Loading...
1/*
2 * random.c -- A strong random number generator
3 *
4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
5 * Rights Reserved.
6 *
7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
8 *
9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
10 * rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, and the entire permission notice in its entirety,
17 * including the disclaimer of warranties.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. The name of the author may not be used to endorse or promote
22 * products derived from this software without specific prior
23 * written permission.
24 *
25 * ALTERNATIVELY, this product may be distributed under the terms of
26 * the GNU General Public License, in which case the provisions of the GPL are
27 * required INSTEAD OF the above restrictions. (This clause is
28 * necessary due to a potential bad interaction between the GPL and
29 * the restrictions contained in a BSD-style copyright.)
30 *
31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42 * DAMAGE.
43 */
44
45/*
46 * (now, with legal B.S. out of the way.....)
47 *
48 * This routine gathers environmental noise from device drivers, etc.,
49 * and returns good random numbers, suitable for cryptographic use.
50 * Besides the obvious cryptographic uses, these numbers are also good
51 * for seeding TCP sequence numbers, and other places where it is
52 * desirable to have numbers which are not only random, but hard to
53 * predict by an attacker.
54 *
55 * Theory of operation
56 * ===================
57 *
58 * Computers are very predictable devices. Hence it is extremely hard
59 * to produce truly random numbers on a computer --- as opposed to
60 * pseudo-random numbers, which can easily generated by using a
61 * algorithm. Unfortunately, it is very easy for attackers to guess
62 * the sequence of pseudo-random number generators, and for some
63 * applications this is not acceptable. So instead, we must try to
64 * gather "environmental noise" from the computer's environment, which
65 * must be hard for outside attackers to observe, and use that to
66 * generate random numbers. In a Unix environment, this is best done
67 * from inside the kernel.
68 *
69 * Sources of randomness from the environment include inter-keyboard
70 * timings, inter-interrupt timings from some interrupts, and other
71 * events which are both (a) non-deterministic and (b) hard for an
72 * outside observer to measure. Randomness from these sources are
73 * added to an "entropy pool", which is mixed using a CRC-like function.
74 * This is not cryptographically strong, but it is adequate assuming
75 * the randomness is not chosen maliciously, and it is fast enough that
76 * the overhead of doing it on every interrupt is very reasonable.
77 * As random bytes are mixed into the entropy pool, the routines keep
78 * an *estimate* of how many bits of randomness have been stored into
79 * the random number generator's internal state.
80 *
81 * When random bytes are desired, they are obtained by taking the SHA
82 * hash of the contents of the "entropy pool". The SHA hash avoids
83 * exposing the internal state of the entropy pool. It is believed to
84 * be computationally infeasible to derive any useful information
85 * about the input of SHA from its output. Even if it is possible to
86 * analyze SHA in some clever way, as long as the amount of data
87 * returned from the generator is less than the inherent entropy in
88 * the pool, the output data is totally unpredictable. For this
89 * reason, the routine decreases its internal estimate of how many
90 * bits of "true randomness" are contained in the entropy pool as it
91 * outputs random numbers.
92 *
93 * If this estimate goes to zero, the routine can still generate
94 * random numbers; however, an attacker may (at least in theory) be
95 * able to infer the future output of the generator from prior
96 * outputs. This requires successful cryptanalysis of SHA, which is
97 * not believed to be feasible, but there is a remote possibility.
98 * Nonetheless, these numbers should be useful for the vast majority
99 * of purposes.
100 *
101 * Exported interfaces ---- output
102 * ===============================
103 *
104 * There are four exported interfaces; two for use within the kernel,
105 * and two or use from userspace.
106 *
107 * Exported interfaces ---- userspace output
108 * -----------------------------------------
109 *
110 * The userspace interfaces are two character devices /dev/random and
111 * /dev/urandom. /dev/random is suitable for use when very high
112 * quality randomness is desired (for example, for key generation or
113 * one-time pads), as it will only return a maximum of the number of
114 * bits of randomness (as estimated by the random number generator)
115 * contained in the entropy pool.
116 *
117 * The /dev/urandom device does not have this limit, and will return
118 * as many bytes as are requested. As more and more random bytes are
119 * requested without giving time for the entropy pool to recharge,
120 * this will result in random numbers that are merely cryptographically
121 * strong. For many applications, however, this is acceptable.
122 *
123 * Exported interfaces ---- kernel output
124 * --------------------------------------
125 *
126 * The primary kernel interface is
127 *
128 * void get_random_bytes(void *buf, int nbytes);
129 *
130 * This interface will return the requested number of random bytes,
131 * and place it in the requested buffer. This is equivalent to a
132 * read from /dev/urandom.
133 *
134 * For less critical applications, there are the functions:
135 *
136 * u32 get_random_u32()
137 * u64 get_random_u64()
138 * unsigned int get_random_int()
139 * unsigned long get_random_long()
140 *
141 * These are produced by a cryptographic RNG seeded from get_random_bytes,
142 * and so do not deplete the entropy pool as much. These are recommended
143 * for most in-kernel operations *if the result is going to be stored in
144 * the kernel*.
145 *
146 * Specifically, the get_random_int() family do not attempt to do
147 * "anti-backtracking". If you capture the state of the kernel (e.g.
148 * by snapshotting the VM), you can figure out previous get_random_int()
149 * return values. But if the value is stored in the kernel anyway,
150 * this is not a problem.
151 *
152 * It *is* safe to expose get_random_int() output to attackers (e.g. as
153 * network cookies); given outputs 1..n, it's not feasible to predict
154 * outputs 0 or n+1. The only concern is an attacker who breaks into
155 * the kernel later; the get_random_int() engine is not reseeded as
156 * often as the get_random_bytes() one.
157 *
158 * get_random_bytes() is needed for keys that need to stay secret after
159 * they are erased from the kernel. For example, any key that will
160 * be wrapped and stored encrypted. And session encryption keys: we'd
161 * like to know that after the session is closed and the keys erased,
162 * the plaintext is unrecoverable to someone who recorded the ciphertext.
163 *
164 * But for network ports/cookies, stack canaries, PRNG seeds, address
165 * space layout randomization, session *authentication* keys, or other
166 * applications where the sensitive data is stored in the kernel in
167 * plaintext for as long as it's sensitive, the get_random_int() family
168 * is just fine.
169 *
170 * Consider ASLR. We want to keep the address space secret from an
171 * outside attacker while the process is running, but once the address
172 * space is torn down, it's of no use to an attacker any more. And it's
173 * stored in kernel data structures as long as it's alive, so worrying
174 * about an attacker's ability to extrapolate it from the get_random_int()
175 * CRNG is silly.
176 *
177 * Even some cryptographic keys are safe to generate with get_random_int().
178 * In particular, keys for SipHash are generally fine. Here, knowledge
179 * of the key authorizes you to do something to a kernel object (inject
180 * packets to a network connection, or flood a hash table), and the
181 * key is stored with the object being protected. Once it goes away,
182 * we no longer care if anyone knows the key.
183 *
184 * prandom_u32()
185 * -------------
186 *
187 * For even weaker applications, see the pseudorandom generator
188 * prandom_u32(), prandom_max(), and prandom_bytes(). If the random
189 * numbers aren't security-critical at all, these are *far* cheaper.
190 * Useful for self-tests, random error simulation, randomized backoffs,
191 * and any other application where you trust that nobody is trying to
192 * maliciously mess with you by guessing the "random" numbers.
193 *
194 * Exported interfaces ---- input
195 * ==============================
196 *
197 * The current exported interfaces for gathering environmental noise
198 * from the devices are:
199 *
200 * void add_device_randomness(const void *buf, unsigned int size);
201 * void add_input_randomness(unsigned int type, unsigned int code,
202 * unsigned int value);
203 * void add_interrupt_randomness(int irq, int irq_flags);
204 * void add_disk_randomness(struct gendisk *disk);
205 *
206 * add_device_randomness() is for adding data to the random pool that
207 * is likely to differ between two devices (or possibly even per boot).
208 * This would be things like MAC addresses or serial numbers, or the
209 * read-out of the RTC. This does *not* add any actual entropy to the
210 * pool, but it initializes the pool to different values for devices
211 * that might otherwise be identical and have very little entropy
212 * available to them (particularly common in the embedded world).
213 *
214 * add_input_randomness() uses the input layer interrupt timing, as well as
215 * the event type information from the hardware.
216 *
217 * add_interrupt_randomness() uses the interrupt timing as random
218 * inputs to the entropy pool. Using the cycle counters and the irq source
219 * as inputs, it feeds the randomness roughly once a second.
220 *
221 * add_disk_randomness() uses what amounts to the seek time of block
222 * layer request events, on a per-disk_devt basis, as input to the
223 * entropy pool. Note that high-speed solid state drives with very low
224 * seek times do not make for good sources of entropy, as their seek
225 * times are usually fairly consistent.
226 *
227 * All of these routines try to estimate how many bits of randomness a
228 * particular randomness source. They do this by keeping track of the
229 * first and second order deltas of the event timings.
230 *
231 * Ensuring unpredictability at system startup
232 * ============================================
233 *
234 * When any operating system starts up, it will go through a sequence
235 * of actions that are fairly predictable by an adversary, especially
236 * if the start-up does not involve interaction with a human operator.
237 * This reduces the actual number of bits of unpredictability in the
238 * entropy pool below the value in entropy_count. In order to
239 * counteract this effect, it helps to carry information in the
240 * entropy pool across shut-downs and start-ups. To do this, put the
241 * following lines an appropriate script which is run during the boot
242 * sequence:
243 *
244 * echo "Initializing random number generator..."
245 * random_seed=/var/run/random-seed
246 * # Carry a random seed from start-up to start-up
247 * # Load and then save the whole entropy pool
248 * if [ -f $random_seed ]; then
249 * cat $random_seed >/dev/urandom
250 * else
251 * touch $random_seed
252 * fi
253 * chmod 600 $random_seed
254 * dd if=/dev/urandom of=$random_seed count=1 bs=512
255 *
256 * and the following lines in an appropriate script which is run as
257 * the system is shutdown:
258 *
259 * # Carry a random seed from shut-down to start-up
260 * # Save the whole entropy pool
261 * echo "Saving random seed..."
262 * random_seed=/var/run/random-seed
263 * touch $random_seed
264 * chmod 600 $random_seed
265 * dd if=/dev/urandom of=$random_seed count=1 bs=512
266 *
267 * For example, on most modern systems using the System V init
268 * scripts, such code fragments would be found in
269 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
270 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
271 *
272 * Effectively, these commands cause the contents of the entropy pool
273 * to be saved at shut-down time and reloaded into the entropy pool at
274 * start-up. (The 'dd' in the addition to the bootup script is to
275 * make sure that /etc/random-seed is different for every start-up,
276 * even if the system crashes without executing rc.0.) Even with
277 * complete knowledge of the start-up activities, predicting the state
278 * of the entropy pool requires knowledge of the previous history of
279 * the system.
280 *
281 * Configuring the /dev/random driver under Linux
282 * ==============================================
283 *
284 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
285 * the /dev/mem major number (#1). So if your system does not have
286 * /dev/random and /dev/urandom created already, they can be created
287 * by using the commands:
288 *
289 * mknod /dev/random c 1 8
290 * mknod /dev/urandom c 1 9
291 *
292 * Acknowledgements:
293 * =================
294 *
295 * Ideas for constructing this random number generator were derived
296 * from Pretty Good Privacy's random number generator, and from private
297 * discussions with Phil Karn. Colin Plumb provided a faster random
298 * number generator, which speed up the mixing function of the entropy
299 * pool, taken from PGPfone. Dale Worley has also contributed many
300 * useful ideas and suggestions to improve this driver.
301 *
302 * Any flaws in the design are solely my responsibility, and should
303 * not be attributed to the Phil, Colin, or any of authors of PGP.
304 *
305 * Further background information on this topic may be obtained from
306 * RFC 1750, "Randomness Recommendations for Security", by Donald
307 * Eastlake, Steve Crocker, and Jeff Schiller.
308 */
309
310#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
311
312#include <linux/utsname.h>
313#include <linux/module.h>
314#include <linux/kernel.h>
315#include <linux/major.h>
316#include <linux/string.h>
317#include <linux/fcntl.h>
318#include <linux/slab.h>
319#include <linux/random.h>
320#include <linux/poll.h>
321#include <linux/init.h>
322#include <linux/fs.h>
323#include <linux/genhd.h>
324#include <linux/interrupt.h>
325#include <linux/mm.h>
326#include <linux/nodemask.h>
327#include <linux/spinlock.h>
328#include <linux/kthread.h>
329#include <linux/percpu.h>
330#include <linux/fips.h>
331#include <linux/ptrace.h>
332#include <linux/workqueue.h>
333#include <linux/irq.h>
334#include <linux/ratelimit.h>
335#include <linux/syscalls.h>
336#include <linux/completion.h>
337#include <linux/uuid.h>
338#include <crypto/chacha.h>
339#include <crypto/sha.h>
340
341#include <asm/processor.h>
342#include <linux/uaccess.h>
343#include <asm/irq.h>
344#include <asm/irq_regs.h>
345#include <asm/io.h>
346
347#define CREATE_TRACE_POINTS
348#include <trace/events/random.h>
349
350/* #define ADD_INTERRUPT_BENCH */
351
352/*
353 * Configuration information
354 */
355#define INPUT_POOL_SHIFT 12
356#define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
357#define OUTPUT_POOL_SHIFT 10
358#define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
359#define EXTRACT_SIZE 10
360
361
362#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
363
364/*
365 * To allow fractional bits to be tracked, the entropy_count field is
366 * denominated in units of 1/8th bits.
367 *
368 * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in
369 * credit_entropy_bits() needs to be 64 bits wide.
370 */
371#define ENTROPY_SHIFT 3
372#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
373
374/*
375 * If the entropy count falls under this number of bits, then we
376 * should wake up processes which are selecting or polling on write
377 * access to /dev/random.
378 */
379static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
380
381/*
382 * Originally, we used a primitive polynomial of degree .poolwords
383 * over GF(2). The taps for various sizes are defined below. They
384 * were chosen to be evenly spaced except for the last tap, which is 1
385 * to get the twisting happening as fast as possible.
