 * be called for hugetlb (it has a separate hugetlb_cgroup.)
110 */
111 if (!PageHuge(page))
112 __page_cache_release(page);
113 destroy_compound_page(page);
114}
115
116void __put_page(struct page *page)
117{
118 if (is_zone_device_page(page)) {
119 put_dev_pagemap(page->pgmap);
120
121 /*
122 * The page belongs to the device that created pgmap. Do
123 * not return it to page allocator.
124 */
125 return;
126 }
127
128 if (unlikely(PageCompound(page)))
129 __put_compound_page(page);
130 else
131 __put_single_page(page);
132}
133EXPORT_SYMBOL(__put_page);
134
135/**
136 * put_pages_list() - release a list of pages
137 * @pages: list of pages threaded on page->lru
138 *
139 * Release a list of pages which are strung together on page.lru. Currently
140 * used by read_cache_pages() and related error recovery code.
141 */
142void put_pages_list(struct list_head *pages)
143{
144 while (!list_empty(pages)) {
145 struct page *victim;
146
147 victim = lru_to_page(pages);
148 list_del(&victim->lru);
149 put_page(victim);
150 }
151}
152EXPORT_SYMBOL(put_pages_list);
153
154/*
155 * get_kernel_pages() - pin kernel pages in memory
156 * @kiov: An array of struct kvec structures
157 * @nr_segs: number of segments to pin
158 * @write: pinning for read/write, currently ignored
159 * @pages: array that receives pointers to the pages pinned.
160 * Should be at least nr_segs long.
161 *
162 * Returns number of pages pinned. This may be fewer than the number
163 * requested. If nr_pages is 0 or negative, returns 0. If no pages
164 * were pinned, returns -errno. Each page returned must be released
165 * with a put_page() call when it is finished with.
166 */
167int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
168 struct page **pages)
169{
170 int seg;
171
172 for (seg = 0; seg < nr_segs; seg++) {
173 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
174 return seg;
175
176 pages[seg] = kmap_to_page(kiov[seg].iov_base);
177 get_page(pages[seg]);
178 }
179
180 return seg;
181}
182EXPORT_SYMBOL_GPL(get_kernel_pages);
183
184/*
185 * get_kernel_page() - pin a kernel page in memory
186 * @start: starting kernel address
187 * @write: pinning for read/write, currently ignored
188 * @pages: array that receives pointer to the page pinned.
189 * Must be at least nr_segs long.
190 *
191 * Returns 1 if page is pinned. If the page was not pinned, returns
192 * -errno. The page returned must be released with a put_page() call
193 * when it is finished with.
194 */
195int get_kernel_page(unsigned long start, int write, struct page **pages)
196{
197 const struct kvec kiov = {
198 .iov_base = (void *)start,
199 .iov_len = PAGE_SIZE
200 };
201
202 return get_kernel_pages(&kiov, 1, write, pages);
203}
204EXPORT_SYMBOL_GPL(get_kernel_page);
205
206static void pagevec_lru_move_fn(struct pagevec *pvec,
207 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
208 void *arg)
209{
210 int i;
211 struct pglist_data *pgdat = NULL;
212 struct lruvec *lruvec;
213 unsigned long flags = 0;
214
215 for (i = 0; i < pagevec_count(pvec); i++) {
216 struct page *page = pvec->pages[i];
217 struct pglist_data *pagepgdat = page_pgdat(page);
218
219 if (pagepgdat != pgdat) {
220 if (pgdat)
221 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
222 pgdat = pagepgdat;
223 spin_lock_irqsave(&pgdat->lru_lock, flags);
224 }
225
226 lruvec = mem_cgroup_page_lruvec(page, pgdat);
227 (*move_fn)(page, lruvec, arg);
228 }
229 if (pgdat)
230 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
231 release_pages(pvec->pages, pvec->nr);
232 pagevec_reinit(pvec);
233}
234
235static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
236 void *arg)
237{
238 int *pgmoved = arg;
239
240 if (PageLRU(page) && !PageUnevictable(page)) {
241 del_page_from_lru_list(page, lruvec, page_lru(page));
242 ClearPageActive(page);
243 add_page_to_lru_list_tail(page, lruvec, page_lru(page));
244 (*pgmoved) += thp_nr_pages(page);
245 }
246}
247
248/*
249 * pagevec_move_tail() must be called with IRQ disabled.
250 * Otherwise this may cause nasty races.
251 */
252static void pagevec_move_tail(struct pagevec *pvec)
253{
254 int pgmoved = 0;
255
256 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
257 __count_vm_events(PGROTATED, pgmoved);
258}
259
260/*
261 * Writeback is about to end against a page which has been marked for immediate
262 * reclaim. If it still appears to be reclaimable, move it to the tail of the
263 * inactive list.
264 */
265void rotate_reclaimable_page(struct page *page)
266{
267 if (!PageLocked(page) && !PageDirty(page) &&
268 !PageUnevictable(page) && PageLRU(page)) {
269 struct pagevec *pvec;
270 unsigned long flags;
271
272 get_page(page);
273 local_lock_irqsave(&lru_rotate.lock, flags);
274 pvec = this_cpu_ptr(&lru_rotate.pvec);
275 if (!pagevec_add(pvec, page) || PageCompound(page))
276 pagevec_move_tail(pvec);
277 local_unlock_irqrestore(&lru_rotate.lock, flags);
278 }
279}
280
281void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
282{
283 do {
284 unsigned long lrusize;
285
286 /* Record cost event */
287 if (file)
288 lruvec->file_cost += nr_pages;
289 else
290 lruvec->anon_cost += nr_pages;
291
292 /*
293 * Decay previous events
294 *
295 * Because workloads change over time (and to avoid
296 * overflow) we keep these statistics as a floating
297 * average, which ends up weighing recent refaults
298 * more than old ones.
