Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Basic authentication token and access key management
   3 *
   4 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
   5 * Written by David Howells (dhowells@redhat.com)
   6 */
   7
   8#include <linux/export.h>
   9#include <linux/init.h>
  10#include <linux/poison.h>
  11#include <linux/sched.h>
  12#include <linux/slab.h>
  13#include <linux/security.h>
  14#include <linux/workqueue.h>
  15#include <linux/random.h>
  16#include <linux/ima.h>
  17#include <linux/err.h>
  18#include "internal.h"
  19
  20struct kmem_cache *key_jar;
  21struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
  22DEFINE_SPINLOCK(key_serial_lock);
  23
  24struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
  25DEFINE_SPINLOCK(key_user_lock);
  26
  27unsigned int key_quota_root_maxkeys = 1000000;	/* root's key count quota */
  28unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
  29unsigned int key_quota_maxkeys = 200;		/* general key count quota */
  30unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
  31
  32static LIST_HEAD(key_types_list);
  33static DECLARE_RWSEM(key_types_sem);
  34
  35/* We serialise key instantiation and link */
  36DEFINE_MUTEX(key_construction_mutex);
  37
  38#ifdef KEY_DEBUGGING
  39void __key_check(const struct key *key)
  40{
  41	printk("__key_check: key %p {%08x} should be {%08x}\n",
  42	       key, key->magic, KEY_DEBUG_MAGIC);
  43	BUG();
  44}
  45#endif
  46
  47/*
  48 * Get the key quota record for a user, allocating a new record if one doesn't
  49 * already exist.
  50 */
  51struct key_user *key_user_lookup(kuid_t uid)
  52{
  53	struct key_user *candidate = NULL, *user;
  54	struct rb_node *parent, **p;
  55
  56try_again:
  57	parent = NULL;
  58	p = &key_user_tree.rb_node;
  59	spin_lock(&key_user_lock);
  60
  61	/* search the tree for a user record with a matching UID */
  62	while (*p) {
  63		parent = *p;
  64		user = rb_entry(parent, struct key_user, node);
  65
  66		if (uid_lt(uid, user->uid))
  67			p = &(*p)->rb_left;
  68		else if (uid_gt(uid, user->uid))
  69			p = &(*p)->rb_right;
  70		else
  71			goto found;
  72	}
  73
  74	/* if we get here, we failed to find a match in the tree */
  75	if (!candidate) {
  76		/* allocate a candidate user record if we don't already have
  77		 * one */
  78		spin_unlock(&key_user_lock);
  79
  80		user = NULL;
  81		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
  82		if (unlikely(!candidate))
  83			goto out;
  84
  85		/* the allocation may have scheduled, so we need to repeat the
  86		 * search lest someone else added the record whilst we were
  87		 * asleep */
  88		goto try_again;
  89	}
  90
  91	/* if we get here, then the user record still hadn't appeared on the
  92	 * second pass - so we use the candidate record */
  93	refcount_set(&candidate->usage, 1);
  94	atomic_set(&candidate->nkeys, 0);
  95	atomic_set(&candidate->nikeys, 0);
  96	candidate->uid = uid;
  97	candidate->qnkeys = 0;
  98	candidate->qnbytes = 0;
  99	spin_lock_init(&candidate->lock);
 100	mutex_init(&candidate->cons_lock);
 101
 102	rb_link_node(&candidate->node, parent, p);
 103	rb_insert_color(&candidate->node, &key_user_tree);
 104	spin_unlock(&key_user_lock);
 105	user = candidate;
 106	goto out;
 107
 108	/* okay - we found a user record for this UID */
 109found:
 110	refcount_inc(&user->usage);
 111	spin_unlock(&key_user_lock);
 112	kfree(candidate);
 113out:
 114	return user;
 115}
 116
 117/*
 118 * Dispose of a user structure
 119 */
 120void key_user_put(struct key_user *user)
 121{
 122	if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
 123		rb_erase(&user->node, &key_user_tree);
 124		spin_unlock(&key_user_lock);
 125
 126		kfree(user);
 127	}
 128}
 129
 130/*
 131 * Allocate a serial number for a key.  These are assigned randomly to avoid
 132 * security issues through covert channel problems.
 133 */
 134static inline void key_alloc_serial(struct key *key)
 135{
 136	struct rb_node *parent, **p;
 137	struct key *xkey;
 138
 139	/* propose a random serial number and look for a hole for it in the
 140	 * serial number tree */
 141	do {
 142		get_random_bytes(&key->serial, sizeof(key->serial));
 143
 144		key->serial >>= 1; /* negative numbers are not permitted */
 145	} while (key->serial < 3);
 146
 147	spin_lock(&key_serial_lock);
 148
 149attempt_insertion:
 150	parent = NULL;
 151	p = &key_serial_tree.rb_node;
 152
 153	while (*p) {
 154		parent = *p;
 155		xkey = rb_entry(parent, struct key, serial_node);
 156
 157		if (key->serial < xkey->serial)
 158			p = &(*p)->rb_left;
 159		else if (key->serial > xkey->serial)
 160			p = &(*p)->rb_right;
 161		else
 162			goto serial_exists;
 163	}
 164
 165	/* we've found a suitable hole - arrange for this key to occupy it */
 166	rb_link_node(&key->serial_node, parent, p);
 167	rb_insert_color(&key->serial_node, &key_serial_tree);
 168
 169	spin_unlock(&key_serial_lock);
 170	return;
 171
 172	/* we found a key with the proposed serial number - walk the tree from
 173	 * that point looking for the next unused serial number */
 174serial_exists:
 175	for (;;) {
 176		key->serial++;
 177		if (key->serial < 3) {
 178			key->serial = 3;
 179			goto attempt_insertion;
 180		}
 181
 182		parent = rb_next(parent);
 183		if (!parent)
 184			goto attempt_insertion;
 185
 186		xkey = rb_entry(parent, struct key, serial_node);
 187		if (key->serial < xkey->serial)
 188			goto attempt_insertion;
 189	}
 190}
 191
 192/**
 193 * key_alloc - Allocate a key of the specified type.
 194 * @type: The type of key to allocate.
 195 * @desc: The key description to allow the key to be searched out.
 196 * @uid: The owner of the new key.
 197 * @gid: The group ID for the new key's group permissions.
 198 * @cred: The credentials specifying UID namespace.
 199 * @perm: The permissions mask of the new key.
 200 * @flags: Flags specifying quota properties.
 201 * @restrict_link: Optional link restriction for new keyrings.
 202 *
 203 * Allocate a key of the specified type with the attributes given.  The key is
 204 * returned in an uninstantiated state and the caller needs to instantiate the
 205 * key before returning.
 206 *
 207 * The restrict_link structure (if not NULL) will be freed when the
 208 * keyring is destroyed, so it must be dynamically allocated.
 209 *
 210 * The user's key count quota is updated to reflect the creation of the key and
 211 * the user's key data quota has the default for the key type reserved.  The
 212 * instantiation function should amend this as necessary.  If insufficient
 213 * quota is available, -EDQUOT will be returned.
 214 *
 215 * The LSM security modules can prevent a key being created, in which case
 216 * -EACCES will be returned.
 217 *
 218 * Returns a pointer to the new key if successful and an error code otherwise.
 219 *
 220 * Note that the caller needs to ensure the key type isn't uninstantiated.
 221 * Internally this can be done by locking key_types_sem.  Externally, this can
 222 * be done by either never unregistering the key type, or making sure
 223 * key_alloc() calls don't race with module unloading.
 224 */
 225struct key *key_alloc(struct key_type *type, const char *desc,
 226		      kuid_t uid, kgid_t gid, const struct cred *cred,
 227		      key_perm_t perm, unsigned long flags,
 228		      struct key_restriction *restrict_link)
 229{
 230	struct key_user *user = NULL;
 231	struct key *key;
 232	size_t desclen, quotalen;
 233	int ret;
 234
 235	key = ERR_PTR(-EINVAL);
 236	if (!desc || !*desc)
 237		goto error;
 238
 239	if (type->vet_description) {
 240		ret = type->vet_description(desc);
 241		if (ret < 0) {
 242			key = ERR_PTR(ret);
 243			goto error;
 244		}
 245	}
 246
 247	desclen = strlen(desc);
 248	quotalen = desclen + 1 + type->def_datalen;
 249
 250	/* get hold of the key tracking for this user */
 251	user = key_user_lookup(uid);
 252	if (!user)
 253		goto no_memory_1;
 254
 255	/* check that the user's quota permits allocation of another key and
 256	 * its description */
 257	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 258		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
 259			key_quota_root_maxkeys : key_quota_maxkeys;
 260		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
 261			key_quota_root_maxbytes : key_quota_maxbytes;
 262
 263		spin_lock(&user->lock);
 264		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
 265			if (user->qnkeys + 1 > maxkeys ||
 266			    user->qnbytes + quotalen > maxbytes ||
 267			    user->qnbytes + quotalen < user->qnbytes)
 268				goto no_quota;
 269		}
 270
 271		user->qnkeys++;
 272		user->qnbytes += quotalen;
 273		spin_unlock(&user->lock);
 274	}
 275
 276	/* allocate and initialise the key and its description */
 277	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
 278	if (!key)
 279		goto no_memory_2;
 280
 281	key->index_key.desc_len = desclen;
 282	key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
 283	if (!key->index_key.description)
 284		goto no_memory_3;
 285	key->index_key.type = type;
 286	key_set_index_key(&key->index_key);
 287
 288	refcount_set(&key->usage, 1);
 289	init_rwsem(&key->sem);
 290	lockdep_set_class(&key->sem, &type->lock_class);
 291	key->user = user;
 292	key->quotalen = quotalen;
 293	key->datalen = type->def_datalen;
 294	key->uid = uid;
 295	key->gid = gid;
 296	key->perm = perm;
 297	key->restrict_link = restrict_link;
 298	key->last_used_at = ktime_get_real_seconds();
 299
 300	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
 301		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
 302	if (flags & KEY_ALLOC_BUILT_IN)
 303		key->flags |= 1 << KEY_FLAG_BUILTIN;
 304	if (flags & KEY_ALLOC_UID_KEYRING)
 305		key->flags |= 1 << KEY_FLAG_UID_KEYRING;
 306
 307#ifdef KEY_DEBUGGING
 308	key->magic = KEY_DEBUG_MAGIC;
 309#endif
 310
 311	/* let the security module know about the key */
 312	ret = security_key_alloc(key, cred, flags);
 313	if (ret < 0)
 314		goto security_error;
 315
 316	/* publish the key by giving it a serial number */
 317	refcount_inc(&key->domain_tag->usage);
 318	atomic_inc(&user->nkeys);
 319	key_alloc_serial(key);
 320
 321error:
 322	return key;
 323
 324security_error:
 325	kfree(key->description);
 326	kmem_cache_free(key_jar, key);
 327	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 328		spin_lock(&user->lock);
 329		user->qnkeys--;
 330		user->qnbytes -= quotalen;
 331		spin_unlock(&user->lock);
 332	}
 333	key_user_put(user);
 334	key = ERR_PTR(ret);
 335	goto error;
 336
 337no_memory_3:
 338	kmem_cache_free(key_jar, key);
 339no_memory_2:
 340	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 341		spin_lock(&user->lock);
 342		user->qnkeys--;
 343		user->qnbytes -= quotalen;
 344		spin_unlock(&user->lock);
 345	}
 346	key_user_put(user);
 347no_memory_1:
 348	key = ERR_PTR(-ENOMEM);
 349	goto error;
 350
 351no_quota:
 352	spin_unlock(&user->lock);
 353	key_user_put(user);
 354	key = ERR_PTR(-EDQUOT);
 355	goto error;
 356}
 357EXPORT_SYMBOL(key_alloc);
 358
 359/**
 360 * key_payload_reserve - Adjust data quota reservation for the key's payload
 361 * @key: The key to make the reservation for.