386 *
387 * For the purposes of better mixing, we use the CRC-32 polynomial as
388 * well to make a (modified) twisted Generalized Feedback Shift
389 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
390 * generators. ACM Transactions on Modeling and Computer Simulation
391 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
392 * GFSR generators II. ACM Transactions on Modeling and Computer
393 * Simulation 4:254-266)
394 *
395 * Thanks to Colin Plumb for suggesting this.
396 *
397 * The mixing operation is much less sensitive than the output hash,
398 * where we use SHA-1. All that we want of mixing operation is that
399 * it be a good non-cryptographic hash; i.e. it not produce collisions
400 * when fed "random" data of the sort we expect to see. As long as
401 * the pool state differs for different inputs, we have preserved the
402 * input entropy and done a good job. The fact that an intelligent
403 * attacker can construct inputs that will produce controlled
404 * alterations to the pool's state is not important because we don't
405 * consider such inputs to contribute any randomness. The only
406 * property we need with respect to them is that the attacker can't
407 * increase his/her knowledge of the pool's state. Since all
408 * additions are reversible (knowing the final state and the input,
409 * you can reconstruct the initial state), if an attacker has any
410 * uncertainty about the initial state, he/she can only shuffle that
411 * uncertainty about, but never cause any collisions (which would
412 * decrease the uncertainty).
413 *
414 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
415 * Videau in their paper, "The Linux Pseudorandom Number Generator
416 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
417 * paper, they point out that we are not using a true Twisted GFSR,
418 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
419 * is, with only three taps, instead of the six that we are using).
420 * As a result, the resulting polynomial is neither primitive nor
421 * irreducible, and hence does not have a maximal period over
422 * GF(2**32). They suggest a slight change to the generator
423 * polynomial which improves the resulting TGFSR polynomial to be
424 * irreducible, which we have made here.
425 */
426static const struct poolinfo {
427 int poolbitshift, poolwords, poolbytes, poolfracbits;
428#define S(x) ilog2(x)+5, (x), (x)*4, (x) << (ENTROPY_SHIFT+5)
429 int tap1, tap2, tap3, tap4, tap5;
430} poolinfo_table[] = {
431 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
432 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
433 { S(128), 104, 76, 51, 25, 1 },
434};
435
436/*
437 * Static global variables
438 */
439static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
440static struct fasync_struct *fasync;
441
442static DEFINE_SPINLOCK(random_ready_list_lock);
443static LIST_HEAD(random_ready_list);
444
445struct crng_state {
446 __u32 state[16];
447 unsigned long init_time;
448 spinlock_t lock;
449};
450
451static struct crng_state primary_crng = {
452 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
453};
454
455/*
456 * crng_init = 0 --> Uninitialized
457 * 1 --> Initialized
458 * 2 --> Initialized from input_pool
459 *
460 * crng_init is protected by primary_crng->lock, and only increases
461 * its value (from 0->1->2).
462 */
463static int crng_init = 0;
464#define crng_ready() (likely(crng_init > 1))
465static int crng_init_cnt = 0;
466static unsigned long crng_global_init_time = 0;
467#define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE)
468static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]);
469static void _crng_backtrack_protect(struct crng_state *crng,
470 __u8 tmp[CHACHA_BLOCK_SIZE], int used);
471static void process_random_ready_list(void);
472static void _get_random_bytes(void *buf, int nbytes);
473
474static struct ratelimit_state unseeded_warning =
475 RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
476static struct ratelimit_state urandom_warning =
477 RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
478
479static int ratelimit_disable __read_mostly;
480
481module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
482MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
483
484/**********************************************************************
485 *
486 * OS independent entropy store. Here are the functions which handle
487 * storing entropy in an entropy pool.
488 *
489 **********************************************************************/
490
491struct entropy_store;
492struct entropy_store {
493 /* read-only data: */
494 const struct poolinfo *poolinfo;
495 __u32 *pool;
496 const char *name;
497
498 /* read-write data: */
499 spinlock_t lock;
500 unsigned short add_ptr;
501 unsigned short input_rotate;
502 int entropy_count;
503 unsigned int initialized:1;
504 unsigned int last_data_init:1;
505 __u8 last_data[EXTRACT_SIZE];
506};
507
508static ssize_t extract_entropy(struct entropy_store *r, void *buf,
509 size_t nbytes, int min, int rsvd);
510static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
511 size_t nbytes, int fips);
512
513static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
514static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
515
516static struct entropy_store input_pool = {
517 .poolinfo = &poolinfo_table[0],
518 .name = "input",
519 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
520 .pool = input_pool_data
521};
522
523static __u32 const twist_table[8] = {
524 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
525 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
526
527/*
528 * This function adds bytes into the entropy "pool". It does not
529 * update the entropy estimate. The caller should call
530 * credit_entropy_bits if this is appropriate.
531 *
532 * The pool is stirred with a primitive polynomial of the appropriate
533 * degree, and then twisted. We twist by three bits at a time because
534 * it's cheap to do so and helps slightly in the expected case where
535 * the entropy is concentrated in the low-order bits.
536 */
537static void _mix_pool_bytes(struct entropy_store *r, const void *in,
538 int nbytes)
539{
540 unsigned long i, tap1, tap2, tap3, tap4, tap5;
541 int input_rotate;
542 int wordmask = r->poolinfo->poolwords - 1;
543 const char *bytes = in;
544 __u32 w;
545
546 tap1 = r->poolinfo->tap1;
547 tap2 = r->poolinfo->tap2;
548 tap3 = r->poolinfo->tap3;
549 tap4 = r->poolinfo->tap4;
550 tap5 = r->poolinfo->tap5;
551
552 input_rotate = r->input_rotate;
553 i = r->add_ptr;
554
555 /* mix one byte at a time to simplify size handling and churn faster */
556 while (nbytes--) {
557 w = rol32(*bytes++, input_rotate);
558 i = (i - 1) & wordmask;
559
560 /* XOR in the various taps */
561 w ^= r->pool[i];
562 w ^= r->pool[(i + tap1) & wordmask];
563 w ^= r->pool[(i + tap2) & wordmask];
564 w ^= r->pool[(i + tap3) & wordmask];
565 w ^= r->pool[(i + tap4) & wordmask];
566 w ^= r->pool[(i + tap5) & wordmask];
567
568 /* Mix the result back in with a twist */
569 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
570
571 /*
572 * Normally, we add 7 bits of rotation to the pool.
573 * At the beginning of the pool, add an extra 7 bits
574 * rotation, so that successive passes spread the
575 * input bits across the pool evenly.
576 */
577 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
578 }
579
580 r->input_rotate = input_rotate;
581 r->add_ptr = i;
582}
583
584static void __mix_pool_bytes(struct entropy_store *r, const void *in,
585 int nbytes)
586{
587 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
588 _mix_pool_bytes(r, in, nbytes);
589}
590
591static void mix_pool_bytes(struct entropy_store *r, const void *in,
592 int nbytes)
593{
594 unsigned long flags;
595
596 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
597 spin_lock_irqsave(&r->lock, flags);
598 _mix_pool_bytes(r, in, nbytes);
599 spin_unlock_irqrestore(&r->lock, flags);
600}
601
602struct fast_pool {
603 __u32 pool[4];
604 unsigned long last;
605 unsigned short reg_idx;
606 unsigned char count;
607};
608
609/*
610 * This is a fast mixing routine used by the interrupt randomness
611 * collector. It's hardcoded for an 128 bit pool and assumes that any
612 * locks that might be needed are taken by the caller.
613 */
614static void fast_mix(struct fast_pool *f)
615{
616 __u32 a = f->pool[0], b = f->pool[1];
617 __u32 c = f->pool[2], d = f->pool[3];
618
619 a += b; c += d;
620 b = rol32(b, 6); d = rol32(d, 27);
621 d ^= a; b ^= c;
622
623 a += b; c += d;
624 b = rol32(b, 16); d = rol32(d, 14);
625 d ^= a; b ^= c;
626
627 a += b; c += d;
628 b = rol32(b, 6); d = rol32(d, 27);
629 d ^= a; b ^= c;
630
631 a += b; c += d;
632 b = rol32(b, 16); d = rol32(d, 14);
633 d ^= a; b ^= c;
634
635 f->pool[0] = a; f->pool[1] = b;
636 f->pool[2] = c; f->pool[3] = d;
637 f->count++;
638}
639
640static void process_random_ready_list(void)
641{
642 unsigned long flags;
643 struct random_ready_callback *rdy, *tmp;
644
645 spin_lock_irqsave(&random_ready_list_lock, flags);
646 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
647 struct module *owner = rdy->owner;
648
649 list_del_init(&rdy->list);
650 rdy->func(rdy);
651 module_put(owner);
652 }
653 spin_unlock_irqrestore(&random_ready_list_lock, flags);
654}
655
656/*
657 * Credit (or debit) the entropy store with n bits of entropy.
658 * Use credit_entropy_bits_safe() if the value comes from userspace
659 * or otherwise should be checked for extreme values.
660 */
661static void credit_entropy_bits(struct entropy_store *r, int nbits)
662{
663 int entropy_count, orig, has_initialized = 0;
664 const int pool_size = r->poolinfo->poolfracbits;
665 int nfrac = nbits << ENTROPY_SHIFT;
666
667 if (!nbits)
668 return;
669
670retry:
671 entropy_count = orig = READ_ONCE(r->entropy_count);
672 if (nfrac < 0) {
673 /* Debit */
674 entropy_count += nfrac;
675 } else {
676 /*
677 * Credit: we have to account for the possibility of
678 * overwriting already present entropy. Even in the
679 * ideal case of pure Shannon entropy, new contributions
680 * approach the full value asymptotically:
681 *
682 * entropy <- entropy + (pool_size - entropy) *
683 * (1 - exp(-add_entropy/pool_size))
684 *
685 * For add_entropy <= pool_size/2 then
686 * (1 - exp(-add_entropy/pool_size)) >=
687 * (add_entropy/pool_size)*0.7869...
688 * so we can approximate the exponential with
689 * 3/4*add_entropy/pool_size and still be on the
690 * safe side by adding at most pool_size/2 at a time.
691 *
692 * The use of pool_size-2 in the while statement is to
693 * prevent rounding artifacts from making the loop
694 * arbitrarily long; this limits the loop to log2(pool_size)*2
695 * turns no matter how large nbits is.
696 */
697 int pnfrac = nfrac;
698 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
699 /* The +2 corresponds to the /4 in the denominator */
700
701 do {
702 unsigned int anfrac = min(pnfrac, pool_size/2);
703 unsigned int add =
704 ((pool_size - entropy_count)*anfrac*3) >> s;
705
706 entropy_count += add;
707 pnfrac -= anfrac;
708 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
709 }
710
711 if (WARN_ON(entropy_count < 0)) {
712 pr_warn("negative entropy/overflow: pool %s count %d\n",
713 r->name, entropy_count);
714 entropy_count = 0;
715 } else if (entropy_count > pool_size)
716 entropy_count = pool_size;
717 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
718 goto retry;
719
720 if (has_initialized) {
721 r->initialized = 1;
722 kill_fasync(&fasync, SIGIO, POLL_IN);
723 }
724
725 trace_credit_entropy_bits(r->name, nbits,
726 entropy_count >> ENTROPY_SHIFT, _RET_IP_);
727
728 if (r == &input_pool) {
729 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
730
731 if (crng_init < 2) {
732 if (entropy_bits < 128)
733 return;
734 crng_reseed(&primary_crng, r);
735 entropy_bits = ENTROPY_BITS(r);
736 }
737 }
738}
739
740static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
741{
742 const int nbits_max = r->poolinfo->poolwords * 32;
743
744 if (nbits < 0)
745 return -EINVAL;
746
747 /* Cap the value to avoid overflows */
748 nbits = min(nbits, nbits_max);
749
750 credit_entropy_bits(r, nbits);
751 return 0;
752}
753
754/*********************************************************************
755 *
756 * CRNG using CHACHA20
757 *
758 *********************************************************************/
759
760#define CRNG_RESEED_INTERVAL (300*HZ)
761
762static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
763
764#ifdef CONFIG_NUMA
765/*
766 * Hack to deal with crazy userspace progams when they are all trying
767 * to access /dev/urandom in parallel. The programs are almost
768 * certainly doing something terribly wrong, but we'll work around
769 * their brain damage.
770 */
771static struct crng_state **crng_node_pool __read_mostly;
772#endif
773
774static void invalidate_batched_entropy(void);
775static void numa_crng_init(void);
776
777static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
778static int __init parse_trust_cpu(char *arg)
779{
780 return kstrtobool(arg, &trust_cpu);
781}
782early_param("random.trust_cpu", parse_trust_cpu);
783
784static bool crng_init_try_arch(struct crng_state *crng)
785{
786 int i;
787 bool arch_init = true;
788 unsigned long rv;
789
790 for (i = 4; i < 16; i++) {
791 if (!arch_get_random_seed_long(&rv) &&
792 !arch_get_random_long(&rv)) {
793 rv = random_get_entropy();
794 arch_init = false;
795 }
796 crng->state[i] ^= rv;
797 }
798
799 return arch_init;
800}
801
802static bool __init crng_init_try_arch_early(struct crng_state *crng)
803{
804 int i;
805 bool arch_init = true;
806 unsigned long rv;
807
808 for (i = 4; i < 16; i++) {
809 if (!arch_get_random_seed_long_early(&rv) &&
810 !arch_get_random_long_early(&rv)) {
811 rv = random_get_entropy();
812 arch_init = false;
813 }
814 crng->state[i] ^= rv;
815 }
816
817 return arch_init;
818}
819
820static void __maybe_unused crng_initialize_secondary(struct crng_state *crng)
821{
822 memcpy(&crng->state[0], "expand 32-byte k", 16);
823 _get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
824 crng_init_try_arch(crng);
825 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
826}
827
828static void __init crng_initialize_primary(struct crng_state *crng)
829{
830 memcpy(&crng->state[0], "expand 32-byte k", 16);
831 _extract_entropy(&input_pool, &crng->state[4], sizeof(__u32) * 12, 0);
832 if (crng_init_try_arch_early(crng) && trust_cpu) {
833 invalidate_batched_entropy();
834 numa_crng_init();
835 crng_init = 2;
836 pr_notice("crng done (trusting CPU's manufacturer)\n");
837 }
838 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
839}
840
841#ifdef CONFIG_NUMA
842static void do_numa_crng_init(struct work_struct *work)
843{
844 int i;
845 struct crng_state *crng;
846 struct crng_state **pool;
847
848 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
849 for_each_online_node(i) {
850 crng = kmalloc_node(sizeof(struct crng_state),
851 GFP_KERNEL | __GFP_NOFAIL, i);
852 spin_lock_init(&crng->lock);
853 crng_initialize_secondary(crng);
854 pool[i] = crng;
855 }
856 mb();
857 if (cmpxchg(&crng_node_pool, NULL, pool)) {
858 for_each_node(i)
859 kfree(pool[i]);
860 kfree(pool);
861 }
862}
863
864static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
865
866static void numa_crng_init(void)
867{
868 schedule_work(&numa_crng_init_work);
869}
870#else
871static void numa_crng_init(void) {}
872#endif
873
874/*
875 * crng_fast_load() can be called by code in the interrupt service
876 * path. So we can't afford to dilly-dally.
