Linux Audio

Check our new training course

Embedded Linux training

Mar 10-20, 2025, special US time zones
Register
Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * This contains functions for filename crypto management
  4 *
  5 * Copyright (C) 2015, Google, Inc.
  6 * Copyright (C) 2015, Motorola Mobility
  7 *
  8 * Written by Uday Savagaonkar, 2014.
  9 * Modified by Jaegeuk Kim, 2015.
 10 *
 11 * This has not yet undergone a rigorous security audit.
 12 */
 13
 14#include <linux/namei.h>
 15#include <linux/scatterlist.h>
 16#include <crypto/hash.h>
 17#include <crypto/sha.h>
 18#include <crypto/skcipher.h>
 19#include "fscrypt_private.h"
 20
 21/*
 
 
 
 
 
 
 
 22 * struct fscrypt_nokey_name - identifier for directory entry when key is absent
 23 *
 24 * When userspace lists an encrypted directory without access to the key, the
 25 * filesystem must present a unique "no-key name" for each filename that allows
 26 * it to find the directory entry again if requested.  Naively, that would just
 27 * mean using the ciphertext filenames.  However, since the ciphertext filenames
 28 * can contain illegal characters ('\0' and '/'), they must be encoded in some
 29 * way.  We use base64.  But that can cause names to exceed NAME_MAX (255
 30 * bytes), so we also need to use a strong hash to abbreviate long names.
 31 *
 32 * The filesystem may also need another kind of hash, the "dirhash", to quickly
 33 * find the directory entry.  Since filesystems normally compute the dirhash
 34 * over the on-disk filename (i.e. the ciphertext), it's not computable from
 35 * no-key names that abbreviate the ciphertext using the strong hash to fit in
 36 * NAME_MAX.  It's also not computable if it's a keyed hash taken over the
 37 * plaintext (but it may still be available in the on-disk directory entry);
 38 * casefolded directories use this type of dirhash.  At least in these cases,
 39 * each no-key name must include the name's dirhash too.
 40 *
 41 * To meet all these requirements, we base64-encode the following
 42 * variable-length structure.  It contains the dirhash, or 0's if the filesystem
 43 * didn't provide one; up to 149 bytes of the ciphertext name; and for
 44 * ciphertexts longer than 149 bytes, also the SHA-256 of the remaining bytes.
 45 *
 46 * This ensures that each no-key name contains everything needed to find the
 47 * directory entry again, contains only legal characters, doesn't exceed
 48 * NAME_MAX, is unambiguous unless there's a SHA-256 collision, and that we only
 49 * take the performance hit of SHA-256 on very long filenames (which are rare).
 50 */
 51struct fscrypt_nokey_name {
 52	u32 dirhash[2];
 53	u8 bytes[149];
 54	u8 sha256[SHA256_DIGEST_SIZE];
 55}; /* 189 bytes => 252 bytes base64-encoded, which is <= NAME_MAX (255) */
 56
 57/*
 58 * Decoded size of max-size nokey name, i.e. a name that was abbreviated using
 59 * the strong hash and thus includes the 'sha256' field.  This isn't simply
 60 * sizeof(struct fscrypt_nokey_name), as the padding at the end isn't included.
 61 */
 62#define FSCRYPT_NOKEY_NAME_MAX	offsetofend(struct fscrypt_nokey_name, sha256)
 63
 64static void fscrypt_do_sha256(const u8 *data, unsigned int data_len, u8 *result)
 65{
 66	struct sha256_state sctx;
 67
 68	sha256_init(&sctx);
 69	sha256_update(&sctx, data, data_len);
 70	sha256_final(&sctx, result);
 71}
 72
 73static inline bool fscrypt_is_dot_dotdot(const struct qstr *str)
 74{
 75	if (str->len == 1 && str->name[0] == '.')
 76		return true;
 77
 78	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
 79		return true;
 80
 81	return false;
 82}
 83
 84/**
 85 * fscrypt_fname_encrypt() - encrypt a filename
 86 * @inode: inode of the parent directory (for regular filenames)
 87 *	   or of the symlink (for symlink targets)
 
 88 * @iname: the filename to encrypt
 89 * @out: (output) the encrypted filename
 90 * @olen: size of the encrypted filename.  It must be at least @iname->len.
 91 *	  Any extra space is filled with NUL padding before encryption.
 92 *
 93 * Return: 0 on success, -errno on failure
 94 */
 95int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname,
 96			  u8 *out, unsigned int olen)
 97{
 98	struct skcipher_request *req = NULL;
 99	DECLARE_CRYPTO_WAIT(wait);
100	const struct fscrypt_info *ci = inode->i_crypt_info;
101	struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
102	union fscrypt_iv iv;
103	struct scatterlist sg;
104	int res;
105
106	/*
107	 * Copy the filename to the output buffer for encrypting in-place and
108	 * pad it with the needed number of NUL bytes.
109	 */
110	if (WARN_ON(olen < iname->len))
111		return -ENOBUFS;
112	memcpy(out, iname->name, iname->len);
113	memset(out + iname->len, 0, olen - iname->len);
114
115	/* Initialize the IV */
116	fscrypt_generate_iv(&iv, 0, ci);
117
118	/* Set up the encryption request */
119	req = skcipher_request_alloc(tfm, GFP_NOFS);
120	if (!req)
121		return -ENOMEM;
122	skcipher_request_set_callback(req,
123			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
124			crypto_req_done, &wait);
125	sg_init_one(&sg, out, olen);
126	skcipher_request_set_crypt(req, &sg, &sg, olen, &iv);
127
128	/* Do the encryption */
129	res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
130	skcipher_request_free(req);
131	if (res < 0) {
132		fscrypt_err(inode, "Filename encryption failed: %d", res);
133		return res;
134	}
135
136	return 0;
137}
 
