Linux Audio

Check our new training course

Loading...
v5.9
 
   1/*
   2 * random.c -- A strong random number generator
   3 *
   4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
   5 * Rights Reserved.
   6 *
   7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
 
   8 *
   9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
  10 * rights reserved.
  11 *
  12 * Redistribution and use in source and binary forms, with or without
  13 * modification, are permitted provided that the following conditions
  14 * are met:
  15 * 1. Redistributions of source code must retain the above copyright
  16 *    notice, and the entire permission notice in its entirety,
  17 *    including the disclaimer of warranties.
  18 * 2. Redistributions in binary form must reproduce the above copyright
  19 *    notice, this list of conditions and the following disclaimer in the
  20 *    documentation and/or other materials provided with the distribution.
  21 * 3. The name of the author may not be used to endorse or promote
  22 *    products derived from this software without specific prior
  23 *    written permission.
  24 *
  25 * ALTERNATIVELY, this product may be distributed under the terms of
  26 * the GNU General Public License, in which case the provisions of the GPL are
  27 * required INSTEAD OF the above restrictions.  (This clause is
  28 * necessary due to a potential bad interaction between the GPL and
  29 * the restrictions contained in a BSD-style copyright.)
  30 *
  31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  34 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
  35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  42 * DAMAGE.
  43 */
  44
  45/*
  46 * (now, with legal B.S. out of the way.....)
  47 *
  48 * This routine gathers environmental noise from device drivers, etc.,
  49 * and returns good random numbers, suitable for cryptographic use.
  50 * Besides the obvious cryptographic uses, these numbers are also good
  51 * for seeding TCP sequence numbers, and other places where it is
  52 * desirable to have numbers which are not only random, but hard to
  53 * predict by an attacker.
  54 *
  55 * Theory of operation
  56 * ===================
  57 *
  58 * Computers are very predictable devices.  Hence it is extremely hard
  59 * to produce truly random numbers on a computer --- as opposed to
  60 * pseudo-random numbers, which can easily generated by using a
  61 * algorithm.  Unfortunately, it is very easy for attackers to guess
  62 * the sequence of pseudo-random number generators, and for some
  63 * applications this is not acceptable.  So instead, we must try to
  64 * gather "environmental noise" from the computer's environment, which
  65 * must be hard for outside attackers to observe, and use that to
  66 * generate random numbers.  In a Unix environment, this is best done
  67 * from inside the kernel.
  68 *
  69 * Sources of randomness from the environment include inter-keyboard
  70 * timings, inter-interrupt timings from some interrupts, and other
  71 * events which are both (a) non-deterministic and (b) hard for an
  72 * outside observer to measure.  Randomness from these sources are
  73 * added to an "entropy pool", which is mixed using a CRC-like function.
  74 * This is not cryptographically strong, but it is adequate assuming
  75 * the randomness is not chosen maliciously, and it is fast enough that
  76 * the overhead of doing it on every interrupt is very reasonable.
  77 * As random bytes are mixed into the entropy pool, the routines keep
  78 * an *estimate* of how many bits of randomness have been stored into
  79 * the random number generator's internal state.
  80 *
  81 * When random bytes are desired, they are obtained by taking the SHA
  82 * hash of the contents of the "entropy pool".  The SHA hash avoids
  83 * exposing the internal state of the entropy pool.  It is believed to
  84 * be computationally infeasible to derive any useful information
  85 * about the input of SHA from its output.  Even if it is possible to
  86 * analyze SHA in some clever way, as long as the amount of data
  87 * returned from the generator is less than the inherent entropy in
  88 * the pool, the output data is totally unpredictable.  For this
  89 * reason, the routine decreases its internal estimate of how many
  90 * bits of "true randomness" are contained in the entropy pool as it
  91 * outputs random numbers.
  92 *
  93 * If this estimate goes to zero, the routine can still generate
  94 * random numbers; however, an attacker may (at least in theory) be
  95 * able to infer the future output of the generator from prior
  96 * outputs.  This requires successful cryptanalysis of SHA, which is
  97 * not believed to be feasible, but there is a remote possibility.
  98 * Nonetheless, these numbers should be useful for the vast majority
  99 * of purposes.
 100 *
 101 * Exported interfaces ---- output
 102 * ===============================
 103 *
 104 * There are four exported interfaces; two for use within the kernel,
 105 * and two or use from userspace.
 106 *
 107 * Exported interfaces ---- userspace output
 108 * -----------------------------------------
 109 *
 110 * The userspace interfaces are two character devices /dev/random and
 111 * /dev/urandom.  /dev/random is suitable for use when very high
 112 * quality randomness is desired (for example, for key generation or
 113 * one-time pads), as it will only return a maximum of the number of
 114 * bits of randomness (as estimated by the random number generator)
 115 * contained in the entropy pool.
 116 *
 117 * The /dev/urandom device does not have this limit, and will return
 118 * as many bytes as are requested.  As more and more random bytes are
 119 * requested without giving time for the entropy pool to recharge,
 120 * this will result in random numbers that are merely cryptographically
 121 * strong.  For many applications, however, this is acceptable.
 122 *
 123 * Exported interfaces ---- kernel output
 124 * --------------------------------------
 125 *
 126 * The primary kernel interface is
 127 *
 128 * 	void get_random_bytes(void *buf, int nbytes);
 129 *
 130 * This interface will return the requested number of random bytes,
 131 * and place it in the requested buffer.  This is equivalent to a
 132 * read from /dev/urandom.
 133 *
 134 * For less critical applications, there are the functions:
 135 *
 136 * 	u32 get_random_u32()
 137 * 	u64 get_random_u64()
 138 * 	unsigned int get_random_int()
 139 * 	unsigned long get_random_long()
 140 *
 141 * These are produced by a cryptographic RNG seeded from get_random_bytes,
 142 * and so do not deplete the entropy pool as much.  These are recommended
 143 * for most in-kernel operations *if the result is going to be stored in
 144 * the kernel*.
 145 *
 146 * Specifically, the get_random_int() family do not attempt to do
 147 * "anti-backtracking".  If you capture the state of the kernel (e.g.
 148 * by snapshotting the VM), you can figure out previous get_random_int()
 149 * return values.  But if the value is stored in the kernel anyway,
 150 * this is not a problem.
 151 *
 152 * It *is* safe to expose get_random_int() output to attackers (e.g. as
 153 * network cookies); given outputs 1..n, it's not feasible to predict
 154 * outputs 0 or n+1.  The only concern is an attacker who breaks into
 155 * the kernel later; the get_random_int() engine is not reseeded as
 156 * often as the get_random_bytes() one.
 157 *
 158 * get_random_bytes() is needed for keys that need to stay secret after
 159 * they are erased from the kernel.  For example, any key that will
 160 * be wrapped and stored encrypted.  And session encryption keys: we'd
 161 * like to know that after the session is closed and the keys erased,
 162 * the plaintext is unrecoverable to someone who recorded the ciphertext.
 163 *
 164 * But for network ports/cookies, stack canaries, PRNG seeds, address
 165 * space layout randomization, session *authentication* keys, or other
 166 * applications where the sensitive data is stored in the kernel in
 167 * plaintext for as long as it's sensitive, the get_random_int() family
 168 * is just fine.
 169 *
 170 * Consider ASLR.  We want to keep the address space secret from an
 171 * outside attacker while the process is running, but once the address
 172 * space is torn down, it's of no use to an attacker any more.  And it's
 173 * stored in kernel data structures as long as it's alive, so worrying
 174 * about an attacker's ability to extrapolate it from the get_random_int()
 175 * CRNG is silly.
 176 *
 177 * Even some cryptographic keys are safe to generate with get_random_int().
 178 * In particular, keys for SipHash are generally fine.  Here, knowledge
 179 * of the key authorizes you to do something to a kernel object (inject
 180 * packets to a network connection, or flood a hash table), and the
 181 * key is stored with the object being protected.  Once it goes away,
 182 * we no longer care if anyone knows the key.
 183 *
 184 * prandom_u32()
 185 * -------------
 186 *
 187 * For even weaker applications, see the pseudorandom generator
 188 * prandom_u32(), prandom_max(), and prandom_bytes().  If the random
 189 * numbers aren't security-critical at all, these are *far* cheaper.
 190 * Useful for self-tests, random error simulation, randomized backoffs,
 191 * and any other application where you trust that nobody is trying to
 192 * maliciously mess with you by guessing the "random" numbers.
 193 *
 194 * Exported interfaces ---- input
 195 * ==============================
 196 *
 197 * The current exported interfaces for gathering environmental noise
 198 * from the devices are:
 199 *
 200 *	void add_device_randomness(const void *buf, unsigned int size);
 201 * 	void add_input_randomness(unsigned int type, unsigned int code,
 202 *                                unsigned int value);
 203 *	void add_interrupt_randomness(int irq, int irq_flags);
 204 * 	void add_disk_randomness(struct gendisk *disk);
 205 *
 206 * add_device_randomness() is for adding data to the random pool that
 207 * is likely to differ between two devices (or possibly even per boot).
 208 * This would be things like MAC addresses or serial numbers, or the
 209 * read-out of the RTC. This does *not* add any actual entropy to the
 210 * pool, but it initializes the pool to different values for devices
 211 * that might otherwise be identical and have very little entropy
 212 * available to them (particularly common in the embedded world).
 213 *
 214 * add_input_randomness() uses the input layer interrupt timing, as well as
 215 * the event type information from the hardware.
 216 *
 217 * add_interrupt_randomness() uses the interrupt timing as random
 218 * inputs to the entropy pool. Using the cycle counters and the irq source
 219 * as inputs, it feeds the randomness roughly once a second.
 220 *
 221 * add_disk_randomness() uses what amounts to the seek time of block
 222 * layer request events, on a per-disk_devt basis, as input to the
 223 * entropy pool. Note that high-speed solid state drives with very low
 224 * seek times do not make for good sources of entropy, as their seek
 225 * times are usually fairly consistent.
 226 *
 227 * All of these routines try to estimate how many bits of randomness a
 228 * particular randomness source.  They do this by keeping track of the
 229 * first and second order deltas of the event timings.
 230 *
 231 * Ensuring unpredictability at system startup
 232 * ============================================
 233 *
 234 * When any operating system starts up, it will go through a sequence
 235 * of actions that are fairly predictable by an adversary, especially
 236 * if the start-up does not involve interaction with a human operator.
 237 * This reduces the actual number of bits of unpredictability in the
 238 * entropy pool below the value in entropy_count.  In order to
 239 * counteract this effect, it helps to carry information in the
 240 * entropy pool across shut-downs and start-ups.  To do this, put the
 241 * following lines an appropriate script which is run during the boot
 242 * sequence:
 243 *
 244 *	echo "Initializing random number generator..."
 245 *	random_seed=/var/run/random-seed
 246 *	# Carry a random seed from start-up to start-up
 247 *	# Load and then save the whole entropy pool
 248 *	if [ -f $random_seed ]; then
 249 *		cat $random_seed >/dev/urandom
 250 *	else
 251 *		touch $random_seed
 252 *	fi
 253 *	chmod 600 $random_seed
 254 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 255 *
 256 * and the following lines in an appropriate script which is run as
 257 * the system is shutdown:
 258 *
 259 *	# Carry a random seed from shut-down to start-up
 260 *	# Save the whole entropy pool
 261 *	echo "Saving random seed..."
 262 *	random_seed=/var/run/random-seed
 263 *	touch $random_seed
 264 *	chmod 600 $random_seed
 265 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 266 *
 267 * For example, on most modern systems using the System V init
 268 * scripts, such code fragments would be found in
 269 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
 270 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
 271 *
 272 * Effectively, these commands cause the contents of the entropy pool
 273 * to be saved at shut-down time and reloaded into the entropy pool at
 274 * start-up.  (The 'dd' in the addition to the bootup script is to
 275 * make sure that /etc/random-seed is different for every start-up,
 276 * even if the system crashes without executing rc.0.)  Even with
 277 * complete knowledge of the start-up activities, predicting the state
 278 * of the entropy pool requires knowledge of the previous history of
 279 * the system.
 280 *
 281 * Configuring the /dev/random driver under Linux
 282 * ==============================================
 283 *
 284 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 285 * the /dev/mem major number (#1).  So if your system does not have
 286 * /dev/random and /dev/urandom created already, they can be created
 287 * by using the commands:
 288 *
 289 * 	mknod /dev/random c 1 8
 290 * 	mknod /dev/urandom c 1 9
 291 *
 292 * Acknowledgements:
 293 * =================
 294 *
 295 * Ideas for constructing this random number generator were derived
 296 * from Pretty Good Privacy's random number generator, and from private
 297 * discussions with Phil Karn.  Colin Plumb provided a faster random
 298 * number generator, which speed up the mixing function of the entropy
 299 * pool, taken from PGPfone.  Dale Worley has also contributed many
 300 * useful ideas and suggestions to improve this driver.
 301 *
 302 * Any flaws in the design are solely my responsibility, and should
 303 * not be attributed to the Phil, Colin, or any of authors of PGP.
 304 *
 305 * Further background information on this topic may be obtained from
 306 * RFC 1750, "Randomness Recommendations for Security", by Donald
 307 * Eastlake, Steve Crocker, and Jeff Schiller.
 308 */
 309
 310#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 311
 312#include <linux/utsname.h>
 313#include <linux/module.h>
 314#include <linux/kernel.h>
 315#include <linux/major.h>
 316#include <linux/string.h>
 317#include <linux/fcntl.h>
 318#include <linux/slab.h>
 319#include <linux/random.h>
 320#include <linux/poll.h>
 321#include <linux/init.h>
 322#include <linux/fs.h>
 323#include <linux/genhd.h>
 324#include <linux/interrupt.h>
 325#include <linux/mm.h>
 326#include <linux/nodemask.h>
 327#include <linux/spinlock.h>
 328#include <linux/kthread.h>
 329#include <linux/percpu.h>
 330#include <linux/fips.h>
 331#include <linux/ptrace.h>
 332#include <linux/workqueue.h>
 333#include <linux/irq.h>
 334#include <linux/ratelimit.h>
 335#include <linux/syscalls.h>
 336#include <linux/completion.h>
 337#include <linux/uuid.h>
 
 
 
 
 338#include <crypto/chacha.h>
 339#include <crypto/sha.h>
 340
 
 
 
 
 
 341#include <asm/processor.h>
 342#include <linux/uaccess.h>
 343#include <asm/irq.h>
 344#include <asm/irq_regs.h>
 345#include <asm/io.h>
 346
 347#define CREATE_TRACE_POINTS
 348#include <trace/events/random.h>
 349
 350/* #define ADD_INTERRUPT_BENCH */
 
 
 
 
 
 351
 352/*
 353 * Configuration information
 
 354 */
 355#define INPUT_POOL_SHIFT	12
 356#define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
 357#define OUTPUT_POOL_SHIFT	10
 358#define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5))
 359#define EXTRACT_SIZE		10
 360
 361
 362#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
 363
 364/*
 365 * To allow fractional bits to be tracked, the entropy_count field is
 366 * denominated in units of 1/8th bits.
 367 *
 368 * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in
 369 * credit_entropy_bits() needs to be 64 bits wide.
 370 */
 371#define ENTROPY_SHIFT 3
 372#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
 373
 374/*
 375 * If the entropy count falls under this number of bits, then we
 376 * should wake up processes which are selecting or polling on write
 377 * access to /dev/random.
 378 */
 379static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
 380
 381/*
 382 * Originally, we used a primitive polynomial of degree .poolwords
 383 * over GF(2).  The taps for various sizes are defined below.  They
 384 * were chosen to be evenly spaced except for the last tap, which is 1
 385 * to get the twisting happening as fast as possible.
 386 *
 387 * For the purposes of better mixing, we use the CRC-32 polynomial as
 388 * well to make a (modified) twisted Generalized Feedback Shift
 389 * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
 390 * generators.  ACM Transactions on Modeling and Computer Simulation
 391 * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
 392 * GFSR generators II.  ACM Transactions on Modeling and Computer
 393 * Simulation 4:254-266)
 394 *
 395 * Thanks to Colin Plumb for suggesting this.
 396 *
 397 * The mixing operation is much less sensitive than the output hash,
 398 * where we use SHA-1.  All that we want of mixing operation is that
 399 * it be a good non-cryptographic hash; i.e. it not produce collisions
 400 * when fed "random" data of the sort we expect to see.  As long as
 401 * the pool state differs for different inputs, we have preserved the
 402 * input entropy and done a good job.  The fact that an intelligent
 403 * attacker can construct inputs that will produce controlled
 404 * alterations to the pool's state is not important because we don't
 405 * consider such inputs to contribute any randomness.  The only
 406 * property we need with respect to them is that the attacker can't
 407 * increase his/her knowledge of the pool's state.  Since all
 408 * additions are reversible (knowing the final state and the input,
 409 * you can reconstruct the initial state), if an attacker has any
 410 * uncertainty about the initial state, he/she can only shuffle that
 411 * uncertainty about, but never cause any collisions (which would
 412 * decrease the uncertainty).
 413 *
 414 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
 415 * Videau in their paper, "The Linux Pseudorandom Number Generator
 416 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
 417 * paper, they point out that we are not using a true Twisted GFSR,
 418 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
 419 * is, with only three taps, instead of the six that we are using).
 420 * As a result, the resulting polynomial is neither primitive nor
 421 * irreducible, and hence does not have a maximal period over
 422 * GF(2**32).  They suggest a slight change to the generator
 423 * polynomial which improves the resulting TGFSR polynomial to be
 424 * irreducible, which we have made here.
 425 */
 426static const struct poolinfo {
 427	int poolbitshift, poolwords, poolbytes, poolfracbits;
 428#define S(x) ilog2(x)+5, (x), (x)*4, (x) << (ENTROPY_SHIFT+5)
 429	int tap1, tap2, tap3, tap4, tap5;
 430} poolinfo_table[] = {
 431	/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
 432	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
 433	{ S(128),	104,	76,	51,	25,	1 },
 434};
 435
 436/*
 437 * Static global variables
 
