Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Generic socket support routines. Memory allocators, socket lock/release
   8 *		handler for protocols to use and generic option handler.
   9 *
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Alan Cox, <A.Cox@swansea.ac.uk>
  14 *
  15 * Fixes:
  16 *		Alan Cox	: 	Numerous verify_area() problems
  17 *		Alan Cox	:	Connecting on a connecting socket
  18 *					now returns an error for tcp.
  19 *		Alan Cox	:	sock->protocol is set correctly.
  20 *					and is not sometimes left as 0.
  21 *		Alan Cox	:	connect handles icmp errors on a
  22 *					connect properly. Unfortunately there
  23 *					is a restart syscall nasty there. I
  24 *					can't match BSD without hacking the C
  25 *					library. Ideas urgently sought!
  26 *		Alan Cox	:	Disallow bind() to addresses that are
  27 *					not ours - especially broadcast ones!!
  28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
  29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
  30 *					instead they leave that for the DESTROY timer.
  31 *		Alan Cox	:	Clean up error flag in accept
  32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
  33 *					was buggy. Put a remove_sock() in the handler
  34 *					for memory when we hit 0. Also altered the timer
  35 *					code. The ACK stuff can wait and needs major
  36 *					TCP layer surgery.
  37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
  38 *					and fixed timer/inet_bh race.
  39 *		Alan Cox	:	Added zapped flag for TCP
  40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
  41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
  43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
  46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
  47 *	Pauline Middelink	:	identd support
  48 *		Alan Cox	:	Fixed connect() taking signals I think.
  49 *		Alan Cox	:	SO_LINGER supported
  50 *		Alan Cox	:	Error reporting fixes
  51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
  52 *		Alan Cox	:	inet sockets don't set sk->type!
  53 *		Alan Cox	:	Split socket option code
  54 *		Alan Cox	:	Callbacks
  55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
  56 *		Alex		:	Removed restriction on inet fioctl
  57 *		Alan Cox	:	Splitting INET from NET core
  58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
  59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
  60 *		Alan Cox	:	Split IP from generic code
  61 *		Alan Cox	:	New kfree_skbmem()
  62 *		Alan Cox	:	Make SO_DEBUG superuser only.
  63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
  64 *					(compatibility fix)
  65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
  66 *		Alan Cox	:	Allocator for a socket is settable.
  67 *		Alan Cox	:	SO_ERROR includes soft errors.
  68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
  69 *		Alan Cox	: 	Generic socket allocation to make hooks
  70 *					easier (suggested by Craig Metz).
  71 *		Michael Pall	:	SO_ERROR returns positive errno again
  72 *              Steve Whitehouse:       Added default destructor to free
  73 *                                      protocol private data.
  74 *              Steve Whitehouse:       Added various other default routines
  75 *                                      common to several socket families.
  76 *              Chris Evans     :       Call suser() check last on F_SETOWN
  77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
  79 *		Andi Kleen	:	Fix write_space callback
  80 *		Chris Evans	:	Security fixes - signedness again
  81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
  82 *
  83 * To Fix:
  84 */
  85
  86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  87
  88#include <asm/unaligned.h>
  89#include <linux/capability.h>
  90#include <linux/errno.h>
  91#include <linux/errqueue.h>
  92#include <linux/types.h>
  93#include <linux/socket.h>
  94#include <linux/in.h>
  95#include <linux/kernel.h>
  96#include <linux/module.h>
  97#include <linux/proc_fs.h>
  98#include <linux/seq_file.h>
  99#include <linux/sched.h>
 100#include <linux/sched/mm.h>
 101#include <linux/timer.h>
 102#include <linux/string.h>
 103#include <linux/sockios.h>
 104#include <linux/net.h>
 105#include <linux/mm.h>
 106#include <linux/slab.h>
 107#include <linux/interrupt.h>
 108#include <linux/poll.h>
 109#include <linux/tcp.h>
 110#include <linux/init.h>
 111#include <linux/highmem.h>
 112#include <linux/user_namespace.h>
 113#include <linux/static_key.h>
 114#include <linux/memcontrol.h>
 115#include <linux/prefetch.h>
 116#include <linux/compat.h>
 117
 118#include <linux/uaccess.h>
 119
 120#include <linux/netdevice.h>
 121#include <net/protocol.h>
 122#include <linux/skbuff.h>
 123#include <net/net_namespace.h>
 124#include <net/request_sock.h>
 125#include <net/sock.h>
 126#include <linux/net_tstamp.h>
 127#include <net/xfrm.h>
 128#include <linux/ipsec.h>
 129#include <net/cls_cgroup.h>
 130#include <net/netprio_cgroup.h>
 131#include <linux/sock_diag.h>
 132
 133#include <linux/filter.h>
 134#include <net/sock_reuseport.h>
 135#include <net/bpf_sk_storage.h>
 136
 137#include <trace/events/sock.h>
 138
 139#include <net/tcp.h>
 140#include <net/busy_poll.h>
 141
 142static DEFINE_MUTEX(proto_list_mutex);
 143static LIST_HEAD(proto_list);
 144
 145static void sock_inuse_add(struct net *net, int val);
 146
 147/**
 148 * sk_ns_capable - General socket capability test
 149 * @sk: Socket to use a capability on or through
 150 * @user_ns: The user namespace of the capability to use
 151 * @cap: The capability to use
 152 *
 153 * Test to see if the opener of the socket had when the socket was
 154 * created and the current process has the capability @cap in the user
 155 * namespace @user_ns.