138
139/**
140 * fname_decrypt() - decrypt a filename
141 * @inode: inode of the parent directory (for regular filenames)
142 *	   or of the symlink (for symlink targets)
143 * @iname: the encrypted filename to decrypt
144 * @oname: (output) the decrypted filename.  The caller must have allocated
145 *	   enough space for this, e.g. using fscrypt_fname_alloc_buffer().
146 *
147 * Return: 0 on success, -errno on failure
148 */
149static int fname_decrypt(const struct inode *inode,
150			 const struct fscrypt_str *iname,
151			 struct fscrypt_str *oname)
152{
153	struct skcipher_request *req = NULL;
154	DECLARE_CRYPTO_WAIT(wait);
155	struct scatterlist src_sg, dst_sg;
156	const struct fscrypt_info *ci = inode->i_crypt_info;
157	struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
158	union fscrypt_iv iv;
159	int res;
160
161	/* Allocate request */
162	req = skcipher_request_alloc(tfm, GFP_NOFS);
163	if (!req)
164		return -ENOMEM;
165	skcipher_request_set_callback(req,
166		CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
167		crypto_req_done, &wait);
168
169	/* Initialize IV */
170	fscrypt_generate_iv(&iv, 0, ci);
171
172	/* Create decryption request */
173	sg_init_one(&src_sg, iname->name, iname->len);
174	sg_init_one(&dst_sg, oname->name, oname->len);
175	skcipher_request_set_crypt(req, &src_sg, &dst_sg, iname->len, &iv);
176	res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
177	skcipher_request_free(req);
178	if (res < 0) {
179		fscrypt_err(inode, "Filename decryption failed: %d", res);
180		return res;
181	}
182
183	oname->len = strnlen(oname->name, iname->len);
184	return 0;
185}
186
187static const char lookup_table[65] =
188	"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+,";
189
190#define BASE64_CHARS(nbytes)	DIV_ROUND_UP((nbytes) * 4, 3)
191
192/**
193 * base64_encode() - base64-encode some bytes
194 * @src: the bytes to encode
195 * @len: number of bytes to encode
196 * @dst: (output) the base64-encoded string.  Not NUL-terminated.
197 *
198 * Encodes the input string using characters from the set [A-Za-z0-9+,].
199 * The encoded string is roughly 4/3 times the size of the input string.
200 *
201 * Return: length of the encoded string
202 */
203static int base64_encode(const u8 *src, int len, char *dst)
204{
205	int i, bits = 0, ac = 0;
 
 
 
 
 
206	char *cp = dst;
207
208	for (i = 0; i < len; i++) {
209		ac += src[i] << bits;
210		bits += 8;
211		do {
212			*cp++ = lookup_table[ac & 0x3f];
213			ac >>= 6;
214			bits -= 6;
 
215		} while (bits >= 6);
216	}
217	if (bits)
218		*cp++ = lookup_table[ac & 0x3f];
219	return cp - dst;
220}
221
222static int base64_decode(const char *src, int len, u8 *dst)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
223{
224	int i, bits = 0, ac = 0;
225	const char *p;
226	u8 *cp = dst;
 
 
 
 
227
228	for (i = 0; i < len; i++) {
229		p = strchr(lookup_table, src[i]);
230		if (p == NULL || src[i] == 0)
231			return -2;
232		ac += (p - lookup_table) << bits;
233		bits += 6;
234		if (bits >= 8) {
235			*cp++ = ac & 0xff;
236			ac >>= 8;
237			bits -= 8;
 
238		}
239	}
240	if (ac)
241		return -1;
242	return cp - dst;
243}
244
245bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len,
246				  u32 max_len, u32 *encrypted_len_ret)
 
247{
248	const struct fscrypt_info *ci = inode->i_crypt_info;
249	int padding = 4 << (fscrypt_policy_flags(&ci->ci_policy) &
250			    FSCRYPT_POLICY_FLAGS_PAD_MASK);
251	u32 encrypted_len;
252
253	if (orig_len > max_len)
254		return false;
255	encrypted_len = max(orig_len, (u32)FS_CRYPTO_BLOCK_SIZE);
256	encrypted_len = round_up(encrypted_len, padding);
257	*encrypted_len_ret = min(encrypted_len, max_len);
258	return true;
259}
260
261/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
262 * fscrypt_fname_alloc_buffer() - allocate a buffer for presented filenames
263 * @inode: inode of the parent directory (for regular filenames)
264 *	   or of the symlink (for symlink targets)
265 * @max_encrypted_len: maximum length of encrypted filenames the buffer will be
266 *		       used to present
267 * @crypto_str: (output) buffer to allocate
268 *
269 * Allocate a buffer that is large enough to hold any decrypted or encoded
270 * filename (null-terminated), for the given maximum encrypted filename length.
271 *
272 * Return: 0 on success, -errno on failure
273 */
274int fscrypt_fname_alloc_buffer(const struct inode *inode,
275			       u32 max_encrypted_len,
276			       struct fscrypt_str *crypto_str)
277{
278	const u32 max_encoded_len = BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX);
279	u32 max_presented_len;
280
281	max_presented_len = max(max_encoded_len, max_encrypted_len);
282
283	crypto_str->name = kmalloc(max_presented_len + 1, GFP_NOFS);
284	if (!crypto_str->name)
285		return -ENOMEM;
286	crypto_str->len = max_presented_len;
287	return 0;
288}
289EXPORT_SYMBOL(fscrypt_fname_alloc_buffer);
290
291/**
292 * fscrypt_fname_free_buffer() - free a buffer for presented filenames
293 * @crypto_str: the buffer to free
294 *
295 * Free a buffer that was allocated by fscrypt_fname_alloc_buffer().
296 */
297void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
298{
299	if (!crypto_str)
300		return;
301	kfree(crypto_str->name);
302	crypto_str->name = NULL;
303}
304EXPORT_SYMBOL(fscrypt_fname_free_buffer);
305
306/**
307 * fscrypt_fname_disk_to_usr() - convert an encrypted filename to
308 *				 user-presentable form
309 * @inode: inode of the parent directory (for regular filenames)
310 *	   or of the symlink (for symlink targets)
311 * @hash: first part of the name's dirhash, if applicable.  This only needs to
312 *	  be provided if the filename is located in an indexed directory whose
313 *	  encryption key may be unavailable.  Not needed for symlink targets.
314 * @minor_hash: second part of the name's dirhash, if applicable
315 * @iname: encrypted filename to convert.  May also be "." or "..", which
316 *	   aren't actually encrypted.
317 * @oname: output buffer for the user-presentable filename.  The caller must
318 *	   have allocated enough space for this, e.g. using
319 *	   fscrypt_fname_alloc_buffer().
320 *
321 * If the key is available, we'll decrypt the disk name.  Otherwise, we'll
322 * encode it for presentation in fscrypt_nokey_name format.
323 * See struct fscrypt_nokey_name for details.
324 *
325 * Return: 0 on success, -errno on failure
326 */
327int fscrypt_fname_disk_to_usr(const struct inode *inode,
328			      u32 hash, u32 minor_hash,
329			      const struct fscrypt_str *iname,
330			      struct fscrypt_str *oname)
331{
332	const struct qstr qname = FSTR_TO_QSTR(iname);
333	struct fscrypt_nokey_name nokey_name;
334	u32 size; /* size of the unencoded no-key name */
335
336	if (fscrypt_is_dot_dotdot(&qname)) {
337		oname->name[0] = '.';
338		oname->name[iname->len - 1] = '.';
339		oname->len = iname->len;
340		return 0;
341	}
342
343	if (iname->len < FS_CRYPTO_BLOCK_SIZE)
344		return -EUCLEAN;
345
346	if (fscrypt_has_encryption_key(inode))
347		return fname_decrypt(inode, iname, oname);
348
349	/*
350	 * Sanity check that struct fscrypt_nokey_name doesn't have padding
351	 * between fields and that its encoded size never exceeds NAME_MAX.
352	 */
353	BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, dirhash) !=
354		     offsetof(struct fscrypt_nokey_name, bytes));
355	BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, bytes) !=
356		     offsetof(struct fscrypt_nokey_name, sha256));
357	BUILD_BUG_ON(BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX) > NAME_MAX);
 