 
 
 
 
 
 438 */
 439static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
 440static struct fasync_struct *fasync;
 
 
 
 441
 442static DEFINE_SPINLOCK(random_ready_list_lock);
 443static LIST_HEAD(random_ready_list);
 
 
 444
 445struct crng_state {
 446	__u32		state[16];
 447	unsigned long	init_time;
 448	spinlock_t	lock;
 449};
 450
 451static struct crng_state primary_crng = {
 452	.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
 453};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 454
 455/*
 456 * crng_init =  0 --> Uninitialized
 457 *		1 --> Initialized
 458 *		2 --> Initialized from input_pool
 459 *
 460 * crng_init is protected by primary_crng->lock, and only increases
 461 * its value (from 0->1->2).
 462 */
 463static int crng_init = 0;
 464#define crng_ready() (likely(crng_init > 1))
 465static int crng_init_cnt = 0;
 466static unsigned long crng_global_init_time = 0;
 467#define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE)
 468static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]);
 469static void _crng_backtrack_protect(struct crng_state *crng,
 470				    __u8 tmp[CHACHA_BLOCK_SIZE], int used);
 471static void process_random_ready_list(void);
 472static void _get_random_bytes(void *buf, int nbytes);
 473
 474static struct ratelimit_state unseeded_warning =
 475	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
 476static struct ratelimit_state urandom_warning =
 477	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
 
 
 
 
 478
 479static int ratelimit_disable __read_mostly;
 
 
 
 480
 481module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
 482MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
 483
 484/**********************************************************************
 485 *
 486 * OS independent entropy store.   Here are the functions which handle
 487 * storing entropy in an entropy pool.
 488 *
 489 **********************************************************************/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 490
 491struct entropy_store;
 492struct entropy_store {
 493	/* read-only data: */
 494	const struct poolinfo *poolinfo;
 495	__u32 *pool;
 496	const char *name;
 497
 498	/* read-write data: */
 
 
 499	spinlock_t lock;
 500	unsigned short add_ptr;
 501	unsigned short input_rotate;
 502	int entropy_count;
 503	unsigned int initialized:1;
 504	unsigned int last_data_init:1;
 505	__u8 last_data[EXTRACT_SIZE];
 506};
 507
 508static ssize_t extract_entropy(struct entropy_store *r, void *buf,
 509			       size_t nbytes, int min, int rsvd);
 510static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
 511				size_t nbytes, int fips);
 512
 513static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
 514static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
 515
 516static struct entropy_store input_pool = {
 517	.poolinfo = &poolinfo_table[0],
 518	.name = "input",
 519	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
 520	.pool = input_pool_data
 521};
 522
 523static __u32 const twist_table[8] = {
 524	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
 525	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
 526
 527/*
 528 * This function adds bytes into the entropy "pool".  It does not
 529 * update the entropy estimate.  The caller should call
 530 * credit_entropy_bits if this is appropriate.
 531 *
 532 * The pool is stirred with a primitive polynomial of the appropriate
 533 * degree, and then twisted.  We twist by three bits at a time because
 534 * it's cheap to do so and helps slightly in the expected case where
 535 * the entropy is concentrated in the low-order bits.
 536 */
 537static void _mix_pool_bytes(struct entropy_store *r, const void *in,
 538			    int nbytes)
 539{
 540	unsigned long i, tap1, tap2, tap3, tap4, tap5;
 541	int input_rotate;
 542	int wordmask = r->poolinfo->poolwords - 1;
 543	const char *bytes = in;
 544	__u32 w;
 545
 546	tap1 = r->poolinfo->tap1;
 547	tap2 = r->poolinfo->tap2;
 548	tap3 = r->poolinfo->tap3;
 549	tap4 = r->poolinfo->tap4;
 550	tap5 = r->poolinfo->tap5;
 551
 552	input_rotate = r->input_rotate;
 553	i = r->add_ptr;
 554
 555	/* mix one byte at a time to simplify size handling and churn faster */
 556	while (nbytes--) {
 557		w = rol32(*bytes++, input_rotate);
 558		i = (i - 1) & wordmask;
 559
 560		/* XOR in the various taps */
 561		w ^= r->pool[i];
 562		w ^= r->pool[(i + tap1) & wordmask];
 563		w ^= r->pool[(i + tap2) & wordmask];
 564		w ^= r->pool[(i + tap3) & wordmask];
 565		w ^= r->pool[(i + tap4) & wordmask];
 566		w ^= r->pool[(i + tap5) & wordmask];
 567
 568		/* Mix the result back in with a twist */
 569		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
 
 
 
 
 
 
 570
 571		/*
 572		 * Normally, we add 7 bits of rotation to the pool.
 573		 * At the beginning of the pool, add an extra 7 bits
 574		 * rotation, so that successive passes spread the
 575		 * input bits across the pool evenly.
 576		 */
 577		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
 578	}
 579
 580	r->input_rotate = input_rotate;
 581	r->add_ptr = i;
 582}
 583
 584static void __mix_pool_bytes(struct entropy_store *r, const void *in,
 585			     int nbytes)
 586{
 587	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
 588	_mix_pool_bytes(r, in, nbytes);
 589}
 590
 591static void mix_pool_bytes(struct entropy_store *r, const void *in,
 592			   int nbytes)
 593{
 
 594	unsigned long flags;
 
 
 
 
 
 
 
 
 595
 596	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
 597	spin_lock_irqsave(&r->lock, flags);
 598	_mix_pool_bytes(r, in, nbytes);
 599	spin_unlock_irqrestore(&r->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 600}
 601
 602struct fast_pool {
 603	__u32		pool[4];
 604	unsigned long	last;
 605	unsigned short	reg_idx;
 606	unsigned char	count;
 607};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 608
 609/*
 610 * This is a fast mixing routine used by the interrupt randomness
 611 * collector.  It's hardcoded for an 128 bit pool and assumes that any
 612 * locks that might be needed are taken by the caller.
 613 */
 614static void fast_mix(struct fast_pool *f)
 
 615{
 616	__u32 a = f->pool[0],	b = f->pool[1];
 617	__u32 c = f->pool[2],	d = f->pool[3];
 
 
 618
 619	a += b;			c += d;
 620	b = rol32(b, 6);	d = rol32(d, 27);
 621	d ^= a;			b ^= c;
 
 
 
 
 
 622
 623	a += b;			c += d;
 624	b = rol32(b, 16);	d = rol32(d, 14);
 625	d ^= a;			b ^= c;
 
 
 
 
 
 
 
 
 
 626
 627	a += b;			c += d;
 628	b = rol32(b, 6);	d = rol32(d, 27);
 629	d ^= a;			b ^= c;
 630
 631	a += b;			c += d;
 632	b = rol32(b, 16);	d = rol32(d, 14);
 633	d ^= a;			b ^= c;
 
 
 
 
 
 
 
 
 
 
 634
 635	f->pool[0] = a;  f->pool[1] = b;
 636	f->pool[2] = c;  f->pool[3] = d;
 637	f->count++;
 
 
 
 
 
 
 638}
 639
 640static void process_random_ready_list(void)
 641{
 642	unsigned long flags;
 643	struct random_ready_callback *rdy, *tmp;
 
 
 
 
 644
 645	spin_lock_irqsave(&random_ready_list_lock, flags);
 646	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
 647		struct module *owner = rdy->owner;
 
 
 
 
 
 
 
 
 
 648
 649		list_del_init(&rdy->list);
 650		rdy->func(rdy);
 651		module_put(owner);
 
 
 652	}
 653	spin_unlock_irqrestore(&random_ready_list_lock, flags);
 
 654}
 655
 656/*
 657 * Credit (or debit) the entropy store with n bits of entropy.
 658 * Use credit_entropy_bits_safe() if the value comes from userspace
 659 * or otherwise should be checked for extreme values.
 
 
 660 */
 661static void credit_entropy_bits(struct entropy_store *r, int nbits)
 662{
 663	int entropy_count, orig, has_initialized = 0;
 664	const int pool_size = r->poolinfo->poolfracbits;
 665	int nfrac = nbits << ENTROPY_SHIFT;
 
 666
 667	if (!nbits)
 668		return;
 
 
 
 669
 670retry:
 671	entropy_count = orig = READ_ONCE(r->entropy_count);
 672	if (nfrac < 0) {
 673		/* Debit */
 674		entropy_count += nfrac;
 675	} else {
 676		/*
 677		 * Credit: we have to account for the possibility of
 678		 * overwriting already present entropy.	 Even in the
 679		 * ideal case of pure Shannon entropy, new contributions
 680		 * approach the full value asymptotically:
 681		 *
 682		 * entropy <- entropy + (pool_size - entropy) *
 683		 *	(1 - exp(-add_entropy/pool_size))
 684		 *
 685		 * For add_entropy <= pool_size/2 then
 686		 * (1 - exp(-add_entropy/pool_size)) >=
 687		 *    (add_entropy/pool_size)*0.7869...
 688		 * so we can approximate the exponential with
 689		 * 3/4*add_entropy/pool_size and still be on the
 690		 * safe side by adding at most pool_size/2 at a time.
 691		 *
 692		 * The use of pool_size-2 in the while statement is to
 693		 * prevent rounding artifacts from making the loop
 694		 * arbitrarily long; this limits the loop to log2(pool_size)*2
 695		 * turns no matter how large nbits is.
 696		 */
 697		int pnfrac = nfrac;
 698		const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
 699		/* The +2 corresponds to the /4 in the denominator */
 700
 701		do {
 702			unsigned int anfrac = min(pnfrac, pool_size/2);
 703			unsigned int add =
 704				((pool_size - entropy_count)*anfrac*3) >> s;
 705
 706			entropy_count += add;
 707			pnfrac -= anfrac;
 708		} while (unlikely(entropy_count < pool_size-2 && pnfrac));
 709	}
 710
 711	if (WARN_ON(entropy_count < 0)) {
 712		pr_warn("negative entropy/overflow: pool %s count %d\n",
 713			r->name, entropy_count);
 714		entropy_count = 0;
 715	} else if (entropy_count > pool_size)
 716		entropy_count = pool_size;
 717	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
 718		goto retry;
 719
 720	if (has_initialized) {
 721		r->initialized = 1;
 722		kill_fasync(&fasync, SIGIO, POLL_IN);
 
 
 
 
 
 
 
 
 
 
 
 723	}
 724
 725	trace_credit_entropy_bits(r->name, nbits,
 726				  entropy_count >> ENTROPY_SHIFT, _RET_IP_);
 727
 728	if (r == &input_pool) {
 729		int entropy_bits = entropy_count >> ENTROPY_SHIFT;
 
 
 
 
 730
 731		if (crng_init < 2) {
 732			if (entropy_bits < 128)
 733				return;
 734			crng_reseed(&primary_crng, r);
 735			entropy_bits = ENTROPY_BITS(r);
 736		}
 737	}
 738}
 739
 740static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 741{
 742	const int nbits_max = r->poolinfo->poolwords * 32;
 
 
 
 
 
 
 
 
 
 
 743
 744	if (nbits < 0)
 745		return -EINVAL;
 
 
 
 
 
 
 
 
 746
 747	/* Cap the value to avoid overflows */
 748	nbits = min(nbits,  nbits_max);
 
 
 
 
 
 
 
 749
 750	credit_entropy_bits(r, nbits);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 751	return 0;
 752}
 
 753
 754/*********************************************************************
 
 755 *
 756 * CRNG using CHACHA20
 757 *
 758 *********************************************************************/
 759
 760#define CRNG_RESEED_INTERVAL (300*HZ)
 761
 762static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
 
 
 
 
 
 
 
 
 763
 764#ifdef CONFIG_NUMA
 765/*
 766 * Hack to deal with crazy userspace progams when they are all trying
 767 * to access /dev/urandom in parallel.  The programs are almost
 768 * certainly doing something terribly wrong, but we'll work around
 769 * their brain damage.
 770 */
 771static struct crng_state **crng_node_pool __read_mostly;
 772#endif
 773
 774static void invalidate_batched_entropy(void);
 775static void numa_crng_init(void);
 
 
 
 
 
 
 
 
 
 776
 777static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
 778static int __init parse_trust_cpu(char *arg)
 779{
 780	return kstrtobool(arg, &trust_cpu);
 781}
 782early_param("random.trust_cpu", parse_trust_cpu);
 783
 784static bool crng_init_try_arch(struct crng_state *crng)
 
 
 
 
 
 785{
 786	int		i;
 787	bool		arch_init = true;
 788	unsigned long	rv;
 789
 790	for (i = 4; i < 16; i++) {
 791		if (!arch_get_random_seed_long(&rv) &&
 792		    !arch_get_random_long(&rv)) {
 793			rv = random_get_entropy();
 794			arch_init = false;
 795		}
 796		crng->state[i] ^= rv;
 797	}
 798
 799	return arch_init;
 
 
 800}
 801
 802static bool __init crng_init_try_arch_early(struct crng_state *crng)
 
 
 
 
 803{
 804	int		i;
 805	bool		arch_init = true;
 806	unsigned long	rv;
 807
 808	for (i = 4; i < 16; i++) {
 809		if (!arch_get_random_seed_long_early(&rv) &&
 810		    !arch_get_random_long_early(&rv)) {
 811			rv = random_get_entropy();
 812			arch_init = false;
 
 
 
 
 813		}
 814		crng->state[i] ^= rv;
 
 
 
 
 
 815	}
 816
 817	return arch_init;
 818}
 819
 820static void __maybe_unused crng_initialize_secondary(struct crng_state *crng)
 821{
 822	memcpy(&crng->state[0], "expand 32-byte k", 16);
 823	_get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
 824	crng_init_try_arch(crng);
 825	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
 826}
 827
 828static void __init crng_initialize_primary(struct crng_state *crng)
 829{
 830	memcpy(&crng->state[0], "expand 32-byte k", 16);
 831	_extract_entropy(&input_pool, &crng->state[4], sizeof(__u32) * 12, 0);
 832	if (crng_init_try_arch_early(crng) && trust_cpu) {
 833		invalidate_batched_entropy();
 834		numa_crng_init();
 835		crng_init = 2;
 836		pr_notice("crng done (trusting CPU's manufacturer)\n");
 837	}
 838	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
 839}
 840
 841#ifdef CONFIG_NUMA
 842static void do_numa_crng_init(struct work_struct *work)
 843{
 844	int i;
 845	struct crng_state *crng;
 846	struct crng_state **pool;
 847
 848	pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
 849	for_each_online_node(i) {
 850		crng = kmalloc_node(sizeof(struct crng_state),
 851				    GFP_KERNEL | __GFP_NOFAIL, i);
 852		spin_lock_init(&crng->lock);
 853		crng_initialize_secondary(crng);
 854		pool[i] = crng;
 855	}
 856	mb();
 857	if (cmpxchg(&crng_node_pool, NULL, pool)) {
 858		for_each_node(i)
 859			kfree(pool[i]);
 860		kfree(pool);
 861	}
 862}
 863
 864static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
 865
 866static void numa_crng_init(void)
 867{
 868	schedule_work(&numa_crng_init_work);
 869}
 870#else
 871static void numa_crng_init(void) {}
 872#endif
 873
 874/*
 875 * crng_fast_load() can be called by code in the interrupt service
 876 * path.  So we can't afford to dilly-dally.
 877 */
 878static int crng_fast_load(const char *cp, size_t len)
 879{
 
 
 880	unsigned long flags;
 881	char *p;
 882
 883	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
 884		return 0;
 885	if (crng_init != 0) {
 886		spin_unlock_irqrestore(&primary_crng.lock, flags);
 887		return 0;
 888	}
 889	p = (unsigned char *) &primary_crng.state[4];
 890	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
 891		p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
 892		cp++; crng_init_cnt++; len--;
 893	}
 894	spin_unlock_irqrestore(&primary_crng.lock, flags);
 895	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
 896		invalidate_batched_entropy();
 897		crng_init = 1;
 898		pr_notice("fast init done\n");
 899	}
 900	return 1;
 901}
 902
 903/*
 904 * crng_slow_load() is called by add_device_randomness, which has two
 905 * attributes.  (1) We can't trust the buffer passed to it is
 906 * guaranteed to be unpredictable (so it might not have any entropy at
 907 * all), and (2) it doesn't have the performance constraints of
 908 * crng_fast_load().
 909 *
 910 * So we do something more comprehensive which is guaranteed to touch
 911 * all of the primary_crng's state, and which uses a LFSR with a
 912 * period of 255 as part of the mixing algorithm.  Finally, we do
 913 * *not* advance crng_init_cnt since buffer we may get may be something
 914 * like a fixed DMI table (for example), which might very well be
 915 * unique to the machine, but is otherwise unvarying.
 916 */
 917static int crng_slow_load(const char *cp, size_t len)
 918{
 919	unsigned long		flags;
 920	static unsigned char	lfsr = 1;
 921	unsigned char		tmp;
 922	unsigned		i, max = CHACHA_KEY_SIZE;
 923	const char *		src_buf = cp;
 924	char *			dest_buf = (char *) &primary_crng.state[4];
 925
 926	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
 927		return 0;
 928	if (crng_init != 0) {
 929		spin_unlock_irqrestore(&primary_crng.lock, flags);
 930		return 0;
 931	}
 932	if (len > max)
 933		max = len;
 934
 935	for (i = 0; i < max ; i++) {
 936		tmp = lfsr;
 937		lfsr >>= 1;
 938		if (tmp & 1)
 939			lfsr ^= 0xE1;
 940		tmp = dest_buf[i % CHACHA_KEY_SIZE];
 941		dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
 942		lfsr += (tmp << 3) | (tmp >> 5);
 943	}
 944	spin_unlock_irqrestore(&primary_crng.lock, flags);
 945	return 1;
 946}
 947
 948static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
 949{
 950	unsigned long	flags;
 951	int		i, num;
 952	union {
 953		__u8	block[CHACHA_BLOCK_SIZE];
 954		__u32	key[8];
 955	} buf;
 956
 957	if (r) {
 958		num = extract_entropy(r, &buf, 32, 16, 0);
 959		if (num == 0)
 960			return;
 961	} else {
 962		_extract_crng(&primary_crng, buf.block);
 963		_crng_backtrack_protect(&primary_crng, buf.block,
 964					CHACHA_KEY_SIZE);
 965	}
 966	spin_lock_irqsave(&crng->lock, flags);
 967	for (i = 0; i < 8; i++) {
 968		unsigned long	rv;
 969		if (!arch_get_random_seed_long(&rv) &&
 970		    !arch_get_random_long(&rv))
 971			rv = random_get_entropy();
 972		crng->state[i+4] ^= buf.key[i] ^ rv;
 973	}
 974	memzero_explicit(&buf, sizeof(buf));
 975	crng->init_time = jiffies;
 976	spin_unlock_irqrestore(&crng->lock, flags);
 977	if (crng == &primary_crng && crng_init < 2) {
 978		invalidate_batched_entropy();
 979		numa_crng_init();
 980		crng_init = 2;
 981		process_random_ready_list();
 982		wake_up_interruptible(&crng_init_wait);
 983		kill_fasync(&fasync, SIGIO, POLL_IN);
 984		pr_notice("crng init done\n");
 985		if (unseeded_warning.missed) {
 986			pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
 987				  unseeded_warning.missed);
 988			unseeded_warning.missed = 0;
 989		}
 990		if (urandom_warning.missed) {
 991			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
 992				  urandom_warning.missed);
 993			urandom_warning.missed = 0;
 
