Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Basic authentication token and access key management
   3 *
   4 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
   5 * Written by David Howells (dhowells@redhat.com)
 
 
 
 
 
   6 */
   7
   8#include <linux/export.h>
   9#include <linux/init.h>
  10#include <linux/poison.h>
  11#include <linux/sched.h>
  12#include <linux/slab.h>
  13#include <linux/security.h>
  14#include <linux/workqueue.h>
  15#include <linux/random.h>
  16#include <linux/ima.h>
  17#include <linux/err.h>
 
  18#include "internal.h"
  19
  20struct kmem_cache *key_jar;
  21struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
  22DEFINE_SPINLOCK(key_serial_lock);
  23
  24struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
  25DEFINE_SPINLOCK(key_user_lock);
  26
  27unsigned int key_quota_root_maxkeys = 1000000;	/* root's key count quota */
  28unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
  29unsigned int key_quota_maxkeys = 200;		/* general key count quota */
  30unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
  31
  32static LIST_HEAD(key_types_list);
  33static DECLARE_RWSEM(key_types_sem);
  34
 
 
 
  35/* We serialise key instantiation and link */
  36DEFINE_MUTEX(key_construction_mutex);
  37
 
 
 
 
 
  38#ifdef KEY_DEBUGGING
  39void __key_check(const struct key *key)
  40{
  41	printk("__key_check: key %p {%08x} should be {%08x}\n",
  42	       key, key->magic, KEY_DEBUG_MAGIC);
  43	BUG();
  44}
  45#endif
  46
  47/*
  48 * Get the key quota record for a user, allocating a new record if one doesn't
  49 * already exist.
  50 */
  51struct key_user *key_user_lookup(kuid_t uid)
  52{
  53	struct key_user *candidate = NULL, *user;
  54	struct rb_node *parent, **p;
 
  55
  56try_again:
  57	parent = NULL;
  58	p = &key_user_tree.rb_node;
  59	spin_lock(&key_user_lock);
  60
  61	/* search the tree for a user record with a matching UID */
  62	while (*p) {
  63		parent = *p;
  64		user = rb_entry(parent, struct key_user, node);
  65
  66		if (uid_lt(uid, user->uid))
  67			p = &(*p)->rb_left;
  68		else if (uid_gt(uid, user->uid))
 
 
 
 
  69			p = &(*p)->rb_right;
  70		else
  71			goto found;
  72	}
  73
  74	/* if we get here, we failed to find a match in the tree */
  75	if (!candidate) {
  76		/* allocate a candidate user record if we don't already have
  77		 * one */
  78		spin_unlock(&key_user_lock);
  79
  80		user = NULL;
  81		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
  82		if (unlikely(!candidate))
  83			goto out;
  84
  85		/* the allocation may have scheduled, so we need to repeat the
  86		 * search lest someone else added the record whilst we were
  87		 * asleep */
  88		goto try_again;
  89	}
  90
  91	/* if we get here, then the user record still hadn't appeared on the
  92	 * second pass - so we use the candidate record */
  93	refcount_set(&candidate->usage, 1);
  94	atomic_set(&candidate->nkeys, 0);
  95	atomic_set(&candidate->nikeys, 0);
  96	candidate->uid = uid;
 
  97	candidate->qnkeys = 0;
  98	candidate->qnbytes = 0;
  99	spin_lock_init(&candidate->lock);
 100	mutex_init(&candidate->cons_lock);
 101
 102	rb_link_node(&candidate->node, parent, p);
 103	rb_insert_color(&candidate->node, &key_user_tree);
 104	spin_unlock(&key_user_lock);
 105	user = candidate;
 106	goto out;
 107
 108	/* okay - we found a user record for this UID */
 109found:
 110	refcount_inc(&user->usage);
 111	spin_unlock(&key_user_lock);
 112	kfree(candidate);
 113out:
 114	return user;
 115}
 116
 117/*
 118 * Dispose of a user structure
 119 */
 120void key_user_put(struct key_user *user)
 121{
 122	if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
 123		rb_erase(&user->node, &key_user_tree);
 124		spin_unlock(&key_user_lock);
 
 125
 126		kfree(user);
 127	}
 128}
 129
 130/*
 131 * Allocate a serial number for a key.  These are assigned randomly to avoid
 132 * security issues through covert channel problems.
 133 */
 134static inline void key_alloc_serial(struct key *key)
 135{
 136	struct rb_node *parent, **p;
 137	struct key *xkey;
 138
 139	/* propose a random serial number and look for a hole for it in the
 140	 * serial number tree */
 141	do {
 142		get_random_bytes(&key->serial, sizeof(key->serial));
 143
 144		key->serial >>= 1; /* negative numbers are not permitted */
 145	} while (key->serial < 3);
 146
 147	spin_lock(&key_serial_lock);
 148
 149attempt_insertion:
 150	parent = NULL;
 151	p = &key_serial_tree.rb_node;
 152
 153	while (*p) {
 154		parent = *p;
 155		xkey = rb_entry(parent, struct key, serial_node);
 156
 157		if (key->serial < xkey->serial)
 158			p = &(*p)->rb_left;
 159		else if (key->serial > xkey->serial)
 160			p = &(*p)->rb_right;
 161		else
 162			goto serial_exists;
 163	}
 164
 165	/* we've found a suitable hole - arrange for this key to occupy it */
 166	rb_link_node(&key->serial_node, parent, p);
 167	rb_insert_color(&key->serial_node, &key_serial_tree);
 168
 169	spin_unlock(&key_serial_lock);
 170	return;
 171
 172	/* we found a key with the proposed serial number - walk the tree from
 173	 * that point looking for the next unused serial number */
 174serial_exists:
 175	for (;;) {
 176		key->serial++;
 177		if (key->serial < 3) {
 178			key->serial = 3;
 179			goto attempt_insertion;
 180		}
 181
 182		parent = rb_next(parent);
 183		if (!parent)
 184			goto attempt_insertion;
 185
 186		xkey = rb_entry(parent, struct key, serial_node);
 187		if (key->serial < xkey->serial)
 188			goto attempt_insertion;
 189	}
 190}
 191
 192/**
 193 * key_alloc - Allocate a key of the specified type.
 194 * @type: The type of key to allocate.
 195 * @desc: The key description to allow the key to be searched out.
 196 * @uid: The owner of the new key.
 197 * @gid: The group ID for the new key's group permissions.
 198 * @cred: The credentials specifying UID namespace.
 199 * @perm: The permissions mask of the new key.
 200 * @flags: Flags specifying quota properties.
 201 * @restrict_link: Optional link restriction for new keyrings.
 202 *
 203 * Allocate a key of the specified type with the attributes given.  The key is
 204 * returned in an uninstantiated state and the caller needs to instantiate the
 205 * key before returning.
 206 *
 207 * The restrict_link structure (if not NULL) will be freed when the
 208 * keyring is destroyed, so it must be dynamically allocated.
 209 *
 210 * The user's key count quota is updated to reflect the creation of the key and
 211 * the user's key data quota has the default for the key type reserved.  The
 212 * instantiation function should amend this as necessary.  If insufficient
 213 * quota is available, -EDQUOT will be returned.
 214 *
 215 * The LSM security modules can prevent a key being created, in which case
 216 * -EACCES will be returned.
 217 *
 218 * Returns a pointer to the new key if successful and an error code otherwise.
 219 *
 220 * Note that the caller needs to ensure the key type isn't uninstantiated.
 221 * Internally this can be done by locking key_types_sem.  Externally, this can
 222 * be done by either never unregistering the key type, or making sure
 223 * key_alloc() calls don't race with module unloading.
 224 */
 225struct key *key_alloc(struct key_type *type, const char *desc,
 226		      kuid_t uid, kgid_t gid, const struct cred *cred,
 227		      key_perm_t perm, unsigned long flags,
 228		      struct key_restriction *restrict_link)
 229{
 230	struct key_user *user = NULL;
 231	struct key *key;
 232	size_t desclen, quotalen;
 233	int ret;
 234
 235	key = ERR_PTR(-EINVAL);
 236	if (!desc || !*desc)
 237		goto error;
 238
 239	if (type->vet_description) {
 240		ret = type->vet_description(desc);
 241		if (ret < 0) {
 242			key = ERR_PTR(ret);
 243			goto error;
 244		}
 245	}
 246
 247	desclen = strlen(desc);
 248	quotalen = desclen + 1 + type->def_datalen;
 249
 250	/* get hold of the key tracking for this user */
 251	user = key_user_lookup(uid);
 252	if (!user)
 253		goto no_memory_1;
 254
 255	/* check that the user's quota permits allocation of another key and
 256	 * its description */
 257	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 258		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
 259			key_quota_root_maxkeys : key_quota_maxkeys;
 260		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
 261			key_quota_root_maxbytes : key_quota_maxbytes;
 262
 263		spin_lock(&user->lock);
 264		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
 265			if (user->qnkeys + 1 > maxkeys ||
 266			    user->qnbytes + quotalen > maxbytes ||
 267			    user->qnbytes + quotalen < user->qnbytes)
 268				goto no_quota;
 269		}
 270
 271		user->qnkeys++;
 272		user->qnbytes += quotalen;
 273		spin_unlock(&user->lock);
 274	}
 275
 276	/* allocate and initialise the key and its description */
 277	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
 278	if (!key)
 279		goto no_memory_2;
 280
 281	key->index_key.desc_len = desclen;
 282	key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
 283	if (!key->index_key.description)
 284		goto no_memory_3;
 285	key->index_key.type = type;
 286	key_set_index_key(&key->index_key);
 287
 288	refcount_set(&key->usage, 1);
 289	init_rwsem(&key->sem);
 290	lockdep_set_class(&key->sem, &type->lock_class);
 291	key->user = user;
 292	key->quotalen = quotalen;
 293	key->datalen = type->def_datalen;
 294	key->uid = uid;
 295	key->gid = gid;
 296	key->perm = perm;
 297	key->restrict_link = restrict_link;
 298	key->last_used_at = ktime_get_real_seconds();
 