 
 
358
359	if (hash) {
360		nokey_name.dirhash[0] = hash;
361		nokey_name.dirhash[1] = minor_hash;
362	} else {
363		nokey_name.dirhash[0] = 0;
364		nokey_name.dirhash[1] = 0;
365	}
366	if (iname->len <= sizeof(nokey_name.bytes)) {
367		memcpy(nokey_name.bytes, iname->name, iname->len);
368		size = offsetof(struct fscrypt_nokey_name, bytes[iname->len]);
369	} else {
370		memcpy(nokey_name.bytes, iname->name, sizeof(nokey_name.bytes));
371		/* Compute strong hash of remaining part of name. */
372		fscrypt_do_sha256(&iname->name[sizeof(nokey_name.bytes)],
373				  iname->len - sizeof(nokey_name.bytes),
374				  nokey_name.sha256);
375		size = FSCRYPT_NOKEY_NAME_MAX;
376	}
377	oname->len = base64_encode((const u8 *)&nokey_name, size, oname->name);
 
378	return 0;
379}
380EXPORT_SYMBOL(fscrypt_fname_disk_to_usr);
381
382/**
383 * fscrypt_setup_filename() - prepare to search a possibly encrypted directory
384 * @dir: the directory that will be searched
385 * @iname: the user-provided filename being searched for
386 * @lookup: 1 if we're allowed to proceed without the key because it's
387 *	->lookup() or we're finding the dir_entry for deletion; 0 if we cannot
388 *	proceed without the key because we're going to create the dir_entry.
389 * @fname: the filename information to be filled in
390 *
391 * Given a user-provided filename @iname, this function sets @fname->disk_name
392 * to the name that would be stored in the on-disk directory entry, if possible.
393 * If the directory is unencrypted this is simply @iname.  Else, if we have the
394 * directory's encryption key, then @iname is the plaintext, so we encrypt it to
395 * get the disk_name.
396 *
397 * Else, for keyless @lookup operations, @iname is the presented ciphertext, so
398 * we decode it to get the fscrypt_nokey_name.  Non-@lookup operations will be
399 * impossible in this case, so we fail them with ENOKEY.
400 *
401 * If successful, fscrypt_free_filename() must be called later to clean up.
402 *
403 * Return: 0 on success, -errno on failure
404 */
405int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname,
406			      int lookup, struct fscrypt_name *fname)
407{
408	struct fscrypt_nokey_name *nokey_name;
409	int ret;
410
411	memset(fname, 0, sizeof(struct fscrypt_name));
412	fname->usr_fname = iname;
413
414	if (!IS_ENCRYPTED(dir) || fscrypt_is_dot_dotdot(iname)) {
415		fname->disk_name.name = (unsigned char *)iname->name;
416		fname->disk_name.len = iname->len;
417		return 0;
418	}
419	ret = fscrypt_get_encryption_info(dir);
420	if (ret)
421		return ret;
422
423	if (fscrypt_has_encryption_key(dir)) {
424		if (!fscrypt_fname_encrypted_size(dir, iname->len,
425						  dir->i_sb->s_cop->max_namelen,
426						  &fname->crypto_buf.len))
427			return -ENAMETOOLONG;
428		fname->crypto_buf.name = kmalloc(fname->crypto_buf.len,
429						 GFP_NOFS);
430		if (!fname->crypto_buf.name)
431			return -ENOMEM;
432
433		ret = fscrypt_fname_encrypt(dir, iname, fname->crypto_buf.name,
434					    fname->crypto_buf.len);
435		if (ret)
436			goto errout;
437		fname->disk_name.name = fname->crypto_buf.name;
438		fname->disk_name.len = fname->crypto_buf.len;
439		return 0;
440	}
441	if (!lookup)
442		return -ENOKEY;
443	fname->is_ciphertext_name = true;
444
445	/*
446	 * We don't have the key and we are doing a lookup; decode the
447	 * user-supplied name
448	 */
449
450	if (iname->len > BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX))
451		return -ENOENT;
452
453	fname->crypto_buf.name = kmalloc(FSCRYPT_NOKEY_NAME_MAX, GFP_KERNEL);
454	if (fname->crypto_buf.name == NULL)
455		return -ENOMEM;
456
457	ret = base64_decode(iname->name, iname->len, fname->crypto_buf.name);
 
