Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Xilinx XADC driver
   4 *
   5 * Copyright 2013-2014 Analog Devices Inc.
   6 *  Author: Lars-Peter Clausen <lars@metafoo.de>
   7 *
   8 * Documentation for the parts can be found at:
   9 *  - XADC hardmacro: Xilinx UG480
  10 *  - ZYNQ XADC interface: Xilinx UG585
  11 *  - AXI XADC interface: Xilinx PG019
  12 */
  13
  14#include <linux/clk.h>
  15#include <linux/device.h>
  16#include <linux/err.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/kernel.h>
  20#include <linux/module.h>
  21#include <linux/of.h>
  22#include <linux/platform_device.h>
  23#include <linux/slab.h>
  24#include <linux/sysfs.h>
  25
  26#include <linux/iio/buffer.h>
  27#include <linux/iio/events.h>
  28#include <linux/iio/iio.h>
  29#include <linux/iio/sysfs.h>
  30#include <linux/iio/trigger.h>
  31#include <linux/iio/trigger_consumer.h>
  32#include <linux/iio/triggered_buffer.h>
  33
  34#include "xilinx-xadc.h"
  35
  36static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT = 500;
  37
  38/* ZYNQ register definitions */
  39#define XADC_ZYNQ_REG_CFG	0x00
  40#define XADC_ZYNQ_REG_INTSTS	0x04
  41#define XADC_ZYNQ_REG_INTMSK	0x08
  42#define XADC_ZYNQ_REG_STATUS	0x0c
  43#define XADC_ZYNQ_REG_CFIFO	0x10
  44#define XADC_ZYNQ_REG_DFIFO	0x14
  45#define XADC_ZYNQ_REG_CTL		0x18
  46
  47#define XADC_ZYNQ_CFG_ENABLE		BIT(31)
  48#define XADC_ZYNQ_CFG_CFIFOTH_MASK	(0xf << 20)
  49#define XADC_ZYNQ_CFG_CFIFOTH_OFFSET	20
  50#define XADC_ZYNQ_CFG_DFIFOTH_MASK	(0xf << 16)
  51#define XADC_ZYNQ_CFG_DFIFOTH_OFFSET	16
  52#define XADC_ZYNQ_CFG_WEDGE		BIT(13)
  53#define XADC_ZYNQ_CFG_REDGE		BIT(12)
  54#define XADC_ZYNQ_CFG_TCKRATE_MASK	(0x3 << 8)
  55#define XADC_ZYNQ_CFG_TCKRATE_DIV2	(0x0 << 8)
  56#define XADC_ZYNQ_CFG_TCKRATE_DIV4	(0x1 << 8)
  57#define XADC_ZYNQ_CFG_TCKRATE_DIV8	(0x2 << 8)
  58#define XADC_ZYNQ_CFG_TCKRATE_DIV16	(0x3 << 8)
  59#define XADC_ZYNQ_CFG_IGAP_MASK		0x1f
  60#define XADC_ZYNQ_CFG_IGAP(x)		(x)
  61
  62#define XADC_ZYNQ_INT_CFIFO_LTH		BIT(9)
  63#define XADC_ZYNQ_INT_DFIFO_GTH		BIT(8)
  64#define XADC_ZYNQ_INT_ALARM_MASK	0xff
  65#define XADC_ZYNQ_INT_ALARM_OFFSET	0
  66
  67#define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK	(0xf << 16)
  68#define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET	16
  69#define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK	(0xf << 12)
  70#define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET	12
  71#define XADC_ZYNQ_STATUS_CFIFOF		BIT(11)
  72#define XADC_ZYNQ_STATUS_CFIFOE		BIT(10)
  73#define XADC_ZYNQ_STATUS_DFIFOF		BIT(9)
  74#define XADC_ZYNQ_STATUS_DFIFOE		BIT(8)
  75#define XADC_ZYNQ_STATUS_OT		BIT(7)
  76#define XADC_ZYNQ_STATUS_ALM(x)		BIT(x)
  77
  78#define XADC_ZYNQ_CTL_RESET		BIT(4)
  79
  80#define XADC_ZYNQ_CMD_NOP		0x00
  81#define XADC_ZYNQ_CMD_READ		0x01
  82#define XADC_ZYNQ_CMD_WRITE		0x02
  83
  84#define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data))
  85
  86/* AXI register definitions */
  87#define XADC_AXI_REG_RESET		0x00
  88#define XADC_AXI_REG_STATUS		0x04
  89#define XADC_AXI_REG_ALARM_STATUS	0x08
  90#define XADC_AXI_REG_CONVST		0x0c
  91#define XADC_AXI_REG_XADC_RESET		0x10
  92#define XADC_AXI_REG_GIER		0x5c
  93#define XADC_AXI_REG_IPISR		0x60
  94#define XADC_AXI_REG_IPIER		0x68
  95#define XADC_AXI_ADC_REG_OFFSET		0x200
  96
  97#define XADC_AXI_RESET_MAGIC		0xa
  98#define XADC_AXI_GIER_ENABLE		BIT(31)
  99
 100#define XADC_AXI_INT_EOS		BIT(4)
 101#define XADC_AXI_INT_ALARM_MASK		0x3c0f
 102
 103#define XADC_FLAGS_BUFFERED BIT(0)
 104
 105/*
 106 * The XADC hardware supports a samplerate of up to 1MSPS. Unfortunately it does
 107 * not have a hardware FIFO. Which means an interrupt is generated for each
 108 * conversion sequence. At 1MSPS sample rate the CPU in ZYNQ7000 is completely
 109 * overloaded by the interrupts that it soft-lockups. For this reason the driver
 110 * limits the maximum samplerate 150kSPS. At this rate the CPU is fairly busy,
 111 * but still responsive.
 112 */
 113#define XADC_MAX_SAMPLERATE 150000
 114
 115static void xadc_write_reg(struct xadc *xadc, unsigned int reg,
 116	uint32_t val)
 117{
 118	writel(val, xadc->base + reg);
 119}
 120
 121static void xadc_read_reg(struct xadc *xadc, unsigned int reg,
 122	uint32_t *val)
 123{
 124	*val = readl(xadc->base + reg);
 125}
 126
 127/*
 128 * The ZYNQ interface uses two asynchronous FIFOs for communication with the
 129 * XADC. Reads and writes to the XADC register are performed by submitting a
 130 * request to the command FIFO (CFIFO), once the request has been completed the
 131 * result can be read from the data FIFO (DFIFO). The method currently used in
 132 * this driver is to submit the request for a read/write operation, then go to
 133 * sleep and wait for an interrupt that signals that a response is available in
 134 * the data FIFO.
 135 */
 136
 137static void xadc_zynq_write_fifo(struct xadc *xadc, uint32_t *cmd,
 138	unsigned int n)
 139{
 140	unsigned int i;
 141
 142	for (i = 0; i < n; i++)
 143		xadc_write_reg(xadc, XADC_ZYNQ_REG_CFIFO, cmd[i]);
 144}
 145
 146static void xadc_zynq_drain_fifo(struct xadc *xadc)
 147{
 148	uint32_t status, tmp;
 149
 150	xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
 151
 152	while (!(status & XADC_ZYNQ_STATUS_DFIFOE)) {
 153		xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
 154		xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
 155	}
 156}
 157
 158static void xadc_zynq_update_intmsk(struct xadc *xadc, unsigned int mask,
 159	unsigned int val)
 160{
 161	xadc->zynq_intmask &= ~mask;
 162	xadc->zynq_intmask |= val;
 163
 164	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK,
 165		xadc->zynq_intmask | xadc->zynq_masked_alarm);
 166}
 167
 168static int xadc_zynq_write_adc_reg(struct xadc *xadc, unsigned int reg,
 169	uint16_t val)
 170{
 171	uint32_t cmd[1];
 172	uint32_t tmp;
 173	int ret;
 174
 175	spin_lock_irq(&xadc->lock);
 176	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
 177			XADC_ZYNQ_INT_DFIFO_GTH);
 178
 179	reinit_completion(&xadc->completion);
 180
 181	cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE, reg, val);
 182	xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
 183	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
 184	tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
 185	tmp |= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
 186	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
 187
 188	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
 189	spin_unlock_irq(&xadc->lock);
 190
 191	ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
 192	if (ret == 0)
 193		ret = -EIO;
 194	else
 195		ret = 0;
 196
 197	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
 198
 199	return ret;
 200}
 201
 202static int xadc_zynq_read_adc_reg(struct xadc *xadc, unsigned int reg,
 203	uint16_t *val)
 204{
 205	uint32_t cmd[2];
 206	uint32_t resp, tmp;
 207	int ret;
 208
 209	cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ, reg, 0);
 210	cmd[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP, 0, 0);
 211
 212	spin_lock_irq(&xadc->lock);
 213	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
 214			XADC_ZYNQ_INT_DFIFO_GTH);
 215	xadc_zynq_drain_fifo(xadc);
 216	reinit_completion(&xadc->completion);
 217
 218	xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
 219	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
 220	tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
 221	tmp |= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
 222	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
 223
 224	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
 225	spin_unlock_irq(&xadc->lock);
 226	ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
 227	if (ret == 0)
 228		ret = -EIO;
 229	if (ret < 0)
 230		return ret;
 231
 232	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
 233	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
 234
 235	*val = resp & 0xffff;
 236
 237	return 0;
 238}
 239
 240static unsigned int xadc_zynq_transform_alarm(unsigned int alarm)
 241{
 242	return ((alarm & 0x80) >> 4) |
 243		((alarm & 0x78) << 1) |
 244		(alarm & 0x07);
 245}
 246
 247/*
 248 * The ZYNQ threshold interrupts are level sensitive. Since we can't make the
 249 * threshold condition go way from within the interrupt handler, this means as
 250 * soon as a threshold condition is present we would enter the interrupt handler
 251 * again and again. To work around this we mask all active thresholds interrupts
 252 * in the interrupt handler and start a timer. In this timer we poll the
 253 * interrupt status and only if the interrupt is inactive we unmask it again.
 254 */
 255static void xadc_zynq_unmask_worker(struct work_struct *work)
 256{
 257	struct xadc *xadc = container_of(work, struct xadc, zynq_unmask_work.work);
 258	unsigned int misc_sts, unmask;
 259
 260	xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &misc_sts);
 261
 262	misc_sts &= XADC_ZYNQ_INT_ALARM_MASK;
 263
 264	spin_lock_irq(&xadc->lock);
 265
 266	/* Clear those bits which are not active anymore */
 267	unmask = (xadc->zynq_masked_alarm ^ misc_sts) & xadc->zynq_masked_alarm;
 268	xadc->zynq_masked_alarm &= misc_sts;
 269
 270	/* Also clear those which are masked out anyway */
 271	xadc->zynq_masked_alarm &= ~xadc->zynq_intmask;
 272
 273	/* Clear the interrupts before we unmask them */
 274	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, unmask);
 275
 276	xadc_zynq_update_intmsk(xadc, 0, 0);
 277
 278	spin_unlock_irq(&xadc->lock);
 279
 280	/* if still pending some alarm re-trigger the timer */
 281	if (xadc->zynq_masked_alarm) {
 282		schedule_delayed_work(&xadc->zynq_unmask_work,
 283				msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
 284	}
 285
 286}
 287
 288static irqreturn_t xadc_zynq_interrupt_handler(int irq, void *devid)
 289{
 290	struct iio_dev *indio_dev = devid;
 291	struct xadc *xadc = iio_priv(indio_dev);
 292	uint32_t status;
 293
 294	xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
 295
 296	status &= ~(xadc->zynq_intmask | xadc->zynq_masked_alarm);
 297
 298	if (!status)
 299		return IRQ_NONE;
 300
 301	spin_lock(&xadc->lock);
 302
 303	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status);
 304
 305	if (status & XADC_ZYNQ_INT_DFIFO_GTH) {
 306		xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
 307			XADC_ZYNQ_INT_DFIFO_GTH);
 308		complete(&xadc->completion);
 309	}
 310
 311	status &= XADC_ZYNQ_INT_ALARM_MASK;
 312	if (status) {
 313		xadc->zynq_masked_alarm |= status;
 314		/*
 315		 * mask the current event interrupt,
 316		 * unmask it when the interrupt is no more active.
 317		 */
 318		xadc_zynq_update_intmsk(xadc, 0, 0);
 319
 320		xadc_handle_events(indio_dev,
 321				xadc_zynq_transform_alarm(status));
 322
 323		/* unmask the required interrupts in timer. */
 324		schedule_delayed_work(&xadc->zynq_unmask_work,
 325				msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
 326	}
 327	spin_unlock(&xadc->lock);
 328
 329	return IRQ_HANDLED;
 330}
 331
 332#define XADC_ZYNQ_TCK_RATE_MAX 50000000
 333#define XADC_ZYNQ_IGAP_DEFAULT 20
 334#define XADC_ZYNQ_PCAP_RATE_MAX 200000000
 335
 336static int xadc_zynq_setup(struct platform_device *pdev,
 337	struct iio_dev *indio_dev, int irq)
 338{
 339	struct xadc *xadc = iio_priv(indio_dev);
 340	unsigned long pcap_rate;
 341	unsigned int tck_div;
 342	unsigned int div;
 343	unsigned int igap;
 344	unsigned int tck_rate;
 345	int ret;
 346
 347	/* TODO: Figure out how to make igap and tck_rate configurable */
 348	igap = XADC_ZYNQ_IGAP_DEFAULT;
 349	tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
 350
 351	xadc->zynq_intmask = ~0;
 352
 353	pcap_rate = clk_get_rate(xadc->clk);
 354	if (!pcap_rate)
 355		return -EINVAL;
 356
 357	if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
 358		ret = clk_set_rate(xadc->clk,
 359				   (unsigned long)XADC_ZYNQ_PCAP_RATE_MAX);
 360		if (ret)
 361			return ret;
 362	}
 363
 364	if (tck_rate > pcap_rate / 2) {
 365		div = 2;
 366	} else {
 367		div = pcap_rate / tck_rate;
 368		if (pcap_rate / div > XADC_ZYNQ_TCK_RATE_MAX)
 369			div++;
 370	}
 371
 372	if (div <= 3)
 373		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV2;
 374	else if (div <= 7)
 375		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV4;
 376	else if (div <= 15)
 377		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV8;
 378	else
 379		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV16;
 380
 381	xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, XADC_ZYNQ_CTL_RESET);
 382	xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, 0);