 
 299
 300	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
 301		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
 302	if (flags & KEY_ALLOC_BUILT_IN)
 303		key->flags |= 1 << KEY_FLAG_BUILTIN;
 304	if (flags & KEY_ALLOC_UID_KEYRING)
 305		key->flags |= 1 << KEY_FLAG_UID_KEYRING;
 306
 307#ifdef KEY_DEBUGGING
 308	key->magic = KEY_DEBUG_MAGIC;
 309#endif
 310
 311	/* let the security module know about the key */
 312	ret = security_key_alloc(key, cred, flags);
 313	if (ret < 0)
 314		goto security_error;
 315
 316	/* publish the key by giving it a serial number */
 317	refcount_inc(&key->domain_tag->usage);
 318	atomic_inc(&user->nkeys);
 319	key_alloc_serial(key);
 320
 321error:
 322	return key;
 323
 324security_error:
 325	kfree(key->description);
 326	kmem_cache_free(key_jar, key);
 327	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 328		spin_lock(&user->lock);
 329		user->qnkeys--;
 330		user->qnbytes -= quotalen;
 331		spin_unlock(&user->lock);
 332	}
 333	key_user_put(user);
 334	key = ERR_PTR(ret);
 335	goto error;
 336
 337no_memory_3:
 338	kmem_cache_free(key_jar, key);
 339no_memory_2:
 340	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 341		spin_lock(&user->lock);
 342		user->qnkeys--;
 343		user->qnbytes -= quotalen;
 344		spin_unlock(&user->lock);
 345	}
 346	key_user_put(user);
 347no_memory_1:
 348	key = ERR_PTR(-ENOMEM);
 349	goto error;
 350
 351no_quota:
 352	spin_unlock(&user->lock);
 353	key_user_put(user);
 354	key = ERR_PTR(-EDQUOT);
 355	goto error;
 356}
 357EXPORT_SYMBOL(key_alloc);
 358
 359/**
 360 * key_payload_reserve - Adjust data quota reservation for the key's payload
 361 * @key: The key to make the reservation for.
 362 * @datalen: The amount of data payload the caller now wants.
 363 *
 364 * Adjust the amount of the owning user's key data quota that a key reserves.
 365 * If the amount is increased, then -EDQUOT may be returned if there isn't
 366 * enough free quota available.
 367 *
 368 * If successful, 0 is returned.
 369 */
 370int key_payload_reserve(struct key *key, size_t datalen)
 371{
 372	int delta = (int)datalen - key->datalen;
 373	int ret = 0;
 374
 375	key_check(key);
 376
 377	/* contemplate the quota adjustment */
 378	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 379		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
 380			key_quota_root_maxbytes : key_quota_maxbytes;
 381
 382		spin_lock(&key->user->lock);
 383
 384		if (delta > 0 &&
 385		    (key->user->qnbytes + delta > maxbytes ||
 386		     key->user->qnbytes + delta < key->user->qnbytes)) {
 387			ret = -EDQUOT;
 388		}
 389		else {
 390			key->user->qnbytes += delta;
 391			key->quotalen += delta;
 392		}
 393		spin_unlock(&key->user->lock);
 394	}
 395
 396	/* change the recorded data length if that didn't generate an error */
 397	if (ret == 0)
 398		key->datalen = datalen;
 399
 400	return ret;
 401}
 402EXPORT_SYMBOL(key_payload_reserve);
 403
 404/*
 405 * Change the key state to being instantiated.
 406 */
 407static void mark_key_instantiated(struct key *key, int reject_error)
 408{
 409	/* Commit the payload before setting the state; barrier versus
 410	 * key_read_state().
 411	 */
 412	smp_store_release(&key->state,
 413			  (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
 414}
 415
 416/*
 417 * Instantiate a key and link it into the target keyring atomically.  Must be
 418 * called with the target keyring's semaphore writelocked.  The target key's
 419 * semaphore need not be locked as instantiation is serialised by
 420 * key_construction_mutex.
 421 */
 422static int __key_instantiate_and_link(struct key *key,
 423				      struct key_preparsed_payload *prep,
 
 424				      struct key *keyring,
 425				      struct key *authkey,
 426				      struct assoc_array_edit **_edit)
 427{
 428	int ret, awaken;
 429
 430	key_check(key);
 431	key_check(keyring);
 432
 433	awaken = 0;
 434	ret = -EBUSY;
 435
 436	mutex_lock(&key_construction_mutex);
 437
 438	/* can't instantiate twice */
 439	if (key->state == KEY_IS_UNINSTANTIATED) {
 440		/* instantiate the key */
 441		ret = key->type->instantiate(key, prep);
 442
 443		if (ret == 0) {
 444			/* mark the key as being instantiated */
 445			atomic_inc(&key->user->nikeys);
 446			mark_key_instantiated(key, 0);
 447			notify_key(key, NOTIFY_KEY_INSTANTIATED, 0);
 448
 449			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 450				awaken = 1;
 451
 452			/* and link it into the destination keyring */
 453			if (keyring) {
 454				if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
 455					set_bit(KEY_FLAG_KEEP, &key->flags);
 456
 457				__key_link(keyring, key, _edit);
 458			}
 459
 460			/* disable the authorisation key */
 461			if (authkey)
 462				key_invalidate(authkey);
 463
 464			if (prep->expiry != TIME64_MAX) {
 465				key->expiry = prep->expiry;
 466				key_schedule_gc(prep->expiry + key_gc_delay);
 467			}
 468		}
 469	}
 470
 471	mutex_unlock(&key_construction_mutex);
 472
 473	/* wake up anyone waiting for a key to be constructed */
 474	if (awaken)
 475		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 476
 477	return ret;
 478}
 479
 480/**
 481 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
 482 * @key: The key to instantiate.
 483 * @data: The data to use to instantiate the keyring.
 484 * @datalen: The length of @data.
 485 * @keyring: Keyring to create a link in on success (or NULL).
 486 * @authkey: The authorisation token permitting instantiation.
 487 *
 488 * Instantiate a key that's in the uninstantiated state using the provided data
 489 * and, if successful, link it in to the destination keyring if one is
 490 * supplied.
 491 *
 492 * If successful, 0 is returned, the authorisation token is revoked and anyone
 493 * waiting for the key is woken up.  If the key was already instantiated,
 494 * -EBUSY will be returned.
 495 */
 496int key_instantiate_and_link(struct key *key,
 497			     const void *data,
 498			     size_t datalen,
 499			     struct key *keyring,
 500			     struct key *authkey)
 501{
 502	struct key_preparsed_payload prep;
 503	struct assoc_array_edit *edit = NULL;
 504	int ret;
 505
 506	memset(&prep, 0, sizeof(prep));
 507	prep.data = data;
 508	prep.datalen = datalen;
 509	prep.quotalen = key->type->def_datalen;
 510	prep.expiry = TIME64_MAX;
 511	if (key->type->preparse) {
 512		ret = key->type->preparse(&prep);
 513		if (ret < 0)
 514			goto error;
 515	}
 516
 517	if (keyring) {
 518		ret = __key_link_lock(keyring, &key->index_key);
 
 519		if (ret < 0)
 520			goto error;
 521
 522		ret = __key_link_begin(keyring, &key->index_key, &edit);
 523		if (ret < 0)
 524			goto error_link_end;
 525
 526		if (keyring->restrict_link && keyring->restrict_link->check) {
 527			struct key_restriction *keyres = keyring->restrict_link;
 528
 529			ret = keyres->check(keyring, key->type, &prep.payload,
 530					    keyres->key);
 531			if (ret < 0)
 532				goto error_link_end;
 533		}
 534	}
 535
 536	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
 
 537
 538error_link_end:
 539	if (keyring)
 540		__key_link_end(keyring, &key->index_key, edit);
 541
 542error:
 543	if (key->type->preparse)
 544		key->type->free_preparse(&prep);
 545	return ret;
 546}
 547
 548EXPORT_SYMBOL(key_instantiate_and_link);
 549
 550/**
 551 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
 552 * @key: The key to instantiate.
 553 * @timeout: The timeout on the negative key.
 554 * @error: The error to return when the key is hit.
 555 * @keyring: Keyring to create a link in on success (or NULL).
 556 * @authkey: The authorisation token permitting instantiation.
 557 *
 558 * Negatively instantiate a key that's in the uninstantiated state and, if
 559 * successful, set its timeout and stored error and link it in to the
 560 * destination keyring if one is supplied.  The key and any links to the key
 561 * will be automatically garbage collected after the timeout expires.
 562 *
 563 * Negative keys are used to rate limit repeated request_key() calls by causing
 564 * them to return the stored error code (typically ENOKEY) until the negative
 565 * key expires.
 566 *
 567 * If successful, 0 is returned, the authorisation token is revoked and anyone
 568 * waiting for the key is woken up.  If the key was already instantiated,
 569 * -EBUSY will be returned.
 570 */
 571int key_reject_and_link(struct key *key,
 572			unsigned timeout,
 573			unsigned error,
 574			struct key *keyring,
 575			struct key *authkey)
 576{
 577	struct assoc_array_edit *edit = NULL;
 
