Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Xilinx XADC driver
   4 *
   5 * Copyright 2013-2014 Analog Devices Inc.
   6 *  Author: Lars-Peter Clausen <lars@metafoo.de>
   7 *
   8 * Documentation for the parts can be found at:
   9 *  - XADC hardmacro: Xilinx UG480
  10 *  - ZYNQ XADC interface: Xilinx UG585
  11 *  - AXI XADC interface: Xilinx PG019
  12 */
  13
  14#include <linux/clk.h>
  15#include <linux/device.h>
  16#include <linux/err.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/kernel.h>
 
  20#include <linux/module.h>
  21#include <linux/of.h>
  22#include <linux/platform_device.h>
 
  23#include <linux/slab.h>
  24#include <linux/sysfs.h>
  25
  26#include <linux/iio/buffer.h>
  27#include <linux/iio/events.h>
  28#include <linux/iio/iio.h>
  29#include <linux/iio/sysfs.h>
  30#include <linux/iio/trigger.h>
  31#include <linux/iio/trigger_consumer.h>
  32#include <linux/iio/triggered_buffer.h>
  33
  34#include "xilinx-xadc.h"
  35
  36static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT = 500;
  37
  38/* ZYNQ register definitions */
  39#define XADC_ZYNQ_REG_CFG	0x00
  40#define XADC_ZYNQ_REG_INTSTS	0x04
  41#define XADC_ZYNQ_REG_INTMSK	0x08
  42#define XADC_ZYNQ_REG_STATUS	0x0c
  43#define XADC_ZYNQ_REG_CFIFO	0x10
  44#define XADC_ZYNQ_REG_DFIFO	0x14
  45#define XADC_ZYNQ_REG_CTL		0x18
  46
  47#define XADC_ZYNQ_CFG_ENABLE		BIT(31)
  48#define XADC_ZYNQ_CFG_CFIFOTH_MASK	(0xf << 20)
  49#define XADC_ZYNQ_CFG_CFIFOTH_OFFSET	20
  50#define XADC_ZYNQ_CFG_DFIFOTH_MASK	(0xf << 16)
  51#define XADC_ZYNQ_CFG_DFIFOTH_OFFSET	16
  52#define XADC_ZYNQ_CFG_WEDGE		BIT(13)
  53#define XADC_ZYNQ_CFG_REDGE		BIT(12)
  54#define XADC_ZYNQ_CFG_TCKRATE_MASK	(0x3 << 8)
  55#define XADC_ZYNQ_CFG_TCKRATE_DIV2	(0x0 << 8)
  56#define XADC_ZYNQ_CFG_TCKRATE_DIV4	(0x1 << 8)
  57#define XADC_ZYNQ_CFG_TCKRATE_DIV8	(0x2 << 8)
  58#define XADC_ZYNQ_CFG_TCKRATE_DIV16	(0x3 << 8)
  59#define XADC_ZYNQ_CFG_IGAP_MASK		0x1f
  60#define XADC_ZYNQ_CFG_IGAP(x)		(x)
  61
  62#define XADC_ZYNQ_INT_CFIFO_LTH		BIT(9)
  63#define XADC_ZYNQ_INT_DFIFO_GTH		BIT(8)
  64#define XADC_ZYNQ_INT_ALARM_MASK	0xff
  65#define XADC_ZYNQ_INT_ALARM_OFFSET	0
  66
  67#define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK	(0xf << 16)
  68#define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET	16
  69#define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK	(0xf << 12)
  70#define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET	12
  71#define XADC_ZYNQ_STATUS_CFIFOF		BIT(11)
  72#define XADC_ZYNQ_STATUS_CFIFOE		BIT(10)
  73#define XADC_ZYNQ_STATUS_DFIFOF		BIT(9)
  74#define XADC_ZYNQ_STATUS_DFIFOE		BIT(8)
  75#define XADC_ZYNQ_STATUS_OT		BIT(7)
  76#define XADC_ZYNQ_STATUS_ALM(x)		BIT(x)
  77
  78#define XADC_ZYNQ_CTL_RESET		BIT(4)
  79
  80#define XADC_ZYNQ_CMD_NOP		0x00
  81#define XADC_ZYNQ_CMD_READ		0x01
  82#define XADC_ZYNQ_CMD_WRITE		0x02
  83
  84#define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data))
  85
  86/* AXI register definitions */
  87#define XADC_AXI_REG_RESET		0x00
  88#define XADC_AXI_REG_STATUS		0x04
  89#define XADC_AXI_REG_ALARM_STATUS	0x08
  90#define XADC_AXI_REG_CONVST		0x0c
  91#define XADC_AXI_REG_XADC_RESET		0x10
  92#define XADC_AXI_REG_GIER		0x5c
  93#define XADC_AXI_REG_IPISR		0x60
  94#define XADC_AXI_REG_IPIER		0x68
  95#define XADC_AXI_ADC_REG_OFFSET		0x200
 
 
 
 
 
  96
  97#define XADC_AXI_RESET_MAGIC		0xa
  98#define XADC_AXI_GIER_ENABLE		BIT(31)
  99
 100#define XADC_AXI_INT_EOS		BIT(4)
 101#define XADC_AXI_INT_ALARM_MASK		0x3c0f
 102
 103#define XADC_FLAGS_BUFFERED BIT(0)
 
 104
 105/*
 106 * The XADC hardware supports a samplerate of up to 1MSPS. Unfortunately it does
 107 * not have a hardware FIFO. Which means an interrupt is generated for each
 108 * conversion sequence. At 1MSPS sample rate the CPU in ZYNQ7000 is completely
 109 * overloaded by the interrupts that it soft-lockups. For this reason the driver
 110 * limits the maximum samplerate 150kSPS. At this rate the CPU is fairly busy,
 111 * but still responsive.
 112 */
 113#define XADC_MAX_SAMPLERATE 150000
 114
 115static void xadc_write_reg(struct xadc *xadc, unsigned int reg,
 116	uint32_t val)
 117{
 118	writel(val, xadc->base + reg);
 119}
 120
 121static void xadc_read_reg(struct xadc *xadc, unsigned int reg,
 122	uint32_t *val)
 123{
 124	*val = readl(xadc->base + reg);
 125}
 126
 127/*
 128 * The ZYNQ interface uses two asynchronous FIFOs for communication with the
 129 * XADC. Reads and writes to the XADC register are performed by submitting a
 130 * request to the command FIFO (CFIFO), once the request has been completed the
 131 * result can be read from the data FIFO (DFIFO). The method currently used in
 132 * this driver is to submit the request for a read/write operation, then go to
 133 * sleep and wait for an interrupt that signals that a response is available in
 134 * the data FIFO.
 135 */
 136
 137static void xadc_zynq_write_fifo(struct xadc *xadc, uint32_t *cmd,
 138	unsigned int n)
 139{
 140	unsigned int i;
 141
 142	for (i = 0; i < n; i++)
 143		xadc_write_reg(xadc, XADC_ZYNQ_REG_CFIFO, cmd[i]);
 144}
 145
 146static void xadc_zynq_drain_fifo(struct xadc *xadc)
 147{
 148	uint32_t status, tmp;
 149
 150	xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
 151
 152	while (!(status & XADC_ZYNQ_STATUS_DFIFOE)) {
 153		xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
 154		xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
 155	}
 156}
 157
 158static void xadc_zynq_update_intmsk(struct xadc *xadc, unsigned int mask,
 159	unsigned int val)
 160{
 161	xadc->zynq_intmask &= ~mask;
 162	xadc->zynq_intmask |= val;
 163
 164	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK,
 165		xadc->zynq_intmask | xadc->zynq_masked_alarm);
 166}
 167
 168static int xadc_zynq_write_adc_reg(struct xadc *xadc, unsigned int reg,
 169	uint16_t val)
 170{
 171	uint32_t cmd[1];
 172	uint32_t tmp;
 173	int ret;
 174
 175	spin_lock_irq(&xadc->lock);
 176	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
 177			XADC_ZYNQ_INT_DFIFO_GTH);
 178
 179	reinit_completion(&xadc->completion);
 180
 181	cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE, reg, val);
 182	xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
 183	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
 184	tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
 185	tmp |= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
 186	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
 187
 188	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
 189	spin_unlock_irq(&xadc->lock);
 190
 191	ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
 192	if (ret == 0)
 193		ret = -EIO;
 194	else
 195		ret = 0;
 196
 197	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
 198
 199	return ret;
 200}
 201
 202static int xadc_zynq_read_adc_reg(struct xadc *xadc, unsigned int reg,
 203	uint16_t *val)
 204{
 205	uint32_t cmd[2];
 206	uint32_t resp, tmp;
 207	int ret;
 208
 209	cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ, reg, 0);
 210	cmd[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP, 0, 0);
 211
 212	spin_lock_irq(&xadc->lock);
 213	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
 214			XADC_ZYNQ_INT_DFIFO_GTH);
 215	xadc_zynq_drain_fifo(xadc);
 216	reinit_completion(&xadc->completion);
 217
 218	xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
 219	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
 220	tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
 221	tmp |= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
 222	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
 223
 224	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
 225	spin_unlock_irq(&xadc->lock);
 226	ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
 227	if (ret == 0)
 228		ret = -EIO;
 229	if (ret < 0)
 230		return ret;
 231
 232	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
 233	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
 234
 235	*val = resp & 0xffff;
 236
 237	return 0;
 238}
 239
 240static unsigned int xadc_zynq_transform_alarm(unsigned int alarm)
 241{
 242	return ((alarm & 0x80) >> 4) |
 243		((alarm & 0x78) << 1) |
 244		(alarm & 0x07);
 245}
 246
 247/*
 248 * The ZYNQ threshold interrupts are level sensitive. Since we can't make the
 249 * threshold condition go way from within the interrupt handler, this means as
 250 * soon as a threshold condition is present we would enter the interrupt handler
 251 * again and again. To work around this we mask all active thresholds interrupts
 252 * in the interrupt handler and start a timer. In this timer we poll the
 253 * interrupt status and only if the interrupt is inactive we unmask it again.
 254 */
 255static void xadc_zynq_unmask_worker(struct work_struct *work)
 256{
 257	struct xadc *xadc = container_of(work, struct xadc, zynq_unmask_work.work);
 258	unsigned int misc_sts, unmask;
 259
 260	xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &misc_sts);
 261
 262	misc_sts &= XADC_ZYNQ_INT_ALARM_MASK;
 263
 264	spin_lock_irq(&xadc->lock);
 265
 266	/* Clear those bits which are not active anymore */
 267	unmask = (xadc->zynq_masked_alarm ^ misc_sts) & xadc->zynq_masked_alarm;
 268	xadc->zynq_masked_alarm &= misc_sts;
 269
 270	/* Also clear those which are masked out anyway */
 271	xadc->zynq_masked_alarm &= ~xadc->zynq_intmask;
 272
 273	/* Clear the interrupts before we unmask them */
 274	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, unmask);
 275
 276	xadc_zynq_update_intmsk(xadc, 0, 0);
 277
 278	spin_unlock_irq(&xadc->lock);
 279
 280	/* if still pending some alarm re-trigger the timer */
 281	if (xadc->zynq_masked_alarm) {
 282		schedule_delayed_work(&xadc->zynq_unmask_work,
 283				msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
 284	}
 285
 286}
 287
 288static irqreturn_t xadc_zynq_interrupt_handler(int irq, void *devid)
 289{
 290	struct iio_dev *indio_dev = devid;
 291	struct xadc *xadc = iio_priv(indio_dev);
 292	uint32_t status;
 293
 294	xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
 295
 296	status &= ~(xadc->zynq_intmask | xadc->zynq_masked_alarm);
 297
 298	if (!status)
 299		return IRQ_NONE;
 300
 301	spin_lock(&xadc->lock);
 302
 303	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status);
 304
 305	if (status & XADC_ZYNQ_INT_DFIFO_GTH) {
 306		xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
 307			XADC_ZYNQ_INT_DFIFO_GTH);
 308		complete(&xadc->completion);
 309	}
 310
 311	status &= XADC_ZYNQ_INT_ALARM_MASK;
 312	if (status) {
 313		xadc->zynq_masked_alarm |= status;
 314		/*
 315		 * mask the current event interrupt,
 316		 * unmask it when the interrupt is no more active.
 317		 */
 318		xadc_zynq_update_intmsk(xadc, 0, 0);
 319
 320		xadc_handle_events(indio_dev,
 321				xadc_zynq_transform_alarm(status));
 322
 323		/* unmask the required interrupts in timer. */
 324		schedule_delayed_work(&xadc->zynq_unmask_work,
 325				msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
 326	}
 327	spin_unlock(&xadc->lock);
 328
 329	return IRQ_HANDLED;
 330}
 331
 332#define XADC_ZYNQ_TCK_RATE_MAX 50000000
 333#define XADC_ZYNQ_IGAP_DEFAULT 20
 334#define XADC_ZYNQ_PCAP_RATE_MAX 200000000
 335
 336static int xadc_zynq_setup(struct platform_device *pdev,
 337	struct iio_dev *indio_dev, int irq)
 338{
 339	struct xadc *xadc = iio_priv(indio_dev);
 340	unsigned long pcap_rate;
 341	unsigned int tck_div;
 342	unsigned int div;
 343	unsigned int igap;
 344	unsigned int tck_rate;
 345	int ret;
 346
 347	/* TODO: Figure out how to make igap and tck_rate configurable */
 348	igap = XADC_ZYNQ_IGAP_DEFAULT;
 349	tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
 350
 351	xadc->zynq_intmask = ~0;
 352
 353	pcap_rate = clk_get_rate(xadc->clk);
 354	if (!pcap_rate)
 355		return -EINVAL;
 356
 357	if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
 358		ret = clk_set_rate(xadc->clk,
 359				   (unsigned long)XADC_ZYNQ_PCAP_RATE_MAX);
 360		if (ret)
 361			return ret;
 362	}
 363
 364	if (tck_rate > pcap_rate / 2) {
 365		div = 2;
 366	} else {
 367		div = pcap_rate / tck_rate;
 368		if (pcap_rate / div > XADC_ZYNQ_TCK_RATE_MAX)
 369			div++;
 370	}
 371
 372	if (div <= 3)
 373		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV2;
 374	else if (div <= 7)
 375		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV4;
 376	else if (div <= 15)
 377		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV8;
 378	else
 379		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV16;
 380
 381	xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, XADC_ZYNQ_CTL_RESET);
 382	xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, 0);
 383	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, ~0);
 384	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask);
 385	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, XADC_ZYNQ_CFG_ENABLE |
 386			XADC_ZYNQ_CFG_REDGE | XADC_ZYNQ_CFG_WEDGE |
 387			tck_div | XADC_ZYNQ_CFG_IGAP(igap));
 388
 389	if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
 390		ret = clk_set_rate(xadc->clk, pcap_rate);
 391		if (ret)
 392			return ret;
 393	}
 394
 395	return 0;
 396}
 397
 398static unsigned long xadc_zynq_get_dclk_rate(struct xadc *xadc)
 399{
 400	unsigned int div;
 401	uint32_t val;
 402
 403	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &val);
 404
 405	switch (val & XADC_ZYNQ_CFG_TCKRATE_MASK) {
 406	case XADC_ZYNQ_CFG_TCKRATE_DIV4:
 407		div = 4;
 408		break;
 409	case XADC_ZYNQ_CFG_TCKRATE_DIV8:
 410		div = 8;
 411		break;
 412	case XADC_ZYNQ_CFG_TCKRATE_DIV16:
 413		div = 16;
 414		break;
 415	default:
 416		div = 2;
 417		break;
 418	}
 419
 420	return clk_get_rate(xadc->clk) / div;
 421}
 422
 423static void xadc_zynq_update_alarm(struct xadc *xadc, unsigned int alarm)
 424{
 425	unsigned long flags;
 426	uint32_t status;
 427
 428	/* Move OT to bit 7 */
 429	alarm = ((alarm & 0x08) << 4) | ((alarm & 0xf0) >> 1) | (alarm & 0x07);
 430
 431	spin_lock_irqsave(&xadc->lock, flags);
 432
 433	/* Clear previous interrupts if any. */
 434	xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
 435	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status & alarm);
 436
 437	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_ALARM_MASK,
 438		~alarm & XADC_ZYNQ_INT_ALARM_MASK);
 439
 440	spin_unlock_irqrestore(&xadc->lock, flags);
 441}
 442
 443static const struct xadc_ops xadc_zynq_ops = {
 444	.read = xadc_zynq_read_adc_reg,
 445	.write = xadc_zynq_write_adc_reg,
 446	.setup = xadc_zynq_setup,
 447	.get_dclk_rate = xadc_zynq_get_dclk_rate,
 448	.interrupt_handler = xadc_zynq_interrupt_handler,
 449	.update_alarm = xadc_zynq_update_alarm,
 