877 */
878static int crng_fast_load(const char *cp, size_t len)
879{
880 unsigned long flags;
881 char *p;
882
883 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
884 return 0;
885 if (crng_init != 0) {
886 spin_unlock_irqrestore(&primary_crng.lock, flags);
887 return 0;
888 }
889 p = (unsigned char *) &primary_crng.state[4];
890 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
891 p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
892 cp++; crng_init_cnt++; len--;
893 }
894 spin_unlock_irqrestore(&primary_crng.lock, flags);
895 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
896 invalidate_batched_entropy();
897 crng_init = 1;
898 pr_notice("fast init done\n");
899 }
900 return 1;
901}
902
903/*
904 * crng_slow_load() is called by add_device_randomness, which has two
905 * attributes. (1) We can't trust the buffer passed to it is
906 * guaranteed to be unpredictable (so it might not have any entropy at
907 * all), and (2) it doesn't have the performance constraints of
908 * crng_fast_load().
909 *
910 * So we do something more comprehensive which is guaranteed to touch
911 * all of the primary_crng's state, and which uses a LFSR with a
912 * period of 255 as part of the mixing algorithm. Finally, we do
913 * *not* advance crng_init_cnt since buffer we may get may be something
914 * like a fixed DMI table (for example), which might very well be
915 * unique to the machine, but is otherwise unvarying.
916 */
917static int crng_slow_load(const char *cp, size_t len)
918{
919 unsigned long flags;
920 static unsigned char lfsr = 1;
921 unsigned char tmp;
922 unsigned i, max = CHACHA_KEY_SIZE;
923 const char * src_buf = cp;
924 char * dest_buf = (char *) &primary_crng.state[4];
925
926 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
927 return 0;
928 if (crng_init != 0) {
929 spin_unlock_irqrestore(&primary_crng.lock, flags);
930 return 0;
931 }
932 if (len > max)
933 max = len;
934
935 for (i = 0; i < max ; i++) {
936 tmp = lfsr;
937 lfsr >>= 1;
938 if (tmp & 1)
939 lfsr ^= 0xE1;
940 tmp = dest_buf[i % CHACHA_KEY_SIZE];
941 dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
942 lfsr += (tmp << 3) | (tmp >> 5);
943 }
944 spin_unlock_irqrestore(&primary_crng.lock, flags);
945 return 1;
946}
947
948static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
949{
950 unsigned long flags;
951 int i, num;
952 union {
953 __u8 block[CHACHA_BLOCK_SIZE];
954 __u32 key[8];
955 } buf;
956
957 if (r) {
958 num = extract_entropy(r, &buf, 32, 16, 0);
959 if (num == 0)
960 return;
961 } else {
962 _extract_crng(&primary_crng, buf.block);
963 _crng_backtrack_protect(&primary_crng, buf.block,
964 CHACHA_KEY_SIZE);
965 }
966 spin_lock_irqsave(&crng->lock, flags);
967 for (i = 0; i < 8; i++) {
968 unsigned long rv;
969 if (!arch_get_random_seed_long(&rv) &&
970 !arch_get_random_long(&rv))
971 rv = random_get_entropy();
972 crng->state[i+4] ^= buf.key[i] ^ rv;
973 }
974 memzero_explicit(&buf, sizeof(buf));
975 crng->init_time = jiffies;
976 spin_unlock_irqrestore(&crng->lock, flags);
977 if (crng == &primary_crng && crng_init < 2) {
978 invalidate_batched_entropy();
979 numa_crng_init();
980 crng_init = 2;
981 process_random_ready_list();
982 wake_up_interruptible(&crng_init_wait);
983 kill_fasync(&fasync, SIGIO, POLL_IN);
984 pr_notice("crng init done\n");
985 if (unseeded_warning.missed) {
986 pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
987 unseeded_warning.missed);
988 unseeded_warning.missed = 0;
989 }
990 if (urandom_warning.missed) {
991 pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
992 urandom_warning.missed);
993 urandom_warning.missed = 0;
994 }
995 }
996}
997
998static void _extract_crng(struct crng_state *crng,
999 __u8 out[CHACHA_BLOCK_SIZE])
1000{
1001 unsigned long v, flags;
1002
1003 if (crng_ready() &&
1004 (time_after(crng_global_init_time, crng->init_time) ||
1005 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
1006 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
1007 spin_lock_irqsave(&crng->lock, flags);
1008 if (arch_get_random_long(&v))
1009 crng->state[14] ^= v;
1010 chacha20_block(&crng->state[0], out);
1011 if (crng->state[12] == 0)
1012 crng->state[13]++;
1013 spin_unlock_irqrestore(&crng->lock, flags);
1014}
1015
1016static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE])
1017{
1018 struct crng_state *crng = NULL;
1019
1020#ifdef CONFIG_NUMA
1021 if (crng_node_pool)
1022 crng = crng_node_pool[numa_node_id()];
1023 if (crng == NULL)
1024#endif
1025 crng = &primary_crng;
1026 _extract_crng(crng, out);
1027}
1028
1029/*
1030 * Use the leftover bytes from the CRNG block output (if there is
1031 * enough) to mutate the CRNG key to provide backtracking protection.
1032 */
1033static void _crng_backtrack_protect(struct crng_state *crng,
1034 __u8 tmp[CHACHA_BLOCK_SIZE], int used)
1035{
1036 unsigned long flags;
1037 __u32 *s, *d;
1038 int i;
1039
1040 used = round_up(used, sizeof(__u32));
1041 if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
1042 extract_crng(tmp);
1043 used = 0;
1044 }
1045 spin_lock_irqsave(&crng->lock, flags);
1046 s = (__u32 *) &tmp[used];
1047 d = &crng->state[4];
1048 for (i=0; i < 8; i++)
1049 *d++ ^= *s++;
1050 spin_unlock_irqrestore(&crng->lock, flags);
1051}
1052
1053static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used)
1054{
1055 struct crng_state *crng = NULL;
1056
1057#ifdef CONFIG_NUMA
1058 if (crng_node_pool)
1059 crng = crng_node_pool[numa_node_id()];
1060 if (crng == NULL)
1061#endif
1062 crng = &primary_crng;
1063 _crng_backtrack_protect(crng, tmp, used);
1064}
1065
1066static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
1067{
1068 ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
1069 __u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1070 int large_request = (nbytes > 256);
1071
1072 while (nbytes) {
1073 if (large_request && need_resched()) {
1074 if (signal_pending(current)) {
1075 if (ret == 0)
1076 ret = -ERESTARTSYS;
1077 break;
1078 }
1079 schedule();
1080 }
1081
1082 extract_crng(tmp);
1083 i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
1084 if (copy_to_user(buf, tmp, i)) {
1085 ret = -EFAULT;
1086 break;
1087 }
1088
1089 nbytes -= i;
1090 buf += i;
1091 ret += i;
1092 }
1093 crng_backtrack_protect(tmp, i);
1094
1095 /* Wipe data just written to memory */
1096 memzero_explicit(tmp, sizeof(tmp));
1097
1098 return ret;
1099}
1100
1101
1102/*********************************************************************
1103 *
1104 * Entropy input management
1105 *
1106 *********************************************************************/
1107
1108/* There is one of these per entropy source */
1109struct timer_rand_state {
1110 cycles_t last_time;
1111 long last_delta, last_delta2;
1112};
1113
1114#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1115
1116/*
1117 * Add device- or boot-specific data to the input pool to help
1118 * initialize it.
1119 *
1120 * None of this adds any entropy; it is meant to avoid the problem of
1121 * the entropy pool having similar initial state across largely
1122 * identical devices.
1123 */
1124void add_device_randomness(const void *buf, unsigned int size)
1125{
1126 unsigned long time = random_get_entropy() ^ jiffies;
1127 unsigned long flags;
1128
1129 if (!crng_ready() && size)
1130 crng_slow_load(buf, size);
1131
1132 trace_add_device_randomness(size, _RET_IP_);
1133 spin_lock_irqsave(&input_pool.lock, flags);
1134 _mix_pool_bytes(&input_pool, buf, size);
1135 _mix_pool_bytes(&input_pool, &time, sizeof(time));
1136 spin_unlock_irqrestore(&input_pool.lock, flags);
1137}
1138EXPORT_SYMBOL(add_device_randomness);
1139
1140static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1141
1142/*
1143 * This function adds entropy to the entropy "pool" by using timing
1144 * delays. It uses the timer_rand_state structure to make an estimate
1145 * of how many bits of entropy this call has added to the pool.
1146 *
1147 * The number "num" is also added to the pool - it should somehow describe
1148 * the type of event which just happened. This is currently 0-255 for
1149 * keyboard scan codes, and 256 upwards for interrupts.
1150 *
1151 */
1152static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1153{
1154 struct entropy_store *r;
1155 struct {
1156 long jiffies;
1157 unsigned cycles;
1158 unsigned num;
1159 } sample;
1160 long delta, delta2, delta3;
1161
1162 sample.jiffies = jiffies;
1163 sample.cycles = random_get_entropy();
1164 sample.num = num;
1165 r = &input_pool;
1166 mix_pool_bytes(r, &sample, sizeof(sample));
1167
1168 /*
1169 * Calculate number of bits of randomness we probably added.
1170 * We take into account the first, second and third-order deltas
1171 * in order to make our estimate.
1172 */
1173 delta = sample.jiffies - READ_ONCE(state->last_time);
1174 WRITE_ONCE(state->last_time, sample.jiffies);
1175
1176 delta2 = delta - READ_ONCE(state->last_delta);
1177 WRITE_ONCE(state->last_delta, delta);
1178
1179 delta3 = delta2 - READ_ONCE(state->last_delta2);
1180 WRITE_ONCE(state->last_delta2, delta2);
1181
1182 if (delta < 0)
1183 delta = -delta;
1184 if (delta2 < 0)
1185 delta2 = -delta2;
1186 if (delta3 < 0)
1187 delta3 = -delta3;
1188 if (delta > delta2)
1189 delta = delta2;
1190 if (delta > delta3)
1191 delta = delta3;
1192
1193 /*
1194 * delta is now minimum absolute delta.
1195 * Round down by 1 bit on general principles,
1196 * and limit entropy estimate to 12 bits.
1197 */
1198 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1199}
1200
1201void add_input_randomness(unsigned int type, unsigned int code,
1202 unsigned int value)
1203{
1204 static unsigned char last_value;
1205
1206 /* ignore autorepeat and the like */
1207 if (value == last_value)
1208 return;
1209
1210 last_value = value;
1211 add_timer_randomness(&input_timer_state,
1212 (type << 4) ^ code ^ (code >> 4) ^ value);
1213 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1214}
1215EXPORT_SYMBOL_GPL(add_input_randomness);
1216
1217static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1218
1219#ifdef ADD_INTERRUPT_BENCH
1220static unsigned long avg_cycles, avg_deviation;
1221
1222#define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1223#define FIXED_1_2 (1 << (AVG_SHIFT-1))
1224
1225static void add_interrupt_bench(cycles_t start)
1226{
1227 long delta = random_get_entropy() - start;
1228
1229 /* Use a weighted moving average */
1230 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1231 avg_cycles += delta;
1232 /* And average deviation */
1233 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1234 avg_deviation += delta;
1235}
1236#else
1237#define add_interrupt_bench(x)
1238#endif
1239
1240static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1241{
1242 __u32 *ptr = (__u32 *) regs;
1243 unsigned int idx;
1244
1245 if (regs == NULL)
1246 return 0;
1247 idx = READ_ONCE(f->reg_idx);
1248 if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1249 idx = 0;
1250 ptr += idx++;
1251 WRITE_ONCE(f->reg_idx, idx);
1252 return *ptr;
1253}
1254
1255void add_interrupt_randomness(int irq, int irq_flags)
1256{
1257 struct entropy_store *r;
1258 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1259 struct pt_regs *regs = get_irq_regs();
1260 unsigned long now = jiffies;
1261 cycles_t cycles = random_get_entropy();
1262 __u32 c_high, j_high;
1263 __u64 ip;
1264 unsigned long seed;
1265 int credit = 0;
1266
1267 if (cycles == 0)
1268 cycles = get_reg(fast_pool, regs);
1269 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1270 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1271 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1272 fast_pool->pool[1] ^= now ^ c_high;
1273 ip = regs ? instruction_pointer(regs) : _RET_IP_;
1274 fast_pool->pool[2] ^= ip;
1275 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1276 get_reg(fast_pool, regs);
1277
1278 fast_mix(fast_pool);
1279 add_interrupt_bench(cycles);
1280 this_cpu_add(net_rand_state.s1, fast_pool->pool[cycles & 3]);
1281
1282 if (unlikely(crng_init == 0)) {
1283 if ((fast_pool->count >= 64) &&
1284 crng_fast_load((char *) fast_pool->pool,
1285 sizeof(fast_pool->pool))) {
1286 fast_pool->count = 0;
1287 fast_pool->last = now;
1288 }
1289 return;
1290 }
1291
1292 if ((fast_pool->count < 64) &&
1293 !time_after(now, fast_pool->last + HZ))
1294 return;
1295
1296 r = &input_pool;
1297 if (!spin_trylock(&r->lock))
1298 return;
1299
1300 fast_pool->last = now;
1301 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1302
1303 /*
1304 * If we have architectural seed generator, produce a seed and
1305 * add it to the pool. For the sake of paranoia don't let the
1306 * architectural seed generator dominate the input from the
1307 * interrupt noise.