 578	int ret, awaken, link_ret = 0;
 579
 580	key_check(key);
 581	key_check(keyring);
 582
 583	awaken = 0;
 584	ret = -EBUSY;
 585
 586	if (keyring) {
 587		if (keyring->restrict_link)
 588			return -EPERM;
 589
 590		link_ret = __key_link_lock(keyring, &key->index_key);
 591		if (link_ret == 0) {
 592			link_ret = __key_link_begin(keyring, &key->index_key, &edit);
 593			if (link_ret < 0)
 594				__key_link_end(keyring, &key->index_key, edit);
 595		}
 596	}
 597
 598	mutex_lock(&key_construction_mutex);
 599
 600	/* can't instantiate twice */
 601	if (key->state == KEY_IS_UNINSTANTIATED) {
 602		/* mark the key as being negatively instantiated */
 603		atomic_inc(&key->user->nikeys);
 604		mark_key_instantiated(key, -error);
 605		notify_key(key, NOTIFY_KEY_INSTANTIATED, -error);
 606		key->expiry = ktime_get_real_seconds() + timeout;
 
 
 607		key_schedule_gc(key->expiry + key_gc_delay);
 608
 609		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 610			awaken = 1;
 611
 612		ret = 0;
 613
 614		/* and link it into the destination keyring */
 615		if (keyring && link_ret == 0)
 616			__key_link(keyring, key, &edit);
 617
 618		/* disable the authorisation key */
 619		if (authkey)
 620			key_invalidate(authkey);
 621	}
 622
 623	mutex_unlock(&key_construction_mutex);
 624
 625	if (keyring && link_ret == 0)
 626		__key_link_end(keyring, &key->index_key, edit);
 627
 628	/* wake up anyone waiting for a key to be constructed */
 629	if (awaken)
 630		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 631
 632	return ret == 0 ? link_ret : ret;
 633}
 634EXPORT_SYMBOL(key_reject_and_link);
 635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 636/**
 637 * key_put - Discard a reference to a key.
 638 * @key: The key to discard a reference from.
 639 *
 640 * Discard a reference to a key, and when all the references are gone, we
 641 * schedule the cleanup task to come and pull it out of the tree in process
 642 * context at some later time.
 643 */
 644void key_put(struct key *key)
 645{
 646	if (key) {
 647		key_check(key);
 648
 649		if (refcount_dec_and_test(&key->usage))
 650			schedule_work(&key_gc_work);
 651	}
 652}
 653EXPORT_SYMBOL(key_put);
 654
 655/*
 656 * Find a key by its serial number.
 657 */
 658struct key *key_lookup(key_serial_t id)
 659{
 660	struct rb_node *n;
 661	struct key *key;
 662
 663	spin_lock(&key_serial_lock);
 664
 665	/* search the tree for the specified key */
 666	n = key_serial_tree.rb_node;
 667	while (n) {
 668		key = rb_entry(n, struct key, serial_node);
 669
 670		if (id < key->serial)
 671			n = n->rb_left;
 672		else if (id > key->serial)
 673			n = n->rb_right;
 674		else
 675			goto found;
 676	}
 677
 678not_found:
 679	key = ERR_PTR(-ENOKEY);
 680	goto error;
 681
 682found:
 683	/* A key is allowed to be looked up only if someone still owns a
 684	 * reference to it - otherwise it's awaiting the gc.
 685	 */
 686	if (!refcount_inc_not_zero(&key->usage))
 687		goto not_found;
 688
 
 
 
 
 
 689error:
 690	spin_unlock(&key_serial_lock);
 691	return key;
 692}
 693
 694/*
 695 * Find and lock the specified key type against removal.
 696 *
 697 * We return with the sem read-locked if successful.  If the type wasn't
 698 * available -ENOKEY is returned instead.
 699 */
 700struct key_type *key_type_lookup(const char *type)
 701{
 702	struct key_type *ktype;
 703
 704	down_read(&key_types_sem);
 705
 706	/* look up the key type to see if it's one of the registered kernel
 707	 * types */
 708	list_for_each_entry(ktype, &key_types_list, link) {
 709		if (strcmp(ktype->name, type) == 0)
 710			goto found_kernel_type;
 711	}
 712
 713	up_read(&key_types_sem);
 714	ktype = ERR_PTR(-ENOKEY);
 715
 716found_kernel_type:
 717	return ktype;
 718}
 719
 720void key_set_timeout(struct key *key, unsigned timeout)
 721{
 722	time64_t expiry = 0;
 723
 724	/* make the changes with the locks held to prevent races */
 725	down_write(&key->sem);
 726
 727	if (timeout > 0)
 728		expiry = ktime_get_real_seconds() + timeout;
 729
 730	key->expiry = expiry;
 731	key_schedule_gc(key->expiry + key_gc_delay);
 732
 733	up_write(&key->sem);
 734}
 735EXPORT_SYMBOL_GPL(key_set_timeout);
 736
 737/*
 738 * Unlock a key type locked by key_type_lookup().
 739 */
 740void key_type_put(struct key_type *ktype)
 741{
 742	up_read(&key_types_sem);
 743}
 744
 745/*
 746 * Attempt to update an existing key.
 747 *
 748 * The key is given to us with an incremented refcount that we need to discard
 749 * if we get an error.
 750 */
 751static inline key_ref_t __key_update(key_ref_t key_ref,
 752				     struct key_preparsed_payload *prep)
 753{
 754	struct key *key = key_ref_to_ptr(key_ref);
 755	int ret;
 756
 757	/* need write permission on the key to update it */
 758	ret = key_permission(key_ref, KEY_NEED_WRITE);
 759	if (ret < 0)
 760		goto error;
 761
 762	ret = -EEXIST;
 763	if (!key->type->update)
 764		goto error;
 765
 766	down_write(&key->sem);
 767
 768	ret = key->type->update(key, prep);
 769	if (ret == 0) {
 770		/* Updating a negative key positively instantiates it */
 771		mark_key_instantiated(key, 0);
 772		notify_key(key, NOTIFY_KEY_UPDATED, 0);
 773	}
 774
 775	up_write(&key->sem);
 776
 777	if (ret < 0)
 778		goto error;
 779out:
 780	return key_ref;
 781
 782error:
 783	key_put(key);
 784	key_ref = ERR_PTR(ret);
 785	goto out;
 786}
 787
 788/**
 789 * key_create_or_update - Update or create and instantiate a key.
 790 * @keyring_ref: A pointer to the destination keyring with possession flag.
 791 * @type: The type of key.
 792 * @description: The searchable description for the key.
 793 * @payload: The data to use to instantiate or update the key.
 794 * @plen: The length of @payload.
 795 * @perm: The permissions mask for a new key.
 796 * @flags: The quota flags for a new key.
 797 *
 798 * Search the destination keyring for a key of the same description and if one
 799 * is found, update it, otherwise create and instantiate a new one and create a
 800 * link to it from that keyring.
 801 *
 802 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
 803 * concocted.
 804 *
 805 * Returns a pointer to the new key if successful, -ENODEV if the key type
 806 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
 807 * caller isn't permitted to modify the keyring or the LSM did not permit
 808 * creation of the key.
 809 *
 810 * On success, the possession flag from the keyring ref will be tacked on to
 811 * the key ref before it is returned.
 812 */
 813key_ref_t key_create_or_update(key_ref_t keyring_ref,
 814			       const char *type,
 815			       const char *description,
 816			       const void *payload,
 817			       size_t plen,
 818			       key_perm_t perm,
 819			       unsigned long flags)
 820{
 821	struct keyring_index_key index_key = {
 822		.description	= description,
 823	};
 824	struct key_preparsed_payload prep;
 825	struct assoc_array_edit *edit = NULL;
 826	const struct cred *cred = current_cred();
 