 
 
 
 
 994		}
 
 995	}
 996}
 997
 998static void _extract_crng(struct crng_state *crng,
 999			  __u8 out[CHACHA_BLOCK_SIZE])
1000{
1001	unsigned long v, flags;
1002
1003	if (crng_ready() &&
1004	    (time_after(crng_global_init_time, crng->init_time) ||
1005	     time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
1006		crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
1007	spin_lock_irqsave(&crng->lock, flags);
1008	if (arch_get_random_long(&v))
1009		crng->state[14] ^= v;
1010	chacha20_block(&crng->state[0], out);
1011	if (crng->state[12] == 0)
1012		crng->state[13]++;
1013	spin_unlock_irqrestore(&crng->lock, flags);
1014}
1015
1016static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE])
1017{
1018	struct crng_state *crng = NULL;
1019
1020#ifdef CONFIG_NUMA
1021	if (crng_node_pool)
1022		crng = crng_node_pool[numa_node_id()];
1023	if (crng == NULL)
1024#endif
1025		crng = &primary_crng;
1026	_extract_crng(crng, out);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1027}
 
 
1028
1029/*
1030 * Use the leftover bytes from the CRNG block output (if there is
1031 * enough) to mutate the CRNG key to provide backtracking protection.
1032 */
1033static void _crng_backtrack_protect(struct crng_state *crng,
1034				    __u8 tmp[CHACHA_BLOCK_SIZE], int used)
1035{
1036	unsigned long	flags;
1037	__u32		*s, *d;
1038	int		i;
 
 
 
 
1039
1040	used = round_up(used, sizeof(__u32));
1041	if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
1042		extract_crng(tmp);
1043		used = 0;
 
 
 
 
 
 
 
1044	}
1045	spin_lock_irqsave(&crng->lock, flags);
1046	s = (__u32 *) &tmp[used];
1047	d = &crng->state[4];
1048	for (i=0; i < 8; i++)
1049		*d++ ^= *s++;
1050	spin_unlock_irqrestore(&crng->lock, flags);
1051}
1052
1053static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used)
 
 
 
 
 
 
1054{
1055	struct crng_state *crng = NULL;
 
1056
1057#ifdef CONFIG_NUMA
1058	if (crng_node_pool)
1059		crng = crng_node_pool[numa_node_id()];
1060	if (crng == NULL)
1061#endif
1062		crng = &primary_crng;
1063	_crng_backtrack_protect(crng, tmp, used);
1064}
1065
1066static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
1067{
1068	ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
1069	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1070	int large_request = (nbytes > 256);
1071
1072	while (nbytes) {
1073		if (large_request && need_resched()) {
1074			if (signal_pending(current)) {
1075				if (ret == 0)
1076					ret = -ERESTARTSYS;
1077				break;
1078			}
1079			schedule();
1080		}
1081
1082		extract_crng(tmp);
1083		i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
1084		if (copy_to_user(buf, tmp, i)) {
1085			ret = -EFAULT;
1086			break;
1087		}
1088
1089		nbytes -= i;
1090		buf += i;
1091		ret += i;
1092	}
1093	crng_backtrack_protect(tmp, i);
1094
1095	/* Wipe data just written to memory */
1096	memzero_explicit(tmp, sizeof(tmp));
1097
1098	return ret;
 
 
 
 
1099}
1100
 
 
 
 
 
 
 
 
1101
1102/*********************************************************************
1103 *
1104 * Entropy input management
1105 *
1106 *********************************************************************/
1107
1108/* There is one of these per entropy source */
1109struct timer_rand_state {
1110	cycles_t last_time;
1111	long last_delta, last_delta2;
1112};
 
 
 
 
 
 
 
 
1113
1114#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
 
 
1115
1116/*
1117 * Add device- or boot-specific data to the input pool to help
1118 * initialize it.
1119 *
1120 * None of this adds any entropy; it is meant to avoid the problem of
1121 * the entropy pool having similar initial state across largely
1122 * identical devices.
1123 */
1124void add_device_randomness(const void *buf, unsigned int size)
1125{
1126	unsigned long time = random_get_entropy() ^ jiffies;
1127	unsigned long flags;
1128
1129	if (!crng_ready() && size)
1130		crng_slow_load(buf, size);
1131
1132	trace_add_device_randomness(size, _RET_IP_);
1133	spin_lock_irqsave(&input_pool.lock, flags);
1134	_mix_pool_bytes(&input_pool, buf, size);
1135	_mix_pool_bytes(&input_pool, &time, sizeof(time));
1136	spin_unlock_irqrestore(&input_pool.lock, flags);
1137}
1138EXPORT_SYMBOL(add_device_randomness);
1139
1140static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1141
1142/*
1143 * This function adds entropy to the entropy "pool" by using timing
1144 * delays.  It uses the timer_rand_state structure to make an estimate
1145 * of how many bits of entropy this call has added to the pool.
1146 *
1147 * The number "num" is also added to the pool - it should somehow describe
1148 * the type of event which just happened.  This is currently 0-255 for
1149 * keyboard scan codes, and 256 upwards for interrupts.
1150 *
1151 */
1152static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1153{
1154	struct entropy_store	*r;
1155	struct {
1156		long jiffies;
1157		unsigned cycles;
1158		unsigned num;
1159	} sample;
1160	long delta, delta2, delta3;
1161
1162	sample.jiffies = jiffies;
1163	sample.cycles = random_get_entropy();
1164	sample.num = num;
1165	r = &input_pool;
1166	mix_pool_bytes(r, &sample, sizeof(sample));
1167
1168	/*
1169	 * Calculate number of bits of randomness we probably added.
1170	 * We take into account the first, second and third-order deltas
1171	 * in order to make our estimate.
1172	 */
1173	delta = sample.jiffies - READ_ONCE(state->last_time);
1174	WRITE_ONCE(state->last_time, sample.jiffies);
1175
1176	delta2 = delta - READ_ONCE(state->last_delta);
1177	WRITE_ONCE(state->last_delta, delta);
1178
1179	delta3 = delta2 - READ_ONCE(state->last_delta2);
1180	WRITE_ONCE(state->last_delta2, delta2);
1181
1182	if (delta < 0)
1183		delta = -delta;
1184	if (delta2 < 0)
1185		delta2 = -delta2;
1186	if (delta3 < 0)
1187		delta3 = -delta3;
1188	if (delta > delta2)
1189		delta = delta2;
1190	if (delta > delta3)
1191		delta = delta3;
1192
1193	/*
1194	 * delta is now minimum absolute delta.
1195	 * Round down by 1 bit on general principles,
1196	 * and limit entropy estimate to 12 bits.
1197	 */
1198	credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
 
1199}
 
1200
1201void add_input_randomness(unsigned int type, unsigned int code,
1202				 unsigned int value)
 
 
 
1203{
1204	static unsigned char last_value;
1205
1206	/* ignore autorepeat and the like */
1207	if (value == last_value)
1208		return;
1209
1210	last_value = value;
1211	add_timer_randomness(&input_timer_state,
1212			     (type << 4) ^ code ^ (code >> 4) ^ value);
1213	trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1214}
1215EXPORT_SYMBOL_GPL(add_input_randomness);
1216
1217static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
 
1218
1219#ifdef ADD_INTERRUPT_BENCH
1220static unsigned long avg_cycles, avg_deviation;
1221
1222#define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
1223#define FIXED_1_2 (1 << (AVG_SHIFT-1))
1224
1225static void add_interrupt_bench(cycles_t start)
1226{
1227        long delta = random_get_entropy() - start;
1228
1229        /* Use a weighted moving average */
1230        delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1231        avg_cycles += delta;
1232        /* And average deviation */
1233        delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1234        avg_deviation += delta;
1235}
1236#else
1237#define add_interrupt_bench(x)
1238#endif
1239
1240static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1241{
1242	__u32 *ptr = (__u32 *) regs;
1243	unsigned int idx;
1244
1245	if (regs == NULL)
1246		return 0;
1247	idx = READ_ONCE(f->reg_idx);
1248	if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1249		idx = 0;
1250	ptr += idx++;
1251	WRITE_ONCE(f->reg_idx, idx);
1252	return *ptr;
1253}
1254
1255void add_interrupt_randomness(int irq, int irq_flags)
1256{
1257	struct entropy_store	*r;
1258	struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness);
1259	struct pt_regs		*regs = get_irq_regs();
1260	unsigned long		now = jiffies;
1261	cycles_t		cycles = random_get_entropy();
1262	__u32			c_high, j_high;
1263	__u64			ip;
1264	unsigned long		seed;
1265	int			credit = 0;
1266
1267	if (cycles == 0)
1268		cycles = get_reg(fast_pool, regs);
1269	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1270	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1271	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1272	fast_pool->pool[1] ^= now ^ c_high;
1273	ip = regs ? instruction_pointer(regs) : _RET_IP_;
1274	fast_pool->pool[2] ^= ip;
1275	fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1276		get_reg(fast_pool, regs);
1277
1278	fast_mix(fast_pool);
1279	add_interrupt_bench(cycles);
1280	this_cpu_add(net_rand_state.s1, fast_pool->pool[cycles & 3]);
1281
1282	if (unlikely(crng_init == 0)) {
1283		if ((fast_pool->count >= 64) &&
1284		    crng_fast_load((char *) fast_pool->pool,
1285				   sizeof(fast_pool->pool))) {
1286			fast_pool->count = 0;
1287			fast_pool->last = now;
1288		}
1289		return;
1290	}
1291
1292	if ((fast_pool->count < 64) &&
1293	    !time_after(now, fast_pool->last + HZ))
1294		return;
1295
1296	r = &input_pool;
1297	if (!spin_trylock(&r->lock))
1298		return;
1299
1300	fast_pool->last = now;
1301	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1302
1303	/*
1304	 * If we have architectural seed generator, produce a seed and
1305	 * add it to the pool.  For the sake of paranoia don't let the
1306	 * architectural seed generator dominate the input from the
1307	 * interrupt noise.
1308	 */
1309	if (arch_get_random_seed_long(&seed)) {
1310		__mix_pool_bytes(r, &seed, sizeof(seed));
1311		credit = 1;
1312	}
1313	spin_unlock(&r->lock);
1314
1315	fast_pool->count = 0;
1316
1317	/* award one bit for the contents of the fast pool */
1318	credit_entropy_bits(r, credit + 1);
1319}
1320EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1321
1322#ifdef CONFIG_BLOCK
1323void add_disk_randomness(struct gendisk *disk)
1324{
1325	if (!disk || !disk->random)
1326		return;
1327	/* first major is 1, so we get >= 0x200 here */
1328	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1329	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1330}
1331EXPORT_SYMBOL_GPL(add_disk_randomness);
1332#endif
1333
1334/*********************************************************************
1335 *
1336 * Entropy extraction routines
1337 *
1338 *********************************************************************/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1339
1340/*
1341 * This function decides how many bytes to actually take from the
1342 * given pool, and also debits the entropy count accordingly.
 
 
1343 */
1344static size_t account(struct entropy_store *r, size_t nbytes, int min,
1345		      int reserved)
1346{
1347	int entropy_count, orig, have_bytes;
1348	size_t ibytes, nfrac;
1349
1350	BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1351
1352	/* Can we pull enough? */
1353retry:
1354	entropy_count = orig = READ_ONCE(r->entropy_count);
1355	ibytes = nbytes;
1356	/* never pull more than available */
1357	have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1358
1359	if ((have_bytes -= reserved) < 0)
1360		have_bytes = 0;
1361	ibytes = min_t(size_t, ibytes, have_bytes);
1362	if (ibytes < min)
1363		ibytes = 0;
1364
1365	if (WARN_ON(entropy_count < 0)) {
1366		pr_warn("negative entropy count: pool %s count %d\n",
1367			r->name, entropy_count);
1368		entropy_count = 0;
1369	}
1370	nfrac = ibytes << (ENTROPY_SHIFT + 3);
1371	if ((size_t) entropy_count > nfrac)
1372		entropy_count -= nfrac;
1373	else
1374		entropy_count = 0;
1375
1376	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1377		goto retry;
1378
1379	trace_debit_entropy(r->name, 8 * ibytes);
1380	if (ibytes && ENTROPY_BITS(r) < random_write_wakeup_bits) {
1381		wake_up_interruptible(&random_write_wait);
1382		kill_fasync(&fasync, SIGIO, POLL_OUT);
1383	}
1384
1385	return ibytes;
1386}
1387
 
1388/*
1389 * This function does the actual extraction for extract_entropy and
1390 * extract_entropy_user.
1391 *
1392 * Note: we assume that .poolwords is a multiple of 16 words.
1393 */
1394static void extract_buf(struct entropy_store *r, __u8 *out)
1395{
1396	int i;
1397	union {
1398		__u32 w[5];
1399		unsigned long l[LONGS(20)];
1400	} hash;
1401	__u32 workspace[SHA1_WORKSPACE_WORDS];
1402	unsigned long flags;
1403
1404	/*
1405	 * If we have an architectural hardware random number
1406	 * generator, use it for SHA's initial vector
 
 
 
 
 
 
 
1407	 */
1408	sha1_init(hash.w);
1409	for (i = 0; i < LONGS(20); i++) {
1410		unsigned long v;
1411		if (!arch_get_random_long(&v))
1412			break;
1413		hash.l[i] = v;
1414	}
1415
1416	/* Generate a hash across the pool, 16 words (512 bits) at a time */
1417	spin_lock_irqsave(&r->lock, flags);
1418	for (i = 0; i < r->poolinfo->poolwords; i += 16)
1419		sha1_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1420
 
 
 
1421	/*
1422	 * We mix the hash back into the pool to prevent backtracking
1423	 * attacks (where the attacker knows the state of the pool
1424	 * plus the current outputs, and attempts to find previous
1425	 * ouputs), unless the hash function can be inverted. By
1426	 * mixing at least a SHA1 worth of hash data back, we make
1427	 * brute-forcing the feedback as hard as brute-forcing the
1428	 * hash.
1429	 */
1430	__mix_pool_bytes(r, hash.w, sizeof(hash.w));
1431	spin_unlock_irqrestore(&r->lock, flags);
1432
1433	memzero_explicit(workspace, sizeof(workspace));
 
 
 
 
 
1434
1435	/*
1436	 * In case the hash function has some recognizable output
1437	 * pattern, we fold it in half. Thus, we always feed back
1438	 * twice as much data as we output.
1439	 */
1440	hash.w[0] ^= hash.w[3];
1441	hash.w[1] ^= hash.w[4];
1442	hash.w[2] ^= rol32(hash.w[2], 16);
 
 
 
 
 
1443
1444	memcpy(out, &hash, EXTRACT_SIZE);
1445	memzero_explicit(&hash, sizeof(hash));
1446}
1447
1448static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1449				size_t nbytes, int fips)
1450{
1451	ssize_t ret = 0, i;
1452	__u8 tmp[EXTRACT_SIZE];
1453	unsigned long flags;
 
 
1454
1455	while (nbytes) {
1456		extract_buf(r, tmp);
 
1457
1458		if (fips) {
1459			spin_lock_irqsave(&r->lock, flags);
1460			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1461				panic("Hardware RNG duplicated output!\n");
1462			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1463			spin_unlock_irqrestore(&r->lock, flags);
1464		}
1465		i = min_t(int, nbytes, EXTRACT_SIZE);
1466		memcpy(buf, tmp, i);
1467		nbytes -= i;
1468		buf += i;
1469		ret += i;
1470	}
1471
1472	/* Wipe data just returned from memory */
1473	memzero_explicit(tmp, sizeof(tmp));
1474
1475	return ret;
 
 
 
 
1476}
 
 
 
 
 
 
 