299 */
300 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
301 lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
302 lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
303 lruvec_page_state(lruvec, NR_ACTIVE_FILE);
304
305 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
306 lruvec->file_cost /= 2;
307 lruvec->anon_cost /= 2;
308 }
309 } while ((lruvec = parent_lruvec(lruvec)));
310}
311
312void lru_note_cost_page(struct page *page)
313{
314 lru_note_cost(mem_cgroup_page_lruvec(page, page_pgdat(page)),
315 page_is_file_lru(page), thp_nr_pages(page));
316}
317
318static void __activate_page(struct page *page, struct lruvec *lruvec,
319 void *arg)
320{
321 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
322 int lru = page_lru_base_type(page);
323 int nr_pages = thp_nr_pages(page);
324
325 del_page_from_lru_list(page, lruvec, lru);
326 SetPageActive(page);
327 lru += LRU_ACTIVE;
328 add_page_to_lru_list(page, lruvec, lru);
329 trace_mm_lru_activate(page);
330
331 __count_vm_events(PGACTIVATE, nr_pages);
332 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
333 nr_pages);
334 }
335}
336
337#ifdef CONFIG_SMP
338static void activate_page_drain(int cpu)
339{
340 struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
341
342 if (pagevec_count(pvec))
343 pagevec_lru_move_fn(pvec, __activate_page, NULL);
344}
345
346static bool need_activate_page_drain(int cpu)
347{
348 return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
349}
350
351void activate_page(struct page *page)
352{
353 page = compound_head(page);
354 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
355 struct pagevec *pvec;
356
357 local_lock(&lru_pvecs.lock);
358 pvec = this_cpu_ptr(&lru_pvecs.activate_page);
359 get_page(page);
360 if (!pagevec_add(pvec, page) || PageCompound(page))
361 pagevec_lru_move_fn(pvec, __activate_page, NULL);
362 local_unlock(&lru_pvecs.lock);
363 }
364}
365
366#else
367static inline void activate_page_drain(int cpu)
368{
369}
370
371void activate_page(struct page *page)
372{
373 pg_data_t *pgdat = page_pgdat(page);
374
375 page = compound_head(page);
376 spin_lock_irq(&pgdat->lru_lock);
377 __activate_page(page, mem_cgroup_page_lruvec(page, pgdat), NULL);
378 spin_unlock_irq(&pgdat->lru_lock);
379}
380#endif
381
382static void __lru_cache_activate_page(struct page *page)
383{
384 struct pagevec *pvec;
385 int i;
386
387 local_lock(&lru_pvecs.lock);
388 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
389
390 /*
391 * Search backwards on the optimistic assumption that the page being
392 * activated has just been added to this pagevec. Note that only
393 * the local pagevec is examined as a !PageLRU page could be in the
394 * process of being released, reclaimed, migrated or on a remote
395 * pagevec that is currently being drained. Furthermore, marking
396 * a remote pagevec's page PageActive potentially hits a race where
397 * a page is marked PageActive just after it is added to the inactive
398 * list causing accounting errors and BUG_ON checks to trigger.
399 */
400 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
401 struct page *pagevec_page = pvec->pages[i];
402
403 if (pagevec_page == page) {
404 SetPageActive(page);
405 break;
406 }
407 }
408
409 local_unlock(&lru_pvecs.lock);
410}
411
412/*
413 * Mark a page as having seen activity.
414 *
415 * inactive,unreferenced -> inactive,referenced
416 * inactive,referenced -> active,unreferenced
417 * active,unreferenced -> active,referenced
418 *
419 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
420 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
421 */
422void mark_page_accessed(struct page *page)
423{
424 page = compound_head(page);
425
426 if (!PageReferenced(page)) {
427 SetPageReferenced(page);
428 } else if (PageUnevictable(page)) {
429 /*
430 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
431 * this list is never rotated or maintained, so marking an
432 * evictable page accessed has no effect.
433 */
434 } else if (!PageActive(page)) {
435 /*
436 * If the page is on the LRU, queue it for activation via
437 * lru_pvecs.activate_page. Otherwise, assume the page is on a
438 * pagevec, mark it active and it'll be moved to the active
439 * LRU on the next drain.
440 */
441 if (PageLRU(page))
442 activate_page(page);
443 else
444 __lru_cache_activate_page(page);
445 ClearPageReferenced(page);
446 workingset_activation(page);
447 }
448 if (page_is_idle(page))
449 clear_page_idle(page);
450}
451EXPORT_SYMBOL(mark_page_accessed);
452
453/**
454 * lru_cache_add - add a page to a page list
455 * @page: the page to be added to the LRU.
456 *
457 * Queue the page for addition to the LRU via pagevec. The decision on whether
458 * to add the page to the [in]active [file|anon] list is deferred until the
459 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
460 * have the page added to the active list using mark_page_accessed().
461 */
462void lru_cache_add(struct page *page)
463{
464 struct pagevec *pvec;
465
466 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
467 VM_BUG_ON_PAGE(PageLRU(page), page);
468
469 get_page(page);
470 local_lock(&lru_pvecs.lock);
471 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
472 if (!pagevec_add(pvec, page) || PageCompound(page))
473 __pagevec_lru_add(pvec);
474 local_unlock(&lru_pvecs.lock);
475}
476EXPORT_SYMBOL(lru_cache_add);
477
478/**
479 * lru_cache_add_inactive_or_unevictable
480 * @page: the page to be added to LRU
481 * @vma: vma in which page is mapped for determining reclaimability
482 *
483 * Place @page on the inactive or unevictable LRU list, depending on its
484 * evictability. Note that if the page is not evictable, it goes
485 * directly back onto it's zone's unevictable list, it does NOT use a
486 * per cpu pagevec.
487 */
488void lru_cache_add_inactive_or_unevictable(struct page *page,
489 struct vm_area_struct *vma)
490{
491 bool unevictable;
492
493 VM_BUG_ON_PAGE(PageLRU(page), page);
494
495 unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
496 if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
497 int nr_pages = thp_nr_pages(page);
498 /*
499 * We use the irq-unsafe __mod_zone_page_stat because this
500 * counter is not modified from interrupt context, and the pte
501 * lock is held(spinlock), which implies preemption disabled.
502 */
503 __mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
504 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
505 }
506 lru_cache_add(page);
507}
508
509/*
510 * If the page can not be invalidated, it is moved to the
511 * inactive list to speed up its reclaim. It is moved to the
512 * head of the list, rather than the tail, to give the flusher
513 * threads some time to write it out, as this is much more
514 * effective than the single-page writeout from reclaim.
515 *
516 * If the page isn't page_mapped and dirty/writeback, the page
517 * could reclaim asap using PG_reclaim.
518 *
519 * 1. active, mapped page -> none
520 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
521 * 3. inactive, mapped page -> none
522 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
523 * 5. inactive, clean -> inactive, tail
524 * 6. Others -> none
525 *
526 * In 4, why it moves inactive's head, the VM expects the page would
527 * be write it out by flusher threads as this is much more effective
528 * than the single-page writeout from reclaim.
529 */
530static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
531 void *arg)
532{
533 int lru;
534 bool active;
535 int nr_pages = thp_nr_pages(page);
536
537 if (!PageLRU(page))
538 return;
539
540 if (PageUnevictable(page))
541 return;
542
543 /* Some processes are using the page */
544 if (page_mapped(page))
545 return;
546
547 active = PageActive(page);
548 lru = page_lru_base_type(page);
549
550 del_page_from_lru_list(page, lruvec, lru + active);
551 ClearPageActive(page);
552 ClearPageReferenced(page);
553
554 if (PageWriteback(page) || PageDirty(page)) {
555 /*
556 * PG_reclaim could be raced with end_page_writeback
557 * It can make readahead confusing. But race window
558 * is _really_ small and it's non-critical problem.
559 */
560 add_page_to_lru_list(page, lruvec, lru);
561 SetPageReclaim(page);
562 } else {
563 /*
564 * The page's writeback ends up during pagevec
565 * We moves tha page into tail of inactive.