458	if (ret < (int)offsetof(struct fscrypt_nokey_name, bytes[1]) ||
459	    (ret > offsetof(struct fscrypt_nokey_name, sha256) &&
460	     ret != FSCRYPT_NOKEY_NAME_MAX)) {
461		ret = -ENOENT;
462		goto errout;
463	}
464	fname->crypto_buf.len = ret;
465
466	nokey_name = (void *)fname->crypto_buf.name;
467	fname->hash = nokey_name->dirhash[0];
468	fname->minor_hash = nokey_name->dirhash[1];
469	if (ret != FSCRYPT_NOKEY_NAME_MAX) {
470		/* The full ciphertext filename is available. */
471		fname->disk_name.name = nokey_name->bytes;
472		fname->disk_name.len =
473			ret - offsetof(struct fscrypt_nokey_name, bytes);
474	}
475	return 0;
476
477errout:
478	kfree(fname->crypto_buf.name);
479	return ret;
480}
481EXPORT_SYMBOL(fscrypt_setup_filename);
482
483/**
484 * fscrypt_match_name() - test whether the given name matches a directory entry
485 * @fname: the name being searched for
486 * @de_name: the name from the directory entry
487 * @de_name_len: the length of @de_name in bytes
488 *
489 * Normally @fname->disk_name will be set, and in that case we simply compare
490 * that to the name stored in the directory entry.  The only exception is that
491 * if we don't have the key for an encrypted directory and the name we're
492 * looking for is very long, then we won't have the full disk_name and instead
493 * we'll need to match against a fscrypt_nokey_name that includes a strong hash.
494 *
495 * Return: %true if the name matches, otherwise %false.
496 */
497bool fscrypt_match_name(const struct fscrypt_name *fname,
498			const u8 *de_name, u32 de_name_len)
499{
500	const struct fscrypt_nokey_name *nokey_name =
501		(const void *)fname->crypto_buf.name;
502	u8 sha256[SHA256_DIGEST_SIZE];
503
504	if (likely(fname->disk_name.name)) {
505		if (de_name_len != fname->disk_name.len)
506			return false;
507		return !memcmp(de_name, fname->disk_name.name, de_name_len);
508	}
509	if (de_name_len <= sizeof(nokey_name->bytes))
510		return false;
511	if (memcmp(de_name, nokey_name->bytes, sizeof(nokey_name->bytes)))
512		return false;
513	fscrypt_do_sha256(&de_name[sizeof(nokey_name->bytes)],
514			  de_name_len - sizeof(nokey_name->bytes), sha256);
515	return !memcmp(sha256, nokey_name->sha256, sizeof(sha256));
516}
517EXPORT_SYMBOL_GPL(fscrypt_match_name);
518
519/**
520 * fscrypt_fname_siphash() - calculate the SipHash of a filename
521 * @dir: the parent directory
522 * @name: the filename to calculate the SipHash of
523 *
524 * Given a plaintext filename @name and a directory @dir which uses SipHash as
525 * its dirhash method and has had its fscrypt key set up, this function
526 * calculates the SipHash of that name using the directory's secret dirhash key.
527 *
528 * Return: the SipHash of @name using the hash key of @dir
529 */
530u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name)
531{
532	const struct fscrypt_info *ci = dir->i_crypt_info;
533
534	WARN_ON(!ci->ci_dirhash_key_initialized);
535
536	return siphash(name->name, name->len, &ci->ci_dirhash_key);
537}
538EXPORT_SYMBOL_GPL(fscrypt_fname_siphash);
539
540/*
541 * Validate dentries in encrypted directories to make sure we aren't potentially
542 * caching stale dentries after a key has been added.
543 */
544static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
545{
546	struct dentry *dir;
547	int err;
548	int valid;
549
550	/*
551	 * Plaintext names are always valid, since fscrypt doesn't support
552	 * reverting to ciphertext names without evicting the directory's inode
553	 * -- which implies eviction of the dentries in the directory.
554	 */
555	if (!(dentry->d_flags & DCACHE_ENCRYPTED_NAME))
556		return 1;
557
558	/*
559	 * Ciphertext name; valid if the directory's key is still unavailable.
560	 *
561	 * Although fscrypt forbids rename() on ciphertext names, we still must
562	 * use dget_parent() here rather than use ->d_parent directly.  That's
563	 * because a corrupted fs image may contain directory hard links, which
564	 * the VFS handles by moving the directory's dentry tree in the dcache
565	 * each time ->lookup() finds the directory and it already has a dentry
566	 * elsewhere.  Thus ->d_parent can be changing, and we must safely grab
567	 * a reference to some ->d_parent to prevent it from being freed.
568	 */
569
570	if (flags & LOOKUP_RCU)
571		return -ECHILD;
572
573	dir = dget_parent(dentry);
574	err = fscrypt_get_encryption_info(d_inode(dir));
 
 
 