1308 */
1309 if (arch_get_random_seed_long(&seed)) {
1310 __mix_pool_bytes(r, &seed, sizeof(seed));
1311 credit = 1;
1312 }
1313 spin_unlock(&r->lock);
1314
1315 fast_pool->count = 0;
1316
1317 /* award one bit for the contents of the fast pool */
1318 credit_entropy_bits(r, credit + 1);
1319}
1320EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1321
1322#ifdef CONFIG_BLOCK
1323void add_disk_randomness(struct gendisk *disk)
1324{
1325 if (!disk || !disk->random)
1326 return;
1327 /* first major is 1, so we get >= 0x200 here */
1328 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1329 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1330}
1331EXPORT_SYMBOL_GPL(add_disk_randomness);
1332#endif
1333
1334/*********************************************************************
1335 *
1336 * Entropy extraction routines
1337 *
1338 *********************************************************************/
1339
1340/*
1341 * This function decides how many bytes to actually take from the
1342 * given pool, and also debits the entropy count accordingly.
1343 */
1344static size_t account(struct entropy_store *r, size_t nbytes, int min,
1345 int reserved)
1346{
1347 int entropy_count, orig, have_bytes;
1348 size_t ibytes, nfrac;
1349
1350 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1351
1352 /* Can we pull enough? */
1353retry:
1354 entropy_count = orig = READ_ONCE(r->entropy_count);
1355 ibytes = nbytes;
1356 /* never pull more than available */
1357 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1358
1359 if ((have_bytes -= reserved) < 0)
1360 have_bytes = 0;
1361 ibytes = min_t(size_t, ibytes, have_bytes);
1362 if (ibytes < min)
1363 ibytes = 0;
1364
1365 if (WARN_ON(entropy_count < 0)) {
1366 pr_warn("negative entropy count: pool %s count %d\n",
1367 r->name, entropy_count);
1368 entropy_count = 0;
1369 }
1370 nfrac = ibytes << (ENTROPY_SHIFT + 3);
1371 if ((size_t) entropy_count > nfrac)
1372 entropy_count -= nfrac;
1373 else
1374 entropy_count = 0;
1375
1376 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1377 goto retry;
1378
1379 trace_debit_entropy(r->name, 8 * ibytes);
1380 if (ibytes && ENTROPY_BITS(r) < random_write_wakeup_bits) {
1381 wake_up_interruptible(&random_write_wait);
1382 kill_fasync(&fasync, SIGIO, POLL_OUT);
1383 }
1384
1385 return ibytes;
1386}
1387
1388/*
1389 * This function does the actual extraction for extract_entropy and
1390 * extract_entropy_user.
1391 *
1392 * Note: we assume that .poolwords is a multiple of 16 words.
1393 */
1394static void extract_buf(struct entropy_store *r, __u8 *out)
1395{
1396 int i;
1397 union {
1398 __u32 w[5];
1399 unsigned long l[LONGS(20)];
1400 } hash;
1401 __u32 workspace[SHA1_WORKSPACE_WORDS];
1402 unsigned long flags;
1403
1404 /*
1405 * If we have an architectural hardware random number
1406 * generator, use it for SHA's initial vector
1407 */
1408 sha1_init(hash.w);
1409 for (i = 0; i < LONGS(20); i++) {
1410 unsigned long v;
1411 if (!arch_get_random_long(&v))
1412 break;
1413 hash.l[i] = v;
1414 }
1415
1416 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1417 spin_lock_irqsave(&r->lock, flags);
1418 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1419 sha1_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1420
1421 /*
1422 * We mix the hash back into the pool to prevent backtracking
1423 * attacks (where the attacker knows the state of the pool
1424 * plus the current outputs, and attempts to find previous
1425 * ouputs), unless the hash function can be inverted. By
1426 * mixing at least a SHA1 worth of hash data back, we make
1427 * brute-forcing the feedback as hard as brute-forcing the
1428 * hash.
1429 */
1430 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
1431 spin_unlock_irqrestore(&r->lock, flags);
1432
1433 memzero_explicit(workspace, sizeof(workspace));
1434
1435 /*
1436 * In case the hash function has some recognizable output
1437 * pattern, we fold it in half. Thus, we always feed back
1438 * twice as much data as we output.
1439 */
1440 hash.w[0] ^= hash.w[3];
1441 hash.w[1] ^= hash.w[4];
1442 hash.w[2] ^= rol32(hash.w[2], 16);
1443
1444 memcpy(out, &hash, EXTRACT_SIZE);
1445 memzero_explicit(&hash, sizeof(hash));
1446}
1447
1448static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1449 size_t nbytes, int fips)
1450{
1451 ssize_t ret = 0, i;
1452 __u8 tmp[EXTRACT_SIZE];
1453 unsigned long flags;
1454
1455 while (nbytes) {
1456 extract_buf(r, tmp);
1457
1458 if (fips) {
1459 spin_lock_irqsave(&r->lock, flags);
1460 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1461 panic("Hardware RNG duplicated output!\n");
1462 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1463 spin_unlock_irqrestore(&r->lock, flags);
1464 }
1465 i = min_t(int, nbytes, EXTRACT_SIZE);
1466 memcpy(buf, tmp, i);
1467 nbytes -= i;
1468 buf += i;
1469 ret += i;
1470 }
1471
1472 /* Wipe data just returned from memory */
1473 memzero_explicit(tmp, sizeof(tmp));
1474
1475 return ret;
1476}
1477
1478/*
1479 * This function extracts randomness from the "entropy pool", and
1480 * returns it in a buffer.
1481 *
1482 * The min parameter specifies the minimum amount we can pull before
1483 * failing to avoid races that defeat catastrophic reseeding while the
1484 * reserved parameter indicates how much entropy we must leave in the
1485 * pool after each pull to avoid starving other readers.
1486 */
1487static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1488 size_t nbytes, int min, int reserved)
1489{
1490 __u8 tmp[EXTRACT_SIZE];
1491 unsigned long flags;
1492
1493 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1494 if (fips_enabled) {
1495 spin_lock_irqsave(&r->lock, flags);
1496 if (!r->last_data_init) {
1497 r->last_data_init = 1;
1498 spin_unlock_irqrestore(&r->lock, flags);
1499 trace_extract_entropy(r->name, EXTRACT_SIZE,
1500 ENTROPY_BITS(r), _RET_IP_);
1501 extract_buf(r, tmp);
1502 spin_lock_irqsave(&r->lock, flags);
1503 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1504 }
1505 spin_unlock_irqrestore(&r->lock, flags);
1506 }
1507
1508 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1509 nbytes = account(r, nbytes, min, reserved);
1510
1511 return _extract_entropy(r, buf, nbytes, fips_enabled);
1512}
1513
1514#define warn_unseeded_randomness(previous) \
1515 _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1516
1517static void _warn_unseeded_randomness(const char *func_name, void *caller,
1518 void **previous)
1519{
1520#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1521 const bool print_once = false;
1522#else
1523 static bool print_once __read_mostly;
1524#endif
1525
1526 if (print_once ||
1527 crng_ready() ||
1528 (previous && (caller == READ_ONCE(*previous))))
1529 return;
1530 WRITE_ONCE(*previous, caller);
1531#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1532 print_once = true;
1533#endif
1534 if (__ratelimit(&unseeded_warning))
1535 printk_deferred(KERN_NOTICE "random: %s called from %pS "
1536 "with crng_init=%d\n", func_name, caller,
1537 crng_init);
1538}
1539
1540/*
1541 * This function is the exported kernel interface. It returns some
1542 * number of good random numbers, suitable for key generation, seeding
1543 * TCP sequence numbers, etc. It does not rely on the hardware random
1544 * number generator. For random bytes direct from the hardware RNG
1545 * (when available), use get_random_bytes_arch(). In order to ensure
1546 * that the randomness provided by this function is okay, the function
1547 * wait_for_random_bytes() should be called and return 0 at least once
1548 * at any point prior.
1549 */
1550static void _get_random_bytes(void *buf, int nbytes)
1551{
1552 __u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1553
1554 trace_get_random_bytes(nbytes, _RET_IP_);
1555
1556 while (nbytes >= CHACHA_BLOCK_SIZE) {
1557 extract_crng(buf);
1558 buf += CHACHA_BLOCK_SIZE;
1559 nbytes -= CHACHA_BLOCK_SIZE;
1560 }
1561
1562 if (nbytes > 0) {
1563 extract_crng(tmp);
1564 memcpy(buf, tmp, nbytes);
1565 crng_backtrack_protect(tmp, nbytes);
1566 } else
1567 crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
1568 memzero_explicit(tmp, sizeof(tmp));
1569}
1570
1571void get_random_bytes(void *buf, int nbytes)
1572{
1573 static void *previous;
1574
1575 warn_unseeded_randomness(&previous);
1576 _get_random_bytes(buf, nbytes);
1577}
1578EXPORT_SYMBOL(get_random_bytes);
1579
1580
1581/*
1582 * Each time the timer fires, we expect that we got an unpredictable
1583 * jump in the cycle counter. Even if the timer is running on another
1584 * CPU, the timer activity will be touching the stack of the CPU that is
1585 * generating entropy..
1586 *
1587 * Note that we don't re-arm the timer in the timer itself - we are
1588 * happy to be scheduled away, since that just makes the load more
1589 * complex, but we do not want the timer to keep ticking unless the
1590 * entropy loop is running.
1591 *
1592 * So the re-arming always happens in the entropy loop itself.
1593 */
1594static void entropy_timer(struct timer_list *t)
1595{
1596 credit_entropy_bits(&input_pool, 1);
1597}
1598
1599/*
1600 * If we have an actual cycle counter, see if we can
1601 * generate enough entropy with timing noise
1602 */
1603static void try_to_generate_entropy(void)
1604{
1605 struct {
1606 unsigned long now;
1607 struct timer_list timer;
1608 } stack;
1609
1610 stack.now = random_get_entropy();
1611
1612 /* Slow counter - or none. Don't even bother */
1613 if (stack.now == random_get_entropy())
1614 return;
1615
1616 timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1617 while (!crng_ready()) {
1618 if (!timer_pending(&stack.timer))
1619 mod_timer(&stack.timer, jiffies+1);
1620 mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1621 schedule();
1622 stack.now = random_get_entropy();
1623 }
1624
1625 del_timer_sync(&stack.timer);
1626 destroy_timer_on_stack(&stack.timer);
1627 mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1628}
1629
1630/*
1631 * Wait for the urandom pool to be seeded and thus guaranteed to supply
1632 * cryptographically secure random numbers. This applies to: the /dev/urandom
1633 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1634 * family of functions. Using any of these functions without first calling
1635 * this function forfeits the guarantee of security.
1636 *
1637 * Returns: 0 if the urandom pool has been seeded.
1638 * -ERESTARTSYS if the function was interrupted by a signal.
1639 */
1640int wait_for_random_bytes(void)
1641{
1642 if (likely(crng_ready()))
1643 return 0;
1644
1645 do {
1646 int ret;
1647 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
1648 if (ret)
1649 return ret > 0 ? 0 : ret;
1650
1651 try_to_generate_entropy();
1652 } while (!crng_ready());
1653
1654 return 0;
1655}
1656EXPORT_SYMBOL(wait_for_random_bytes);
1657
1658/*
1659 * Returns whether or not the urandom pool has been seeded and thus guaranteed
1660 * to supply cryptographically secure random numbers. This applies to: the
1661 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
1662 * ,u64,int,long} family of functions.
1663 *
1664 * Returns: true if the urandom pool has been seeded.
1665 * false if the urandom pool has not been seeded.
1666 */
1667bool rng_is_initialized(void)
1668{
1669 return crng_ready();
1670}
1671EXPORT_SYMBOL(rng_is_initialized);
1672
1673/*
1674 * Add a callback function that will be invoked when the nonblocking
1675 * pool is initialised.
1676 *
1677 * returns: 0 if callback is successfully added
1678 * -EALREADY if pool is already initialised (callback not called)
1679 * -ENOENT if module for callback is not alive
1680 */
1681int add_random_ready_callback(struct random_ready_callback *rdy)
1682{
1683 struct module *owner;
1684 unsigned long flags;
1685 int err = -EALREADY;
1686
1687 if (crng_ready())
1688 return err;
1689
1690 owner = rdy->owner;
1691 if (!try_module_get(owner))
1692 return -ENOENT;
1693
1694 spin_lock_irqsave(&random_ready_list_lock, flags);
1695 if (crng_ready())
1696 goto out;
1697
1698 owner = NULL;
1699
1700 list_add(&rdy->list, &random_ready_list);
1701 err = 0;
1702
1703out:
1704 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1705
1706 module_put(owner);
1707
1708 return err;
1709}
1710EXPORT_SYMBOL(add_random_ready_callback);
1711
1712/*
1713 * Delete a previously registered readiness callback function.
1714 */
1715void del_random_ready_callback(struct random_ready_callback *rdy)
1716{
1717 unsigned long flags;
1718 struct module *owner = NULL;
1719
1720 spin_lock_irqsave(&random_ready_list_lock, flags);
1721 if (!list_empty(&rdy->list)) {
1722 list_del_init(&rdy->list);
1723 owner = rdy->owner;
1724 }
1725 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1726
1727 module_put(owner);
1728}
1729EXPORT_SYMBOL(del_random_ready_callback);
1730
1731/*
1732 * This function will use the architecture-specific hardware random
1733 * number generator if it is available. The arch-specific hw RNG will
1734 * almost certainly be faster than what we can do in software, but it
1735 * is impossible to verify that it is implemented securely (as
1736 * opposed, to, say, the AES encryption of a sequence number using a
1737 * key known by the NSA). So it's useful if we need the speed, but
1738 * only if we're willing to trust the hardware manufacturer not to
1739 * have put in a back door.