1477
1478/*
1479 * This function extracts randomness from the "entropy pool", and
1480 * returns it in a buffer.
1481 *
1482 * The min parameter specifies the minimum amount we can pull before
1483 * failing to avoid races that defeat catastrophic reseeding while the
1484 * reserved parameter indicates how much entropy we must leave in the
1485 * pool after each pull to avoid starving other readers.
1486 */
1487static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1488				 size_t nbytes, int min, int reserved)
1489{
1490	__u8 tmp[EXTRACT_SIZE];
1491	unsigned long flags;
 
1492
1493	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1494	if (fips_enabled) {
1495		spin_lock_irqsave(&r->lock, flags);
1496		if (!r->last_data_init) {
1497			r->last_data_init = 1;
1498			spin_unlock_irqrestore(&r->lock, flags);
1499			trace_extract_entropy(r->name, EXTRACT_SIZE,
1500					      ENTROPY_BITS(r), _RET_IP_);
1501			extract_buf(r, tmp);
1502			spin_lock_irqsave(&r->lock, flags);
1503			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1504		}
1505		spin_unlock_irqrestore(&r->lock, flags);
1506	}
1507
1508	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1509	nbytes = account(r, nbytes, min, reserved);
1510
1511	return _extract_entropy(r, buf, nbytes, fips_enabled);
1512}
1513
1514#define warn_unseeded_randomness(previous) \
1515	_warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1516
1517static void _warn_unseeded_randomness(const char *func_name, void *caller,
1518				      void **previous)
1519{
1520#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1521	const bool print_once = false;
1522#else
1523	static bool print_once __read_mostly;
1524#endif
1525
1526	if (print_once ||
1527	    crng_ready() ||
1528	    (previous && (caller == READ_ONCE(*previous))))
1529		return;
1530	WRITE_ONCE(*previous, caller);
1531#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1532	print_once = true;
1533#endif
1534	if (__ratelimit(&unseeded_warning))
1535		printk_deferred(KERN_NOTICE "random: %s called from %pS "
1536				"with crng_init=%d\n", func_name, caller,
1537				crng_init);
1538}
1539
1540/*
1541 * This function is the exported kernel interface.  It returns some
1542 * number of good random numbers, suitable for key generation, seeding
1543 * TCP sequence numbers, etc.  It does not rely on the hardware random
1544 * number generator.  For random bytes direct from the hardware RNG
1545 * (when available), use get_random_bytes_arch(). In order to ensure
1546 * that the randomness provided by this function is okay, the function
1547 * wait_for_random_bytes() should be called and return 0 at least once
1548 * at any point prior.
1549 */
1550static void _get_random_bytes(void *buf, int nbytes)
1551{
1552	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1553
1554	trace_get_random_bytes(nbytes, _RET_IP_);
 
 
 
 
 
 
 
 
 
1555
1556	while (nbytes >= CHACHA_BLOCK_SIZE) {
1557		extract_crng(buf);
1558		buf += CHACHA_BLOCK_SIZE;
1559		nbytes -= CHACHA_BLOCK_SIZE;
1560	}
1561
1562	if (nbytes > 0) {
1563		extract_crng(tmp);
1564		memcpy(buf, tmp, nbytes);
1565		crng_backtrack_protect(tmp, nbytes);
1566	} else
1567		crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
1568	memzero_explicit(tmp, sizeof(tmp));
 
 
 
 
1569}
1570
1571void get_random_bytes(void *buf, int nbytes)
1572{
1573	static void *previous;
1574
1575	warn_unseeded_randomness(&previous);
1576	_get_random_bytes(buf, nbytes);
1577}
1578EXPORT_SYMBOL(get_random_bytes);
1579
 
 
 
1580
1581/*
1582 * Each time the timer fires, we expect that we got an unpredictable
1583 * jump in the cycle counter. Even if the timer is running on another
1584 * CPU, the timer activity will be touching the stack of the CPU that is
1585 * generating entropy..
1586 *
1587 * Note that we don't re-arm the timer in the timer itself - we are
1588 * happy to be scheduled away, since that just makes the load more
1589 * complex, but we do not want the timer to keep ticking unless the
1590 * entropy loop is running.
1591 *
1592 * So the re-arming always happens in the entropy loop itself.
1593 */
1594static void entropy_timer(struct timer_list *t)
1595{
1596	credit_entropy_bits(&input_pool, 1);
1597}
 
1598
1599/*
1600 * If we have an actual cycle counter, see if we can
1601 * generate enough entropy with timing noise
1602 */
1603static void try_to_generate_entropy(void)
1604{
1605	struct {
1606		unsigned long now;
1607		struct timer_list timer;
1608	} stack;
1609
1610	stack.now = random_get_entropy();
1611
1612	/* Slow counter - or none. Don't even bother */
1613	if (stack.now == random_get_entropy())
1614		return;
1615
1616	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1617	while (!crng_ready()) {
1618		if (!timer_pending(&stack.timer))
1619			mod_timer(&stack.timer, jiffies+1);
1620		mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1621		schedule();
1622		stack.now = random_get_entropy();
1623	}
1624
1625	del_timer_sync(&stack.timer);
1626	destroy_timer_on_stack(&stack.timer);
1627	mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1628}
 
1629
1630/*
1631 * Wait for the urandom pool to be seeded and thus guaranteed to supply
1632 * cryptographically secure random numbers. This applies to: the /dev/urandom
1633 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1634 * family of functions. Using any of these functions without first calling
1635 * this function forfeits the guarantee of security.
1636 *
1637 * Returns: 0 if the urandom pool has been seeded.
1638 *          -ERESTARTSYS if the function was interrupted by a signal.
1639 */
1640int wait_for_random_bytes(void)
1641{
1642	if (likely(crng_ready()))
1643		return 0;
1644
1645	do {
1646		int ret;
1647		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
1648		if (ret)
1649			return ret > 0 ? 0 : ret;
1650
1651		try_to_generate_entropy();
1652	} while (!crng_ready());
1653
1654	return 0;
 
 
 
 
 
 
 
 
1655}
1656EXPORT_SYMBOL(wait_for_random_bytes);
1657
1658/*
1659 * Returns whether or not the urandom pool has been seeded and thus guaranteed
1660 * to supply cryptographically secure random numbers. This applies to: the
1661 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
1662 * ,u64,int,long} family of functions.
1663 *
1664 * Returns: true if the urandom pool has been seeded.
1665 *          false if the urandom pool has not been seeded.
1666 */
1667bool rng_is_initialized(void)
1668{
1669	return crng_ready();
1670}
1671EXPORT_SYMBOL(rng_is_initialized);
1672
1673/*
1674 * Add a callback function that will be invoked when the nonblocking
1675 * pool is initialised.
 
 
 
 
 
1676 *
1677 * returns: 0 if callback is successfully added
1678 *	    -EALREADY if pool is already initialised (callback not called)
1679 *	    -ENOENT if module for callback is not alive
1680 */
1681int add_random_ready_callback(struct random_ready_callback *rdy)
1682{
1683	struct module *owner;
1684	unsigned long flags;
1685	int err = -EALREADY;
1686
1687	if (crng_ready())
1688		return err;
1689
1690	owner = rdy->owner;
1691	if (!try_module_get(owner))
1692		return -ENOENT;
1693
1694	spin_lock_irqsave(&random_ready_list_lock, flags);
1695	if (crng_ready())
1696		goto out;
1697
1698	owner = NULL;
1699
1700	list_add(&rdy->list, &random_ready_list);
1701	err = 0;
1702
1703out:
1704	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1705
1706	module_put(owner);
1707
1708	return err;
1709}
1710EXPORT_SYMBOL(add_random_ready_callback);
1711
1712/*
1713 * Delete a previously registered readiness callback function.
 
1714 */
1715void del_random_ready_callback(struct random_ready_callback *rdy)
1716{
1717	unsigned long flags;
1718	struct module *owner = NULL;
 
 
 
 
1719
1720	spin_lock_irqsave(&random_ready_list_lock, flags);
1721	if (!list_empty(&rdy->list)) {
1722		list_del_init(&rdy->list);
1723		owner = rdy->owner;
 
1724	}
1725	spin_unlock_irqrestore(&random_ready_list_lock, flags);
 
 
1726
1727	module_put(owner);
1728}
1729EXPORT_SYMBOL(del_random_ready_callback);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1730
1731/*
1732 * This function will use the architecture-specific hardware random
1733 * number generator if it is available.  The arch-specific hw RNG will
1734 * almost certainly be faster than what we can do in software, but it
1735 * is impossible to verify that it is implemented securely (as
1736 * opposed, to, say, the AES encryption of a sequence number using a
1737 * key known by the NSA).  So it's useful if we need the speed, but
1738 * only if we're willing to trust the hardware manufacturer not to
1739 * have put in a back door.
1740 *
1741 * Return number of bytes filled in.
1742 */
1743int __must_check get_random_bytes_arch(void *buf, int nbytes)
1744{
1745	int left = nbytes;
1746	char *p = buf;
1747
1748	trace_get_random_bytes_arch(left, _RET_IP_);
1749	while (left) {
1750		unsigned long v;
1751		int chunk = min_t(int, left, sizeof(unsigned long));
1752
1753		if (!arch_get_random_long(&v))
1754			break;
1755
1756		memcpy(p, &v, chunk);
1757		p += chunk;
1758		left -= chunk;
 
 
1759	}
 
1760
1761	return nbytes - left;
 
1762}
1763EXPORT_SYMBOL(get_random_bytes_arch);
1764
1765/*
1766 * init_std_data - initialize pool with system data
1767 *
1768 * @r: pool to initialize
1769 *
1770 * This function clears the pool's entropy count and mixes some system
1771 * data into the pool to prepare it for use. The pool is not cleared
1772 * as that can only decrease the entropy in the pool.
1773 */
1774static void __init init_std_data(struct entropy_store *r)
1775{
1776	int i;
1777	ktime_t now = ktime_get_real();
1778	unsigned long rv;
1779
1780	mix_pool_bytes(r, &now, sizeof(now));
1781	for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1782		if (!arch_get_random_seed_long(&rv) &&
1783		    !arch_get_random_long(&rv))
1784			rv = random_get_entropy();
1785		mix_pool_bytes(r, &rv, sizeof(rv));
1786	}
1787	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1788}
1789
1790/*
1791 * Note that setup_arch() may call add_device_randomness()
1792 * long before we get here. This allows seeding of the pools
1793 * with some platform dependent data very early in the boot
1794 * process. But it limits our options here. We must use
1795 * statically allocated structures that already have all
1796 * initializations complete at compile time. We should also
1797 * take care not to overwrite the precious per platform data
1798 * we were given.
1799 */
1800int __init rand_initialize(void)
1801{
1802	init_std_data(&input_pool);
1803	crng_initialize_primary(&primary_crng);
1804	crng_global_init_time = jiffies;
1805	if (ratelimit_disable) {
1806		urandom_warning.interval = 0;
1807		unseeded_warning.interval = 0;
1808	}
1809	return 0;
1810}
1811
1812#ifdef CONFIG_BLOCK
1813void rand_initialize_disk(struct gendisk *disk)
1814{
1815	struct timer_rand_state *state;
 
 
 
 
1816
1817	/*
1818	 * If kzalloc returns null, we just won't use that entropy
1819	 * source.
1820	 */
1821	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1822	if (state) {
1823		state->last_time = INITIAL_JIFFIES;
1824		disk->random = state;
 
 
 
 
 
1825	}
 
 
 
 
 
1826}
1827#endif
1828
1829static ssize_t
1830urandom_read_nowarn(struct file *file, char __user *buf, size_t nbytes,
1831		    loff_t *ppos)
1832{
1833	int ret;
1834
1835	nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1836	ret = extract_crng_user(buf, nbytes);
1837	trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1838	return ret;
1839}
1840
1841static ssize_t
1842urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1843{
1844	unsigned long flags;
1845	static int maxwarn = 10;
 
1846
1847	if (!crng_ready() && maxwarn > 0) {
1848		maxwarn--;
1849		if (__ratelimit(&urandom_warning))
1850			pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
1851				  current->comm, nbytes);
1852		spin_lock_irqsave(&primary_crng.lock, flags);
1853		crng_init_cnt = 0;
1854		spin_unlock_irqrestore(&primary_crng.lock, flags);
1855	}
1856
1857	return urandom_read_nowarn(file, buf, nbytes, ppos);
1858}
 
 
 
 
1859
1860static ssize_t
1861random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1862{
1863	int ret;
 
 
 
1864
1865	ret = wait_for_random_bytes();
1866	if (ret != 0)
1867		return ret;
1868	return urandom_read_nowarn(file, buf, nbytes, ppos);
1869}
1870
1871static __poll_t
1872random_poll(struct file *file, poll_table * wait)
1873{
1874	__poll_t mask;
1875
1876	poll_wait(file, &crng_init_wait, wait);
1877	poll_wait(file, &random_write_wait, wait);
1878	mask = 0;
1879	if (crng_ready())
1880		mask |= EPOLLIN | EPOLLRDNORM;
1881	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1882		mask |= EPOLLOUT | EPOLLWRNORM;
1883	return mask;
1884}
1885
1886static int
1887write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1888{
1889	size_t bytes;
1890	__u32 t, buf[16];
1891	const char __user *p = buffer;
1892
1893	while (count > 0) {
1894		int b, i = 0;
1895
1896		bytes = min(count, sizeof(buf));
1897		if (copy_from_user(&buf, p, bytes))
1898			return -EFAULT;
 
 
 
1899
1900		for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
1901			if (!arch_get_random_int(&t))
1902				break;
1903			buf[i] ^= t;
 
 
 
1904		}
1905
1906		count -= bytes;
1907		p += bytes;
1908
1909		mix_pool_bytes(r, buf, bytes);
1910		cond_resched();
1911	}
1912
1913	return 0;
1914}
1915
1916static ssize_t random_write(struct file *file, const char __user *buffer,
1917			    size_t count, loff_t *ppos)
1918{
1919	size_t ret;
1920
1921	ret = write_pool(&input_pool, buffer, count);
1922	if (ret)
1923		return ret;
 
1924
1925	return (ssize_t)count;
 
 
 
1926}
1927
1928static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1929{
1930	int size, ent_count;
1931	int __user *p = (int __user *)arg;
1932	int retval;
1933
1934	switch (cmd) {
1935	case RNDGETENTCNT:
1936		/* inherently racy, no point locking */
1937		ent_count = ENTROPY_BITS(&input_pool);
1938		if (put_user(ent_count, p))
1939			return -EFAULT;
1940		return 0;
1941	case RNDADDTOENTCNT:
1942		if (!capable(CAP_SYS_ADMIN))
1943			return -EPERM;
1944		if (get_user(ent_count, p))
1945			return -EFAULT;
1946		return credit_entropy_bits_safe(&input_pool, ent_count);
1947	case RNDADDENTROPY:
 
 
 
 
 
 
 
1948		if (!capable(CAP_SYS_ADMIN))
1949			return -EPERM;
1950		if (get_user(ent_count, p++))
1951			return -EFAULT;
1952		if (ent_count < 0)
1953			return -EINVAL;
1954		if (get_user(size, p++))
1955			return -EFAULT;
1956		retval = write_pool(&input_pool, (const char __user *)p,
1957				    size);
1958		if (retval < 0)
1959			return retval;
1960		return credit_entropy_bits_safe(&input_pool, ent_count);
 
 
 
 
 
 
 
1961	case RNDZAPENTCNT:
1962	case RNDCLEARPOOL:
1963		/*
1964		 * Clear the entropy pool counters. We no longer clear
1965		 * the entropy pool, as that's silly.
1966		 */
1967		if (!capable(CAP_SYS_ADMIN))
1968			return -EPERM;
1969		input_pool.entropy_count = 0;
1970		return 0;
1971	case RNDRESEEDCRNG:
1972		if (!capable(CAP_SYS_ADMIN))
1973			return -EPERM;
1974		if (crng_init < 2)
1975			return -ENODATA;
1976		crng_reseed(&primary_crng, NULL);
1977		crng_global_init_time = jiffies - 1;
1978		return 0;
1979	default:
1980		return -EINVAL;
1981	}
1982}
1983
1984static int random_fasync(int fd, struct file *filp, int on)
1985{
1986	return fasync_helper(fd, filp, on, &fasync);
1987}
1988
1989const struct file_operations random_fops = {
1990	.read  = random_read,
1991	.write = random_write,
1992	.poll  = random_poll,
1993	.unlocked_ioctl = random_ioctl,
1994	.compat_ioctl = compat_ptr_ioctl,
1995	.fasync = random_fasync,
1996	.llseek = noop_llseek,
 
 
1997};
1998
1999const struct file_operations urandom_fops = {
2000	.read  = urandom_read,
2001	.write = random_write,
2002	.unlocked_ioctl = random_ioctl,
2003	.compat_ioctl = compat_ptr_ioctl,
2004	.fasync = random_fasync,
2005	.llseek = noop_llseek,
 
 
2006};
2007
2008SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
2009		unsigned int, flags)
2010{
2011	int ret;
2012
2013	if (flags & ~(GRND_NONBLOCK|GRND_RANDOM|GRND_INSECURE))
2014		return -EINVAL;
2015
2016	/*
2017	 * Requesting insecure and blocking randomness at the same time makes
2018	 * no sense.
2019	 */
2020	if ((flags & (GRND_INSECURE|GRND_RANDOM)) == (GRND_INSECURE|GRND_RANDOM))
2021		return -EINVAL;
2022
2023	if (count > INT_MAX)
2024		count = INT_MAX;
2025
2026	if (!(flags & GRND_INSECURE) && !crng_ready()) {
2027		if (flags & GRND_NONBLOCK)
2028			return -EAGAIN;
2029		ret = wait_for_random_bytes();
2030		if (unlikely(ret))
2031			return ret;
2032	}
2033	return urandom_read_nowarn(NULL, buf, count, NULL);
2034}
2035
2036/********************************************************************
2037 *
2038 * Sysctl interface
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2039 *
2040 ********************************************************************/
2041
2042#ifdef CONFIG_SYSCTL
2043
2044#include <linux/sysctl.h>
2045
2046static int min_write_thresh;
2047static int max_write_thresh = INPUT_POOL_WORDS * 32;
2048static int random_min_urandom_seed = 60;
2049static char sysctl_bootid[16];
2050
2051/*
2052 * This function is used to return both the bootid UUID, and random
2053 * UUID.  The difference is in whether table->data is NULL; if it is,
2054 * then a new UUID is generated and returned to the user.
2055 *
2056 * If the user accesses this via the proc interface, the UUID will be
2057 * returned as an ASCII string in the standard UUID format; if via the
2058 * sysctl system call, as 16 bytes of binary data.
2059 */
2060static int proc_do_uuid(struct ctl_table *table, int write,
2061			void *buffer, size_t *lenp, loff_t *ppos)
2062{
2063	struct ctl_table fake_table;
2064	unsigned char buf[64], tmp_uuid[16], *uuid;
 