 
575	valid = !fscrypt_has_encryption_key(d_inode(dir));
576	dput(dir);
577
578	if (err < 0)
579		return err;
580
581	return valid;
582}
583
584const struct dentry_operations fscrypt_d_ops = {
585	.d_revalidate = fscrypt_d_revalidate,
586};
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * This contains functions for filename crypto management
  4 *
  5 * Copyright (C) 2015, Google, Inc.
  6 * Copyright (C) 2015, Motorola Mobility
  7 *
  8 * Written by Uday Savagaonkar, 2014.
  9 * Modified by Jaegeuk Kim, 2015.
 10 *
 11 * This has not yet undergone a rigorous security audit.
 12 */
 13
 14#include <linux/namei.h>
 15#include <linux/scatterlist.h>
 16#include <crypto/hash.h>
 17#include <crypto/sha2.h>
 18#include <crypto/skcipher.h>
 19#include "fscrypt_private.h"
 20
 21/*
 22 * The minimum message length (input and output length), in bytes, for all
 23 * filenames encryption modes.  Filenames shorter than this will be zero-padded
 24 * before being encrypted.
 25 */
 26#define FSCRYPT_FNAME_MIN_MSG_LEN 16
 27
 28/*
 29 * struct fscrypt_nokey_name - identifier for directory entry when key is absent
 30 *
 31 * When userspace lists an encrypted directory without access to the key, the
 32 * filesystem must present a unique "no-key name" for each filename that allows
 33 * it to find the directory entry again if requested.  Naively, that would just
 34 * mean using the ciphertext filenames.  However, since the ciphertext filenames
 35 * can contain illegal characters ('\0' and '/'), they must be encoded in some
 36 * way.  We use base64url.  But that can cause names to exceed NAME_MAX (255
 37 * bytes), so we also need to use a strong hash to abbreviate long names.
 38 *
 39 * The filesystem may also need another kind of hash, the "dirhash", to quickly
 40 * find the directory entry.  Since filesystems normally compute the dirhash
 41 * over the on-disk filename (i.e. the ciphertext), it's not computable from
 42 * no-key names that abbreviate the ciphertext using the strong hash to fit in
 43 * NAME_MAX.  It's also not computable if it's a keyed hash taken over the
 44 * plaintext (but it may still be available in the on-disk directory entry);
 45 * casefolded directories use this type of dirhash.  At least in these cases,
 46 * each no-key name must include the name's dirhash too.
 47 *
 48 * To meet all these requirements, we base64url-encode the following
 49 * variable-length structure.  It contains the dirhash, or 0's if the filesystem
 50 * didn't provide one; up to 149 bytes of the ciphertext name; and for
 51 * ciphertexts longer than 149 bytes, also the SHA-256 of the remaining bytes.
 52 *
 53 * This ensures that each no-key name contains everything needed to find the
 54 * directory entry again, contains only legal characters, doesn't exceed
 55 * NAME_MAX, is unambiguous unless there's a SHA-256 collision, and that we only
 56 * take the performance hit of SHA-256 on very long filenames (which are rare).
 57 */
 58struct fscrypt_nokey_name {
 59	u32 dirhash[2];
 60	u8 bytes[149];
 61	u8 sha256[SHA256_DIGEST_SIZE];
 62}; /* 189 bytes => 252 bytes base64url-encoded, which is <= NAME_MAX (255) */
 63
 64/*
 65 * Decoded size of max-size no-key name, i.e. a name that was abbreviated using
 66 * the strong hash and thus includes the 'sha256' field.  This isn't simply
 67 * sizeof(struct fscrypt_nokey_name), as the padding at the end isn't included.
 68 */
 69#define FSCRYPT_NOKEY_NAME_MAX	offsetofend(struct fscrypt_nokey_name, sha256)
 70
 71/* Encoded size of max-size no-key name */
 72#define FSCRYPT_NOKEY_NAME_MAX_ENCODED \
 73		FSCRYPT_BASE64URL_CHARS(FSCRYPT_NOKEY_NAME_MAX)
 
 
 
 
 
 74
 75static inline bool fscrypt_is_dot_dotdot(const struct qstr *str)
 76{
 77	return is_dot_dotdot(str->name, str->len);
 
 
 
 
 
 
 78}
 79
 80/**
 81 * fscrypt_fname_encrypt() - encrypt a filename
 82 * @inode: inode of the parent directory (for regular filenames)
 83 *	   or of the symlink (for symlink targets). Key must already be
 84 *	   set up.
 85 * @iname: the filename to encrypt
 86 * @out: (output) the encrypted filename
 87 * @olen: size of the encrypted filename.  It must be at least @iname->len.
 88 *	  Any extra space is filled with NUL padding before encryption.
 89 *
 90 * Return: 0 on success, -errno on failure
 91 */
 92int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname,
 93			  u8 *out, unsigned int olen)
 94{
 95	struct skcipher_request *req = NULL;
 96	DECLARE_CRYPTO_WAIT(wait);
 97	const struct fscrypt_inode_info *ci = inode->i_crypt_info;
 98	struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
 99	union fscrypt_iv iv;
100	struct scatterlist sg;
101	int res;
102
103	/*
104	 * Copy the filename to the output buffer for encrypting in-place and
105	 * pad it with the needed number of NUL bytes.
106	 */
107	if (WARN_ON_ONCE(olen < iname->len))
108		return -ENOBUFS;
109	memcpy(out, iname->name, iname->len);
110	memset(out + iname->len, 0, olen - iname->len);
111
112	/* Initialize the IV */
113	fscrypt_generate_iv(&iv, 0, ci);
114
115	/* Set up the encryption request */
116	req = skcipher_request_alloc(tfm, GFP_NOFS);
117	if (!req)
118		return -ENOMEM;
119	skcipher_request_set_callback(req,
120			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
121			crypto_req_done, &wait);
122	sg_init_one(&sg, out, olen);
123	skcipher_request_set_crypt(req, &sg, &sg, olen, &iv);
124
125	/* Do the encryption */
126	res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
127	skcipher_request_free(req);
128	if (res < 0) {
129		fscrypt_err(inode, "Filename encryption failed: %d", res);
130		return res;
131	}
132
133	return 0;
134}
135EXPORT_SYMBOL_GPL(fscrypt_fname_encrypt);
136
137/**
138 * fname_decrypt() - decrypt a filename
139 * @inode: inode of the parent directory (for regular filenames)
140 *	   or of the symlink (for symlink targets)
141 * @iname: the encrypted filename to decrypt
142 * @oname: (output) the decrypted filename.  The caller must have allocated
143 *	   enough space for this, e.g. using fscrypt_fname_alloc_buffer().
144 *
145 * Return: 0 on success, -errno on failure
146 */
147static int fname_decrypt(const struct inode *inode,
148			 const struct fscrypt_str *iname,
149			 struct fscrypt_str *oname)
150{
151	struct skcipher_request *req = NULL;
152	DECLARE_CRYPTO_WAIT(wait);
153	struct scatterlist src_sg, dst_sg;
154	const struct fscrypt_inode_info *ci = inode->i_crypt_info;
155	struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
156	union fscrypt_iv iv;
157	int res;
158
159	/* Allocate request */
160	req = skcipher_request_alloc(tfm, GFP_NOFS);
161	if (!req)
162		return -ENOMEM;
163	skcipher_request_set_callback(req,
164		CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
165		crypto_req_done, &wait);
166
167	/* Initialize IV */
168	fscrypt_generate_iv(&iv, 0, ci);
169
170	/* Create decryption request */
171	sg_init_one(&src_sg, iname->name, iname->len);
172	sg_init_one(&dst_sg, oname->name, oname->len);
173	skcipher_request_set_crypt(req, &src_sg, &dst_sg, iname->len, &iv);
174	res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
175	skcipher_request_free(req);
176	if (res < 0) {
177		fscrypt_err(inode, "Filename decryption failed: %d", res);
178		return res;
179	}
180
181	oname->len = strnlen(oname->name, iname->len);
182	return 0;
183}
184
185static const char base64url_table[65] =
186	"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_";
187
188#define FSCRYPT_BASE64URL_CHARS(nbytes)	DIV_ROUND_UP((nbytes) * 4, 3)
189
190/**
191 * fscrypt_base64url_encode() - base64url-encode some binary data
192 * @src: the binary data to encode
193 * @srclen: the length of @src in bytes
194 * @dst: (output) the base64url-encoded string.  Not NUL-terminated.
195 *
196 * Encodes data using base64url encoding, i.e. the "Base 64 Encoding with URL
197 * and Filename Safe Alphabet" specified by RFC 4648.  '='-padding isn't used,
198 * as it's unneeded and not required by the RFC.  base64url is used instead of
199 * base64 to avoid the '/' character, which isn't allowed in filenames.
200 *
201 * Return: the length of the resulting base64url-encoded string in bytes.
202 *	   This will be equal to FSCRYPT_BASE64URL_CHARS(srclen).
203 */
204static int fscrypt_base64url_encode(const u8 *src, int srclen, char *dst)
205{
206	u32 ac = 0;
207	int bits = 0;
208	int i;
209	char *cp = dst;
210
211	for (i = 0; i < srclen; i++) {
212		ac = (ac << 8) | src[i];
213		bits += 8;
214		do {
 