 362 * @datalen: The amount of data payload the caller now wants.
 363 *
 364 * Adjust the amount of the owning user's key data quota that a key reserves.
 365 * If the amount is increased, then -EDQUOT may be returned if there isn't
 366 * enough free quota available.
 367 *
 368 * If successful, 0 is returned.
 369 */
 370int key_payload_reserve(struct key *key, size_t datalen)
 371{
 372	int delta = (int)datalen - key->datalen;
 373	int ret = 0;
 374
 375	key_check(key);
 376
 377	/* contemplate the quota adjustment */
 378	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 379		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
 380			key_quota_root_maxbytes : key_quota_maxbytes;
 381
 382		spin_lock(&key->user->lock);
 383
 384		if (delta > 0 &&
 385		    (key->user->qnbytes + delta > maxbytes ||
 386		     key->user->qnbytes + delta < key->user->qnbytes)) {
 387			ret = -EDQUOT;
 388		}
 389		else {
 390			key->user->qnbytes += delta;
 391			key->quotalen += delta;
 392		}
 393		spin_unlock(&key->user->lock);
 394	}
 395
 396	/* change the recorded data length if that didn't generate an error */
 397	if (ret == 0)
 398		key->datalen = datalen;
 399
 400	return ret;
 401}
 402EXPORT_SYMBOL(key_payload_reserve);
 403
 404/*
 405 * Change the key state to being instantiated.
 406 */
 407static void mark_key_instantiated(struct key *key, int reject_error)
 408{
 409	/* Commit the payload before setting the state; barrier versus
 410	 * key_read_state().
 411	 */
 412	smp_store_release(&key->state,
 413			  (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
 414}
 415
 416/*
 417 * Instantiate a key and link it into the target keyring atomically.  Must be
 418 * called with the target keyring's semaphore writelocked.  The target key's
 419 * semaphore need not be locked as instantiation is serialised by
 420 * key_construction_mutex.
 421 */
 422static int __key_instantiate_and_link(struct key *key,
 423				      struct key_preparsed_payload *prep,
 424				      struct key *keyring,
 425				      struct key *authkey,
 426				      struct assoc_array_edit **_edit)
 427{
 428	int ret, awaken;
 429
 430	key_check(key);
 431	key_check(keyring);
 432
 433	awaken = 0;
 434	ret = -EBUSY;
 435
 436	mutex_lock(&key_construction_mutex);
 437
 438	/* can't instantiate twice */
 439	if (key->state == KEY_IS_UNINSTANTIATED) {
 440		/* instantiate the key */
 441		ret = key->type->instantiate(key, prep);
 442
 443		if (ret == 0) {
 444			/* mark the key as being instantiated */
 445			atomic_inc(&key->user->nikeys);
 446			mark_key_instantiated(key, 0);
 447			notify_key(key, NOTIFY_KEY_INSTANTIATED, 0);
 448
 449			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 450				awaken = 1;
 451
 452			/* and link it into the destination keyring */
 453			if (keyring) {
 454				if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
 455					set_bit(KEY_FLAG_KEEP, &key->flags);
 456
 457				__key_link(keyring, key, _edit);
 458			}
 459
 460			/* disable the authorisation key */
 461			if (authkey)
 462				key_invalidate(authkey);
 463
 464			if (prep->expiry != TIME64_MAX) {
 465				key->expiry = prep->expiry;
 466				key_schedule_gc(prep->expiry + key_gc_delay);
 467			}
 468		}
 469	}
 470
 471	mutex_unlock(&key_construction_mutex);
 472
 473	/* wake up anyone waiting for a key to be constructed */
 474	if (awaken)
 475		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 476
 477	return ret;
 478}
 479
 480/**
 481 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
 482 * @key: The key to instantiate.
 483 * @data: The data to use to instantiate the keyring.
 484 * @datalen: The length of @data.
 485 * @keyring: Keyring to create a link in on success (or NULL).
 486 * @authkey: The authorisation token permitting instantiation.
 487 *
 488 * Instantiate a key that's in the uninstantiated state using the provided data
 489 * and, if successful, link it in to the destination keyring if one is
 490 * supplied.
 491 *
 492 * If successful, 0 is returned, the authorisation token is revoked and anyone
 493 * waiting for the key is woken up.  If the key was already instantiated,
 494 * -EBUSY will be returned.
 495 */
 496int key_instantiate_and_link(struct key *key,
 497			     const void *data,
 498			     size_t datalen,
 499			     struct key *keyring,
 500			     struct key *authkey)
 501{
 502	struct key_preparsed_payload prep;
 503	struct assoc_array_edit *edit = NULL;
 504	int ret;
 505
 506	memset(&prep, 0, sizeof(prep));
 507	prep.data = data;
 508	prep.datalen = datalen;
 509	prep.quotalen = key->type->def_datalen;
 510	prep.expiry = TIME64_MAX;
 511	if (key->type->preparse) {
 512		ret = key->type->preparse(&prep);
 513		if (ret < 0)
 514			goto error;
 515	}
 516
 517	if (keyring) {
 518		ret = __key_link_lock(keyring, &key->index_key);
 519		if (ret < 0)
 520			goto error;
 521
 522		ret = __key_link_begin(keyring, &key->index_key, &edit);
 523		if (ret < 0)
 524			goto error_link_end;
 525
 526		if (keyring->restrict_link && keyring->restrict_link->check) {
 527			struct key_restriction *keyres = keyring->restrict_link;
 528
 529			ret = keyres->check(keyring, key->type, &prep.payload,
 530					    keyres->key);
 531			if (ret < 0)
 532				goto error_link_end;
 533		}
 534	}
 535
 536	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
 537
 538error_link_end:
 539	if (keyring)
 540		__key_link_end(keyring, &key->index_key, edit);
 541
 542error:
 543	if (key->type->preparse)
 544		key->type->free_preparse(&prep);
 545	return ret;
 546}
 547
 548EXPORT_SYMBOL(key_instantiate_and_link);
 549
 550/**
 551 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
 552 * @key: The key to instantiate.
 553 * @timeout: The timeout on the negative key.
 554 * @error: The error to return when the key is hit.
 555 * @keyring: Keyring to create a link in on success (or NULL).
 556 * @authkey: The authorisation token permitting instantiation.
 557 *
 558 * Negatively instantiate a key that's in the uninstantiated state and, if
 559 * successful, set its timeout and stored error and link it in to the
 560 * destination keyring if one is supplied.  The key and any links to the key
 561 * will be automatically garbage collected after the timeout expires.
 562 *
 563 * Negative keys are used to rate limit repeated request_key() calls by causing
 564 * them to return the stored error code (typically ENOKEY) until the negative
 565 * key expires.
 566 *
 567 * If successful, 0 is returned, the authorisation token is revoked and anyone
 568 * waiting for the key is woken up.  If the key was already instantiated,
 569 * -EBUSY will be returned.