 
 
 
 
 
 
2065
2066	uuid = table->data;
2067	if (!uuid) {
2068		uuid = tmp_uuid;
2069		generate_random_uuid(uuid);
2070	} else {
2071		static DEFINE_SPINLOCK(bootid_spinlock);
2072
2073		spin_lock(&bootid_spinlock);
2074		if (!uuid[8])
2075			generate_random_uuid(uuid);
2076		spin_unlock(&bootid_spinlock);
2077	}
2078
2079	sprintf(buf, "%pU", uuid);
2080
2081	fake_table.data = buf;
2082	fake_table.maxlen = sizeof(buf);
2083
2084	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
2085}
2086
2087/*
2088 * Return entropy available scaled to integral bits
2089 */
2090static int proc_do_entropy(struct ctl_table *table, int write,
2091			   void *buffer, size_t *lenp, loff_t *ppos)
2092{
2093	struct ctl_table fake_table;
2094	int entropy_count;
2095
2096	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
2097
2098	fake_table.data = &entropy_count;
2099	fake_table.maxlen = sizeof(entropy_count);
2100
2101	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
2102}
2103
2104static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2105extern struct ctl_table random_table[];
2106struct ctl_table random_table[] = {
2107	{
2108		.procname	= "poolsize",
2109		.data		= &sysctl_poolsize,
2110		.maxlen		= sizeof(int),
2111		.mode		= 0444,
2112		.proc_handler	= proc_dointvec,
2113	},
2114	{
2115		.procname	= "entropy_avail",
 
2116		.maxlen		= sizeof(int),
2117		.mode		= 0444,
2118		.proc_handler	= proc_do_entropy,
2119		.data		= &input_pool.entropy_count,
2120	},
2121	{
2122		.procname	= "write_wakeup_threshold",
2123		.data		= &random_write_wakeup_bits,
2124		.maxlen		= sizeof(int),
2125		.mode		= 0644,
2126		.proc_handler	= proc_dointvec_minmax,
2127		.extra1		= &min_write_thresh,
2128		.extra2		= &max_write_thresh,
2129	},
2130	{
2131		.procname	= "urandom_min_reseed_secs",
2132		.data		= &random_min_urandom_seed,
2133		.maxlen		= sizeof(int),
2134		.mode		= 0644,
2135		.proc_handler	= proc_dointvec,
2136	},
2137	{
2138		.procname	= "boot_id",
2139		.data		= &sysctl_bootid,
2140		.maxlen		= 16,
2141		.mode		= 0444,
2142		.proc_handler	= proc_do_uuid,
2143	},
2144	{
2145		.procname	= "uuid",
2146		.maxlen		= 16,
2147		.mode		= 0444,
2148		.proc_handler	= proc_do_uuid,
2149	},
2150#ifdef ADD_INTERRUPT_BENCH
2151	{
2152		.procname	= "add_interrupt_avg_cycles",
2153		.data		= &avg_cycles,
2154		.maxlen		= sizeof(avg_cycles),
2155		.mode		= 0444,
2156		.proc_handler	= proc_doulongvec_minmax,
2157	},
2158	{
2159		.procname	= "add_interrupt_avg_deviation",
2160		.data		= &avg_deviation,
2161		.maxlen		= sizeof(avg_deviation),
2162		.mode		= 0444,
2163		.proc_handler	= proc_doulongvec_minmax,
2164	},
2165#endif
2166	{ }
2167};
2168#endif 	/* CONFIG_SYSCTL */
2169
2170struct batched_entropy {
2171	union {
2172		u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
2173		u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
2174	};
2175	unsigned int position;
2176	spinlock_t batch_lock;
2177};
2178
2179/*
2180 * Get a random word for internal kernel use only. The quality of the random
2181 * number is good as /dev/urandom, but there is no backtrack protection, with
2182 * the goal of being quite fast and not depleting entropy. In order to ensure
2183 * that the randomness provided by this function is okay, the function
2184 * wait_for_random_bytes() should be called and return 0 at least once at any
2185 * point prior.
2186 */
2187static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
2188	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
2189};
2190
2191u64 get_random_u64(void)
2192{
2193	u64 ret;
2194	unsigned long flags;
2195	struct batched_entropy *batch;
2196	static void *previous;
2197
2198	warn_unseeded_randomness(&previous);
2199
2200	batch = raw_cpu_ptr(&batched_entropy_u64);
2201	spin_lock_irqsave(&batch->batch_lock, flags);
2202	if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2203		extract_crng((u8 *)batch->entropy_u64);
2204		batch->position = 0;
2205	}
2206	ret = batch->entropy_u64[batch->position++];
2207	spin_unlock_irqrestore(&batch->batch_lock, flags);
2208	return ret;
2209}
2210EXPORT_SYMBOL(get_random_u64);
2211
2212static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
2213	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
2214};
2215u32 get_random_u32(void)
2216{
2217	u32 ret;
2218	unsigned long flags;
2219	struct batched_entropy *batch;
2220	static void *previous;
2221
2222	warn_unseeded_randomness(&previous);
2223
2224	batch = raw_cpu_ptr(&batched_entropy_u32);
2225	spin_lock_irqsave(&batch->batch_lock, flags);
2226	if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2227		extract_crng((u8 *)batch->entropy_u32);
2228		batch->position = 0;
2229	}
2230	ret = batch->entropy_u32[batch->position++];
2231	spin_unlock_irqrestore(&batch->batch_lock, flags);
2232	return ret;
2233}
2234EXPORT_SYMBOL(get_random_u32);
2235
2236/* It's important to invalidate all potential batched entropy that might
2237 * be stored before the crng is initialized, which we can do lazily by
2238 * simply resetting the counter to zero so that it's re-extracted on the
2239 * next usage. */
2240static void invalidate_batched_entropy(void)
2241{
2242	int cpu;
2243	unsigned long flags;
2244
2245	for_each_possible_cpu (cpu) {
2246		struct batched_entropy *batched_entropy;
2247
2248		batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
2249		spin_lock_irqsave(&batched_entropy->batch_lock, flags);
2250		batched_entropy->position = 0;
2251		spin_unlock(&batched_entropy->batch_lock);
2252
2253		batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
2254		spin_lock(&batched_entropy->batch_lock);
2255		batched_entropy->position = 0;
2256		spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
2257	}
2258}
2259
2260/**
2261 * randomize_page - Generate a random, page aligned address
2262 * @start:	The smallest acceptable address the caller will take.
2263 * @range:	The size of the area, starting at @start, within which the
2264 *		random address must fall.
2265 *
2266 * If @start + @range would overflow, @range is capped.
2267 *
2268 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2269 * @start was already page aligned.  We now align it regardless.
2270 *
2271 * Return: A page aligned address within [start, start + range).  On error,
2272 * @start is returned.
2273 */
2274unsigned long
2275randomize_page(unsigned long start, unsigned long range)
2276{
2277	if (!PAGE_ALIGNED(start)) {
2278		range -= PAGE_ALIGN(start) - start;
2279		start = PAGE_ALIGN(start);
2280	}
2281
2282	if (start > ULONG_MAX - range)
2283		range = ULONG_MAX - start;
2284
2285	range >>= PAGE_SHIFT;
2286
2287	if (range == 0)
2288		return start;
2289
2290	return start + (get_random_long() % range << PAGE_SHIFT);
2291}
2292
2293/* Interface for in-kernel drivers of true hardware RNGs.
2294 * Those devices may produce endless random bits and will be throttled
2295 * when our pool is full.
2296 */
2297void add_hwgenerator_randomness(const char *buffer, size_t count,
2298				size_t entropy)
2299{
2300	struct entropy_store *poolp = &input_pool;
2301
2302	if (unlikely(crng_init == 0)) {
2303		crng_fast_load(buffer, count);
2304		return;
2305	}
2306
2307	/* Suspend writing if we're above the trickle threshold.
2308	 * We'll be woken up again once below random_write_wakeup_thresh,
2309	 * or when the calling thread is about to terminate.
2310	 */
2311	wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2312			ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2313	mix_pool_bytes(poolp, buffer, count);
2314	credit_entropy_bits(poolp, entropy);
2315}
2316EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
2317
2318/* Handle random seed passed by bootloader.
2319 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
2320 * it would be regarded as device data.
2321 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
2322 */
2323void add_bootloader_randomness(const void *buf, unsigned int size)
2324{
2325	if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
2326		add_hwgenerator_randomness(buf, size, size * 8);
2327	else
2328		add_device_randomness(buf, size);
2329}
2330EXPORT_SYMBOL_GPL(add_bootloader_randomness);
 
v6.13.7
   1// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
   2/*
   3 * Copyright (C) 2017-2024 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
 
 
 
 
   4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
   5 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
   6 *
   7 * This driver produces cryptographically secure pseudorandom data. It is divided
   8 * into roughly six sections, each with a section header:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 *
  10 *   - Initialization and readiness waiting.
  11 *   - Fast key erasure RNG, the "crng".
  12 *   - Entropy accumulation and extraction routines.
  13 *   - Entropy collection routines.
  14 *   - Userspace reader/writer interfaces.
  15 *   - Sysctl interface.
  16 *
  17 * The high level overview is that there is one input pool, into which
  18 * various pieces of data are hashed. Prior to initialization, some of that
  19 * data is then "credited" as having a certain number of bits of entropy.
  20 * When enough bits of entropy are available, the hash is finalized and
  21 * handed as a key to a stream cipher that expands it indefinitely for
  22 * various consumers. This key is periodically refreshed as the various
  23 * entropy collectors, described below, add data to the input pool.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  24 */
  25
  26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  27
  28#include <linux/utsname.h>
  29#include <linux/module.h>
  30#include <linux/kernel.h>
  31#include <linux/major.h>
  32#include <linux/string.h>
  33#include <linux/fcntl.h>
  34#include <linux/slab.h>
  35#include <linux/random.h>
  36#include <linux/poll.h>
  37#include <linux/init.h>
  38#include <linux/fs.h>
  39#include <linux/blkdev.h>
  40#include <linux/interrupt.h>
  41#include <linux/mm.h>
  42#include <linux/nodemask.h>
  43#include <linux/spinlock.h>
  44#include <linux/kthread.h>
  45#include <linux/percpu.h>
 
  46#include <linux/ptrace.h>
  47#include <linux/workqueue.h>
  48#include <linux/irq.h>
  49#include <linux/ratelimit.h>
  50#include <linux/syscalls.h>
  51#include <linux/completion.h>
  52#include <linux/uuid.h>
  53#include <linux/uaccess.h>
  54#include <linux/suspend.h>
  55#include <linux/siphash.h>
  56#include <linux/sched/isolation.h>
  57#include <crypto/chacha.h>
  58#include <crypto/blake2s.h>
  59#ifdef CONFIG_VDSO_GETRANDOM
  60#include <vdso/getrandom.h>
  61#include <vdso/datapage.h>
  62#include <vdso/vsyscall.h>
  63#endif
  64#include <asm/archrandom.h>
  65#include <asm/processor.h>
 
  66#include <asm/irq.h>
  67#include <asm/irq_regs.h>
  68#include <asm/io.h>
  69
  70/*********************************************************************
  71 *
  72 * Initialization and readiness waiting.
  73 *
  74 * Much of the RNG infrastructure is devoted to various dependencies
  75 * being able to wait until the RNG has collected enough entropy and
  76 * is ready for safe consumption.
  77 *
  78 *********************************************************************/
  79
  80/*
  81 * crng_init is protected by base_crng->lock, and only increases
  82 * its value (from empty->early->ready).
  83 */
  84static enum {
  85	CRNG_EMPTY = 0, /* Little to no entropy collected */
  86	CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
  87	CRNG_READY = 2  /* Fully initialized with POOL_READY_BITS collected */
  88} crng_init __read_mostly = CRNG_EMPTY;
  89static DEFINE_STATIC_KEY_FALSE(crng_is_ready);
  90#define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
  91/* Various types of waiters for crng_init->CRNG_READY transition. */
  92static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
  93static struct fasync_struct *fasync;
  94static ATOMIC_NOTIFIER_HEAD(random_ready_notifier);
  95
  96/* Control how we warn userspace. */
  97static struct ratelimit_state urandom_warning =
  98	RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE);
  99static int ratelimit_disable __read_mostly =
 100	IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
 101module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
 102MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 103
 104/*
 105 * Returns whether or not the input pool has been seeded and thus guaranteed
 106 * to supply cryptographically secure random numbers. This applies to: the
 107 * /dev/urandom device, the get_random_bytes function, and the get_random_{u8,
 108 * u16,u32,u64,long} family of functions.
 109 *
 110 * Returns: true if the input pool has been seeded.
 111 *          false if the input pool has not been seeded.
 112 */
 113bool rng_is_initialized(void)
 114{
 115	return crng_ready();
 116}
 117EXPORT_SYMBOL(rng_is_initialized);
 118
 119static void __cold crng_set_ready(struct work_struct *work)
 120{
 121	static_branch_enable(&crng_is_ready);
 122}
 123
 124/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
 125static void try_to_generate_entropy(void);
 
 
 
 126
 127/*
 128 * Wait for the input pool to be seeded and thus guaranteed to supply
 129 * cryptographically secure random numbers. This applies to: the /dev/urandom
 130 * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64,
 131 * long} family of functions. Using any of these functions without first
 132 * calling this function forfeits the guarantee of security.
 133 *
 134 * Returns: 0 if the input pool has been seeded.
 135 *          -ERESTARTSYS if the function was interrupted by a signal.
 136 */
 137int wait_for_random_bytes(void)
 138{
 139	while (!crng_ready()) {
 140		int ret;
 141
 142		try_to_generate_entropy();
 143		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
 144		if (ret)
 145			return ret > 0 ? 0 : ret;
 146	}
 147	return 0;
 148}
 149EXPORT_SYMBOL(wait_for_random_bytes);
 150
 151/*
 152 * Add a callback function that will be invoked when the crng is initialised,
 153 * or immediately if it already has been. Only use this is you are absolutely
 154 * sure it is required. Most users should instead be able to test
 155 * `rng_is_initialized()` on demand, or make use of `get_random_bytes_wait()`.
 156 */
 157int __cold execute_with_initialized_rng(struct notifier_block *nb)
 158{
 159	unsigned long flags;
 160	int ret = 0;
 
 
 
 
 
 
 
 
 161
 162	spin_lock_irqsave(&random_ready_notifier.lock, flags);
 163	if (crng_ready())
 164		nb->notifier_call(nb, 0, NULL);
 165	else
 166		ret = raw_notifier_chain_register((struct raw_notifier_head *)&random_ready_notifier.head, nb);
 167	spin_unlock_irqrestore(&random_ready_notifier.lock, flags);
 168	return ret;
 169}
 170
 171#define warn_unseeded_randomness() \
 172	if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
 173		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
 174				__func__, (void *)_RET_IP_, crng_init)
 175
 
 
 176
 177/*********************************************************************
 178 *
 179 * Fast key erasure RNG, the "crng".
 