 
215			bits -= 6;
216			*cp++ = base64url_table[(ac >> bits) & 0x3f];
217		} while (bits >= 6);
218	}
219	if (bits)
220		*cp++ = base64url_table[(ac << (6 - bits)) & 0x3f];
221	return cp - dst;
222}
223
224/**
225 * fscrypt_base64url_decode() - base64url-decode a string
226 * @src: the string to decode.  Doesn't need to be NUL-terminated.
227 * @srclen: the length of @src in bytes
228 * @dst: (output) the decoded binary data
229 *
230 * Decodes a string using base64url encoding, i.e. the "Base 64 Encoding with
231 * URL and Filename Safe Alphabet" specified by RFC 4648.  '='-padding isn't
232 * accepted, nor are non-encoding characters such as whitespace.
233 *
234 * This implementation hasn't been optimized for performance.
235 *
236 * Return: the length of the resulting decoded binary data in bytes,
237 *	   or -1 if the string isn't a valid base64url string.
238 */
239static int fscrypt_base64url_decode(const char *src, int srclen, u8 *dst)
240{
241	u32 ac = 0;
242	int bits = 0;
243	int i;
244	u8 *bp = dst;
245
246	for (i = 0; i < srclen; i++) {
247		const char *p = strchr(base64url_table, src[i]);
248
 
 
249		if (p == NULL || src[i] == 0)
250			return -1;
251		ac = (ac << 6) | (p - base64url_table);
252		bits += 6;
253		if (bits >= 8) {
 
 
254			bits -= 8;
255			*bp++ = (u8)(ac >> bits);
256		}
257	}
258	if (ac & ((1 << bits) - 1))
259		return -1;
260	return bp - dst;
261}
262
263bool __fscrypt_fname_encrypted_size(const union fscrypt_policy *policy,
264				    u32 orig_len, u32 max_len,
265				    u32 *encrypted_len_ret)
266{
267	int padding = 4 << (fscrypt_policy_flags(policy) &
 
268			    FSCRYPT_POLICY_FLAGS_PAD_MASK);
269	u32 encrypted_len;
270
271	if (orig_len > max_len)
272		return false;
273	encrypted_len = max_t(u32, orig_len, FSCRYPT_FNAME_MIN_MSG_LEN);
274	encrypted_len = round_up(encrypted_len, padding);
275	*encrypted_len_ret = min(encrypted_len, max_len);
276	return true;
277}
278
279/**
280 * fscrypt_fname_encrypted_size() - calculate length of encrypted filename
281 * @inode:		parent inode of dentry name being encrypted. Key must
282 *			already be set up.
283 * @orig_len:		length of the original filename
284 * @max_len:		maximum length to return
285 * @encrypted_len_ret:	where calculated length should be returned (on success)
286 *
287 * Filenames that are shorter than the maximum length may have their lengths
288 * increased slightly by encryption, due to padding that is applied.
289 *
290 * Return: false if the orig_len is greater than max_len. Otherwise, true and
291 *	   fill out encrypted_len_ret with the length (up to max_len).
292 */
293bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len,
294				  u32 max_len, u32 *encrypted_len_ret)
295{
296	return __fscrypt_fname_encrypted_size(&inode->i_crypt_info->ci_policy,
297					      orig_len, max_len,
298					      encrypted_len_ret);
299}
300EXPORT_SYMBOL_GPL(fscrypt_fname_encrypted_size);
301
302/**
303 * fscrypt_fname_alloc_buffer() - allocate a buffer for presented filenames
 
 
304 * @max_encrypted_len: maximum length of encrypted filenames the buffer will be
305 *		       used to present
306 * @crypto_str: (output) buffer to allocate
307 *
308 * Allocate a buffer that is large enough to hold any decrypted or encoded
309 * filename (null-terminated), for the given maximum encrypted filename length.
310 *
311 * Return: 0 on success, -errno on failure
312 */
313int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
 
314			       struct fscrypt_str *crypto_str)
315{
316	u32 max_presented_len = max_t(u32, FSCRYPT_NOKEY_NAME_MAX_ENCODED,
317				      max_encrypted_len);
 