 570 */
 571int key_reject_and_link(struct key *key,
 572			unsigned timeout,
 573			unsigned error,
 574			struct key *keyring,
 575			struct key *authkey)
 576{
 577	struct assoc_array_edit *edit = NULL;
 578	int ret, awaken, link_ret = 0;
 579
 580	key_check(key);
 581	key_check(keyring);
 582
 583	awaken = 0;
 584	ret = -EBUSY;
 585
 586	if (keyring) {
 587		if (keyring->restrict_link)
 588			return -EPERM;
 589
 590		link_ret = __key_link_lock(keyring, &key->index_key);
 591		if (link_ret == 0) {
 592			link_ret = __key_link_begin(keyring, &key->index_key, &edit);
 593			if (link_ret < 0)
 594				__key_link_end(keyring, &key->index_key, edit);
 595		}
 596	}
 597
 598	mutex_lock(&key_construction_mutex);
 599
 600	/* can't instantiate twice */
 601	if (key->state == KEY_IS_UNINSTANTIATED) {
 602		/* mark the key as being negatively instantiated */
 603		atomic_inc(&key->user->nikeys);
 604		mark_key_instantiated(key, -error);
 605		notify_key(key, NOTIFY_KEY_INSTANTIATED, -error);
 606		key->expiry = ktime_get_real_seconds() + timeout;
 607		key_schedule_gc(key->expiry + key_gc_delay);
 608
 609		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 610			awaken = 1;
 611
 612		ret = 0;
 613
 614		/* and link it into the destination keyring */
 615		if (keyring && link_ret == 0)
 616			__key_link(keyring, key, &edit);
 617
 618		/* disable the authorisation key */
 619		if (authkey)
 620			key_invalidate(authkey);
 621	}
 622
 623	mutex_unlock(&key_construction_mutex);
 624
 625	if (keyring && link_ret == 0)
 626		__key_link_end(keyring, &key->index_key, edit);
 627
 628	/* wake up anyone waiting for a key to be constructed */
 629	if (awaken)
 630		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 631
 632	return ret == 0 ? link_ret : ret;
 633}
 634EXPORT_SYMBOL(key_reject_and_link);
 635
 636/**
 637 * key_put - Discard a reference to a key.
 638 * @key: The key to discard a reference from.
 639 *
 640 * Discard a reference to a key, and when all the references are gone, we
 641 * schedule the cleanup task to come and pull it out of the tree in process
 642 * context at some later time.
 643 */
 644void key_put(struct key *key)
 645{
 646	if (key) {
 647		key_check(key);
 648
 649		if (refcount_dec_and_test(&key->usage))
 650			schedule_work(&key_gc_work);
 651	}
 652}
 653EXPORT_SYMBOL(key_put);
 654
 655/*
 656 * Find a key by its serial number.
 657 */
 658struct key *key_lookup(key_serial_t id)
 659{
 660	struct rb_node *n;
 661	struct key *key;
 662
 663	spin_lock(&key_serial_lock);
 664
 665	/* search the tree for the specified key */
 666	n = key_serial_tree.rb_node;
 667	while (n) {
 668		key = rb_entry(n, struct key, serial_node);
 669
 670		if (id < key->serial)
 671			n = n->rb_left;
 672		else if (id > key->serial)
 673			n = n->rb_right;
 674		else
 675			goto found;
 676	}
 677
 678not_found:
 679	key = ERR_PTR(-ENOKEY);
 680	goto error;
 681
 682found:
 683	/* A key is allowed to be looked up only if someone still owns a
 684	 * reference to it - otherwise it's awaiting the gc.
 685	 */
 686	if (!refcount_inc_not_zero(&key->usage))
 687		goto not_found;
 688
 689error:
 690	spin_unlock(&key_serial_lock);
 691	return key;
 692}
 693
 694/*
 695 * Find and lock the specified key type against removal.
 696 *
 697 * We return with the sem read-locked if successful.  If the type wasn't
 698 * available -ENOKEY is returned instead.
 699 */
 700struct key_type *key_type_lookup(const char *type)
 701{
 702	struct key_type *ktype;
 703
 704	down_read(&key_types_sem);
 705
 706	/* look up the key type to see if it's one of the registered kernel
 707	 * types */
 708	list_for_each_entry(ktype, &key_types_list, link) {
 709		if (strcmp(ktype->name, type) == 0)
 710			goto found_kernel_type;
 711	}
 712
 713	up_read(&key_types_sem);
 714	ktype = ERR_PTR(-ENOKEY);
 715
 716found_kernel_type:
 717	return ktype;
 718}
 719
 720void key_set_timeout(struct key *key, unsigned timeout)
 721{
 722	time64_t expiry = 0;
 723
 724	/* make the changes with the locks held to prevent races */
 725	down_write(&key->sem);
 726
 727	if (timeout > 0)
 728		expiry = ktime_get_real_seconds() + timeout;
 729
 730	key->expiry = expiry;
 731	key_schedule_gc(key->expiry + key_gc_delay);
 732
 733	up_write(&key->sem);
 734}
 735EXPORT_SYMBOL_GPL(key_set_timeout);
 736
 737/*
 738 * Unlock a key type locked by key_type_lookup().
 739 */
 740void key_type_put(struct key_type *ktype)
 741{
 742	up_read(&key_types_sem);
 743}
 744
 745/*
 746 * Attempt to update an existing key.
 747 *
 748 * The key is given to us with an incremented refcount that we need to discard
 749 * if we get an error.
 750 */
 751static inline key_ref_t __key_update(key_ref_t key_ref,
 752				     struct key_preparsed_payload *prep)
 753{
 754	struct key *key = key_ref_to_ptr(key_ref);
 755	int ret;
 756
 757	/* need write permission on the key to update it */
 758	ret = key_permission(key_ref, KEY_NEED_WRITE);
 759	if (ret < 0)
 760		goto error;
 761
 762	ret = -EEXIST;
 763	if (!key->type->update)
 764		goto error;
 765
 766	down_write(&key->sem);
 767
 768	ret = key->type->update(key, prep);
 769	if (ret == 0) {
 770		/* Updating a negative key positively instantiates it */
 771		mark_key_instantiated(key, 0);
 772		notify_key(key, NOTIFY_KEY_UPDATED, 0);
 773	}
 774
 775	up_write(&key->sem);
 776
 777	if (ret < 0)
 778		goto error;
 779out:
 780	return key_ref;
 781
 782error:
 783	key_put(key);
 784	key_ref = ERR_PTR(ret);
 785	goto out;
 786}
 787
 788/**
 789 * key_create_or_update - Update or create and instantiate a key.
 790 * @keyring_ref: A pointer to the destination keyring with possession flag.
 791 * @type: The type of key.
 792 * @description: The searchable description for the key.
 793 * @payload: The data to use to instantiate or update the key.
 794 * @plen: The length of @payload.
 795 * @perm: The permissions mask for a new key.
 796 * @flags: The quota flags for a new key.
 797 *
 798 * Search the destination keyring for a key of the same description and if one
 799 * is found, update it, otherwise create and instantiate a new one and create a
 800 * link to it from that keyring.
 801 *
 802 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
 803 * concocted.
 804 *
 805 * Returns a pointer to the new key if successful, -ENODEV if the key type
 806 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
 807 * caller isn't permitted to modify the keyring or the LSM did not permit
 808 * creation of the key.
 809 *
 810 * On success, the possession flag from the keyring ref will be tacked on to
 811 * the key ref before it is returned.
 812 */
 813key_ref_t key_create_or_update(key_ref_t keyring_ref,
 814			       const char *type,
 815			       const char *description,
 816			       const void *payload,
 817			       size_t plen,
 818			       key_perm_t perm,
 819			       unsigned long flags)
 820{
 821	struct keyring_index_key index_key = {
 822		.description	= description,
 823	};
 824	struct key_preparsed_payload prep;
 825	struct assoc_array_edit *edit = NULL;
 826	const struct cred *cred = current_cred();
 827	struct key *keyring, *key = NULL;
 828	key_ref_t key_ref;
 829	int ret;
 830	struct key_restriction *restrict_link = NULL;
 831
 832	/* look up the key type to see if it's one of the registered kernel
 833	 * types */
 834	index_key.type = key_type_lookup(type);
 835	if (IS_ERR(index_key.type)) {
 836		key_ref = ERR_PTR(-ENODEV);
 837		goto error;
 838	}
 839
 840	key_ref = ERR_PTR(-EINVAL);
 841	if (!index_key.type->instantiate ||
 842	    (!index_key.description && !index_key.type->preparse))
 843		goto error_put_type;
 844
 845	keyring = key_ref_to_ptr(keyring_ref);
 846
 847	key_check(keyring);
 848
 849	if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
 850		restrict_link = keyring->restrict_link;
 851
 852	key_ref = ERR_PTR(-ENOTDIR);
 853	if (keyring->type != &key_type_keyring)
 854		goto error_put_type;
 855
 856	memset(&prep, 0, sizeof(prep));
 857	prep.data = payload;
 858	prep.datalen = plen;
 859	prep.quotalen = index_key.type->def_datalen;
 860	prep.expiry = TIME64_MAX;
 861	if (index_key.type->preparse) {
 862		ret = index_key.type->preparse(&prep);
 863		if (ret < 0) {
 864			key_ref = ERR_PTR(ret);
 865			goto error_free_prep;
 866		}
 867		if (!index_key.description)
 868			index_key.description = prep.description;
 869		key_ref = ERR_PTR(-EINVAL);
 870		if (!index_key.description)
 871			goto error_free_prep;
 872	}
 873	index_key.desc_len = strlen(index_key.description);
 874	key_set_index_key(&index_key);
 875
 876	ret = __key_link_lock(keyring, &index_key);
 877	if (ret < 0) {
 878		key_ref = ERR_PTR(ret);
 879		goto error_free_prep;
 880	}
 881
 882	ret = __key_link_begin(keyring, &index_key, &edit);
 883	if (ret < 0) {
 884		key_ref = ERR_PTR(ret);
 885		goto error_link_end;
 886	}
 887
 888	if (restrict_link && restrict_link->check) {
 889		ret = restrict_link->check(keyring, index_key.type,
 890					   &prep.payload, restrict_link->key);
 891		if (ret < 0) {
 892			key_ref = ERR_PTR(ret);
 893			goto error_link_end;
 894		}
 895	}
 896
 897	/* if we're going to allocate a new key, we're going to have
 898	 * to modify the keyring */
 899	ret = key_permission(keyring_ref, KEY_NEED_WRITE);
 900	if (ret < 0) {
 901		key_ref = ERR_PTR(ret);
 902		goto error_link_end;
 903	}
 904
 905	/* if it's possible to update this type of key, search for an existing
 906	 * key of the same type and description in the destination keyring and
 907	 * update that instead if possible
 908	 */
 909	if (index_key.type->update) {
 910		key_ref = find_key_to_update(keyring_ref, &index_key);
 911		if (key_ref)
 912			goto found_matching_key;
 913	}
 914
 915	/* if the client doesn't provide, decide on the permissions we want */
 916	if (perm == KEY_PERM_UNDEF) {
 917		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
 918		perm |= KEY_USR_VIEW;
 919
 920		if (index_key.type->read)
 921			perm |= KEY_POS_READ;
 922
 923		if (index_key.type == &key_type_keyring ||
 924		    index_key.type->update)
 925			perm |= KEY_POS_WRITE;
 926	}
 927
 928	/* allocate a new key */
 929	key = key_alloc(index_key.type, index_key.description,
 930			cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
 931	if (IS_ERR(key)) {
 932		key_ref = ERR_CAST(key);
 933		goto error_link_end;
 934	}
 935
 936	/* instantiate it and link it into the target keyring */
 937	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
 938	if (ret < 0) {
 939		key_put(key);
 940		key_ref = ERR_PTR(ret);
 941		goto error_link_end;
 942	}
 943
 944	ima_post_key_create_or_update(keyring, key, payload, plen,
 945				      flags, true);
 946
 947	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
 948
 949error_link_end:
 950	__key_link_end(keyring, &index_key, edit);
 951error_free_prep:
 952	if (index_key.type->preparse)
 953		index_key.type->free_preparse(&prep);
 954error_put_type:
 955	key_type_put(index_key.type);
 956error:
 957	return key_ref;
 958
 959 found_matching_key:
 960	/* we found a matching key, so we're going to try to update it
 961	 * - we can drop the locks first as we have the key pinned
 962	 */
 963	__key_link_end(keyring, &index_key, edit);
 964
 965	key = key_ref_to_ptr(key_ref);
 966	if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
 967		ret = wait_for_key_construction(key, true);
 968		if (ret < 0) {
 969			key_ref_put(key_ref);
 970			key_ref = ERR_PTR(ret);
 971			goto error_free_prep;
 972		}
 973	}
 974
 975	key_ref = __key_update(key_ref, &prep);
 976
 977	if (!IS_ERR(key_ref))
 978		ima_post_key_create_or_update(keyring, key,
 979					      payload, plen,
 980					      flags, false);
 981
 982	goto error_free_prep;
 983}
 984EXPORT_SYMBOL(key_create_or_update);
 985
 986/**
 987 * key_update - Update a key's contents.