 156 */
 157bool sk_ns_capable(const struct sock *sk,
 158		   struct user_namespace *user_ns, int cap)
 159{
 160	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
 161		ns_capable(user_ns, cap);
 162}
 163EXPORT_SYMBOL(sk_ns_capable);
 164
 165/**
 166 * sk_capable - Socket global capability test
 167 * @sk: Socket to use a capability on or through
 168 * @cap: The global capability to use
 169 *
 170 * Test to see if the opener of the socket had when the socket was
 171 * created and the current process has the capability @cap in all user
 172 * namespaces.
 173 */
 174bool sk_capable(const struct sock *sk, int cap)
 175{
 176	return sk_ns_capable(sk, &init_user_ns, cap);
 177}
 178EXPORT_SYMBOL(sk_capable);
 179
 180/**
 181 * sk_net_capable - Network namespace socket capability test
 182 * @sk: Socket to use a capability on or through
 183 * @cap: The capability to use
 184 *
 185 * Test to see if the opener of the socket had when the socket was created
 186 * and the current process has the capability @cap over the network namespace
 187 * the socket is a member of.
 188 */
 189bool sk_net_capable(const struct sock *sk, int cap)
 190{
 191	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
 192}
 193EXPORT_SYMBOL(sk_net_capable);
 194
 195/*
 196 * Each address family might have different locking rules, so we have
 197 * one slock key per address family and separate keys for internal and
 198 * userspace sockets.
 199 */
 200static struct lock_class_key af_family_keys[AF_MAX];
 201static struct lock_class_key af_family_kern_keys[AF_MAX];
 202static struct lock_class_key af_family_slock_keys[AF_MAX];
 203static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
 204
 205/*
 206 * Make lock validator output more readable. (we pre-construct these
 207 * strings build-time, so that runtime initialization of socket
 208 * locks is fast):
 209 */
 210
 211#define _sock_locks(x)						  \
 212  x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
 213  x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
 214  x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
 215  x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
 216  x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
 217  x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
 218  x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
 219  x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
 220  x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
 221  x "27"       ,	x "28"          ,	x "AF_CAN"      , \
 222  x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
 223  x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
 224  x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
 225  x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
 226  x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
 227  x "AF_MAX"
 228
 229static const char *const af_family_key_strings[AF_MAX+1] = {
 230	_sock_locks("sk_lock-")
 231};
 232static const char *const af_family_slock_key_strings[AF_MAX+1] = {
 233	_sock_locks("slock-")
 234};
 235static const char *const af_family_clock_key_strings[AF_MAX+1] = {
 236	_sock_locks("clock-")
 237};
 238
 239static const char *const af_family_kern_key_strings[AF_MAX+1] = {
 240	_sock_locks("k-sk_lock-")
 241};
 242static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
 243	_sock_locks("k-slock-")
 244};
 245static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
 246	_sock_locks("k-clock-")
 247};
 248static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
 249	_sock_locks("rlock-")
 250};
 251static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
 252	_sock_locks("wlock-")
 253};
 254static const char *const af_family_elock_key_strings[AF_MAX+1] = {