566 */
567 add_page_to_lru_list_tail(page, lruvec, lru);
568 __count_vm_events(PGROTATED, nr_pages);
569 }
570
571 if (active) {
572 __count_vm_events(PGDEACTIVATE, nr_pages);
573 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
574 nr_pages);
575 }
576}
577
578static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
579 void *arg)
580{
581 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
582 int lru = page_lru_base_type(page);
583 int nr_pages = thp_nr_pages(page);
584
585 del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE);
586 ClearPageActive(page);
587 ClearPageReferenced(page);
588 add_page_to_lru_list(page, lruvec, lru);
589
590 __count_vm_events(PGDEACTIVATE, nr_pages);
591 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
592 nr_pages);
593 }
594}
595
596static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
597 void *arg)
598{
599 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
600 !PageSwapCache(page) && !PageUnevictable(page)) {
601 bool active = PageActive(page);
602 int nr_pages = thp_nr_pages(page);
603
604 del_page_from_lru_list(page, lruvec,
605 LRU_INACTIVE_ANON + active);
606 ClearPageActive(page);
607 ClearPageReferenced(page);
608 /*
609 * Lazyfree pages are clean anonymous pages. They have
610 * PG_swapbacked flag cleared, to distinguish them from normal
611 * anonymous pages
612 */
613 ClearPageSwapBacked(page);
614 add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
615
616 __count_vm_events(PGLAZYFREE, nr_pages);
617 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
618 nr_pages);
619 }
620}
621
622/*
623 * Drain pages out of the cpu's pagevecs.
624 * Either "cpu" is the current CPU, and preemption has already been
625 * disabled; or "cpu" is being hot-unplugged, and is already dead.
626 */
627void lru_add_drain_cpu(int cpu)
628{
629 struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
630
631 if (pagevec_count(pvec))
632 __pagevec_lru_add(pvec);
633
634 pvec = &per_cpu(lru_rotate.pvec, cpu);
635 /* Disabling interrupts below acts as a compiler barrier. */
636 if (data_race(pagevec_count(pvec))) {
637 unsigned long flags;
638
639 /* No harm done if a racing interrupt already did this */
640 local_lock_irqsave(&lru_rotate.lock, flags);
641 pagevec_move_tail(pvec);
642 local_unlock_irqrestore(&lru_rotate.lock, flags);
643 }
644
645 pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
646 if (pagevec_count(pvec))
647 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
648
649 pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
650 if (pagevec_count(pvec))
651 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
652
653 pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
654 if (pagevec_count(pvec))
655 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
656
657 activate_page_drain(cpu);
658}
659
660/**
661 * deactivate_file_page - forcefully deactivate a file page
662 * @page: page to deactivate
663 *
664 * This function hints the VM that @page is a good reclaim candidate,
665 * for example if its invalidation fails due to the page being dirty
666 * or under writeback.
667 */
668void deactivate_file_page(struct page *page)
669{
670 /*
671 * In a workload with many unevictable page such as mprotect,
672 * unevictable page deactivation for accelerating reclaim is pointless.
673 */
674 if (PageUnevictable(page))
675 return;
676
677 if (likely(get_page_unless_zero(page))) {
678 struct pagevec *pvec;
679
680 local_lock(&lru_pvecs.lock);
681 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
682
683 if (!pagevec_add(pvec, page) || PageCompound(page))
684 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
685 local_unlock(&lru_pvecs.lock);
686 }
687}
688
689/*
690 * deactivate_page - deactivate a page
691 * @page: page to deactivate
692 *
693 * deactivate_page() moves @page to the inactive list if @page was on the active
694 * list and was not an unevictable page. This is done to accelerate the reclaim
695 * of @page.
696 */
697void deactivate_page(struct page *page)
698{
699 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
700 struct pagevec *pvec;
701
702 local_lock(&lru_pvecs.lock);
703 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
704 get_page(page);
705 if (!pagevec_add(pvec, page) || PageCompound(page))
706 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
707 local_unlock(&lru_pvecs.lock);
708 }
709}
710
711/**
712 * mark_page_lazyfree - make an anon page lazyfree
713 * @page: page to deactivate
714 *
715 * mark_page_lazyfree() moves @page to the inactive file list.
716 * This is done to accelerate the reclaim of @page.
717 */
718void mark_page_lazyfree(struct page *page)
719{
720 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
721 !PageSwapCache(page) && !PageUnevictable(page)) {
722 struct pagevec *pvec;
723
724 local_lock(&lru_pvecs.lock);
725 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
726 get_page(page);
727 if (!pagevec_add(pvec, page) || PageCompound(page))
728 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
729 local_unlock(&lru_pvecs.lock);
730 }
731}
732
733void lru_add_drain(void)
734{
735 local_lock(&lru_pvecs.lock);
736 lru_add_drain_cpu(smp_processor_id());
737 local_unlock(&lru_pvecs.lock);
738}
739
740void lru_add_drain_cpu_zone(struct zone *zone)
741{
742 local_lock(&lru_pvecs.lock);
743 lru_add_drain_cpu(smp_processor_id());
744 drain_local_pages(zone);
745 local_unlock(&lru_pvecs.lock);
746}
747
748#ifdef CONFIG_SMP
749
750static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
751
752static void lru_add_drain_per_cpu(struct work_struct *dummy)
753{
754 lru_add_drain();
755}
756
757/*
758 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
759 * kworkers being shut down before our page_alloc_cpu_dead callback is
760 * executed on the offlined cpu.
761 * Calling this function with cpu hotplug locks held can actually lead
762 * to obscure indirect dependencies via WQ context.
763 */
764void lru_add_drain_all(void)
765{
766 static seqcount_t seqcount = SEQCNT_ZERO(seqcount);
767 static DEFINE_MUTEX(lock);
768 static struct cpumask has_work;
769 int cpu, seq;
770
771 /*
772 * Make sure nobody triggers this path before mm_percpu_wq is fully
773 * initialized.
774 */
775 if (WARN_ON(!mm_percpu_wq))
776 return;
777
778 seq = raw_read_seqcount_latch(&seqcount);
779
780 mutex_lock(&lock);
781
782 /*
783 * Piggyback on drain started and finished while we waited for lock:
784 * all pages pended at the time of our enter were drained from vectors.
785 */
786 if (__read_seqcount_retry(&seqcount, seq))
787 goto done;
788
789 raw_write_seqcount_latch(&seqcount);
790
791 cpumask_clear(&has_work);
792
793 for_each_online_cpu(cpu) {
794 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
795
796 if (pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
797 data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
798 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
799 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
800 pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
801 need_activate_page_drain(cpu)) {
802 INIT_WORK(work, lru_add_drain_per_cpu);
803 queue_work_on(cpu, mm_percpu_wq, work);
804 cpumask_set_cpu(cpu, &has_work);
805 }
806 }
807
808 for_each_cpu(cpu, &has_work)
809 flush_work(&per_cpu(lru_add_drain_work, cpu));
810
811done:
812 mutex_unlock(&lock);
813}
814#else
815void lru_add_drain_all(void)
816{
817 lru_add_drain();
818}
819#endif
820
821/**
822 * release_pages - batched put_page()
823 * @pages: array of pages to release
824 * @nr: number of pages
825 *
826 * Decrement the reference count on all the pages in @pages. If it
827 * fell to zero, remove the page from the LRU and free it.
