Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * This contains functions for filename crypto management
4 *
5 * Copyright (C) 2015, Google, Inc.
6 * Copyright (C) 2015, Motorola Mobility
7 *
8 * Written by Uday Savagaonkar, 2014.
9 * Modified by Jaegeuk Kim, 2015.
10 *
11 * This has not yet undergone a rigorous security audit.
12 */
13
14#include <linux/namei.h>
15#include <linux/scatterlist.h>
16#include <crypto/hash.h>
17#include <crypto/sha.h>
18#include <crypto/skcipher.h>
19#include "fscrypt_private.h"
20
21/*
22 * struct fscrypt_nokey_name - identifier for directory entry when key is absent
23 *
24 * When userspace lists an encrypted directory without access to the key, the
25 * filesystem must present a unique "no-key name" for each filename that allows
26 * it to find the directory entry again if requested. Naively, that would just
27 * mean using the ciphertext filenames. However, since the ciphertext filenames
28 * can contain illegal characters ('\0' and '/'), they must be encoded in some
29 * way. We use base64. But that can cause names to exceed NAME_MAX (255
30 * bytes), so we also need to use a strong hash to abbreviate long names.
31 *
32 * The filesystem may also need another kind of hash, the "dirhash", to quickly
33 * find the directory entry. Since filesystems normally compute the dirhash
34 * over the on-disk filename (i.e. the ciphertext), it's not computable from
35 * no-key names that abbreviate the ciphertext using the strong hash to fit in
36 * NAME_MAX. It's also not computable if it's a keyed hash taken over the
37 * plaintext (but it may still be available in the on-disk directory entry);
38 * casefolded directories use this type of dirhash. At least in these cases,
39 * each no-key name must include the name's dirhash too.
40 *
41 * To meet all these requirements, we base64-encode the following
42 * variable-length structure. It contains the dirhash, or 0's if the filesystem
43 * didn't provide one; up to 149 bytes of the ciphertext name; and for
44 * ciphertexts longer than 149 bytes, also the SHA-256 of the remaining bytes.
45 *
46 * This ensures that each no-key name contains everything needed to find the
47 * directory entry again, contains only legal characters, doesn't exceed
48 * NAME_MAX, is unambiguous unless there's a SHA-256 collision, and that we only
49 * take the performance hit of SHA-256 on very long filenames (which are rare).
50 */
51struct fscrypt_nokey_name {
52 u32 dirhash[2];
53 u8 bytes[149];
54 u8 sha256[SHA256_DIGEST_SIZE];
55}; /* 189 bytes => 252 bytes base64-encoded, which is <= NAME_MAX (255) */
56
57/*
58 * Decoded size of max-size nokey name, i.e. a name that was abbreviated using
59 * the strong hash and thus includes the 'sha256' field. This isn't simply
60 * sizeof(struct fscrypt_nokey_name), as the padding at the end isn't included.
61 */
62#define FSCRYPT_NOKEY_NAME_MAX offsetofend(struct fscrypt_nokey_name, sha256)
63
64static void fscrypt_do_sha256(const u8 *data, unsigned int data_len, u8 *result)
65{
66 struct sha256_state sctx;
67
68 sha256_init(&sctx);
69 sha256_update(&sctx, data, data_len);
70 sha256_final(&sctx, result);
71}
72
73static inline bool fscrypt_is_dot_dotdot(const struct qstr *str)
74{
75 if (str->len == 1 && str->name[0] == '.')
76 return true;
77
78 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
79 return true;
80
81 return false;
82}
83
84/**
85 * fscrypt_fname_encrypt() - encrypt a filename
86 * @inode: inode of the parent directory (for regular filenames)
87 * or of the symlink (for symlink targets)
88 * @iname: the filename to encrypt
89 * @out: (output) the encrypted filename
90 * @olen: size of the encrypted filename. It must be at least @iname->len.
91 * Any extra space is filled with NUL padding before encryption.
92 *
93 * Return: 0 on success, -errno on failure
94 */
95int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname,
96 u8 *out, unsigned int olen)
97{
98 struct skcipher_request *req = NULL;
99 DECLARE_CRYPTO_WAIT(wait);
100 const struct fscrypt_info *ci = inode->i_crypt_info;
101 struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
102 union fscrypt_iv iv;
103 struct scatterlist sg;
104 int res;
105
106 /*
107 * Copy the filename to the output buffer for encrypting in-place and
108 * pad it with the needed number of NUL bytes.
109 */
110 if (WARN_ON(olen < iname->len))
111 return -ENOBUFS;
112 memcpy(out, iname->name, iname->len);
113 memset(out + iname->len, 0, olen - iname->len);
114
115 /* Initialize the IV */
116 fscrypt_generate_iv(&iv, 0, ci);
117
118 /* Set up the encryption request */
119 req = skcipher_request_alloc(tfm, GFP_NOFS);
120 if (!req)
121 return -ENOMEM;
122 skcipher_request_set_callback(req,
123 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
124 crypto_req_done, &wait);
125 sg_init_one(&sg, out, olen);
126 skcipher_request_set_crypt(req, &sg, &sg, olen, &iv);
127
128 /* Do the encryption */
129 res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
130 skcipher_request_free(req);
131 if (res < 0) {
132 fscrypt_err(inode, "Filename encryption failed: %d", res);
133 return res;
134 }
135
136 return 0;
137}
138
139/**
140 * fname_decrypt() - decrypt a filename
141 * @inode: inode of the parent directory (for regular filenames)
142 * or of the symlink (for symlink targets)
143 * @iname: the encrypted filename to decrypt
144 * @oname: (output) the decrypted filename. The caller must have allocated
145 * enough space for this, e.g. using fscrypt_fname_alloc_buffer().