 255	_sock_locks("elock-")
 256};
 257
 258/*
 259 * sk_callback_lock and sk queues locking rules are per-address-family,
 260 * so split the lock classes by using a per-AF key:
 261 */
 262static struct lock_class_key af_callback_keys[AF_MAX];
 263static struct lock_class_key af_rlock_keys[AF_MAX];
 264static struct lock_class_key af_wlock_keys[AF_MAX];
 265static struct lock_class_key af_elock_keys[AF_MAX];
 266static struct lock_class_key af_kern_callback_keys[AF_MAX];
 267
 268/* Run time adjustable parameters. */
 269__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
 270EXPORT_SYMBOL(sysctl_wmem_max);
 271__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
 272EXPORT_SYMBOL(sysctl_rmem_max);
 273__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
 274__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
 275
 276/* Maximal space eaten by iovec or ancillary data plus some space */
 277int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
 278EXPORT_SYMBOL(sysctl_optmem_max);
 279
 280int sysctl_tstamp_allow_data __read_mostly = 1;
 281
 282DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
 283EXPORT_SYMBOL_GPL(memalloc_socks_key);
 284
 285/**
 286 * sk_set_memalloc - sets %SOCK_MEMALLOC
 287 * @sk: socket to set it on
 288 *
 289 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
 290 * It's the responsibility of the admin to adjust min_free_kbytes
 291 * to meet the requirements
 292 */
 293void sk_set_memalloc(struct sock *sk)
 294{
 295	sock_set_flag(sk, SOCK_MEMALLOC);
 296	sk->sk_allocation |= __GFP_MEMALLOC;
 297	static_branch_inc(&memalloc_socks_key);
 298}
 299EXPORT_SYMBOL_GPL(sk_set_memalloc);
 300
 301void sk_clear_memalloc(struct sock *sk)
 302{
 303	sock_reset_flag(sk, SOCK_MEMALLOC);
 304	sk->sk_allocation &= ~__GFP_MEMALLOC;
 305	static_branch_dec(&memalloc_socks_key);
 306
 307	/*
 308	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
 309	 * progress of swapping. SOCK_MEMALLOC may be cleared while
 310	 * it has rmem allocations due to the last swapfile being deactivated
 311	 * but there is a risk that the socket is unusable due to exceeding
 312	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
 313	 */
 314	sk_mem_reclaim(sk);
 315}
 316EXPORT_SYMBOL_GPL(sk_clear_memalloc);
 317
 318int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 319{
 320	int ret;
 321	unsigned int noreclaim_flag;
 322
 323	/* these should have been dropped before queueing */
 324	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
 325
 326	noreclaim_flag = memalloc_noreclaim_save();
 327	ret = sk->sk_backlog_rcv(sk, skb);
 328	memalloc_noreclaim_restore(noreclaim_flag);
 329
 330	return ret;
 331}
 332EXPORT_SYMBOL(__sk_backlog_rcv);
 333
 334static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
 335{
 336	struct __kernel_sock_timeval tv;
 
 337
 338	if (timeo == MAX_SCHEDULE_TIMEOUT) {
 339		tv.tv_sec = 0;
 340		tv.tv_usec = 0;
 341	} else {
 342		tv.tv_sec = timeo / HZ;
 343		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
 344	}
 345
 346	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 347		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
 348		*(struct old_timeval32 *)optval = tv32;
 349		return sizeof(tv32);
 350	}
 351
 352	if (old_timeval) {
 353		struct __kernel_old_timeval old_tv;
 354		old_tv.tv_sec = tv.tv_sec;
 355		old_tv.tv_usec = tv.tv_usec;
 356		*(struct __kernel_old_timeval *)optval = old_tv;
 357		return sizeof(old_tv);
 
 
 
 358	}
 359
 360	*(struct __kernel_sock_timeval *)optval = tv;
 361	return sizeof(tv);
 362}
 363
 364static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
 365			    bool old_timeval)
 366{
 367	struct __kernel_sock_timeval tv;
 368