 
 
 
 
 
 
 
 
 450};
 451
 452static int xadc_axi_read_adc_reg(struct xadc *xadc, unsigned int reg,
 453	uint16_t *val)
 454{
 455	uint32_t val32;
 456
 457	xadc_read_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, &val32);
 
 458	*val = val32 & 0xffff;
 459
 460	return 0;
 461}
 462
 463static int xadc_axi_write_adc_reg(struct xadc *xadc, unsigned int reg,
 464	uint16_t val)
 465{
 466	xadc_write_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, val);
 
 467
 468	return 0;
 469}
 470
 471static int xadc_axi_setup(struct platform_device *pdev,
 472	struct iio_dev *indio_dev, int irq)
 473{
 474	struct xadc *xadc = iio_priv(indio_dev);
 475
 476	xadc_write_reg(xadc, XADC_AXI_REG_RESET, XADC_AXI_RESET_MAGIC);
 477	xadc_write_reg(xadc, XADC_AXI_REG_GIER, XADC_AXI_GIER_ENABLE);
 478
 479	return 0;
 480}
 481
 482static irqreturn_t xadc_axi_interrupt_handler(int irq, void *devid)
 483{
 484	struct iio_dev *indio_dev = devid;
 485	struct xadc *xadc = iio_priv(indio_dev);
 486	uint32_t status, mask;
 487	unsigned int events;
 488
 489	xadc_read_reg(xadc, XADC_AXI_REG_IPISR, &status);
 490	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &mask);
 491	status &= mask;
 492
 493	if (!status)
 494		return IRQ_NONE;
 495
 496	if ((status & XADC_AXI_INT_EOS) && xadc->trigger)
 497		iio_trigger_poll(xadc->trigger);
 498
 499	if (status & XADC_AXI_INT_ALARM_MASK) {
 500		/*
 501		 * The order of the bits in the AXI-XADC status register does
 502		 * not match the order of the bits in the XADC alarm enable
 503		 * register. xadc_handle_events() expects the events to be in
 504		 * the same order as the XADC alarm enable register.
 505		 */
 506		events = (status & 0x000e) >> 1;
 507		events |= (status & 0x0001) << 3;
 508		events |= (status & 0x3c00) >> 6;
 509		xadc_handle_events(indio_dev, events);
 510	}
 511
 512	xadc_write_reg(xadc, XADC_AXI_REG_IPISR, status);
 513
 514	return IRQ_HANDLED;
 515}
 516
 517static void xadc_axi_update_alarm(struct xadc *xadc, unsigned int alarm)
 518{
 519	uint32_t val;
 520	unsigned long flags;
 521
 522	/*
 523	 * The order of the bits in the AXI-XADC status register does not match
 524	 * the order of the bits in the XADC alarm enable register. We get
 525	 * passed the alarm mask in the same order as in the XADC alarm enable
 526	 * register.
 527	 */
 528	alarm = ((alarm & 0x07) << 1) | ((alarm & 0x08) >> 3) |
 529			((alarm & 0xf0) << 6);
 530
 531	spin_lock_irqsave(&xadc->lock, flags);
 532	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
 533	val &= ~XADC_AXI_INT_ALARM_MASK;
 534	val |= alarm;
 535	xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
 536	spin_unlock_irqrestore(&xadc->lock, flags);
 537}
 538
 539static unsigned long xadc_axi_get_dclk(struct xadc *xadc)
 540{
 541	return clk_get_rate(xadc->clk);
 542}
 543
 544static const struct xadc_ops xadc_axi_ops = {
 545	.read = xadc_axi_read_adc_reg,
 546	.write = xadc_axi_write_adc_reg,
 547	.setup = xadc_axi_setup,
 548	.get_dclk_rate = xadc_axi_get_dclk,
 549	.update_alarm = xadc_axi_update_alarm,
 550	.interrupt_handler = xadc_axi_interrupt_handler,
 551	.flags = XADC_FLAGS_BUFFERED,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 552};
 553
 554static int _xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
 555	uint16_t mask, uint16_t val)
 556{
 557	uint16_t tmp;
 558	int ret;
 559
 560	ret = _xadc_read_adc_reg(xadc, reg, &tmp);
 561	if (ret)
 562		return ret;
 563
 564	return _xadc_write_adc_reg(xadc, reg, (tmp & ~mask) | val);
 565}
 566
 567static int xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
 568	uint16_t mask, uint16_t val)
 569{
 570	int ret;
 571
 572	mutex_lock(&xadc->mutex);
 573	ret = _xadc_update_adc_reg(xadc, reg, mask, val);
 574	mutex_unlock(&xadc->mutex);
 575
 576	return ret;
 577}
 578
 579static unsigned long xadc_get_dclk_rate(struct xadc *xadc)
 580{
 581	return xadc->ops->get_dclk_rate(xadc);
 582}
 583
 584static int xadc_update_scan_mode(struct iio_dev *indio_dev,
 585	const unsigned long *mask)
 586{
 587	struct xadc *xadc = iio_priv(indio_dev);
 588	unsigned int n;
 
 589
 590	n = bitmap_weight(mask, indio_dev->masklength);
 591
 592	kfree(xadc->data);
 593	xadc->data = kcalloc(n, sizeof(*xadc->data), GFP_KERNEL);
 594	if (!xadc->data)
 595		return -ENOMEM;
 596
 
 
 
 597	return 0;
 598}
 599
 600static unsigned int xadc_scan_index_to_channel(unsigned int scan_index)
 601{
 602	switch (scan_index) {
 603	case 5:
 604		return XADC_REG_VCCPINT;
 605	case 6:
 606		return XADC_REG_VCCPAUX;
 607	case 7:
 608		return XADC_REG_VCCO_DDR;
 609	case 8:
 610		return XADC_REG_TEMP;
 611	case 9:
 612		return XADC_REG_VCCINT;
 613	case 10:
 614		return XADC_REG_VCCAUX;
 615	case 11:
 616		return XADC_REG_VPVN;
 617	case 12:
 618		return XADC_REG_VREFP;
 619	case 13:
 620		return XADC_REG_VREFN;
 621	case 14:
 622		return XADC_REG_VCCBRAM;
 623	default:
 624		return XADC_REG_VAUX(scan_index - 16);
 625	}
 626}
 627
 628static irqreturn_t xadc_trigger_handler(int irq, void *p)
 629{
 630	struct iio_poll_func *pf = p;
 631	struct iio_dev *indio_dev = pf->indio_dev;
 632	struct xadc *xadc = iio_priv(indio_dev);
 633	unsigned int chan;
 634	int i, j;
 635
 636	if (!xadc->data)
 637		goto out;
 638
 639	j = 0;
 640	for_each_set_bit(i, indio_dev->active_scan_mask,
 641		indio_dev->masklength) {
 642		chan = xadc_scan_index_to_channel(i);
 643		xadc_read_adc_reg(xadc, chan, &xadc->data[j]);
 644		j++;
 645	}
 646
 647	iio_push_to_buffers(indio_dev, xadc->data);
 648
 649out:
 650	iio_trigger_notify_done(indio_dev->trig);
 651
 652	return IRQ_HANDLED;
 653}
 654
 655static int xadc_trigger_set_state(struct iio_trigger *trigger, bool state)
 656{
 657	struct xadc *xadc = iio_trigger_get_drvdata(trigger);
 658	unsigned long flags;
 659	unsigned int convst;
 660	unsigned int val;
 661	int ret = 0;
 662
 663	mutex_lock(&xadc->mutex);
 664
 665	if (state) {
 666		/* Only one of the two triggers can be active at a time. */
 667		if (xadc->trigger != NULL) {
 668			ret = -EBUSY;
 669			goto err_out;
 670		} else {
 671			xadc->trigger = trigger;
 672			if (trigger == xadc->convst_trigger)
 673				convst = XADC_CONF0_EC;
 674			else
 675				convst = 0;
 676		}
 677		ret = _xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF0_EC,
 678					convst);
 679		if (ret)
 680			goto err_out;
 681	} else {
 682		xadc->trigger = NULL;
 683	}
 684
 685	spin_lock_irqsave(&xadc->lock, flags);
 686	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
 687	xadc_write_reg(xadc, XADC_AXI_REG_IPISR, XADC_AXI_INT_EOS);
 688	if (state)
 689		val |= XADC_AXI_INT_EOS;
 690	else
 691		val &= ~XADC_AXI_INT_EOS;
 692	xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
 693	spin_unlock_irqrestore(&xadc->lock, flags);
 694
 695err_out:
 696	mutex_unlock(&xadc->mutex);
 697
 698	return ret;
 699}
 700
 701static const struct iio_trigger_ops xadc_trigger_ops = {
 702	.set_trigger_state = &xadc_trigger_set_state,
 703};
 704
 705static struct iio_trigger *xadc_alloc_trigger(struct iio_dev *indio_dev,
 706	const char *name)
 707{
 