146 *
147 * Return: 0 on success, -errno on failure
148 */
149static int fname_decrypt(const struct inode *inode,
150 const struct fscrypt_str *iname,
151 struct fscrypt_str *oname)
152{
153 struct skcipher_request *req = NULL;
154 DECLARE_CRYPTO_WAIT(wait);
155 struct scatterlist src_sg, dst_sg;
156 const struct fscrypt_info *ci = inode->i_crypt_info;
157 struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
158 union fscrypt_iv iv;
159 int res;
160
161 /* Allocate request */
162 req = skcipher_request_alloc(tfm, GFP_NOFS);
163 if (!req)
164 return -ENOMEM;
165 skcipher_request_set_callback(req,
166 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
167 crypto_req_done, &wait);
168
169 /* Initialize IV */
170 fscrypt_generate_iv(&iv, 0, ci);
171
172 /* Create decryption request */
173 sg_init_one(&src_sg, iname->name, iname->len);
174 sg_init_one(&dst_sg, oname->name, oname->len);
175 skcipher_request_set_crypt(req, &src_sg, &dst_sg, iname->len, &iv);
176 res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
177 skcipher_request_free(req);
178 if (res < 0) {
179 fscrypt_err(inode, "Filename decryption failed: %d", res);
180 return res;
181 }
182
183 oname->len = strnlen(oname->name, iname->len);
184 return 0;
185}
186
187static const char lookup_table[65] =
188 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+,";
189
190#define BASE64_CHARS(nbytes) DIV_ROUND_UP((nbytes) * 4, 3)
191
192/**
193 * base64_encode() - base64-encode some bytes
194 * @src: the bytes to encode
195 * @len: number of bytes to encode
196 * @dst: (output) the base64-encoded string. Not NUL-terminated.
197 *
198 * Encodes the input string using characters from the set [A-Za-z0-9+,].
199 * The encoded string is roughly 4/3 times the size of the input string.
200 *
201 * Return: length of the encoded string
202 */
203static int base64_encode(const u8 *src, int len, char *dst)
204{
205 int i, bits = 0, ac = 0;
206 char *cp = dst;
207
208 for (i = 0; i < len; i++) {
209 ac += src[i] << bits;
210 bits += 8;
211 do {
212 *cp++ = lookup_table[ac & 0x3f];
213 ac >>= 6;
214 bits -= 6;
215 } while (bits >= 6);
216 }
217 if (bits)
218 *cp++ = lookup_table[ac & 0x3f];
219 return cp - dst;
220}
221
222static int base64_decode(const char *src, int len, u8 *dst)
223{
224 int i, bits = 0, ac = 0;
225 const char *p;
226 u8 *cp = dst;
227
228 for (i = 0; i < len; i++) {
229 p = strchr(lookup_table, src[i]);
230 if (p == NULL || src[i] == 0)
231 return -2;
232 ac += (p - lookup_table) << bits;
233 bits += 6;
234 if (bits >= 8) {
235 *cp++ = ac & 0xff;
236 ac >>= 8;
237 bits -= 8;
238 }
239 }
240 if (ac)
241 return -1;
242 return cp - dst;
243}
244
245bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len,
246 u32 max_len, u32 *encrypted_len_ret)
247{
248 const struct fscrypt_info *ci = inode->i_crypt_info;
249 int padding = 4 << (fscrypt_policy_flags(&ci->ci_policy) &
250 FSCRYPT_POLICY_FLAGS_PAD_MASK);
251 u32 encrypted_len;
252
253 if (orig_len > max_len)
254 return false;
255 encrypted_len = max(orig_len, (u32)FS_CRYPTO_BLOCK_SIZE);
256 encrypted_len = round_up(encrypted_len, padding);
257 *encrypted_len_ret = min(encrypted_len, max_len);
258 return true;
259}
260
261/**
262 * fscrypt_fname_alloc_buffer() - allocate a buffer for presented filenames
263 * @inode: inode of the parent directory (for regular filenames)
264 * or of the symlink (for symlink targets)
265 * @max_encrypted_len: maximum length of encrypted filenames the buffer will be
266 * used to present
267 * @crypto_str: (output) buffer to allocate
268 *
269 * Allocate a buffer that is large enough to hold any decrypted or encoded
270 * filename (null-terminated), for the given maximum encrypted filename length.
271 *
272 * Return: 0 on success, -errno on failure
273 */
274int fscrypt_fname_alloc_buffer(const struct inode *inode,
275 u32 max_encrypted_len,
276 struct fscrypt_str *crypto_str)
277{
278 const u32 max_encoded_len = BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX);
279 u32 max_presented_len;
280
281 max_presented_len = max(max_encoded_len, max_encrypted_len);
282
283 crypto_str->name = kmalloc(max_presented_len + 1, GFP_NOFS);
284 if (!crypto_str->name)
285 return -ENOMEM;
286 crypto_str->len = max_presented_len;
287 return 0;
288}
289EXPORT_SYMBOL(fscrypt_fname_alloc_buffer);
290
291/**
292 * fscrypt_fname_free_buffer() - free a buffer for presented filenames
293 * @crypto_str: the buffer to free
294 *
295 * Free a buffer that was allocated by fscrypt_fname_alloc_buffer().
296 */
297void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
298{
299 if (!crypto_str)
300 return;
301 kfree(crypto_str->name);
302 crypto_str->name = NULL;
303}
304EXPORT_SYMBOL(fscrypt_fname_free_buffer);
305
306/**
307 * fscrypt_fname_disk_to_usr() - convert an encrypted filename to
308 * user-presentable form
309 * @inode: inode of the parent directory (for regular filenames)
310 * or of the symlink (for symlink targets)
311 * @hash: first part of the name's dirhash, if applicable. This only needs to
312 * be provided if the filename is located in an indexed directory whose
313 * encryption key may be unavailable. Not needed for symlink targets.
314 * @minor_hash: second part of the name's dirhash, if applicable
315 * @iname: encrypted filename to convert. May also be "." or "..", which
316 * aren't actually encrypted.
317 * @oname: output buffer for the user-presentable filename. The caller must
318 * have allocated enough space for this, e.g. using
319 * fscrypt_fname_alloc_buffer().