 827	struct key *keyring, *key = NULL;
 828	key_ref_t key_ref;
 829	int ret;
 830	struct key_restriction *restrict_link = NULL;
 831
 832	/* look up the key type to see if it's one of the registered kernel
 833	 * types */
 834	index_key.type = key_type_lookup(type);
 835	if (IS_ERR(index_key.type)) {
 836		key_ref = ERR_PTR(-ENODEV);
 837		goto error;
 838	}
 839
 840	key_ref = ERR_PTR(-EINVAL);
 841	if (!index_key.type->instantiate ||
 842	    (!index_key.description && !index_key.type->preparse))
 843		goto error_put_type;
 844
 845	keyring = key_ref_to_ptr(keyring_ref);
 846
 847	key_check(keyring);
 848
 849	if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
 850		restrict_link = keyring->restrict_link;
 851
 852	key_ref = ERR_PTR(-ENOTDIR);
 853	if (keyring->type != &key_type_keyring)
 854		goto error_put_type;
 855
 856	memset(&prep, 0, sizeof(prep));
 857	prep.data = payload;
 858	prep.datalen = plen;
 859	prep.quotalen = index_key.type->def_datalen;
 860	prep.expiry = TIME64_MAX;
 861	if (index_key.type->preparse) {
 862		ret = index_key.type->preparse(&prep);
 863		if (ret < 0) {
 864			key_ref = ERR_PTR(ret);
 865			goto error_free_prep;
 866		}
 867		if (!index_key.description)
 868			index_key.description = prep.description;
 869		key_ref = ERR_PTR(-EINVAL);
 870		if (!index_key.description)
 871			goto error_free_prep;
 872	}
 873	index_key.desc_len = strlen(index_key.description);
 874	key_set_index_key(&index_key);
 875
 876	ret = __key_link_lock(keyring, &index_key);
 877	if (ret < 0) {
 878		key_ref = ERR_PTR(ret);
 879		goto error_free_prep;
 880	}
 881
 882	ret = __key_link_begin(keyring, &index_key, &edit);
 883	if (ret < 0) {
 884		key_ref = ERR_PTR(ret);
 885		goto error_link_end;
 886	}
 887
 888	if (restrict_link && restrict_link->check) {
 889		ret = restrict_link->check(keyring, index_key.type,
 890					   &prep.payload, restrict_link->key);
 891		if (ret < 0) {
 892			key_ref = ERR_PTR(ret);
 893			goto error_link_end;
 894		}
 895	}
 896
 897	/* if we're going to allocate a new key, we're going to have
 898	 * to modify the keyring */
 899	ret = key_permission(keyring_ref, KEY_NEED_WRITE);
 900	if (ret < 0) {
 901		key_ref = ERR_PTR(ret);
 902		goto error_link_end;
 903	}
 904
 905	/* if it's possible to update this type of key, search for an existing
 906	 * key of the same type and description in the destination keyring and
 907	 * update that instead if possible
 908	 */
 909	if (index_key.type->update) {
 910		key_ref = find_key_to_update(keyring_ref, &index_key);
 911		if (key_ref)
 
 912			goto found_matching_key;
 913	}
 914
 915	/* if the client doesn't provide, decide on the permissions we want */
 916	if (perm == KEY_PERM_UNDEF) {
 917		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
 918		perm |= KEY_USR_VIEW;
 919
 920		if (index_key.type->read)
 921			perm |= KEY_POS_READ;
 922
 923		if (index_key.type == &key_type_keyring ||
 924		    index_key.type->update)
 925			perm |= KEY_POS_WRITE;
 926	}
 927
 928	/* allocate a new key */
 929	key = key_alloc(index_key.type, index_key.description,
 930			cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
 931	if (IS_ERR(key)) {
 932		key_ref = ERR_CAST(key);
 933		goto error_link_end;
 934	}
 935
 936	/* instantiate it and link it into the target keyring */
 937	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
 
 938	if (ret < 0) {
 939		key_put(key);
 940		key_ref = ERR_PTR(ret);
 941		goto error_link_end;
 942	}
 943
 944	ima_post_key_create_or_update(keyring, key, payload, plen,
 945				      flags, true);
 946
 947	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
 948
 949error_link_end:
 950	__key_link_end(keyring, &index_key, edit);
 951error_free_prep:
 952	if (index_key.type->preparse)
 953		index_key.type->free_preparse(&prep);
 954error_put_type:
 955	key_type_put(index_key.type);
 956error:
 957	return key_ref;
 958
 959 found_matching_key:
 960	/* we found a matching key, so we're going to try to update it
 961	 * - we can drop the locks first as we have the key pinned
 962	 */
 963	__key_link_end(keyring, &index_key, edit);
 964
 965	key = key_ref_to_ptr(key_ref);
 966	if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
 967		ret = wait_for_key_construction(key, true);
 968		if (ret < 0) {
 969			key_ref_put(key_ref);
 970			key_ref = ERR_PTR(ret);
 971			goto error_free_prep;
 972		}
 973	}
 974
 975	key_ref = __key_update(key_ref, &prep);
 976
 977	if (!IS_ERR(key_ref))
 978		ima_post_key_create_or_update(keyring, key,
 979					      payload, plen,
 980					      flags, false);
 981
 982	goto error_free_prep;
 
 983}
 984EXPORT_SYMBOL(key_create_or_update);
 985
 986/**
 987 * key_update - Update a key's contents.
 988 * @key_ref: The pointer (plus possession flag) to the key.
 989 * @payload: The data to be used to update the key.
 990 * @plen: The length of @payload.
 991 *
 992 * Attempt to update the contents of a key with the given payload data.  The
 993 * caller must be granted Write permission on the key.  Negative keys can be
 994 * instantiated by this method.
 995 *
 996 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
 997 * type does not support updating.  The key type may return other errors.
 998 */
 999int key_update(key_ref_t key_ref, const void *payload, size_t plen)
1000{
1001	struct key_preparsed_payload prep;
1002	struct key *key = key_ref_to_ptr(key_ref);
1003	int ret;
1004
1005	key_check(key);
1006
1007	/* the key must be writable */
1008	ret = key_permission(key_ref, KEY_NEED_WRITE);
1009	if (ret < 0)
1010		return ret;
1011
1012	/* attempt to update it if supported */
1013	if (!key->type->update)
1014		return -EOPNOTSUPP;
 
 
 
 
 
 
1015
1016	memset(&prep, 0, sizeof(prep));
1017	prep.data = payload;
1018	prep.datalen = plen;
1019	prep.quotalen = key->type->def_datalen;
1020	prep.expiry = TIME64_MAX;
1021	if (key->type->preparse) {
1022		ret = key->type->preparse(&prep);
1023		if (ret < 0)
1024			goto error;
1025	}
1026
1027	down_write(&key->sem);
1028
1029	ret = key->type->update(key, &prep);
1030	if (ret == 0) {
1031		/* Updating a negative key positively instantiates it */
1032		mark_key_instantiated(key, 0);
1033		notify_key(key, NOTIFY_KEY_UPDATED, 0);
1034	}
1035
1036	up_write(&key->sem);
1037
1038error:
1039	if (key->type->preparse)
1040		key->type->free_preparse(&prep);
1041	return ret;
1042}
1043EXPORT_SYMBOL(key_update);
1044
1045/**
1046 * key_revoke - Revoke a key.
1047 * @key: The key to be revoked.
1048 *
1049 * Mark a key as being revoked and ask the type to free up its resources.  The
1050 * revocation timeout is set and the key and all its links will be
1051 * automatically garbage collected after key_gc_delay amount of time if they
1052 * are not manually dealt with first.
1053 */
1054void key_revoke(struct key *key)
1055{
1056	time64_t time;
 
1057
1058	key_check(key);
1059
1060	/* make sure no one's trying to change or use the key when we mark it
1061	 * - we tell lockdep that we might nest because we might be revoking an
1062	 *   authorisation key whilst holding the sem on a key we've just
1063	 *   instantiated
1064	 */
1065	down_write_nested(&key->sem, 1);
1066	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags)) {
1067		notify_key(key, NOTIFY_KEY_REVOKED, 0);
1068		if (key->type->revoke)
1069			key->type->revoke(key);
1070
1071		/* set the death time to no more than the expiry time */
1072		time = ktime_get_real_seconds();
1073		if (key->revoked_at == 0 || key->revoked_at > time) {
1074			key->revoked_at = time;
1075			key_schedule_gc(key->revoked_at + key_gc_delay);
1076		}
1077	}
1078
1079	up_write(&key->sem);
1080}
1081EXPORT_SYMBOL(key_revoke);
1082
1083/**
1084 * key_invalidate - Invalidate a key.
1085 * @key: The key to be invalidated.
1086 *
1087 * Mark a key as being invalidated and have it cleaned up immediately.  The key
1088 * is ignored by all searches and other operations from this point.
1089 */
1090void key_invalidate(struct key *key)
1091{
1092	kenter("%d", key_serial(key));
1093
1094	key_check(key);
1095
1096	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1097		down_write_nested(&key->sem, 1);
1098		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1099			notify_key(key, NOTIFY_KEY_INVALIDATED, 0);
1100			key_schedule_gc_links();
1101		}
1102		up_write(&key->sem);
1103	}
1104}
1105EXPORT_SYMBOL(key_invalidate);
1106
1107/**
1108 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1109 * @key: The key to be instantiated
1110 * @prep: The preparsed data to load.
1111 *
1112 * Instantiate a key from preparsed data.  We assume we can just copy the data
1113 * in directly and clear the old pointers.
1114 *
1115 * This can be pointed to directly by the key type instantiate op pointer.
1116 */
1117int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1118{
1119	int ret;
1120
1121	pr_devel("==>%s()\n", __func__);
1122
1123	ret = key_payload_reserve(key, prep->quotalen);
1124	if (ret == 0) {
1125		rcu_assign_keypointer(key, prep->payload.data[0]);
1126		key->payload.data[1] = prep->payload.data[1];
1127		key->payload.data[2] = prep->payload.data[2];
1128		key->payload.data[3] = prep->payload.data[3];
1129		prep->payload.data[0] = NULL;
1130		prep->payload.data[1] = NULL;
1131		prep->payload.data[2] = NULL;
1132		prep->payload.data[3] = NULL;
1133	}
1134	pr_devel("<==%s() = %d\n", __func__, ret);
1135	return ret;
1136}
1137EXPORT_SYMBOL(generic_key_instantiate);
1138
1139/**
1140 * register_key_type - Register a type of key.
1141 * @ktype: The new key type.
1142 *
1143 * Register a new key type.
1144 *
1145 * Returns 0 on success or -EEXIST if a type of this name already exists.
1146 */
1147int register_key_type(struct key_type *ktype)
1148{
1149	struct key_type *p;
1150	int ret;
1151
1152	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1153
1154	ret = -EEXIST;
1155	down_write(&key_types_sem);
1156
1157	/* disallow key types with the same name */
1158	list_for_each_entry(p, &key_types_list, link) {
1159		if (strcmp(p->name, ktype->name) == 0)
1160			goto out;
1161	}
1162
1163	/* store the type */
1164	list_add(&ktype->link, &key_types_list);
1165
1166	pr_notice("Key type %s registered\n", ktype->name);
1167	ret = 0;
1168
1169out:
1170	up_write(&key_types_sem);
1171	return ret;
1172}
1173EXPORT_SYMBOL(register_key_type);
1174
1175/**
1176 * unregister_key_type - Unregister a type of key.
1177 * @ktype: The key type.
1178 *
1179 * Unregister a key type and mark all the extant keys of this type as dead.
1180 * Those keys of this type are then destroyed to get rid of their payloads and
1181 * they and their links will be garbage collected as soon as possible.
1182 */
1183void unregister_key_type(struct key_type *ktype)
1184{
 