 708	struct iio_trigger *trig;
 709	int ret;
 710
 711	trig = iio_trigger_alloc("%s%d-%s", indio_dev->name,
 712				indio_dev->id, name);
 713	if (trig == NULL)
 714		return ERR_PTR(-ENOMEM);
 715
 716	trig->dev.parent = indio_dev->dev.parent;
 717	trig->ops = &xadc_trigger_ops;
 718	iio_trigger_set_drvdata(trig, iio_priv(indio_dev));
 719
 720	ret = iio_trigger_register(trig);
 721	if (ret)
 722		goto error_free_trig;
 723
 724	return trig;
 725
 726error_free_trig:
 727	iio_trigger_free(trig);
 728	return ERR_PTR(ret);
 729}
 730
 731static int xadc_power_adc_b(struct xadc *xadc, unsigned int seq_mode)
 732{
 733	uint16_t val;
 734
 
 
 
 
 
 
 
 
 
 735	/* Powerdown the ADC-B when it is not needed. */
 736	switch (seq_mode) {
 737	case XADC_CONF1_SEQ_SIMULTANEOUS:
 738	case XADC_CONF1_SEQ_INDEPENDENT:
 739		val = 0;
 740		break;
 741	default:
 742		val = XADC_CONF2_PD_ADC_B;
 743		break;
 744	}
 745
 746	return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_PD_MASK,
 747		val);
 748}
 749
 750static int xadc_get_seq_mode(struct xadc *xadc, unsigned long scan_mode)
 751{
 752	unsigned int aux_scan_mode = scan_mode >> 16;
 753
 
 
 
 
 754	if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_DUAL)
 755		return XADC_CONF1_SEQ_SIMULTANEOUS;
 756
 757	if ((aux_scan_mode & 0xff00) == 0 ||
 758		(aux_scan_mode & 0x00ff) == 0)
 759		return XADC_CONF1_SEQ_CONTINUOUS;
 760
 761	return XADC_CONF1_SEQ_SIMULTANEOUS;
 762}
 763
 764static int xadc_postdisable(struct iio_dev *indio_dev)
 765{
 766	struct xadc *xadc = iio_priv(indio_dev);
 767	unsigned long scan_mask;
 768	int ret;
 769	int i;
 770
 771	scan_mask = 1; /* Run calibration as part of the sequence */
 772	for (i = 0; i < indio_dev->num_channels; i++)
 773		scan_mask |= BIT(indio_dev->channels[i].scan_index);
 774
 775	/* Enable all channels and calibration */
 776	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
 777	if (ret)
 778		return ret;
 779
 780	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
 781	if (ret)
 782		return ret;
 783
 784	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
 785		XADC_CONF1_SEQ_CONTINUOUS);
 786	if (ret)
 787		return ret;
 788
 789	return xadc_power_adc_b(xadc, XADC_CONF1_SEQ_CONTINUOUS);
 790}
 791
 792static int xadc_preenable(struct iio_dev *indio_dev)
 793{
 794	struct xadc *xadc = iio_priv(indio_dev);
 795	unsigned long scan_mask;
 796	int seq_mode;
 797	int ret;
 798
 799	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
 800		XADC_CONF1_SEQ_DEFAULT);
 801	if (ret)
 802		goto err;
 803
 804	scan_mask = *indio_dev->active_scan_mask;
 805	seq_mode = xadc_get_seq_mode(xadc, scan_mask);
 806
 807	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
 808	if (ret)
 809		goto err;
 810
 811	/*
 812	 * In simultaneous mode the upper and lower aux channels are samples at
 813	 * the same time. In this mode the upper 8 bits in the sequencer
 814	 * register are don't care and the lower 8 bits control two channels
 815	 * each. As such we must set the bit if either the channel in the lower
 816	 * group or the upper group is enabled.
 817	 */
 818	if (seq_mode == XADC_CONF1_SEQ_SIMULTANEOUS)
 819		scan_mask = ((scan_mask >> 8) | scan_mask) & 0xff0000;
 820
 821	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
 822	if (ret)
 823		goto err;
 824
 825	ret = xadc_power_adc_b(xadc, seq_mode);
 826	if (ret)
 827		goto err;
 828
 829	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
 830		seq_mode);
 831	if (ret)
 832		goto err;
 833
 834	return 0;
 835err:
 836	xadc_postdisable(indio_dev);
 837	return ret;
 838}
 839
 840static const struct iio_buffer_setup_ops xadc_buffer_ops = {
 841	.preenable = &xadc_preenable,
 842	.postdisable = &xadc_postdisable,
 843};
 844
 845static int xadc_read_samplerate(struct xadc *xadc)
 846{
 847	unsigned int div;
 848	uint16_t val16;
 849	int ret;
 850
 851	ret = xadc_read_adc_reg(xadc, XADC_REG_CONF2, &val16);
 852	if (ret)
 853		return ret;
 854
 855	div = (val16 & XADC_CONF2_DIV_MASK) >> XADC_CONF2_DIV_OFFSET;
 856	if (div < 2)
 857		div = 2;
 858
 859	return xadc_get_dclk_rate(xadc) / div / 26;
 860}
 861
 862static int xadc_read_raw(struct iio_dev *indio_dev,
 863	struct iio_chan_spec const *chan, int *val, int *val2, long info)
 864{
 865	struct xadc *xadc = iio_priv(indio_dev);
 
 866	uint16_t val16;
 867	int ret;
 868
 869	switch (info) {
 870	case IIO_CHAN_INFO_RAW:
 871		if (iio_buffer_enabled(indio_dev))
 872			return -EBUSY;
 873		ret = xadc_read_adc_reg(xadc, chan->address, &val16);
 874		if (ret < 0)
 875			return ret;
 876
 877		val16 >>= 4;
 878		if (chan->scan_type.sign == 'u')
 879			*val = val16;
 880		else
 881			*val = sign_extend32(val16, 11);
 882
 883		return IIO_VAL_INT;
 884	case IIO_CHAN_INFO_SCALE:
 885		switch (chan->type) {
 886		case IIO_VOLTAGE:
 887			/* V = (val * 3.0) / 4096 */
 888			switch (chan->address) {
 889			case XADC_REG_VCCINT:
 890			case XADC_REG_VCCAUX:
 891			case XADC_REG_VREFP:
 892			case XADC_REG_VREFN:
 893			case XADC_REG_VCCBRAM:
 894			case XADC_REG_VCCPINT:
 895			case XADC_REG_VCCPAUX:
 896			case XADC_REG_VCCO_DDR:
 897				*val = 3000;
 898				break;
 899			default:
 900				*val = 1000;
 901				break;
 902			}
 903			*val2 = 12;
 904			return IIO_VAL_FRACTIONAL_LOG2;
 905		case IIO_TEMP:
 906			/* Temp in C = (val * 503.975) / 4096 - 273.15 */
 907			*val = 503975;
 908			*val2 = 12;
 909			return IIO_VAL_FRACTIONAL_LOG2;
 910		default:
 911			return -EINVAL;
 912		}
 913	case IIO_CHAN_INFO_OFFSET:
 914		/* Only the temperature channel has an offset */
 915		*val = -((273150 << 12) / 503975);
 916		return IIO_VAL_INT;
 917	case IIO_CHAN_INFO_SAMP_FREQ:
 918		ret = xadc_read_samplerate(xadc);
 919		if (ret < 0)
 920			return ret;
 921
 922		*val = ret;
 923		return IIO_VAL_INT;
 924	default:
 925		return -EINVAL;
 926	}
 927}
 928
 929static int xadc_write_samplerate(struct xadc *xadc, int val)
 930{
 931	unsigned long clk_rate = xadc_get_dclk_rate(xadc);
 932	unsigned int div;
 933
 934	if (!clk_rate)
 935		return -EINVAL;
 936
 937	if (val <= 0)
 938		return -EINVAL;
 939
 940	/* Max. 150 kSPS */
 941	if (val > XADC_MAX_SAMPLERATE)
 942		val = XADC_MAX_SAMPLERATE;
 943
 944	val *= 26;
 945
 946	/* Min 1MHz */
 947	if (val < 1000000)
 948		val = 1000000;
 949
 950	/*
 951	 * We want to round down, but only if we do not exceed the 150 kSPS
 952	 * limit.
 953	 */
 954	div = clk_rate / val;
 955	if (clk_rate / div / 26 > XADC_MAX_SAMPLERATE)
 956		div++;
 957	if (div < 2)
 958		div = 2;
 959	else if (div > 0xff)
 960		div = 0xff;
 961
 962	return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_DIV_MASK,
 963		div << XADC_CONF2_DIV_OFFSET);
 964}
 965
 966static int xadc_write_raw(struct iio_dev *indio_dev,
 967	struct iio_chan_spec const *chan, int val, int val2, long info)
 968{
 969	struct xadc *xadc = iio_priv(indio_dev);
 970
 971	if (info != IIO_CHAN_INFO_SAMP_FREQ)
 972		return -EINVAL;
 973
 974	return xadc_write_samplerate(xadc, val);
 975}
 976
 977static const struct iio_event_spec xadc_temp_events[] = {
 978	{
 979		.type = IIO_EV_TYPE_THRESH,
 980		.dir = IIO_EV_DIR_RISING,
 981		.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
 982				BIT(IIO_EV_INFO_VALUE) |
 983				BIT(IIO_EV_INFO_HYSTERESIS),
 984	},
 985};
 986
 987/* Separate values for upper and lower thresholds, but only a shared enabled */
 988static const struct iio_event_spec xadc_voltage_events[] = {
 989	{
 990		.type = IIO_EV_TYPE_THRESH,
 991		.dir = IIO_EV_DIR_RISING,
 992		.mask_separate = BIT(IIO_EV_INFO_VALUE),
 993	}, {
 994		.type = IIO_EV_TYPE_THRESH,
 995		.dir = IIO_EV_DIR_FALLING,
 996		.mask_separate = BIT(IIO_EV_INFO_VALUE),
 997	}, {
 998		.type = IIO_EV_TYPE_THRESH,
 999		.dir = IIO_EV_DIR_EITHER,
1000		.mask_separate = BIT(IIO_EV_INFO_ENABLE),
1001	},
1002};
1003
1004#define XADC_CHAN_TEMP(_chan, _scan_index, _addr) { \
1005	.type = IIO_TEMP, \
1006	.indexed = 1, \
1007	.channel = (_chan), \
1008	.address = (_addr), \
1009	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1010		BIT(IIO_CHAN_INFO_SCALE) | \
1011		BIT(IIO_CHAN_INFO_OFFSET), \
1012	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
1013	.event_spec = xadc_temp_events, \
1014	.num_event_specs = ARRAY_SIZE(xadc_temp_events), \
1015	.scan_index = (_scan_index), \
1016	.scan_type = { \
1017		.sign = 'u', \
1018		.realbits = 12, \
1019		.storagebits = 16, \
1020		.shift = 4, \
1021		.endianness = IIO_CPU, \
1022	}, \
1023}
1024
1025#define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) { \
1026	.type = IIO_VOLTAGE, \
1027	.indexed = 1, \
1028	.channel = (_chan), \
1029	.address = (_addr), \
1030	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1031		BIT(IIO_CHAN_INFO_SCALE), \
1032	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
1033	.event_spec = (_alarm) ? xadc_voltage_events : NULL, \
1034	.num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \
1035	.scan_index = (_scan_index), \
1036	.scan_type = { \
1037		.sign = ((_addr) == XADC_REG_VREFN) ? 's' : 'u', \
1038		.realbits = 12, \
1039		.storagebits = 16, \
1040		.shift = 4, \
1041		.endianness = IIO_CPU, \
1042	}, \
1043	.extend_name = _ext, \
1044}
1045
1046static const struct iio_chan_spec xadc_channels[] = {
1047	XADC_CHAN_TEMP(0, 8, XADC_REG_TEMP),
1048	XADC_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
1049	XADC_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
1050	XADC_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
1051	XADC_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpint", true),
1052	XADC_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpaux", true),
1053	XADC_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccoddr", true),
1054	XADC_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
1055	XADC_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
1056	XADC_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
1057	XADC_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
1058	XADC_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
1059	XADC_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
1060	XADC_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
1061	XADC_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
1062	XADC_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
1063	XADC_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
1064	XADC_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
1065	XADC_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
1066	XADC_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
1067	XADC_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
1068	XADC_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
1069	XADC_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
1070	XADC_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
1071	XADC_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
1072	XADC_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1073};
1074
1075static const struct iio_info xadc_info = {
1076	.read_raw = &xadc_read_raw,
1077	.write_raw = &xadc_write_raw,
1078	.read_event_config = &xadc_read_event_config,
1079	.write_event_config = &xadc_write_event_config,
1080	.read_event_value = &xadc_read_event_value,
1081	.write_event_value = &xadc_write_event_value,
1082	.update_scan_mode = &xadc_update_scan_mode,
1083};
1084
1085static const struct of_device_id xadc_of_match_table[] = {
1086	{ .compatible = "xlnx,zynq-xadc-1.00.a", (void *)&xadc_zynq_ops },
1087	{ .compatible = "xlnx,axi-xadc-1.00.a", (void *)&xadc_axi_ops },
 