320 *
321 * If the key is available, we'll decrypt the disk name. Otherwise, we'll
322 * encode it for presentation in fscrypt_nokey_name format.
323 * See struct fscrypt_nokey_name for details.
324 *
325 * Return: 0 on success, -errno on failure
326 */
327int fscrypt_fname_disk_to_usr(const struct inode *inode,
328 u32 hash, u32 minor_hash,
329 const struct fscrypt_str *iname,
330 struct fscrypt_str *oname)
331{
332 const struct qstr qname = FSTR_TO_QSTR(iname);
333 struct fscrypt_nokey_name nokey_name;
334 u32 size; /* size of the unencoded no-key name */
335
336 if (fscrypt_is_dot_dotdot(&qname)) {
337 oname->name[0] = '.';
338 oname->name[iname->len - 1] = '.';
339 oname->len = iname->len;
340 return 0;
341 }
342
343 if (iname->len < FS_CRYPTO_BLOCK_SIZE)
344 return -EUCLEAN;
345
346 if (fscrypt_has_encryption_key(inode))
347 return fname_decrypt(inode, iname, oname);
348
349 /*
350 * Sanity check that struct fscrypt_nokey_name doesn't have padding
351 * between fields and that its encoded size never exceeds NAME_MAX.
352 */
353 BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, dirhash) !=
354 offsetof(struct fscrypt_nokey_name, bytes));
355 BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, bytes) !=
356 offsetof(struct fscrypt_nokey_name, sha256));
357 BUILD_BUG_ON(BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX) > NAME_MAX);
358
359 if (hash) {
360 nokey_name.dirhash[0] = hash;
361 nokey_name.dirhash[1] = minor_hash;
362 } else {
363 nokey_name.dirhash[0] = 0;
364 nokey_name.dirhash[1] = 0;
365 }
366 if (iname->len <= sizeof(nokey_name.bytes)) {
367 memcpy(nokey_name.bytes, iname->name, iname->len);
368 size = offsetof(struct fscrypt_nokey_name, bytes[iname->len]);
369 } else {
370 memcpy(nokey_name.bytes, iname->name, sizeof(nokey_name.bytes));
371 /* Compute strong hash of remaining part of name. */
372 fscrypt_do_sha256(&iname->name[sizeof(nokey_name.bytes)],
373 iname->len - sizeof(nokey_name.bytes),
374 nokey_name.sha256);
375 size = FSCRYPT_NOKEY_NAME_MAX;
376 }
377 oname->len = base64_encode((const u8 *)&nokey_name, size, oname->name);
378 return 0;
379}
380EXPORT_SYMBOL(fscrypt_fname_disk_to_usr);
381
382/**
383 * fscrypt_setup_filename() - prepare to search a possibly encrypted directory
384 * @dir: the directory that will be searched
385 * @iname: the user-provided filename being searched for
386 * @lookup: 1 if we're allowed to proceed without the key because it's
387 * ->lookup() or we're finding the dir_entry for deletion; 0 if we cannot
388 * proceed without the key because we're going to create the dir_entry.
389 * @fname: the filename information to be filled in
390 *
391 * Given a user-provided filename @iname, this function sets @fname->disk_name
392 * to the name that would be stored in the on-disk directory entry, if possible.
393 * If the directory is unencrypted this is simply @iname. Else, if we have the
394 * directory's encryption key, then @iname is the plaintext, so we encrypt it to
395 * get the disk_name.
396 *
397 * Else, for keyless @lookup operations, @iname is the presented ciphertext, so
398 * we decode it to get the fscrypt_nokey_name. Non-@lookup operations will be
399 * impossible in this case, so we fail them with ENOKEY.
400 *
401 * If successful, fscrypt_free_filename() must be called later to clean up.
402 *
403 * Return: 0 on success, -errno on failure
404 */
405int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname,
406 int lookup, struct fscrypt_name *fname)
407{
408 struct fscrypt_nokey_name *nokey_name;
409 int ret;
410
411 memset(fname, 0, sizeof(struct fscrypt_name));
412 fname->usr_fname = iname;
413
414 if (!IS_ENCRYPTED(dir) || fscrypt_is_dot_dotdot(iname)) {
415 fname->disk_name.name = (unsigned char *)iname->name;
416 fname->disk_name.len = iname->len;
417 return 0;
418 }
419 ret = fscrypt_get_encryption_info(dir);
420 if (ret)
421 return ret;
422
423 if (fscrypt_has_encryption_key(dir)) {
424 if (!fscrypt_fname_encrypted_size(dir, iname->len,
425 dir->i_sb->s_cop->max_namelen,
426 &fname->crypto_buf.len))
427 return -ENAMETOOLONG;
428 fname->crypto_buf.name = kmalloc(fname->crypto_buf.len,
429 GFP_NOFS);
430 if (!fname->crypto_buf.name)
431 return -ENOMEM;
432
433 ret = fscrypt_fname_encrypt(dir, iname, fname->crypto_buf.name,
434 fname->crypto_buf.len);
435 if (ret)
436 goto errout;
437 fname->disk_name.name = fname->crypto_buf.name;
438 fname->disk_name.len = fname->crypto_buf.len;
439 return 0;
440 }
441 if (!lookup)
442 return -ENOKEY;
443 fname->is_ciphertext_name = true;
444
445 /*
446 * We don't have the key and we are doing a lookup; decode the
447 * user-supplied name
448 */
449
450 if (iname->len > BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX))
451 return -ENOENT;
452
453 fname->crypto_buf.name = kmalloc(FSCRYPT_NOKEY_NAME_MAX, GFP_KERNEL);
454 if (fname->crypto_buf.name == NULL)
455 return -ENOMEM;
456
457 ret = base64_decode(iname->name, iname->len, fname->crypto_buf.name);
458 if (ret < (int)offsetof(struct fscrypt_nokey_name, bytes[1]) ||
459 (ret > offsetof(struct fscrypt_nokey_name, sha256) &&
460 ret != FSCRYPT_NOKEY_NAME_MAX)) {
461 ret = -ENOENT;
462 goto errout;
463 }
464 fname->crypto_buf.len = ret;
465
466 nokey_name = (void *)fname->crypto_buf.name;
467 fname->hash = nokey_name->dirhash[0];
468 fname->minor_hash = nokey_name->dirhash[1];
469 if (ret != FSCRYPT_NOKEY_NAME_MAX) {
470 /* The full ciphertext filename is available. */
471 fname->disk_name.name = nokey_name->bytes;
472 fname->disk_name.len =
473 ret - offsetof(struct fscrypt_nokey_name, bytes);
474 }
475 return 0;
476
477errout:
478 kfree(fname->crypto_buf.name);
479 return ret;
480}
481EXPORT_SYMBOL(fscrypt_setup_filename);
482
483/**
484 * fscrypt_match_name() - test whether the given name matches a directory entry
485 * @fname: the name being searched for
486 * @de_name: the name from the directory entry
487 * @de_name_len: the length of @de_name in bytes
488 *
489 * Normally @fname->disk_name will be set, and in that case we simply compare
490 * that to the name stored in the directory entry. The only exception is that
491 * if we don't have the key for an encrypted directory and the name we're
492 * looking for is very long, then we won't have the full disk_name and instead
493 * we'll need to match against a fscrypt_nokey_name that includes a strong hash.