 383	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, ~0);
 384	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask);
 385	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, XADC_ZYNQ_CFG_ENABLE |
 386			XADC_ZYNQ_CFG_REDGE | XADC_ZYNQ_CFG_WEDGE |
 387			tck_div | XADC_ZYNQ_CFG_IGAP(igap));
 388
 389	if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
 390		ret = clk_set_rate(xadc->clk, pcap_rate);
 391		if (ret)
 392			return ret;
 393	}
 394
 395	return 0;
 396}
 397
 398static unsigned long xadc_zynq_get_dclk_rate(struct xadc *xadc)
 399{
 400	unsigned int div;
 401	uint32_t val;
 402
 403	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &val);
 404
 405	switch (val & XADC_ZYNQ_CFG_TCKRATE_MASK) {
 406	case XADC_ZYNQ_CFG_TCKRATE_DIV4:
 407		div = 4;
 408		break;
 409	case XADC_ZYNQ_CFG_TCKRATE_DIV8:
 410		div = 8;
 411		break;
 412	case XADC_ZYNQ_CFG_TCKRATE_DIV16:
 413		div = 16;
 414		break;
 415	default:
 416		div = 2;
 417		break;
 418	}
 419
 420	return clk_get_rate(xadc->clk) / div;
 421}
 422
 423static void xadc_zynq_update_alarm(struct xadc *xadc, unsigned int alarm)
 424{
 425	unsigned long flags;
 426	uint32_t status;
 427
 428	/* Move OT to bit 7 */
 429	alarm = ((alarm & 0x08) << 4) | ((alarm & 0xf0) >> 1) | (alarm & 0x07);
 430
 431	spin_lock_irqsave(&xadc->lock, flags);
 432
 433	/* Clear previous interrupts if any. */
 434	xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
 435	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status & alarm);
 436
 437	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_ALARM_MASK,
 438		~alarm & XADC_ZYNQ_INT_ALARM_MASK);
 439
 440	spin_unlock_irqrestore(&xadc->lock, flags);
 441}
 442
 443static const struct xadc_ops xadc_zynq_ops = {
 444	.read = xadc_zynq_read_adc_reg,
 445	.write = xadc_zynq_write_adc_reg,
 446	.setup = xadc_zynq_setup,
 447	.get_dclk_rate = xadc_zynq_get_dclk_rate,
 448	.interrupt_handler = xadc_zynq_interrupt_handler,
 449	.update_alarm = xadc_zynq_update_alarm,
 450};
 451
 452static int xadc_axi_read_adc_reg(struct xadc *xadc, unsigned int reg,
 453	uint16_t *val)
 454{
 455	uint32_t val32;
 456
 457	xadc_read_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, &val32);
 458	*val = val32 & 0xffff;
 459
 460	return 0;
 461}
 462
 463static int xadc_axi_write_adc_reg(struct xadc *xadc, unsigned int reg,
 464	uint16_t val)
 465{
 466	xadc_write_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, val);
 467
 468	return 0;
 469}
 470
 471static int xadc_axi_setup(struct platform_device *pdev,
 472	struct iio_dev *indio_dev, int irq)
 473{
 474	struct xadc *xadc = iio_priv(indio_dev);
 475
 476	xadc_write_reg(xadc, XADC_AXI_REG_RESET, XADC_AXI_RESET_MAGIC);
 477	xadc_write_reg(xadc, XADC_AXI_REG_GIER, XADC_AXI_GIER_ENABLE);
 478
 479	return 0;
 480}
 481
 482static irqreturn_t xadc_axi_interrupt_handler(int irq, void *devid)
 483{
 484	struct iio_dev *indio_dev = devid;
 485	struct xadc *xadc = iio_priv(indio_dev);
 486	uint32_t status, mask;
 487	unsigned int events;
 488
 489	xadc_read_reg(xadc, XADC_AXI_REG_IPISR, &status);
 490	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &mask);
 491	status &= mask;
 492
 493	if (!status)
 494		return IRQ_NONE;
 495
 496	if ((status & XADC_AXI_INT_EOS) && xadc->trigger)
 497		iio_trigger_poll(xadc->trigger);
 498
 499	if (status & XADC_AXI_INT_ALARM_MASK) {
 500		/*
 501		 * The order of the bits in the AXI-XADC status register does
 502		 * not match the order of the bits in the XADC alarm enable
 503		 * register. xadc_handle_events() expects the events to be in
 504		 * the same order as the XADC alarm enable register.
 505		 */
 506		events = (status & 0x000e) >> 1;
 507		events |= (status & 0x0001) << 3;
 508		events |= (status & 0x3c00) >> 6;
 509		xadc_handle_events(indio_dev, events);
 510	}
 511
 512	xadc_write_reg(xadc, XADC_AXI_REG_IPISR, status);
 513
 514	return IRQ_HANDLED;
 515}
 516
 517static void xadc_axi_update_alarm(struct xadc *xadc, unsigned int alarm)
 518{
 519	uint32_t val;
 520	unsigned long flags;
 521
 522	/*
 523	 * The order of the bits in the AXI-XADC status register does not match
 524	 * the order of the bits in the XADC alarm enable register. We get
 525	 * passed the alarm mask in the same order as in the XADC alarm enable
 526	 * register.
 527	 */
 528	alarm = ((alarm & 0x07) << 1) | ((alarm & 0x08) >> 3) |
 529			((alarm & 0xf0) << 6);
 530
 531	spin_lock_irqsave(&xadc->lock, flags);
 532	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
 533	val &= ~XADC_AXI_INT_ALARM_MASK;
 534	val |= alarm;
 535	xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
 536	spin_unlock_irqrestore(&xadc->lock, flags);
 537}
 538
 539static unsigned long xadc_axi_get_dclk(struct xadc *xadc)
 540{
 541	return clk_get_rate(xadc->clk);
 542}
 543
 544static const struct xadc_ops xadc_axi_ops = {
 545	.read = xadc_axi_read_adc_reg,
 546	.write = xadc_axi_write_adc_reg,
 547	.setup = xadc_axi_setup,
 548	.get_dclk_rate = xadc_axi_get_dclk,
 549	.update_alarm = xadc_axi_update_alarm,
 550	.interrupt_handler = xadc_axi_interrupt_handler,
 551	.flags = XADC_FLAGS_BUFFERED,
 552};
 553
 554static int _xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
 555	uint16_t mask, uint16_t val)
 556{
 557	uint16_t tmp;
 558	int ret;
 559
 560	ret = _xadc_read_adc_reg(xadc, reg, &tmp);
 561	if (ret)
 562		return ret;
 563
 564	return _xadc_write_adc_reg(xadc, reg, (tmp & ~mask) | val);
 565}
 566
 567static int xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
 568	uint16_t mask, uint16_t val)
 569{
 570	int ret;
 571
 572	mutex_lock(&xadc->mutex);
 573	ret = _xadc_update_adc_reg(xadc, reg, mask, val);
 574	mutex_unlock(&xadc->mutex);
 575
 576	return ret;
 577}
 578
 579static unsigned long xadc_get_dclk_rate(struct xadc *xadc)
 580{
 581	return xadc->ops->get_dclk_rate(xadc);
 582}
 583
 584static int xadc_update_scan_mode(struct iio_dev *indio_dev,
 585	const unsigned long *mask)
 586{
 587	struct xadc *xadc = iio_priv(indio_dev);
 588	unsigned int n;
 589
 590	n = bitmap_weight(mask, indio_dev->masklength);
 591
 592	kfree(xadc->data);
 593	xadc->data = kcalloc(n, sizeof(*xadc->data), GFP_KERNEL);
 594	if (!xadc->data)
 595		return -ENOMEM;
 596
 597	return 0;
 598}
 599
 600static unsigned int xadc_scan_index_to_channel(unsigned int scan_index)
 601{
 602	switch (scan_index) {
 603	case 5:
 604		return XADC_REG_VCCPINT;
 605	case 6:
 606		return XADC_REG_VCCPAUX;
 607	case 7:
 608		return XADC_REG_VCCO_DDR;
 609	case 8:
 610		return XADC_REG_TEMP;
 611	case 9:
 612		return XADC_REG_VCCINT;
 613	case 10:
 614		return XADC_REG_VCCAUX;
 615	case 11:
 616		return XADC_REG_VPVN;
 617	case 12:
 618		return XADC_REG_VREFP;
 619	case 13:
 620		return XADC_REG_VREFN;
 621	case 14:
 622		return XADC_REG_VCCBRAM;
 623	default:
 624		return XADC_REG_VAUX(scan_index - 16);
 625	}
 626}
 627
 628static irqreturn_t xadc_trigger_handler(int irq, void *p)
 629{
 630	struct iio_poll_func *pf = p;
 631	struct iio_dev *indio_dev = pf->indio_dev;
 632	struct xadc *xadc = iio_priv(indio_dev);
 633	unsigned int chan;
 634	int i, j;
 635
 636	if (!xadc->data)
 637		goto out;
 638
 639	j = 0;
 640	for_each_set_bit(i, indio_dev->active_scan_mask,
 641		indio_dev->masklength) {
 642		chan = xadc_scan_index_to_channel(i);
 643		xadc_read_adc_reg(xadc, chan, &xadc->data[j]);
 644		j++;
 645	}
 646
 647	iio_push_to_buffers(indio_dev, xadc->data);
 648
 649out:
 650	iio_trigger_notify_done(indio_dev->trig);
 651
 652	return IRQ_HANDLED;
 653}
 654
 655static int xadc_trigger_set_state(struct iio_trigger *trigger, bool state)
 656{
 657	struct xadc *xadc = iio_trigger_get_drvdata(trigger);
 658	unsigned long flags;
 659	unsigned int convst;
 660	unsigned int val;
 661	int ret = 0;
 662
 663	mutex_lock(&xadc->mutex);
 664
 665	if (state) {
 666		/* Only one of the two triggers can be active at a time. */
 667		if (xadc->trigger != NULL) {
 668			ret = -EBUSY;
 669			goto err_out;
 670		} else {
 671			xadc->trigger = trigger;
 672			if (trigger == xadc->convst_trigger)
 673				convst = XADC_CONF0_EC;
 674			else
 675				convst = 0;
 676		}
 677		ret = _xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF0_EC,
 678					convst);
 679		if (ret)
 680			goto err_out;
 681	} else {
 682		xadc->trigger = NULL;
 683	}
 684
 685	spin_lock_irqsave(&xadc->lock, flags);
 686	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
 687	xadc_write_reg(xadc, XADC_AXI_REG_IPISR, XADC_AXI_INT_EOS);
 688	if (state)
 689		val |= XADC_AXI_INT_EOS;
 690	else
 691		val &= ~XADC_AXI_INT_EOS;
 692	xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
 693	spin_unlock_irqrestore(&xadc->lock, flags);
 694
 695err_out:
 696	mutex_unlock(&xadc->mutex);
 697
 698	return ret;
 699}
 700
 701static const struct iio_trigger_ops xadc_trigger_ops = {
 702	.set_trigger_state = &xadc_trigger_set_state,
 703};
 704
 705static struct iio_trigger *xadc_alloc_trigger(struct iio_dev *indio_dev,
 706	const char *name)
 707{
 708	struct iio_trigger *trig;
 709	int ret;
 710
 711	trig = iio_trigger_alloc("%s%d-%s", indio_dev->name,
 712				indio_dev->id, name);
 713	if (trig == NULL)
 714		return ERR_PTR(-ENOMEM);
 715
 716	trig->dev.parent = indio_dev->dev.parent;
 717	trig->ops = &xadc_trigger_ops;
 718	iio_trigger_set_drvdata(trig, iio_priv(indio_dev));
 719
 720	ret = iio_trigger_register(trig);
 721	if (ret)
 722		goto error_free_trig;
 723
 724	return trig;
 725
 726error_free_trig:
 727	iio_trigger_free(trig);
 728	return ERR_PTR(ret);
 729}
 730
 731static int xadc_power_adc_b(struct xadc *xadc, unsigned int seq_mode)
 732{
 733	uint16_t val;
 734
 735	/* Powerdown the ADC-B when it is not needed. */
 736	switch (seq_mode) {
 737	case XADC_CONF1_SEQ_SIMULTANEOUS:
 738	case XADC_CONF1_SEQ_INDEPENDENT:
 739		val = 0;
 740		break;
 741	default:
 742		val = XADC_CONF2_PD_ADC_B;
 743		break;
 744	}
 745
 746	return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_PD_MASK,
 747		val);
 748}
 749
 750static int xadc_get_seq_mode(struct xadc *xadc, unsigned long scan_mode)
 751{
 752	unsigned int aux_scan_mode = scan_mode >> 16;
 753
 754	if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_DUAL)
 755		return XADC_CONF1_SEQ_SIMULTANEOUS;
 756
 757	if ((aux_scan_mode & 0xff00) == 0 ||
 758		(aux_scan_mode & 0x00ff) == 0)
 759		return XADC_CONF1_SEQ_CONTINUOUS;
 760
 761	return XADC_CONF1_SEQ_SIMULTANEOUS;
 762}
 763
 764static int xadc_postdisable(struct iio_dev *indio_dev)
 765{
 766	struct xadc *xadc = iio_priv(indio_dev);
 767	unsigned long scan_mask;
 768	int ret;
 769	int i;
 770
 771	scan_mask = 1; /* Run calibration as part of the sequence */
 772	for (i = 0; i < indio_dev->num_channels; i++)
 773		scan_mask |= BIT(indio_dev->channels[i].scan_index);
 774
 775	/* Enable all channels and calibration */
 776	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
 777	if (ret)
 778		return ret;
 779
 780	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
 781	if (ret)
 782		return ret;
 783
 784	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
 785		XADC_CONF1_SEQ_CONTINUOUS);
 786	if (ret)
 787		return ret;
 788
 789	return xadc_power_adc_b(xadc, XADC_CONF1_SEQ_CONTINUOUS);
 790}
 791
 792static int xadc_preenable(struct iio_dev *indio_dev)
 793{
 794	struct xadc *xadc = iio_priv(indio_dev);
 795	unsigned long scan_mask;
 796	int seq_mode;
 797	int ret;
 798
 799	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
 800		XADC_CONF1_SEQ_DEFAULT);
 801	if (ret)
 802		goto err;
 803
 804	scan_mask = *indio_dev->active_scan_mask;
 805	seq_mode = xadc_get_seq_mode(xadc, scan_mask);
 806
 807	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
 808	if (ret)
 809		goto err;
 810
 811	/*
 812	 * In simultaneous mode the upper and lower aux channels are samples at
 813	 * the same time. In this mode the upper 8 bits in the sequencer
 814	 * register are don't care and the lower 8 bits control two channels
 815	 * each. As such we must set the bit if either the channel in the lower
 816	 * group or the upper group is enabled.
 817	 */
 818	if (seq_mode == XADC_CONF1_SEQ_SIMULTANEOUS)
 819		scan_mask = ((scan_mask >> 8) | scan_mask) & 0xff0000;
 820
 821	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
 822	if (ret)
 823		goto err;
 824
 825	ret = xadc_power_adc_b(xadc, seq_mode);
 826	if (ret)
 827		goto err;
 828
 829	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
 830		seq_mode);
 831	if (ret)
 832		goto err;
 833
 834	return 0;
 835err:
 836	xadc_postdisable(indio_dev);
 837	return ret;
 838}
 839
 840static const struct iio_buffer_setup_ops xadc_buffer_ops = {
 841	.preenable = &xadc_preenable,
 