 988 * @key_ref: The pointer (plus possession flag) to the key.
 989 * @payload: The data to be used to update the key.
 990 * @plen: The length of @payload.
 991 *
 992 * Attempt to update the contents of a key with the given payload data.  The
 993 * caller must be granted Write permission on the key.  Negative keys can be
 994 * instantiated by this method.
 995 *
 996 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
 997 * type does not support updating.  The key type may return other errors.
 998 */
 999int key_update(key_ref_t key_ref, const void *payload, size_t plen)
1000{
1001	struct key_preparsed_payload prep;
1002	struct key *key = key_ref_to_ptr(key_ref);
1003	int ret;
1004
1005	key_check(key);
1006
1007	/* the key must be writable */
1008	ret = key_permission(key_ref, KEY_NEED_WRITE);
1009	if (ret < 0)
1010		return ret;
1011
1012	/* attempt to update it if supported */
1013	if (!key->type->update)
1014		return -EOPNOTSUPP;
1015
1016	memset(&prep, 0, sizeof(prep));
1017	prep.data = payload;
1018	prep.datalen = plen;
1019	prep.quotalen = key->type->def_datalen;
1020	prep.expiry = TIME64_MAX;
1021	if (key->type->preparse) {
1022		ret = key->type->preparse(&prep);
1023		if (ret < 0)
1024			goto error;
1025	}
1026
1027	down_write(&key->sem);
1028
1029	ret = key->type->update(key, &prep);
1030	if (ret == 0) {
1031		/* Updating a negative key positively instantiates it */
1032		mark_key_instantiated(key, 0);
1033		notify_key(key, NOTIFY_KEY_UPDATED, 0);
1034	}
1035
1036	up_write(&key->sem);
1037
1038error:
1039	if (key->type->preparse)
1040		key->type->free_preparse(&prep);
1041	return ret;
1042}
1043EXPORT_SYMBOL(key_update);
1044
1045/**
1046 * key_revoke - Revoke a key.
1047 * @key: The key to be revoked.
1048 *
1049 * Mark a key as being revoked and ask the type to free up its resources.  The
1050 * revocation timeout is set and the key and all its links will be
1051 * automatically garbage collected after key_gc_delay amount of time if they
1052 * are not manually dealt with first.
1053 */
1054void key_revoke(struct key *key)
1055{
1056	time64_t time;
1057
1058	key_check(key);
1059
1060	/* make sure no one's trying to change or use the key when we mark it
1061	 * - we tell lockdep that we might nest because we might be revoking an
1062	 *   authorisation key whilst holding the sem on a key we've just
1063	 *   instantiated
1064	 */
1065	down_write_nested(&key->sem, 1);
1066	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags)) {
1067		notify_key(key, NOTIFY_KEY_REVOKED, 0);
1068		if (key->type->revoke)
1069			key->type->revoke(key);
1070
1071		/* set the death time to no more than the expiry time */
1072		time = ktime_get_real_seconds();
1073		if (key->revoked_at == 0 || key->revoked_at > time) {
1074			key->revoked_at = time;
1075			key_schedule_gc(key->revoked_at + key_gc_delay);
1076		}
1077	}
1078
1079	up_write(&key->sem);
1080}
1081EXPORT_SYMBOL(key_revoke);
1082
1083/**
1084 * key_invalidate - Invalidate a key.
1085 * @key: The key to be invalidated.
1086 *
1087 * Mark a key as being invalidated and have it cleaned up immediately.  The key
1088 * is ignored by all searches and other operations from this point.
1089 */
1090void key_invalidate(struct key *key)
1091{
1092	kenter("%d", key_serial(key));
1093
1094	key_check(key);
1095
1096	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1097		down_write_nested(&key->sem, 1);
1098		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1099			notify_key(key, NOTIFY_KEY_INVALIDATED, 0);
1100			key_schedule_gc_links();
1101		}
1102		up_write(&key->sem);
1103	}
1104}
1105EXPORT_SYMBOL(key_invalidate);
1106
1107/**
1108 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1109 * @key: The key to be instantiated
1110 * @prep: The preparsed data to load.
1111 *
1112 * Instantiate a key from preparsed data.  We assume we can just copy the data
1113 * in directly and clear the old pointers.
1114 *
1115 * This can be pointed to directly by the key type instantiate op pointer.
1116 */
1117int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1118{
1119	int ret;
1120
1121	pr_devel("==>%s()\n", __func__);
1122
1123	ret = key_payload_reserve(key, prep->quotalen);
1124	if (ret == 0) {
1125		rcu_assign_keypointer(key, prep->payload.data[0]);
1126		key->payload.data[1] = prep->payload.data[1];
1127		key->payload.data[2] = prep->payload.data[2];
1128		key->payload.data[3] = prep->payload.data[3];
1129		prep->payload.data[0] = NULL;
1130		prep->payload.data[1] = NULL;
1131		prep->payload.data[2] = NULL;
1132		prep->payload.data[3] = NULL;
1133	}
1134	pr_devel("<==%s() = %d\n", __func__, ret);
1135	return ret;
1136}
1137EXPORT_SYMBOL(generic_key_instantiate);
1138
1139/**
1140 * register_key_type - Register a type of key.
1141 * @ktype: The new key type.
1142 *
1143 * Register a new key type.
1144 *
1145 * Returns 0 on success or -EEXIST if a type of this name already exists.
1146 */
1147int register_key_type(struct key_type *ktype)
1148{
1149	struct key_type *p;
1150	int ret;
1151
1152	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1153
1154	ret = -EEXIST;
1155	down_write(&key_types_sem);
1156
1157	/* disallow key types with the same name */
1158	list_for_each_entry(p, &key_types_list, link) {
1159		if (strcmp(p->name, ktype->name) == 0)
1160			goto out;
1161	}
1162
1163	/* store the type */
1164	list_add(&ktype->link, &key_types_list);
1165
1166	pr_notice("Key type %s registered\n", ktype->name);
1167	ret = 0;
1168
1169out:
1170	up_write(&key_types_sem);
1171	return ret;
1172}
1173EXPORT_SYMBOL(register_key_type);
1174
1175/**
1176 * unregister_key_type - Unregister a type of key.
1177 * @ktype: The key type.
1178 *
1179 * Unregister a key type and mark all the extant keys of this type as dead.
1180 * Those keys of this type are then destroyed to get rid of their payloads and
1181 * they and their links will be garbage collected as soon as possible.
1182 */
1183void unregister_key_type(struct key_type *ktype)
1184{
1185	down_write(&key_types_sem);
1186	list_del_init(&ktype->link);
1187	downgrade_write(&key_types_sem);
1188	key_gc_keytype(ktype);
1189	pr_notice("Key type %s unregistered\n", ktype->name);
1190	up_read(&key_types_sem);
1191}
1192EXPORT_SYMBOL(unregister_key_type);
1193
1194/*
1195 * Initialise the key management state.