828 */
829void release_pages(struct page **pages, int nr)
830{
831 int i;
832 LIST_HEAD(pages_to_free);
833 struct pglist_data *locked_pgdat = NULL;
834 struct lruvec *lruvec;
835 unsigned long flags;
836 unsigned int lock_batch;
837
838 for (i = 0; i < nr; i++) {
839 struct page *page = pages[i];
840
841 /*
842 * Make sure the IRQ-safe lock-holding time does not get
843 * excessive with a continuous string of pages from the
844 * same pgdat. The lock is held only if pgdat != NULL.
845 */
846 if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
847 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
848 locked_pgdat = NULL;
849 }
850
851 if (is_huge_zero_page(page))
852 continue;
853
854 if (is_zone_device_page(page)) {
855 if (locked_pgdat) {
856 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
857 flags);
858 locked_pgdat = NULL;
859 }
860 /*
861 * ZONE_DEVICE pages that return 'false' from
862 * put_devmap_managed_page() do not require special
863 * processing, and instead, expect a call to
864 * put_page_testzero().
865 */
866 if (page_is_devmap_managed(page)) {
867 put_devmap_managed_page(page);
868 continue;
869 }
870 }
871
872 page = compound_head(page);
873 if (!put_page_testzero(page))
874 continue;
875
876 if (PageCompound(page)) {
877 if (locked_pgdat) {
878 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
879 locked_pgdat = NULL;
880 }
881 __put_compound_page(page);
882 continue;
883 }
884
885 if (PageLRU(page)) {
886 struct pglist_data *pgdat = page_pgdat(page);
887
888 if (pgdat != locked_pgdat) {
889 if (locked_pgdat)
890 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
891 flags);
892 lock_batch = 0;
893 locked_pgdat = pgdat;
894 spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
895 }
896
897 lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
898 VM_BUG_ON_PAGE(!PageLRU(page), page);
899 __ClearPageLRU(page);
900 del_page_from_lru_list(page, lruvec, page_off_lru(page));
901 }
902
903 /* Clear Active bit in case of parallel mark_page_accessed */
904 __ClearPageActive(page);
905 __ClearPageWaiters(page);
906
907 list_add(&page->lru, &pages_to_free);
908 }
909 if (locked_pgdat)
910 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
911
912 mem_cgroup_uncharge_list(&pages_to_free);
913 free_unref_page_list(&pages_to_free);
914}
915EXPORT_SYMBOL(release_pages);
916
917/*
918 * The pages which we're about to release may be in the deferred lru-addition
919 * queues. That would prevent them from really being freed right now. That's
920 * OK from a correctness point of view but is inefficient - those pages may be
921 * cache-warm and we want to give them back to the page allocator ASAP.
922 *
923 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
924 * and __pagevec_lru_add_active() call release_pages() directly to avoid
925 * mutual recursion.
926 */
927void __pagevec_release(struct pagevec *pvec)
928{
929 if (!pvec->percpu_pvec_drained) {
930 lru_add_drain();
931 pvec->percpu_pvec_drained = true;
932 }
933 release_pages(pvec->pages, pagevec_count(pvec));
934 pagevec_reinit(pvec);
935}
936EXPORT_SYMBOL(__pagevec_release);
937
938#ifdef CONFIG_TRANSPARENT_HUGEPAGE
939/* used by __split_huge_page_refcount() */
940void lru_add_page_tail(struct page *page, struct page *page_tail,
941 struct lruvec *lruvec, struct list_head *list)
942{
943 VM_BUG_ON_PAGE(!PageHead(page), page);
944 VM_BUG_ON_PAGE(PageCompound(page_tail), page);
945 VM_BUG_ON_PAGE(PageLRU(page_tail), page);
946 lockdep_assert_held(&lruvec_pgdat(lruvec)->lru_lock);
947
948 if (!list)
949 SetPageLRU(page_tail);
950
951 if (likely(PageLRU(page)))
952 list_add_tail(&page_tail->lru, &page->lru);
953 else if (list) {
954 /* page reclaim is reclaiming a huge page */
955 get_page(page_tail);
956 list_add_tail(&page_tail->lru, list);
957 } else {
958 /*
959 * Head page has not yet been counted, as an hpage,
960 * so we must account for each subpage individually.
961 *
962 * Put page_tail on the list at the correct position
963 * so they all end up in order.
964 */
965 add_page_to_lru_list_tail(page_tail, lruvec,
966 page_lru(page_tail));
967 }
968}
969#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
970
971static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
972 void *arg)
973{
974 enum lru_list lru;
975 int was_unevictable = TestClearPageUnevictable(page);
976 int nr_pages = thp_nr_pages(page);
977
978 VM_BUG_ON_PAGE(PageLRU(page), page);
979
980 /*
981 * Page becomes evictable in two ways:
982 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
983 * 2) Before acquiring LRU lock to put the page to correct LRU and then
984 * a) do PageLRU check with lock [check_move_unevictable_pages]
985 * b) do PageLRU check before lock [clear_page_mlock]
986 *
987 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
988 * following strict ordering:
989 *
990 * #0: __pagevec_lru_add_fn #1: clear_page_mlock
991 *
992 * SetPageLRU() TestClearPageMlocked()
993 * smp_mb() // explicit ordering // above provides strict
994 * // ordering
995 * PageMlocked() PageLRU()
996 *
997 *
998 * if '#1' does not observe setting of PG_lru by '#0' and fails
999 * isolation, the explicit barrier will make sure that page_evictable
1000 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
1001 * can be reordered after PageMlocked check and can make '#1' to fail
1002 * the isolation of the page whose Mlocked bit is cleared (#0 is also
1003 * looking at the same page) and the evictable page will be stranded
1004 * in an unevictable LRU.
1005 */
1006 SetPageLRU(page);
1007 smp_mb__after_atomic();
1008
1009 if (page_evictable(page)) {
1010 lru = page_lru(page);
1011 if (was_unevictable)
1012 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
1013 } else {
1014 lru = LRU_UNEVICTABLE;
1015 ClearPageActive(page);
1016 SetPageUnevictable(page);
1017 if (!was_unevictable)
1018 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
1019 }
1020
1021 add_page_to_lru_list(page, lruvec, lru);
1022 trace_mm_lru_insertion(page, lru);
1023}
1024
1025/*
1026 * Add the passed pages to the LRU, then drop the caller's refcount
1027 * on them. Reinitialises the caller's pagevec.
1028 */
1029void __pagevec_lru_add(struct pagevec *pvec)
1030{
1031 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1032}
1033
1034/**
1035 * pagevec_lookup_entries - gang pagecache lookup
1036 * @pvec: Where the resulting entries are placed
1037 * @mapping: The address_space to search
1038 * @start: The starting entry index
1039 * @nr_entries: The maximum number of pages
1040 * @indices: The cache indices corresponding to the entries in @pvec
1041 *
1042 * pagevec_lookup_entries() will search for and return a group of up
1043 * to @nr_pages pages and shadow entries in the mapping. All
1044 * entries are placed in @pvec. pagevec_lookup_entries() takes a
1045 * reference against actual pages in @pvec.