494 *
495 * Return: %true if the name matches, otherwise %false.
496 */
497bool fscrypt_match_name(const struct fscrypt_name *fname,
498 const u8 *de_name, u32 de_name_len)
499{
500 const struct fscrypt_nokey_name *nokey_name =
501 (const void *)fname->crypto_buf.name;
502 u8 sha256[SHA256_DIGEST_SIZE];
503
504 if (likely(fname->disk_name.name)) {
505 if (de_name_len != fname->disk_name.len)
506 return false;
507 return !memcmp(de_name, fname->disk_name.name, de_name_len);
508 }
509 if (de_name_len <= sizeof(nokey_name->bytes))
510 return false;
511 if (memcmp(de_name, nokey_name->bytes, sizeof(nokey_name->bytes)))
512 return false;
513 fscrypt_do_sha256(&de_name[sizeof(nokey_name->bytes)],
514 de_name_len - sizeof(nokey_name->bytes), sha256);
515 return !memcmp(sha256, nokey_name->sha256, sizeof(sha256));
516}
517EXPORT_SYMBOL_GPL(fscrypt_match_name);
518
519/**
520 * fscrypt_fname_siphash() - calculate the SipHash of a filename
521 * @dir: the parent directory
522 * @name: the filename to calculate the SipHash of
523 *
524 * Given a plaintext filename @name and a directory @dir which uses SipHash as
525 * its dirhash method and has had its fscrypt key set up, this function
526 * calculates the SipHash of that name using the directory's secret dirhash key.
527 *
528 * Return: the SipHash of @name using the hash key of @dir
529 */
530u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name)
531{
532 const struct fscrypt_info *ci = dir->i_crypt_info;
533
534 WARN_ON(!ci->ci_dirhash_key_initialized);
535
536 return siphash(name->name, name->len, &ci->ci_dirhash_key);
537}
538EXPORT_SYMBOL_GPL(fscrypt_fname_siphash);
539
540/*
541 * Validate dentries in encrypted directories to make sure we aren't potentially
542 * caching stale dentries after a key has been added.
543 */
544static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
545{
546 struct dentry *dir;
547 int err;
548 int valid;
549
550 /*
551 * Plaintext names are always valid, since fscrypt doesn't support
552 * reverting to ciphertext names without evicting the directory's inode
553 * -- which implies eviction of the dentries in the directory.
554 */
555 if (!(dentry->d_flags & DCACHE_ENCRYPTED_NAME))
556 return 1;
557
558 /*
559 * Ciphertext name; valid if the directory's key is still unavailable.
560 *
561 * Although fscrypt forbids rename() on ciphertext names, we still must
562 * use dget_parent() here rather than use ->d_parent directly. That's
563 * because a corrupted fs image may contain directory hard links, which
564 * the VFS handles by moving the directory's dentry tree in the dcache
565 * each time ->lookup() finds the directory and it already has a dentry
566 * elsewhere. Thus ->d_parent can be changing, and we must safely grab
567 * a reference to some ->d_parent to prevent it from being freed.
568 */
569
570 if (flags & LOOKUP_RCU)
571 return -ECHILD;
572
573 dir = dget_parent(dentry);
574 err = fscrypt_get_encryption_info(d_inode(dir));
575 valid = !fscrypt_has_encryption_key(d_inode(dir));
576 dput(dir);
577
578 if (err < 0)
579 return err;
580
581 return valid;
582}
583
584const struct dentry_operations fscrypt_d_ops = {
585 .d_revalidate = fscrypt_d_revalidate,
586};
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * This contains functions for filename crypto management
4 *
5 * Copyright (C) 2015, Google, Inc.
6 * Copyright (C) 2015, Motorola Mobility
7 *
8 * Written by Uday Savagaonkar, 2014.
9 * Modified by Jaegeuk Kim, 2015.
10 *
11 * This has not yet undergone a rigorous security audit.
12 */
13
14#include <linux/namei.h>
15#include <linux/scatterlist.h>
16#include <crypto/hash.h>
17#include <crypto/sha2.h>
18#include <crypto/skcipher.h>
19#include "fscrypt_private.h"
20
21/*
22 * The minimum message length (input and output length), in bytes, for all
23 * filenames encryption modes. Filenames shorter than this will be zero-padded
24 * before being encrypted.
25 */
26#define FSCRYPT_FNAME_MIN_MSG_LEN 16
27
28/*
29 * struct fscrypt_nokey_name - identifier for directory entry when key is absent
30 *
31 * When userspace lists an encrypted directory without access to the key, the
32 * filesystem must present a unique "no-key name" for each filename that allows
33 * it to find the directory entry again if requested. Naively, that would just
34 * mean using the ciphertext filenames. However, since the ciphertext filenames
35 * can contain illegal characters ('\0' and '/'), they must be encoded in some
36 * way. We use base64url. But that can cause names to exceed NAME_MAX (255
37 * bytes), so we also need to use a strong hash to abbreviate long names.