 
 
1185	down_write(&key_types_sem);
 
 
1186	list_del_init(&ktype->link);
1187	downgrade_write(&key_types_sem);
1188	key_gc_keytype(ktype);
1189	pr_notice("Key type %s unregistered\n", ktype->name);
1190	up_read(&key_types_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1191}
1192EXPORT_SYMBOL(unregister_key_type);
1193
1194/*
1195 * Initialise the key management state.
1196 */
1197void __init key_init(void)
1198{
1199	/* allocate a slab in which we can store keys */
1200	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1201			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1202
1203	/* add the special key types */
1204	list_add_tail(&key_type_keyring.link, &key_types_list);
1205	list_add_tail(&key_type_dead.link, &key_types_list);
1206	list_add_tail(&key_type_user.link, &key_types_list);
1207	list_add_tail(&key_type_logon.link, &key_types_list);
1208
1209	/* record the root user tracking */
1210	rb_link_node(&root_key_user.node,
1211		     NULL,
1212		     &key_user_tree.rb_node);
1213
1214	rb_insert_color(&root_key_user.node,
1215			&key_user_tree);
1216}
v3.1
 
   1/* Basic authentication token and access key management
   2 *
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
   4 * Written by David Howells (dhowells@redhat.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/poison.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/security.h>
  18#include <linux/workqueue.h>
  19#include <linux/random.h>
 
  20#include <linux/err.h>
  21#include <linux/user_namespace.h>
  22#include "internal.h"
  23
  24static struct kmem_cache	*key_jar;
  25struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
  26DEFINE_SPINLOCK(key_serial_lock);
  27
  28struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
  29DEFINE_SPINLOCK(key_user_lock);
  30
  31unsigned int key_quota_root_maxkeys = 200;	/* root's key count quota */
  32unsigned int key_quota_root_maxbytes = 20000;	/* root's key space quota */
  33unsigned int key_quota_maxkeys = 200;		/* general key count quota */
  34unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
  35
  36static LIST_HEAD(key_types_list);
  37static DECLARE_RWSEM(key_types_sem);
  38
  39static void key_cleanup(struct work_struct *work);
  40static DECLARE_WORK(key_cleanup_task, key_cleanup);
  41
  42/* We serialise key instantiation and link */
  43DEFINE_MUTEX(key_construction_mutex);
  44
  45/* Any key who's type gets unegistered will be re-typed to this */
  46static struct key_type key_type_dead = {
  47	.name		= "dead",
  48};
  49
  50#ifdef KEY_DEBUGGING
  51void __key_check(const struct key *key)
  52{
  53	printk("__key_check: key %p {%08x} should be {%08x}\n",
  54	       key, key->magic, KEY_DEBUG_MAGIC);
  55	BUG();
  56}
  57#endif
  58
  59/*
  60 * Get the key quota record for a user, allocating a new record if one doesn't
  61 * already exist.
  62 */
  63struct key_user *key_user_lookup(uid_t uid, struct user_namespace *user_ns)
  64{
  65	struct key_user *candidate = NULL, *user;
  66	struct rb_node *parent = NULL;
  67	struct rb_node **p;
  68
  69try_again:
 
  70	p = &key_user_tree.rb_node;
  71	spin_lock(&key_user_lock);
  72
  73	/* search the tree for a user record with a matching UID */
  74	while (*p) {
  75		parent = *p;
  76		user = rb_entry(parent, struct key_user, node);
  77
  78		if (uid < user->uid)
  79			p = &(*p)->rb_left;
  80		else if (uid > user->uid)
  81			p = &(*p)->rb_right;
  82		else if (user_ns < user->user_ns)
  83			p = &(*p)->rb_left;
  84		else if (user_ns > user->user_ns)
  85			p = &(*p)->rb_right;
  86		else
  87			goto found;
  88	}
  89
  90	/* if we get here, we failed to find a match in the tree */
  91	if (!candidate) {
  92		/* allocate a candidate user record if we don't already have
  93		 * one */
  94		spin_unlock(&key_user_lock);
  95
  96		user = NULL;
  97		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
  98		if (unlikely(!candidate))
  99			goto out;
 100
 101		/* the allocation may have scheduled, so we need to repeat the
 102		 * search lest someone else added the record whilst we were
 103		 * asleep */
 104		goto try_again;
 105	}
 106
 107	/* if we get here, then the user record still hadn't appeared on the
 108	 * second pass - so we use the candidate record */
 109	atomic_set(&candidate->usage, 1);
 110	atomic_set(&candidate->nkeys, 0);
 111	atomic_set(&candidate->nikeys, 0);
 112	candidate->uid = uid;
 113	candidate->user_ns = get_user_ns(user_ns);
 114	candidate->qnkeys = 0;
 115	candidate->qnbytes = 0;
 116	spin_lock_init(&candidate->lock);
 117	mutex_init(&candidate->cons_lock);
 118
 119	rb_link_node(&candidate->node, parent, p);
 120	rb_insert_color(&candidate->node, &key_user_tree);
 121	spin_unlock(&key_user_lock);
 122	user = candidate;
 123	goto out;
 124
 125	/* okay - we found a user record for this UID */
 126found:
 127	atomic_inc(&user->usage);
 128	spin_unlock(&key_user_lock);
 129	kfree(candidate);
 130out:
 131	return user;
 132}
 133
 134/*
 135 * Dispose of a user structure
 136 */
 137void key_user_put(struct key_user *user)
 138{
 139	if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
 140		rb_erase(&user->node, &key_user_tree);
 141		spin_unlock(&key_user_lock);
 142		put_user_ns(user->user_ns);
 143
 144		kfree(user);
 145	}
 146}
 147
 148/*
 149 * Allocate a serial number for a key.  These are assigned randomly to avoid
 150 * security issues through covert channel problems.
 151 */
 152static inline void key_alloc_serial(struct key *key)
 153{
 154	struct rb_node *parent, **p;
 155	struct key *xkey;
 156
 157	/* propose a random serial number and look for a hole for it in the
 158	 * serial number tree */
 159	do {
 160		get_random_bytes(&key->serial, sizeof(key->serial));
 161
 162		key->serial >>= 1; /* negative numbers are not permitted */
 163	} while (key->serial < 3);
 164
 165	spin_lock(&key_serial_lock);
 166
 167attempt_insertion:
 168	parent = NULL;
 169	p = &key_serial_tree.rb_node;
 170
 171	while (*p) {
 172		parent = *p;
 173		xkey = rb_entry(parent, struct key, serial_node);
 174
 175		if (key->serial < xkey->serial)
 176			p = &(*p)->rb_left;
 177		else if (key->serial > xkey->serial)
 178			p = &(*p)->rb_right;
 179		else
 180			goto serial_exists;
 181	}
 182
 183	/* we've found a suitable hole - arrange for this key to occupy it */
 184	rb_link_node(&key->serial_node, parent, p);
 185	rb_insert_color(&key->serial_node, &key_serial_tree);
 186
 187	spin_unlock(&key_serial_lock);
 188	return;
 189
 190	/* we found a key with the proposed serial number - walk the tree from
 191	 * that point looking for the next unused serial number */
 192serial_exists:
 193	for (;;) {
 194		key->serial++;
 195		if (key->serial < 3) {
 196			key->serial = 3;
 197			goto attempt_insertion;
 198		}
 199
 200		parent = rb_next(parent);
 201		if (!parent)
 202			goto attempt_insertion;
 203
 204		xkey = rb_entry(parent, struct key, serial_node);
 205		if (key->serial < xkey->serial)
 206			goto attempt_insertion;
 207	}
 208}
 209
 210/**
 211 * key_alloc - Allocate a key of the specified type.
 212 * @type: The type of key to allocate.
 213 * @desc: The key description to allow the key to be searched out.
 214 * @uid: The owner of the new key.
 215 * @gid: The group ID for the new key's group permissions.
 216 * @cred: The credentials specifying UID namespace.
 217 * @perm: The permissions mask of the new key.
 218 * @flags: Flags specifying quota properties.
 