 
 842	.postdisable = &xadc_postdisable,
 843};
 844
 845static int xadc_read_samplerate(struct xadc *xadc)
 846{
 847	unsigned int div;
 848	uint16_t val16;
 849	int ret;
 850
 851	ret = xadc_read_adc_reg(xadc, XADC_REG_CONF2, &val16);
 852	if (ret)
 853		return ret;
 854
 855	div = (val16 & XADC_CONF2_DIV_MASK) >> XADC_CONF2_DIV_OFFSET;
 856	if (div < 2)
 857		div = 2;
 858
 859	return xadc_get_dclk_rate(xadc) / div / 26;
 860}
 861
 862static int xadc_read_raw(struct iio_dev *indio_dev,
 863	struct iio_chan_spec const *chan, int *val, int *val2, long info)
 864{
 865	struct xadc *xadc = iio_priv(indio_dev);
 
 866	uint16_t val16;
 867	int ret;
 868
 869	switch (info) {
 870	case IIO_CHAN_INFO_RAW:
 871		if (iio_buffer_enabled(indio_dev))
 872			return -EBUSY;
 873		ret = xadc_read_adc_reg(xadc, chan->address, &val16);
 874		if (ret < 0)
 875			return ret;
 876
 877		val16 >>= 4;
 878		if (chan->scan_type.sign == 'u')
 879			*val = val16;
 880		else
 881			*val = sign_extend32(val16, 11);
 882
 883		return IIO_VAL_INT;
 884	case IIO_CHAN_INFO_SCALE:
 885		switch (chan->type) {
 886		case IIO_VOLTAGE:
 887			/* V = (val * 3.0) / 4096 */
 888			switch (chan->address) {
 889			case XADC_REG_VCCINT:
 890			case XADC_REG_VCCAUX:
 891			case XADC_REG_VREFP:
 892			case XADC_REG_VREFN:
 893			case XADC_REG_VCCBRAM:
 894			case XADC_REG_VCCPINT:
 895			case XADC_REG_VCCPAUX:
 896			case XADC_REG_VCCO_DDR:
 897				*val = 3000;
 898				break;
 899			default:
 900				*val = 1000;
 901				break;
 902			}
 903			*val2 = 12;
 904			return IIO_VAL_FRACTIONAL_LOG2;
 905		case IIO_TEMP:
 906			/* Temp in C = (val * 503.975) / 4096 - 273.15 */
 907			*val = 503975;
 908			*val2 = 12;
 909			return IIO_VAL_FRACTIONAL_LOG2;
 910		default:
 911			return -EINVAL;
 912		}
 913	case IIO_CHAN_INFO_OFFSET:
 914		/* Only the temperature channel has an offset */
 915		*val = -((273150 << 12) / 503975);
 916		return IIO_VAL_INT;
 917	case IIO_CHAN_INFO_SAMP_FREQ:
 918		ret = xadc_read_samplerate(xadc);
 919		if (ret < 0)
 920			return ret;
 921
 922		*val = ret;
 
 
 
 
 
 923		return IIO_VAL_INT;
 924	default:
 925		return -EINVAL;
 926	}
 927}
 928
 929static int xadc_write_samplerate(struct xadc *xadc, int val)
 
 930{
 
 931	unsigned long clk_rate = xadc_get_dclk_rate(xadc);
 932	unsigned int div;
 933
 934	if (!clk_rate)
 935		return -EINVAL;
 936
 
 
 