38 *
39 * The filesystem may also need another kind of hash, the "dirhash", to quickly
40 * find the directory entry. Since filesystems normally compute the dirhash
41 * over the on-disk filename (i.e. the ciphertext), it's not computable from
42 * no-key names that abbreviate the ciphertext using the strong hash to fit in
43 * NAME_MAX. It's also not computable if it's a keyed hash taken over the
44 * plaintext (but it may still be available in the on-disk directory entry);
45 * casefolded directories use this type of dirhash. At least in these cases,
46 * each no-key name must include the name's dirhash too.
47 *
48 * To meet all these requirements, we base64url-encode the following
49 * variable-length structure. It contains the dirhash, or 0's if the filesystem
50 * didn't provide one; up to 149 bytes of the ciphertext name; and for
51 * ciphertexts longer than 149 bytes, also the SHA-256 of the remaining bytes.
52 *
53 * This ensures that each no-key name contains everything needed to find the
54 * directory entry again, contains only legal characters, doesn't exceed
55 * NAME_MAX, is unambiguous unless there's a SHA-256 collision, and that we only
56 * take the performance hit of SHA-256 on very long filenames (which are rare).
57 */
58struct fscrypt_nokey_name {
59 u32 dirhash[2];
60 u8 bytes[149];
61 u8 sha256[SHA256_DIGEST_SIZE];
62}; /* 189 bytes => 252 bytes base64url-encoded, which is <= NAME_MAX (255) */
63
64/*
65 * Decoded size of max-size no-key name, i.e. a name that was abbreviated using
66 * the strong hash and thus includes the 'sha256' field. This isn't simply
67 * sizeof(struct fscrypt_nokey_name), as the padding at the end isn't included.
68 */
69#define FSCRYPT_NOKEY_NAME_MAX offsetofend(struct fscrypt_nokey_name, sha256)
70
71/* Encoded size of max-size no-key name */
72#define FSCRYPT_NOKEY_NAME_MAX_ENCODED \
73 FSCRYPT_BASE64URL_CHARS(FSCRYPT_NOKEY_NAME_MAX)
74
75static inline bool fscrypt_is_dot_dotdot(const struct qstr *str)
76{
77 if (str->len == 1 && str->name[0] == '.')
78 return true;
79
80 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
81 return true;
82
83 return false;
84}
85
86/**
87 * fscrypt_fname_encrypt() - encrypt a filename
88 * @inode: inode of the parent directory (for regular filenames)
89 * or of the symlink (for symlink targets). Key must already be
90 * set up.
91 * @iname: the filename to encrypt
92 * @out: (output) the encrypted filename
93 * @olen: size of the encrypted filename. It must be at least @iname->len.
94 * Any extra space is filled with NUL padding before encryption.
95 *
96 * Return: 0 on success, -errno on failure
97 */
98int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname,
99 u8 *out, unsigned int olen)
100{
101 struct skcipher_request *req = NULL;
102 DECLARE_CRYPTO_WAIT(wait);
103 const struct fscrypt_inode_info *ci = inode->i_crypt_info;
104 struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
105 union fscrypt_iv iv;
106 struct scatterlist sg;
107 int res;
108
109 /*
110 * Copy the filename to the output buffer for encrypting in-place and
111 * pad it with the needed number of NUL bytes.
112 */
113 if (WARN_ON_ONCE(olen < iname->len))
114 return -ENOBUFS;
115 memcpy(out, iname->name, iname->len);
116 memset(out + iname->len, 0, olen - iname->len);
117
118 /* Initialize the IV */
119 fscrypt_generate_iv(&iv, 0, ci);
120
121 /* Set up the encryption request */
122 req = skcipher_request_alloc(tfm, GFP_NOFS);
123 if (!req)
124 return -ENOMEM;
125 skcipher_request_set_callback(req,
126 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
127 crypto_req_done, &wait);
128 sg_init_one(&sg, out, olen);
129 skcipher_request_set_crypt(req, &sg, &sg, olen, &iv);
130
131 /* Do the encryption */
132 res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
133 skcipher_request_free(req);
134 if (res < 0) {
135 fscrypt_err(inode, "Filename encryption failed: %d", res);
136 return res;
137 }
138
139 return 0;
140}
141EXPORT_SYMBOL_GPL(fscrypt_fname_encrypt);
142
143/**
144 * fname_decrypt() - decrypt a filename
145 * @inode: inode of the parent directory (for regular filenames)
146 * or of the symlink (for symlink targets)
147 * @iname: the encrypted filename to decrypt
148 * @oname: (output) the decrypted filename. The caller must have allocated
149 * enough space for this, e.g. using fscrypt_fname_alloc_buffer().
150 *
151 * Return: 0 on success, -errno on failure
152 */
153static int fname_decrypt(const struct inode *inode,
154 const struct fscrypt_str *iname,
155 struct fscrypt_str *oname)
156{
157 struct skcipher_request *req = NULL;
158 DECLARE_CRYPTO_WAIT(wait);
159 struct scatterlist src_sg, dst_sg;
160 const struct fscrypt_inode_info *ci = inode->i_crypt_info;
161 struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
162 union fscrypt_iv iv;
163 int res;
164
165 /* Allocate request */
166 req = skcipher_request_alloc(tfm, GFP_NOFS);
167 if (!req)
168 return -ENOMEM;
169 skcipher_request_set_callback(req,
170 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
171 crypto_req_done, &wait);
172
173 /* Initialize IV */
174 fscrypt_generate_iv(&iv, 0, ci);
175
176 /* Create decryption request */
177 sg_init_one(&src_sg, iname->name, iname->len);
178 sg_init_one(&dst_sg, oname->name, oname->len);
179 skcipher_request_set_crypt(req, &src_sg, &dst_sg, iname->len, &iv);
180 res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
181 skcipher_request_free(req);
182 if (res < 0) {
183 fscrypt_err(inode, "Filename decryption failed: %d", res);
184 return res;
185 }
186
187 oname->len = strnlen(oname->name, iname->len);
188 return 0;
189}
190
191static const char base64url_table[65] =
192 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_";
193
194#define FSCRYPT_BASE64URL_CHARS(nbytes) DIV_ROUND_UP((nbytes) * 4, 3)
195
196/**
197 * fscrypt_base64url_encode() - base64url-encode some binary data
198 * @src: the binary data to encode
199 * @srclen: the length of @src in bytes
200 * @dst: (output) the base64url-encoded string. Not NUL-terminated.