 
 
 
 
 
 
 
1088	{ },
1089};
1090MODULE_DEVICE_TABLE(of, xadc_of_match_table);
1091
1092static int xadc_parse_dt(struct iio_dev *indio_dev, struct device_node *np,
1093	unsigned int *conf)
1094{
 
1095	struct xadc *xadc = iio_priv(indio_dev);
 
1096	struct iio_chan_spec *channels, *chan;
1097	struct device_node *chan_node, *child;
 
1098	unsigned int num_channels;
1099	const char *external_mux;
1100	u32 ext_mux_chan;
1101	u32 reg;
1102	int ret;
 
1103
1104	*conf = 0;
1105
1106	ret = of_property_read_string(np, "xlnx,external-mux", &external_mux);
1107	if (ret < 0 || strcasecmp(external_mux, "none") == 0)
1108		xadc->external_mux_mode = XADC_EXTERNAL_MUX_NONE;
1109	else if (strcasecmp(external_mux, "single") == 0)
1110		xadc->external_mux_mode = XADC_EXTERNAL_MUX_SINGLE;
1111	else if (strcasecmp(external_mux, "dual") == 0)
1112		xadc->external_mux_mode = XADC_EXTERNAL_MUX_DUAL;
1113	else
1114		return -EINVAL;
1115
1116	if (xadc->external_mux_mode != XADC_EXTERNAL_MUX_NONE) {
1117		ret = of_property_read_u32(np, "xlnx,external-mux-channel",
1118					&ext_mux_chan);
1119		if (ret < 0)
1120			return ret;
1121
1122		if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_SINGLE) {
1123			if (ext_mux_chan == 0)
1124				ext_mux_chan = XADC_REG_VPVN;
1125			else if (ext_mux_chan <= 16)
1126				ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1127			else
1128				return -EINVAL;
1129		} else {
1130			if (ext_mux_chan > 0 && ext_mux_chan <= 8)
1131				ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1132			else
1133				return -EINVAL;
1134		}
1135
1136		*conf |= XADC_CONF0_MUX | XADC_CONF0_CHAN(ext_mux_chan);
1137	}
1138
1139	channels = kmemdup(xadc_channels, sizeof(xadc_channels), GFP_KERNEL);
 
 
 
 
 
 
 
1140	if (!channels)
1141		return -ENOMEM;
1142
1143	num_channels = 9;
1144	chan = &channels[9];
1145
1146	chan_node = of_get_child_by_name(np, "xlnx,channels");
1147	if (chan_node) {
1148		for_each_child_of_node(chan_node, child) {
1149			if (num_channels >= ARRAY_SIZE(xadc_channels)) {
1150				of_node_put(child);
1151				break;
1152			}
1153
1154			ret = of_property_read_u32(child, "reg", &reg);
1155			if (ret || reg > 16)
1156				continue;
1157
1158			if (of_property_read_bool(child, "xlnx,bipolar"))
1159				chan->scan_type.sign = 's';
1160
1161			if (reg == 0) {
1162				chan->scan_index = 11;
1163				chan->address = XADC_REG_VPVN;
1164			} else {
1165				chan->scan_index = 15 + reg;
1166				chan->address = XADC_REG_VAUX(reg - 1);
1167			}
1168			num_channels++;
1169			chan++;
 
 
 
 
 
 
 
 
1170		}
1171	}
1172	of_node_put(chan_node);
1173
1174	indio_dev->num_channels = num_channels;
1175	indio_dev->channels = krealloc(channels, sizeof(*channels) *
1176					num_channels, GFP_KERNEL);
 
1177	/* If we can't resize the channels array, just use the original */
1178	if (!indio_dev->channels)
1179		indio_dev->channels = channels;
1180
1181	return 0;
1182}
1183
 
 
 
 
 
 
 
 
 
 
 
 
1184static int xadc_probe(struct platform_device *pdev)
1185{
1186	const struct of_device_id *id;
 
1187	struct iio_dev *indio_dev;
1188	unsigned int bipolar_mask;
1189	unsigned int conf0;
1190	struct xadc *xadc;
1191	int ret;
1192	int irq;
1193	int i;
1194
1195	if (!pdev->dev.of_node)
1196		return -ENODEV;
1197
1198	id = of_match_node(xadc_of_match_table, pdev->dev.of_node);
1199	if (!id)
1200		return -EINVAL;
1201
1202	irq = platform_get_irq(pdev, 0);
1203	if (irq <= 0)
1204		return -ENXIO;
 
1205
1206	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*xadc));
1207	if (!indio_dev)
1208		return -ENOMEM;
1209
1210	xadc = iio_priv(indio_dev);
1211	xadc->ops = id->data;
1212	xadc->irq = irq;
1213	init_completion(&xadc->completion);
1214	mutex_init(&xadc->mutex);
1215	spin_lock_init(&xadc->lock);
1216	INIT_DELAYED_WORK(&xadc->zynq_unmask_work, xadc_zynq_unmask_worker);
1217
1218	xadc->base = devm_platform_ioremap_resource(pdev, 0);
1219	if (IS_ERR(xadc->base))
1220		return PTR_ERR(xadc->base);
1221
1222	indio_dev->name = "xadc";
1223	indio_dev->modes = INDIO_DIRECT_MODE;
1224	indio_dev->info = &xadc_info;
1225
1226	ret = xadc_parse_dt(indio_dev, pdev->dev.of_node, &conf0);
1227	if (ret)
1228		goto err_device_free;
1229
1230	if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1231		ret = iio_triggered_buffer_setup(indio_dev,
1232			&iio_pollfunc_store_time, &xadc_trigger_handler,
1233			&xadc_buffer_ops);
 
1234		if (ret)
1235			goto err_device_free;
1236
1237		xadc->convst_trigger = xadc_alloc_trigger(indio_dev, "convst");
1238		if (IS_ERR(xadc->convst_trigger)) {
1239			ret = PTR_ERR(xadc->convst_trigger);
1240			goto err_triggered_buffer_cleanup;
1241		}
1242		xadc->samplerate_trigger = xadc_alloc_trigger(indio_dev,
1243			"samplerate");
1244		if (IS_ERR(xadc->samplerate_trigger)) {
1245			ret = PTR_ERR(xadc->samplerate_trigger);
1246			goto err_free_convst_trigger;
1247		}
1248	}
1249
1250	xadc->clk = devm_clk_get(&pdev->dev, NULL);
1251	if (IS_ERR(xadc->clk)) {
1252		ret = PTR_ERR(xadc->clk);
1253		goto err_free_samplerate_trigger;
1254	}
1255
1256	ret = clk_prepare_enable(xadc->clk);
1257	if (ret)
1258		goto err_free_samplerate_trigger;
1259
1260	/*
1261	 * Make sure not to exceed the maximum samplerate since otherwise the
1262	 * resulting interrupt storm will soft-lock the system.
1263	 */
1264	if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1265		ret = xadc_read_samplerate(xadc);
1266		if (ret < 0)
1267			goto err_free_samplerate_trigger;
 
1268		if (ret > XADC_MAX_SAMPLERATE) {
1269			ret = xadc_write_samplerate(xadc, XADC_MAX_SAMPLERATE);
1270			if (ret < 0)
1271				goto err_free_samplerate_trigger;
1272		}
1273	}
1274
1275	ret = request_irq(xadc->irq, xadc->ops->interrupt_handler, 0,
1276			dev_name(&pdev->dev), indio_dev);
1277	if (ret)
1278		goto err_clk_disable_unprepare;
 
 
 
 
 
 
 
1279
1280	ret = xadc->ops->setup(pdev, indio_dev, xadc->irq);
1281	if (ret)
1282		goto err_free_irq;
1283
1284	for (i = 0; i < 16; i++)
1285		xadc_read_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1286			&xadc->threshold[i]);
1287
1288	ret = xadc_write_adc_reg(xadc, XADC_REG_CONF0, conf0);
1289	if (ret)
1290		goto err_free_irq;
1291
1292	bipolar_mask = 0;
1293	for (i = 0; i < indio_dev->num_channels; i++) {
1294		if (indio_dev->channels[i].scan_type.sign == 's')
1295			bipolar_mask |= BIT(indio_dev->channels[i].scan_index);
1296	}
1297
1298	ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(0), bipolar_mask);
1299	if (ret)
1300		goto err_free_irq;
 