 369	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 370		struct old_timeval32 tv32;
 371
 372		if (optlen < sizeof(tv32))
 373			return -EINVAL;
 374
 375		if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
 376			return -EFAULT;
 377		tv.tv_sec = tv32.tv_sec;
 378		tv.tv_usec = tv32.tv_usec;
 379	} else if (old_timeval) {
 380		struct __kernel_old_timeval old_tv;
 381
 382		if (optlen < sizeof(old_tv))
 383			return -EINVAL;
 384		if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
 385			return -EFAULT;
 386		tv.tv_sec = old_tv.tv_sec;
 387		tv.tv_usec = old_tv.tv_usec;
 388	} else {
 389		if (optlen < sizeof(tv))
 390			return -EINVAL;
 391		if (copy_from_sockptr(&tv, optval, sizeof(tv)))
 392			return -EFAULT;
 393	}
 394	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
 395		return -EDOM;
 396
 397	if (tv.tv_sec < 0) {
 398		static int warned __read_mostly;
 399
 400		*timeo_p = 0;
 401		if (warned < 10 && net_ratelimit()) {
 402			warned++;
 403			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
 404				__func__, current->comm, task_pid_nr(current));
 405		}
 406		return 0;
 407	}
 408	*timeo_p = MAX_SCHEDULE_TIMEOUT;
 409	if (tv.tv_sec == 0 && tv.tv_usec == 0)
 410		return 0;
 411	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
 412		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
 413	return 0;
 414}
 415
 416static void sock_warn_obsolete_bsdism(const char *name)
 417{
 418	static int warned;
 419	static char warncomm[TASK_COMM_LEN];
 420	if (strcmp(warncomm, current->comm) && warned < 5) {
 421		strcpy(warncomm,  current->comm);
 422		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
 423			warncomm, name);
 424		warned++;
 425	}
 426}
 427
 428static bool sock_needs_netstamp(const struct sock *sk)
 429{
 430	switch (sk->sk_family) {
 431	case AF_UNSPEC:
 432	case AF_UNIX:
 433		return false;
 434	default:
 435		return true;
 436	}
 437}
 438
 439static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
 440{
 441	if (sk->sk_flags & flags) {
 442		sk->sk_flags &= ~flags;
 443		if (sock_needs_netstamp(sk) &&
 444		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
 445			net_disable_timestamp();
 446	}
 447}
 448
 449
 450int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 451{
 452	unsigned long flags;
 453	struct sk_buff_head *list = &sk->sk_receive_queue;
 454
 455	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
 456		atomic_inc(&sk->sk_drops);
 457		trace_sock_rcvqueue_full(sk, skb);
 458		return -ENOMEM;
 459	}
 460
 461	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
 462		atomic_inc(&sk->sk_drops);
 463		return -ENOBUFS;
 464	}
 465
 466	skb->dev = NULL;
 467	skb_set_owner_r(skb, sk);
 468
 469	/* we escape from rcu protected region, make sure we dont leak
 470	 * a norefcounted dst
 471	 */
 472	skb_dst_force(skb);
 473
 474	spin_lock_irqsave(&list->lock, flags);
 475	sock_skb_set_dropcount(sk, skb);
 476	__skb_queue_tail(list, skb);
 477	spin_unlock_irqrestore(&list->lock, flags);
 478
 479	if (!sock_flag(sk, SOCK_DEAD))
 480		sk->sk_data_ready(sk);
 481	return 0;
 482}
 483EXPORT_SYMBOL(__sock_queue_rcv_skb);
 484
 485int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 486{
 487	int err;
 488
 489	err = sk_filter(sk, skb);
 490	if (err)
 491		return err;
 492
 493	return __sock_queue_rcv_skb(sk, skb);
 494}
 495EXPORT_SYMBOL(sock_queue_rcv_skb);
 496
 497int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
 498		     const int nested, unsigned int trim_cap, bool refcounted)
 499{
 500	int rc = NET_RX_SUCCESS;
 501
 502	if (sk_filter_trim_cap(sk, skb, trim_cap))
 503		goto discard_and_relse;
 504
 505	skb->dev = NULL;
 506
 507	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