1046 *
1047 * The search returns a group of mapping-contiguous entries with
1048 * ascending indexes. There may be holes in the indices due to
1049 * not-present entries.
1050 *
1051 * Only one subpage of a Transparent Huge Page is returned in one call:
1052 * allowing truncate_inode_pages_range() to evict the whole THP without
1053 * cycling through a pagevec of extra references.
1054 *
1055 * pagevec_lookup_entries() returns the number of entries which were
1056 * found.
1057 */
1058unsigned pagevec_lookup_entries(struct pagevec *pvec,
1059 struct address_space *mapping,
1060 pgoff_t start, unsigned nr_entries,
1061 pgoff_t *indices)
1062{
1063 pvec->nr = find_get_entries(mapping, start, nr_entries,
1064 pvec->pages, indices);
1065 return pagevec_count(pvec);
1066}
1067
1068/**
1069 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1070 * @pvec: The pagevec to prune
1071 *
1072 * pagevec_lookup_entries() fills both pages and exceptional radix
1073 * tree entries into the pagevec. This function prunes all
1074 * exceptionals from @pvec without leaving holes, so that it can be
1075 * passed on to page-only pagevec operations.
1076 */
1077void pagevec_remove_exceptionals(struct pagevec *pvec)
1078{
1079 int i, j;
1080
1081 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1082 struct page *page = pvec->pages[i];
1083 if (!xa_is_value(page))
1084 pvec->pages[j++] = page;
1085 }
1086 pvec->nr = j;
1087}
1088
1089/**
1090 * pagevec_lookup_range - gang pagecache lookup
1091 * @pvec: Where the resulting pages are placed
1092 * @mapping: The address_space to search
1093 * @start: The starting page index
1094 * @end: The final page index
1095 *
1096 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1097 * pages in the mapping starting from index @start and upto index @end
1098 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
1099 * reference against the pages in @pvec.
1100 *
1101 * The search returns a group of mapping-contiguous pages with ascending
1102 * indexes. There may be holes in the indices due to not-present pages. We
1103 * also update @start to index the next page for the traversal.
1104 *
1105 * pagevec_lookup_range() returns the number of pages which were found. If this
1106 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1107 * reached.
1108 */
1109unsigned pagevec_lookup_range(struct pagevec *pvec,
1110 struct address_space *mapping, pgoff_t *start, pgoff_t end)
1111{
1112 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1113 pvec->pages);
1114 return pagevec_count(pvec);
1115}
1116EXPORT_SYMBOL(pagevec_lookup_range);
1117
1118unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1119 struct address_space *mapping, pgoff_t *index, pgoff_t end,
1120 xa_mark_t tag)
1121{
1122 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1123 PAGEVEC_SIZE, pvec->pages);
1124 return pagevec_count(pvec);
1125}
1126EXPORT_SYMBOL(pagevec_lookup_range_tag);
1127
1128unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec,
1129 struct address_space *mapping, pgoff_t *index, pgoff_t end,
1130 xa_mark_t tag, unsigned max_pages)
1131{
1132 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1133 min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages);
1134 return pagevec_count(pvec);
1135}
1136EXPORT_SYMBOL(pagevec_lookup_range_nr_tag);
1137/*
1138 * Perform any setup for the swap system
1139 */
1140void __init swap_setup(void)
1141{
1142 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1143
1144 /* Use a smaller cluster for small-memory machines */
1145 if (megs < 16)
1146 page_cluster = 2;
1147 else
1148 page_cluster = 3;
1149 /*
1150 * Right now other parts of the system means that we
1151 * _really_ don't want to cluster much more
1152 */
1153}
1154
1155#ifdef CONFIG_DEV_PAGEMAP_OPS
1156void put_devmap_managed_page(struct page *page)
1157{
1158 int count;
1159
1160 if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1161 return;
1162
1163 count = page_ref_dec_return(page);
1164
1165 /*
1166 * devmap page refcounts are 1-based, rather than 0-based: if
1167 * refcount is 1, then the page is free and the refcount is
1168 * stable because nobody holds a reference on the page.
1169 */
1170 if (count == 1)
1171 free_devmap_managed_page(page);
1172 else if (!count)
1173 __put_page(page);
1174}
1175EXPORT_SYMBOL(put_devmap_managed_page);
1176#endif
1/*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16#include <linux/mm.h>
17#include <linux/sched.h>
18#include <linux/kernel_stat.h>
19#include <linux/swap.h>
20#include <linux/mman.h>
21#include <linux/pagemap.h>
22#include <linux/pagevec.h>
23#include <linux/init.h>
24#include <linux/export.h>
25#include <linux/mm_inline.h>
26#include <linux/percpu_counter.h>
27#include <linux/percpu.h>
28#include <linux/cpu.h>
29#include <linux/notifier.h>
30#include <linux/backing-dev.h>
31#include <linux/memcontrol.h>
32#include <linux/gfp.h>
33
34#include "internal.h"
35
36/* How many pages do we try to swap or page in/out together? */
37int page_cluster;
38
39static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
40static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
41static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
42
43/*
44 * This path almost never happens for VM activity - pages are normally
45 * freed via pagevecs. But it gets used by networking.
46 */
47static void __page_cache_release(struct page *page)
48{
49 if (PageLRU(page)) {
50 struct zone *zone = page_zone(page);
51 struct lruvec *lruvec;
52 unsigned long flags;
53
54 spin_lock_irqsave(&zone->lru_lock, flags);
55 lruvec = mem_cgroup_page_lruvec(page, zone);
56 VM_BUG_ON(!PageLRU(page));
57 __ClearPageLRU(page);
58 del_page_from_lru_list(page, lruvec, page_off_lru(page));
59 spin_unlock_irqrestore(&zone->lru_lock, flags);
60 }
61}
62
63static void __put_single_page(struct page *page)
64{
65 __page_cache_release(page);
66 free_hot_cold_page(page, 0);
67}
68
69static void __put_compound_page(struct page *page)
70{
71 compound_page_dtor *dtor;
72
73 __page_cache_release(page);
74 dtor = get_compound_page_dtor(page);
75 (*dtor)(page);
76}
77
78static void put_compound_page(struct page *page)
79{
80 if (unlikely(PageTail(page))) {
81 /* __split_huge_page_refcount can run under us */
82 struct page *page_head = compound_trans_head(page);
83
84 if (likely(page != page_head &&
85 get_page_unless_zero(page_head))) {
86 unsigned long flags;
87
88 /*
89 * THP can not break up slab pages so avoid taking
90 * compound_lock(). Slab performs non-atomic bit ops
91 * on page->flags for better performance. In particular
92 * slab_unlock() in slub used to be a hot path. It is
93 * still hot on arches that do not support
94 * this_cpu_cmpxchg_double().
95 */
96 if (PageSlab(page_head)) {
97 if (PageTail(page)) {
98 if (put_page_testzero(page_head))
99 VM_BUG_ON(1);
100
101 atomic_dec(&page->_mapcount);
102 goto skip_lock_tail;
103 } else
104 goto skip_lock;
105 }
106 /*
107 * page_head wasn't a dangling pointer but it
108 * may not be a head page anymore by the time
109 * we obtain the lock. That is ok as long as it
110 * can't be freed from under us.