201 *
202 * Encodes data using base64url encoding, i.e. the "Base 64 Encoding with URL
203 * and Filename Safe Alphabet" specified by RFC 4648. '='-padding isn't used,
204 * as it's unneeded and not required by the RFC. base64url is used instead of
205 * base64 to avoid the '/' character, which isn't allowed in filenames.
206 *
207 * Return: the length of the resulting base64url-encoded string in bytes.
208 * This will be equal to FSCRYPT_BASE64URL_CHARS(srclen).
209 */
210static int fscrypt_base64url_encode(const u8 *src, int srclen, char *dst)
211{
212 u32 ac = 0;
213 int bits = 0;
214 int i;
215 char *cp = dst;
216
217 for (i = 0; i < srclen; i++) {
218 ac = (ac << 8) | src[i];
219 bits += 8;
220 do {
221 bits -= 6;
222 *cp++ = base64url_table[(ac >> bits) & 0x3f];
223 } while (bits >= 6);
224 }
225 if (bits)
226 *cp++ = base64url_table[(ac << (6 - bits)) & 0x3f];
227 return cp - dst;
228}
229
230/**
231 * fscrypt_base64url_decode() - base64url-decode a string
232 * @src: the string to decode. Doesn't need to be NUL-terminated.
233 * @srclen: the length of @src in bytes
234 * @dst: (output) the decoded binary data
235 *
236 * Decodes a string using base64url encoding, i.e. the "Base 64 Encoding with
237 * URL and Filename Safe Alphabet" specified by RFC 4648. '='-padding isn't
238 * accepted, nor are non-encoding characters such as whitespace.
239 *
240 * This implementation hasn't been optimized for performance.
241 *
242 * Return: the length of the resulting decoded binary data in bytes,
243 * or -1 if the string isn't a valid base64url string.
244 */
245static int fscrypt_base64url_decode(const char *src, int srclen, u8 *dst)
246{
247 u32 ac = 0;
248 int bits = 0;
249 int i;
250 u8 *bp = dst;
251
252 for (i = 0; i < srclen; i++) {
253 const char *p = strchr(base64url_table, src[i]);
254
255 if (p == NULL || src[i] == 0)
256 return -1;
257 ac = (ac << 6) | (p - base64url_table);
258 bits += 6;
259 if (bits >= 8) {
260 bits -= 8;
261 *bp++ = (u8)(ac >> bits);
262 }
263 }
264 if (ac & ((1 << bits) - 1))
265 return -1;
266 return bp - dst;
267}
268
269bool __fscrypt_fname_encrypted_size(const union fscrypt_policy *policy,
270 u32 orig_len, u32 max_len,
271 u32 *encrypted_len_ret)
272{
273 int padding = 4 << (fscrypt_policy_flags(policy) &
274 FSCRYPT_POLICY_FLAGS_PAD_MASK);
275 u32 encrypted_len;
276
277 if (orig_len > max_len)
278 return false;
279 encrypted_len = max_t(u32, orig_len, FSCRYPT_FNAME_MIN_MSG_LEN);
280 encrypted_len = round_up(encrypted_len, padding);
281 *encrypted_len_ret = min(encrypted_len, max_len);
282 return true;
283}
284
285/**
286 * fscrypt_fname_encrypted_size() - calculate length of encrypted filename
287 * @inode: parent inode of dentry name being encrypted. Key must
288 * already be set up.
289 * @orig_len: length of the original filename
290 * @max_len: maximum length to return
291 * @encrypted_len_ret: where calculated length should be returned (on success)
292 *
293 * Filenames that are shorter than the maximum length may have their lengths
294 * increased slightly by encryption, due to padding that is applied.
295 *
296 * Return: false if the orig_len is greater than max_len. Otherwise, true and
297 * fill out encrypted_len_ret with the length (up to max_len).
298 */
299bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len,
300 u32 max_len, u32 *encrypted_len_ret)
301{
302 return __fscrypt_fname_encrypted_size(&inode->i_crypt_info->ci_policy,
303 orig_len, max_len,
304 encrypted_len_ret);
305}
306EXPORT_SYMBOL_GPL(fscrypt_fname_encrypted_size);
307
308/**
309 * fscrypt_fname_alloc_buffer() - allocate a buffer for presented filenames
310 * @max_encrypted_len: maximum length of encrypted filenames the buffer will be
311 * used to present
312 * @crypto_str: (output) buffer to allocate
313 *
314 * Allocate a buffer that is large enough to hold any decrypted or encoded
315 * filename (null-terminated), for the given maximum encrypted filename length.
316 *
317 * Return: 0 on success, -errno on failure
318 */
319int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
320 struct fscrypt_str *crypto_str)
321{
322 u32 max_presented_len = max_t(u32, FSCRYPT_NOKEY_NAME_MAX_ENCODED,
323 max_encrypted_len);
324
325 crypto_str->name = kmalloc(max_presented_len + 1, GFP_NOFS);
326 if (!crypto_str->name)
327 return -ENOMEM;
328 crypto_str->len = max_presented_len;
329 return 0;
330}
331EXPORT_SYMBOL(fscrypt_fname_alloc_buffer);
332
333/**
334 * fscrypt_fname_free_buffer() - free a buffer for presented filenames
335 * @crypto_str: the buffer to free
336 *
337 * Free a buffer that was allocated by fscrypt_fname_alloc_buffer().