 
318
319	crypto_str->name = kmalloc(max_presented_len + 1, GFP_NOFS);
320	if (!crypto_str->name)
321		return -ENOMEM;
322	crypto_str->len = max_presented_len;
323	return 0;
324}
325EXPORT_SYMBOL(fscrypt_fname_alloc_buffer);
326
327/**
328 * fscrypt_fname_free_buffer() - free a buffer for presented filenames
329 * @crypto_str: the buffer to free
330 *
331 * Free a buffer that was allocated by fscrypt_fname_alloc_buffer().
332 */
333void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
334{
335	if (!crypto_str)
336		return;
337	kfree(crypto_str->name);
338	crypto_str->name = NULL;
339}
340EXPORT_SYMBOL(fscrypt_fname_free_buffer);
341
342/**
343 * fscrypt_fname_disk_to_usr() - convert an encrypted filename to
344 *				 user-presentable form
345 * @inode: inode of the parent directory (for regular filenames)
346 *	   or of the symlink (for symlink targets)
347 * @hash: first part of the name's dirhash, if applicable.  This only needs to
348 *	  be provided if the filename is located in an indexed directory whose
349 *	  encryption key may be unavailable.  Not needed for symlink targets.
350 * @minor_hash: second part of the name's dirhash, if applicable
351 * @iname: encrypted filename to convert.  May also be "." or "..", which
352 *	   aren't actually encrypted.
353 * @oname: output buffer for the user-presentable filename.  The caller must
354 *	   have allocated enough space for this, e.g. using
355 *	   fscrypt_fname_alloc_buffer().
356 *
357 * If the key is available, we'll decrypt the disk name.  Otherwise, we'll
358 * encode it for presentation in fscrypt_nokey_name format.
359 * See struct fscrypt_nokey_name for details.
360 *
361 * Return: 0 on success, -errno on failure
362 */
363int fscrypt_fname_disk_to_usr(const struct inode *inode,
364			      u32 hash, u32 minor_hash,
365			      const struct fscrypt_str *iname,
366			      struct fscrypt_str *oname)
367{
368	const struct qstr qname = FSTR_TO_QSTR(iname);
369	struct fscrypt_nokey_name nokey_name;
370	u32 size; /* size of the unencoded no-key name */
371
372	if (fscrypt_is_dot_dotdot(&qname)) {
373		oname->name[0] = '.';
374		oname->name[iname->len - 1] = '.';
375		oname->len = iname->len;
376		return 0;
377	}
378
379	if (iname->len < FSCRYPT_FNAME_MIN_MSG_LEN)
380		return -EUCLEAN;
381
382	if (fscrypt_has_encryption_key(inode))
383		return fname_decrypt(inode, iname, oname);
384
385	/*
386	 * Sanity check that struct fscrypt_nokey_name doesn't have padding
387	 * between fields and that its encoded size never exceeds NAME_MAX.
388	 */
389	BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, dirhash) !=
390		     offsetof(struct fscrypt_nokey_name, bytes));
391	BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, bytes) !=
392		     offsetof(struct fscrypt_nokey_name, sha256));
393	BUILD_BUG_ON(FSCRYPT_NOKEY_NAME_MAX_ENCODED > NAME_MAX);
394
395	nokey_name.dirhash[0] = hash;
396	nokey_name.dirhash[1] = minor_hash;
397
 
 
 
 
 
 
 
398	if (iname->len <= sizeof(nokey_name.bytes)) {
399		memcpy(nokey_name.bytes, iname->name, iname->len);
400		size = offsetof(struct fscrypt_nokey_name, bytes[iname->len]);
401	} else {
402		memcpy(nokey_name.bytes, iname->name, sizeof(nokey_name.bytes));
403		/* Compute strong hash of remaining part of name. */
404		sha256(&iname->name[sizeof(nokey_name.bytes)],
405		       iname->len - sizeof(nokey_name.bytes),
406		       nokey_name.sha256);
407		size = FSCRYPT_NOKEY_NAME_MAX;
408	}
409	oname->len = fscrypt_base64url_encode((const u8 *)&nokey_name, size,
410					      oname->name);
411	return 0;
412}
413EXPORT_SYMBOL(fscrypt_fname_disk_to_usr);
414
415/**
416 * fscrypt_setup_filename() - prepare to search a possibly encrypted directory
417 * @dir: the directory that will be searched
418 * @iname: the user-provided filename being searched for
419 * @lookup: 1 if we're allowed to proceed without the key because it's
420 *	->lookup() or we're finding the dir_entry for deletion; 0 if we cannot
421 *	proceed without the key because we're going to create the dir_entry.
422 * @fname: the filename information to be filled in
423 *
424 * Given a user-provided filename @iname, this function sets @fname->disk_name
425 * to the name that would be stored in the on-disk directory entry, if possible.
426 * If the directory is unencrypted this is simply @iname.  Else, if we have the
427 * directory's encryption key, then @iname is the plaintext, so we encrypt it to
428 * get the disk_name.
429 *
430 * Else, for keyless @lookup operations, @iname should be a no-key name, so we
431 * decode it to get the struct fscrypt_nokey_name.  Non-@lookup operations will
432 * be impossible in this case, so we fail them with ENOKEY.
433 *
434 * If successful, fscrypt_free_filename() must be called later to clean up.
435 *
436 * Return: 0 on success, -errno on failure
437 */
438int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname,
439			      int lookup, struct fscrypt_name *fname)
440{
441	struct fscrypt_nokey_name *nokey_name;
442	int ret;
443
444	memset(fname, 0, sizeof(struct fscrypt_name));
445	fname->usr_fname = iname;
446
447	if (!IS_ENCRYPTED(dir) || fscrypt_is_dot_dotdot(iname)) {
448		fname->disk_name.name = (unsigned char *)iname->name;
449		fname->disk_name.len = iname->len;
450		return 0;
451	}
452	ret = fscrypt_get_encryption_info(dir, lookup);
453	if (ret)
454		return ret;
455
456	if (fscrypt_has_encryption_key(dir)) {
457		if (!fscrypt_fname_encrypted_size(dir, iname->len, NAME_MAX,
 