 937	if (val <= 0)
 938		return -EINVAL;
 939
 940	/* Max. 150 kSPS */
 941	if (val > XADC_MAX_SAMPLERATE)
 942		val = XADC_MAX_SAMPLERATE;
 943
 944	val *= 26;
 945
 946	/* Min 1MHz */
 947	if (val < 1000000)
 948		val = 1000000;
 949
 950	/*
 951	 * We want to round down, but only if we do not exceed the 150 kSPS
 952	 * limit.
 953	 */
 954	div = clk_rate / val;
 955	if (clk_rate / div / 26 > XADC_MAX_SAMPLERATE)
 956		div++;
 957	if (div < 2)
 958		div = 2;
 959	else if (div > 0xff)
 960		div = 0xff;
 961
 962	return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_DIV_MASK,
 963		div << XADC_CONF2_DIV_OFFSET);
 964}
 965
 966static int xadc_write_raw(struct iio_dev *indio_dev,
 967	struct iio_chan_spec const *chan, int val, int val2, long info)
 968{
 969	struct xadc *xadc = iio_priv(indio_dev);
 970
 971	if (info != IIO_CHAN_INFO_SAMP_FREQ)
 972		return -EINVAL;
 973
 974	return xadc_write_samplerate(xadc, val);
 975}
 976
 977static const struct iio_event_spec xadc_temp_events[] = {
 978	{
 979		.type = IIO_EV_TYPE_THRESH,
 980		.dir = IIO_EV_DIR_RISING,
 981		.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
 982				BIT(IIO_EV_INFO_VALUE) |
 983				BIT(IIO_EV_INFO_HYSTERESIS),
 984	},
 985};
 986
 987/* Separate values for upper and lower thresholds, but only a shared enabled */
 988static const struct iio_event_spec xadc_voltage_events[] = {
 989	{
 990		.type = IIO_EV_TYPE_THRESH,
 991		.dir = IIO_EV_DIR_RISING,
 992		.mask_separate = BIT(IIO_EV_INFO_VALUE),
 993	}, {
 994		.type = IIO_EV_TYPE_THRESH,
 995		.dir = IIO_EV_DIR_FALLING,
 996		.mask_separate = BIT(IIO_EV_INFO_VALUE),
 997	}, {
 998		.type = IIO_EV_TYPE_THRESH,
 999		.dir = IIO_EV_DIR_EITHER,
1000		.mask_separate = BIT(IIO_EV_INFO_ENABLE),
1001	},
1002};
1003
1004#define XADC_CHAN_TEMP(_chan, _scan_index, _addr) { \
1005	.type = IIO_TEMP, \
1006	.indexed = 1, \
1007	.channel = (_chan), \
1008	.address = (_addr), \
1009	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1010		BIT(IIO_CHAN_INFO_SCALE) | \
1011		BIT(IIO_CHAN_INFO_OFFSET), \
1012	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
1013	.event_spec = xadc_temp_events, \
1014	.num_event_specs = ARRAY_SIZE(xadc_temp_events), \
1015	.scan_index = (_scan_index), \
1016	.scan_type = { \
1017		.sign = 'u', \
1018		.realbits = 12, \
1019		.storagebits = 16, \
1020		.shift = 4, \
1021		.endianness = IIO_CPU, \
1022	}, \
1023}
1024
1025#define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) { \
1026	.type = IIO_VOLTAGE, \
1027	.indexed = 1, \
1028	.channel = (_chan), \
1029	.address = (_addr), \
1030	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1031		BIT(IIO_CHAN_INFO_SCALE), \
1032	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
1033	.event_spec = (_alarm) ? xadc_voltage_events : NULL, \
1034	.num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \
1035	.scan_index = (_scan_index), \
1036	.scan_type = { \
1037		.sign = ((_addr) == XADC_REG_VREFN) ? 's' : 'u', \
1038		.realbits = 12, \
1039		.storagebits = 16, \
1040		.shift = 4, \
1041		.endianness = IIO_CPU, \
1042	}, \
1043	.extend_name = _ext, \
1044}
1045
1046static const struct iio_chan_spec xadc_channels[] = {
1047	XADC_CHAN_TEMP(0, 8, XADC_REG_TEMP),
1048	XADC_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
1049	XADC_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
1050	XADC_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
1051	XADC_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpint", true),
1052	XADC_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpaux", true),
1053	XADC_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccoddr", true),
1054	XADC_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
1055	XADC_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
1056	XADC_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
1057	XADC_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
1058	XADC_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
1059	XADC_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
1060	XADC_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
1061	XADC_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
1062	XADC_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
1063	XADC_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
1064	XADC_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
1065	XADC_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
1066	XADC_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
1067	XADC_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
1068	XADC_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
1069	XADC_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
1070	XADC_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
1071	XADC_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
1072	XADC_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
1073};
1074
1075static const struct iio_info xadc_info = {
1076	.read_raw = &xadc_read_raw,
1077	.write_raw = &xadc_write_raw,
1078	.read_event_config = &xadc_read_event_config,
1079	.write_event_config = &xadc_write_event_config,
1080	.read_event_value = &xadc_read_event_value,
1081	.write_event_value = &xadc_write_event_value,
1082	.update_scan_mode = &xadc_update_scan_mode,
1083};
1084
1085static const struct of_device_id xadc_of_match_table[] = {
1086	{ .compatible = "xlnx,zynq-xadc-1.00.a", (void *)&xadc_zynq_ops },
1087	{ .compatible = "xlnx,axi-xadc-1.00.a", (void *)&xadc_axi_ops },
1088	{ },
1089};
1090MODULE_DEVICE_TABLE(of, xadc_of_match_table);
1091
1092static int xadc_parse_dt(struct iio_dev *indio_dev, struct device_node *np,
1093	unsigned int *conf)
1094{
1095	struct xadc *xadc = iio_priv(indio_dev);
1096	struct iio_chan_spec *channels, *chan;
1097	struct device_node *chan_node, *child;
1098	unsigned int num_channels;
1099	const char *external_mux;
1100	u32 ext_mux_chan;
1101	u32 reg;
1102	int ret;
1103
1104	*conf = 0;
1105
1106	ret = of_property_read_string(np, "xlnx,external-mux", &external_mux);
1107	if (ret < 0 || strcasecmp(external_mux, "none") == 0)
1108		xadc->external_mux_mode = XADC_EXTERNAL_MUX_NONE;
1109	else if (strcasecmp(external_mux, "single") == 0)
1110		xadc->external_mux_mode = XADC_EXTERNAL_MUX_SINGLE;
1111	else if (strcasecmp(external_mux, "dual") == 0)
1112		xadc->external_mux_mode = XADC_EXTERNAL_MUX_DUAL;
1113	else
1114		return -EINVAL;
1115
1116	if (xadc->external_mux_mode != XADC_EXTERNAL_MUX_NONE) {
1117		ret = of_property_read_u32(np, "xlnx,external-mux-channel",
1118					&ext_mux_chan);
1119		if (ret < 0)
1120			return ret;
1121
1122		if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_SINGLE) {
1123			if (ext_mux_chan == 0)
1124				ext_mux_chan = XADC_REG_VPVN;
1125			else if (ext_mux_chan <= 16)
1126				ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1127			else
1128				return -EINVAL;
1129		} else {
1130			if (ext_mux_chan > 0 && ext_mux_chan <= 8)
1131				ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1132			else
1133				return -EINVAL;
1134		}
1135
1136		*conf |= XADC_CONF0_MUX | XADC_CONF0_CHAN(ext_mux_chan);
1137	}
1138
1139	channels = kmemdup(xadc_channels, sizeof(xadc_channels), GFP_KERNEL);
1140	if (!channels)
1141		return -ENOMEM;
1142
1143	num_channels = 9;
1144	chan = &channels[9];
1145
1146	chan_node = of_get_child_by_name(np, "xlnx,channels");
1147	if (chan_node) {
1148		for_each_child_of_node(chan_node, child) {
1149			if (num_channels >= ARRAY_SIZE(xadc_channels)) {
1150				of_node_put(child);
1151				break;
1152			}
1153
1154			ret = of_property_read_u32(child, "reg", &reg);
1155			if (ret || reg > 16)
1156				continue;
1157
1158			if (of_property_read_bool(child, "xlnx,bipolar"))
1159				chan->scan_type.sign = 's';
1160
1161			if (reg == 0) {
1162				chan->scan_index = 11;
1163				chan->address = XADC_REG_VPVN;
1164			} else {
1165				chan->scan_index = 15 + reg;
1166				chan->address = XADC_REG_VAUX(reg - 1);
1167			}
1168			num_channels++;
1169			chan++;
1170		}
1171	}
1172	of_node_put(chan_node);
1173
1174	indio_dev->num_channels = num_channels;
1175	indio_dev->channels = krealloc(channels, sizeof(*channels) *
1176					num_channels, GFP_KERNEL);
1177	/* If we can't resize the channels array, just use the original */
1178	if (!indio_dev->channels)
1179		indio_dev->channels = channels;
1180
1181	return 0;
1182}
1183
1184static int xadc_probe(struct platform_device *pdev)
1185{
1186	const struct of_device_id *id;
1187	struct iio_dev *indio_dev;
1188	unsigned int bipolar_mask;
 
1189	unsigned int conf0;
1190	struct xadc *xadc;
1191	int ret;
1192	int irq;
1193	int i;
1194
1195	if (!pdev->dev.of_node)
1196		return -ENODEV;
1197
1198	id = of_match_node(xadc_of_match_table, pdev->dev.of_node);
1199	if (!id)
1200		return -EINVAL;
1201
1202	irq = platform_get_irq(pdev, 0);
1203	if (irq <= 0)
1204		return -ENXIO;
1205
1206	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*xadc));
1207	if (!indio_dev)
1208		return -ENOMEM;
1209
1210	xadc = iio_priv(indio_dev);
1211	xadc->ops = id->data;
1212	xadc->irq = irq;
1213	init_completion(&xadc->completion);
1214	mutex_init(&xadc->mutex);
1215	spin_lock_init(&xadc->lock);
1216	INIT_DELAYED_WORK(&xadc->zynq_unmask_work, xadc_zynq_unmask_worker);
1217
1218	xadc->base = devm_platform_ioremap_resource(pdev, 0);
 