 508		atomic_inc(&sk->sk_drops);
 509		goto discard_and_relse;
 510	}
 511	if (nested)
 512		bh_lock_sock_nested(sk);
 513	else
 514		bh_lock_sock(sk);
 515	if (!sock_owned_by_user(sk)) {
 516		/*
 517		 * trylock + unlock semantics:
 518		 */
 519		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
 520
 521		rc = sk_backlog_rcv(sk, skb);
 522
 523		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
 524	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
 525		bh_unlock_sock(sk);
 526		atomic_inc(&sk->sk_drops);
 527		goto discard_and_relse;
 528	}
 529
 530	bh_unlock_sock(sk);
 531out:
 532	if (refcounted)
 533		sock_put(sk);
 534	return rc;
 535discard_and_relse:
 536	kfree_skb(skb);
 537	goto out;
 538}
 539EXPORT_SYMBOL(__sk_receive_skb);
 540
 541struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
 542{
 543	struct dst_entry *dst = __sk_dst_get(sk);
 544
 545	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 546		sk_tx_queue_clear(sk);
 547		sk->sk_dst_pending_confirm = 0;
 548		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
 549		dst_release(dst);
 550		return NULL;
 551	}
 552
 553	return dst;
 554}
 555EXPORT_SYMBOL(__sk_dst_check);
 556
 557struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
 558{
 559	struct dst_entry *dst = sk_dst_get(sk);
 560
 561	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 562		sk_dst_reset(sk);
 563		dst_release(dst);
 564		return NULL;
 565	}
 566
 567	return dst;
 568}
 569EXPORT_SYMBOL(sk_dst_check);
 570
 571static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
 572{
 573	int ret = -ENOPROTOOPT;
 574#ifdef CONFIG_NETDEVICES
 575	struct net *net = sock_net(sk);
 576
 577	/* Sorry... */
 578	ret = -EPERM;
 579	if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
 580		goto out;
 581
 582	ret = -EINVAL;
 583	if (ifindex < 0)
 584		goto out;
 585
 586	sk->sk_bound_dev_if = ifindex;
 587	if (sk->sk_prot->rehash)
 588		sk->sk_prot->rehash(sk);
 589	sk_dst_reset(sk);
 590
 591	ret = 0;
 592
 593out:
 594#endif
 595
 596	return ret;
 597}
 598
 599int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
 600{
 601	int ret;
 602
 603	if (lock_sk)
 604		lock_sock(sk);
 605	ret = sock_bindtoindex_locked(sk, ifindex);
 606	if (lock_sk)
 607		release_sock(sk);
 608
 609	return ret;
 610}
 611EXPORT_SYMBOL(sock_bindtoindex);
 612
 613static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
 614{
 615	int ret = -ENOPROTOOPT;
 616#ifdef CONFIG_NETDEVICES
 617	struct net *net = sock_net(sk);
 618	char devname[IFNAMSIZ];
 619	int index;
 620
 621	ret = -EINVAL;
 622	if (optlen < 0)
 623		goto out;
 624
 625	/* Bind this socket to a particular device like "eth0",
 626	 * as specified in the passed interface name. If the
 627	 * name is "" or the option length is zero the socket
 628	 * is not bound.
 629	 */
 630	if (optlen > IFNAMSIZ - 1)
 631		optlen = IFNAMSIZ - 1;
 632	memset(devname, 0, sizeof(devname));
 633
 634	ret = -EFAULT;
 635	if (copy_from_sockptr(devname, optval, optlen))
 636		goto out;
 637
 638	index = 0;
 639	if (devname[0] != '\0') {
 640		struct net_device *dev;
 641
 642		rcu_read_lock();
 643		dev = dev_get_by_name_rcu(net, devname);
 644		if (dev)
 645			index = dev->ifindex;
 646		rcu_read_unlock();
 647		ret = -ENODEV;
 648		if (!dev)
 649			goto out;
 650	}
 651
 652	return sock_bindtoindex(sk, index, true);
 
 
 
 653out:
 654#endif
 655
 656	return ret;
 657}
 658
 659static int sock_getbindtodevice(struct sock *sk, char __user *optval,
 660				int __user *optlen, int len)
 661{
 662	int ret = -ENOPROTOOPT;
 663#ifdef CONFIG_NETDEVICES
 664	struct net *net = sock_net(sk);
 665	char devname[IFNAMSIZ];
 666
 667	if (sk->sk_bound_dev_if == 0) {
 668		len = 0;