1301	ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(1),
1302		bipolar_mask >> 16);
1303	if (ret)
1304		goto err_free_irq;
1305
1306	/* Disable all alarms */
1307	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_ALARM_MASK,
1308				  XADC_CONF1_ALARM_MASK);
1309	if (ret)
1310		goto err_free_irq;
1311
1312	/* Set thresholds to min/max */
1313	for (i = 0; i < 16; i++) {
1314		/*
1315		 * Set max voltage threshold and both temperature thresholds to
1316		 * 0xffff, min voltage threshold to 0.
1317		 */
1318		if (i % 8 < 4 || i == 7)
1319			xadc->threshold[i] = 0xffff;
1320		else
1321			xadc->threshold[i] = 0;
1322		ret = xadc_write_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1323			xadc->threshold[i]);
1324		if (ret)
1325			goto err_free_irq;
1326	}
1327
1328	/* Go to non-buffered mode */
1329	xadc_postdisable(indio_dev);
1330
1331	ret = iio_device_register(indio_dev);
1332	if (ret)
1333		goto err_free_irq;
1334
1335	platform_set_drvdata(pdev, indio_dev);
1336
1337	return 0;
1338
1339err_free_irq:
1340	free_irq(xadc->irq, indio_dev);
1341	cancel_delayed_work_sync(&xadc->zynq_unmask_work);
1342err_clk_disable_unprepare:
1343	clk_disable_unprepare(xadc->clk);
1344err_free_samplerate_trigger:
1345	if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1346		iio_trigger_free(xadc->samplerate_trigger);
1347err_free_convst_trigger:
1348	if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1349		iio_trigger_free(xadc->convst_trigger);
1350err_triggered_buffer_cleanup:
1351	if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1352		iio_triggered_buffer_cleanup(indio_dev);
1353err_device_free:
1354	kfree(indio_dev->channels);
1355
1356	return ret;
1357}
1358
1359static int xadc_remove(struct platform_device *pdev)
1360{
1361	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1362	struct xadc *xadc = iio_priv(indio_dev);
1363
1364	iio_device_unregister(indio_dev);
1365	if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1366		iio_trigger_free(xadc->samplerate_trigger);
1367		iio_trigger_free(xadc->convst_trigger);
1368		iio_triggered_buffer_cleanup(indio_dev);
1369	}
1370	free_irq(xadc->irq, indio_dev);
1371	cancel_delayed_work_sync(&xadc->zynq_unmask_work);
1372	clk_disable_unprepare(xadc->clk);
1373	kfree(xadc->data);
1374	kfree(indio_dev->channels);
1375
1376	return 0;
1377}
1378
1379static struct platform_driver xadc_driver = {
1380	.probe = xadc_probe,
1381	.remove = xadc_remove,
1382	.driver = {
1383		.name = "xadc",
1384		.of_match_table = xadc_of_match_table,
1385	},
1386};
1387module_platform_driver(xadc_driver);
1388
1389MODULE_LICENSE("GPL v2");
1390MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
1391MODULE_DESCRIPTION("Xilinx XADC IIO driver");
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Xilinx XADC driver
   4 *
   5 * Copyright 2013-2014 Analog Devices Inc.
   6 *  Author: Lars-Peter Clausen <lars@metafoo.de>
   7 *
   8 * Documentation for the parts can be found at:
   9 *  - XADC hardmacro: Xilinx UG480
  10 *  - ZYNQ XADC interface: Xilinx UG585
  11 *  - AXI XADC interface: Xilinx PG019
  12 */
  13
  14#include <linux/clk.h>
  15#include <linux/device.h>
  16#include <linux/err.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/kernel.h>
  20#include <linux/mod_devicetable.h>
  21#include <linux/module.h>
  22#include <linux/overflow.h>
  23#include <linux/platform_device.h>
  24#include <linux/property.h>
  25#include <linux/slab.h>
  26#include <linux/sysfs.h>
  27
  28#include <linux/iio/buffer.h>
  29#include <linux/iio/events.h>
  30#include <linux/iio/iio.h>
  31#include <linux/iio/sysfs.h>
  32#include <linux/iio/trigger.h>
  33#include <linux/iio/trigger_consumer.h>
  34#include <linux/iio/triggered_buffer.h>
  35
  36#include "xilinx-xadc.h"
  37
  38static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT = 500;
  39
  40/* ZYNQ register definitions */
  41#define XADC_ZYNQ_REG_CFG	0x00
  42#define XADC_ZYNQ_REG_INTSTS	0x04
  43#define XADC_ZYNQ_REG_INTMSK	0x08
  44#define XADC_ZYNQ_REG_STATUS	0x0c
  45#define XADC_ZYNQ_REG_CFIFO	0x10
  46#define XADC_ZYNQ_REG_DFIFO	0x14
  47#define XADC_ZYNQ_REG_CTL		0x18
  48
  49#define XADC_ZYNQ_CFG_ENABLE		BIT(31)
  50#define XADC_ZYNQ_CFG_CFIFOTH_MASK	(0xf << 20)
  51#define XADC_ZYNQ_CFG_CFIFOTH_OFFSET	20
  52#define XADC_ZYNQ_CFG_DFIFOTH_MASK	(0xf << 16)
  53#define XADC_ZYNQ_CFG_DFIFOTH_OFFSET	16
  54#define XADC_ZYNQ_CFG_WEDGE		BIT(13)
  55#define XADC_ZYNQ_CFG_REDGE		BIT(12)
  56#define XADC_ZYNQ_CFG_TCKRATE_MASK	(0x3 << 8)
  57#define XADC_ZYNQ_CFG_TCKRATE_DIV2	(0x0 << 8)
  58#define XADC_ZYNQ_CFG_TCKRATE_DIV4	(0x1 << 8)
  59#define XADC_ZYNQ_CFG_TCKRATE_DIV8	(0x2 << 8)
  60#define XADC_ZYNQ_CFG_TCKRATE_DIV16	(0x3 << 8)
  61#define XADC_ZYNQ_CFG_IGAP_MASK		0x1f
  62#define XADC_ZYNQ_CFG_IGAP(x)		(x)
  63
  64#define XADC_ZYNQ_INT_CFIFO_LTH		BIT(9)
  65#define XADC_ZYNQ_INT_DFIFO_GTH		BIT(8)
  66#define XADC_ZYNQ_INT_ALARM_MASK	0xff
  67#define XADC_ZYNQ_INT_ALARM_OFFSET	0
  68
  69#define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK	(0xf << 16)
  70#define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET	16
  71#define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK	(0xf << 12)
  72#define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET	12
  73#define XADC_ZYNQ_STATUS_CFIFOF		BIT(11)
  74#define XADC_ZYNQ_STATUS_CFIFOE		BIT(10)
  75#define XADC_ZYNQ_STATUS_DFIFOF		BIT(9)
  76#define XADC_ZYNQ_STATUS_DFIFOE		BIT(8)
  77#define XADC_ZYNQ_STATUS_OT		BIT(7)
  78#define XADC_ZYNQ_STATUS_ALM(x)		BIT(x)
  79
  80#define XADC_ZYNQ_CTL_RESET		BIT(4)
  81
  82#define XADC_ZYNQ_CMD_NOP		0x00
  83#define XADC_ZYNQ_CMD_READ		0x01
  84#define XADC_ZYNQ_CMD_WRITE		0x02
  85
  86#define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data))
  87
  88/* AXI register definitions */
  89#define XADC_AXI_REG_RESET		0x00
  90#define XADC_AXI_REG_STATUS		0x04
  91#define XADC_AXI_REG_ALARM_STATUS	0x08
  92#define XADC_AXI_REG_CONVST		0x0c
  93#define XADC_AXI_REG_XADC_RESET		0x10
  94#define XADC_AXI_REG_GIER		0x5c
  95#define XADC_AXI_REG_IPISR		0x60
  96#define XADC_AXI_REG_IPIER		0x68
  97
  98/* 7 Series */
  99#define XADC_7S_AXI_ADC_REG_OFFSET	0x200
 100
 101/* UltraScale */
 102#define XADC_US_AXI_ADC_REG_OFFSET	0x400
 103
 104#define XADC_AXI_RESET_MAGIC		0xa
 105#define XADC_AXI_GIER_ENABLE		BIT(31)
 106
 107#define XADC_AXI_INT_EOS		BIT(4)
 108#define XADC_AXI_INT_ALARM_MASK		0x3c0f
 109
 110#define XADC_FLAGS_BUFFERED BIT(0)
 111#define XADC_FLAGS_IRQ_OPTIONAL BIT(1)
 112
 113/*
 114 * The XADC hardware supports a samplerate of up to 1MSPS. Unfortunately it does
 115 * not have a hardware FIFO. Which means an interrupt is generated for each
 116 * conversion sequence. At 1MSPS sample rate the CPU in ZYNQ7000 is completely
 117 * overloaded by the interrupts that it soft-lockups. For this reason the driver
 118 * limits the maximum samplerate 150kSPS. At this rate the CPU is fairly busy,
 119 * but still responsive.
 120 */
 121#define XADC_MAX_SAMPLERATE 150000
 122
 123static void xadc_write_reg(struct xadc *xadc, unsigned int reg,
 124	uint32_t val)
 125{
 126	writel(val, xadc->base + reg);
 127}
 128
 129static void xadc_read_reg(struct xadc *xadc, unsigned int reg,
 130	uint32_t *val)
 131{
 132	*val = readl(xadc->base + reg);
 133}
 134
 135/*
 136 * The ZYNQ interface uses two asynchronous FIFOs for communication with the
 137 * XADC. Reads and writes to the XADC register are performed by submitting a
 138 * request to the command FIFO (CFIFO), once the request has been completed the
 139 * result can be read from the data FIFO (DFIFO). The method currently used in
 140 * this driver is to submit the request for a read/write operation, then go to
 141 * sleep and wait for an interrupt that signals that a response is available in
 142 * the data FIFO.
 143 */
 144
 145static void xadc_zynq_write_fifo(struct xadc *xadc, uint32_t *cmd,
 146	unsigned int n)
 147{
 148	unsigned int i;
 149
 150	for (i = 0; i < n; i++)
 151		xadc_write_reg(xadc, XADC_ZYNQ_REG_CFIFO, cmd[i]);
 152}
 153
 154static void xadc_zynq_drain_fifo(struct xadc *xadc)
 155{
 156	uint32_t status, tmp;
 157
 158	xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
 159
 160	while (!(status & XADC_ZYNQ_STATUS_DFIFOE)) {
 161		xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
 162		xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
 163	}
 164}
 165
 166static void xadc_zynq_update_intmsk(struct xadc *xadc, unsigned int mask,
 167	unsigned int val)
 168{
 169	xadc->zynq_intmask &= ~mask;
 170	xadc->zynq_intmask |= val;
 171
 172	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK,
 173		xadc->zynq_intmask | xadc->zynq_masked_alarm);
 174}
 175
 176static int xadc_zynq_write_adc_reg(struct xadc *xadc, unsigned int reg,
 177	uint16_t val)
 178{
 179	uint32_t cmd[1];
 180	uint32_t tmp;
 181	int ret;
 182
 183	spin_lock_irq(&xadc->lock);
 184	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
 185			XADC_ZYNQ_INT_DFIFO_GTH);
 186
 187	reinit_completion(&xadc->completion);
 188
 189	cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE, reg, val);
 190	xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
 191	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
 192	tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
 193	tmp |= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
 194	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
 195
 196	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
 197	spin_unlock_irq(&xadc->lock);
 198
 199	ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
 200	if (ret == 0)
 201		ret = -EIO;
 202	else
 203		ret = 0;
 204
 205	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
 206
 207	return ret;
 208}
 209
 210static int xadc_zynq_read_adc_reg(struct xadc *xadc, unsigned int reg,
 211	uint16_t *val)
 212{
 213	uint32_t cmd[2];
 214	uint32_t resp, tmp;
 215	int ret;
 216
 217	cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ, reg, 0);
 218	cmd[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP, 0, 0);
 219
 220	spin_lock_irq(&xadc->lock);
 221	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
 222			XADC_ZYNQ_INT_DFIFO_GTH);
 223	xadc_zynq_drain_fifo(xadc);
 224	reinit_completion(&xadc->completion);
 225
 226	xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
 227	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
 228	tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
 229	tmp |= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
 230	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
 231
 232	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
 233	spin_unlock_irq(&xadc->lock);
 234	ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
 235	if (ret == 0)
 236		ret = -EIO;
 237	if (ret < 0)
 238		return ret;
 239
 240	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
 241	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
 242
 243	*val = resp & 0xffff;
 244
 245	return 0;
 246}
 247
 248static unsigned int xadc_zynq_transform_alarm(unsigned int alarm)
 249{
 250	return ((alarm & 0x80) >> 4) |
 251		((alarm & 0x78) << 1) |
 252		(alarm & 0x07);
 253}
 254
 255/*
 256 * The ZYNQ threshold interrupts are level sensitive. Since we can't make the
 257 * threshold condition go way from within the interrupt handler, this means as
 258 * soon as a threshold condition is present we would enter the interrupt handler
 259 * again and again. To work around this we mask all active thresholds interrupts
 260 * in the interrupt handler and start a timer. In this timer we poll the
 261 * interrupt status and only if the interrupt is inactive we unmask it again.
 262 */
 263static void xadc_zynq_unmask_worker(struct work_struct *work)
 264{
 265	struct xadc *xadc = container_of(work, struct xadc, zynq_unmask_work.work);
 266	unsigned int misc_sts, unmask;
 267
 268	xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &misc_sts);
 269
 270	misc_sts &= XADC_ZYNQ_INT_ALARM_MASK;
 271
 272	spin_lock_irq(&xadc->lock);
 273
 274	/* Clear those bits which are not active anymore */
 275	unmask = (xadc->zynq_masked_alarm ^ misc_sts) & xadc->zynq_masked_alarm;
 276	xadc->zynq_masked_alarm &= misc_sts;
 277
 278	/* Also clear those which are masked out anyway */
 279	xadc->zynq_masked_alarm &= ~xadc->zynq_intmask;
 280
 281	/* Clear the interrupts before we unmask them */
 282	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, unmask);
 283
 284	xadc_zynq_update_intmsk(xadc, 0, 0);
 285
 286	spin_unlock_irq(&xadc->lock);
 287
 288	/* if still pending some alarm re-trigger the timer */
 289	if (xadc->zynq_masked_alarm) {
 290		schedule_delayed_work(&xadc->zynq_unmask_work,
 291				msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
 292	}
 293
 294}
 295
 296static irqreturn_t xadc_zynq_interrupt_handler(int irq, void *devid)
 297{
 298	struct iio_dev *indio_dev = devid;
 299	struct xadc *xadc = iio_priv(indio_dev);
 300	uint32_t status;
 301
 302	xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
 303
 304	status &= ~(xadc->zynq_intmask | xadc->zynq_masked_alarm);
 305
 306	if (!status)
 307		return IRQ_NONE;
 308
 309	spin_lock(&xadc->lock);
 310
 311	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status);
 312
 313	if (status & XADC_ZYNQ_INT_DFIFO_GTH) {
 314		xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
 315			XADC_ZYNQ_INT_DFIFO_GTH);
 316		complete(&xadc->completion);
 317	}
 318
 319	status &= XADC_ZYNQ_INT_ALARM_MASK;
 320	if (status) {
 321		xadc->zynq_masked_alarm |= status;
 322		/*
 323		 * mask the current event interrupt,
 324		 * unmask it when the interrupt is no more active.
 325		 */
 326		xadc_zynq_update_intmsk(xadc, 0, 0);
 327
 328		xadc_handle_events(indio_dev,
 329				xadc_zynq_transform_alarm(status));
 330
 331		/* unmask the required interrupts in timer. */
 332		schedule_delayed_work(&xadc->zynq_unmask_work,
 333				msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
 334	}
 335	spin_unlock(&xadc->lock);
 336
 337	return IRQ_HANDLED;
 338}
 339
 340#define XADC_ZYNQ_TCK_RATE_MAX 50000000
 341#define XADC_ZYNQ_IGAP_DEFAULT 20
 342#define XADC_ZYNQ_PCAP_RATE_MAX 200000000
 343
 344static int xadc_zynq_setup(struct platform_device *pdev,
 345	struct iio_dev *indio_dev, int irq)
 346{
 347	struct xadc *xadc = iio_priv(indio_dev);
 348	unsigned long pcap_rate;
 349	unsigned int tck_div;
 350	unsigned int div;
 351	unsigned int igap;
 352	unsigned int tck_rate;
 353	int ret;
 354
 355	/* TODO: Figure out how to make igap and tck_rate configurable */
 356	igap = XADC_ZYNQ_IGAP_DEFAULT;
 357	tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
 358
 359	xadc->zynq_intmask = ~0;
 360
 361	pcap_rate = clk_get_rate(xadc->clk);
 362	if (!pcap_rate)
 363		return -EINVAL;
 364
 365	if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
 366		ret = clk_set_rate(xadc->clk,
 367				   (unsigned long)XADC_ZYNQ_PCAP_RATE_MAX);
 368		if (ret)
 369			return ret;
 370	}
 371
 372	if (tck_rate > pcap_rate / 2) {
 373		div = 2;
 374	} else {
 375		div = pcap_rate / tck_rate;
 376		if (pcap_rate / div > XADC_ZYNQ_TCK_RATE_MAX)
 377			div++;
 378	}
 379
 380	if (div <= 3)
 381		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV2;
 382	else if (div <= 7)
 383		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV4;
 384	else if (div <= 15)
 385		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV8;
 386	else
 387		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV16;
 388
 389	xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, XADC_ZYNQ_CTL_RESET);
 390	xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, 0);
 391	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, ~0);
 392	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask);
 393	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, XADC_ZYNQ_CFG_ENABLE |
 394			XADC_ZYNQ_CFG_REDGE | XADC_ZYNQ_CFG_WEDGE |
 395			tck_div | XADC_ZYNQ_CFG_IGAP(igap));
 396
 397	if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
 398		ret = clk_set_rate(xadc->clk, pcap_rate);
 399		if (ret)
 400			return ret;
 401	}
 402
 403	return 0;
 404}
 405
 406static unsigned long xadc_zynq_get_dclk_rate(struct xadc *xadc)
 407{
 408	unsigned int div;
 409	uint32_t val;
 410
 411	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &val);
 412
 413	switch (val & XADC_ZYNQ_CFG_TCKRATE_MASK) {
 414	case XADC_ZYNQ_CFG_TCKRATE_DIV4:
 415		div = 4;
 416		break;
 417	case XADC_ZYNQ_CFG_TCKRATE_DIV8:
 418		div = 8;
 419		break;
 420	case XADC_ZYNQ_CFG_TCKRATE_DIV16:
 421		div = 16;
 422		break;
 423	default:
 424		div = 2;
 425		break;
 426	}
 427
 428	return clk_get_rate(xadc->clk) / div;
 429}
 430
 431static void xadc_zynq_update_alarm(struct xadc *xadc, unsigned int alarm)
 432{
 433	unsigned long flags;
 434	uint32_t status;
 435
 436	/* Move OT to bit 7 */
 437	alarm = ((alarm & 0x08) << 4) | ((alarm & 0xf0) >> 1) | (alarm & 0x07);
 438
 439	spin_lock_irqsave(&xadc->lock, flags);
 440
 441	/* Clear previous interrupts if any. */
 442	xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
 443	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status & alarm);
 444
 445	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_ALARM_MASK,
 446		~alarm & XADC_ZYNQ_INT_ALARM_MASK);
 447
 448	spin_unlock_irqrestore(&xadc->lock, flags);
 449}
 450
 451static const struct xadc_ops xadc_zynq_ops = {
 452	.read = xadc_zynq_read_adc_reg,
 453	.write = xadc_zynq_write_adc_reg,
 454	.setup = xadc_zynq_setup,
 455	.get_dclk_rate = xadc_zynq_get_dclk_rate,
 456	.interrupt_handler = xadc_zynq_interrupt_handler,
 457	.update_alarm = xadc_zynq_update_alarm,
 458	.type = XADC_TYPE_S7,
 459	/* Temp in C = (val * 503.975) / 2**bits - 273.15 */
 460	.temp_scale = 503975,
 461	.temp_offset = 273150,
 462};
 463
 464static const unsigned int xadc_axi_reg_offsets[] = {
 465	[XADC_TYPE_S7] = XADC_7S_AXI_ADC_REG_OFFSET,
 466	[XADC_TYPE_US] = XADC_US_AXI_ADC_REG_OFFSET,
 467};
 468
 469static int xadc_axi_read_adc_reg(struct xadc *xadc, unsigned int reg,
 470	uint16_t *val)
 471{
 472	uint32_t val32;
 473
 474	xadc_read_reg(xadc, xadc_axi_reg_offsets[xadc->ops->type] + reg * 4,
 475		&val32);
 476	*val = val32 & 0xffff;
 477
 478	return 0;
 479}
 480
 481static int xadc_axi_write_adc_reg(struct xadc *xadc, unsigned int reg,
 482	uint16_t val)
 483{
 484	xadc_write_reg(xadc, xadc_axi_reg_offsets[xadc->ops->type] + reg * 4,
 485		val);
 486
 487	return 0;
 488}
 489
 490static int xadc_axi_setup(struct platform_device *pdev,
 491	struct iio_dev *indio_dev, int irq)
 492{
 493	struct xadc *xadc = iio_priv(indio_dev);
 494
 495	xadc_write_reg(xadc, XADC_AXI_REG_RESET, XADC_AXI_RESET_MAGIC);
 496	xadc_write_reg(xadc, XADC_AXI_REG_GIER, XADC_AXI_GIER_ENABLE);
 497
 498	return 0;
 499}
 500
 501static irqreturn_t xadc_axi_interrupt_handler(int irq, void *devid)
 502{
 503	struct iio_dev *indio_dev = devid;
 504	struct xadc *xadc = iio_priv(indio_dev);
 505	uint32_t status, mask;
 506	unsigned int events;
 507
 508	xadc_read_reg(xadc, XADC_AXI_REG_IPISR, &status);
 509	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &mask);
 510	status &= mask;
 511
 512	if (!status)
 513		return IRQ_NONE;
 514
 515	if ((status & XADC_AXI_INT_EOS) && xadc->trigger)
 516		iio_trigger_poll(xadc->trigger);
 517
 518	if (status & XADC_AXI_INT_ALARM_MASK) {
 519		/*
 520		 * The order of the bits in the AXI-XADC status register does
 521		 * not match the order of the bits in the XADC alarm enable
 522		 * register. xadc_handle_events() expects the events to be in
 523		 * the same order as the XADC alarm enable register.
 524		 */
 525		events = (status & 0x000e) >> 1;
 526		events |= (status & 0x0001) << 3;
 527		events |= (status & 0x3c00) >> 6;
 528		xadc_handle_events(indio_dev, events);
 529	}
 530
 531	xadc_write_reg(xadc, XADC_AXI_REG_IPISR, status);
 532
 533	return IRQ_HANDLED;
 534}
 535
 536static void xadc_axi_update_alarm(struct xadc *xadc, unsigned int alarm)
 537{
 538	uint32_t val;
 539	unsigned long flags;
 540
 541	/*
 542	 * The order of the bits in the AXI-XADC status register does not match
 543	 * the order of the bits in the XADC alarm enable register. We get
 544	 * passed the alarm mask in the same order as in the XADC alarm enable
 545	 * register.
 546	 */
 547	alarm = ((alarm & 0x07) << 1) | ((alarm & 0x08) >> 3) |
 548			((alarm & 0xf0) << 6);
 549
 550	spin_lock_irqsave(&xadc->lock, flags);
 551	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
 552	val &= ~XADC_AXI_INT_ALARM_MASK;
 553	val |= alarm;
 554	xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
 555	spin_unlock_irqrestore(&xadc->lock, flags);
 556}
 557
 558static unsigned long xadc_axi_get_dclk(struct xadc *xadc)
 559{
 560	return clk_get_rate(xadc->clk);
 561}
 562
 563static const struct xadc_ops xadc_7s_axi_ops = {
 564	.read = xadc_axi_read_adc_reg,
 565	.write = xadc_axi_write_adc_reg,
 566	.setup = xadc_axi_setup,
 567	.get_dclk_rate = xadc_axi_get_dclk,
 568	.update_alarm = xadc_axi_update_alarm,
 569	.interrupt_handler = xadc_axi_interrupt_handler,
 570	.flags = XADC_FLAGS_BUFFERED | XADC_FLAGS_IRQ_OPTIONAL,
 571	.type = XADC_TYPE_S7,
 572	/* Temp in C = (val * 503.975) / 2**bits - 273.15 */
 573	.temp_scale = 503975,
 574	.temp_offset = 273150,
 575};
 576
 577static const struct xadc_ops xadc_us_axi_ops = {
 578	.read = xadc_axi_read_adc_reg,
 579	.write = xadc_axi_write_adc_reg,
 580	.setup = xadc_axi_setup,
 581	.get_dclk_rate = xadc_axi_get_dclk,
 582	.update_alarm = xadc_axi_update_alarm,
 583	.interrupt_handler = xadc_axi_interrupt_handler,
 584	.flags = XADC_FLAGS_BUFFERED | XADC_FLAGS_IRQ_OPTIONAL,
 585	.type = XADC_TYPE_US,
 586	/**
 587	 * Values below are for UltraScale+ (SYSMONE4) using internal reference.
 588	 * See https://docs.xilinx.com/v/u/en-US/ug580-ultrascale-sysmon
 589	 */
 590	.temp_scale = 509314,
 591	.temp_offset = 280231,
 592};
 593
 594static int _xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
 595	uint16_t mask, uint16_t val)
 596{
 597	uint16_t tmp;
 598	int ret;
 599
 600	ret = _xadc_read_adc_reg(xadc, reg, &tmp);
 601	if (ret)
 602		return ret;
 603
 604	return _xadc_write_adc_reg(xadc, reg, (tmp & ~mask) | val);
 605}
 606
 607static int xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
 608	uint16_t mask, uint16_t val)
 609{
 610	int ret;
 611
 612	mutex_lock(&xadc->mutex);
 613	ret = _xadc_update_adc_reg(xadc, reg, mask, val);
 614	mutex_unlock(&xadc->mutex);
 615
 616	return ret;
 617}
 618
 619static unsigned long xadc_get_dclk_rate(struct xadc *xadc)
 620{
 621	return xadc->ops->get_dclk_rate(xadc);
 622}
 623
 624static int xadc_update_scan_mode(struct iio_dev *indio_dev,
 625	const unsigned long *mask)
 626{
 627	struct xadc *xadc = iio_priv(indio_dev);
 628	size_t n;
 629	void *data;
 630
 631	n = bitmap_weight(mask, iio_get_masklength(indio_dev));
 632
 633	data = devm_krealloc_array(indio_dev->dev.parent, xadc->data,
 634				   n, sizeof(*xadc->data), GFP_KERNEL);
 635	if (!data)
 636		return -ENOMEM;
 637
 638	memset(data, 0, n * sizeof(*xadc->data));
 639	xadc->data = data;
 640
 641	return 0;
 642}
 643
 644static unsigned int xadc_scan_index_to_channel(unsigned int scan_index)
 645{
 646	switch (scan_index) {
 647	case 5:
 648		return XADC_REG_VCCPINT;
 649	case 6:
 650		return XADC_REG_VCCPAUX;
 651	case 7:
 652		return XADC_REG_VCCO_DDR;
 653	case 8:
 654		return XADC_REG_TEMP;
 655	case 9:
 656		return XADC_REG_VCCINT;
 657	case 10:
 658		return XADC_REG_VCCAUX;
 659	case 11:
 660		return XADC_REG_VPVN;
 661	case 12:
 662		return XADC_REG_VREFP;
 663	case 13:
 664		return XADC_REG_VREFN;
 665	case 14:
 666		return XADC_REG_VCCBRAM;
 667	default:
 668		return XADC_REG_VAUX(scan_index - 16);
 669	}
 670}
 671
 672static irqreturn_t xadc_trigger_handler(int irq, void *p)
 673{
 674	struct iio_poll_func *pf = p;
 675	struct iio_dev *indio_dev = pf->indio_dev;
 676	struct xadc *xadc = iio_priv(indio_dev);
 677	unsigned int chan;
 678	int i, j;
 679
 680	if (!xadc->data)
 681		goto out;
 682
 683	j = 0;
 684	iio_for_each_active_channel(indio_dev, i) {
 