111 */
112 flags = compound_lock_irqsave(page_head);
113 if (unlikely(!PageTail(page))) {
114 /* __split_huge_page_refcount run before us */
115 compound_unlock_irqrestore(page_head, flags);
116skip_lock:
117 if (put_page_testzero(page_head))
118 __put_single_page(page_head);
119out_put_single:
120 if (put_page_testzero(page))
121 __put_single_page(page);
122 return;
123 }
124 VM_BUG_ON(page_head != page->first_page);
125 /*
126 * We can release the refcount taken by
127 * get_page_unless_zero() now that
128 * __split_huge_page_refcount() is blocked on
129 * the compound_lock.
130 */
131 if (put_page_testzero(page_head))
132 VM_BUG_ON(1);
133 /* __split_huge_page_refcount will wait now */
134 VM_BUG_ON(page_mapcount(page) <= 0);
135 atomic_dec(&page->_mapcount);
136 VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
137 VM_BUG_ON(atomic_read(&page->_count) != 0);
138 compound_unlock_irqrestore(page_head, flags);
139
140skip_lock_tail:
141 if (put_page_testzero(page_head)) {
142 if (PageHead(page_head))
143 __put_compound_page(page_head);
144 else
145 __put_single_page(page_head);
146 }
147 } else {
148 /* page_head is a dangling pointer */
149 VM_BUG_ON(PageTail(page));
150 goto out_put_single;
151 }
152 } else if (put_page_testzero(page)) {
153 if (PageHead(page))
154 __put_compound_page(page);
155 else
156 __put_single_page(page);
157 }
158}
159
160void put_page(struct page *page)
161{
162 if (unlikely(PageCompound(page)))
163 put_compound_page(page);
164 else if (put_page_testzero(page))
165 __put_single_page(page);
166}
167EXPORT_SYMBOL(put_page);
168
169/*
170 * This function is exported but must not be called by anything other
171 * than get_page(). It implements the slow path of get_page().
172 */
173bool __get_page_tail(struct page *page)
174{
175 /*
176 * This takes care of get_page() if run on a tail page
177 * returned by one of the get_user_pages/follow_page variants.
178 * get_user_pages/follow_page itself doesn't need the compound
179 * lock because it runs __get_page_tail_foll() under the
180 * proper PT lock that already serializes against
181 * split_huge_page().
182 */
183 unsigned long flags;
184 bool got = false;
185 struct page *page_head = compound_trans_head(page);
186
187 if (likely(page != page_head && get_page_unless_zero(page_head))) {
188
189 /* Ref to put_compound_page() comment. */
190 if (PageSlab(page_head)) {
191 if (likely(PageTail(page))) {
192 __get_page_tail_foll(page, false);
193 return true;
194 } else {
195 put_page(page_head);
196 return false;
197 }
198 }
199
200 /*
201 * page_head wasn't a dangling pointer but it
202 * may not be a head page anymore by the time
203 * we obtain the lock. That is ok as long as it
204 * can't be freed from under us.
205 */
206 flags = compound_lock_irqsave(page_head);
207 /* here __split_huge_page_refcount won't run anymore */
208 if (likely(PageTail(page))) {
209 __get_page_tail_foll(page, false);
210 got = true;
211 }
212 compound_unlock_irqrestore(page_head, flags);
213 if (unlikely(!got))
214 put_page(page_head);
215 }
216 return got;
217}
218EXPORT_SYMBOL(__get_page_tail);
219
220/**
221 * put_pages_list() - release a list of pages
222 * @pages: list of pages threaded on page->lru
223 *
224 * Release a list of pages which are strung together on page.lru. Currently
225 * used by read_cache_pages() and related error recovery code.
226 */
227void put_pages_list(struct list_head *pages)
228{
229 while (!list_empty(pages)) {
230 struct page *victim;
231
232 victim = list_entry(pages->prev, struct page, lru);
233 list_del(&victim->lru);
234 page_cache_release(victim);
235 }
236}
237EXPORT_SYMBOL(put_pages_list);
238
239static void pagevec_lru_move_fn(struct pagevec *pvec,
240 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
241 void *arg)
242{
243 int i;
244 struct zone *zone = NULL;
245 struct lruvec *lruvec;
246 unsigned long flags = 0;
247
248 for (i = 0; i < pagevec_count(pvec); i++) {
249 struct page *page = pvec->pages[i];
250 struct zone *pagezone = page_zone(page);
251
252 if (pagezone != zone) {
253 if (zone)
254 spin_unlock_irqrestore(&zone->lru_lock, flags);
255 zone = pagezone;
256 spin_lock_irqsave(&zone->lru_lock, flags);
257 }
258
259 lruvec = mem_cgroup_page_lruvec(page, zone);
260 (*move_fn)(page, lruvec, arg);
261 }
262 if (zone)
263 spin_unlock_irqrestore(&zone->lru_lock, flags);
264 release_pages(pvec->pages, pvec->nr, pvec->cold);
265 pagevec_reinit(pvec);
266}
267
268static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
269 void *arg)
270{
271 int *pgmoved = arg;
272
273 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
274 enum lru_list lru = page_lru_base_type(page);
275 list_move_tail(&page->lru, &lruvec->lists[lru]);
276 (*pgmoved)++;
277 }
278}
279
280/*
281 * pagevec_move_tail() must be called with IRQ disabled.
282 * Otherwise this may cause nasty races.
283 */
284static void pagevec_move_tail(struct pagevec *pvec)
285{
286 int pgmoved = 0;
287
288 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
289 __count_vm_events(PGROTATED, pgmoved);
290}
291
292/*
293 * Writeback is about to end against a page which has been marked for immediate
294 * reclaim. If it still appears to be reclaimable, move it to the tail of the
295 * inactive list.
296 */
297void rotate_reclaimable_page(struct page *page)
298{
299 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
300 !PageUnevictable(page) && PageLRU(page)) {
301 struct pagevec *pvec;
302 unsigned long flags;
303
304 page_cache_get(page);
305 local_irq_save(flags);
306 pvec = &__get_cpu_var(lru_rotate_pvecs);
307 if (!pagevec_add(pvec, page))
308 pagevec_move_tail(pvec);
309 local_irq_restore(flags);
310 }
311}
312
313static void update_page_reclaim_stat(struct lruvec *lruvec,
314 int file, int rotated)
315{
316 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
317
318 reclaim_stat->recent_scanned[file]++;
319 if (rotated)
320 reclaim_stat->recent_rotated[file]++;
321}
322
323static void __activate_page(struct page *page, struct lruvec *lruvec,
324 void *arg)
325{
326 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
327 int file = page_is_file_cache(page);
328 int lru = page_lru_base_type(page);
329
330 del_page_from_lru_list(page, lruvec, lru);
331 SetPageActive(page);
332 lru += LRU_ACTIVE;
333 add_page_to_lru_list(page, lruvec, lru);
334
335 __count_vm_event(PGACTIVATE);
336 update_page_reclaim_stat(lruvec, file, 1);
337 }
338}
339
340#ifdef CONFIG_SMP
341static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
342
343static void activate_page_drain(int cpu)
344{
345 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
346
347 if (pagevec_count(pvec))
348 pagevec_lru_move_fn(pvec, __activate_page, NULL);
349}
350
351void activate_page(struct page *page)
352{
353 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
354 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
355
356 page_cache_get(page);
357 if (!pagevec_add(pvec, page))
358 pagevec_lru_move_fn(pvec, __activate_page, NULL);
359 put_cpu_var(activate_page_pvecs);
360 }
361}
362
363#else
364static inline void activate_page_drain(int cpu)
365{
366}
367
368void activate_page(struct page *page)
369{
370 struct zone *zone = page_zone(page);
371
372 spin_lock_irq(&zone->lru_lock);
373 __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
374 spin_unlock_irq(&zone->lru_lock);
375}
376#endif
377
378/*
379 * Mark a page as having seen activity.