1740 *
1741 * Return number of bytes filled in.
1742 */
1743int __must_check get_random_bytes_arch(void *buf, int nbytes)
1744{
1745 int left = nbytes;
1746 char *p = buf;
1747
1748 trace_get_random_bytes_arch(left, _RET_IP_);
1749 while (left) {
1750 unsigned long v;
1751 int chunk = min_t(int, left, sizeof(unsigned long));
1752
1753 if (!arch_get_random_long(&v))
1754 break;
1755
1756 memcpy(p, &v, chunk);
1757 p += chunk;
1758 left -= chunk;
1759 }
1760
1761 return nbytes - left;
1762}
1763EXPORT_SYMBOL(get_random_bytes_arch);
1764
1765/*
1766 * init_std_data - initialize pool with system data
1767 *
1768 * @r: pool to initialize
1769 *
1770 * This function clears the pool's entropy count and mixes some system
1771 * data into the pool to prepare it for use. The pool is not cleared
1772 * as that can only decrease the entropy in the pool.
1773 */
1774static void __init init_std_data(struct entropy_store *r)
1775{
1776 int i;
1777 ktime_t now = ktime_get_real();
1778 unsigned long rv;
1779
1780 mix_pool_bytes(r, &now, sizeof(now));
1781 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1782 if (!arch_get_random_seed_long(&rv) &&
1783 !arch_get_random_long(&rv))
1784 rv = random_get_entropy();
1785 mix_pool_bytes(r, &rv, sizeof(rv));
1786 }
1787 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1788}
1789
1790/*
1791 * Note that setup_arch() may call add_device_randomness()
1792 * long before we get here. This allows seeding of the pools
1793 * with some platform dependent data very early in the boot
1794 * process. But it limits our options here. We must use
1795 * statically allocated structures that already have all
1796 * initializations complete at compile time. We should also
1797 * take care not to overwrite the precious per platform data
1798 * we were given.
1799 */
1800int __init rand_initialize(void)
1801{
1802 init_std_data(&input_pool);
1803 crng_initialize_primary(&primary_crng);
1804 crng_global_init_time = jiffies;
1805 if (ratelimit_disable) {
1806 urandom_warning.interval = 0;
1807 unseeded_warning.interval = 0;
1808 }
1809 return 0;
1810}
1811
1812#ifdef CONFIG_BLOCK
1813void rand_initialize_disk(struct gendisk *disk)
1814{
1815 struct timer_rand_state *state;
1816
1817 /*
1818 * If kzalloc returns null, we just won't use that entropy
1819 * source.
1820 */
1821 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1822 if (state) {
1823 state->last_time = INITIAL_JIFFIES;
1824 disk->random = state;
1825 }
1826}
1827#endif
1828
1829static ssize_t
1830urandom_read_nowarn(struct file *file, char __user *buf, size_t nbytes,
1831 loff_t *ppos)
1832{
1833 int ret;
1834
1835 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1836 ret = extract_crng_user(buf, nbytes);
1837 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1838 return ret;
1839}
1840
1841static ssize_t
1842urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1843{
1844 unsigned long flags;
1845 static int maxwarn = 10;
1846
1847 if (!crng_ready() && maxwarn > 0) {
1848 maxwarn--;
1849 if (__ratelimit(&urandom_warning))
1850 pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
1851 current->comm, nbytes);
1852 spin_lock_irqsave(&primary_crng.lock, flags);
1853 crng_init_cnt = 0;
1854 spin_unlock_irqrestore(&primary_crng.lock, flags);
1855 }
1856
1857 return urandom_read_nowarn(file, buf, nbytes, ppos);
1858}
1859
1860static ssize_t
1861random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1862{
1863 int ret;
1864
1865 ret = wait_for_random_bytes();
1866 if (ret != 0)
1867 return ret;
1868 return urandom_read_nowarn(file, buf, nbytes, ppos);
1869}
1870
1871static __poll_t
1872random_poll(struct file *file, poll_table * wait)
1873{
1874 __poll_t mask;
1875
1876 poll_wait(file, &crng_init_wait, wait);
1877 poll_wait(file, &random_write_wait, wait);
1878 mask = 0;
1879 if (crng_ready())
1880 mask |= EPOLLIN | EPOLLRDNORM;
1881 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1882 mask |= EPOLLOUT | EPOLLWRNORM;
1883 return mask;
1884}
1885
1886static int
1887write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1888{
1889 size_t bytes;
1890 __u32 t, buf[16];
1891 const char __user *p = buffer;
1892
1893 while (count > 0) {
1894 int b, i = 0;
1895
1896 bytes = min(count, sizeof(buf));
1897 if (copy_from_user(&buf, p, bytes))
1898 return -EFAULT;
1899
1900 for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
1901 if (!arch_get_random_int(&t))
1902 break;
1903 buf[i] ^= t;
1904 }
1905
1906 count -= bytes;
1907 p += bytes;
1908
1909 mix_pool_bytes(r, buf, bytes);
1910 cond_resched();
1911 }
1912
1913 return 0;
1914}
1915
1916static ssize_t random_write(struct file *file, const char __user *buffer,
1917 size_t count, loff_t *ppos)
1918{
1919 size_t ret;
1920
1921 ret = write_pool(&input_pool, buffer, count);
1922 if (ret)
1923 return ret;
1924
1925 return (ssize_t)count;
1926}
1927
1928static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1929{
1930 int size, ent_count;
1931 int __user *p = (int __user *)arg;
1932 int retval;
1933
1934 switch (cmd) {
1935 case RNDGETENTCNT:
1936 /* inherently racy, no point locking */
1937 ent_count = ENTROPY_BITS(&input_pool);
1938 if (put_user(ent_count, p))
1939 return -EFAULT;
1940 return 0;
1941 case RNDADDTOENTCNT:
1942 if (!capable(CAP_SYS_ADMIN))
1943 return -EPERM;
1944 if (get_user(ent_count, p))
1945 return -EFAULT;
1946 return credit_entropy_bits_safe(&input_pool, ent_count);
1947 case RNDADDENTROPY:
1948 if (!capable(CAP_SYS_ADMIN))
1949 return -EPERM;
1950 if (get_user(ent_count, p++))
1951 return -EFAULT;
1952 if (ent_count < 0)
1953 return -EINVAL;
1954 if (get_user(size, p++))
1955 return -EFAULT;
1956 retval = write_pool(&input_pool, (const char __user *)p,
1957 size);
1958 if (retval < 0)
1959 return retval;
1960 return credit_entropy_bits_safe(&input_pool, ent_count);
1961 case RNDZAPENTCNT:
1962 case RNDCLEARPOOL:
1963 /*
1964 * Clear the entropy pool counters. We no longer clear
1965 * the entropy pool, as that's silly.
1966 */
1967 if (!capable(CAP_SYS_ADMIN))
1968 return -EPERM;
1969 input_pool.entropy_count = 0;
1970 return 0;
1971 case RNDRESEEDCRNG:
1972 if (!capable(CAP_SYS_ADMIN))
1973 return -EPERM;
1974 if (crng_init < 2)
1975 return -ENODATA;
1976 crng_reseed(&primary_crng, NULL);
1977 crng_global_init_time = jiffies - 1;
1978 return 0;
1979 default:
1980 return -EINVAL;
1981 }
1982}
1983
1984static int random_fasync(int fd, struct file *filp, int on)
1985{
1986 return fasync_helper(fd, filp, on, &fasync);
1987}
1988
1989const struct file_operations random_fops = {
1990 .read = random_read,
1991 .write = random_write,
1992 .poll = random_poll,
1993 .unlocked_ioctl = random_ioctl,
1994 .compat_ioctl = compat_ptr_ioctl,
1995 .fasync = random_fasync,
1996 .llseek = noop_llseek,
1997};
1998
1999const struct file_operations urandom_fops = {
2000 .read = urandom_read,
2001 .write = random_write,
2002 .unlocked_ioctl = random_ioctl,
2003 .compat_ioctl = compat_ptr_ioctl,
2004 .fasync = random_fasync,
2005 .llseek = noop_llseek,
2006};
2007
2008SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
2009 unsigned int, flags)
2010{
2011 int ret;
2012
2013 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM|GRND_INSECURE))
2014 return -EINVAL;
2015
2016 /*
2017 * Requesting insecure and blocking randomness at the same time makes
2018 * no sense.
2019 */
2020 if ((flags & (GRND_INSECURE|GRND_RANDOM)) == (GRND_INSECURE|GRND_RANDOM))
2021 return -EINVAL;
2022
2023 if (count > INT_MAX)
2024 count = INT_MAX;
2025
2026 if (!(flags & GRND_INSECURE) && !crng_ready()) {
2027 if (flags & GRND_NONBLOCK)
2028 return -EAGAIN;
2029 ret = wait_for_random_bytes();
2030 if (unlikely(ret))
2031 return ret;
2032 }
2033 return urandom_read_nowarn(NULL, buf, count, NULL);
2034}
2035
2036/********************************************************************
2037 *
2038 * Sysctl interface
2039 *
2040 ********************************************************************/
2041
2042#ifdef CONFIG_SYSCTL
2043
2044#include <linux/sysctl.h>
2045
2046static int min_write_thresh;
2047static int max_write_thresh = INPUT_POOL_WORDS * 32;
2048static int random_min_urandom_seed = 60;
2049static char sysctl_bootid[16];
2050
2051/*
2052 * This function is used to return both the bootid UUID, and random
2053 * UUID. The difference is in whether table->data is NULL; if it is,
2054 * then a new UUID is generated and returned to the user.
2055 *
2056 * If the user accesses this via the proc interface, the UUID will be
2057 * returned as an ASCII string in the standard UUID format; if via the
2058 * sysctl system call, as 16 bytes of binary data.
2059 */
2060static int proc_do_uuid(struct ctl_table *table, int write,
2061 void *buffer, size_t *lenp, loff_t *ppos)
2062{
2063 struct ctl_table fake_table;
2064 unsigned char buf[64], tmp_uuid[16], *uuid;
2065
2066 uuid = table->data;
2067 if (!uuid) {
2068 uuid = tmp_uuid;
2069 generate_random_uuid(uuid);
2070 } else {
2071 static DEFINE_SPINLOCK(bootid_spinlock);
2072
2073 spin_lock(&bootid_spinlock);
2074 if (!uuid[8])
2075 generate_random_uuid(uuid);
2076 spin_unlock(&bootid_spinlock);
2077 }
2078
2079 sprintf(buf, "%pU", uuid);
2080
2081 fake_table.data = buf;
2082 fake_table.maxlen = sizeof(buf);
2083
2084 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
2085}
2086
2087/*
2088 * Return entropy available scaled to integral bits
2089 */
2090static int proc_do_entropy(struct ctl_table *table, int write,
2091 void *buffer, size_t *lenp, loff_t *ppos)
2092{
2093 struct ctl_table fake_table;
2094 int entropy_count;
2095
2096 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
2097
2098 fake_table.data = &entropy_count;
2099 fake_table.maxlen = sizeof(entropy_count);
2100
2101 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
2102}
2103
2104static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2105extern struct ctl_table random_table[];
2106struct ctl_table random_table[] = {
2107 {
2108 .procname = "poolsize",
2109 .data = &sysctl_poolsize,
2110 .maxlen = sizeof(int),
2111 .mode = 0444,
2112 .proc_handler = proc_dointvec,
2113 },
2114 {
2115 .procname = "entropy_avail",
2116 .maxlen = sizeof(int),
2117 .mode = 0444,
2118 .proc_handler = proc_do_entropy,
2119 .data = &input_pool.entropy_count,
2120 },
2121 {
2122 .procname = "write_wakeup_threshold",
2123 .data = &random_write_wakeup_bits,
2124 .maxlen = sizeof(int),
2125 .mode = 0644,
2126 .proc_handler = proc_dointvec_minmax,
2127 .extra1 = &min_write_thresh,
2128 .extra2 = &max_write_thresh,
2129 },
2130 {
2131 .procname = "urandom_min_reseed_secs",
2132 .data = &random_min_urandom_seed,
2133 .maxlen = sizeof(int),
2134 .mode = 0644,
2135 .proc_handler = proc_dointvec,
2136 },
2137 {
2138 .procname = "boot_id",
2139 .data = &sysctl_bootid,
2140 .maxlen = 16,
2141 .mode = 0444,
2142 .proc_handler = proc_do_uuid,
2143 },
2144 {
2145 .procname = "uuid",
2146 .maxlen = 16,
2147 .mode = 0444,
2148 .proc_handler = proc_do_uuid,
2149 },
2150#ifdef ADD_INTERRUPT_BENCH
2151 {
2152 .procname = "add_interrupt_avg_cycles",
2153 .data = &avg_cycles,
2154 .maxlen = sizeof(avg_cycles),
2155 .mode = 0444,
2156 .proc_handler = proc_doulongvec_minmax,
2157 },
2158 {
2159 .procname = "add_interrupt_avg_deviation",
2160 .data = &avg_deviation,
2161 .maxlen = sizeof(avg_deviation),
2162 .mode = 0444,
2163 .proc_handler = proc_doulongvec_minmax,
2164 },
2165#endif
2166 { }
2167};
2168#endif /* CONFIG_SYSCTL */
2169
2170struct batched_entropy {
2171 union {
2172 u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
2173 u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
2174 };
2175 unsigned int position;
2176 spinlock_t batch_lock;
2177};
2178
2179/*
2180 * Get a random word for internal kernel use only. The quality of the random
2181 * number is good as /dev/urandom, but there is no backtrack protection, with
2182 * the goal of being quite fast and not depleting entropy. In order to ensure
2183 * that the randomness provided by this function is okay, the function
2184 * wait_for_random_bytes() should be called and return 0 at least once at any
2185 * point prior.