1196 */
1197void __init key_init(void)
1198{
1199	/* allocate a slab in which we can store keys */
1200	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1201			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1202
1203	/* add the special key types */
1204	list_add_tail(&key_type_keyring.link, &key_types_list);
1205	list_add_tail(&key_type_dead.link, &key_types_list);
1206	list_add_tail(&key_type_user.link, &key_types_list);
1207	list_add_tail(&key_type_logon.link, &key_types_list);
1208
1209	/* record the root user tracking */
1210	rb_link_node(&root_key_user.node,
1211		     NULL,
1212		     &key_user_tree.rb_node);
1213
1214	rb_insert_color(&root_key_user.node,
1215			&key_user_tree);
1216}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Basic authentication token and access key management
   3 *
   4 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
   5 * Written by David Howells (dhowells@redhat.com)
   6 */
   7
   8#include <linux/export.h>
   9#include <linux/init.h>
  10#include <linux/poison.h>
  11#include <linux/sched.h>
  12#include <linux/slab.h>
  13#include <linux/security.h>
  14#include <linux/workqueue.h>
  15#include <linux/random.h>
 
  16#include <linux/err.h>
  17#include "internal.h"
  18
  19struct kmem_cache *key_jar;
  20struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
  21DEFINE_SPINLOCK(key_serial_lock);
  22
  23struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
  24DEFINE_SPINLOCK(key_user_lock);
  25
  26unsigned int key_quota_root_maxkeys = 1000000;	/* root's key count quota */
  27unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
  28unsigned int key_quota_maxkeys = 200;		/* general key count quota */
  29unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
  30
  31static LIST_HEAD(key_types_list);
  32static DECLARE_RWSEM(key_types_sem);
  33
  34/* We serialise key instantiation and link */
  35DEFINE_MUTEX(key_construction_mutex);
  36
  37#ifdef KEY_DEBUGGING
  38void __key_check(const struct key *key)
  39{
  40	printk("__key_check: key %p {%08x} should be {%08x}\n",
  41	       key, key->magic, KEY_DEBUG_MAGIC);
  42	BUG();
  43}
  44#endif
  45
  46/*
  47 * Get the key quota record for a user, allocating a new record if one doesn't
  48 * already exist.
  49 */
  50struct key_user *key_user_lookup(kuid_t uid)
  51{
  52	struct key_user *candidate = NULL, *user;
  53	struct rb_node *parent, **p;
  54
  55try_again:
  56	parent = NULL;
  57	p = &key_user_tree.rb_node;
  58	spin_lock(&key_user_lock);
  59
  60	/* search the tree for a user record with a matching UID */
  61	while (*p) {
  62		parent = *p;
  63		user = rb_entry(parent, struct key_user, node);
  64
  65		if (uid_lt(uid, user->uid))
  66			p = &(*p)->rb_left;
  67		else if (uid_gt(uid, user->uid))
  68			p = &(*p)->rb_right;
  69		else
  70			goto found;
  71	}
  72
  73	/* if we get here, we failed to find a match in the tree */
  74	if (!candidate) {
  75		/* allocate a candidate user record if we don't already have
  76		 * one */
  77		spin_unlock(&key_user_lock);
  78
  79		user = NULL;
  80		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
  81		if (unlikely(!candidate))
  82			goto out;
  83
  84		/* the allocation may have scheduled, so we need to repeat the
  85		 * search lest someone else added the record whilst we were
  86		 * asleep */
  87		goto try_again;
  88	}
  89
  90	/* if we get here, then the user record still hadn't appeared on the
  91	 * second pass - so we use the candidate record */
  92	refcount_set(&candidate->usage, 1);
  93	atomic_set(&candidate->nkeys, 0);
  94	atomic_set(&candidate->nikeys, 0);
  95	candidate->uid = uid;
  96	candidate->qnkeys = 0;
  97	candidate->qnbytes = 0;
  98	spin_lock_init(&candidate->lock);
  99	mutex_init(&candidate->cons_lock);
 100
 101	rb_link_node(&candidate->node, parent, p);
 102	rb_insert_color(&candidate->node, &key_user_tree);
 103	spin_unlock(&key_user_lock);
 104	user = candidate;
 105	goto out;
 106
 107	/* okay - we found a user record for this UID */
 108found:
 109	refcount_inc(&user->usage);
 110	spin_unlock(&key_user_lock);
 111	kfree(candidate);
 112out:
 113	return user;
 114}
 115
 116/*
 117 * Dispose of a user structure
 118 */
 119void key_user_put(struct key_user *user)
 120{
 121	if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
 122		rb_erase(&user->node, &key_user_tree);
 123		spin_unlock(&key_user_lock);
 124
 125		kfree(user);
 126	}
 127}
 128
 129/*
 130 * Allocate a serial number for a key.  These are assigned randomly to avoid
 131 * security issues through covert channel problems.
 132 */
 133static inline void key_alloc_serial(struct key *key)
 134{
 135	struct rb_node *parent, **p;
 136	struct key *xkey;
 137
 138	/* propose a random serial number and look for a hole for it in the
 139	 * serial number tree */
 140	do {
 141		get_random_bytes(&key->serial, sizeof(key->serial));
 142
 143		key->serial >>= 1; /* negative numbers are not permitted */
 144	} while (key->serial < 3);
 145
 146	spin_lock(&key_serial_lock);
 147
 148attempt_insertion:
 149	parent = NULL;
 150	p = &key_serial_tree.rb_node;
 151
 152	while (*p) {
 153		parent = *p;
 154		xkey = rb_entry(parent, struct key, serial_node);
 155
 156		if (key->serial < xkey->serial)
 157			p = &(*p)->rb_left;
 158		else if (key->serial > xkey->serial)
 159			p = &(*p)->rb_right;
 160		else
 161			goto serial_exists;
 162	}
 163
 164	/* we've found a suitable hole - arrange for this key to occupy it */
 165	rb_link_node(&key->serial_node, parent, p);
 166	rb_insert_color(&key->serial_node, &key_serial_tree);
 167
 168	spin_unlock(&key_serial_lock);
 169	return;
 170
 171	/* we found a key with the proposed serial number - walk the tree from
 172	 * that point looking for the next unused serial number */
 173serial_exists:
 174	for (;;) {
 175		key->serial++;
 176		if (key->serial < 3) {
 177			key->serial = 3;
 178			goto attempt_insertion;
 179		}
 180
 181		parent = rb_next(parent);
 182		if (!parent)
 183			goto attempt_insertion;
 184
 185		xkey = rb_entry(parent, struct key, serial_node);
 186		if (key->serial < xkey->serial)
 187			goto attempt_insertion;
 188	}
 189}
 190
 191/**
 192 * key_alloc - Allocate a key of the specified type.
 193 * @type: The type of key to allocate.
 194 * @desc: The key description to allow the key to be searched out.
 195 * @uid: The owner of the new key.
 196 * @gid: The group ID for the new key's group permissions.
 197 * @cred: The credentials specifying UID namespace.
 198 * @perm: The permissions mask of the new key.
 199 * @flags: Flags specifying quota properties.
 200 * @restrict_link: Optional link restriction for new keyrings.
 201 *
 202 * Allocate a key of the specified type with the attributes given.  The key is
 203 * returned in an uninstantiated state and the caller needs to instantiate the
 204 * key before returning.
 205 *
 206 * The restrict_link structure (if not NULL) will be freed when the
 207 * keyring is destroyed, so it must be dynamically allocated.
 208 *
 209 * The user's key count quota is updated to reflect the creation of the key and
 210 * the user's key data quota has the default for the key type reserved.  The
 211 * instantiation function should amend this as necessary.  If insufficient
 212 * quota is available, -EDQUOT will be returned.
 213 *
 214 * The LSM security modules can prevent a key being created, in which case
 215 * -EACCES will be returned.
 216 *
 217 * Returns a pointer to the new key if successful and an error code otherwise.
 218 *
 219 * Note that the caller needs to ensure the key type isn't uninstantiated.
 220 * Internally this can be done by locking key_types_sem.  Externally, this can
 221 * be done by either never unregistering the key type, or making sure
 222 * key_alloc() calls don't race with module unloading.