 685		chan = xadc_scan_index_to_channel(i);
 686		xadc_read_adc_reg(xadc, chan, &xadc->data[j]);
 687		j++;
 688	}
 689
 690	iio_push_to_buffers(indio_dev, xadc->data);
 691
 692out:
 693	iio_trigger_notify_done(indio_dev->trig);
 694
 695	return IRQ_HANDLED;
 696}
 697
 698static int xadc_trigger_set_state(struct iio_trigger *trigger, bool state)
 699{
 700	struct xadc *xadc = iio_trigger_get_drvdata(trigger);
 701	unsigned long flags;
 702	unsigned int convst;
 703	unsigned int val;
 704	int ret = 0;
 705
 706	mutex_lock(&xadc->mutex);
 707
 708	if (state) {
 709		/* Only one of the two triggers can be active at a time. */
 710		if (xadc->trigger != NULL) {
 711			ret = -EBUSY;
 712			goto err_out;
 713		} else {
 714			xadc->trigger = trigger;
 715			if (trigger == xadc->convst_trigger)
 716				convst = XADC_CONF0_EC;
 717			else
 718				convst = 0;
 719		}
 720		ret = _xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF0_EC,
 721					convst);
 722		if (ret)
 723			goto err_out;
 724	} else {
 725		xadc->trigger = NULL;
 726	}
 727
 728	spin_lock_irqsave(&xadc->lock, flags);
 729	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
 730	xadc_write_reg(xadc, XADC_AXI_REG_IPISR, XADC_AXI_INT_EOS);
 731	if (state)
 732		val |= XADC_AXI_INT_EOS;
 733	else
 734		val &= ~XADC_AXI_INT_EOS;
 735	xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
 736	spin_unlock_irqrestore(&xadc->lock, flags);
 737
 738err_out:
 739	mutex_unlock(&xadc->mutex);
 740
 741	return ret;
 742}
 743
 744static const struct iio_trigger_ops xadc_trigger_ops = {
 745	.set_trigger_state = &xadc_trigger_set_state,
 746};
 747
 748static struct iio_trigger *xadc_alloc_trigger(struct iio_dev *indio_dev,
 749	const char *name)
 750{
 751	struct device *dev = indio_dev->dev.parent;
 752	struct iio_trigger *trig;
 753	int ret;
 754
 755	trig = devm_iio_trigger_alloc(dev, "%s%d-%s", indio_dev->name,
 756				      iio_device_id(indio_dev), name);
 757	if (trig == NULL)
 758		return ERR_PTR(-ENOMEM);
 759
 