380 *
381 * inactive,unreferenced -> inactive,referenced
382 * inactive,referenced -> active,unreferenced
383 * active,unreferenced -> active,referenced
384 */
385void mark_page_accessed(struct page *page)
386{
387 if (!PageActive(page) && !PageUnevictable(page) &&
388 PageReferenced(page) && PageLRU(page)) {
389 activate_page(page);
390 ClearPageReferenced(page);
391 } else if (!PageReferenced(page)) {
392 SetPageReferenced(page);
393 }
394}
395EXPORT_SYMBOL(mark_page_accessed);
396
397void __lru_cache_add(struct page *page, enum lru_list lru)
398{
399 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
400
401 page_cache_get(page);
402 if (!pagevec_add(pvec, page))
403 __pagevec_lru_add(pvec, lru);
404 put_cpu_var(lru_add_pvecs);
405}
406EXPORT_SYMBOL(__lru_cache_add);
407
408/**
409 * lru_cache_add_lru - add a page to a page list
410 * @page: the page to be added to the LRU.
411 * @lru: the LRU list to which the page is added.
412 */
413void lru_cache_add_lru(struct page *page, enum lru_list lru)
414{
415 if (PageActive(page)) {
416 VM_BUG_ON(PageUnevictable(page));
417 ClearPageActive(page);
418 } else if (PageUnevictable(page)) {
419 VM_BUG_ON(PageActive(page));
420 ClearPageUnevictable(page);
421 }
422
423 VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
424 __lru_cache_add(page, lru);
425}
426
427/**
428 * add_page_to_unevictable_list - add a page to the unevictable list
429 * @page: the page to be added to the unevictable list
430 *
431 * Add page directly to its zone's unevictable list. To avoid races with
432 * tasks that might be making the page evictable, through eg. munlock,
433 * munmap or exit, while it's not on the lru, we want to add the page
434 * while it's locked or otherwise "invisible" to other tasks. This is
435 * difficult to do when using the pagevec cache, so bypass that.
436 */
437void add_page_to_unevictable_list(struct page *page)
438{
439 struct zone *zone = page_zone(page);
440 struct lruvec *lruvec;
441
442 spin_lock_irq(&zone->lru_lock);
443 lruvec = mem_cgroup_page_lruvec(page, zone);
444 SetPageUnevictable(page);
445 SetPageLRU(page);
446 add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
447 spin_unlock_irq(&zone->lru_lock);
448}
449
450/*
451 * If the page can not be invalidated, it is moved to the
452 * inactive list to speed up its reclaim. It is moved to the
453 * head of the list, rather than the tail, to give the flusher
454 * threads some time to write it out, as this is much more
455 * effective than the single-page writeout from reclaim.
456 *
457 * If the page isn't page_mapped and dirty/writeback, the page
458 * could reclaim asap using PG_reclaim.
459 *
460 * 1. active, mapped page -> none
461 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
462 * 3. inactive, mapped page -> none
463 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
464 * 5. inactive, clean -> inactive, tail
465 * 6. Others -> none
466 *
467 * In 4, why it moves inactive's head, the VM expects the page would
468 * be write it out by flusher threads as this is much more effective
469 * than the single-page writeout from reclaim.
470 */
471static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
472 void *arg)
473{
474 int lru, file;
475 bool active;
476
477 if (!PageLRU(page))
478 return;
479
480 if (PageUnevictable(page))
481 return;
482
483 /* Some processes are using the page */
484 if (page_mapped(page))
485 return;
486
487 active = PageActive(page);
488 file = page_is_file_cache(page);
489 lru = page_lru_base_type(page);
490
491 del_page_from_lru_list(page, lruvec, lru + active);
492 ClearPageActive(page);
493 ClearPageReferenced(page);
494 add_page_to_lru_list(page, lruvec, lru);
495
496 if (PageWriteback(page) || PageDirty(page)) {
497 /*
498 * PG_reclaim could be raced with end_page_writeback
499 * It can make readahead confusing. But race window
500 * is _really_ small and it's non-critical problem.
501 */
502 SetPageReclaim(page);
503 } else {
504 /*
505 * The page's writeback ends up during pagevec
506 * We moves tha page into tail of inactive.
507 */
508 list_move_tail(&page->lru, &lruvec->lists[lru]);
509 __count_vm_event(PGROTATED);
510 }
511
512 if (active)
513 __count_vm_event(PGDEACTIVATE);
514 update_page_reclaim_stat(lruvec, file, 0);
515}
516
517/*
518 * Drain pages out of the cpu's pagevecs.
519 * Either "cpu" is the current CPU, and preemption has already been
520 * disabled; or "cpu" is being hot-unplugged, and is already dead.
521 */
522void lru_add_drain_cpu(int cpu)
523{
524 struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
525 struct pagevec *pvec;
526 int lru;
527
528 for_each_lru(lru) {
529 pvec = &pvecs[lru - LRU_BASE];
530 if (pagevec_count(pvec))
531 __pagevec_lru_add(pvec, lru);
532 }
533
534 pvec = &per_cpu(lru_rotate_pvecs, cpu);
535 if (pagevec_count(pvec)) {
536 unsigned long flags;
537
538 /* No harm done if a racing interrupt already did this */
539 local_irq_save(flags);
540 pagevec_move_tail(pvec);
541 local_irq_restore(flags);
542 }
543
544 pvec = &per_cpu(lru_deactivate_pvecs, cpu);
545 if (pagevec_count(pvec))
546 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
547
548 activate_page_drain(cpu);
549}
550
551/**
552 * deactivate_page - forcefully deactivate a page
553 * @page: page to deactivate
554 *
555 * This function hints the VM that @page is a good reclaim candidate,
556 * for example if its invalidation fails due to the page being dirty
557 * or under writeback.
558 */
559void deactivate_page(struct page *page)
560{
561 /*
562 * In a workload with many unevictable page such as mprotect, unevictable
563 * page deactivation for accelerating reclaim is pointless.