 223 */
 224struct key *key_alloc(struct key_type *type, const char *desc,
 225		      kuid_t uid, kgid_t gid, const struct cred *cred,
 226		      key_perm_t perm, unsigned long flags,
 227		      struct key_restriction *restrict_link)
 228{
 229	struct key_user *user = NULL;
 230	struct key *key;
 231	size_t desclen, quotalen;
 232	int ret;
 233
 234	key = ERR_PTR(-EINVAL);
 235	if (!desc || !*desc)
 236		goto error;
 237
 238	if (type->vet_description) {
 239		ret = type->vet_description(desc);
 240		if (ret < 0) {
 241			key = ERR_PTR(ret);
 242			goto error;
 243		}
 244	}
 245
 246	desclen = strlen(desc);
 247	quotalen = desclen + 1 + type->def_datalen;
 248
 249	/* get hold of the key tracking for this user */
 250	user = key_user_lookup(uid);
 251	if (!user)
 252		goto no_memory_1;
 253
 254	/* check that the user's quota permits allocation of another key and
 255	 * its description */
 256	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 257		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
 258			key_quota_root_maxkeys : key_quota_maxkeys;
 259		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
 260			key_quota_root_maxbytes : key_quota_maxbytes;
 261
 262		spin_lock(&user->lock);
 263		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
 264			if (user->qnkeys + 1 > maxkeys ||
 265			    user->qnbytes + quotalen > maxbytes ||
 266			    user->qnbytes + quotalen < user->qnbytes)
 267				goto no_quota;
 268		}
 269
 270		user->qnkeys++;
 271		user->qnbytes += quotalen;
 272		spin_unlock(&user->lock);
 273	}
 274
 275	/* allocate and initialise the key and its description */
 276	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
 277	if (!key)
 278		goto no_memory_2;
 279
 280	key->index_key.desc_len = desclen;
 281	key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
 282	if (!key->index_key.description)
 283		goto no_memory_3;
 284	key->index_key.type = type;
 285	key_set_index_key(&key->index_key);
 286
 287	refcount_set(&key->usage, 1);
 288	init_rwsem(&key->sem);
 289	lockdep_set_class(&key->sem, &type->lock_class);
 290	key->user = user;
 291	key->quotalen = quotalen;
 292	key->datalen = type->def_datalen;
 293	key->uid = uid;
 294	key->gid = gid;
 295	key->perm = perm;
 296	key->restrict_link = restrict_link;
 297	key->last_used_at = ktime_get_real_seconds();
 298
 299	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
 300		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
 301	if (flags & KEY_ALLOC_BUILT_IN)
 302		key->flags |= 1 << KEY_FLAG_BUILTIN;
 303	if (flags & KEY_ALLOC_UID_KEYRING)
 304		key->flags |= 1 << KEY_FLAG_UID_KEYRING;
 305
 306#ifdef KEY_DEBUGGING
 307	key->magic = KEY_DEBUG_MAGIC;
 308#endif
 309
 310	/* let the security module know about the key */
 311	ret = security_key_alloc(key, cred, flags);
 312	if (ret < 0)
 313		goto security_error;
 314
 315	/* publish the key by giving it a serial number */
 316	refcount_inc(&key->domain_tag->usage);
 317	atomic_inc(&user->nkeys);
 318	key_alloc_serial(key);
 319
 320error:
 321	return key;
 322
 323security_error:
 324	kfree(key->description);
 325	kmem_cache_free(key_jar, key);
 326	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 327		spin_lock(&user->lock);
 328		user->qnkeys--;
 329		user->qnbytes -= quotalen;
 330		spin_unlock(&user->lock);
 331	}
 332	key_user_put(user);
 333	key = ERR_PTR(ret);
 334	goto error;
 335
 336no_memory_3:
 337	kmem_cache_free(key_jar, key);
 338no_memory_2:
 339	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 340		spin_lock(&user->lock);
 341		user->qnkeys--;
 342		user->qnbytes -= quotalen;
 343		spin_unlock(&user->lock);
 344	}
 345	key_user_put(user);
 346no_memory_1:
 347	key = ERR_PTR(-ENOMEM);
 348	goto error;
 349
 350no_quota:
 351	spin_unlock(&user->lock);
 352	key_user_put(user);
 353	key = ERR_PTR(-EDQUOT);
 354	goto error;
 355}
 356EXPORT_SYMBOL(key_alloc);
 357
 358/**
 359 * key_payload_reserve - Adjust data quota reservation for the key's payload
 360 * @key: The key to make the reservation for.
 361 * @datalen: The amount of data payload the caller now wants.
 362 *
 363 * Adjust the amount of the owning user's key data quota that a key reserves.
 364 * If the amount is increased, then -EDQUOT may be returned if there isn't
 365 * enough free quota available.
 366 *
 367 * If successful, 0 is returned.
 368 */
 369int key_payload_reserve(struct key *key, size_t datalen)
 370{
 371	int delta = (int)datalen - key->datalen;
 372	int ret = 0;
 373
 374	key_check(key);
 375
 376	/* contemplate the quota adjustment */
 377	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 378		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
 379			key_quota_root_maxbytes : key_quota_maxbytes;
 380
 381		spin_lock(&key->user->lock);
 382
 383		if (delta > 0 &&
 384		    (key->user->qnbytes + delta >= maxbytes ||
 385		     key->user->qnbytes + delta < key->user->qnbytes)) {
 386			ret = -EDQUOT;
 387		}
 388		else {
 389			key->user->qnbytes += delta;
 390			key->quotalen += delta;
 391		}
 392		spin_unlock(&key->user->lock);
 393	}
 394
 395	/* change the recorded data length if that didn't generate an error */
 396	if (ret == 0)
 397		key->datalen = datalen;
 398
 399	return ret;
 400}
 401EXPORT_SYMBOL(key_payload_reserve);
 402
 403/*
 404 * Change the key state to being instantiated.
 405 */
 406static void mark_key_instantiated(struct key *key, int reject_error)
 407{
 408	/* Commit the payload before setting the state; barrier versus
 409	 * key_read_state().
 410	 */
 411	smp_store_release(&key->state,
 412			  (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
 413}
 414
 415/*
 416 * Instantiate a key and link it into the target keyring atomically.  Must be
 417 * called with the target keyring's semaphore writelocked.  The target key's
 418 * semaphore need not be locked as instantiation is serialised by
 419 * key_construction_mutex.
 420 */
 421static int __key_instantiate_and_link(struct key *key,
 422				      struct key_preparsed_payload *prep,
 423				      struct key *keyring,
 424				      struct key *authkey,
 425				      struct assoc_array_edit **_edit)
 426{
 427	int ret, awaken;
 428
 429	key_check(key);
 430	key_check(keyring);
 431
 432	awaken = 0;
 433	ret = -EBUSY;
 434
 435	mutex_lock(&key_construction_mutex);
 436
 437	/* can't instantiate twice */
 438	if (key->state == KEY_IS_UNINSTANTIATED) {
 439		/* instantiate the key */
 440		ret = key->type->instantiate(key, prep);
 441
 442		if (ret == 0) {
 443			/* mark the key as being instantiated */
 444			atomic_inc(&key->user->nikeys);
 445			mark_key_instantiated(key, 0);
 
 446
 447			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 448				awaken = 1;
 449
 450			/* and link it into the destination keyring */
 451			if (keyring) {
 452				if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
 453					set_bit(KEY_FLAG_KEEP, &key->flags);
 454
 455				__key_link(key, _edit);
 456			}
 457
 458			/* disable the authorisation key */
 459			if (authkey)
 460				key_invalidate(authkey);
 461
 462			if (prep->expiry != TIME64_MAX) {
 463				key->expiry = prep->expiry;
 464				key_schedule_gc(prep->expiry + key_gc_delay);
 465			}
 466		}
 467	}
 468
 469	mutex_unlock(&key_construction_mutex);
 470
 471	/* wake up anyone waiting for a key to be constructed */
 472	if (awaken)
 473		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 474
 475	return ret;
 476}
 477
 478/**
 479 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
 480 * @key: The key to instantiate.
 481 * @data: The data to use to instantiate the keyring.
 482 * @datalen: The length of @data.
 483 * @keyring: Keyring to create a link in on success (or NULL).
 484 * @authkey: The authorisation token permitting instantiation.
 485 *
 486 * Instantiate a key that's in the uninstantiated state using the provided data
 487 * and, if successful, link it in to the destination keyring if one is
 488 * supplied.
 489 *
 490 * If successful, 0 is returned, the authorisation token is revoked and anyone
 491 * waiting for the key is woken up.  If the key was already instantiated,
 492 * -EBUSY will be returned.
 493 */
 494int key_instantiate_and_link(struct key *key,
 495			     const void *data,
 496			     size_t datalen,
 497			     struct key *keyring,
 498			     struct key *authkey)
 499{
 500	struct key_preparsed_payload prep;
 501	struct assoc_array_edit *edit = NULL;
 502	int ret;
 503
 504	memset(&prep, 0, sizeof(prep));
 505	prep.data = data;
 506	prep.datalen = datalen;
 507	prep.quotalen = key->type->def_datalen;
 508	prep.expiry = TIME64_MAX;
 509	if (key->type->preparse) {
 510		ret = key->type->preparse(&prep);
 511		if (ret < 0)
 512			goto error;
 513	}
 514
 515	if (keyring) {
 516		ret = __key_link_lock(keyring, &key->index_key);
 517		if (ret < 0)
 518			goto error;
 519
 520		ret = __key_link_begin(keyring, &key->index_key, &edit);
 521		if (ret < 0)
 522			goto error_link_end;
 523
 524		if (keyring->restrict_link && keyring->restrict_link->check) {
 525			struct key_restriction *keyres = keyring->restrict_link;
 526
 527			ret = keyres->check(keyring, key->type, &prep.payload,
 528					    keyres->key);
 529			if (ret < 0)
 530				goto error_link_end;
 531		}
 532	}
 533
 534	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
 535
 536error_link_end:
 537	if (keyring)
 538		__key_link_end(keyring, &key->index_key, edit);
 539
 540error:
 541	if (key->type->preparse)
 542		key->type->free_preparse(&prep);
 543	return ret;
 544}
 545
 546EXPORT_SYMBOL(key_instantiate_and_link);
 547
 548/**
 549 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
 550 * @key: The key to instantiate.
 551 * @timeout: The timeout on the negative key.
 552 * @error: The error to return when the key is hit.
 553 * @keyring: Keyring to create a link in on success (or NULL).
 554 * @authkey: The authorisation token permitting instantiation.
 555 *
 556 * Negatively instantiate a key that's in the uninstantiated state and, if
 557 * successful, set its timeout and stored error and link it in to the
 558 * destination keyring if one is supplied.  The key and any links to the key
 559 * will be automatically garbage collected after the timeout expires.
 560 *
 561 * Negative keys are used to rate limit repeated request_key() calls by causing
 562 * them to return the stored error code (typically ENOKEY) until the negative
 563 * key expires.
 564 *
 565 * If successful, 0 is returned, the authorisation token is revoked and anyone
 566 * waiting for the key is woken up.  If the key was already instantiated,
 567 * -EBUSY will be returned.