 219 *
 220 * Allocate a key of the specified type with the attributes given.  The key is
 221 * returned in an uninstantiated state and the caller needs to instantiate the
 222 * key before returning.
 223 *
 
 
 
 224 * The user's key count quota is updated to reflect the creation of the key and
 225 * the user's key data quota has the default for the key type reserved.  The
 226 * instantiation function should amend this as necessary.  If insufficient
 227 * quota is available, -EDQUOT will be returned.
 228 *
 229 * The LSM security modules can prevent a key being created, in which case
 230 * -EACCES will be returned.
 231 *
 232 * Returns a pointer to the new key if successful and an error code otherwise.
 233 *
 234 * Note that the caller needs to ensure the key type isn't uninstantiated.
 235 * Internally this can be done by locking key_types_sem.  Externally, this can
 236 * be done by either never unregistering the key type, or making sure
 237 * key_alloc() calls don't race with module unloading.
 238 */
 239struct key *key_alloc(struct key_type *type, const char *desc,
 240		      uid_t uid, gid_t gid, const struct cred *cred,
 241		      key_perm_t perm, unsigned long flags)
 
 242{
 243	struct key_user *user = NULL;
 244	struct key *key;
 245	size_t desclen, quotalen;
 246	int ret;
 247
 248	key = ERR_PTR(-EINVAL);
 249	if (!desc || !*desc)
 250		goto error;
 251
 252	if (type->vet_description) {
 253		ret = type->vet_description(desc);
 254		if (ret < 0) {
 255			key = ERR_PTR(ret);
 256			goto error;
 257		}
 258	}
 259
 260	desclen = strlen(desc) + 1;
 261	quotalen = desclen + type->def_datalen;
 262
 263	/* get hold of the key tracking for this user */
 264	user = key_user_lookup(uid, cred->user->user_ns);
 265	if (!user)
 266		goto no_memory_1;
 267
 268	/* check that the user's quota permits allocation of another key and
 269	 * its description */
 270	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 271		unsigned maxkeys = (uid == 0) ?
 272			key_quota_root_maxkeys : key_quota_maxkeys;
 273		unsigned maxbytes = (uid == 0) ?
 274			key_quota_root_maxbytes : key_quota_maxbytes;
 275
 276		spin_lock(&user->lock);
 277		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
 278			if (user->qnkeys + 1 >= maxkeys ||
 279			    user->qnbytes + quotalen >= maxbytes ||
 280			    user->qnbytes + quotalen < user->qnbytes)
 281				goto no_quota;
 282		}
 283
 284		user->qnkeys++;
 285		user->qnbytes += quotalen;
 286		spin_unlock(&user->lock);
 287	}
 288
 289	/* allocate and initialise the key and its description */
 290	key = kmem_cache_alloc(key_jar, GFP_KERNEL);
 291	if (!key)
 292		goto no_memory_2;
 293
 294	if (desc) {
 295		key->description = kmemdup(desc, desclen, GFP_KERNEL);
 296		if (!key->description)
 297			goto no_memory_3;
 298	}
 
 299
 300	atomic_set(&key->usage, 1);
 301	init_rwsem(&key->sem);
 302	key->type = type;
 303	key->user = user;
 304	key->quotalen = quotalen;
 305	key->datalen = type->def_datalen;
 306	key->uid = uid;
 307	key->gid = gid;
 308	key->perm = perm;
 309	key->flags = 0;
 310	key->expiry = 0;
 311	key->payload.data = NULL;
 312	key->security = NULL;
 313
 314	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
 315		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
 316
 317	memset(&key->type_data, 0, sizeof(key->type_data));
 
 
 318
 319#ifdef KEY_DEBUGGING
 320	key->magic = KEY_DEBUG_MAGIC;
 321#endif
 322
 323	/* let the security module know about the key */
 324	ret = security_key_alloc(key, cred, flags);
 325	if (ret < 0)
 326		goto security_error;
 327
 328	/* publish the key by giving it a serial number */
 
 329	atomic_inc(&user->nkeys);
 330	key_alloc_serial(key);
 331
 332error:
 333	return key;
 334
 335security_error:
 336	kfree(key->description);
 337	kmem_cache_free(key_jar, key);
 338	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 339		spin_lock(&user->lock);
 340		user->qnkeys--;
 341		user->qnbytes -= quotalen;
 342		spin_unlock(&user->lock);
 343	}
 344	key_user_put(user);
 345	key = ERR_PTR(ret);
 346	goto error;
 347
 348no_memory_3:
 349	kmem_cache_free(key_jar, key);
 350no_memory_2:
 351	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 352		spin_lock(&user->lock);
 353		user->qnkeys--;
 354		user->qnbytes -= quotalen;
 355		spin_unlock(&user->lock);
 356	}
 357	key_user_put(user);
 358no_memory_1:
 359	key = ERR_PTR(-ENOMEM);
 360	goto error;
 361
 362no_quota:
 363	spin_unlock(&user->lock);
 364	key_user_put(user);
 365	key = ERR_PTR(-EDQUOT);
 366	goto error;
 367}
 368EXPORT_SYMBOL(key_alloc);
 369
 370/**
 371 * key_payload_reserve - Adjust data quota reservation for the key's payload
 372 * @key: The key to make the reservation for.
 373 * @datalen: The amount of data payload the caller now wants.
 374 *
 375 * Adjust the amount of the owning user's key data quota that a key reserves.
 376 * If the amount is increased, then -EDQUOT may be returned if there isn't
 377 * enough free quota available.
 378 *
 379 * If successful, 0 is returned.
 380 */
 381int key_payload_reserve(struct key *key, size_t datalen)
 382{
 383	int delta = (int)datalen - key->datalen;
 384	int ret = 0;
 385
 386	key_check(key);
 387
 388	/* contemplate the quota adjustment */
 389	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 390		unsigned maxbytes = (key->user->uid == 0) ?
 391			key_quota_root_maxbytes : key_quota_maxbytes;
 392
 393		spin_lock(&key->user->lock);
 394
 395		if (delta > 0 &&
 396		    (key->user->qnbytes + delta >= maxbytes ||
 397		     key->user->qnbytes + delta < key->user->qnbytes)) {
 398			ret = -EDQUOT;
 399		}
 400		else {
 401			key->user->qnbytes += delta;
 402			key->quotalen += delta;
 403		}
 404		spin_unlock(&key->user->lock);
 405	}
 406
 407	/* change the recorded data length if that didn't generate an error */
 408	if (ret == 0)
 409		key->datalen = datalen;
 410
 411	return ret;
 412}
 413EXPORT_SYMBOL(key_payload_reserve);
 414
 415/*
 
 
 
 
 
 
 
 
 
 
 
 
 416 * Instantiate a key and link it into the target keyring atomically.  Must be
 417 * called with the target keyring's semaphore writelocked.  The target key's
 418 * semaphore need not be locked as instantiation is serialised by
 419 * key_construction_mutex.
 420 */
 421static int __key_instantiate_and_link(struct key *key,
 422				      const void *data,
 423				      size_t datalen,
 424				      struct key *keyring,
 425				      struct key *authkey,
 426				      unsigned long *_prealloc)
 427{
 428	int ret, awaken;
 429
 430	key_check(key);
 431	key_check(keyring);
 432
 433	awaken = 0;
 434	ret = -EBUSY;
 435
 436	mutex_lock(&key_construction_mutex);
 437
 438	/* can't instantiate twice */
 439	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
 440		/* instantiate the key */
 441		ret = key->type->instantiate(key, data, datalen);
 442
 443		if (ret == 0) {
 444			/* mark the key as being instantiated */
 445			atomic_inc(&key->user->nikeys);
 446			set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
 
 447
 448			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 449				awaken = 1;
 450
 451			/* and link it into the destination keyring */
 452			if (keyring)
 453				__key_link(keyring, key, _prealloc);
 
 
 
 
 454
 455			/* disable the authorisation key */
 456			if (authkey)
 457				key_revoke(authkey);
 
 
 
 
 
 458		}
 459	}
 460
 461	mutex_unlock(&key_construction_mutex);
 462
 463	/* wake up anyone waiting for a key to be constructed */
 464	if (awaken)
 465		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 466
 467	return ret;
 468}
 469
 470/**
 471 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
 472 * @key: The key to instantiate.
 473 * @data: The data to use to instantiate the keyring.
 474 * @datalen: The length of @data.
 475 * @keyring: Keyring to create a link in on success (or NULL).
 476 * @authkey: The authorisation token permitting instantiation.
 477 *
 478 * Instantiate a key that's in the uninstantiated state using the provided data
 479 * and, if successful, link it in to the destination keyring if one is
 480 * supplied.
 481 *
 482 * If successful, 0 is returned, the authorisation token is revoked and anyone
 483 * waiting for the key is woken up.  If the key was already instantiated,
 484 * -EBUSY will be returned.
 485 */
 486int key_instantiate_and_link(struct key *key,
 487			     const void *data,
 488			     size_t datalen,
 489			     struct key *keyring,
 490			     struct key *authkey)
 491{
 492	unsigned long prealloc;
 
 493	int ret;
 494
 
 
 
 
 
 
 
 
 
 
 
 495	if (keyring) {
 496		ret = __key_link_begin(keyring, key->type, key->description,
 497				       &prealloc);
 498		if (ret < 0)
 499			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 500	}
 501
 502	ret = __key_instantiate_and_link(key, data, datalen, keyring, authkey,
 503					 &prealloc);
 504
 
 505	if (keyring)
 506		__key_link_end(keyring, key->type, prealloc);
 507
 
 
 