338 */
339void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
340{
341 if (!crypto_str)
342 return;
343 kfree(crypto_str->name);
344 crypto_str->name = NULL;
345}
346EXPORT_SYMBOL(fscrypt_fname_free_buffer);
347
348/**
349 * fscrypt_fname_disk_to_usr() - convert an encrypted filename to
350 * user-presentable form
351 * @inode: inode of the parent directory (for regular filenames)
352 * or of the symlink (for symlink targets)
353 * @hash: first part of the name's dirhash, if applicable. This only needs to
354 * be provided if the filename is located in an indexed directory whose
355 * encryption key may be unavailable. Not needed for symlink targets.
356 * @minor_hash: second part of the name's dirhash, if applicable
357 * @iname: encrypted filename to convert. May also be "." or "..", which
358 * aren't actually encrypted.
359 * @oname: output buffer for the user-presentable filename. The caller must
360 * have allocated enough space for this, e.g. using
361 * fscrypt_fname_alloc_buffer().
362 *
363 * If the key is available, we'll decrypt the disk name. Otherwise, we'll
364 * encode it for presentation in fscrypt_nokey_name format.
365 * See struct fscrypt_nokey_name for details.
366 *
367 * Return: 0 on success, -errno on failure
368 */
369int fscrypt_fname_disk_to_usr(const struct inode *inode,
370 u32 hash, u32 minor_hash,
371 const struct fscrypt_str *iname,
372 struct fscrypt_str *oname)
373{
374 const struct qstr qname = FSTR_TO_QSTR(iname);
375 struct fscrypt_nokey_name nokey_name;
376 u32 size; /* size of the unencoded no-key name */
377
378 if (fscrypt_is_dot_dotdot(&qname)) {
379 oname->name[0] = '.';
380 oname->name[iname->len - 1] = '.';
381 oname->len = iname->len;
382 return 0;
383 }
384
385 if (iname->len < FSCRYPT_FNAME_MIN_MSG_LEN)
386 return -EUCLEAN;
387
388 if (fscrypt_has_encryption_key(inode))
389 return fname_decrypt(inode, iname, oname);
390
391 /*
392 * Sanity check that struct fscrypt_nokey_name doesn't have padding
393 * between fields and that its encoded size never exceeds NAME_MAX.
394 */
395 BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, dirhash) !=
396 offsetof(struct fscrypt_nokey_name, bytes));
397 BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, bytes) !=
398 offsetof(struct fscrypt_nokey_name, sha256));
399 BUILD_BUG_ON(FSCRYPT_NOKEY_NAME_MAX_ENCODED > NAME_MAX);
400
401 nokey_name.dirhash[0] = hash;
402 nokey_name.dirhash[1] = minor_hash;
403
404 if (iname->len <= sizeof(nokey_name.bytes)) {
405 memcpy(nokey_name.bytes, iname->name, iname->len);
406 size = offsetof(struct fscrypt_nokey_name, bytes[iname->len]);
407 } else {
408 memcpy(nokey_name.bytes, iname->name, sizeof(nokey_name.bytes));
409 /* Compute strong hash of remaining part of name. */
410 sha256(&iname->name[sizeof(nokey_name.bytes)],
411 iname->len - sizeof(nokey_name.bytes),
412 nokey_name.sha256);
413 size = FSCRYPT_NOKEY_NAME_MAX;
414 }
415 oname->len = fscrypt_base64url_encode((const u8 *)&nokey_name, size,
416 oname->name);
417 return 0;
418}
419EXPORT_SYMBOL(fscrypt_fname_disk_to_usr);
420
421/**
422 * fscrypt_setup_filename() - prepare to search a possibly encrypted directory
423 * @dir: the directory that will be searched
424 * @iname: the user-provided filename being searched for
425 * @lookup: 1 if we're allowed to proceed without the key because it's
426 * ->lookup() or we're finding the dir_entry for deletion; 0 if we cannot
427 * proceed without the key because we're going to create the dir_entry.
428 * @fname: the filename information to be filled in
429 *
430 * Given a user-provided filename @iname, this function sets @fname->disk_name
431 * to the name that would be stored in the on-disk directory entry, if possible.
432 * If the directory is unencrypted this is simply @iname. Else, if we have the
433 * directory's encryption key, then @iname is the plaintext, so we encrypt it to
434 * get the disk_name.
435 *
436 * Else, for keyless @lookup operations, @iname should be a no-key name, so we
437 * decode it to get the struct fscrypt_nokey_name. Non-@lookup operations will
438 * be impossible in this case, so we fail them with ENOKEY.
439 *
440 * If successful, fscrypt_free_filename() must be called later to clean up.