1219	if (IS_ERR(xadc->base))
1220		return PTR_ERR(xadc->base);
1221
 
 
1222	indio_dev->name = "xadc";
1223	indio_dev->modes = INDIO_DIRECT_MODE;
1224	indio_dev->info = &xadc_info;
1225
1226	ret = xadc_parse_dt(indio_dev, pdev->dev.of_node, &conf0);
1227	if (ret)
1228		goto err_device_free;
1229
1230	if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1231		ret = iio_triggered_buffer_setup(indio_dev,
1232			&iio_pollfunc_store_time, &xadc_trigger_handler,
1233			&xadc_buffer_ops);
1234		if (ret)
1235			goto err_device_free;
1236
1237		xadc->convst_trigger = xadc_alloc_trigger(indio_dev, "convst");
1238		if (IS_ERR(xadc->convst_trigger)) {
1239			ret = PTR_ERR(xadc->convst_trigger);
1240			goto err_triggered_buffer_cleanup;
1241		}
1242		xadc->samplerate_trigger = xadc_alloc_trigger(indio_dev,
1243			"samplerate");
1244		if (IS_ERR(xadc->samplerate_trigger)) {
1245			ret = PTR_ERR(xadc->samplerate_trigger);
1246			goto err_free_convst_trigger;
1247		}
1248	}
1249
1250	xadc->clk = devm_clk_get(&pdev->dev, NULL);
1251	if (IS_ERR(xadc->clk)) {
1252		ret = PTR_ERR(xadc->clk);
1253		goto err_free_samplerate_trigger;
1254	}
1255
1256	ret = clk_prepare_enable(xadc->clk);
1257	if (ret)
1258		goto err_free_samplerate_trigger;
1259
1260	/*
1261	 * Make sure not to exceed the maximum samplerate since otherwise the
1262	 * resulting interrupt storm will soft-lock the system.
1263	 */
1264	if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1265		ret = xadc_read_samplerate(xadc);
1266		if (ret < 0)
1267			goto err_free_samplerate_trigger;
1268		if (ret > XADC_MAX_SAMPLERATE) {
1269			ret = xadc_write_samplerate(xadc, XADC_MAX_SAMPLERATE);
1270			if (ret < 0)
1271				goto err_free_samplerate_trigger;
1272		}
1273	}
1274
1275	ret = request_irq(xadc->irq, xadc->ops->interrupt_handler, 0,
1276			dev_name(&pdev->dev), indio_dev);
1277	if (ret)
1278		goto err_clk_disable_unprepare;
1279
1280	ret = xadc->ops->setup(pdev, indio_dev, xadc->irq);
1281	if (ret)
1282		goto err_free_irq;
1283
1284	for (i = 0; i < 16; i++)
1285		xadc_read_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1286			&xadc->threshold[i]);
1287
1288	ret = xadc_write_adc_reg(xadc, XADC_REG_CONF0, conf0);
1289	if (ret)
1290		goto err_free_irq;
1291
1292	bipolar_mask = 0;
1293	for (i = 0; i < indio_dev->num_channels; i++) {
1294		if (indio_dev->channels[i].scan_type.sign == 's')
1295			bipolar_mask |= BIT(indio_dev->channels[i].scan_index);
1296	}
1297
1298	ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(0), bipolar_mask);
1299	if (ret)
1300		goto err_free_irq;
1301	ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(1),
1302		bipolar_mask >> 16);
1303	if (ret)
1304		goto err_free_irq;
1305
1306	/* Disable all alarms */
1307	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_ALARM_MASK,
1308				  XADC_CONF1_ALARM_MASK);
1309	if (ret)
1310		goto err_free_irq;
1311
1312	/* Set thresholds to min/max */
1313	for (i = 0; i < 16; i++) {
1314		/*
1315		 * Set max voltage threshold and both temperature thresholds to
1316		 * 0xffff, min voltage threshold to 0.
1317		 */
1318		if (i % 8 < 4 || i == 7)
1319			xadc->threshold[i] = 0xffff;
1320		else
1321			xadc->threshold[i] = 0;
1322		ret = xadc_write_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1323			xadc->threshold[i]);
1324		if (ret)
1325			goto err_free_irq;
1326	}
1327
1328	/* Go to non-buffered mode */
1329	xadc_postdisable(indio_dev);
1330
1331	ret = iio_device_register(indio_dev);
1332	if (ret)
1333		goto err_free_irq;
1334
1335	platform_set_drvdata(pdev, indio_dev);
1336
1337	return 0;
1338
1339err_free_irq:
1340	free_irq(xadc->irq, indio_dev);
1341	cancel_delayed_work_sync(&xadc->zynq_unmask_work);
1342err_clk_disable_unprepare:
1343	clk_disable_unprepare(xadc->clk);
1344err_free_samplerate_trigger:
1345	if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1346		iio_trigger_free(xadc->samplerate_trigger);
1347err_free_convst_trigger:
1348	if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1349		iio_trigger_free(xadc->convst_trigger);
1350err_triggered_buffer_cleanup:
1351	if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1352		iio_triggered_buffer_cleanup(indio_dev);
1353err_device_free:
1354	kfree(indio_dev->channels);
1355
1356	return ret;
1357}
1358
1359static int xadc_remove(struct platform_device *pdev)
1360{
1361	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1362	struct xadc *xadc = iio_priv(indio_dev);
1363
1364	iio_device_unregister(indio_dev);
1365	if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1366		iio_trigger_free(xadc->samplerate_trigger);
1367		iio_trigger_free(xadc->convst_trigger);
1368		iio_triggered_buffer_cleanup(indio_dev);
1369	}
1370	free_irq(xadc->irq, indio_dev);
1371	cancel_delayed_work_sync(&xadc->zynq_unmask_work);
1372	clk_disable_unprepare(xadc->clk);
1373	kfree(xadc->data);
1374	kfree(indio_dev->channels);
1375
1376	return 0;
1377}
1378
1379static struct platform_driver xadc_driver = {
1380	.probe = xadc_probe,
1381	.remove = xadc_remove,
1382	.driver = {
1383		.name = "xadc",
1384		.of_match_table = xadc_of_match_table,
1385	},
1386};
1387module_platform_driver(xadc_driver);
1388
1389MODULE_LICENSE("GPL v2");
1390MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
1391MODULE_DESCRIPTION("Xilinx XADC IIO driver");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Xilinx XADC driver
   4 *
   5 * Copyright 2013-2014 Analog Devices Inc.
   6 *  Author: Lars-Peter Clauen <lars@metafoo.de>
   7 *
   8 * Documentation for the parts can be found at:
   9 *  - XADC hardmacro: Xilinx UG480
  10 *  - ZYNQ XADC interface: Xilinx UG585
  11 *  - AXI XADC interface: Xilinx PG019
  12 */
  13
  14#include <linux/clk.h>
  15#include <linux/device.h>
  16#include <linux/err.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/kernel.h>
  20#include <linux/module.h>
  21#include <linux/of.h>
  22#include <linux/platform_device.h>
  23#include <linux/slab.h>
  24#include <linux/sysfs.h>
  25
  26#include <linux/iio/buffer.h>
  27#include <linux/iio/events.h>
  28#include <linux/iio/iio.h>
  29#include <linux/iio/sysfs.h>
  30#include <linux/iio/trigger.h>
  31#include <linux/iio/trigger_consumer.h>
  32#include <linux/iio/triggered_buffer.h>
  33
  34#include "xilinx-xadc.h"
  35
  36static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT = 500;
  37
  38/* ZYNQ register definitions */
  39#define XADC_ZYNQ_REG_CFG	0x00
  40#define XADC_ZYNQ_REG_INTSTS	0x04
  41#define XADC_ZYNQ_REG_INTMSK	0x08
  42#define XADC_ZYNQ_REG_STATUS	0x0c
  43#define XADC_ZYNQ_REG_CFIFO	0x10
  44#define XADC_ZYNQ_REG_DFIFO	0x14
  45#define XADC_ZYNQ_REG_CTL		0x18
  46
  47#define XADC_ZYNQ_CFG_ENABLE		BIT(31)
  48#define XADC_ZYNQ_CFG_CFIFOTH_MASK	(0xf << 20)
  49#define XADC_ZYNQ_CFG_CFIFOTH_OFFSET	20
  50#define XADC_ZYNQ_CFG_DFIFOTH_MASK	(0xf << 16)
  51#define XADC_ZYNQ_CFG_DFIFOTH_OFFSET	16
  52#define XADC_ZYNQ_CFG_WEDGE		BIT(13)
  53#define XADC_ZYNQ_CFG_REDGE		BIT(12)
  54#define XADC_ZYNQ_CFG_TCKRATE_MASK	(0x3 << 8)
  55#define XADC_ZYNQ_CFG_TCKRATE_DIV2	(0x0 << 8)
  56#define XADC_ZYNQ_CFG_TCKRATE_DIV4	(0x1 << 8)
  57#define XADC_ZYNQ_CFG_TCKRATE_DIV8	(0x2 << 8)
  58#define XADC_ZYNQ_CFG_TCKRATE_DIV16	(0x3 << 8)
  59#define XADC_ZYNQ_CFG_IGAP_MASK		0x1f
  60#define XADC_ZYNQ_CFG_IGAP(x)		(x)
  61
  62#define XADC_ZYNQ_INT_CFIFO_LTH		BIT(9)
  63#define XADC_ZYNQ_INT_DFIFO_GTH		BIT(8)
  64#define XADC_ZYNQ_INT_ALARM_MASK	0xff
  65#define XADC_ZYNQ_INT_ALARM_OFFSET	0
  66
  67#define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK	(0xf << 16)
  68#define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET	16
  69#define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK	(0xf << 12)
  70#define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET	12
  71#define XADC_ZYNQ_STATUS_CFIFOF		BIT(11)
  72#define XADC_ZYNQ_STATUS_CFIFOE		BIT(10)
  73#define XADC_ZYNQ_STATUS_DFIFOF		BIT(9)
  74#define XADC_ZYNQ_STATUS_DFIFOE		BIT(8)
  75#define XADC_ZYNQ_STATUS_OT		BIT(7)
  76#define XADC_ZYNQ_STATUS_ALM(x)		BIT(x)
  77
  78#define XADC_ZYNQ_CTL_RESET		BIT(4)
  79
  80#define XADC_ZYNQ_CMD_NOP		0x00
  81#define XADC_ZYNQ_CMD_READ		0x01
  82#define XADC_ZYNQ_CMD_WRITE		0x02
  83
  84#define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data))
  85
  86/* AXI register definitions */
  87#define XADC_AXI_REG_RESET		0x00
  88#define XADC_AXI_REG_STATUS		0x04
  89#define XADC_AXI_REG_ALARM_STATUS	0x08
  90#define XADC_AXI_REG_CONVST		0x0c
  91#define XADC_AXI_REG_XADC_RESET		0x10
  92#define XADC_AXI_REG_GIER		0x5c
  93#define XADC_AXI_REG_IPISR		0x60
  94#define XADC_AXI_REG_IPIER		0x68
  95#define XADC_AXI_ADC_REG_OFFSET		0x200
  96
  97#define XADC_AXI_RESET_MAGIC		0xa
  98#define XADC_AXI_GIER_ENABLE		BIT(31)
  99
 100#define XADC_AXI_INT_EOS		BIT(4)
 101#define XADC_AXI_INT_ALARM_MASK		0x3c0f
 102
 103#define XADC_FLAGS_BUFFERED BIT(0)
 104
 
 
 
 
 
 
 
 
 