 669		goto zero;
 670	}
 671
 672	ret = -EINVAL;
 673	if (len < IFNAMSIZ)
 674		goto out;
 675
 676	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
 677	if (ret)
 678		goto out;
 679
 680	len = strlen(devname) + 1;
 681
 682	ret = -EFAULT;
 683	if (copy_to_user(optval, devname, len))
 684		goto out;
 685
 686zero:
 687	ret = -EFAULT;
 688	if (put_user(len, optlen))
 689		goto out;
 690
 691	ret = 0;
 692
 693out:
 694#endif
 695
 696	return ret;
 697}
 698
 
 
 
 
 
 
 
 
 699bool sk_mc_loop(struct sock *sk)
 700{
 701	if (dev_recursion_level())
 702		return false;
 703	if (!sk)
 704		return true;
 705	switch (sk->sk_family) {
 706	case AF_INET:
 707		return inet_sk(sk)->mc_loop;
 708#if IS_ENABLED(CONFIG_IPV6)
 709	case AF_INET6:
 710		return inet6_sk(sk)->mc_loop;
 711#endif
 712	}
 713	WARN_ON_ONCE(1);
 714	return true;
 715}
 716EXPORT_SYMBOL(sk_mc_loop);
 717
 718void sock_set_reuseaddr(struct sock *sk)
 719{
 720	lock_sock(sk);
 721	sk->sk_reuse = SK_CAN_REUSE;
 722	release_sock(sk);
 723}
 724EXPORT_SYMBOL(sock_set_reuseaddr);
 725
 726void sock_set_reuseport(struct sock *sk)
 727{
 728	lock_sock(sk);
 729	sk->sk_reuseport = true;
 730	release_sock(sk);
 731}
 732EXPORT_SYMBOL(sock_set_reuseport);
 733
 734void sock_no_linger(struct sock *sk)
 735{
 736	lock_sock(sk);
 737	sk->sk_lingertime = 0;
 738	sock_set_flag(sk, SOCK_LINGER);
 739	release_sock(sk);
 740}
 741EXPORT_SYMBOL(sock_no_linger);
 742
 743void sock_set_priority(struct sock *sk, u32 priority)
 744{
 745	lock_sock(sk);
 746	sk->sk_priority = priority;
 747	release_sock(sk);
 748}
 749EXPORT_SYMBOL(sock_set_priority);
 750
 751void sock_set_sndtimeo(struct sock *sk, s64 secs)
 752{
 753	lock_sock(sk);
 754	if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
 755		sk->sk_sndtimeo = secs * HZ;
 756	else
 757		sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
 758	release_sock(sk);
 759}
 760EXPORT_SYMBOL(sock_set_sndtimeo);
 761
 762static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
 763{
 764	if (val)  {
 765		sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
 766		sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
 767		sock_set_flag(sk, SOCK_RCVTSTAMP);
 768		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
 769	} else {
 770		sock_reset_flag(sk, SOCK_RCVTSTAMP);
 771		sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 772		sock_reset_flag(sk, SOCK_TSTAMP_NEW);
 773	}
 774}
 775
 776void sock_enable_timestamps(struct sock *sk)
 777{
 778	lock_sock(sk);
 779	__sock_set_timestamps(sk, true, false, true);
 780	release_sock(sk);
 781}
 782EXPORT_SYMBOL(sock_enable_timestamps);
 783
 784void sock_set_keepalive(struct sock *sk)
 785{
 786	lock_sock(sk);
 787	if (sk->sk_prot->keepalive)
 788		sk->sk_prot->keepalive(sk, true);
 789	sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
 790	release_sock(sk);
 791}
 792EXPORT_SYMBOL(sock_set_keepalive);
 793
 794static void __sock_set_rcvbuf(struct sock *sk, int val)
 795{
 796	/* Ensure val * 2 fits into an int, to prevent max_t() from treating it
 797	 * as a negative value.
 798	 */
 799	val = min_t(int, val, INT_MAX / 2);
 800	sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
 801
 802	/* We double it on the way in to account for "struct sk_buff" etc.
 803	 * overhead.   Applications assume that the SO_RCVBUF setting they make
 804	 * will allow that much actual data to be received on that socket.
 805	 *
 806	 * Applications are unaware that "struct sk_buff" and other overheads
 807	 * allocate from the receive buffer during socket buffer allocation.
 808	 *
 809	 * And after considering the possible alternatives, returning the value
 810	 * we actually used in getsockopt is the most desirable behavior.