 180 *
 181 * These functions expand entropy from the entropy extractor into
 182 * long streams for external consumption using the "fast key erasure"
 183 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
 184 *
 185 * There are a few exported interfaces for use by other drivers:
 186 *
 187 *	void get_random_bytes(void *buf, size_t len)
 188 *	u8 get_random_u8()
 189 *	u16 get_random_u16()
 190 *	u32 get_random_u32()
 191 *	u32 get_random_u32_below(u32 ceil)
 192 *	u32 get_random_u32_above(u32 floor)
 193 *	u32 get_random_u32_inclusive(u32 floor, u32 ceil)
 194 *	u64 get_random_u64()
 195 *	unsigned long get_random_long()
 196 *
 197 * These interfaces will return the requested number of random bytes
 198 * into the given buffer or as a return value. This is equivalent to
 199 * a read from /dev/urandom. The u8, u16, u32, u64, long family of
 200 * functions may be higher performance for one-off random integers,
 201 * because they do a bit of buffering and do not invoke reseeding
 202 * until the buffer is emptied.
 203 *
 204 *********************************************************************/
 205
 206enum {
 207	CRNG_RESEED_START_INTERVAL = HZ,
 208	CRNG_RESEED_INTERVAL = 60 * HZ
 209};
 
 
 210
 211static struct {
 212	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
 213	unsigned long generation;
 214	spinlock_t lock;
 215} base_crng = {
 216	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
 
 
 
 
 217};
 218
 219struct crng {
 220	u8 key[CHACHA_KEY_SIZE];
 221	unsigned long generation;
 222	local_lock_t lock;
 
 
 
 
 
 
 
 
 
 223};
 224
 225static DEFINE_PER_CPU(struct crng, crngs) = {
 226	.generation = ULONG_MAX,
 227	.lock = INIT_LOCAL_LOCK(crngs.lock),
 228};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 229
 230/*
 231 * Return the interval until the next reseeding, which is normally
 232 * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval
 233 * proportional to the uptime.
 234 */
 235static unsigned int crng_reseed_interval(void)
 236{
 237	static bool early_boot = true;
 238
 239	if (unlikely(READ_ONCE(early_boot))) {
 240		time64_t uptime = ktime_get_seconds();
 241		if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
 242			WRITE_ONCE(early_boot, false);
 243		else
 244			return max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
 245				     (unsigned int)uptime / 2 * HZ);
 246	}
 247	return CRNG_RESEED_INTERVAL;
 
 
 248}
 249
 250/* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
 251static void extract_entropy(void *buf, size_t len);
 
 
 
 
 252
 253/* This extracts a new crng key from the input pool. */
 254static void crng_reseed(struct work_struct *work)
 255{
 256	static DECLARE_DELAYED_WORK(next_reseed, crng_reseed);
 257	unsigned long flags;
 258	unsigned long next_gen;
 259	u8 key[CHACHA_KEY_SIZE];
 260
 261	/* Immediately schedule the next reseeding, so that it fires sooner rather than later. */
 262	if (likely(system_unbound_wq))
 263		queue_delayed_work(system_unbound_wq, &next_reseed, crng_reseed_interval());
 264
 265	extract_entropy(key, sizeof(key));
 266
 267	/*
 268	 * We copy the new key into the base_crng, overwriting the old one,
 269	 * and update the generation counter. We avoid hitting ULONG_MAX,
 270	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
 271	 * forces new CPUs that come online to always initialize.
 272	 */
 273	spin_lock_irqsave(&base_crng.lock, flags);
 274	memcpy(base_crng.key, key, sizeof(base_crng.key));
 275	next_gen = base_crng.generation + 1;
 276	if (next_gen == ULONG_MAX)
 277		++next_gen;
 278	WRITE_ONCE(base_crng.generation, next_gen);
 279#ifdef CONFIG_VDSO_GETRANDOM
 280	/* base_crng.generation's invalid value is ULONG_MAX, while
 281	 * _vdso_rng_data.generation's invalid value is 0, so add one to the
 282	 * former to arrive at the latter. Use smp_store_release so that this
 283	 * is ordered with the write above to base_crng.generation. Pairs with
 284	 * the smp_rmb() before the syscall in the vDSO code.
 285	 *
 286	 * Cast to unsigned long for 32-bit architectures, since atomic 64-bit
 287	 * operations are not supported on those architectures. This is safe
 288	 * because base_crng.generation is a 32-bit value. On big-endian
 289	 * architectures it will be stored in the upper 32 bits, but that's okay
 290	 * because the vDSO side only checks whether the value changed, without
 291	 * actually using or interpreting the value.
 292	 */
 293	smp_store_release((unsigned long *)&__arch_get_k_vdso_rng_data()->generation, next_gen + 1);
 294#endif
 295	if (!static_branch_likely(&crng_is_ready))
 296		crng_init = CRNG_READY;
 297	spin_unlock_irqrestore(&base_crng.lock, flags);
 298	memzero_explicit(key, sizeof(key));
 299}
 300
 301/*
 302 * This generates a ChaCha block using the provided key, and then
 303 * immediately overwrites that key with half the block. It returns
 304 * the resultant ChaCha state to the user, along with the second
 305 * half of the block containing 32 bytes of random data that may
 306 * be used; random_data_len may not be greater than 32.
 307 *
 308 * The returned ChaCha state contains within it a copy of the old
 309 * key value, at index 4, so the state should always be zeroed out
 310 * immediately after using in order to maintain forward secrecy.
 311 * If the state cannot be erased in a timely manner, then it is
 312 * safer to set the random_data parameter to &chacha_state[4] so
 313 * that this function overwrites it before returning.
 314 */
 315static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
 316				  u32 chacha_state[CHACHA_STATE_WORDS],
 317				  u8 *random_data, size_t random_data_len)
 318{
 319	u8 first_block[CHACHA_BLOCK_SIZE];
 320
 321	BUG_ON(random_data_len > 32);
 322
 323	chacha_init_consts(chacha_state);
 324	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
 325	memset(&chacha_state[12], 0, sizeof(u32) * 4);
 326	chacha20_block(chacha_state, first_block);
 327
 328	memcpy(key, first_block, CHACHA_KEY_SIZE);
 329	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
 330	memzero_explicit(first_block, sizeof(first_block));
 331}
 332
 333/*
 334 * This function returns a ChaCha state that you may use for generating
 335 * random data. It also returns up to 32 bytes on its own of random data
 336 * that may be used; random_data_len may not be greater than 32.
 337 */
 338static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
 339			    u8 *random_data, size_t random_data_len)
 340{
 341	unsigned long flags;
 342	struct crng *crng;
 343
 344	BUG_ON(random_data_len > 32);
 345
 346	/*
 347	 * For the fast path, we check whether we're ready, unlocked first, and
 348	 * then re-check once locked later. In the case where we're really not
 349	 * ready, we do fast key erasure with the base_crng directly, extracting
 350	 * when crng_init is CRNG_EMPTY.
 351	 */
 352	if (!crng_ready()) {
 353		bool ready;
 354
 355		spin_lock_irqsave(&base_crng.lock, flags);
 356		ready = crng_ready();
 357		if (!ready) {
 358			if (crng_init == CRNG_EMPTY)
 359				extract_entropy(base_crng.key, sizeof(base_crng.key));
 360			crng_fast_key_erasure(base_crng.key, chacha_state,
 361					      random_data, random_data_len);
 362		}
 363		spin_unlock_irqrestore(&base_crng.lock, flags);
 364		if (!ready)
 365			return;
 366	}
 367
 368	local_lock_irqsave(&crngs.lock, flags);
 369	crng = raw_cpu_ptr(&crngs);
 
 370
 371	/*
 372	 * If our per-cpu crng is older than the base_crng, then it means
 373	 * somebody reseeded the base_crng. In that case, we do fast key
 374	 * erasure on the base_crng, and use its output as the new key
 375	 * for our per-cpu crng. This brings us up to date with base_crng.
 376	 */
 377	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
 378		spin_lock(&base_crng.lock);
 379		crng_fast_key_erasure(base_crng.key, chacha_state,
 380				      crng->key, sizeof(crng->key));
 381		crng->generation = base_crng.generation;
 382		spin_unlock(&base_crng.lock);
 383	}
 384
 385	/*
 386	 * Finally, when we've made it this far, our per-cpu crng has an up
 387	 * to date key, and we can do fast key erasure with it to produce
 388	 * some random data and a ChaCha state for the caller. All other
 389	 * branches of this function are "unlikely", so most of the time we
 390	 * should wind up here immediately.
 391	 */
 392	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
 393	local_unlock_irqrestore(&crngs.lock, flags);
 394}
 395
 396static void _get_random_bytes(void *buf, size_t len)
 397{
 398	u32 chacha_state[CHACHA_STATE_WORDS];
 399	u8 tmp[CHACHA_BLOCK_SIZE];
 400	size_t first_block_len;
 401
 402	if (!len)
 403		return;
 404
 405	first_block_len = min_t(size_t, 32, len);
 406	crng_make_state(chacha_state, buf, first_block_len);
 407	len -= first_block_len;
 408	buf += first_block_len;
 409
 410	while (len) {
 411		if (len < CHACHA_BLOCK_SIZE) {
 412			chacha20_block(chacha_state, tmp);
 413			memcpy(buf, tmp, len);
 414			memzero_explicit(tmp, sizeof(tmp));
 415			break;
 416		}
 417
 418		chacha20_block(chacha_state, buf);
 419		if (unlikely(chacha_state[12] == 0))
 420			++chacha_state[13];
 421		len -= CHACHA_BLOCK_SIZE;
 422		buf += CHACHA_BLOCK_SIZE;
 423	}
 424
 425	memzero_explicit(chacha_state, sizeof(chacha_state));
 426}
 427
 428/*
 429 * This returns random bytes in arbitrary quantities. The quality of the
 430 * random bytes is good as /dev/urandom. In order to ensure that the
 431 * randomness provided by this function is okay, the function
 432 * wait_for_random_bytes() should be called and return 0 at least once
 433 * at any point prior.
 434 */
 435void get_random_bytes(void *buf, size_t len)
 436{
 437	warn_unseeded_randomness();
 438	_get_random_bytes(buf, len);
 439}
 440EXPORT_SYMBOL(get_random_bytes);
 441
 442static ssize_t get_random_bytes_user(struct iov_iter *iter)
 443{
 444	u32 chacha_state[CHACHA_STATE_WORDS];
 445	u8 block[CHACHA_BLOCK_SIZE];
 446	size_t ret = 0, copied;
 447
 448	if (unlikely(!iov_iter_count(iter)))
 449		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 450
 451	/*
 452	 * Immediately overwrite the ChaCha key at index 4 with random
 453	 * bytes, in case userspace causes copy_to_iter() below to sleep
 454	 * forever, so that we still retain forward secrecy in that case.
 455	 */
 456	crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
 457	/*
 458	 * However, if we're doing a read of len <= 32, we don't need to
 459	 * use chacha_state after, so we can simply return those bytes to
 460	 * the user directly.
 461	 */
 462	if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
 463		ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter);
 464		goto out_zero_chacha;
 465	}
 466
 467	for (;;) {
 468		chacha20_block(chacha_state, block);
 469		if (unlikely(chacha_state[12] == 0))
 470			++chacha_state[13];
 471
 472		copied = copy_to_iter(block, sizeof(block), iter);
 473		ret += copied;
 474		if (!iov_iter_count(iter) || copied != sizeof(block))
 475			break;
 476
 477		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
 478		if (ret % PAGE_SIZE == 0) {
 479			if (signal_pending(current))
 480				break;
 481			cond_resched();
 482		}
 483	}
 
 484
 485	memzero_explicit(block, sizeof(block));
 486out_zero_chacha:
 487	memzero_explicit(chacha_state, sizeof(chacha_state));
 488	return ret ? ret : -EFAULT;
 489}
 490
 491/*
 492 * Batched entropy returns random integers. The quality of the random
 493 * number is good as /dev/urandom. In order to ensure that the randomness
 494 * provided by this function is okay, the function wait_for_random_bytes()
 495 * should be called and return 0 at least once at any point prior.
 496 */
 497
 498#define DEFINE_BATCHED_ENTROPY(type)						\
 499struct batch_ ##type {								\
 500	/*									\
 501	 * We make this 1.5x a ChaCha block, so that we get the			\
 502	 * remaining 32 bytes from fast key erasure, plus one full		\
 503	 * block from the detached ChaCha state. We can increase		\
 504	 * the size of this later if needed so long as we keep the		\
 505	 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.		\
 506	 */									\
 507	type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))];		\
 508	local_lock_t lock;							\
 509	unsigned long generation;						\
 510	unsigned int position;							\
 511};										\
 512										\
 513static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = {	\
 514	.lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock),			\
 515	.position = UINT_MAX							\
 516};										\
 517										\
 518type get_random_ ##type(void)							\
 519{										\
 520	type ret;								\
 521	unsigned long flags;							\
 522	struct batch_ ##type *batch;						\
 523	unsigned long next_gen;							\
 524										\
 525	warn_unseeded_randomness();						\
 526										\
 527	if  (!crng_ready()) {							\
 528		_get_random_bytes(&ret, sizeof(ret));				\
 529		return ret;							\
 530	}									\
 531										\
 532	local_lock_irqsave(&batched_entropy_ ##type.lock, flags);		\
 533	batch = raw_cpu_ptr(&batched_entropy_##type);				\
 534										\
 535	next_gen = READ_ONCE(base_crng.generation);				\
 536	if (batch->position >= ARRAY_SIZE(batch->entropy) ||			\
 537	    next_gen != batch->generation) {					\
 538		_get_random_bytes(batch->entropy, sizeof(batch->entropy));	\
 539		batch->position = 0;						\
 540		batch->generation = next_gen;					\
 541	}									\
 542										\
 543	ret = batch->entropy[batch->position];					\
 544	batch->entropy[batch->position] = 0;					\
 545	++batch->position;							\
 546	local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags);		\
 547	return ret;								\
 548}										\
 549EXPORT_SYMBOL(get_random_ ##type);
 550
 551DEFINE_BATCHED_ENTROPY(u8)
 552DEFINE_BATCHED_ENTROPY(u16)
 553DEFINE_BATCHED_ENTROPY(u32)
 554DEFINE_BATCHED_ENTROPY(u64)
 555
 556u32 __get_random_u32_below(u32 ceil)
 557{
 558	/*
 559	 * This is the slow path for variable ceil. It is still fast, most of
 560	 * the time, by doing traditional reciprocal multiplication and
 561	 * opportunistically comparing the lower half to ceil itself, before
 562	 * falling back to computing a larger bound, and then rejecting samples
 563	 * whose lower half would indicate a range indivisible by ceil. The use
 564	 * of `-ceil % ceil` is analogous to `2^32 % ceil`, but is computable
 565	 * in 32-bits.
 566	 */
 567	u32 rand = get_random_u32();
 568	u64 mult;
 569
 570	/*
 571	 * This function is technically undefined for ceil == 0, and in fact
 572	 * for the non-underscored constant version in the header, we build bug
 573	 * on that. But for the non-constant case, it's convenient to have that
 574	 * evaluate to being a straight call to get_random_u32(), so that
 575	 * get_random_u32_inclusive() can work over its whole range without
 576	 * undefined behavior.
 577	 */
 578	if (unlikely(!ceil))
 579		return rand;
 580
 581	mult = (u64)ceil * rand;
 582	if (unlikely((u32)mult < ceil)) {
 583		u32 bound = -ceil % ceil;
 584		while (unlikely((u32)mult < bound))
 585			mult = (u64)ceil * get_random_u32();
 586	}
 587	return mult >> 32;
 588}
 589EXPORT_SYMBOL(__get_random_u32_below);
 590
 591#ifdef CONFIG_SMP
 592/*
 593 * This function is called when the CPU is coming up, with entry
 594 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
 595 */
 596int __cold random_prepare_cpu(unsigned int cpu)
 597{
 598	/*
 599	 * When the cpu comes back online, immediately invalidate both
 600	 * the per-cpu crng and all batches, so that we serve fresh
 601	 * randomness.
 602	 */
 603	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
 604	per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX;
 605	per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX;
 606	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
 607	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
 608	return 0;
 609}
 610#endif
 611
 612
 613/**********************************************************************
 614 *
 615 * Entropy accumulation and extraction routines.
 616 *
 617 * Callers may add entropy via:
 618 *
 619 *     static void mix_pool_bytes(const void *buf, size_t len)
 620 *
 621 * After which, if added entropy should be credited:
 622 *
 623 *     static void credit_init_bits(size_t bits)
 624 *
 625 * Finally, extract entropy via:
 626 *
 627 *     static void extract_entropy(void *buf, size_t len)
 628 *
 629 **********************************************************************/
 630
 631enum {
 632	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
 633	POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
 634	POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
 635};
 
 
 
 
 636
 637static struct {
 638	struct blake2s_state hash;
 639	spinlock_t lock;
 640	unsigned int init_bits;
 641} input_pool = {
 642	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
 643		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
 644		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
 645	.hash.outlen = BLAKE2S_HASH_SIZE,
 646	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
 647};
 648
 649static void _mix_pool_bytes(const void *buf, size_t len)
 
 650{
 651	blake2s_update(&input_pool.hash, buf, len);
 652}
 
 653
 654/*
 655 * This function adds bytes into the input pool. It does not
 656 * update the initialization bit counter; the caller should call
 657 * credit_init_bits if this is appropriate.
 658 */
 659static void mix_pool_bytes(const void *buf, size_t len)
 660{
 661	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 662
 663	spin_lock_irqsave(&input_pool.lock, flags);
 664	_mix_pool_bytes(buf, len);
 665	spin_unlock_irqrestore(&input_pool.lock, flags);
 666}
 667
 668/*
 669 * This is an HKDF-like construction for using the hashed collected entropy
 670 * as a PRF key, that's then expanded block-by-block.
 671 */
 672static void extract_entropy(void *buf, size_t len)
 673{
 674	unsigned long flags;
 675	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
 676	struct {
 677		unsigned long rdseed[32 / sizeof(long)];
 678		size_t counter;
 679	} block;
 680	size_t i, longs;
 681
 682	for (i = 0; i < ARRAY_SIZE(block.rdseed);) {
 683		longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
 684		if (longs) {
 685			i += longs;
 686			continue;
 687		}
 688		longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
 689		if (longs) {
 690			i += longs;
 691			continue;
 692		}
 693		block.rdseed[i++] = random_get_entropy();
 694	}
 695
 696	spin_lock_irqsave(&input_pool.lock, flags);
 
 697
 698	/* seed = HASHPRF(last_key, entropy_input) */
 699	blake2s_final(&input_pool.hash, seed);
 
 
 
 
 
 700
 701	/* next_key = HASHPRF(seed, RDSEED || 0) */
 702	block.counter = 0;
 703	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
 704	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
 
 
 
 
 
 
 
 
 705
 706	spin_unlock_irqrestore(&input_pool.lock, flags);
 707	memzero_explicit(next_key, sizeof(next_key));
 
 
 
 
 708
 709	while (len) {
 710		i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
 711		/* output = HASHPRF(seed, RDSEED || ++counter) */
 712		++block.counter;
 713		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
 714		len -= i;
 715		buf += i;
 
 
 
 
 
 
 716	}
 
 
 
 717
 718	memzero_explicit(seed, sizeof(seed));
 719	memzero_explicit(&block, sizeof(block));
 
 720}
 
 
 
 721
 722#define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)
 723
 724static void __cold _credit_init_bits(size_t bits)
 
 
 725{
 726	static DECLARE_WORK(set_ready, crng_set_ready);
 727	unsigned int new, orig, add;
 728	unsigned long flags;
 