 
 105static void xadc_write_reg(struct xadc *xadc, unsigned int reg,
 106	uint32_t val)
 107{
 108	writel(val, xadc->base + reg);
 109}
 110
 111static void xadc_read_reg(struct xadc *xadc, unsigned int reg,
 112	uint32_t *val)
 113{
 114	*val = readl(xadc->base + reg);
 115}
 116
 117/*
 118 * The ZYNQ interface uses two asynchronous FIFOs for communication with the
 119 * XADC. Reads and writes to the XADC register are performed by submitting a
 120 * request to the command FIFO (CFIFO), once the request has been completed the
 121 * result can be read from the data FIFO (DFIFO). The method currently used in
 122 * this driver is to submit the request for a read/write operation, then go to
 123 * sleep and wait for an interrupt that signals that a response is available in
 124 * the data FIFO.
 125 */
 126
 127static void xadc_zynq_write_fifo(struct xadc *xadc, uint32_t *cmd,
 128	unsigned int n)
 129{
 130	unsigned int i;
 131
 132	for (i = 0; i < n; i++)
 133		xadc_write_reg(xadc, XADC_ZYNQ_REG_CFIFO, cmd[i]);
 134}
 135
 136static void xadc_zynq_drain_fifo(struct xadc *xadc)
 137{
 138	uint32_t status, tmp;
 139
 140	xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
 141
 142	while (!(status & XADC_ZYNQ_STATUS_DFIFOE)) {
 143		xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
 144		xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
 145	}
 146}
 147
 148static void xadc_zynq_update_intmsk(struct xadc *xadc, unsigned int mask,
 149	unsigned int val)
 150{
 151	xadc->zynq_intmask &= ~mask;
 152	xadc->zynq_intmask |= val;
 153
 154	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK,
 155		xadc->zynq_intmask | xadc->zynq_masked_alarm);
 156}
 157
 158static int xadc_zynq_write_adc_reg(struct xadc *xadc, unsigned int reg,
 159	uint16_t val)
 160{
 161	uint32_t cmd[1];
 162	uint32_t tmp;
 163	int ret;
 164
 165	spin_lock_irq(&xadc->lock);
 166	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
 167			XADC_ZYNQ_INT_DFIFO_GTH);
 168
 169	reinit_completion(&xadc->completion);
 170
 171	cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE, reg, val);
 172	xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
 173	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
 174	tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
 175	tmp |= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
 176	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
 177
 178	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
 179	spin_unlock_irq(&xadc->lock);
 180
 181	ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
 182	if (ret == 0)
 183		ret = -EIO;
 184	else
 185		ret = 0;
 186
 187	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
 188
 189	return ret;
 190}
 191
 192static int xadc_zynq_read_adc_reg(struct xadc *xadc, unsigned int reg,
 193	uint16_t *val)
 194{
 195	uint32_t cmd[2];
 196	uint32_t resp, tmp;
 197	int ret;
 198
 199	cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ, reg, 0);
 200	cmd[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP, 0, 0);
 201
 202	spin_lock_irq(&xadc->lock);
 203	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
 204			XADC_ZYNQ_INT_DFIFO_GTH);
 205	xadc_zynq_drain_fifo(xadc);
 206	reinit_completion(&xadc->completion);
 207
 208	xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
 209	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
 210	tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
 211	tmp |= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
 212	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
 213
 214	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
 215	spin_unlock_irq(&xadc->lock);
 216	ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
 217	if (ret == 0)
 218		ret = -EIO;
 219	if (ret < 0)
 220		return ret;
 221
 222	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
 223	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
 224
 225	*val = resp & 0xffff;
 226
 227	return 0;
 228}
 229
 230static unsigned int xadc_zynq_transform_alarm(unsigned int alarm)
 231{
 232	return ((alarm & 0x80) >> 4) |
 233		((alarm & 0x78) << 1) |
 234		(alarm & 0x07);
 235}
 236
 237/*
 238 * The ZYNQ threshold interrupts are level sensitive. Since we can't make the
 239 * threshold condition go way from within the interrupt handler, this means as
 240 * soon as a threshold condition is present we would enter the interrupt handler
 241 * again and again. To work around this we mask all active thresholds interrupts
 242 * in the interrupt handler and start a timer. In this timer we poll the
 243 * interrupt status and only if the interrupt is inactive we unmask it again.
 244 */
 245static void xadc_zynq_unmask_worker(struct work_struct *work)
 246{
 247	struct xadc *xadc = container_of(work, struct xadc, zynq_unmask_work.work);
 248	unsigned int misc_sts, unmask;
 249
 250	xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &misc_sts);
 251
 252	misc_sts &= XADC_ZYNQ_INT_ALARM_MASK;
 253
 254	spin_lock_irq(&xadc->lock);
 255
 256	/* Clear those bits which are not active anymore */
 257	unmask = (xadc->zynq_masked_alarm ^ misc_sts) & xadc->zynq_masked_alarm;
 258	xadc->zynq_masked_alarm &= misc_sts;
 259
 260	/* Also clear those which are masked out anyway */
 261	xadc->zynq_masked_alarm &= ~xadc->zynq_intmask;
 262
 263	/* Clear the interrupts before we unmask them */
 264	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, unmask);
 265
 266	xadc_zynq_update_intmsk(xadc, 0, 0);
 267
 268	spin_unlock_irq(&xadc->lock);
 269
 270	/* if still pending some alarm re-trigger the timer */
 271	if (xadc->zynq_masked_alarm) {
 272		schedule_delayed_work(&xadc->zynq_unmask_work,
 273				msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
 274	}
 275
 276}
 277
 278static irqreturn_t xadc_zynq_interrupt_handler(int irq, void *devid)
 279{
 280	struct iio_dev *indio_dev = devid;
 281	struct xadc *xadc = iio_priv(indio_dev);
 282	uint32_t status;
 283
 284	xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
 285
 286	status &= ~(xadc->zynq_intmask | xadc->zynq_masked_alarm);
 287
 288	if (!status)
 289		return IRQ_NONE;
 290
 291	spin_lock(&xadc->lock);
 292
 293	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status);
 294
 295	if (status & XADC_ZYNQ_INT_DFIFO_GTH) {
 296		xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
 297			XADC_ZYNQ_INT_DFIFO_GTH);
 298		complete(&xadc->completion);
 299	}
 300
 301	status &= XADC_ZYNQ_INT_ALARM_MASK;
 302	if (status) {
 303		xadc->zynq_masked_alarm |= status;
 304		/*
 305		 * mask the current event interrupt,
 306		 * unmask it when the interrupt is no more active.
 307		 */
 308		xadc_zynq_update_intmsk(xadc, 0, 0);
 309
 310		xadc_handle_events(indio_dev,
 311				xadc_zynq_transform_alarm(status));
 312
 313		/* unmask the required interrupts in timer. */
 314		schedule_delayed_work(&xadc->zynq_unmask_work,
 315				msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
 316	}
 317	spin_unlock(&xadc->lock);
 318
 319	return IRQ_HANDLED;
 320}
 321
 322#define XADC_ZYNQ_TCK_RATE_MAX 50000000
 323#define XADC_ZYNQ_IGAP_DEFAULT 20
 324#define XADC_ZYNQ_PCAP_RATE_MAX 200000000
 325
 326static int xadc_zynq_setup(struct platform_device *pdev,
 327	struct iio_dev *indio_dev, int irq)
 328{
 329	struct xadc *xadc = iio_priv(indio_dev);
 330	unsigned long pcap_rate;
 331	unsigned int tck_div;
 332	unsigned int div;
 333	unsigned int igap;
 334	unsigned int tck_rate;
 335	int ret;
 336
 337	/* TODO: Figure out how to make igap and tck_rate configurable */
 338	igap = XADC_ZYNQ_IGAP_DEFAULT;
 339	tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
 340
 341	xadc->zynq_intmask = ~0;
 342
 343	pcap_rate = clk_get_rate(xadc->clk);
 344	if (!pcap_rate)
 345		return -EINVAL;
 346
 347	if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
 348		ret = clk_set_rate(xadc->clk,
 349				   (unsigned long)XADC_ZYNQ_PCAP_RATE_MAX);
 350		if (ret)
 351			return ret;
 352	}
 353
 354	if (tck_rate > pcap_rate / 2) {
 355		div = 2;
 356	} else {
 357		div = pcap_rate / tck_rate;
 358		if (pcap_rate / div > XADC_ZYNQ_TCK_RATE_MAX)
 359			div++;
 360	}
 361
 362	if (div <= 3)
 363		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV2;
 364	else if (div <= 7)
 365		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV4;
 366	else if (div <= 15)
 367		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV8;
 368	else
 369		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV16;
 370
 371	xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, XADC_ZYNQ_CTL_RESET);
 372	xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, 0);
 373	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, ~0);
 374	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask);
 375	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, XADC_ZYNQ_CFG_ENABLE |
 376			XADC_ZYNQ_CFG_REDGE | XADC_ZYNQ_CFG_WEDGE |
 377			tck_div | XADC_ZYNQ_CFG_IGAP(igap));
 378
 379	if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
 380		ret = clk_set_rate(xadc->clk, pcap_rate);
 381		if (ret)
 382			return ret;
 383	}
 384
 385	return 0;
 386}
 387
 388static unsigned long xadc_zynq_get_dclk_rate(struct xadc *xadc)
 389{
 390	unsigned int div;
 391	uint32_t val;
 392
 393	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &val);
 394
 395	switch (val & XADC_ZYNQ_CFG_TCKRATE_MASK) {
 396	case XADC_ZYNQ_CFG_TCKRATE_DIV4:
 397		div = 4;
 398		break;
 399	case XADC_ZYNQ_CFG_TCKRATE_DIV8:
 400		div = 8;
 401		break;
 402	case XADC_ZYNQ_CFG_TCKRATE_DIV16:
 403		div = 16;
 404		break;
 405	default:
 406		div = 2;
 407		break;
 408	}
 409
 410	return clk_get_rate(xadc->clk) / div;
 411}
 412
 413static void xadc_zynq_update_alarm(struct xadc *xadc, unsigned int alarm)
 414{
 415	unsigned long flags;
 416	uint32_t status;
 417
 418	/* Move OT to bit 7 */
 419	alarm = ((alarm & 0x08) << 4) | ((alarm & 0xf0) >> 1) | (alarm & 0x07);
 420
 421	spin_lock_irqsave(&xadc->lock, flags);
 422
 423	/* Clear previous interrupts if any. */
 424	xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
 425	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status & alarm);
 426
 427	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_ALARM_MASK,
 428		~alarm & XADC_ZYNQ_INT_ALARM_MASK);
 429
 430	spin_unlock_irqrestore(&xadc->lock, flags);
 431}
 432
 433static const struct xadc_ops xadc_zynq_ops = {
 434	.read = xadc_zynq_read_adc_reg,
 435	.write = xadc_zynq_write_adc_reg,
 436	.setup = xadc_zynq_setup,
 437	.get_dclk_rate = xadc_zynq_get_dclk_rate,
 438	.interrupt_handler = xadc_zynq_interrupt_handler,
 439	.update_alarm = xadc_zynq_update_alarm,
 440};
 441
 442static int xadc_axi_read_adc_reg(struct xadc *xadc, unsigned int reg,
 443	uint16_t *val)
 444{
 445	uint32_t val32;
 446
 447	xadc_read_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, &val32);
 448	*val = val32 & 0xffff;
 449
 450	return 0;
 451}
 452
 453static int xadc_axi_write_adc_reg(struct xadc *xadc, unsigned int reg,
 454	uint16_t val)
 455{
 456	xadc_write_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, val);
 457
 458	return 0;
 459}
 460
 461static int xadc_axi_setup(struct platform_device *pdev,
 462	struct iio_dev *indio_dev, int irq)
 463{
 464	struct xadc *xadc = iio_priv(indio_dev);
 465
 466	xadc_write_reg(xadc, XADC_AXI_REG_RESET, XADC_AXI_RESET_MAGIC);
 467	xadc_write_reg(xadc, XADC_AXI_REG_GIER, XADC_AXI_GIER_ENABLE);
 468
 469	return 0;
 470}
 471
 472static irqreturn_t xadc_axi_interrupt_handler(int irq, void *devid)
 473{
 474	struct iio_dev *indio_dev = devid;
 475	struct xadc *xadc = iio_priv(indio_dev);
 476	uint32_t status, mask;
 477	unsigned int events;
 478
 479	xadc_read_reg(xadc, XADC_AXI_REG_IPISR, &status);
 480	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &mask);
 481	status &= mask;
 482
 483	if (!status)
 484		return IRQ_NONE;
 485
 486	if ((status & XADC_AXI_INT_EOS) && xadc->trigger)
 487		iio_trigger_poll(xadc->trigger);
 488
 489	if (status & XADC_AXI_INT_ALARM_MASK) {
 490		/*
 491		 * The order of the bits in the AXI-XADC status register does
 492		 * not match the order of the bits in the XADC alarm enable
 493		 * register. xadc_handle_events() expects the events to be in
 494		 * the same order as the XADC alarm enable register.
 495		 */
 496		events = (status & 0x000e) >> 1;
 497		events |= (status & 0x0001) << 3;
 498		events |= (status & 0x3c00) >> 6;
 499		xadc_handle_events(indio_dev, events);
 500	}
 501
 502	xadc_write_reg(xadc, XADC_AXI_REG_IPISR, status);
 503
 504	return IRQ_HANDLED;
 505}
 506
 507static void xadc_axi_update_alarm(struct xadc *xadc, unsigned int alarm)
 508{
 509	uint32_t val;
 510	unsigned long flags;
 511
 512	/*
 513	 * The order of the bits in the AXI-XADC status register does not match
 514	 * the order of the bits in the XADC alarm enable register. We get
 515	 * passed the alarm mask in the same order as in the XADC alarm enable
 516	 * register.
 517	 */
 518	alarm = ((alarm & 0x07) << 1) | ((alarm & 0x08) >> 3) |
 519			((alarm & 0xf0) << 6);
 520
 521	spin_lock_irqsave(&xadc->lock, flags);
 522	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
 523	val &= ~XADC_AXI_INT_ALARM_MASK;
 524	val |= alarm;
 525	xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
 526	spin_unlock_irqrestore(&xadc->lock, flags);
 527}
 528
 529static unsigned long xadc_axi_get_dclk(struct xadc *xadc)
 530{
 531	return clk_get_rate(xadc->clk);
 532}
 533
 534static const struct xadc_ops xadc_axi_ops = {
 535	.read = xadc_axi_read_adc_reg,
 536	.write = xadc_axi_write_adc_reg,
 537	.setup = xadc_axi_setup,
 538	.get_dclk_rate = xadc_axi_get_dclk,
 539	.update_alarm = xadc_axi_update_alarm,
 540	.interrupt_handler = xadc_axi_interrupt_handler,
 541	.flags = XADC_FLAGS_BUFFERED,
 542};
 543
 544static int _xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
 545	uint16_t mask, uint16_t val)
 546{
 547	uint16_t tmp;
 548	int ret;
 549
 550	ret = _xadc_read_adc_reg(xadc, reg, &tmp);
 551	if (ret)
 552		return ret;
 553
 554	return _xadc_write_adc_reg(xadc, reg, (tmp & ~mask) | val);
 555}
 556
 557static int xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
 558	uint16_t mask, uint16_t val)
 559{
 560	int ret;
 561
 562	mutex_lock(&xadc->mutex);
 563	ret = _xadc_update_adc_reg(xadc, reg, mask, val);
 564	mutex_unlock(&xadc->mutex);
 565
 566	return ret;
 567}
 568
 569static unsigned long xadc_get_dclk_rate(struct xadc *xadc)
 570{
 571	return xadc->ops->get_dclk_rate(xadc);
 572}
 573
 574static int xadc_update_scan_mode(struct iio_dev *indio_dev,
 575	const unsigned long *mask)
 576{
 577	struct xadc *xadc = iio_priv(indio_dev);
 578	unsigned int n;
 579
 580	n = bitmap_weight(mask, indio_dev->masklength);
 581
 582	kfree(xadc->data);
 583	xadc->data = kcalloc(n, sizeof(*xadc->data), GFP_KERNEL);
 584	if (!xadc->data)
 585		return -ENOMEM;
 586
 587	return 0;
 588}
 589
 590static unsigned int xadc_scan_index_to_channel(unsigned int scan_index)
 591{
 592	switch (scan_index) {
 593	case 5:
 594		return XADC_REG_VCCPINT;
 595	case 6:
 596		return XADC_REG_VCCPAUX;
 597	case 7:
 598		return XADC_REG_VCCO_DDR;
 599	case 8:
 600		return XADC_REG_TEMP;
 601	case 9:
 602		return XADC_REG_VCCINT;
 603	case 10:
 604		return XADC_REG_VCCAUX;
 605	case 11:
 606		return XADC_REG_VPVN;
 607	case 12:
 608		return XADC_REG_VREFP;
 609	case 13:
 610		return XADC_REG_VREFN;
 611	case 14:
 612		return XADC_REG_VCCBRAM;
 613	default:
 614		return XADC_REG_VAUX(scan_index - 16);
 615	}
 616}
 617
 618static irqreturn_t xadc_trigger_handler(int irq, void *p)
 619{
 620	struct iio_poll_func *pf = p;
 621	struct iio_dev *indio_dev = pf->indio_dev;
 622	struct xadc *xadc = iio_priv(indio_dev);
 623	unsigned int chan;
 624	int i, j;
 625
 626	if (!xadc->data)
 627		goto out;
 628
 629	j = 0;
 630	for_each_set_bit(i, indio_dev->active_scan_mask,
 631		indio_dev->masklength) {
 632		chan = xadc_scan_index_to_channel(i);
 633		xadc_read_adc_reg(xadc, chan, &xadc->data[j]);
 634		j++;
 635	}
 636
 637	iio_push_to_buffers(indio_dev, xadc->data);
 638
 639out:
 640	iio_trigger_notify_done(indio_dev->trig);
 641
 642	return IRQ_HANDLED;
 643}
 644
 645static int xadc_trigger_set_state(struct iio_trigger *trigger, bool state)
 646{
 647	struct xadc *xadc = iio_trigger_get_drvdata(trigger);
 648	unsigned long flags;
 649	unsigned int convst;
 650	unsigned int val;
 651	int ret = 0;
 652
 653	mutex_lock(&xadc->mutex);
 654
 655	if (state) {
 656		/* Only one of the two triggers can be active at the a time. */
 657		if (xadc->trigger != NULL) {
 658			ret = -EBUSY;
 659			goto err_out;
 660		} else {
 661			xadc->trigger = trigger;
 662			if (trigger == xadc->convst_trigger)
 663				convst = XADC_CONF0_EC;
 664			else
 665				convst = 0;
 666		}
 667		ret = _xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF0_EC,
 668					convst);
 669		if (ret)
 670			goto err_out;
 671	} else {
 672		xadc->trigger = NULL;
 673	}
 674
 675	spin_lock_irqsave(&xadc->lock, flags);
 676	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
 677	xadc_write_reg(xadc, XADC_AXI_REG_IPISR, val & XADC_AXI_INT_EOS);
 678	if (state)
 679		val |= XADC_AXI_INT_EOS;
 680	else
 681		val &= ~XADC_AXI_INT_EOS;
 682	xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
 683	spin_unlock_irqrestore(&xadc->lock, flags);
 684
 685err_out:
 686	mutex_unlock(&xadc->mutex);
 687
 688	return ret;
 689}
 690
 691static const struct iio_trigger_ops xadc_trigger_ops = {
 692	.set_trigger_state = &xadc_trigger_set_state,
 693};
 694
 695static struct iio_trigger *xadc_alloc_trigger(struct iio_dev *indio_dev,
 696	const char *name)
 697{
 698	struct iio_trigger *trig;
 699	int ret;
 700
 701	trig = iio_trigger_alloc("%s%d-%s", indio_dev->name,
 702				indio_dev->id, name);
 703	if (trig == NULL)
 704		return ERR_PTR(-ENOMEM);
 705
 706	trig->dev.parent = indio_dev->dev.parent;
 707	trig->ops = &xadc_trigger_ops;
 708	iio_trigger_set_drvdata(trig, iio_priv(indio_dev));
 709
 710	ret = iio_trigger_register(trig);
 711	if (ret)
 712		goto error_free_trig;
 713
 714	return trig;
 715
 716error_free_trig:
 717	iio_trigger_free(trig);
 718	return ERR_PTR(ret);
 719}
 720
 721static int xadc_power_adc_b(struct xadc *xadc, unsigned int seq_mode)
 722{
 723	uint16_t val;
 724
 