 760	trig->ops = &xadc_trigger_ops;
 761	iio_trigger_set_drvdata(trig, iio_priv(indio_dev));
 762
 763	ret = devm_iio_trigger_register(dev, trig);
 764	if (ret)
 765		return ERR_PTR(ret);
 766
 767	return trig;
 
 
 
 
 768}
 769
 770static int xadc_power_adc_b(struct xadc *xadc, unsigned int seq_mode)
 771{
 772	uint16_t val;
 773
 774	/*
 775	 * As per datasheet the power-down bits are don't care in the
 776	 * UltraScale, but as per reality setting the power-down bit for the
 777	 * non-existing ADC-B powers down the main ADC, so just return and don't
 778	 * do anything.
 779	 */
 780	if (xadc->ops->type == XADC_TYPE_US)
 781		return 0;
 782
 783	/* Powerdown the ADC-B when it is not needed. */
 784	switch (seq_mode) {
 785	case XADC_CONF1_SEQ_SIMULTANEOUS:
 786	case XADC_CONF1_SEQ_INDEPENDENT:
 787		val = 0;
 788		break;
 789	default:
 790		val = XADC_CONF2_PD_ADC_B;
 791		break;
 792	}
 793
 794	return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_PD_MASK,
 795		val);
 796}
 797
 798static int xadc_get_seq_mode(struct xadc *xadc, unsigned long scan_mode)
 799{
 800	unsigned int aux_scan_mode = scan_mode >> 16;
 801
 802	/* UltraScale has only one ADC and supports only continuous mode */
 803	if (xadc->ops->type == XADC_TYPE_US)
 804		return XADC_CONF1_SEQ_CONTINUOUS;
 805
 806	if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_DUAL)
 807		return XADC_CONF1_SEQ_SIMULTANEOUS;
 808
 809	if ((aux_scan_mode & 0xff00) == 0 ||
 810		(aux_scan_mode & 0x00ff) == 0)
 811		return XADC_CONF1_SEQ_CONTINUOUS;
 812
 813	return XADC_CONF1_SEQ_SIMULTANEOUS;
 814}
 815
 816static int xadc_postdisable(struct iio_dev *indio_dev)
 817{
 818	struct xadc *xadc = iio_priv(indio_dev);
 819	unsigned long scan_mask;
 820	int ret;
 821	int i;
 822
 823	scan_mask = 1; /* Run calibration as part of the sequence */
 824	for (i = 0; i < indio_dev->num_channels; i++)
 825		scan_mask |= BIT(indio_dev->channels[i].scan_index);
 826
 827	/* Enable all channels and calibration */
 828	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
 829	if (ret)
 830		return ret;
 831
 832	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
 833	if (ret)
 834		return ret;
 835
 836	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
 837		XADC_CONF1_SEQ_CONTINUOUS);
 838	if (ret)
 839		return ret;
 840
 841	return xadc_power_adc_b(xadc, XADC_CONF1_SEQ_CONTINUOUS);
 842}
 843
 844static int xadc_preenable(struct iio_dev *indio_dev)
 845{
 846	struct xadc *xadc = iio_priv(indio_dev);
 847	unsigned long scan_mask;
 848	int seq_mode;
 849	int ret;
 850
 851	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
 852		XADC_CONF1_SEQ_DEFAULT);
 853	if (ret)
 854		goto err;
 855
 856	scan_mask = *indio_dev->active_scan_mask;
 857	seq_mode = xadc_get_seq_mode(xadc, scan_mask);
 858
 859	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
 860	if (ret)
 861		goto err;
 862
 863	/*
 864	 * In simultaneous mode the upper and lower aux channels are samples at
 865	 * the same time. In this mode the upper 8 bits in the sequencer
 866	 * register are don't care and the lower 8 bits control two channels
 867	 * each. As such we must set the bit if either the channel in the lower
 868	 * group or the upper group is enabled.
 869	 */
 870	if (seq_mode == XADC_CONF1_SEQ_SIMULTANEOUS)
 871		scan_mask = ((scan_mask >> 8) | scan_mask) & 0xff0000;
 872
 873	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
 874	if (ret)
 875		goto err;
 876
 877	ret = xadc_power_adc_b(xadc, seq_mode);
 878	if (ret)
 879		goto err;
 880
 881	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
 882		seq_mode);
 883	if (ret)
 884		goto err;
 885
 886	return 0;
 887err:
 888	xadc_postdisable(indio_dev);
 889	return ret;
 890}
 891
 892static const struct iio_buffer_setup_ops xadc_buffer_ops = {
 893	.preenable = &xadc_preenable,
 894	.postdisable = &xadc_postdisable,
 895};
 896
 897static int xadc_read_samplerate(struct xadc *xadc)
 898{
 899	unsigned int div;
 900	uint16_t val16;
 901	int ret;
 902
 903	ret = xadc_read_adc_reg(xadc, XADC_REG_CONF2, &val16);
 904	if (ret)
 905		return ret;
 906
 907	div = (val16 & XADC_CONF2_DIV_MASK) >> XADC_CONF2_DIV_OFFSET;
 908	if (div < 2)
 909		div = 2;
 910
 911	return xadc_get_dclk_rate(xadc) / div / 26;
 912}
 913
 914static int xadc_read_raw(struct iio_dev *indio_dev,
 915	struct iio_chan_spec const *chan, int *val, int *val2, long info)
 916{
 917	struct xadc *xadc = iio_priv(indio_dev);
 918	unsigned int bits = chan->scan_type.realbits;
 919	uint16_t val16;
 920	int ret;
 921
 922	switch (info) {
 923	case IIO_CHAN_INFO_RAW:
 924		if (iio_buffer_enabled(indio_dev))
 925			return -EBUSY;
 926		ret = xadc_read_adc_reg(xadc, chan->address, &val16);
 927		if (ret < 0)
 928			return ret;
 929
 930		val16 >>= chan->scan_type.shift;
 931		if (chan->scan_type.sign == 'u')
 932			*val = val16;
 933		else
 934			*val = sign_extend32(val16, bits - 1);
 935
 936		return IIO_VAL_INT;
 937	case IIO_CHAN_INFO_SCALE:
 938		switch (chan->type) {
 939		case IIO_VOLTAGE:
 940			/* V = (val * 3.0) / 2**bits */
 941			switch (chan->address) {
 942			case XADC_REG_VCCINT:
 943			case XADC_REG_VCCAUX:
 944			case XADC_REG_VREFP:
 945			case XADC_REG_VREFN:
 946			case XADC_REG_VCCBRAM:
 947			case XADC_REG_VCCPINT:
 948			case XADC_REG_VCCPAUX:
 949			case XADC_REG_VCCO_DDR:
 950				*val = 3000;
 951				break;
 952			default:
 953				*val = 1000;
 954				break;
 955			}
 956			*val2 = bits;
 957			return IIO_VAL_FRACTIONAL_LOG2;
 958		case IIO_TEMP:
 959			*val = xadc->ops->temp_scale;
 960			*val2 = bits;
 
 961			return IIO_VAL_FRACTIONAL_LOG2;
 962		default:
 963			return -EINVAL;
 964		}
 965	case IIO_CHAN_INFO_OFFSET:
 966		/* Only the temperature channel has an offset */
 967		*val = -((xadc->ops->temp_offset << bits) / xadc->ops->temp_scale);
 968		return IIO_VAL_INT;
 969	case IIO_CHAN_INFO_SAMP_FREQ:
 970		ret = xadc_read_samplerate(xadc);
 971		if (ret < 0)
 972			return ret;
 973
 974		*val = ret;
 975		return IIO_VAL_INT;
 976	default:
 977		return -EINVAL;
 978	}
 979}
 980
 981static int xadc_write_samplerate(struct xadc *xadc, int val)
 982{
 983	unsigned long clk_rate = xadc_get_dclk_rate(xadc);
 984	unsigned int div;
 985
 986	if (!clk_rate)
 987		return -EINVAL;
 988
 989	if (val <= 0)
 990		return -EINVAL;
 991
 992	/* Max. 150 kSPS */
 993	if (val > XADC_MAX_SAMPLERATE)
 994		val = XADC_MAX_SAMPLERATE;
 995
 996	val *= 26;
 997
 998	/* Min 1MHz */
 999	if (val < 1000000)
1000		val = 1000000;
1001
1002	/*
1003	 * We want to round down, but only if we do not exceed the 150 kSPS
1004	 * limit.
1005	 */
1006	div = clk_rate / val;
1007	if (clk_rate / div / 26 > XADC_MAX_SAMPLERATE)
1008		div++;
1009	if (div < 2)
1010		div = 2;
1011	else if (div > 0xff)
1012		div = 0xff;
1013
1014	return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_DIV_MASK,
1015		div << XADC_CONF2_DIV_OFFSET);
1016}
1017
1018static int xadc_write_raw(struct iio_dev *indio_dev,
1019	struct iio_chan_spec const *chan, int val, int val2, long info)
1020{
1021	struct xadc *xadc = iio_priv(indio_dev);
1022
1023	if (info != IIO_CHAN_INFO_SAMP_FREQ)
1024		return -EINVAL;
1025
1026	return xadc_write_samplerate(xadc, val);
1027}
1028
1029static const struct iio_event_spec xadc_temp_events[] = {
1030	{
1031		.type = IIO_EV_TYPE_THRESH,
1032		.dir = IIO_EV_DIR_RISING,
1033		.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
1034				BIT(IIO_EV_INFO_VALUE) |
1035				BIT(IIO_EV_INFO_HYSTERESIS),
1036	},
1037};
1038
1039/* Separate values for upper and lower thresholds, but only a shared enabled */
1040static const struct iio_event_spec xadc_voltage_events[] = {
1041	{
1042		.type = IIO_EV_TYPE_THRESH,
1043		.dir = IIO_EV_DIR_RISING,
1044		.mask_separate = BIT(IIO_EV_INFO_VALUE),
1045	}, {
1046		.type = IIO_EV_TYPE_THRESH,
1047		.dir = IIO_EV_DIR_FALLING,
1048		.mask_separate = BIT(IIO_EV_INFO_VALUE),
1049	}, {
1050		.type = IIO_EV_TYPE_THRESH,
1051		.dir = IIO_EV_DIR_EITHER,
1052		.mask_separate = BIT(IIO_EV_INFO_ENABLE),
1053	},
1054};
1055
1056#define XADC_CHAN_TEMP(_chan, _scan_index, _addr, _bits) { \
1057	.type = IIO_TEMP, \
1058	.indexed = 1, \
1059	.channel = (_chan), \
1060	.address = (_addr), \
1061	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1062		BIT(IIO_CHAN_INFO_SCALE) | \
1063		BIT(IIO_CHAN_INFO_OFFSET), \
1064	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
1065	.event_spec = xadc_temp_events, \
1066	.num_event_specs = ARRAY_SIZE(xadc_temp_events), \
1067	.scan_index = (_scan_index), \
1068	.scan_type = { \
1069		.sign = 'u', \
1070		.realbits = (_bits), \
1071		.storagebits = 16, \
1072		.shift = 16 - (_bits), \
1073		.endianness = IIO_CPU, \
1074	}, \
1075}
1076
1077#define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _bits, _ext, _alarm) { \
1078	.type = IIO_VOLTAGE, \
1079	.indexed = 1, \
1080	.channel = (_chan), \
1081	.address = (_addr), \
1082	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1083		BIT(IIO_CHAN_INFO_SCALE), \
1084	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
1085	.event_spec = (_alarm) ? xadc_voltage_events : NULL, \
1086	.num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \
1087	.scan_index = (_scan_index), \
1088	.scan_type = { \
1089		.sign = ((_addr) == XADC_REG_VREFN) ? 's' : 'u', \
1090		.realbits = (_bits), \
1091		.storagebits = 16, \
1092		.shift = 16 - (_bits), \
1093		.endianness = IIO_CPU, \
1094	}, \
1095	.extend_name = _ext, \
1096}
1097
1098/* 7 Series */
1099#define XADC_7S_CHAN_TEMP(_chan, _scan_index, _addr) \
1100	XADC_CHAN_TEMP(_chan, _scan_index, _addr, 12)
1101#define XADC_7S_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) \
1102	XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, 12, _ext, _alarm)
1103
1104static const struct iio_chan_spec xadc_7s_channels[] = {
1105	XADC_7S_CHAN_TEMP(0, 8, XADC_REG_TEMP),
1106	XADC_7S_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
1107	XADC_7S_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
1108	XADC_7S_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
1109	XADC_7S_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpint", true),
1110	XADC_7S_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpaux", true),
1111	XADC_7S_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccoddr", true),
1112	XADC_7S_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
1113	XADC_7S_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
1114	XADC_7S_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
1115	XADC_7S_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
1116	XADC_7S_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
1117	XADC_7S_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
1118	XADC_7S_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
1119	XADC_7S_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
1120	XADC_7S_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
1121	XADC_7S_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
1122	XADC_7S_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
1123	XADC_7S_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
1124	XADC_7S_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
1125	XADC_7S_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
1126	XADC_7S_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
1127	XADC_7S_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
1128	XADC_7S_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
1129	XADC_7S_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
1130	XADC_7S_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
1131};
1132
1133/* UltraScale */
1134#define XADC_US_CHAN_TEMP(_chan, _scan_index, _addr) \
1135	XADC_CHAN_TEMP(_chan, _scan_index, _addr, 10)
1136#define XADC_US_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) \
1137	XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, 10, _ext, _alarm)
1138
1139static const struct iio_chan_spec xadc_us_channels[] = {
1140	XADC_US_CHAN_TEMP(0, 8, XADC_REG_TEMP),
1141	XADC_US_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
1142	XADC_US_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
1143	XADC_US_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
1144	XADC_US_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpsintlp", true),
1145	XADC_US_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpsintfp", true),
1146	XADC_US_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccpsaux", true),
1147	XADC_US_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
1148	XADC_US_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
1149	XADC_US_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
1150	XADC_US_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
1151	XADC_US_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
1152	XADC_US_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
1153	XADC_US_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
1154	XADC_US_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
1155	XADC_US_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
1156	XADC_US_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
1157	XADC_US_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
1158	XADC_US_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
1159	XADC_US_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
1160	XADC_US_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
1161	XADC_US_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
1162	XADC_US_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
1163	XADC_US_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
1164	XADC_US_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
1165	XADC_US_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
1166};
1167
1168static const struct iio_info xadc_info = {
1169	.read_raw = &xadc_read_raw,
1170	.write_raw = &xadc_write_raw,
1171	.read_event_config = &xadc_read_event_config,
1172	.write_event_config = &xadc_write_event_config,
1173	.read_event_value = &xadc_read_event_value,
1174	.write_event_value = &xadc_write_event_value,
1175	.update_scan_mode = &xadc_update_scan_mode,
1176};
1177
1178static const struct of_device_id xadc_of_match_table[] = {
1179	{
1180		.compatible = "xlnx,zynq-xadc-1.00.a",
1181		.data = &xadc_zynq_ops
1182	}, {
1183		.compatible = "xlnx,axi-xadc-1.00.a",
1184		.data = &xadc_7s_axi_ops
1185	}, {
1186		.compatible = "xlnx,system-management-wiz-1.3",
1187		.data = &xadc_us_axi_ops
1188	},
1189	{ },
1190};
1191MODULE_DEVICE_TABLE(of, xadc_of_match_table);
1192
1193static int xadc_parse_dt(struct iio_dev *indio_dev, unsigned int *conf, int irq)
 