 508	return ret;
 509}
 510
 511EXPORT_SYMBOL(key_instantiate_and_link);
 512
 513/**
 514 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
 515 * @key: The key to instantiate.
 516 * @timeout: The timeout on the negative key.
 517 * @error: The error to return when the key is hit.
 518 * @keyring: Keyring to create a link in on success (or NULL).
 519 * @authkey: The authorisation token permitting instantiation.
 520 *
 521 * Negatively instantiate a key that's in the uninstantiated state and, if
 522 * successful, set its timeout and stored error and link it in to the
 523 * destination keyring if one is supplied.  The key and any links to the key
 524 * will be automatically garbage collected after the timeout expires.
 525 *
 526 * Negative keys are used to rate limit repeated request_key() calls by causing
 527 * them to return the stored error code (typically ENOKEY) until the negative
 528 * key expires.
 529 *
 530 * If successful, 0 is returned, the authorisation token is revoked and anyone
 531 * waiting for the key is woken up.  If the key was already instantiated,
 532 * -EBUSY will be returned.
 533 */
 534int key_reject_and_link(struct key *key,
 535			unsigned timeout,
 536			unsigned error,
 537			struct key *keyring,
 538			struct key *authkey)
 539{
 540	unsigned long prealloc;
 541	struct timespec now;
 542	int ret, awaken, link_ret = 0;
 543
 544	key_check(key);
 545	key_check(keyring);
 546
 547	awaken = 0;
 548	ret = -EBUSY;
 549
 550	if (keyring)
 551		link_ret = __key_link_begin(keyring, key->type,
 552					    key->description, &prealloc);
 
 
 
 
 
 
 
 
 553
 554	mutex_lock(&key_construction_mutex);
 555
 556	/* can't instantiate twice */
 557	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
 558		/* mark the key as being negatively instantiated */
 559		atomic_inc(&key->user->nikeys);
 560		set_bit(KEY_FLAG_NEGATIVE, &key->flags);
 561		set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
 562		key->type_data.reject_error = -error;
 563		now = current_kernel_time();
 564		key->expiry = now.tv_sec + timeout;
 565		key_schedule_gc(key->expiry + key_gc_delay);
 566
 567		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 568			awaken = 1;
 569
 570		ret = 0;
 571
 572		/* and link it into the destination keyring */
 573		if (keyring && link_ret == 0)
 574			__key_link(keyring, key, &prealloc);
 575
 576		/* disable the authorisation key */
 577		if (authkey)
 578			key_revoke(authkey);
 579	}
 580
 581	mutex_unlock(&key_construction_mutex);
 582
 583	if (keyring)
 584		__key_link_end(keyring, key->type, prealloc);
 585
 586	/* wake up anyone waiting for a key to be constructed */
 587	if (awaken)
 588		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 589
 590	return ret == 0 ? link_ret : ret;
 591}
 592EXPORT_SYMBOL(key_reject_and_link);
 593
 594/*
 595 * Garbage collect keys in process context so that we don't have to disable
 596 * interrupts all over the place.
 597 *
 598 * key_put() schedules this rather than trying to do the cleanup itself, which
 599 * means key_put() doesn't have to sleep.
 600 */
 601static void key_cleanup(struct work_struct *work)
 602{
 603	struct rb_node *_n;
 604	struct key *key;
 605
 606go_again:
 607	/* look for a dead key in the tree */
 608	spin_lock(&key_serial_lock);
 609
 610	for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
 611		key = rb_entry(_n, struct key, serial_node);
 612
 613		if (atomic_read(&key->usage) == 0)
 614			goto found_dead_key;
 615	}
 616
 617	spin_unlock(&key_serial_lock);
 618	return;
 619
 620found_dead_key:
 621	/* we found a dead key - once we've removed it from the tree, we can
 622	 * drop the lock */
 623	rb_erase(&key->serial_node, &key_serial_tree);
 624	spin_unlock(&key_serial_lock);
 625
 626	key_check(key);
 627
 628	security_key_free(key);
 629
 630	/* deal with the user's key tracking and quota */
 631	if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 632		spin_lock(&key->user->lock);
 633		key->user->qnkeys--;
 634		key->user->qnbytes -= key->quotalen;
 635		spin_unlock(&key->user->lock);
 636	}
 637
 638	atomic_dec(&key->user->nkeys);
 639	if (test_bit(KEY_FLAG_INSTANTIATED, &key->flags))
 640		atomic_dec(&key->user->nikeys);
 641
 642	key_user_put(key->user);
 643
 644	/* now throw away the key memory */
 645	if (key->type->destroy)
 646		key->type->destroy(key);
 647
 648	kfree(key->description);
 649
 650#ifdef KEY_DEBUGGING
 651	key->magic = KEY_DEBUG_MAGIC_X;
 652#endif
 653	kmem_cache_free(key_jar, key);
 654
 655	/* there may, of course, be more than one key to destroy */
 656	goto go_again;
 657}
 658
 659/**
 660 * key_put - Discard a reference to a key.
 661 * @key: The key to discard a reference from.
 662 *
 663 * Discard a reference to a key, and when all the references are gone, we
 664 * schedule the cleanup task to come and pull it out of the tree in process
 665 * context at some later time.
 666 */
 667void key_put(struct key *key)
 668{
 669	if (key) {
 670		key_check(key);
 671
 672		if (atomic_dec_and_test(&key->usage))
 673			schedule_work(&key_cleanup_task);
 674	}
 675}
 676EXPORT_SYMBOL(key_put);
 677
 678/*
 679 * Find a key by its serial number.
 680 */
 681struct key *key_lookup(key_serial_t id)
 682{
 683	struct rb_node *n;
 684	struct key *key;
 685
 686	spin_lock(&key_serial_lock);
 687
 688	/* search the tree for the specified key */
 689	n = key_serial_tree.rb_node;
 690	while (n) {
 691		key = rb_entry(n, struct key, serial_node);
 692
 693		if (id < key->serial)
 694			n = n->rb_left;
 695		else if (id > key->serial)
 696			n = n->rb_right;
 697		else
 698			goto found;
 699	}
 700
 701not_found:
 702	key = ERR_PTR(-ENOKEY);
 703	goto error;
 704
 705found:
 706	/* pretend it doesn't exist if it is awaiting deletion */
 707	if (atomic_read(&key->usage) == 0)
 
 
 708		goto not_found;
 709
 710	/* this races with key_put(), but that doesn't matter since key_put()
 711	 * doesn't actually change the key
 712	 */
 713	atomic_inc(&key->usage);
 714
 715error:
 716	spin_unlock(&key_serial_lock);
 717	return key;
 718}
 719
 720/*
 721 * Find and lock the specified key type against removal.
 722 *
 723 * We return with the sem read-locked if successful.  If the type wasn't
 724 * available -ENOKEY is returned instead.
 725 */
 726struct key_type *key_type_lookup(const char *type)
 727{
 728	struct key_type *ktype;
 729
 730	down_read(&key_types_sem);
 731
 732	/* look up the key type to see if it's one of the registered kernel
 733	 * types */
 734	list_for_each_entry(ktype, &key_types_list, link) {
 735		if (strcmp(ktype->name, type) == 0)
 736			goto found_kernel_type;
 737	}
 738
 739	up_read(&key_types_sem);
 740	ktype = ERR_PTR(-ENOKEY);
 741
 742found_kernel_type:
 743	return ktype;
 744}
 745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 746/*
 747 * Unlock a key type locked by key_type_lookup().
 748 */
 749void key_type_put(struct key_type *ktype)
 750{
 751	up_read(&key_types_sem);
 752}
 753
 754/*
 755 * Attempt to update an existing key.
 756 *
 757 * The key is given to us with an incremented refcount that we need to discard
 758 * if we get an error.
 759 */
 760static inline key_ref_t __key_update(key_ref_t key_ref,
 761				     const void *payload, size_t plen)
 762{
 763	struct key *key = key_ref_to_ptr(key_ref);
 764	int ret;
 765
 766	/* need write permission on the key to update it */
 767	ret = key_permission(key_ref, KEY_WRITE);
 768	if (ret < 0)
 769		goto error;
 770
 771	ret = -EEXIST;
 772	if (!key->type->update)
 773		goto error;
 774
 775	down_write(&key->sem);
 776
 777	ret = key->type->update(key, payload, plen);
 778	if (ret == 0)
 779		/* updating a negative key instantiates it */
 780		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
 
 
 781
 782	up_write(&key->sem);
 783
 784	if (ret < 0)
 785		goto error;
 786out:
 787	return key_ref;
 788
 789error:
 790	key_put(key);
 791	key_ref = ERR_PTR(ret);
 792	goto out;
 793}
 794
 795/**
 796 * key_create_or_update - Update or create and instantiate a key.
 797 * @keyring_ref: A pointer to the destination keyring with possession flag.
 798 * @type: The type of key.
 799 * @description: The searchable description for the key.
 800 * @payload: The data to use to instantiate or update the key.
 801 * @plen: The length of @payload.
 802 * @perm: The permissions mask for a new key.
 803 * @flags: The quota flags for a new key.
 804 *
 805 * Search the destination keyring for a key of the same description and if one
 806 * is found, update it, otherwise create and instantiate a new one and create a
 807 * link to it from that keyring.
 808 *
 809 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
 810 * concocted.
 811 *
 812 * Returns a pointer to the new key if successful, -ENODEV if the key type
 813 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
 814 * caller isn't permitted to modify the keyring or the LSM did not permit
 815 * creation of the key.
 816 *
 817 * On success, the possession flag from the keyring ref will be tacked on to
 818 * the key ref before it is returned.
 819 */
 820key_ref_t key_create_or_update(key_ref_t keyring_ref,
 821			       const char *type,
 822			       const char *description,
 823			       const void *payload,
 824			       size_t plen,
 825			       key_perm_t perm,
 826			       unsigned long flags)
 827{
 828	unsigned long prealloc;
 
 
 