458						  &fname->crypto_buf.len))
459			return -ENAMETOOLONG;
460		fname->crypto_buf.name = kmalloc(fname->crypto_buf.len,
461						 GFP_NOFS);
462		if (!fname->crypto_buf.name)
463			return -ENOMEM;
464
465		ret = fscrypt_fname_encrypt(dir, iname, fname->crypto_buf.name,
466					    fname->crypto_buf.len);
467		if (ret)
468			goto errout;
469		fname->disk_name.name = fname->crypto_buf.name;
470		fname->disk_name.len = fname->crypto_buf.len;
471		return 0;
472	}
473	if (!lookup)
474		return -ENOKEY;
475	fname->is_nokey_name = true;
476
477	/*
478	 * We don't have the key and we are doing a lookup; decode the
479	 * user-supplied name
480	 */
481
482	if (iname->len > FSCRYPT_NOKEY_NAME_MAX_ENCODED)
483		return -ENOENT;
484
485	fname->crypto_buf.name = kmalloc(FSCRYPT_NOKEY_NAME_MAX, GFP_KERNEL);
486	if (fname->crypto_buf.name == NULL)
487		return -ENOMEM;
488
489	ret = fscrypt_base64url_decode(iname->name, iname->len,
490				       fname->crypto_buf.name);
491	if (ret < (int)offsetof(struct fscrypt_nokey_name, bytes[1]) ||
492	    (ret > offsetof(struct fscrypt_nokey_name, sha256) &&
493	     ret != FSCRYPT_NOKEY_NAME_MAX)) {
494		ret = -ENOENT;
495		goto errout;
496	}
497	fname->crypto_buf.len = ret;
498
499	nokey_name = (void *)fname->crypto_buf.name;
500	fname->hash = nokey_name->dirhash[0];
501	fname->minor_hash = nokey_name->dirhash[1];
502	if (ret != FSCRYPT_NOKEY_NAME_MAX) {
503		/* The full ciphertext filename is available. */
504		fname->disk_name.name = nokey_name->bytes;
505		fname->disk_name.len =
506			ret - offsetof(struct fscrypt_nokey_name, bytes);
507	}
508	return 0;
509
510errout:
511	kfree(fname->crypto_buf.name);
512	return ret;
513}
514EXPORT_SYMBOL(fscrypt_setup_filename);
515
516/**
517 * fscrypt_match_name() - test whether the given name matches a directory entry
518 * @fname: the name being searched for
519 * @de_name: the name from the directory entry
520 * @de_name_len: the length of @de_name in bytes
521 *
522 * Normally @fname->disk_name will be set, and in that case we simply compare
523 * that to the name stored in the directory entry.  The only exception is that
524 * if we don't have the key for an encrypted directory and the name we're
525 * looking for is very long, then we won't have the full disk_name and instead
526 * we'll need to match against a fscrypt_nokey_name that includes a strong hash.
527 *
528 * Return: %true if the name matches, otherwise %false.
529 */
530bool fscrypt_match_name(const struct fscrypt_name *fname,
531			const u8 *de_name, u32 de_name_len)
532{
533	const struct fscrypt_nokey_name *nokey_name =
534		(const void *)fname->crypto_buf.name;
535	u8 digest[SHA256_DIGEST_SIZE];
536
537	if (likely(fname->disk_name.name)) {
538		if (de_name_len != fname->disk_name.len)
539			return false;
540		return !memcmp(de_name, fname->disk_name.name, de_name_len);
541	}
542	if (de_name_len <= sizeof(nokey_name->bytes))
543		return false;
544	if (memcmp(de_name, nokey_name->bytes, sizeof(nokey_name->bytes)))
545		return false;
546	sha256(&de_name[sizeof(nokey_name->bytes)],
547	       de_name_len - sizeof(nokey_name->bytes), digest);
548	return !memcmp(digest, nokey_name->sha256, sizeof(digest));
549}
550EXPORT_SYMBOL_GPL(fscrypt_match_name);
551
552/**
553 * fscrypt_fname_siphash() - calculate the SipHash of a filename
554 * @dir: the parent directory
555 * @name: the filename to calculate the SipHash of
556 *
557 * Given a plaintext filename @name and a directory @dir which uses SipHash as
558 * its dirhash method and has had its fscrypt key set up, this function
559 * calculates the SipHash of that name using the directory's secret dirhash key.
560 *
561 * Return: the SipHash of @name using the hash key of @dir
562 */
563u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name)
564{
565	const struct fscrypt_inode_info *ci = dir->i_crypt_info;
566
567	WARN_ON_ONCE(!ci->ci_dirhash_key_initialized);
568
569	return siphash(name->name, name->len, &ci->ci_dirhash_key);
570}
571EXPORT_SYMBOL_GPL(fscrypt_fname_siphash);
572
573/*
574 * Validate dentries in encrypted directories to make sure we aren't potentially
575 * caching stale dentries after a key has been added.
576 */
577int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
578{
579	struct dentry *dir;
580	int err;
581	int valid;
582
583	/*
584	 * Plaintext names are always valid, since fscrypt doesn't support
585	 * reverting to no-key names without evicting the directory's inode
586	 * -- which implies eviction of the dentries in the directory.
587	 */
588	if (!(dentry->d_flags & DCACHE_NOKEY_NAME))
589		return 1;
590
591	/*
592	 * No-key name; valid if the directory's key is still unavailable.
593	 *
594	 * Although fscrypt forbids rename() on no-key names, we still must use
595	 * dget_parent() here rather than use ->d_parent directly.  That's
596	 * because a corrupted fs image may contain directory hard links, which
597	 * the VFS handles by moving the directory's dentry tree in the dcache
598	 * each time ->lookup() finds the directory and it already has a dentry
599	 * elsewhere.  Thus ->d_parent can be changing, and we must safely grab
600	 * a reference to some ->d_parent to prevent it from being freed.
601	 */
602
603	if (flags & LOOKUP_RCU)
604		return -ECHILD;
605
606	dir = dget_parent(dentry);
607	/*
608	 * Pass allow_unsupported=true, so that files with an unsupported
609	 * encryption policy can be deleted.
610	 */
611	err = fscrypt_get_encryption_info(d_inode(dir), true);
612	valid = !fscrypt_has_encryption_key(d_inode(dir));
613	dput(dir);
614
615	if (err < 0)
616		return err;
617
618	return valid;
619}
620EXPORT_SYMBOL_GPL(fscrypt_d_revalidate);