 725	switch (seq_mode) {
 726	case XADC_CONF1_SEQ_SIMULTANEOUS:
 727	case XADC_CONF1_SEQ_INDEPENDENT:
 728		val = XADC_CONF2_PD_ADC_B;
 729		break;
 730	default:
 731		val = 0;
 732		break;
 733	}
 734
 735	return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_PD_MASK,
 736		val);
 737}
 738
 739static int xadc_get_seq_mode(struct xadc *xadc, unsigned long scan_mode)
 740{
 741	unsigned int aux_scan_mode = scan_mode >> 16;
 742
 743	if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_DUAL)
 744		return XADC_CONF1_SEQ_SIMULTANEOUS;
 745
 746	if ((aux_scan_mode & 0xff00) == 0 ||
 747		(aux_scan_mode & 0x00ff) == 0)
 748		return XADC_CONF1_SEQ_CONTINUOUS;
 749
 750	return XADC_CONF1_SEQ_SIMULTANEOUS;
 751}
 752
 753static int xadc_postdisable(struct iio_dev *indio_dev)
 754{
 755	struct xadc *xadc = iio_priv(indio_dev);
 756	unsigned long scan_mask;
 757	int ret;
 758	int i;
 759
 760	scan_mask = 1; /* Run calibration as part of the sequence */
 761	for (i = 0; i < indio_dev->num_channels; i++)
 762		scan_mask |= BIT(indio_dev->channels[i].scan_index);
 763
 764	/* Enable all channels and calibration */
 765	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
 766	if (ret)
 767		return ret;
 768
 769	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
 770	if (ret)
 771		return ret;
 772
 773	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
 774		XADC_CONF1_SEQ_CONTINUOUS);
 775	if (ret)
 776		return ret;
 777
 778	return xadc_power_adc_b(xadc, XADC_CONF1_SEQ_CONTINUOUS);
 779}
 780
 781static int xadc_preenable(struct iio_dev *indio_dev)
 782{
 783	struct xadc *xadc = iio_priv(indio_dev);
 784	unsigned long scan_mask;
 785	int seq_mode;
 786	int ret;
 787
 788	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
 789		XADC_CONF1_SEQ_DEFAULT);
 790	if (ret)
 791		goto err;
 792
 793	scan_mask = *indio_dev->active_scan_mask;
 794	seq_mode = xadc_get_seq_mode(xadc, scan_mask);
 795
 796	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
 797	if (ret)
 798		goto err;
 799
 
 
 
 
 
 
 
 
 
 
 800	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
 801	if (ret)
 802		goto err;
 803
 804	ret = xadc_power_adc_b(xadc, seq_mode);
 805	if (ret)
 806		goto err;
 807
 808	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
 809		seq_mode);
 810	if (ret)
 811		goto err;
 812
 813	return 0;
 814err:
 815	xadc_postdisable(indio_dev);
 816	return ret;
 817}
 818
 819static const struct iio_buffer_setup_ops xadc_buffer_ops = {
 820	.preenable = &xadc_preenable,
 821	.postenable = &iio_triggered_buffer_postenable,
 822	.predisable = &iio_triggered_buffer_predisable,
 823	.postdisable = &xadc_postdisable,
 824};
 825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 826static int xadc_read_raw(struct iio_dev *indio_dev,
 827	struct iio_chan_spec const *chan, int *val, int *val2, long info)
 828{
 829	struct xadc *xadc = iio_priv(indio_dev);
 830	unsigned int div;
 831	uint16_t val16;
 832	int ret;
 833
 834	switch (info) {
 835	case IIO_CHAN_INFO_RAW:
 836		if (iio_buffer_enabled(indio_dev))
 837			return -EBUSY;
 838		ret = xadc_read_adc_reg(xadc, chan->address, &val16);
 839		if (ret < 0)
 840			return ret;
 841
 842		val16 >>= 4;
 843		if (chan->scan_type.sign == 'u')
 844			*val = val16;
 845		else
 846			*val = sign_extend32(val16, 11);
 847
 848		return IIO_VAL_INT;
 849	case IIO_CHAN_INFO_SCALE:
 850		switch (chan->type) {
 851		case IIO_VOLTAGE:
 852			/* V = (val * 3.0) / 4096 */
 853			switch (chan->address) {
 854			case XADC_REG_VCCINT:
 855			case XADC_REG_VCCAUX:
 856			case XADC_REG_VREFP:
 857			case XADC_REG_VREFN:
 858			case XADC_REG_VCCBRAM:
 859			case XADC_REG_VCCPINT:
 860			case XADC_REG_VCCPAUX:
 861			case XADC_REG_VCCO_DDR:
 862				*val = 3000;
 863				break;
 864			default:
 865				*val = 1000;
 866				break;
 867			}
 868			*val2 = 12;
 869			return IIO_VAL_FRACTIONAL_LOG2;
 870		case IIO_TEMP:
 871			/* Temp in C = (val * 503.975) / 4096 - 273.15 */
 872			*val = 503975;
 873			*val2 = 12;
 874			return IIO_VAL_FRACTIONAL_LOG2;
 875		default:
 876			return -EINVAL;
 877		}
 878	case IIO_CHAN_INFO_OFFSET:
 879		/* Only the temperature channel has an offset */
 880		*val = -((273150 << 12) / 503975);
 881		return IIO_VAL_INT;
 882	case IIO_CHAN_INFO_SAMP_FREQ:
 883		ret = xadc_read_adc_reg(xadc, XADC_REG_CONF2, &val16);
 884		if (ret)
 885			return ret;
 886
 887		div = (val16 & XADC_CONF2_DIV_MASK) >> XADC_CONF2_DIV_OFFSET;
 888		if (div < 2)
 889			div = 2;
 890
 891		*val = xadc_get_dclk_rate(xadc) / div / 26;
 892
 893		return IIO_VAL_INT;
 894	default:
 895		return -EINVAL;
 896	}
 897}
 898
 899static int xadc_write_raw(struct iio_dev *indio_dev,
 900	struct iio_chan_spec const *chan, int val, int val2, long info)
 901{
 902	struct xadc *xadc = iio_priv(indio_dev);
 903	unsigned long clk_rate = xadc_get_dclk_rate(xadc);
 904	unsigned int div;
 905
 906	if (!clk_rate)
 907		return -EINVAL;
 908
 909	if (info != IIO_CHAN_INFO_SAMP_FREQ)
 910		return -EINVAL;
 911
 912	if (val <= 0)
 913		return -EINVAL;
 914
 915	/* Max. 150 kSPS */
 916	if (val > 150000)
 917		val = 150000;
 918
 919	val *= 26;
 920
 921	/* Min 1MHz */
 922	if (val < 1000000)
 923		val = 1000000;
 924
 925	/*
 926	 * We want to round down, but only if we do not exceed the 150 kSPS
 927	 * limit.
 928	 */
 929	div = clk_rate / val;
 930	if (clk_rate / div / 26 > 150000)
 931		div++;
 932	if (div < 2)
 933		div = 2;
 934	else if (div > 0xff)
 935		div = 0xff;
 936
 937	return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_DIV_MASK,
 938		div << XADC_CONF2_DIV_OFFSET);
 939}
 940
 
 
 
 
 
 
 
 
 
 
 