2186 */
2187static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
2188 .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
2189};
2190
2191u64 get_random_u64(void)
2192{
2193 u64 ret;
2194 unsigned long flags;
2195 struct batched_entropy *batch;
2196 static void *previous;
2197
2198 warn_unseeded_randomness(&previous);
2199
2200 batch = raw_cpu_ptr(&batched_entropy_u64);
2201 spin_lock_irqsave(&batch->batch_lock, flags);
2202 if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2203 extract_crng((u8 *)batch->entropy_u64);
2204 batch->position = 0;
2205 }
2206 ret = batch->entropy_u64[batch->position++];
2207 spin_unlock_irqrestore(&batch->batch_lock, flags);
2208 return ret;
2209}
2210EXPORT_SYMBOL(get_random_u64);
2211
2212static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
2213 .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
2214};
2215u32 get_random_u32(void)
2216{
2217 u32 ret;
2218 unsigned long flags;
2219 struct batched_entropy *batch;
2220 static void *previous;
2221
2222 warn_unseeded_randomness(&previous);
2223
2224 batch = raw_cpu_ptr(&batched_entropy_u32);
2225 spin_lock_irqsave(&batch->batch_lock, flags);
2226 if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2227 extract_crng((u8 *)batch->entropy_u32);
2228 batch->position = 0;
2229 }
2230 ret = batch->entropy_u32[batch->position++];
2231 spin_unlock_irqrestore(&batch->batch_lock, flags);
2232 return ret;
2233}
2234EXPORT_SYMBOL(get_random_u32);
2235
2236/* It's important to invalidate all potential batched entropy that might
2237 * be stored before the crng is initialized, which we can do lazily by
2238 * simply resetting the counter to zero so that it's re-extracted on the
2239 * next usage. */
2240static void invalidate_batched_entropy(void)
2241{
2242 int cpu;
2243 unsigned long flags;
2244
2245 for_each_possible_cpu (cpu) {
2246 struct batched_entropy *batched_entropy;
2247
2248 batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
2249 spin_lock_irqsave(&batched_entropy->batch_lock, flags);
2250 batched_entropy->position = 0;
2251 spin_unlock(&batched_entropy->batch_lock);
2252
2253 batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
2254 spin_lock(&batched_entropy->batch_lock);
2255 batched_entropy->position = 0;
2256 spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
2257 }
2258}
2259
2260/**
2261 * randomize_page - Generate a random, page aligned address
2262 * @start: The smallest acceptable address the caller will take.
2263 * @range: The size of the area, starting at @start, within which the
2264 * random address must fall.
2265 *
2266 * If @start + @range would overflow, @range is capped.
2267 *
2268 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2269 * @start was already page aligned. We now align it regardless.
2270 *
2271 * Return: A page aligned address within [start, start + range). On error,
2272 * @start is returned.
2273 */
2274unsigned long
2275randomize_page(unsigned long start, unsigned long range)
2276{
2277 if (!PAGE_ALIGNED(start)) {
2278 range -= PAGE_ALIGN(start) - start;
2279 start = PAGE_ALIGN(start);
2280 }
2281
2282 if (start > ULONG_MAX - range)
2283 range = ULONG_MAX - start;
2284
2285 range >>= PAGE_SHIFT;
2286
2287 if (range == 0)
2288 return start;
2289
2290 return start + (get_random_long() % range << PAGE_SHIFT);
2291}
2292
2293/* Interface for in-kernel drivers of true hardware RNGs.
2294 * Those devices may produce endless random bits and will be throttled
2295 * when our pool is full.
2296 */
2297void add_hwgenerator_randomness(const char *buffer, size_t count,
2298 size_t entropy)
2299{
2300 struct entropy_store *poolp = &input_pool;
2301
2302 if (unlikely(crng_init == 0)) {
2303 crng_fast_load(buffer, count);
2304 return;
2305 }
2306
2307 /* Suspend writing if we're above the trickle threshold.
2308 * We'll be woken up again once below random_write_wakeup_thresh,
2309 * or when the calling thread is about to terminate.
2310 */
2311 wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2312 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2313 mix_pool_bytes(poolp, buffer, count);
2314 credit_entropy_bits(poolp, entropy);
2315}
2316EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
2317
2318/* Handle random seed passed by bootloader.
2319 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
2320 * it would be regarded as device data.
2321 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
2322 */
2323void add_bootloader_randomness(const void *buf, unsigned int size)
2324{
2325 if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
2326 add_hwgenerator_randomness(buf, size, size * 8);
2327 else
2328 add_device_randomness(buf, size);
2329}
2330EXPORT_SYMBOL_GPL(add_bootloader_randomness);
1/*
2 * random.c -- A strong random number generator
3 *
4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42/*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
128 * void add_input_randomness(unsigned int type, unsigned int code,
129 * unsigned int value);
130 * void add_interrupt_randomness(int irq);
131 * void add_disk_randomness(struct gendisk *disk);
132 *
133 * add_input_randomness() uses the input layer interrupt timing, as well as
134 * the event type information from the hardware.
135 *
136 * add_interrupt_randomness() uses the inter-interrupt timing as random
137 * inputs to the entropy pool. Note that not all interrupts are good
138 * sources of randomness! For example, the timer interrupts is not a
139 * good choice, because the periodicity of the interrupts is too
140 * regular, and hence predictable to an attacker. Network Interface
141 * Controller interrupts are a better measure, since the timing of the
142 * NIC interrupts are more unpredictable.
143 *
144 * add_disk_randomness() uses what amounts to the seek time of block
145 * layer request events, on a per-disk_devt basis, as input to the
146 * entropy pool. Note that high-speed solid state drives with very low
147 * seek times do not make for good sources of entropy, as their seek
148 * times are usually fairly consistent.
149 *
150 * All of these routines try to estimate how many bits of randomness a
151 * particular randomness source. They do this by keeping track of the
152 * first and second order deltas of the event timings.
153 *
154 * Ensuring unpredictability at system startup
155 * ============================================
156 *
157 * When any operating system starts up, it will go through a sequence
158 * of actions that are fairly predictable by an adversary, especially
159 * if the start-up does not involve interaction with a human operator.
160 * This reduces the actual number of bits of unpredictability in the
161 * entropy pool below the value in entropy_count. In order to
162 * counteract this effect, it helps to carry information in the
163 * entropy pool across shut-downs and start-ups. To do this, put the
164 * following lines an appropriate script which is run during the boot
165 * sequence:
166 *
167 * echo "Initializing random number generator..."
168 * random_seed=/var/run/random-seed
169 * # Carry a random seed from start-up to start-up
170 * # Load and then save the whole entropy pool
171 * if [ -f $random_seed ]; then
172 * cat $random_seed >/dev/urandom
173 * else
174 * touch $random_seed
175 * fi
176 * chmod 600 $random_seed
177 * dd if=/dev/urandom of=$random_seed count=1 bs=512
178 *
179 * and the following lines in an appropriate script which is run as
180 * the system is shutdown:
181 *
182 * # Carry a random seed from shut-down to start-up
183 * # Save the whole entropy pool
184 * echo "Saving random seed..."
185 * random_seed=/var/run/random-seed
186 * touch $random_seed
187 * chmod 600 $random_seed
188 * dd if=/dev/urandom of=$random_seed count=1 bs=512
189 *
190 * For example, on most modern systems using the System V init
191 * scripts, such code fragments would be found in
192 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
193 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
194 *
195 * Effectively, these commands cause the contents of the entropy pool
196 * to be saved at shut-down time and reloaded into the entropy pool at
197 * start-up. (The 'dd' in the addition to the bootup script is to
198 * make sure that /etc/random-seed is different for every start-up,
199 * even if the system crashes without executing rc.0.) Even with
200 * complete knowledge of the start-up activities, predicting the state
201 * of the entropy pool requires knowledge of the previous history of
202 * the system.
203 *
204 * Configuring the /dev/random driver under Linux
205 * ==============================================
206 *
207 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
208 * the /dev/mem major number (#1). So if your system does not have
209 * /dev/random and /dev/urandom created already, they can be created
210 * by using the commands:
211 *
212 * mknod /dev/random c 1 8
213 * mknod /dev/urandom c 1 9
214 *
215 * Acknowledgements:
216 * =================
217 *
218 * Ideas for constructing this random number generator were derived
219 * from Pretty Good Privacy's random number generator, and from private
220 * discussions with Phil Karn. Colin Plumb provided a faster random
221 * number generator, which speed up the mixing function of the entropy
222 * pool, taken from PGPfone. Dale Worley has also contributed many
223 * useful ideas and suggestions to improve this driver.
224 *
225 * Any flaws in the design are solely my responsibility, and should
226 * not be attributed to the Phil, Colin, or any of authors of PGP.
227 *
228 * Further background information on this topic may be obtained from
229 * RFC 1750, "Randomness Recommendations for Security", by Donald
230 * Eastlake, Steve Crocker, and Jeff Schiller.
231 */
232
233#include <linux/utsname.h>
234#include <linux/module.h>
235#include <linux/kernel.h>
236#include <linux/major.h>
237#include <linux/string.h>
238#include <linux/fcntl.h>
239#include <linux/slab.h>
240#include <linux/random.h>
241#include <linux/poll.h>
242#include <linux/init.h>
243#include <linux/fs.h>
244#include <linux/genhd.h>
245#include <linux/interrupt.h>
246#include <linux/mm.h>
247#include <linux/spinlock.h>
248#include <linux/percpu.h>
249#include <linux/cryptohash.h>
250#include <linux/fips.h>
251
252#ifdef CONFIG_GENERIC_HARDIRQS
253# include <linux/irq.h>
254#endif
255
256#include <asm/processor.h>
257#include <asm/uaccess.h>
258#include <asm/irq.h>
259#include <asm/io.h>
260
261/*
262 * Configuration information
263 */
264#define INPUT_POOL_WORDS 128
265#define OUTPUT_POOL_WORDS 32
266#define SEC_XFER_SIZE 512
267#define EXTRACT_SIZE 10
268
269/*
270 * The minimum number of bits of entropy before we wake up a read on
271 * /dev/random. Should be enough to do a significant reseed.
272 */
273static int random_read_wakeup_thresh = 64;
274
275/*
276 * If the entropy count falls under this number of bits, then we
277 * should wake up processes which are selecting or polling on write
278 * access to /dev/random.
279 */
280static int random_write_wakeup_thresh = 128;
281
282/*
283 * When the input pool goes over trickle_thresh, start dropping most
284 * samples to avoid wasting CPU time and reduce lock contention.
285 */
286
287static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
288
289static DEFINE_PER_CPU(int, trickle_count);
290
291/*
292 * A pool of size .poolwords is stirred with a primitive polynomial
293 * of degree .poolwords over GF(2). The taps for various sizes are
294 * defined below. They are chosen to be evenly spaced (minimum RMS
295 * distance from evenly spaced; the numbers in the comments are a
296 * scaled squared error sum) except for the last tap, which is 1 to
297 * get the twisting happening as fast as possible.
298 */
299static struct poolinfo {
300 int poolwords;
301 int tap1, tap2, tap3, tap4, tap5;
302} poolinfo_table[] = {
303 /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
304 { 128, 103, 76, 51, 25, 1 },
305 /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
306 { 32, 26, 20, 14, 7, 1 },
307#if 0
308 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
309 { 2048, 1638, 1231, 819, 411, 1 },
310
311 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
312 { 1024, 817, 615, 412, 204, 1 },
313
314 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
315 { 1024, 819, 616, 410, 207, 2 },
316
317 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
318 { 512, 411, 308, 208, 104, 1 },
319
320 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
321 { 512, 409, 307, 206, 102, 2 },
322 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
323 { 512, 409, 309, 205, 103, 2 },
324
325 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
326 { 256, 205, 155, 101, 52, 1 },
327
328 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
329 { 128, 103, 78, 51, 27, 2 },
330
331 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
332 { 64, 52, 39, 26, 14, 1 },
333#endif
334};
335
336#define POOLBITS poolwords*32
337#define POOLBYTES poolwords*4
338
339/*
340 * For the purposes of better mixing, we use the CRC-32 polynomial as
341 * well to make a twisted Generalized Feedback Shift Reigster
342 *
343 * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
344 * Transactions on Modeling and Computer Simulation 2(3):179-194.
345 * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
346 * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
347 *
348 * Thanks to Colin Plumb for suggesting this.
349 *
350 * We have not analyzed the resultant polynomial to prove it primitive;
351 * in fact it almost certainly isn't. Nonetheless, the irreducible factors
352 * of a random large-degree polynomial over GF(2) are more than large enough
353 * that periodicity is not a concern.
354 *
355 * The input hash is much less sensitive than the output hash. All
356 * that we want of it is that it be a good non-cryptographic hash;
357 * i.e. it not produce collisions when fed "random" data of the sort
358 * we expect to see. As long as the pool state differs for different
359 * inputs, we have preserved the input entropy and done a good job.
360 * The fact that an intelligent attacker can construct inputs that
361 * will produce controlled alterations to the pool's state is not
362 * important because we don't consider such inputs to contribute any
363 * randomness. The only property we need with respect to them is that
364 * the attacker can't increase his/her knowledge of the pool's state.
365 * Since all additions are reversible (knowing the final state and the
366 * input, you can reconstruct the initial state), if an attacker has
367 * any uncertainty about the initial state, he/she can only shuffle
368 * that uncertainty about, but never cause any collisions (which would
369 * decrease the uncertainty).
370 *
371 * The chosen system lets the state of the pool be (essentially) the input
372 * modulo the generator polymnomial. Now, for random primitive polynomials,
373 * this is a universal class of hash functions, meaning that the chance
374 * of a collision is limited by the attacker's knowledge of the generator
375 * polynomail, so if it is chosen at random, an attacker can never force
376 * a collision. Here, we use a fixed polynomial, but we *can* assume that
377 * ###--> it is unknown to the processes generating the input entropy. <-###
378 * Because of this important property, this is a good, collision-resistant
379 * hash; hash collisions will occur no more often than chance.
380 */
381
382/*
383 * Static global variables
384 */
385static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
386static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
387static struct fasync_struct *fasync;
388
389#if 0
390static int debug;
391module_param(debug, bool, 0644);
392#define DEBUG_ENT(fmt, arg...) do { \
393 if (debug) \
394 printk(KERN_DEBUG "random %04d %04d %04d: " \
395 fmt,\
396 input_pool.entropy_count,\
397 blocking_pool.entropy_count,\
398 nonblocking_pool.entropy_count,\
399 ## arg); } while (0)
400#else
401#define DEBUG_ENT(fmt, arg...) do {} while (0)
402#endif
403
404/**********************************************************************
405 *
406 * OS independent entropy store. Here are the functions which handle
407 * storing entropy in an entropy pool.