441 *
442 * Return: 0 on success, -errno on failure
443 */
444int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname,
445 int lookup, struct fscrypt_name *fname)
446{
447 struct fscrypt_nokey_name *nokey_name;
448 int ret;
449
450 memset(fname, 0, sizeof(struct fscrypt_name));
451 fname->usr_fname = iname;
452
453 if (!IS_ENCRYPTED(dir) || fscrypt_is_dot_dotdot(iname)) {
454 fname->disk_name.name = (unsigned char *)iname->name;
455 fname->disk_name.len = iname->len;
456 return 0;
457 }
458 ret = fscrypt_get_encryption_info(dir, lookup);
459 if (ret)
460 return ret;
461
462 if (fscrypt_has_encryption_key(dir)) {
463 if (!fscrypt_fname_encrypted_size(dir, iname->len, NAME_MAX,
464 &fname->crypto_buf.len))
465 return -ENAMETOOLONG;
466 fname->crypto_buf.name = kmalloc(fname->crypto_buf.len,
467 GFP_NOFS);
468 if (!fname->crypto_buf.name)
469 return -ENOMEM;
470
471 ret = fscrypt_fname_encrypt(dir, iname, fname->crypto_buf.name,
472 fname->crypto_buf.len);
473 if (ret)
474 goto errout;
475 fname->disk_name.name = fname->crypto_buf.name;
476 fname->disk_name.len = fname->crypto_buf.len;
477 return 0;
478 }
479 if (!lookup)
480 return -ENOKEY;
481 fname->is_nokey_name = true;
482
483 /*
484 * We don't have the key and we are doing a lookup; decode the
485 * user-supplied name
486 */
487
488 if (iname->len > FSCRYPT_NOKEY_NAME_MAX_ENCODED)
489 return -ENOENT;
490
491 fname->crypto_buf.name = kmalloc(FSCRYPT_NOKEY_NAME_MAX, GFP_KERNEL);
492 if (fname->crypto_buf.name == NULL)
493 return -ENOMEM;
494
495 ret = fscrypt_base64url_decode(iname->name, iname->len,
496 fname->crypto_buf.name);
497 if (ret < (int)offsetof(struct fscrypt_nokey_name, bytes[1]) ||
498 (ret > offsetof(struct fscrypt_nokey_name, sha256) &&
499 ret != FSCRYPT_NOKEY_NAME_MAX)) {
500 ret = -ENOENT;
501 goto errout;
502 }
503 fname->crypto_buf.len = ret;
504
505 nokey_name = (void *)fname->crypto_buf.name;
506 fname->hash = nokey_name->dirhash[0];
507 fname->minor_hash = nokey_name->dirhash[1];
508 if (ret != FSCRYPT_NOKEY_NAME_MAX) {
509 /* The full ciphertext filename is available. */
510 fname->disk_name.name = nokey_name->bytes;
511 fname->disk_name.len =
512 ret - offsetof(struct fscrypt_nokey_name, bytes);
513 }
514 return 0;
515
516errout:
517 kfree(fname->crypto_buf.name);
518 return ret;
519}
520EXPORT_SYMBOL(fscrypt_setup_filename);
521
522/**
523 * fscrypt_match_name() - test whether the given name matches a directory entry
524 * @fname: the name being searched for
525 * @de_name: the name from the directory entry
526 * @de_name_len: the length of @de_name in bytes
527 *
528 * Normally @fname->disk_name will be set, and in that case we simply compare
529 * that to the name stored in the directory entry. The only exception is that
530 * if we don't have the key for an encrypted directory and the name we're
531 * looking for is very long, then we won't have the full disk_name and instead
532 * we'll need to match against a fscrypt_nokey_name that includes a strong hash.
533 *
534 * Return: %true if the name matches, otherwise %false.
535 */
536bool fscrypt_match_name(const struct fscrypt_name *fname,
537 const u8 *de_name, u32 de_name_len)
538{
539 const struct fscrypt_nokey_name *nokey_name =
540 (const void *)fname->crypto_buf.name;
541 u8 digest[SHA256_DIGEST_SIZE];
542
543 if (likely(fname->disk_name.name)) {
544 if (de_name_len != fname->disk_name.len)
545 return false;
546 return !memcmp(de_name, fname->disk_name.name, de_name_len);
547 }
548 if (de_name_len <= sizeof(nokey_name->bytes))
549 return false;
550 if (memcmp(de_name, nokey_name->bytes, sizeof(nokey_name->bytes)))
551 return false;
552 sha256(&de_name[sizeof(nokey_name->bytes)],
553 de_name_len - sizeof(nokey_name->bytes), digest);
554 return !memcmp(digest, nokey_name->sha256, sizeof(digest));
555}
556EXPORT_SYMBOL_GPL(fscrypt_match_name);
557
558/**
559 * fscrypt_fname_siphash() - calculate the SipHash of a filename
560 * @dir: the parent directory
561 * @name: the filename to calculate the SipHash of
562 *
563 * Given a plaintext filename @name and a directory @dir which uses SipHash as
564 * its dirhash method and has had its fscrypt key set up, this function
565 * calculates the SipHash of that name using the directory's secret dirhash key.
566 *
567 * Return: the SipHash of @name using the hash key of @dir
568 */
569u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name)
570{
571 const struct fscrypt_inode_info *ci = dir->i_crypt_info;
572
573 WARN_ON_ONCE(!ci->ci_dirhash_key_initialized);
574
575 return siphash(name->name, name->len, &ci->ci_dirhash_key);
576}
577EXPORT_SYMBOL_GPL(fscrypt_fname_siphash);
578
579/*
580 * Validate dentries in encrypted directories to make sure we aren't potentially
581 * caching stale dentries after a key has been added.
582 */
583int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
584{
585 struct dentry *dir;
586 int err;
587 int valid;
588
589 /*
590 * Plaintext names are always valid, since fscrypt doesn't support
591 * reverting to no-key names without evicting the directory's inode
592 * -- which implies eviction of the dentries in the directory.
593 */
594 if (!(dentry->d_flags & DCACHE_NOKEY_NAME))
595 return 1;
596
597 /*
598 * No-key name; valid if the directory's key is still unavailable.
599 *
600 * Although fscrypt forbids rename() on no-key names, we still must use
601 * dget_parent() here rather than use ->d_parent directly. That's
602 * because a corrupted fs image may contain directory hard links, which
603 * the VFS handles by moving the directory's dentry tree in the dcache
604 * each time ->lookup() finds the directory and it already has a dentry
605 * elsewhere. Thus ->d_parent can be changing, and we must safely grab
606 * a reference to some ->d_parent to prevent it from being freed.
607 */
608
609 if (flags & LOOKUP_RCU)
610 return -ECHILD;
611
612 dir = dget_parent(dentry);
613 /*
614 * Pass allow_unsupported=true, so that files with an unsupported
615 * encryption policy can be deleted.
616 */
617 err = fscrypt_get_encryption_info(d_inode(dir), true);
618 valid = !fscrypt_has_encryption_key(d_inode(dir));
619 dput(dir);
620
621 if (err < 0)
622 return err;
623
624 return valid;
625}
626EXPORT_SYMBOL_GPL(fscrypt_d_revalidate);