 568 */
 569int key_reject_and_link(struct key *key,
 570			unsigned timeout,
 571			unsigned error,
 572			struct key *keyring,
 573			struct key *authkey)
 574{
 575	struct assoc_array_edit *edit = NULL;
 576	int ret, awaken, link_ret = 0;
 577
 578	key_check(key);
 579	key_check(keyring);
 580
 581	awaken = 0;
 582	ret = -EBUSY;
 583
 584	if (keyring) {
 585		if (keyring->restrict_link)
 586			return -EPERM;
 587
 588		link_ret = __key_link_lock(keyring, &key->index_key);
 589		if (link_ret == 0) {
 590			link_ret = __key_link_begin(keyring, &key->index_key, &edit);
 591			if (link_ret < 0)
 592				__key_link_end(keyring, &key->index_key, edit);
 593		}
 594	}
 595
 596	mutex_lock(&key_construction_mutex);
 597
 598	/* can't instantiate twice */
 599	if (key->state == KEY_IS_UNINSTANTIATED) {
 600		/* mark the key as being negatively instantiated */
 601		atomic_inc(&key->user->nikeys);
 602		mark_key_instantiated(key, -error);
 
 603		key->expiry = ktime_get_real_seconds() + timeout;
 604		key_schedule_gc(key->expiry + key_gc_delay);
 605
 606		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 607			awaken = 1;
 608
 609		ret = 0;
 610
 611		/* and link it into the destination keyring */
 612		if (keyring && link_ret == 0)
 613			__key_link(key, &edit);
 614
 615		/* disable the authorisation key */
 616		if (authkey)
 617			key_invalidate(authkey);
 618	}
 619
 620	mutex_unlock(&key_construction_mutex);
 621
 622	if (keyring && link_ret == 0)
 623		__key_link_end(keyring, &key->index_key, edit);
 624
 625	/* wake up anyone waiting for a key to be constructed */
 626	if (awaken)
 627		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 628
 629	return ret == 0 ? link_ret : ret;
 630}
 631EXPORT_SYMBOL(key_reject_and_link);
 632
 633/**
 634 * key_put - Discard a reference to a key.
 635 * @key: The key to discard a reference from.
 636 *
 637 * Discard a reference to a key, and when all the references are gone, we
 638 * schedule the cleanup task to come and pull it out of the tree in process
 639 * context at some later time.
 640 */
 641void key_put(struct key *key)
 642{
 643	if (key) {
 644		key_check(key);
 645
 646		if (refcount_dec_and_test(&key->usage))
 647			schedule_work(&key_gc_work);
 648	}
 649}
 650EXPORT_SYMBOL(key_put);
 651
 652/*
 653 * Find a key by its serial number.
 654 */
 655struct key *key_lookup(key_serial_t id)
 656{
 657	struct rb_node *n;
 658	struct key *key;
 659
 660	spin_lock(&key_serial_lock);
 661
 662	/* search the tree for the specified key */
 663	n = key_serial_tree.rb_node;
 664	while (n) {
 665		key = rb_entry(n, struct key, serial_node);
 666
 667		if (id < key->serial)
 668			n = n->rb_left;
 669		else if (id > key->serial)
 670			n = n->rb_right;
 671		else
 672			goto found;
 673	}
 674
 675not_found:
 676	key = ERR_PTR(-ENOKEY);
 677	goto error;
 678
 679found:
 680	/* A key is allowed to be looked up only if someone still owns a
 681	 * reference to it - otherwise it's awaiting the gc.
 682	 */
 683	if (!refcount_inc_not_zero(&key->usage))
 684		goto not_found;
 685
 686error:
 687	spin_unlock(&key_serial_lock);
 688	return key;
 689}
 690
 691/*
 692 * Find and lock the specified key type against removal.
 693 *
 694 * We return with the sem read-locked if successful.  If the type wasn't
 695 * available -ENOKEY is returned instead.
 696 */
 697struct key_type *key_type_lookup(const char *type)
 698{
 699	struct key_type *ktype;
 700
 701	down_read(&key_types_sem);
 702
 703	/* look up the key type to see if it's one of the registered kernel
 704	 * types */
 705	list_for_each_entry(ktype, &key_types_list, link) {
 706		if (strcmp(ktype->name, type) == 0)
 707			goto found_kernel_type;
 708	}
 709
 710	up_read(&key_types_sem);
 711	ktype = ERR_PTR(-ENOKEY);
 712
 713found_kernel_type:
 714	return ktype;
 715}
 716
 717void key_set_timeout(struct key *key, unsigned timeout)
 718{
 719	time64_t expiry = 0;
 720
 721	/* make the changes with the locks held to prevent races */
 722	down_write(&key->sem);
 723
 724	if (timeout > 0)
 725		expiry = ktime_get_real_seconds() + timeout;
 726
 727	key->expiry = expiry;
 728	key_schedule_gc(key->expiry + key_gc_delay);
 729
 730	up_write(&key->sem);
 731}
 732EXPORT_SYMBOL_GPL(key_set_timeout);
 733
 734/*
 735 * Unlock a key type locked by key_type_lookup().
 736 */
 737void key_type_put(struct key_type *ktype)
 738{
 739	up_read(&key_types_sem);
 740}
 741
 742/*
 743 * Attempt to update an existing key.
 744 *
 745 * The key is given to us with an incremented refcount that we need to discard
 746 * if we get an error.
 747 */
 748static inline key_ref_t __key_update(key_ref_t key_ref,
 749				     struct key_preparsed_payload *prep)
 750{
 751	struct key *key = key_ref_to_ptr(key_ref);
 752	int ret;
 753
 754	/* need write permission on the key to update it */
 755	ret = key_permission(key_ref, KEY_NEED_WRITE);
 756	if (ret < 0)
 757		goto error;
 758
 759	ret = -EEXIST;
 760	if (!key->type->update)
 761		goto error;
 762
 763	down_write(&key->sem);
 764
 765	ret = key->type->update(key, prep);
 766	if (ret == 0)
 767		/* Updating a negative key positively instantiates it */
 768		mark_key_instantiated(key, 0);
 
 
 769
 770	up_write(&key->sem);
 771
 772	if (ret < 0)
 773		goto error;
 774out:
 775	return key_ref;
 776
 777error:
 778	key_put(key);
 779	key_ref = ERR_PTR(ret);
 780	goto out;
 781}
 782
 783/**
 784 * key_create_or_update - Update or create and instantiate a key.
 785 * @keyring_ref: A pointer to the destination keyring with possession flag.
 786 * @type: The type of key.
 787 * @description: The searchable description for the key.
 788 * @payload: The data to use to instantiate or update the key.
 789 * @plen: The length of @payload.
 790 * @perm: The permissions mask for a new key.
 791 * @flags: The quota flags for a new key.
 792 *
 793 * Search the destination keyring for a key of the same description and if one
 794 * is found, update it, otherwise create and instantiate a new one and create a
 795 * link to it from that keyring.
 796 *
 797 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
 798 * concocted.
 799 *
 800 * Returns a pointer to the new key if successful, -ENODEV if the key type
 801 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
 802 * caller isn't permitted to modify the keyring or the LSM did not permit
 803 * creation of the key.
 804 *
 805 * On success, the possession flag from the keyring ref will be tacked on to
 806 * the key ref before it is returned.
 807 */
 808key_ref_t key_create_or_update(key_ref_t keyring_ref,
 809			       const char *type,
 810			       const char *description,
 811			       const void *payload,
 812			       size_t plen,
 813			       key_perm_t perm,
 814			       unsigned long flags)
 815{
 816	struct keyring_index_key index_key = {
 817		.description	= description,
 818	};
 819	struct key_preparsed_payload prep;
 820	struct assoc_array_edit *edit = NULL;
 821	const struct cred *cred = current_cred();
 822	struct key *keyring, *key = NULL;
 823	key_ref_t key_ref;
 824	int ret;
 825	struct key_restriction *restrict_link = NULL;
 826
 827	/* look up the key type to see if it's one of the registered kernel
 828	 * types */
 829	index_key.type = key_type_lookup(type);
 830	if (IS_ERR(index_key.type)) {
 831		key_ref = ERR_PTR(-ENODEV);
 832		goto error;
 833	}
 834
 835	key_ref = ERR_PTR(-EINVAL);
 836	if (!index_key.type->instantiate ||
 837	    (!index_key.description && !index_key.type->preparse))
 838		goto error_put_type;
 839
 840	keyring = key_ref_to_ptr(keyring_ref);
 841
 842	key_check(keyring);
 843
 844	if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
 845		restrict_link = keyring->restrict_link;
 846
 847	key_ref = ERR_PTR(-ENOTDIR);
 848	if (keyring->type != &key_type_keyring)
 849		goto error_put_type;
 850
 851	memset(&prep, 0, sizeof(prep));
 852	prep.data = payload;
 853	prep.datalen = plen;
 854	prep.quotalen = index_key.type->def_datalen;
 855	prep.expiry = TIME64_MAX;
 856	if (index_key.type->preparse) {
 857		ret = index_key.type->preparse(&prep);
 858		if (ret < 0) {
 859			key_ref = ERR_PTR(ret);
 860			goto error_free_prep;
 861		}
 862		if (!index_key.description)
 863			index_key.description = prep.description;
 864		key_ref = ERR_PTR(-EINVAL);
 865		if (!index_key.description)
 866			goto error_free_prep;
 867	}
 868	index_key.desc_len = strlen(index_key.description);
 869	key_set_index_key(&index_key);
 870
 871	ret = __key_link_lock(keyring, &index_key);
 872	if (ret < 0) {
 873		key_ref = ERR_PTR(ret);
 874		goto error_free_prep;
 875	}
 876
 877	ret = __key_link_begin(keyring, &index_key, &edit);
 878	if (ret < 0) {
 879		key_ref = ERR_PTR(ret);
 880		goto error_link_end;
 881	}
 882
 883	if (restrict_link && restrict_link->check) {
 884		ret = restrict_link->check(keyring, index_key.type,
 885					   &prep.payload, restrict_link->key);
 886		if (ret < 0) {
 887			key_ref = ERR_PTR(ret);
 888			goto error_link_end;
 889		}
 890	}
 891
 892	/* if we're going to allocate a new key, we're going to have
 893	 * to modify the keyring */
 894	ret = key_permission(keyring_ref, KEY_NEED_WRITE);
 895	if (ret < 0) {
 896		key_ref = ERR_PTR(ret);
 897		goto error_link_end;
 898	}
 899
 900	/* if it's possible to update this type of key, search for an existing
 901	 * key of the same type and description in the destination keyring and
 902	 * update that instead if possible
 903	 */
 904	if (index_key.type->update) {
 905		key_ref = find_key_to_update(keyring_ref, &index_key);
 906		if (key_ref)
 907			goto found_matching_key;
 908	}
 909
 910	/* if the client doesn't provide, decide on the permissions we want */
 911	if (perm == KEY_PERM_UNDEF) {
 912		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
 913		perm |= KEY_USR_VIEW;
 914
 915		if (index_key.type->read)
 916			perm |= KEY_POS_READ;
 917
 918		if (index_key.type == &key_type_keyring ||
 919		    index_key.type->update)
 920			perm |= KEY_POS_WRITE;
 921	}
 922
 923	/* allocate a new key */
 924	key = key_alloc(index_key.type, index_key.description,
 925			cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
 926	if (IS_ERR(key)) {
 927		key_ref = ERR_CAST(key);
 928		goto error_link_end;
 929	}
 930
 931	/* instantiate it and link it into the target keyring */
 932	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
 933	if (ret < 0) {
 934		key_put(key);
 935		key_ref = ERR_PTR(ret);
 936		goto error_link_end;
 937	}
 938
 
 
 
 939	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
 940
 941error_link_end:
 942	__key_link_end(keyring, &index_key, edit);
 943error_free_prep:
 944	if (index_key.type->preparse)
 945		index_key.type->free_preparse(&prep);
 946error_put_type:
 947	key_type_put(index_key.type);
 948error:
 949	return key_ref;
 950
 951 found_matching_key:
 952	/* we found a matching key, so we're going to try to update it
 953	 * - we can drop the locks first as we have the key pinned
 954	 */
 955	__key_link_end(keyring, &index_key, edit);
 956
 957	key = key_ref_to_ptr(key_ref);
 958	if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
 959		ret = wait_for_key_construction(key, true);
 960		if (ret < 0) {
 961			key_ref_put(key_ref);
 962			key_ref = ERR_PTR(ret);
 963			goto error_free_prep;
 964		}
 965	}
 966
 967	key_ref = __key_update(key_ref, &prep);
 
 
 
 
 
 
 968	goto error_free_prep;
 969}
 970EXPORT_SYMBOL(key_create_or_update);
 971
 972/**
 973 * key_update - Update a key's contents.