 729
 730	if (!bits)
 731		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 732
 733	add = min_t(size_t, bits, POOL_BITS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 734
 735	orig = READ_ONCE(input_pool.init_bits);
 736	do {
 737		new = min_t(unsigned int, POOL_BITS, orig + add);
 738	} while (!try_cmpxchg(&input_pool.init_bits, &orig, new));
 
 
 
 
 739
 740	if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
 741		crng_reseed(NULL); /* Sets crng_init to CRNG_READY under base_crng.lock. */
 742		if (static_key_initialized && system_unbound_wq)
 743			queue_work(system_unbound_wq, &set_ready);
 744		atomic_notifier_call_chain(&random_ready_notifier, 0, NULL);
 745#ifdef CONFIG_VDSO_GETRANDOM
 746		WRITE_ONCE(__arch_get_k_vdso_rng_data()->is_ready, true);
 747#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 748		wake_up_interruptible(&crng_init_wait);
 749		kill_fasync(&fasync, SIGIO, POLL_IN);
 750		pr_notice("crng init done\n");
 751		if (urandom_warning.missed)
 
 
 
 
 
 752			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
 753				  urandom_warning.missed);
 754	} else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
 755		spin_lock_irqsave(&base_crng.lock, flags);
 756		/* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
 757		if (crng_init == CRNG_EMPTY) {
 758			extract_entropy(base_crng.key, sizeof(base_crng.key));
 759			crng_init = CRNG_EARLY;
 760		}
 761		spin_unlock_irqrestore(&base_crng.lock, flags);
 762	}
 763}
 764
 
 
 
 
 765
 766/**********************************************************************
 767 *
 768 * Entropy collection routines.
 769 *
 770 * The following exported functions are used for pushing entropy into
 771 * the above entropy accumulation routines:
 772 *
 773 *	void add_device_randomness(const void *buf, size_t len);
 774 *	void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after);
 775 *	void add_bootloader_randomness(const void *buf, size_t len);
 776 *	void add_vmfork_randomness(const void *unique_vm_id, size_t len);
 777 *	void add_interrupt_randomness(int irq);
 778 *	void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
 779 *	void add_disk_randomness(struct gendisk *disk);
 780 *
 781 * add_device_randomness() adds data to the input pool that
 782 * is likely to differ between two devices (or possibly even per boot).
 783 * This would be things like MAC addresses or serial numbers, or the
 784 * read-out of the RTC. This does *not* credit any actual entropy to
 785 * the pool, but it initializes the pool to different values for devices
 786 * that might otherwise be identical and have very little entropy
 787 * available to them (particularly common in the embedded world).
 788 *
 789 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
 790 * entropy as specified by the caller. If the entropy pool is full it will
 791 * block until more entropy is needed.
 792 *
 793 * add_bootloader_randomness() is called by bootloader drivers, such as EFI
 794 * and device tree, and credits its input depending on whether or not the
 795 * command line option 'random.trust_bootloader'.
 796 *
 797 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
 798 * representing the current instance of a VM to the pool, without crediting,
 799 * and then force-reseeds the crng so that it takes effect immediately.
 800 *
 801 * add_interrupt_randomness() uses the interrupt timing as random
 802 * inputs to the entropy pool. Using the cycle counters and the irq source
 803 * as inputs, it feeds the input pool roughly once a second or after 64
 804 * interrupts, crediting 1 bit of entropy for whichever comes first.
 805 *
 806 * add_input_randomness() uses the input layer interrupt timing, as well
 807 * as the event type information from the hardware.
 808 *
 809 * add_disk_randomness() uses what amounts to the seek time of block
 810 * layer request events, on a per-disk_devt basis, as input to the
 811 * entropy pool. Note that high-speed solid state drives with very low
 812 * seek times do not make for good sources of entropy, as their seek
 813 * times are usually fairly consistent.
 814 *
 815 * The last two routines try to estimate how many bits of entropy
 816 * to credit. They do this by keeping track of the first and second
 817 * order deltas of the event timings.
 818 *
 819 **********************************************************************/
 820
 821static bool trust_cpu __initdata = true;
 822static bool trust_bootloader __initdata = true;
 823static int __init parse_trust_cpu(char *arg)
 824{
 825	return kstrtobool(arg, &trust_cpu);
 826}
 827static int __init parse_trust_bootloader(char *arg)
 828{
 829	return kstrtobool(arg, &trust_bootloader);
 830}
 831early_param("random.trust_cpu", parse_trust_cpu);
 832early_param("random.trust_bootloader", parse_trust_bootloader);
 833
 834static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
 
 
 
 
 
 835{
 836	unsigned long flags, entropy = random_get_entropy();
 837
 838	/*
 839	 * Encode a representation of how long the system has been suspended,
 840	 * in a way that is distinct from prior system suspends.
 841	 */
 842	ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };
 843
 844	spin_lock_irqsave(&input_pool.lock, flags);
 845	_mix_pool_bytes(&action, sizeof(action));
 846	_mix_pool_bytes(stamps, sizeof(stamps));
 847	_mix_pool_bytes(&entropy, sizeof(entropy));
 848	spin_unlock_irqrestore(&input_pool.lock, flags);
 849
 850	if (crng_ready() && (action == PM_RESTORE_PREPARE ||
 851	    (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) &&
 852	     !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) {
 853		crng_reseed(NULL);
 854		pr_notice("crng reseeded on system resumption\n");
 855	}
 856	return 0;
 
 
 
 
 
 857}
 858
 859static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };
 860
 861/*
 862 * This is called extremely early, before time keeping functionality is
 863 * available, but arch randomness is. Interrupts are not yet enabled.
 864 */
 865void __init random_init_early(const char *command_line)
 866{
 867	unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)];
 868	size_t i, longs, arch_bits;
 869
 870#if defined(LATENT_ENTROPY_PLUGIN)
 871	static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
 872	_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
 
 873#endif
 
 
 
 
 
 
 
 
 
 874
 875	for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) {
 876		longs = arch_get_random_seed_longs(entropy, ARRAY_SIZE(entropy) - i);
 877		if (longs) {
 878			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
 879			i += longs;
 880			continue;
 
 
 881		}
 882		longs = arch_get_random_longs(entropy, ARRAY_SIZE(entropy) - i);
 883		if (longs) {
 884			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
 885			i += longs;
 886			continue;
 
 887		}
 888		arch_bits -= sizeof(*entropy) * 8;
 889		++i;
 
 
 890	}
 
 891
 892	_mix_pool_bytes(init_utsname(), sizeof(*(init_utsname())));
 893	_mix_pool_bytes(command_line, strlen(command_line));
 894
 895	/* Reseed if already seeded by earlier phases. */
 896	if (crng_ready())
 897		crng_reseed(NULL);
 898	else if (trust_cpu)
 899		_credit_init_bits(arch_bits);
 900}
 901
 902/*
 903 * This is called a little bit after the prior function, and now there is
 904 * access to timestamps counters. Interrupts are not yet enabled.
 905 */
 906void __init random_init(void)
 907{
 908	unsigned long entropy = random_get_entropy();
 909	ktime_t now = ktime_get_real();
 910
 911	_mix_pool_bytes(&now, sizeof(now));
 912	_mix_pool_bytes(&entropy, sizeof(entropy));
 913	add_latent_entropy();
 
 
 914
 915	/*
 916	 * If we were initialized by the cpu or bootloader before jump labels
 917	 * or workqueues are initialized, then we should enable the static
 918	 * branch here, where it's guaranteed that these have been initialized.
 919	 */
 920	if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY)
 921		crng_set_ready(NULL);
 922
 923	/* Reseed if already seeded by earlier phases. */
 924	if (crng_ready())
 925		crng_reseed(NULL);
 926
 927	WARN_ON(register_pm_notifier(&pm_notifier));
 928
 929	WARN(!entropy, "Missing cycle counter and fallback timer; RNG "
 930		       "entropy collection will consequently suffer.");
 931}
 932
 933/*
 934 * Add device- or boot-specific data to the input pool to help
 935 * initialize it.
 936 *
 937 * None of this adds any entropy; it is meant to avoid the problem of
 938 * the entropy pool having similar initial state across largely
 939 * identical devices.
 940 */
 941void add_device_randomness(const void *buf, size_t len)
 942{
 943	unsigned long entropy = random_get_entropy();
 944	unsigned long flags;
 945
 
 
 
 
 946	spin_lock_irqsave(&input_pool.lock, flags);
 947	_mix_pool_bytes(&entropy, sizeof(entropy));
 948	_mix_pool_bytes(buf, len);
 949	spin_unlock_irqrestore(&input_pool.lock, flags);
 950}
 951EXPORT_SYMBOL(add_device_randomness);
 952
 
 
 953/*
 954 * Interface for in-kernel drivers of true hardware RNGs. Those devices
 955 * may produce endless random bits, so this function will sleep for
 956 * some amount of time after, if the sleep_after parameter is true.
 
 
 
 
 
 957 */
 958void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after)
 959{
 960	mix_pool_bytes(buf, len);
 961	credit_init_bits(entropy);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 962
 963	/*
 964	 * Throttle writing to once every reseed interval, unless we're not yet
 965	 * initialized or no entropy is credited.
 
 966	 */
 967	if (sleep_after && !kthread_should_stop() && (crng_ready() || !entropy))
 968		schedule_timeout_interruptible(crng_reseed_interval());
 969}
 970EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
 971
 972/*
 973 * Handle random seed passed by bootloader, and credit it depending
 974 * on the command line option 'random.trust_bootloader'.
 975 */
 976void __init add_bootloader_randomness(const void *buf, size_t len)
 977{
 978	mix_pool_bytes(buf, len);
 979	if (trust_bootloader)
 980		credit_init_bits(len * 8);
 
 
 
 
 
 
 
 981}
 
 982
 983#if IS_ENABLED(CONFIG_VMGENID)
 984static BLOCKING_NOTIFIER_HEAD(vmfork_chain);
 985
 986/*
 987 * Handle a new unique VM ID, which is unique, not secret, so we
 988 * don't credit it, but we do immediately force a reseed after so
 989 * that it's used by the crng posthaste.
 990 */
 991void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len)
 
 992{
 993	add_device_randomness(unique_vm_id, len);
 994	if (crng_ready()) {
 995		crng_reseed(NULL);
 996		pr_notice("crng reseeded due to virtual machine fork\n");
 997	}
 998	blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
 
 
 999}
1000#if IS_MODULE(CONFIG_VMGENID)
1001EXPORT_SYMBOL_GPL(add_vmfork_randomness);
1002#endif
1003
1004int __cold register_random_vmfork_notifier(struct notifier_block *nb)
1005{
1006	return blocking_notifier_chain_register(&vmfork_chain, nb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1007}
1008EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);
1009
1010int __cold unregister_random_vmfork_notifier(struct notifier_block *nb)
 
1011{
1012	return blocking_notifier_chain_unregister(&vmfork_chain, nb);
 
 
 
 
1013}
1014EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
1015#endif
1016
1017struct fast_pool {
1018	unsigned long pool[4];
1019	unsigned long last;
1020	unsigned int count;
1021	struct timer_list mix;
1022};
1023
1024static void mix_interrupt_randomness(struct timer_list *work);
1025
1026static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
1027#ifdef CONFIG_64BIT
1028#define FASTMIX_PERM SIPHASH_PERMUTATION
1029	.pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 },
1030#else
1031#define FASTMIX_PERM HSIPHASH_PERMUTATION
1032	.pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 },
1033#endif
1034	.mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0)
1035};
1036
1037/*
1038 * This is [Half]SipHash-1-x, starting from an empty key. Because
1039 * the key is fixed, it assumes that its inputs are non-malicious,
1040 * and therefore this has no security on its own. s represents the
1041 * four-word SipHash state, while v represents a two-word input.
1042 */
1043static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
 
1044{
1045	s[3] ^= v1;
1046	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1047	s[0] ^= v1;
1048	s[3] ^= v2;
1049	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1050	s[0] ^= v2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1051}
1052
1053#ifdef CONFIG_SMP
1054/*
1055 * This function is called when the CPU has just come online, with
1056 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
 
 
1057 */
1058int __cold random_online_cpu(unsigned int cpu)
1059{
 
 
 
 
 
 
 
 
1060	/*
1061	 * During CPU shutdown and before CPU onlining, add_interrupt_
1062	 * randomness() may schedule mix_interrupt_randomness(), and
1063	 * set the MIX_INFLIGHT flag. However, because the worker can
1064	 * be scheduled on a different CPU during this period, that
1065	 * flag will never be cleared. For that reason, we zero out
1066	 * the flag here, which runs just after workqueues are onlined
1067	 * for the CPU again. This also has the effect of setting the
1068	 * irq randomness count to zero so that new accumulated irqs
1069	 * are fresh.
1070	 */
1071	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
1072	return 0;
1073}
1074#endif
 
 
 
 
 
 
 
 
1075
1076static void mix_interrupt_randomness(struct timer_list *work)
1077{
1078	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
1079	/*
1080	 * The size of the copied stack pool is explicitly 2 longs so that we
1081	 * only ever ingest half of the siphash output each time, retaining
1082	 * the other half as the next "key" that carries over. The entropy is
1083	 * supposed to be sufficiently dispersed between bits so on average
1084	 * we don't wind up "losing" some.
 
 
1085	 */
1086	unsigned long pool[2];
1087	unsigned int count;
1088
1089	/* Check to see if we're running on the wrong CPU due to hotplug. */
1090	local_irq_disable();
1091	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
1092		local_irq_enable();
1093		return;
1094	}
1095
1096	/*
1097	 * Copy the pool to the stack so that the mixer always has a
1098	 * consistent view, before we reenable irqs again.
 
1099	 */
1100	memcpy(pool, fast_pool->pool, sizeof(pool));
1101	count = fast_pool->count;
1102	fast_pool->count = 0;
1103	fast_pool->last = jiffies;
1104	local_irq_enable();
1105
1106	mix_pool_bytes(pool, sizeof(pool));
1107	credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8));
1108
1109	memzero_explicit(pool, sizeof(pool));
 
1110}
1111
1112void add_interrupt_randomness(int irq)
 
1113{
1114	enum { MIX_INFLIGHT = 1U << 31 };
1115	unsigned long entropy = random_get_entropy();
1116	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1117	struct pt_regs *regs = get_irq_regs();
1118	unsigned int new_count;
1119
1120	fast_mix(fast_pool->pool, entropy,
1121		 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
1122	new_count = ++fast_pool->count;
1123
1124	if (new_count & MIX_INFLIGHT)
1125		return;
 
 
 
 
 
 
 
 
 
 
 
1126
1127	if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ))
1128		return;
1129
1130	fast_pool->count |= MIX_INFLIGHT;
1131	if (!timer_pending(&fast_pool->mix)) {
1132		fast_pool->mix.expires = jiffies;
1133		add_timer_on(&fast_pool->mix, raw_smp_processor_id());
1134	}
1135}
1136EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1137
1138/* There is one of these per entropy source */
1139struct timer_rand_state {
1140	unsigned long last_time;
1141	long last_delta, last_delta2;
1142};
1143
1144/*
1145 * This function adds entropy to the entropy "pool" by using timing
1146 * delays. It uses the timer_rand_state structure to make an estimate
1147 * of how many bits of entropy this call has added to the pool. The
1148 * value "num" is also added to the pool; it should somehow describe
1149 * the type of event that just happened.
 
 
1150 */
1151static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
 
1152{
1153	unsigned long entropy = random_get_entropy(), now = jiffies, flags;
1154	long delta, delta2, delta3;
1155	unsigned int bits;
1156
1157	/*
1158	 * If we're in a hard IRQ, add_interrupt_randomness() will be called
1159	 * sometime after, so mix into the fast pool.
1160	 */
1161	if (in_hardirq()) {
1162		fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
1163	} else {
1164		spin_lock_irqsave(&input_pool.lock, flags);
1165		_mix_pool_bytes(&entropy, sizeof(entropy));
1166		_mix_pool_bytes(&num, sizeof(num));
1167		spin_unlock_irqrestore(&input_pool.lock, flags);
 
 
1168	}
1169
1170	if (crng_ready())
1171		return;
 
 
 
 
 
 
1172
1173	/*
1174	 * Calculate number of bits of randomness we probably added.
1175	 * We take into account the first, second and third-order deltas
1176	 * in order to make our estimate.
1177	 */
1178	delta = now - READ_ONCE(state->last_time);
1179	WRITE_ONCE(state->last_time, now);
 
1180
1181	delta2 = delta - READ_ONCE(state->last_delta);
1182	WRITE_ONCE(state->last_delta, delta);
 
 
 
 
 
 
 
 
 
 
 
1183
1184	delta3 = delta2 - READ_ONCE(state->last_delta2);
1185	WRITE_ONCE(state->last_delta2, delta2);
 
 
 
 
 
 
 
 
 
 
 
1186
1187	if (delta < 0)
1188		delta = -delta;
1189	if (delta2 < 0)
1190		delta2 = -delta2;
1191	if (delta3 < 0)
1192		delta3 = -delta3;
1193	if (delta > delta2)
1194		delta = delta2;
1195	if (delta > delta3)
1196		delta = delta3;
1197
1198	/*
1199	 * delta is now minimum absolute delta. Round down by 1 bit
1200	 * on general principles, and limit entropy estimate to 11 bits.
1201	 */
1202	bits = min(fls(delta >> 1), 11);
1203
1204	/*
1205	 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
1206	 * will run after this, which uses a different crediting scheme of 1 bit
1207	 * per every 64 interrupts. In order to let that function do accounting
1208	 * close to the one in this function, we credit a full 64/64 bit per bit,
1209	 * and then subtract one to account for the extra one added.
1210	 */
1211	if (in_hardirq())
1212		this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
1213	else
1214		_credit_init_bits(bits);
1215}
1216
1217void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
1218{
1219	static unsigned char last_value;
1220	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
 
 
 
 
1221
1222	/* Ignore autorepeat and the like. */
1223	if (value == last_value)
1224		return;
1225
1226	last_value = value;
1227	add_timer_randomness(&input_timer_state,
1228			     (type << 4) ^ code ^ (code >> 4) ^ value);
 
 
 
 
 
 
 
 
 
 
 
 
 
1229}
1230EXPORT_SYMBOL_GPL(add_input_randomness);
1231
1232#ifdef CONFIG_BLOCK
1233void add_disk_randomness(struct gendisk *disk)
 
 
 
1234{
1235	if (!disk || !disk->random)
 
 
 
 
 
 
 
 
1236		return;
1237	/* First major is 1, so we get >= 0x200 here. */
1238	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
 
 
 
 
 
 
 
 
 
 
 
1239}
1240EXPORT_SYMBOL_GPL(add_disk_randomness);
1241
1242void __cold rand_initialize_disk(struct gendisk *disk)
 
 
 
 
 
 
 
 
 
 
1243{
1244	struct timer_rand_state *state;
 
 
 
 
 
 
 
 
 
 
1245
1246	/*
1247	 * If kzalloc returns null, we just won't use that entropy
1248	 * source.
1249	 */
1250	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1251	if (state) {
1252		state->last_time = INITIAL_JIFFIES;
1253		disk->random = state;
1254	}
1255}
1256#endif
1257
1258struct entropy_timer_state {
1259	unsigned long entropy;
1260	struct timer_list timer;
1261	atomic_t samples;
1262	unsigned int samples_per_bit;
1263};
 
 
 
 
 
 
 
 
1264
1265/*
1266 * Each time the timer fires, we expect that we got an unpredictable jump in
1267 * the cycle counter. Even if the timer is running on another CPU, the timer
1268 * activity will be touching the stack of the CPU that is generating entropy.
1269 *
1270 * Note that we don't re-arm the timer in the timer itself - we are happy to be
1271 * scheduled away, since that just makes the load more complex, but we do not
1272 * want the timer to keep ticking unless the entropy loop is running.
1273 *
1274 * So the re-arming always happens in the entropy loop itself.
 