1194{
1195	struct device *dev = indio_dev->dev.parent;
1196	struct xadc *xadc = iio_priv(indio_dev);
1197	const struct iio_chan_spec *channel_templates;
1198	struct iio_chan_spec *channels, *chan;
1199	struct fwnode_handle *chan_node, *child;
1200	unsigned int max_channels;
1201	unsigned int num_channels;
1202	const char *external_mux;
1203	u32 ext_mux_chan;
1204	u32 reg;
1205	int ret;
1206	int i;
1207
1208	*conf = 0;
1209
1210	ret = device_property_read_string(dev, "xlnx,external-mux", &external_mux);
1211	if (ret < 0 || strcasecmp(external_mux, "none") == 0)
1212		xadc->external_mux_mode = XADC_EXTERNAL_MUX_NONE;
1213	else if (strcasecmp(external_mux, "single") == 0)
1214		xadc->external_mux_mode = XADC_EXTERNAL_MUX_SINGLE;
1215	else if (strcasecmp(external_mux, "dual") == 0)
1216		xadc->external_mux_mode = XADC_EXTERNAL_MUX_DUAL;
1217	else
1218		return -EINVAL;
1219
1220	if (xadc->external_mux_mode != XADC_EXTERNAL_MUX_NONE) {
1221		ret = device_property_read_u32(dev, "xlnx,external-mux-channel", &ext_mux_chan);
 
1222		if (ret < 0)
1223			return ret;
1224
1225		if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_SINGLE) {
1226			if (ext_mux_chan == 0)
1227				ext_mux_chan = XADC_REG_VPVN;
1228			else if (ext_mux_chan <= 16)
1229				ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1230			else
1231				return -EINVAL;
1232		} else {
1233			if (ext_mux_chan > 0 && ext_mux_chan <= 8)
1234				ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1235			else
1236				return -EINVAL;
1237		}
1238
1239		*conf |= XADC_CONF0_MUX | XADC_CONF0_CHAN(ext_mux_chan);
1240	}
1241	if (xadc->ops->type == XADC_TYPE_S7) {
1242		channel_templates = xadc_7s_channels;
1243		max_channels = ARRAY_SIZE(xadc_7s_channels);
1244	} else {
1245		channel_templates = xadc_us_channels;
1246		max_channels = ARRAY_SIZE(xadc_us_channels);
1247	}
1248	channels = devm_kmemdup(dev, channel_templates,
1249				sizeof(channels[0]) * max_channels, GFP_KERNEL);
1250	if (!channels)
1251		return -ENOMEM;
1252
1253	num_channels = 9;
1254	chan = &channels[9];
1255
1256	chan_node = device_get_named_child_node(dev, "xlnx,channels");
1257	fwnode_for_each_child_node(chan_node, child) {
1258		if (num_channels >= max_channels) {
1259			fwnode_handle_put(child);
1260			break;
1261		}
 
1262
1263		ret = fwnode_property_read_u32(child, "reg", &reg);
1264		if (ret || reg > 16)
1265			continue;
1266
1267		if (fwnode_property_read_bool(child, "xlnx,bipolar"))
1268			chan->scan_type.sign = 's';
1269
1270		if (reg == 0) {
1271			chan->scan_index = 11;
1272			chan->address = XADC_REG_VPVN;
1273		} else {
1274			chan->scan_index = 15 + reg;
1275			chan->address = XADC_REG_VAUX(reg - 1);
1276		}
1277		num_channels++;
1278		chan++;
1279	}
1280	fwnode_handle_put(chan_node);
1281
1282	/* No IRQ => no events */
1283	if (irq <= 0) {
1284		for (i = 0; i < num_channels; i++) {
1285			channels[i].event_spec = NULL;
1286			channels[i].num_event_specs = 0;
1287		}
1288	}
 
1289
1290	indio_dev->num_channels = num_channels;
1291	indio_dev->channels = devm_krealloc_array(dev, channels,
1292						  num_channels, sizeof(*channels),
1293						  GFP_KERNEL);
1294	/* If we can't resize the channels array, just use the original */
1295	if (!indio_dev->channels)
1296		indio_dev->channels = channels;
1297
1298	return 0;
1299}
1300
1301static const char * const xadc_type_names[] = {
1302	[XADC_TYPE_S7] = "xadc",
1303	[XADC_TYPE_US] = "xilinx-system-monitor",
1304};
1305
1306static void xadc_cancel_delayed_work(void *data)
1307{
1308	struct delayed_work *work = data;
1309
1310	cancel_delayed_work_sync(work);
1311}
1312
1313static int xadc_probe(struct platform_device *pdev)
1314{
1315	struct device *dev = &pdev->dev;
1316	const struct xadc_ops *ops;
1317	struct iio_dev *indio_dev;
1318	unsigned int bipolar_mask;
1319	unsigned int conf0;
1320	struct xadc *xadc;
1321	int ret;
1322	int irq;
1323	int i;
1324
1325	ops = device_get_match_data(dev);
1326	if (!ops)
 
 
 
1327		return -EINVAL;
1328
1329	irq = platform_get_irq_optional(pdev, 0);
1330	if (irq < 0 &&
1331	    (irq != -ENXIO || !(ops->flags & XADC_FLAGS_IRQ_OPTIONAL)))
1332		return irq;
1333
1334	indio_dev = devm_iio_device_alloc(dev, sizeof(*xadc));
1335	if (!indio_dev)
1336		return -ENOMEM;
1337
1338	xadc = iio_priv(indio_dev);
1339	xadc->ops = ops;
 
1340	init_completion(&xadc->completion);
1341	mutex_init(&xadc->mutex);
1342	spin_lock_init(&xadc->lock);
1343	INIT_DELAYED_WORK(&xadc->zynq_unmask_work, xadc_zynq_unmask_worker);
1344
1345	xadc->base = devm_platform_ioremap_resource(pdev, 0);
1346	if (IS_ERR(xadc->base))
1347		return PTR_ERR(xadc->base);
1348
1349	indio_dev->name = xadc_type_names[xadc->ops->type];
1350	indio_dev->modes = INDIO_DIRECT_MODE;
1351	indio_dev->info = &xadc_info;
1352
1353	ret = xadc_parse_dt(indio_dev, &conf0, irq);
1354	if (ret)
1355		return ret;
1356
1357	if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1358		ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
1359						      &iio_pollfunc_store_time,
1360						      &xadc_trigger_handler,
1361						      &xadc_buffer_ops);
1362		if (ret)
1363			return ret;
1364
1365		if (irq > 0) {
1366			xadc->convst_trigger = xadc_alloc_trigger(indio_dev, "convst");
1367			if (IS_ERR(xadc->convst_trigger))
1368				return PTR_ERR(xadc->convst_trigger);
1369
1370			xadc->samplerate_trigger = xadc_alloc_trigger(indio_dev,
1371				"samplerate");
1372			if (IS_ERR(xadc->samplerate_trigger))
1373				return PTR_ERR(xadc->samplerate_trigger);
 
1374		}
1375	}
1376
1377	xadc->clk = devm_clk_get_enabled(dev, NULL);
1378	if (IS_ERR(xadc->clk))
1379		return PTR_ERR(xadc->clk);
 
 
 
 
 
 
1380
1381	/*
1382	 * Make sure not to exceed the maximum samplerate since otherwise the
1383	 * resulting interrupt storm will soft-lock the system.
1384	 */
1385	if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1386		ret = xadc_read_samplerate(xadc);
1387		if (ret < 0)
1388			return ret;
1389
1390		if (ret > XADC_MAX_SAMPLERATE) {
1391			ret = xadc_write_samplerate(xadc, XADC_MAX_SAMPLERATE);
1392			if (ret < 0)
1393				return ret;
1394		}
1395	}
1396
1397	if (irq > 0) {
1398		ret = devm_request_irq(dev, irq, xadc->ops->interrupt_handler,
1399				       0, dev_name(dev), indio_dev);
1400		if (ret)
1401			return ret;
1402
1403		ret = devm_add_action_or_reset(dev, xadc_cancel_delayed_work,
1404					       &xadc->zynq_unmask_work);
1405		if (ret)
1406			return ret;
1407	}
1408
1409	ret = xadc->ops->setup(pdev, indio_dev, irq);
1410	if (ret)
1411		return ret;
1412
1413	for (i = 0; i < 16; i++)
1414		xadc_read_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1415			&xadc->threshold[i]);
1416
1417	ret = xadc_write_adc_reg(xadc, XADC_REG_CONF0, conf0);
1418	if (ret)
1419		return ret;
1420
1421	bipolar_mask = 0;
1422	for (i = 0; i < indio_dev->num_channels; i++) {
1423		if (indio_dev->channels[i].scan_type.sign == 's')
1424			bipolar_mask |= BIT(indio_dev->channels[i].scan_index);
1425	}
1426
1427	ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(0), bipolar_mask);
1428	if (ret)
1429		return ret;
1430
1431	ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(1),
1432		bipolar_mask >> 16);
1433	if (ret)
1434		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1435
1436	/* Go to non-buffered mode */
1437	xadc_postdisable(indio_dev);
1438
1439	return devm_iio_device_register(dev, indio_dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1440}
1441
1442static struct platform_driver xadc_driver = {
1443	.probe = xadc_probe,
 
1444	.driver = {
1445		.name = "xadc",
1446		.of_match_table = xadc_of_match_table,
1447	},
1448};
1449module_platform_driver(xadc_driver);
1450
1451MODULE_LICENSE("GPL v2");
1452MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
1453MODULE_DESCRIPTION("Xilinx XADC IIO driver");