 974 * @key_ref: The pointer (plus possession flag) to the key.
 975 * @payload: The data to be used to update the key.
 976 * @plen: The length of @payload.
 977 *
 978 * Attempt to update the contents of a key with the given payload data.  The
 979 * caller must be granted Write permission on the key.  Negative keys can be
 980 * instantiated by this method.
 981 *
 982 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
 983 * type does not support updating.  The key type may return other errors.
 984 */
 985int key_update(key_ref_t key_ref, const void *payload, size_t plen)
 986{
 987	struct key_preparsed_payload prep;
 988	struct key *key = key_ref_to_ptr(key_ref);
 989	int ret;
 990
 991	key_check(key);
 992
 993	/* the key must be writable */
 994	ret = key_permission(key_ref, KEY_NEED_WRITE);
 995	if (ret < 0)
 996		return ret;
 997
 998	/* attempt to update it if supported */
 999	if (!key->type->update)
1000		return -EOPNOTSUPP;
1001
1002	memset(&prep, 0, sizeof(prep));
1003	prep.data = payload;
1004	prep.datalen = plen;
1005	prep.quotalen = key->type->def_datalen;
1006	prep.expiry = TIME64_MAX;
1007	if (key->type->preparse) {
1008		ret = key->type->preparse(&prep);
1009		if (ret < 0)
1010			goto error;
1011	}
1012
1013	down_write(&key->sem);
1014
1015	ret = key->type->update(key, &prep);
1016	if (ret == 0)
1017		/* Updating a negative key positively instantiates it */
1018		mark_key_instantiated(key, 0);
 
 
1019
1020	up_write(&key->sem);
1021
1022error:
1023	if (key->type->preparse)
1024		key->type->free_preparse(&prep);
1025	return ret;
1026}
1027EXPORT_SYMBOL(key_update);
1028
1029/**
1030 * key_revoke - Revoke a key.
1031 * @key: The key to be revoked.
1032 *
1033 * Mark a key as being revoked and ask the type to free up its resources.  The
1034 * revocation timeout is set and the key and all its links will be
1035 * automatically garbage collected after key_gc_delay amount of time if they
1036 * are not manually dealt with first.
1037 */
1038void key_revoke(struct key *key)
1039{
1040	time64_t time;
1041
1042	key_check(key);
1043
1044	/* make sure no one's trying to change or use the key when we mark it
1045	 * - we tell lockdep that we might nest because we might be revoking an
1046	 *   authorisation key whilst holding the sem on a key we've just
1047	 *   instantiated
1048	 */
1049	down_write_nested(&key->sem, 1);
1050	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
1051	    key->type->revoke)
1052		key->type->revoke(key);
1053
1054	/* set the death time to no more than the expiry time */
1055	time = ktime_get_real_seconds();
1056	if (key->revoked_at == 0 || key->revoked_at > time) {
1057		key->revoked_at = time;
1058		key_schedule_gc(key->revoked_at + key_gc_delay);
 
 
1059	}
1060
1061	up_write(&key->sem);
1062}
1063EXPORT_SYMBOL(key_revoke);
1064
1065/**
1066 * key_invalidate - Invalidate a key.
1067 * @key: The key to be invalidated.
1068 *
1069 * Mark a key as being invalidated and have it cleaned up immediately.  The key
1070 * is ignored by all searches and other operations from this point.
1071 */
1072void key_invalidate(struct key *key)
1073{
1074	kenter("%d", key_serial(key));
1075
1076	key_check(key);
1077
1078	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1079		down_write_nested(&key->sem, 1);
1080		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
 
1081			key_schedule_gc_links();
 
1082		up_write(&key->sem);
1083	}
1084}
1085EXPORT_SYMBOL(key_invalidate);
1086
1087/**
1088 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1089 * @key: The key to be instantiated
1090 * @prep: The preparsed data to load.
1091 *
1092 * Instantiate a key from preparsed data.  We assume we can just copy the data
1093 * in directly and clear the old pointers.
1094 *
1095 * This can be pointed to directly by the key type instantiate op pointer.
1096 */
1097int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1098{
1099	int ret;
1100
1101	pr_devel("==>%s()\n", __func__);
1102
1103	ret = key_payload_reserve(key, prep->quotalen);
1104	if (ret == 0) {
1105		rcu_assign_keypointer(key, prep->payload.data[0]);
1106		key->payload.data[1] = prep->payload.data[1];
1107		key->payload.data[2] = prep->payload.data[2];
1108		key->payload.data[3] = prep->payload.data[3];
1109		prep->payload.data[0] = NULL;
1110		prep->payload.data[1] = NULL;
1111		prep->payload.data[2] = NULL;
1112		prep->payload.data[3] = NULL;
1113	}
1114	pr_devel("<==%s() = %d\n", __func__, ret);
1115	return ret;
1116}
1117EXPORT_SYMBOL(generic_key_instantiate);
1118
1119/**
1120 * register_key_type - Register a type of key.
1121 * @ktype: The new key type.
1122 *
1123 * Register a new key type.
1124 *
1125 * Returns 0 on success or -EEXIST if a type of this name already exists.
1126 */
1127int register_key_type(struct key_type *ktype)
1128{
1129	struct key_type *p;
1130	int ret;
1131
1132	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1133
1134	ret = -EEXIST;
1135	down_write(&key_types_sem);
1136
1137	/* disallow key types with the same name */
1138	list_for_each_entry(p, &key_types_list, link) {
1139		if (strcmp(p->name, ktype->name) == 0)
1140			goto out;
1141	}
1142
1143	/* store the type */
1144	list_add(&ktype->link, &key_types_list);
1145
1146	pr_notice("Key type %s registered\n", ktype->name);
1147	ret = 0;
1148
1149out:
1150	up_write(&key_types_sem);
1151	return ret;
1152}
1153EXPORT_SYMBOL(register_key_type);
1154
1155/**
1156 * unregister_key_type - Unregister a type of key.
1157 * @ktype: The key type.
1158 *
1159 * Unregister a key type and mark all the extant keys of this type as dead.
1160 * Those keys of this type are then destroyed to get rid of their payloads and
1161 * they and their links will be garbage collected as soon as possible.
1162 */
1163void unregister_key_type(struct key_type *ktype)
1164{
1165	down_write(&key_types_sem);
1166	list_del_init(&ktype->link);
1167	downgrade_write(&key_types_sem);
1168	key_gc_keytype(ktype);
1169	pr_notice("Key type %s unregistered\n", ktype->name);
1170	up_read(&key_types_sem);
1171}
1172EXPORT_SYMBOL(unregister_key_type);
1173
1174/*
1175 * Initialise the key management state.
1176 */
1177void __init key_init(void)
1178{
1179	/* allocate a slab in which we can store keys */
1180	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1181			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1182
1183	/* add the special key types */
1184	list_add_tail(&key_type_keyring.link, &key_types_list);
1185	list_add_tail(&key_type_dead.link, &key_types_list);
1186	list_add_tail(&key_type_user.link, &key_types_list);
1187	list_add_tail(&key_type_logon.link, &key_types_list);
1188
1189	/* record the root user tracking */
1190	rb_link_node(&root_key_user.node,
1191		     NULL,
1192		     &key_user_tree.rb_node);
1193
1194	rb_insert_color(&root_key_user.node,
1195			&key_user_tree);
1196}