408 *
409 **********************************************************************/
410
411struct entropy_store;
412struct entropy_store {
413 /* read-only data: */
414 struct poolinfo *poolinfo;
415 __u32 *pool;
416 const char *name;
417 struct entropy_store *pull;
418 int limit;
419
420 /* read-write data: */
421 spinlock_t lock;
422 unsigned add_ptr;
423 int entropy_count;
424 int input_rotate;
425 __u8 last_data[EXTRACT_SIZE];
426};
427
428static __u32 input_pool_data[INPUT_POOL_WORDS];
429static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
430static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
431
432static struct entropy_store input_pool = {
433 .poolinfo = &poolinfo_table[0],
434 .name = "input",
435 .limit = 1,
436 .lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
437 .pool = input_pool_data
438};
439
440static struct entropy_store blocking_pool = {
441 .poolinfo = &poolinfo_table[1],
442 .name = "blocking",
443 .limit = 1,
444 .pull = &input_pool,
445 .lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
446 .pool = blocking_pool_data
447};
448
449static struct entropy_store nonblocking_pool = {
450 .poolinfo = &poolinfo_table[1],
451 .name = "nonblocking",
452 .pull = &input_pool,
453 .lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
454 .pool = nonblocking_pool_data
455};
456
457/*
458 * This function adds bytes into the entropy "pool". It does not
459 * update the entropy estimate. The caller should call
460 * credit_entropy_bits if this is appropriate.
461 *
462 * The pool is stirred with a primitive polynomial of the appropriate
463 * degree, and then twisted. We twist by three bits at a time because
464 * it's cheap to do so and helps slightly in the expected case where
465 * the entropy is concentrated in the low-order bits.
466 */
467static void mix_pool_bytes_extract(struct entropy_store *r, const void *in,
468 int nbytes, __u8 out[64])
469{
470 static __u32 const twist_table[8] = {
471 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
472 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
473 unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
474 int input_rotate;
475 int wordmask = r->poolinfo->poolwords - 1;
476 const char *bytes = in;
477 __u32 w;
478 unsigned long flags;
479
480 /* Taps are constant, so we can load them without holding r->lock. */
481 tap1 = r->poolinfo->tap1;
482 tap2 = r->poolinfo->tap2;
483 tap3 = r->poolinfo->tap3;
484 tap4 = r->poolinfo->tap4;
485 tap5 = r->poolinfo->tap5;
486
487 spin_lock_irqsave(&r->lock, flags);
488 input_rotate = r->input_rotate;
489 i = r->add_ptr;
490
491 /* mix one byte at a time to simplify size handling and churn faster */
492 while (nbytes--) {
493 w = rol32(*bytes++, input_rotate & 31);
494 i = (i - 1) & wordmask;
495
496 /* XOR in the various taps */
497 w ^= r->pool[i];
498 w ^= r->pool[(i + tap1) & wordmask];
499 w ^= r->pool[(i + tap2) & wordmask];
500 w ^= r->pool[(i + tap3) & wordmask];
501 w ^= r->pool[(i + tap4) & wordmask];
502 w ^= r->pool[(i + tap5) & wordmask];
503
504 /* Mix the result back in with a twist */
505 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
506
507 /*
508 * Normally, we add 7 bits of rotation to the pool.
509 * At the beginning of the pool, add an extra 7 bits
510 * rotation, so that successive passes spread the
511 * input bits across the pool evenly.
512 */
513 input_rotate += i ? 7 : 14;
514 }
515
516 r->input_rotate = input_rotate;
517 r->add_ptr = i;
518
519 if (out)
520 for (j = 0; j < 16; j++)
521 ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
522
523 spin_unlock_irqrestore(&r->lock, flags);
524}
525
526static void mix_pool_bytes(struct entropy_store *r, const void *in, int bytes)
527{
528 mix_pool_bytes_extract(r, in, bytes, NULL);
529}
530
531/*
532 * Credit (or debit) the entropy store with n bits of entropy
533 */
534static void credit_entropy_bits(struct entropy_store *r, int nbits)
535{
536 unsigned long flags;
537 int entropy_count;
538
539 if (!nbits)
540 return;
541
542 spin_lock_irqsave(&r->lock, flags);
543
544 DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
545 entropy_count = r->entropy_count;
546 entropy_count += nbits;
547 if (entropy_count < 0) {
548 DEBUG_ENT("negative entropy/overflow\n");
549 entropy_count = 0;
550 } else if (entropy_count > r->poolinfo->POOLBITS)
551 entropy_count = r->poolinfo->POOLBITS;
552 r->entropy_count = entropy_count;
553
554 /* should we wake readers? */
555 if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
556 wake_up_interruptible(&random_read_wait);
557 kill_fasync(&fasync, SIGIO, POLL_IN);
558 }
559 spin_unlock_irqrestore(&r->lock, flags);
560}
561
562/*********************************************************************
563 *
564 * Entropy input management
565 *
566 *********************************************************************/
567
568/* There is one of these per entropy source */
569struct timer_rand_state {
570 cycles_t last_time;
571 long last_delta, last_delta2;
572 unsigned dont_count_entropy:1;
573};
574
575#ifndef CONFIG_GENERIC_HARDIRQS
576
577static struct timer_rand_state *irq_timer_state[NR_IRQS];
578
579static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
580{
581 return irq_timer_state[irq];
582}
583
584static void set_timer_rand_state(unsigned int irq,
585 struct timer_rand_state *state)
586{
587 irq_timer_state[irq] = state;
588}
589
590#else
591
592static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
593{
594 struct irq_desc *desc;
595
596 desc = irq_to_desc(irq);
597
598 return desc->timer_rand_state;
599}
600
601static void set_timer_rand_state(unsigned int irq,
602 struct timer_rand_state *state)
603{
604 struct irq_desc *desc;
605
606 desc = irq_to_desc(irq);
607
608 desc->timer_rand_state = state;
609}
610#endif
611
612static struct timer_rand_state input_timer_state;
613
614/*
615 * This function adds entropy to the entropy "pool" by using timing
616 * delays. It uses the timer_rand_state structure to make an estimate
617 * of how many bits of entropy this call has added to the pool.
618 *
619 * The number "num" is also added to the pool - it should somehow describe
620 * the type of event which just happened. This is currently 0-255 for
621 * keyboard scan codes, and 256 upwards for interrupts.
622 *
623 */
624static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
625{
626 struct {
627 cycles_t cycles;
628 long jiffies;
629 unsigned num;
630 } sample;
631 long delta, delta2, delta3;
632
633 preempt_disable();
634 /* if over the trickle threshold, use only 1 in 4096 samples */
635 if (input_pool.entropy_count > trickle_thresh &&
636 ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff))
637 goto out;
638
639 sample.jiffies = jiffies;
640 sample.cycles = get_cycles();
641 sample.num = num;
642 mix_pool_bytes(&input_pool, &sample, sizeof(sample));
643
644 /*
645 * Calculate number of bits of randomness we probably added.
646 * We take into account the first, second and third-order deltas
647 * in order to make our estimate.
648 */
649
650 if (!state->dont_count_entropy) {
651 delta = sample.jiffies - state->last_time;
652 state->last_time = sample.jiffies;
653
654 delta2 = delta - state->last_delta;
655 state->last_delta = delta;
656
657 delta3 = delta2 - state->last_delta2;
658 state->last_delta2 = delta2;
659
660 if (delta < 0)
661 delta = -delta;
662 if (delta2 < 0)
663 delta2 = -delta2;
664 if (delta3 < 0)
665 delta3 = -delta3;
666 if (delta > delta2)
667 delta = delta2;
668 if (delta > delta3)
669 delta = delta3;
670
671 /*
672 * delta is now minimum absolute delta.
673 * Round down by 1 bit on general principles,
674 * and limit entropy entimate to 12 bits.
675 */
676 credit_entropy_bits(&input_pool,
677 min_t(int, fls(delta>>1), 11));
678 }
679out:
680 preempt_enable();
681}
682
683void add_input_randomness(unsigned int type, unsigned int code,
684 unsigned int value)
685{
686 static unsigned char last_value;
687
688 /* ignore autorepeat and the like */
689 if (value == last_value)
690 return;
691
692 DEBUG_ENT("input event\n");
693 last_value = value;
694 add_timer_randomness(&input_timer_state,
695 (type << 4) ^ code ^ (code >> 4) ^ value);
696}
697EXPORT_SYMBOL_GPL(add_input_randomness);
698
699void add_interrupt_randomness(int irq)
700{
701 struct timer_rand_state *state;
702
703 state = get_timer_rand_state(irq);
704
705 if (state == NULL)
706 return;
707
708 DEBUG_ENT("irq event %d\n", irq);
709 add_timer_randomness(state, 0x100 + irq);
710}
711
712#ifdef CONFIG_BLOCK
713void add_disk_randomness(struct gendisk *disk)
714{
715 if (!disk || !disk->random)
716 return;
717 /* first major is 1, so we get >= 0x200 here */
718 DEBUG_ENT("disk event %d:%d\n",
719 MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
720
721 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
722}
723#endif
724
725/*********************************************************************
726 *
727 * Entropy extraction routines
728 *
729 *********************************************************************/
730
731static ssize_t extract_entropy(struct entropy_store *r, void *buf,
732 size_t nbytes, int min, int rsvd);
733
734/*
735 * This utility inline function is responsible for transferring entropy
736 * from the primary pool to the secondary extraction pool. We make
737 * sure we pull enough for a 'catastrophic reseed'.
738 */
739static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
740{
741 __u32 tmp[OUTPUT_POOL_WORDS];
742
743 if (r->pull && r->entropy_count < nbytes * 8 &&
744 r->entropy_count < r->poolinfo->POOLBITS) {
745 /* If we're limited, always leave two wakeup worth's BITS */
746 int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
747 int bytes = nbytes;
748
749 /* pull at least as many as BYTES as wakeup BITS */
750 bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
751 /* but never more than the buffer size */
752 bytes = min_t(int, bytes, sizeof(tmp));
753
754 DEBUG_ENT("going to reseed %s with %d bits "
755 "(%d of %d requested)\n",
756 r->name, bytes * 8, nbytes * 8, r->entropy_count);
757
758 bytes = extract_entropy(r->pull, tmp, bytes,
759 random_read_wakeup_thresh / 8, rsvd);
760 mix_pool_bytes(r, tmp, bytes);
761 credit_entropy_bits(r, bytes*8);
762 }
763}
764
765/*
766 * These functions extracts randomness from the "entropy pool", and
767 * returns it in a buffer.
768 *
769 * The min parameter specifies the minimum amount we can pull before
770 * failing to avoid races that defeat catastrophic reseeding while the
771 * reserved parameter indicates how much entropy we must leave in the
772 * pool after each pull to avoid starving other readers.
773 *
774 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
775 */
776
777static size_t account(struct entropy_store *r, size_t nbytes, int min,
778 int reserved)
779{
780 unsigned long flags;
781
782 /* Hold lock while accounting */
783 spin_lock_irqsave(&r->lock, flags);
784
785 BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
786 DEBUG_ENT("trying to extract %d bits from %s\n",
787 nbytes * 8, r->name);
788
789 /* Can we pull enough? */
790 if (r->entropy_count / 8 < min + reserved) {
791 nbytes = 0;
792 } else {
793 /* If limited, never pull more than available */
794 if (r->limit && nbytes + reserved >= r->entropy_count / 8)
795 nbytes = r->entropy_count/8 - reserved;
796
797 if (r->entropy_count / 8 >= nbytes + reserved)
798 r->entropy_count -= nbytes*8;
799 else
800 r->entropy_count = reserved;
801
802 if (r->entropy_count < random_write_wakeup_thresh) {
803 wake_up_interruptible(&random_write_wait);
804 kill_fasync(&fasync, SIGIO, POLL_OUT);
805 }
806 }
807
808 DEBUG_ENT("debiting %d entropy credits from %s%s\n",
809 nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
810
811 spin_unlock_irqrestore(&r->lock, flags);
812
813 return nbytes;
814}
815
816static void extract_buf(struct entropy_store *r, __u8 *out)
817{
818 int i;
819 __u32 hash[5], workspace[SHA_WORKSPACE_WORDS];
820 __u8 extract[64];
821
822 /* Generate a hash across the pool, 16 words (512 bits) at a time */
823 sha_init(hash);
824 for (i = 0; i < r->poolinfo->poolwords; i += 16)
825 sha_transform(hash, (__u8 *)(r->pool + i), workspace);
826
827 /*
828 * We mix the hash back into the pool to prevent backtracking
829 * attacks (where the attacker knows the state of the pool
830 * plus the current outputs, and attempts to find previous
831 * ouputs), unless the hash function can be inverted. By
832 * mixing at least a SHA1 worth of hash data back, we make
833 * brute-forcing the feedback as hard as brute-forcing the
834 * hash.
835 */
836 mix_pool_bytes_extract(r, hash, sizeof(hash), extract);
837
838 /*
839 * To avoid duplicates, we atomically extract a portion of the
840 * pool while mixing, and hash one final time.
841 */
842 sha_transform(hash, extract, workspace);
843 memset(extract, 0, sizeof(extract));
844 memset(workspace, 0, sizeof(workspace));
845
846 /*
847 * In case the hash function has some recognizable output
848 * pattern, we fold it in half. Thus, we always feed back
849 * twice as much data as we output.