564 */
565 if (PageUnevictable(page))
566 return;
567
568 if (likely(get_page_unless_zero(page))) {
569 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
570
571 if (!pagevec_add(pvec, page))
572 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
573 put_cpu_var(lru_deactivate_pvecs);
574 }
575}
576
577void lru_add_drain(void)
578{
579 lru_add_drain_cpu(get_cpu());
580 put_cpu();
581}
582
583static void lru_add_drain_per_cpu(struct work_struct *dummy)
584{
585 lru_add_drain();
586}
587
588/*
589 * Returns 0 for success
590 */
591int lru_add_drain_all(void)
592{
593 return schedule_on_each_cpu(lru_add_drain_per_cpu);
594}
595
596/*
597 * Batched page_cache_release(). Decrement the reference count on all the
598 * passed pages. If it fell to zero then remove the page from the LRU and
599 * free it.
600 *
601 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
602 * for the remainder of the operation.
603 *
604 * The locking in this function is against shrink_inactive_list(): we recheck
605 * the page count inside the lock to see whether shrink_inactive_list()
606 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
607 * will free it.
608 */
609void release_pages(struct page **pages, int nr, int cold)
610{
611 int i;
612 LIST_HEAD(pages_to_free);
613 struct zone *zone = NULL;
614 struct lruvec *lruvec;
615 unsigned long uninitialized_var(flags);
616
617 for (i = 0; i < nr; i++) {
618 struct page *page = pages[i];
619
620 if (unlikely(PageCompound(page))) {
621 if (zone) {
622 spin_unlock_irqrestore(&zone->lru_lock, flags);
623 zone = NULL;
624 }
625 put_compound_page(page);
626 continue;
627 }
628
629 if (!put_page_testzero(page))
630 continue;
631
632 if (PageLRU(page)) {
633 struct zone *pagezone = page_zone(page);
634
635 if (pagezone != zone) {
636 if (zone)
637 spin_unlock_irqrestore(&zone->lru_lock,
638 flags);
639 zone = pagezone;
640 spin_lock_irqsave(&zone->lru_lock, flags);
641 }
642
643 lruvec = mem_cgroup_page_lruvec(page, zone);
644 VM_BUG_ON(!PageLRU(page));
645 __ClearPageLRU(page);
646 del_page_from_lru_list(page, lruvec, page_off_lru(page));
647 }
648
649 list_add(&page->lru, &pages_to_free);
650 }
651 if (zone)
652 spin_unlock_irqrestore(&zone->lru_lock, flags);
653
654 free_hot_cold_page_list(&pages_to_free, cold);
655}
656EXPORT_SYMBOL(release_pages);
657
658/*
659 * The pages which we're about to release may be in the deferred lru-addition
660 * queues. That would prevent them from really being freed right now. That's
661 * OK from a correctness point of view but is inefficient - those pages may be
662 * cache-warm and we want to give them back to the page allocator ASAP.
663 *
664 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
665 * and __pagevec_lru_add_active() call release_pages() directly to avoid
666 * mutual recursion.
667 */
668void __pagevec_release(struct pagevec *pvec)
669{
670 lru_add_drain();
671 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
672 pagevec_reinit(pvec);
673}
674EXPORT_SYMBOL(__pagevec_release);
675
676#ifdef CONFIG_TRANSPARENT_HUGEPAGE
677/* used by __split_huge_page_refcount() */
678void lru_add_page_tail(struct page *page, struct page *page_tail,
679 struct lruvec *lruvec)
680{
681 int uninitialized_var(active);
682 enum lru_list lru;
683 const int file = 0;
684
685 VM_BUG_ON(!PageHead(page));
686 VM_BUG_ON(PageCompound(page_tail));
687 VM_BUG_ON(PageLRU(page_tail));
688 VM_BUG_ON(NR_CPUS != 1 &&
689 !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
690
691 SetPageLRU(page_tail);
692
693 if (page_evictable(page_tail, NULL)) {
694 if (PageActive(page)) {
695 SetPageActive(page_tail);
696 active = 1;
697 lru = LRU_ACTIVE_ANON;
698 } else {
699 active = 0;
700 lru = LRU_INACTIVE_ANON;
701 }
702 } else {
703 SetPageUnevictable(page_tail);
704 lru = LRU_UNEVICTABLE;
705 }
706
707 if (likely(PageLRU(page)))
708 list_add_tail(&page_tail->lru, &page->lru);
709 else {
710 struct list_head *list_head;
711 /*
712 * Head page has not yet been counted, as an hpage,
713 * so we must account for each subpage individually.
714 *
715 * Use the standard add function to put page_tail on the list,
716 * but then correct its position so they all end up in order.
717 */
718 add_page_to_lru_list(page_tail, lruvec, lru);
719 list_head = page_tail->lru.prev;
720 list_move_tail(&page_tail->lru, list_head);
721 }
722
723 if (!PageUnevictable(page))
724 update_page_reclaim_stat(lruvec, file, active);
725}
726#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
727
728static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
729 void *arg)
730{
731 enum lru_list lru = (enum lru_list)arg;
732 int file = is_file_lru(lru);
733 int active = is_active_lru(lru);
734
735 VM_BUG_ON(PageActive(page));
736 VM_BUG_ON(PageUnevictable(page));
737 VM_BUG_ON(PageLRU(page));
738
739 SetPageLRU(page);
740 if (active)
741 SetPageActive(page);
742 add_page_to_lru_list(page, lruvec, lru);
743 update_page_reclaim_stat(lruvec, file, active);
744}
745
746/*
747 * Add the passed pages to the LRU, then drop the caller's refcount
748 * on them. Reinitialises the caller's pagevec.
749 */
750void __pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
751{
752 VM_BUG_ON(is_unevictable_lru(lru));
753
754 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, (void *)lru);
755}
756EXPORT_SYMBOL(__pagevec_lru_add);
757
758/**
759 * pagevec_lookup - gang pagecache lookup
760 * @pvec: Where the resulting pages are placed
761 * @mapping: The address_space to search
762 * @start: The starting page index
763 * @nr_pages: The maximum number of pages
764 *
765 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
766 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
767 * reference against the pages in @pvec.
768 *
769 * The search returns a group of mapping-contiguous pages with ascending
770 * indexes. There may be holes in the indices due to not-present pages.
771 *
772 * pagevec_lookup() returns the number of pages which were found.
773 */
774unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
775 pgoff_t start, unsigned nr_pages)
776{
777 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
778 return pagevec_count(pvec);
779}
780EXPORT_SYMBOL(pagevec_lookup);
781
782unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
783 pgoff_t *index, int tag, unsigned nr_pages)
784{
785 pvec->nr = find_get_pages_tag(mapping, index, tag,
786 nr_pages, pvec->pages);
787 return pagevec_count(pvec);
788}
789EXPORT_SYMBOL(pagevec_lookup_tag);
790
791/*
792 * Perform any setup for the swap system
793 */
794void __init swap_setup(void)
795{
796 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
797
798#ifdef CONFIG_SWAP
799 bdi_init(swapper_space.backing_dev_info);
800#endif
801
802 /* Use a smaller cluster for small-memory machines */
803 if (megs < 16)
804 page_cluster = 2;
805 else
806 page_cluster = 3;
807 /*
808 * Right now other parts of the system means that we
809 * _really_ don't want to cluster much more
810 */
811}