 
 829	const struct cred *cred = current_cred();
 830	struct key_type *ktype;
 831	struct key *keyring, *key = NULL;
 832	key_ref_t key_ref;
 833	int ret;
 
 834
 835	/* look up the key type to see if it's one of the registered kernel
 836	 * types */
 837	ktype = key_type_lookup(type);
 838	if (IS_ERR(ktype)) {
 839		key_ref = ERR_PTR(-ENODEV);
 840		goto error;
 841	}
 842
 843	key_ref = ERR_PTR(-EINVAL);
 844	if (!ktype->match || !ktype->instantiate)
 845		goto error_2;
 
 846
 847	keyring = key_ref_to_ptr(keyring_ref);
 848
 849	key_check(keyring);
 850
 
 
 
 851	key_ref = ERR_PTR(-ENOTDIR);
 852	if (keyring->type != &key_type_keyring)
 853		goto error_2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 854
 855	ret = __key_link_begin(keyring, ktype, description, &prealloc);
 856	if (ret < 0)
 857		goto error_2;
 
 
 
 
 
 
 
 
 
 
 
 858
 859	/* if we're going to allocate a new key, we're going to have
 860	 * to modify the keyring */
 861	ret = key_permission(keyring_ref, KEY_WRITE);
 862	if (ret < 0) {
 863		key_ref = ERR_PTR(ret);
 864		goto error_3;
 865	}
 866
 867	/* if it's possible to update this type of key, search for an existing
 868	 * key of the same type and description in the destination keyring and
 869	 * update that instead if possible
 870	 */
 871	if (ktype->update) {
 872		key_ref = __keyring_search_one(keyring_ref, ktype, description,
 873					       0);
 874		if (!IS_ERR(key_ref))
 875			goto found_matching_key;
 876	}
 877
 878	/* if the client doesn't provide, decide on the permissions we want */
 879	if (perm == KEY_PERM_UNDEF) {
 880		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
 881		perm |= KEY_USR_VIEW | KEY_USR_SEARCH | KEY_USR_LINK | KEY_USR_SETATTR;
 882
 883		if (ktype->read)
 884			perm |= KEY_POS_READ | KEY_USR_READ;
 885
 886		if (ktype == &key_type_keyring || ktype->update)
 887			perm |= KEY_USR_WRITE;
 
 888	}
 889
 890	/* allocate a new key */
 891	key = key_alloc(ktype, description, cred->fsuid, cred->fsgid, cred,
 892			perm, flags);
 893	if (IS_ERR(key)) {
 894		key_ref = ERR_CAST(key);
 895		goto error_3;
 896	}
 897
 898	/* instantiate it and link it into the target keyring */
 899	ret = __key_instantiate_and_link(key, payload, plen, keyring, NULL,
 900					 &prealloc);
 901	if (ret < 0) {
 902		key_put(key);
 903		key_ref = ERR_PTR(ret);
 904		goto error_3;
 905	}
 906
 
 
 
 907	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
 908
 909 error_3:
 910	__key_link_end(keyring, ktype, prealloc);
 911 error_2:
 912	key_type_put(ktype);
 913 error:
 
 
 
 914	return key_ref;
 915
 916 found_matching_key:
 917	/* we found a matching key, so we're going to try to update it
 918	 * - we can drop the locks first as we have the key pinned
 919	 */
 920	__key_link_end(keyring, ktype, prealloc);
 921	key_type_put(ktype);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 922
 923	key_ref = __key_update(key_ref, payload, plen);
 924	goto error;
 925}
 926EXPORT_SYMBOL(key_create_or_update);
 927
 928/**
 929 * key_update - Update a key's contents.
 930 * @key_ref: The pointer (plus possession flag) to the key.
 931 * @payload: The data to be used to update the key.
 932 * @plen: The length of @payload.
 933 *
 934 * Attempt to update the contents of a key with the given payload data.  The
 935 * caller must be granted Write permission on the key.  Negative keys can be
 936 * instantiated by this method.
 937 *
 938 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
 939 * type does not support updating.  The key type may return other errors.
 940 */
 941int key_update(key_ref_t key_ref, const void *payload, size_t plen)
 942{
 
 943	struct key *key = key_ref_to_ptr(key_ref);
 944	int ret;
 945
 946	key_check(key);
 947
 948	/* the key must be writable */
 949	ret = key_permission(key_ref, KEY_WRITE);
 950	if (ret < 0)
 951		goto error;
 952
 953	/* attempt to update it if supported */
 954	ret = -EOPNOTSUPP;
 955	if (key->type->update) {
 956		down_write(&key->sem);
 957
 958		ret = key->type->update(key, payload, plen);
 959		if (ret == 0)
 960			/* updating a negative key instantiates it */
 961			clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
 962
 963		up_write(&key->sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 964	}
 965
 966 error:
 
 
 
 
 967	return ret;
 968}
 969EXPORT_SYMBOL(key_update);
 970
 971/**
 972 * key_revoke - Revoke a key.
 973 * @key: The key to be revoked.
 974 *
 975 * Mark a key as being revoked and ask the type to free up its resources.  The
 976 * revocation timeout is set and the key and all its links will be
 977 * automatically garbage collected after key_gc_delay amount of time if they
 978 * are not manually dealt with first.
 979 */
 980void key_revoke(struct key *key)
 981{
 982	struct timespec now;
 983	time_t time;
 984
 985	key_check(key);
 986
 987	/* make sure no one's trying to change or use the key when we mark it
 988	 * - we tell lockdep that we might nest because we might be revoking an
 989	 *   authorisation key whilst holding the sem on a key we've just
 990	 *   instantiated
 991	 */
 992	down_write_nested(&key->sem, 1);
 993	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
 994	    key->type->revoke)
 995		key->type->revoke(key);
 996
 997	/* set the death time to no more than the expiry time */
 998	now = current_kernel_time();
 999	time = now.tv_sec;
1000	if (key->revoked_at == 0 || key->revoked_at > time) {
1001		key->revoked_at = time;
1002		key_schedule_gc(key->revoked_at + key_gc_delay);
 
1003	}
1004
1005	up_write(&key->sem);
1006}
1007EXPORT_SYMBOL(key_revoke);
1008
1009/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1010 * register_key_type - Register a type of key.
1011 * @ktype: The new key type.
1012 *
1013 * Register a new key type.
1014 *
1015 * Returns 0 on success or -EEXIST if a type of this name already exists.
1016 */
1017int register_key_type(struct key_type *ktype)
1018{
1019	struct key_type *p;
1020	int ret;
1021
 
 
1022	ret = -EEXIST;
1023	down_write(&key_types_sem);
1024
1025	/* disallow key types with the same name */
1026	list_for_each_entry(p, &key_types_list, link) {
1027		if (strcmp(p->name, ktype->name) == 0)
1028			goto out;
1029	}
1030
1031	/* store the type */
1032	list_add(&ktype->link, &key_types_list);
 
 
1033	ret = 0;
1034
1035out:
1036	up_write(&key_types_sem);
1037	return ret;
1038}
1039EXPORT_SYMBOL(register_key_type);
1040
1041/**
1042 * unregister_key_type - Unregister a type of key.
1043 * @ktype: The key type.
1044 *
1045 * Unregister a key type and mark all the extant keys of this type as dead.
1046 * Those keys of this type are then destroyed to get rid of their payloads and
1047 * they and their links will be garbage collected as soon as possible.
1048 */
1049void unregister_key_type(struct key_type *ktype)
1050{
1051	struct rb_node *_n;
1052	struct key *key;
1053
1054	down_write(&key_types_sem);
1055
1056	/* withdraw the key type */
1057	list_del_init(&ktype->link);
1058
1059	/* mark all the keys of this type dead */
1060	spin_lock(&key_serial_lock);
1061
1062	for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
1063		key = rb_entry(_n, struct key, serial_node);
1064
1065		if (key->type == ktype) {
1066			key->type = &key_type_dead;
1067			set_bit(KEY_FLAG_DEAD, &key->flags);
1068		}
1069	}
1070
1071	spin_unlock(&key_serial_lock);
1072
1073	/* make sure everyone revalidates their keys */
1074	synchronize_rcu();
1075
1076	/* we should now be able to destroy the payloads of all the keys of
1077	 * this type with impunity */
1078	spin_lock(&key_serial_lock);
1079
1080	for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
1081		key = rb_entry(_n, struct key, serial_node);
1082
1083		if (key->type == ktype) {
1084			if (ktype->destroy)
1085				ktype->destroy(key);
1086			memset(&key->payload, KEY_DESTROY, sizeof(key->payload));
1087		}
1088	}
1089
1090	spin_unlock(&key_serial_lock);
1091	up_write(&key_types_sem);
1092
1093	key_schedule_gc(0);
1094}
1095EXPORT_SYMBOL(unregister_key_type);
1096
1097/*
1098 * Initialise the key management state.
1099 */
1100void __init key_init(void)
1101{
1102	/* allocate a slab in which we can store keys */
1103	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1104			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1105
1106	/* add the special key types */
1107	list_add_tail(&key_type_keyring.link, &key_types_list);
1108	list_add_tail(&key_type_dead.link, &key_types_list);
1109	list_add_tail(&key_type_user.link, &key_types_list);
 
1110
1111	/* record the root user tracking */
1112	rb_link_node(&root_key_user.node,
1113		     NULL,
1114		     &key_user_tree.rb_node);
1115
1116	rb_insert_color(&root_key_user.node,
1117			&key_user_tree);
1118}