850 */
851 hash[0] ^= hash[3];
852 hash[1] ^= hash[4];
853 hash[2] ^= rol32(hash[2], 16);
854 memcpy(out, hash, EXTRACT_SIZE);
855 memset(hash, 0, sizeof(hash));
856}
857
858static ssize_t extract_entropy(struct entropy_store *r, void *buf,
859 size_t nbytes, int min, int reserved)
860{
861 ssize_t ret = 0, i;
862 __u8 tmp[EXTRACT_SIZE];
863 unsigned long flags;
864
865 xfer_secondary_pool(r, nbytes);
866 nbytes = account(r, nbytes, min, reserved);
867
868 while (nbytes) {
869 extract_buf(r, tmp);
870
871 if (fips_enabled) {
872 spin_lock_irqsave(&r->lock, flags);
873 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
874 panic("Hardware RNG duplicated output!\n");
875 memcpy(r->last_data, tmp, EXTRACT_SIZE);
876 spin_unlock_irqrestore(&r->lock, flags);
877 }
878 i = min_t(int, nbytes, EXTRACT_SIZE);
879 memcpy(buf, tmp, i);
880 nbytes -= i;
881 buf += i;
882 ret += i;
883 }
884
885 /* Wipe data just returned from memory */
886 memset(tmp, 0, sizeof(tmp));
887
888 return ret;
889}
890
891static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
892 size_t nbytes)
893{
894 ssize_t ret = 0, i;
895 __u8 tmp[EXTRACT_SIZE];
896
897 xfer_secondary_pool(r, nbytes);
898 nbytes = account(r, nbytes, 0, 0);
899
900 while (nbytes) {
901 if (need_resched()) {
902 if (signal_pending(current)) {
903 if (ret == 0)
904 ret = -ERESTARTSYS;
905 break;
906 }
907 schedule();
908 }
909
910 extract_buf(r, tmp);
911 i = min_t(int, nbytes, EXTRACT_SIZE);
912 if (copy_to_user(buf, tmp, i)) {
913 ret = -EFAULT;
914 break;
915 }
916
917 nbytes -= i;
918 buf += i;
919 ret += i;
920 }
921
922 /* Wipe data just returned from memory */
923 memset(tmp, 0, sizeof(tmp));
924
925 return ret;
926}
927
928/*
929 * This function is the exported kernel interface. It returns some
930 * number of good random numbers, suitable for seeding TCP sequence
931 * numbers, etc.
932 */
933void get_random_bytes(void *buf, int nbytes)
934{
935 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
936}
937EXPORT_SYMBOL(get_random_bytes);
938
939/*
940 * init_std_data - initialize pool with system data
941 *
942 * @r: pool to initialize
943 *
944 * This function clears the pool's entropy count and mixes some system
945 * data into the pool to prepare it for use. The pool is not cleared
946 * as that can only decrease the entropy in the pool.
947 */
948static void init_std_data(struct entropy_store *r)
949{
950 ktime_t now;
951 unsigned long flags;
952
953 spin_lock_irqsave(&r->lock, flags);
954 r->entropy_count = 0;
955 spin_unlock_irqrestore(&r->lock, flags);
956
957 now = ktime_get_real();
958 mix_pool_bytes(r, &now, sizeof(now));
959 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
960}
961
962static int rand_initialize(void)
963{
964 init_std_data(&input_pool);
965 init_std_data(&blocking_pool);
966 init_std_data(&nonblocking_pool);
967 return 0;
968}
969module_init(rand_initialize);
970
971void rand_initialize_irq(int irq)
972{
973 struct timer_rand_state *state;
974
975 state = get_timer_rand_state(irq);
976
977 if (state)
978 return;
979
980 /*
981 * If kzalloc returns null, we just won't use that entropy
982 * source.
983 */
984 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
985 if (state)
986 set_timer_rand_state(irq, state);
987}
988
989#ifdef CONFIG_BLOCK
990void rand_initialize_disk(struct gendisk *disk)
991{
992 struct timer_rand_state *state;
993
994 /*
995 * If kzalloc returns null, we just won't use that entropy
996 * source.
997 */
998 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
999 if (state)
1000 disk->random = state;
1001}
1002#endif
1003
1004static ssize_t
1005random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1006{
1007 ssize_t n, retval = 0, count = 0;
1008
1009 if (nbytes == 0)
1010 return 0;
1011
1012 while (nbytes > 0) {
1013 n = nbytes;
1014 if (n > SEC_XFER_SIZE)
1015 n = SEC_XFER_SIZE;
1016
1017 DEBUG_ENT("reading %d bits\n", n*8);
1018
1019 n = extract_entropy_user(&blocking_pool, buf, n);
1020
1021 DEBUG_ENT("read got %d bits (%d still needed)\n",
1022 n*8, (nbytes-n)*8);
1023
1024 if (n == 0) {
1025 if (file->f_flags & O_NONBLOCK) {
1026 retval = -EAGAIN;
1027 break;
1028 }
1029
1030 DEBUG_ENT("sleeping?\n");
1031
1032 wait_event_interruptible(random_read_wait,
1033 input_pool.entropy_count >=
1034 random_read_wakeup_thresh);
1035
1036 DEBUG_ENT("awake\n");
1037
1038 if (signal_pending(current)) {
1039 retval = -ERESTARTSYS;
1040 break;
1041 }
1042
1043 continue;
1044 }
1045
1046 if (n < 0) {
1047 retval = n;
1048 break;
1049 }
1050 count += n;
1051 buf += n;
1052 nbytes -= n;
1053 break; /* This break makes the device work */
1054 /* like a named pipe */
1055 }
1056
1057 return (count ? count : retval);
1058}
1059
1060static ssize_t
1061urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1062{
1063 return extract_entropy_user(&nonblocking_pool, buf, nbytes);
1064}
1065
1066static unsigned int
1067random_poll(struct file *file, poll_table * wait)
1068{
1069 unsigned int mask;
1070
1071 poll_wait(file, &random_read_wait, wait);
1072 poll_wait(file, &random_write_wait, wait);
1073 mask = 0;
1074 if (input_pool.entropy_count >= random_read_wakeup_thresh)
1075 mask |= POLLIN | POLLRDNORM;
1076 if (input_pool.entropy_count < random_write_wakeup_thresh)
1077 mask |= POLLOUT | POLLWRNORM;
1078 return mask;
1079}
1080
1081static int
1082write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1083{
1084 size_t bytes;
1085 __u32 buf[16];
1086 const char __user *p = buffer;
1087
1088 while (count > 0) {
1089 bytes = min(count, sizeof(buf));
1090 if (copy_from_user(&buf, p, bytes))
1091 return -EFAULT;
1092
1093 count -= bytes;
1094 p += bytes;
1095
1096 mix_pool_bytes(r, buf, bytes);
1097 cond_resched();
1098 }
1099
1100 return 0;
1101}
1102
1103static ssize_t random_write(struct file *file, const char __user *buffer,
1104 size_t count, loff_t *ppos)
1105{
1106 size_t ret;
1107
1108 ret = write_pool(&blocking_pool, buffer, count);
1109 if (ret)
1110 return ret;
1111 ret = write_pool(&nonblocking_pool, buffer, count);
1112 if (ret)
1113 return ret;
1114
1115 return (ssize_t)count;
1116}
1117
1118static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1119{
1120 int size, ent_count;
1121 int __user *p = (int __user *)arg;
1122 int retval;
1123
1124 switch (cmd) {
1125 case RNDGETENTCNT:
1126 /* inherently racy, no point locking */
1127 if (put_user(input_pool.entropy_count, p))
1128 return -EFAULT;
1129 return 0;
1130 case RNDADDTOENTCNT:
1131 if (!capable(CAP_SYS_ADMIN))
1132 return -EPERM;
1133 if (get_user(ent_count, p))
1134 return -EFAULT;
1135 credit_entropy_bits(&input_pool, ent_count);
1136 return 0;
1137 case RNDADDENTROPY:
1138 if (!capable(CAP_SYS_ADMIN))
1139 return -EPERM;
1140 if (get_user(ent_count, p++))
1141 return -EFAULT;
1142 if (ent_count < 0)
1143 return -EINVAL;
1144 if (get_user(size, p++))
1145 return -EFAULT;
1146 retval = write_pool(&input_pool, (const char __user *)p,
1147 size);
1148 if (retval < 0)
1149 return retval;
1150 credit_entropy_bits(&input_pool, ent_count);
1151 return 0;
1152 case RNDZAPENTCNT:
1153 case RNDCLEARPOOL:
1154 /* Clear the entropy pool counters. */
1155 if (!capable(CAP_SYS_ADMIN))
1156 return -EPERM;
1157 rand_initialize();
1158 return 0;
1159 default:
1160 return -EINVAL;
1161 }
1162}
1163
1164static int random_fasync(int fd, struct file *filp, int on)
1165{
1166 return fasync_helper(fd, filp, on, &fasync);
1167}
1168
1169const struct file_operations random_fops = {
1170 .read = random_read,
1171 .write = random_write,
1172 .poll = random_poll,
1173 .unlocked_ioctl = random_ioctl,
1174 .fasync = random_fasync,
1175 .llseek = noop_llseek,
1176};
1177
1178const struct file_operations urandom_fops = {
1179 .read = urandom_read,
1180 .write = random_write,
1181 .unlocked_ioctl = random_ioctl,
1182 .fasync = random_fasync,
1183 .llseek = noop_llseek,
1184};
1185
1186/***************************************************************
1187 * Random UUID interface
1188 *
1189 * Used here for a Boot ID, but can be useful for other kernel
1190 * drivers.
1191 ***************************************************************/
1192
1193/*
1194 * Generate random UUID
1195 */
1196void generate_random_uuid(unsigned char uuid_out[16])
1197{
1198 get_random_bytes(uuid_out, 16);
1199 /* Set UUID version to 4 --- truly random generation */
1200 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1201 /* Set the UUID variant to DCE */
1202 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1203}
1204EXPORT_SYMBOL(generate_random_uuid);
1205
1206/********************************************************************
1207 *
1208 * Sysctl interface
1209 *
1210 ********************************************************************/
1211
1212#ifdef CONFIG_SYSCTL
1213
1214#include <linux/sysctl.h>
1215
1216static int min_read_thresh = 8, min_write_thresh;
1217static int max_read_thresh = INPUT_POOL_WORDS * 32;
1218static int max_write_thresh = INPUT_POOL_WORDS * 32;
1219static char sysctl_bootid[16];
1220
1221/*
1222 * These functions is used to return both the bootid UUID, and random
1223 * UUID. The difference is in whether table->data is NULL; if it is,
1224 * then a new UUID is generated and returned to the user.
1225 *
1226 * If the user accesses this via the proc interface, it will be returned
1227 * as an ASCII string in the standard UUID format. If accesses via the
1228 * sysctl system call, it is returned as 16 bytes of binary data.
1229 */
1230static int proc_do_uuid(ctl_table *table, int write,
1231 void __user *buffer, size_t *lenp, loff_t *ppos)
1232{
1233 ctl_table fake_table;
1234 unsigned char buf[64], tmp_uuid[16], *uuid;
1235
1236 uuid = table->data;
1237 if (!uuid) {
1238 uuid = tmp_uuid;
1239 uuid[8] = 0;
1240 }
1241 if (uuid[8] == 0)
1242 generate_random_uuid(uuid);
1243
1244 sprintf(buf, "%pU", uuid);
1245
1246 fake_table.data = buf;
1247 fake_table.maxlen = sizeof(buf);
1248
1249 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1250}
1251
1252static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1253ctl_table random_table[] = {
1254 {
1255 .procname = "poolsize",
1256 .data = &sysctl_poolsize,
1257 .maxlen = sizeof(int),
1258 .mode = 0444,
1259 .proc_handler = proc_dointvec,
1260 },
1261 {
1262 .procname = "entropy_avail",
1263 .maxlen = sizeof(int),
1264 .mode = 0444,
1265 .proc_handler = proc_dointvec,
1266 .data = &input_pool.entropy_count,
1267 },
1268 {
1269 .procname = "read_wakeup_threshold",
1270 .data = &random_read_wakeup_thresh,
1271 .maxlen = sizeof(int),
1272 .mode = 0644,
1273 .proc_handler = proc_dointvec_minmax,
1274 .extra1 = &min_read_thresh,
1275 .extra2 = &max_read_thresh,
1276 },
1277 {
1278 .procname = "write_wakeup_threshold",
1279 .data = &random_write_wakeup_thresh,
1280 .maxlen = sizeof(int),
1281 .mode = 0644,
1282 .proc_handler = proc_dointvec_minmax,
1283 .extra1 = &min_write_thresh,
1284 .extra2 = &max_write_thresh,
1285 },
1286 {
1287 .procname = "boot_id",
1288 .data = &sysctl_bootid,
1289 .maxlen = 16,
1290 .mode = 0444,
1291 .proc_handler = proc_do_uuid,
1292 },
1293 {
1294 .procname = "uuid",
1295 .maxlen = 16,
1296 .mode = 0444,
1297 .proc_handler = proc_do_uuid,
1298 },
1299 { }
1300};
1301#endif /* CONFIG_SYSCTL */
1302
1303static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1304
1305static int __init random_int_secret_init(void)
1306{
1307 get_random_bytes(random_int_secret, sizeof(random_int_secret));
1308 return 0;
1309}
1310late_initcall(random_int_secret_init);
1311
1312/*
1313 * Get a random word for internal kernel use only. Similar to urandom but
1314 * with the goal of minimal entropy pool depletion. As a result, the random
1315 * value is not cryptographically secure but for several uses the cost of
1316 * depleting entropy is too high
1317 */
1318DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
1319unsigned int get_random_int(void)
1320{
1321 __u32 *hash = get_cpu_var(get_random_int_hash);
1322 unsigned int ret;
1323
1324 hash[0] += current->pid + jiffies + get_cycles();
1325 md5_transform(hash, random_int_secret);
1326 ret = hash[0];
1327 put_cpu_var(get_random_int_hash);
1328
1329 return ret;
1330}
1331
1332/*
1333 * randomize_range() returns a start address such that
1334 *
1335 * [...... <range> .....]
1336 * start end
1337 *
1338 * a <range> with size "len" starting at the return value is inside in the
1339 * area defined by [start, end], but is otherwise randomized.
1340 */
1341unsigned long
1342randomize_range(unsigned long start, unsigned long end, unsigned long len)
1343{
1344 unsigned long range = end - len - start;
1345
1346 if (end <= start + len)
1347 return 0;
1348 return PAGE_ALIGN(get_random_int() % range + start);
1349}