 
1275 */
1276static void __cold entropy_timer(struct timer_list *timer)
1277{
1278	struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);
1279	unsigned long entropy = random_get_entropy();
 
 
 
 
1280
1281	mix_pool_bytes(&entropy, sizeof(entropy));
1282	if (atomic_inc_return(&state->samples) % state->samples_per_bit == 0)
1283		credit_init_bits(1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1284}
 
1285
1286/*
1287 * If we have an actual cycle counter, see if we can generate enough entropy
1288 * with timing noise.
1289 */
1290static void __cold try_to_generate_entropy(void)
1291{
1292	enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 };
1293	u8 stack_bytes[sizeof(struct entropy_timer_state) + SMP_CACHE_BYTES - 1];
1294	struct entropy_timer_state *stack = PTR_ALIGN((void *)stack_bytes, SMP_CACHE_BYTES);
1295	unsigned int i, num_different = 0;
1296	unsigned long last = random_get_entropy();
1297	int cpu = -1;
1298
1299	for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
1300		stack->entropy = random_get_entropy();
1301		if (stack->entropy != last)
1302			++num_different;
1303		last = stack->entropy;
1304	}
1305	stack->samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
1306	if (stack->samples_per_bit > MAX_SAMPLES_PER_BIT)
1307		return;
1308
1309	atomic_set(&stack->samples, 0);
1310	timer_setup_on_stack(&stack->timer, entropy_timer, 0);
1311	while (!crng_ready() && !signal_pending(current)) {
1312		/*
1313		 * Check !timer_pending() and then ensure that any previous callback has finished
1314		 * executing by checking try_to_del_timer_sync(), before queueing the next one.
1315		 */
1316		if (!timer_pending(&stack->timer) && try_to_del_timer_sync(&stack->timer) >= 0) {
1317			struct cpumask timer_cpus;
1318			unsigned int num_cpus;
1319
1320			/*
1321			 * Preemption must be disabled here, both to read the current CPU number
1322			 * and to avoid scheduling a timer on a dead CPU.
1323			 */
1324			preempt_disable();
1325
1326			/* Only schedule callbacks on timer CPUs that are online. */
1327			cpumask_and(&timer_cpus, housekeeping_cpumask(HK_TYPE_TIMER), cpu_online_mask);
1328			num_cpus = cpumask_weight(&timer_cpus);
1329			/* In very bizarre case of misconfiguration, fallback to all online. */
1330			if (unlikely(num_cpus == 0)) {
1331				timer_cpus = *cpu_online_mask;
1332				num_cpus = cpumask_weight(&timer_cpus);
1333			}
1334
1335			/* Basic CPU round-robin, which avoids the current CPU. */
1336			do {
1337				cpu = cpumask_next(cpu, &timer_cpus);
1338				if (cpu >= nr_cpu_ids)
1339					cpu = cpumask_first(&timer_cpus);
1340			} while (cpu == smp_processor_id() && num_cpus > 1);
 
 
 
 
 
 
 
 
 
 
1341
1342			/* Expiring the timer at `jiffies` means it's the next tick. */
1343			stack->timer.expires = jiffies;
 
 
1344
1345			add_timer_on(&stack->timer, cpu);
 
1346
1347			preempt_enable();
1348		}
1349		mix_pool_bytes(&stack->entropy, sizeof(stack->entropy));
1350		schedule();
1351		stack->entropy = random_get_entropy();
1352	}
1353	mix_pool_bytes(&stack->entropy, sizeof(stack->entropy));
1354
1355	del_timer_sync(&stack->timer);
1356	destroy_timer_on_stack(&stack->timer);
1357}
 
1358
1359
1360/**********************************************************************
1361 *
1362 * Userspace reader/writer interfaces.
1363 *
1364 * getrandom(2) is the primary modern interface into the RNG and should
1365 * be used in preference to anything else.
1366 *
1367 * Reading from /dev/random has the same functionality as calling
1368 * getrandom(2) with flags=0. In earlier versions, however, it had
1369 * vastly different semantics and should therefore be avoided, to
1370 * prevent backwards compatibility issues.
1371 *
1372 * Reading from /dev/urandom has the same functionality as calling
1373 * getrandom(2) with flags=GRND_INSECURE. Because it does not block
1374 * waiting for the RNG to be ready, it should not be used.
1375 *
1376 * Writing to either /dev/random or /dev/urandom adds entropy to
1377 * the input pool but does not credit it.
1378 *
1379 * Polling on /dev/random indicates when the RNG is initialized, on
1380 * the read side, and when it wants new entropy, on the write side.
1381 *
1382 * Both /dev/random and /dev/urandom have the same set of ioctls for
1383 * adding entropy, getting the entropy count, zeroing the count, and
1384 * reseeding the crng.
1385 *
1386 **********************************************************************/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1387
1388SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
 
1389{
1390	struct iov_iter iter;
1391	int ret;
1392
1393	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
1394		return -EINVAL;
1395
1396	/*
1397	 * Requesting insecure and blocking randomness at the same time makes
1398	 * no sense.
1399	 */
1400	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
1401		return -EINVAL;
1402
1403	if (!crng_ready() && !(flags & GRND_INSECURE)) {
1404		if (flags & GRND_NONBLOCK)
1405			return -EAGAIN;
1406		ret = wait_for_random_bytes();
1407		if (unlikely(ret))
1408			return ret;
1409	}
1410
1411	ret = import_ubuf(ITER_DEST, ubuf, len, &iter);
1412	if (unlikely(ret))
1413		return ret;
1414	return get_random_bytes_user(&iter);
1415}
 
1416
1417static __poll_t random_poll(struct file *file, poll_table *wait)
 
 
1418{
1419	poll_wait(file, &crng_init_wait, wait);
1420	return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
 
 
 
 
1421}
1422
1423static ssize_t write_pool_user(struct iov_iter *iter)
 
1424{
1425	u8 block[BLAKE2S_BLOCK_SIZE];
1426	ssize_t ret = 0;
1427	size_t copied;
1428
1429	if (unlikely(!iov_iter_count(iter)))
1430		return 0;
 
 
 
 
 
 
 
1431
1432	for (;;) {
1433		copied = copy_from_iter(block, sizeof(block), iter);
1434		ret += copied;
1435		mix_pool_bytes(block, copied);
1436		if (!iov_iter_count(iter) || copied != sizeof(block))
1437			break;
1438
1439		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
1440		if (ret % PAGE_SIZE == 0) {
1441			if (signal_pending(current))
1442				break;
1443			cond_resched();
1444		}
1445	}
1446
1447	memzero_explicit(block, sizeof(block));
1448	return ret ? ret : -EFAULT;
 
 
1449}
1450
1451static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
 
1452{
1453	return write_pool_user(iter);
 
 
 
 
 
 
 
 
 
1454}
1455
1456static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
 
1457{
1458	static int maxwarn = 10;
 
 
 
 
 
1459
1460	/*
1461	 * Opportunistically attempt to initialize the RNG on platforms that
1462	 * have fast cycle counters, but don't (for now) require it to succeed.
1463	 */
1464	if (!crng_ready())
1465		try_to_generate_entropy();
1466
1467	if (!crng_ready()) {
1468		if (!ratelimit_disable && maxwarn <= 0)
1469			++urandom_warning.missed;
1470		else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
1471			--maxwarn;
1472			pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
1473				  current->comm, iov_iter_count(iter));
1474		}
 
 
 
 
 
 
1475	}
1476
1477	return get_random_bytes_user(iter);
1478}
1479
1480static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
 
1481{
1482	int ret;
1483
1484	if (!crng_ready() &&
1485	    ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) ||
1486	     (kiocb->ki_filp->f_flags & O_NONBLOCK)))
1487		return -EAGAIN;
1488
1489	ret = wait_for_random_bytes();
1490	if (ret != 0)
1491		return ret;
1492	return get_random_bytes_user(iter);
1493}
1494
1495static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1496{
 
1497	int __user *p = (int __user *)arg;
1498	int ent_count;
1499
1500	switch (cmd) {
1501	case RNDGETENTCNT:
1502		/* Inherently racy, no point locking. */
1503		if (put_user(input_pool.init_bits, p))
 
1504			return -EFAULT;
1505		return 0;
1506	case RNDADDTOENTCNT:
1507		if (!capable(CAP_SYS_ADMIN))
1508			return -EPERM;
1509		if (get_user(ent_count, p))
1510			return -EFAULT;
1511		if (ent_count < 0)
1512			return -EINVAL;
1513		credit_init_bits(ent_count);
1514		return 0;
1515	case RNDADDENTROPY: {
1516		struct iov_iter iter;
1517		ssize_t ret;
1518		int len;
1519
1520		if (!capable(CAP_SYS_ADMIN))
1521			return -EPERM;
1522		if (get_user(ent_count, p++))
1523			return -EFAULT;
1524		if (ent_count < 0)
1525			return -EINVAL;
1526		if (get_user(len, p++))
1527			return -EFAULT;
1528		ret = import_ubuf(ITER_SOURCE, p, len, &iter);
1529		if (unlikely(ret))
1530			return ret;
1531		ret = write_pool_user(&iter);
1532		if (unlikely(ret < 0))
1533			return ret;
1534		/* Since we're crediting, enforce that it was all written into the pool. */
1535		if (unlikely(ret != len))
1536			return -EFAULT;
1537		credit_init_bits(ent_count);
1538		return 0;
1539	}
1540	case RNDZAPENTCNT:
1541	case RNDCLEARPOOL:
1542		/* No longer has any effect. */
 
 
 
1543		if (!capable(CAP_SYS_ADMIN))
1544			return -EPERM;
 
1545		return 0;
1546	case RNDRESEEDCRNG:
1547		if (!capable(CAP_SYS_ADMIN))
1548			return -EPERM;
1549		if (!crng_ready())
1550			return -ENODATA;
1551		crng_reseed(NULL);
 
1552		return 0;
1553	default:
1554		return -EINVAL;
1555	}
1556}
1557
1558static int random_fasync(int fd, struct file *filp, int on)
1559{
1560	return fasync_helper(fd, filp, on, &fasync);
1561}
1562
1563const struct file_operations random_fops = {
1564	.read_iter = random_read_iter,
1565	.write_iter = random_write_iter,
1566	.poll = random_poll,
1567	.unlocked_ioctl = random_ioctl,
1568	.compat_ioctl = compat_ptr_ioctl,
1569	.fasync = random_fasync,
1570	.llseek = noop_llseek,
1571	.splice_read = copy_splice_read,
1572	.splice_write = iter_file_splice_write,
1573};
1574
1575const struct file_operations urandom_fops = {
1576	.read_iter = urandom_read_iter,
1577	.write_iter = random_write_iter,
1578	.unlocked_ioctl = random_ioctl,
1579	.compat_ioctl = compat_ptr_ioctl,
1580	.fasync = random_fasync,
1581	.llseek = noop_llseek,
1582	.splice_read = copy_splice_read,
1583	.splice_write = iter_file_splice_write,
1584};
1585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1586
1587/********************************************************************
1588 *
1589 * Sysctl interface.
1590 *
1591 * These are partly unused legacy knobs with dummy values to not break
1592 * userspace and partly still useful things. They are usually accessible
1593 * in /proc/sys/kernel/random/ and are as follows:
1594 *
1595 * - boot_id - a UUID representing the current boot.
1596 *
1597 * - uuid - a random UUID, different each time the file is read.
1598 *
1599 * - poolsize - the number of bits of entropy that the input pool can
1600 *   hold, tied to the POOL_BITS constant.
1601 *
1602 * - entropy_avail - the number of bits of entropy currently in the
1603 *   input pool. Always <= poolsize.
1604 *
1605 * - write_wakeup_threshold - the amount of entropy in the input pool
1606 *   below which write polls to /dev/random will unblock, requesting
1607 *   more entropy, tied to the POOL_READY_BITS constant. It is writable
1608 *   to avoid breaking old userspaces, but writing to it does not
1609 *   change any behavior of the RNG.
1610 *
1611 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1612 *   It is writable to avoid breaking old userspaces, but writing
1613 *   to it does not change any behavior of the RNG.
1614 *
1615 ********************************************************************/
1616
1617#ifdef CONFIG_SYSCTL
1618
1619#include <linux/sysctl.h>
1620
1621static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1622static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
1623static int sysctl_poolsize = POOL_BITS;
1624static u8 sysctl_bootid[UUID_SIZE];
1625
1626/*
1627 * This function is used to return both the bootid UUID, and random
1628 * UUID. The difference is in whether table->data is NULL; if it is,
1629 * then a new UUID is generated and returned to the user.
 
 
 
 
1630 */
1631static int proc_do_uuid(const struct ctl_table *table, int write, void *buf,
1632			size_t *lenp, loff_t *ppos)
1633{
1634	u8 tmp_uuid[UUID_SIZE], *uuid;
1635	char uuid_string[UUID_STRING_LEN + 1];
1636	struct ctl_table fake_table = {
1637		.data = uuid_string,
1638		.maxlen = UUID_STRING_LEN
1639	};
1640
1641	if (write)
1642		return -EPERM;
1643
1644	uuid = table->data;
1645	if (!uuid) {
1646		uuid = tmp_uuid;
1647		generate_random_uuid(uuid);
1648	} else {
1649		static DEFINE_SPINLOCK(bootid_spinlock);
1650
1651		spin_lock(&bootid_spinlock);
1652		if (!uuid[8])
1653			generate_random_uuid(uuid);
1654		spin_unlock(&bootid_spinlock);
1655	}
1656
1657	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
1658	return proc_dostring(&fake_table, 0, buf, lenp, ppos);
 
 
 
 
1659}
1660
1661/* The same as proc_dointvec, but writes don't change anything. */
1662static int proc_do_rointvec(const struct ctl_table *table, int write, void *buf,
1663			    size_t *lenp, loff_t *ppos)
 
 
1664{
1665	return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
 
 
 
 
 
 
 
 
1666}
1667
1668static struct ctl_table random_table[] = {
 
 
1669	{
1670		.procname	= "poolsize",
1671		.data		= &sysctl_poolsize,
1672		.maxlen		= sizeof(int),
1673		.mode		= 0444,
1674		.proc_handler	= proc_dointvec,
1675	},
1676	{
1677		.procname	= "entropy_avail",
1678		.data		= &input_pool.init_bits,
1679		.maxlen		= sizeof(int),
1680		.mode		= 0444,
1681		.proc_handler	= proc_dointvec,
 
1682	},
1683	{
1684		.procname	= "write_wakeup_threshold",
1685		.data		= &sysctl_random_write_wakeup_bits,
1686		.maxlen		= sizeof(int),
1687		.mode		= 0644,
1688		.proc_handler	= proc_do_rointvec,
 
 
1689	},
1690	{
1691		.procname	= "urandom_min_reseed_secs",
1692		.data		= &sysctl_random_min_urandom_seed,
1693		.maxlen		= sizeof(int),
1694		.mode		= 0644,
1695		.proc_handler	= proc_do_rointvec,
1696	},
1697	{
1698		.procname	= "boot_id",
1699		.data		= &sysctl_bootid,
 
1700		.mode		= 0444,
1701		.proc_handler	= proc_do_uuid,
1702	},
1703	{
1704		.procname	= "uuid",
 
1705		.mode		= 0444,
1706		.proc_handler	= proc_do_uuid,
1707	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1708};
1709
1710/*
1711 * random_init() is called before sysctl_init(),
1712 * so we cannot call register_sysctl_init() in random_init()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1713 */
1714static int __init random_sysctls_init(void)
 
1715{
1716	register_sysctl_init("kernel/random", random_table);
1717	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1718}
1719device_initcall(random_sysctls_init);
1720#endif