 941static const struct iio_event_spec xadc_temp_events[] = {
 942	{
 943		.type = IIO_EV_TYPE_THRESH,
 944		.dir = IIO_EV_DIR_RISING,
 945		.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
 946				BIT(IIO_EV_INFO_VALUE) |
 947				BIT(IIO_EV_INFO_HYSTERESIS),
 948	},
 949};
 950
 951/* Separate values for upper and lower thresholds, but only a shared enabled */
 952static const struct iio_event_spec xadc_voltage_events[] = {
 953	{
 954		.type = IIO_EV_TYPE_THRESH,
 955		.dir = IIO_EV_DIR_RISING,
 956		.mask_separate = BIT(IIO_EV_INFO_VALUE),
 957	}, {
 958		.type = IIO_EV_TYPE_THRESH,
 959		.dir = IIO_EV_DIR_FALLING,
 960		.mask_separate = BIT(IIO_EV_INFO_VALUE),
 961	}, {
 962		.type = IIO_EV_TYPE_THRESH,
 963		.dir = IIO_EV_DIR_EITHER,
 964		.mask_separate = BIT(IIO_EV_INFO_ENABLE),
 965	},
 966};
 967
 968#define XADC_CHAN_TEMP(_chan, _scan_index, _addr) { \
 969	.type = IIO_TEMP, \
 970	.indexed = 1, \
 971	.channel = (_chan), \
 972	.address = (_addr), \
 973	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
 974		BIT(IIO_CHAN_INFO_SCALE) | \
 975		BIT(IIO_CHAN_INFO_OFFSET), \
 976	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
 977	.event_spec = xadc_temp_events, \
 978	.num_event_specs = ARRAY_SIZE(xadc_temp_events), \
 979	.scan_index = (_scan_index), \
 980	.scan_type = { \
 981		.sign = 'u', \
 982		.realbits = 12, \
 983		.storagebits = 16, \
 984		.shift = 4, \
 985		.endianness = IIO_CPU, \
 986	}, \
 987}
 988
 989#define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) { \
 990	.type = IIO_VOLTAGE, \
 991	.indexed = 1, \
 992	.channel = (_chan), \
 993	.address = (_addr), \
 994	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
 995		BIT(IIO_CHAN_INFO_SCALE), \
 996	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
 997	.event_spec = (_alarm) ? xadc_voltage_events : NULL, \
 998	.num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \
 999	.scan_index = (_scan_index), \
1000	.scan_type = { \
1001		.sign = ((_addr) == XADC_REG_VREFN) ? 's' : 'u', \
1002		.realbits = 12, \
1003		.storagebits = 16, \
1004		.shift = 4, \
1005		.endianness = IIO_CPU, \
1006	}, \
1007	.extend_name = _ext, \
1008}
1009
1010static const struct iio_chan_spec xadc_channels[] = {
1011	XADC_CHAN_TEMP(0, 8, XADC_REG_TEMP),
1012	XADC_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
1013	XADC_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
1014	XADC_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
1015	XADC_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpint", true),
1016	XADC_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpaux", true),
1017	XADC_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccoddr", true),
1018	XADC_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
1019	XADC_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
1020	XADC_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
1021	XADC_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
1022	XADC_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
1023	XADC_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
1024	XADC_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
1025	XADC_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
1026	XADC_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
1027	XADC_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
1028	XADC_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
1029	XADC_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
1030	XADC_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
1031	XADC_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
1032	XADC_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
1033	XADC_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
1034	XADC_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
1035	XADC_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
1036	XADC_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
1037};
1038
1039static const struct iio_info xadc_info = {
1040	.read_raw = &xadc_read_raw,
1041	.write_raw = &xadc_write_raw,
1042	.read_event_config = &xadc_read_event_config,
1043	.write_event_config = &xadc_write_event_config,
1044	.read_event_value = &xadc_read_event_value,
1045	.write_event_value = &xadc_write_event_value,
1046	.update_scan_mode = &xadc_update_scan_mode,
1047};
1048
1049static const struct of_device_id xadc_of_match_table[] = {
1050	{ .compatible = "xlnx,zynq-xadc-1.00.a", (void *)&xadc_zynq_ops },
1051	{ .compatible = "xlnx,axi-xadc-1.00.a", (void *)&xadc_axi_ops },
1052	{ },
1053};
1054MODULE_DEVICE_TABLE(of, xadc_of_match_table);
1055
1056static int xadc_parse_dt(struct iio_dev *indio_dev, struct device_node *np,
1057	unsigned int *conf)
1058{
1059	struct xadc *xadc = iio_priv(indio_dev);
1060	struct iio_chan_spec *channels, *chan;
1061	struct device_node *chan_node, *child;
1062	unsigned int num_channels;
1063	const char *external_mux;
1064	u32 ext_mux_chan;
1065	u32 reg;
1066	int ret;
1067
1068	*conf = 0;
1069
1070	ret = of_property_read_string(np, "xlnx,external-mux", &external_mux);
1071	if (ret < 0 || strcasecmp(external_mux, "none") == 0)
1072		xadc->external_mux_mode = XADC_EXTERNAL_MUX_NONE;
1073	else if (strcasecmp(external_mux, "single") == 0)
1074		xadc->external_mux_mode = XADC_EXTERNAL_MUX_SINGLE;
1075	else if (strcasecmp(external_mux, "dual") == 0)
1076		xadc->external_mux_mode = XADC_EXTERNAL_MUX_DUAL;
1077	else
1078		return -EINVAL;
1079
1080	if (xadc->external_mux_mode != XADC_EXTERNAL_MUX_NONE) {
1081		ret = of_property_read_u32(np, "xlnx,external-mux-channel",
1082					&ext_mux_chan);
1083		if (ret < 0)
1084			return ret;
1085
1086		if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_SINGLE) {
1087			if (ext_mux_chan == 0)
1088				ext_mux_chan = XADC_REG_VPVN;
1089			else if (ext_mux_chan <= 16)
1090				ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1091			else
1092				return -EINVAL;
1093		} else {
1094			if (ext_mux_chan > 0 && ext_mux_chan <= 8)
1095				ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1096			else
1097				return -EINVAL;
1098		}
1099
1100		*conf |= XADC_CONF0_MUX | XADC_CONF0_CHAN(ext_mux_chan);
1101	}
1102
1103	channels = kmemdup(xadc_channels, sizeof(xadc_channels), GFP_KERNEL);
1104	if (!channels)
1105		return -ENOMEM;
1106
1107	num_channels = 9;
1108	chan = &channels[9];
1109
1110	chan_node = of_get_child_by_name(np, "xlnx,channels");
1111	if (chan_node) {
1112		for_each_child_of_node(chan_node, child) {
1113			if (num_channels >= ARRAY_SIZE(xadc_channels)) {
1114				of_node_put(child);
1115				break;
1116			}
1117
1118			ret = of_property_read_u32(child, "reg", &reg);
1119			if (ret || reg > 16)
1120				continue;
1121
1122			if (of_property_read_bool(child, "xlnx,bipolar"))
1123				chan->scan_type.sign = 's';
1124
1125			if (reg == 0) {
1126				chan->scan_index = 11;
1127				chan->address = XADC_REG_VPVN;
1128			} else {
1129				chan->scan_index = 15 + reg;
1130				chan->address = XADC_REG_VAUX(reg - 1);
1131			}
1132			num_channels++;
1133			chan++;
1134		}
1135	}
1136	of_node_put(chan_node);
1137
1138	indio_dev->num_channels = num_channels;
1139	indio_dev->channels = krealloc(channels, sizeof(*channels) *
1140					num_channels, GFP_KERNEL);
1141	/* If we can't resize the channels array, just use the original */
1142	if (!indio_dev->channels)
1143		indio_dev->channels = channels;
1144
1145	return 0;
1146}
1147
1148static int xadc_probe(struct platform_device *pdev)
1149{
1150	const struct of_device_id *id;
1151	struct iio_dev *indio_dev;
1152	unsigned int bipolar_mask;
1153	struct resource *mem;
1154	unsigned int conf0;
1155	struct xadc *xadc;
1156	int ret;
1157	int irq;
1158	int i;
1159
1160	if (!pdev->dev.of_node)
1161		return -ENODEV;
1162
1163	id = of_match_node(xadc_of_match_table, pdev->dev.of_node);
1164	if (!id)
1165		return -EINVAL;
1166
1167	irq = platform_get_irq(pdev, 0);
1168	if (irq <= 0)
1169		return -ENXIO;
1170
1171	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*xadc));
1172	if (!indio_dev)
1173		return -ENOMEM;
1174
1175	xadc = iio_priv(indio_dev);
1176	xadc->ops = id->data;
1177	xadc->irq = irq;
1178	init_completion(&xadc->completion);
1179	mutex_init(&xadc->mutex);
1180	spin_lock_init(&xadc->lock);
1181	INIT_DELAYED_WORK(&xadc->zynq_unmask_work, xadc_zynq_unmask_worker);
1182
1183	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1184	xadc->base = devm_ioremap_resource(&pdev->dev, mem);
1185	if (IS_ERR(xadc->base))
1186		return PTR_ERR(xadc->base);
1187
1188	indio_dev->dev.parent = &pdev->dev;
1189	indio_dev->dev.of_node = pdev->dev.of_node;
1190	indio_dev->name = "xadc";
1191	indio_dev->modes = INDIO_DIRECT_MODE;
1192	indio_dev->info = &xadc_info;
1193
1194	ret = xadc_parse_dt(indio_dev, pdev->dev.of_node, &conf0);
1195	if (ret)
1196		goto err_device_free;
1197
1198	if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1199		ret = iio_triggered_buffer_setup(indio_dev,
1200			&iio_pollfunc_store_time, &xadc_trigger_handler,
1201			&xadc_buffer_ops);
1202		if (ret)
1203			goto err_device_free;
1204
1205		xadc->convst_trigger = xadc_alloc_trigger(indio_dev, "convst");
1206		if (IS_ERR(xadc->convst_trigger)) {
1207			ret = PTR_ERR(xadc->convst_trigger);
1208			goto err_triggered_buffer_cleanup;
1209		}
1210		xadc->samplerate_trigger = xadc_alloc_trigger(indio_dev,
1211			"samplerate");
1212		if (IS_ERR(xadc->samplerate_trigger)) {
1213			ret = PTR_ERR(xadc->samplerate_trigger);
1214			goto err_free_convst_trigger;
1215		}
1216	}
1217
1218	xadc->clk = devm_clk_get(&pdev->dev, NULL);
1219	if (IS_ERR(xadc->clk)) {
1220		ret = PTR_ERR(xadc->clk);
1221		goto err_free_samplerate_trigger;
1222	}
1223
1224	ret = clk_prepare_enable(xadc->clk);
1225	if (ret)
1226		goto err_free_samplerate_trigger;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1227
1228	ret = request_irq(xadc->irq, xadc->ops->interrupt_handler, 0,
1229			dev_name(&pdev->dev), indio_dev);
1230	if (ret)
1231		goto err_clk_disable_unprepare;
1232
1233	ret = xadc->ops->setup(pdev, indio_dev, xadc->irq);
1234	if (ret)
1235		goto err_free_irq;
1236
1237	for (i = 0; i < 16; i++)
1238		xadc_read_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1239			&xadc->threshold[i]);
1240
1241	ret = xadc_write_adc_reg(xadc, XADC_REG_CONF0, conf0);
1242	if (ret)
1243		goto err_free_irq;
1244
1245	bipolar_mask = 0;
1246	for (i = 0; i < indio_dev->num_channels; i++) {
1247		if (indio_dev->channels[i].scan_type.sign == 's')
1248			bipolar_mask |= BIT(indio_dev->channels[i].scan_index);
1249	}
1250
1251	ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(0), bipolar_mask);
1252	if (ret)
1253		goto err_free_irq;
1254	ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(1),
1255		bipolar_mask >> 16);
1256	if (ret)
1257		goto err_free_irq;
1258
1259	/* Disable all alarms */
1260	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_ALARM_MASK,
1261				  XADC_CONF1_ALARM_MASK);
1262	if (ret)
1263		goto err_free_irq;
1264
1265	/* Set thresholds to min/max */
1266	for (i = 0; i < 16; i++) {
1267		/*
1268		 * Set max voltage threshold and both temperature thresholds to
1269		 * 0xffff, min voltage threshold to 0.
1270		 */
1271		if (i % 8 < 4 || i == 7)
1272			xadc->threshold[i] = 0xffff;
1273		else
1274			xadc->threshold[i] = 0;
1275		ret = xadc_write_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1276			xadc->threshold[i]);
1277		if (ret)
1278			goto err_free_irq;
1279	}
1280
1281	/* Go to non-buffered mode */
1282	xadc_postdisable(indio_dev);
1283
1284	ret = iio_device_register(indio_dev);
1285	if (ret)
1286		goto err_free_irq;
1287
1288	platform_set_drvdata(pdev, indio_dev);
1289
1290	return 0;
1291
1292err_free_irq:
1293	free_irq(xadc->irq, indio_dev);
1294	cancel_delayed_work_sync(&xadc->zynq_unmask_work);
1295err_clk_disable_unprepare:
1296	clk_disable_unprepare(xadc->clk);
1297err_free_samplerate_trigger:
1298	if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1299		iio_trigger_free(xadc->samplerate_trigger);
1300err_free_convst_trigger:
1301	if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1302		iio_trigger_free(xadc->convst_trigger);
1303err_triggered_buffer_cleanup:
1304	if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1305		iio_triggered_buffer_cleanup(indio_dev);
1306err_device_free:
1307	kfree(indio_dev->channels);
1308
1309	return ret;
1310}
1311
1312static int xadc_remove(struct platform_device *pdev)
1313{
1314	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1315	struct xadc *xadc = iio_priv(indio_dev);
1316
1317	iio_device_unregister(indio_dev);
1318	if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1319		iio_trigger_free(xadc->samplerate_trigger);
1320		iio_trigger_free(xadc->convst_trigger);
1321		iio_triggered_buffer_cleanup(indio_dev);
1322	}
1323	free_irq(xadc->irq, indio_dev);
1324	cancel_delayed_work_sync(&xadc->zynq_unmask_work);
1325	clk_disable_unprepare(xadc->clk);
1326	kfree(xadc->data);
1327	kfree(indio_dev->channels);
1328
1329	return 0;
1330}
1331
1332static struct platform_driver xadc_driver = {
1333	.probe = xadc_probe,
1334	.remove = xadc_remove,
1335	.driver = {
1336		.name = "xadc",
1337		.of_match_table = xadc_of_match_table,
1338	},
1339};
1340module_platform_driver(xadc_driver);
1341
1342MODULE_LICENSE("GPL v2");
1343MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
1344MODULE_DESCRIPTION("Xilinx XADC IIO driver");