 811	 */
 812	WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
 813}
 814
 815void sock_set_rcvbuf(struct sock *sk, int val)
 816{
 817	lock_sock(sk);
 818	__sock_set_rcvbuf(sk, val);
 819	release_sock(sk);
 820}
 821EXPORT_SYMBOL(sock_set_rcvbuf);
 822
 823void sock_set_mark(struct sock *sk, u32 val)
 824{
 825	lock_sock(sk);
 826	sk->sk_mark = val;
 827	release_sock(sk);
 828}
 829EXPORT_SYMBOL(sock_set_mark);
 830
 831/*
 832 *	This is meant for all protocols to use and covers goings on
 833 *	at the socket level. Everything here is generic.
 834 */
 835
 836int sock_setsockopt(struct socket *sock, int level, int optname,
 837		    sockptr_t optval, unsigned int optlen)
 838{
 839	struct sock_txtime sk_txtime;
 840	struct sock *sk = sock->sk;
 841	int val;
 842	int valbool;
 843	struct linger ling;
 844	int ret = 0;
 845
 846	/*
 847	 *	Options without arguments
 848	 */
 849
 850	if (optname == SO_BINDTODEVICE)
 851		return sock_setbindtodevice(sk, optval, optlen);
 852
 853	if (optlen < sizeof(int))
 854		return -EINVAL;
 855
 856	if (copy_from_sockptr(&val, optval, sizeof(val)))
 857		return -EFAULT;
 858
 859	valbool = val ? 1 : 0;
 860
 861	lock_sock(sk);
 862
 863	switch (optname) {
 864	case SO_DEBUG:
 865		if (val && !capable(CAP_NET_ADMIN))
 866			ret = -EACCES;
 867		else
 868			sock_valbool_flag(sk, SOCK_DBG, valbool);
 869		break;
 870	case SO_REUSEADDR:
 871		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
 872		break;
 873	case SO_REUSEPORT:
 874		sk->sk_reuseport = valbool;
 875		break;
 876	case SO_TYPE:
 877	case SO_PROTOCOL:
 878	case SO_DOMAIN:
 879	case SO_ERROR:
 880		ret = -ENOPROTOOPT;
 881		break;
 882	case SO_DONTROUTE:
 883		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
 884		sk_dst_reset(sk);
 885		break;
 886	case SO_BROADCAST:
 887		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
 888		break;
 889	case SO_SNDBUF:
 890		/* Don't error on this BSD doesn't and if you think
 891		 * about it this is right. Otherwise apps have to
 892		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
 893		 * are treated in BSD as hints
 894		 */
 895		val = min_t(u32, val, sysctl_wmem_max);
 896set_sndbuf:
 897		/* Ensure val * 2 fits into an int, to prevent max_t()
 898		 * from treating it as a negative value.
 899		 */
 900		val = min_t(int, val, INT_MAX / 2);
 901		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
 902		WRITE_ONCE(sk->sk_sndbuf,
 903			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
 904		/* Wake up sending tasks if we upped the value. */
 905		sk->sk_write_space(sk);
 906		break;
 907
 908	case SO_SNDBUFFORCE:
 909		if (!capable(CAP_NET_ADMIN)) {
 910			ret = -EPERM;
 911			break;
 912		}
 913
 914		/* No negative values (to prevent underflow, as val will be
 915		 * multiplied by 2).
 916		 */
 917		if (val < 0)
 918			val = 0;
 919		goto set_sndbuf;
 920
 921	case SO_RCVBUF:
 922		/* Don't error on this BSD doesn't and if you think
 923		 * about it this is right. Otherwise apps have to
 924		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
 925		 * are treated in BSD as hints
 926		 */
 927		__sock_set_rcvbuf(sk, min_t(u32, val, sysctl_rmem_max));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 928		break;
 929
 930	case SO_RCVBUFFORCE:
 931		if (!capable(CAP_NET_ADMIN)) {
 932			ret = -EPERM;
 933			break;
 934		}
 935
 936		/* No negative values (to prevent underflow, as val will be
 937		 * multiplied by 2).
 938		 */
 939		__sock_set_rcvbuf(sk, max(val, 0));
 940		break;
 
 941
 942	case SO_KEEPALIVE:
 943		if (sk->sk_prot->keepalive)
 944			sk->sk_prot->keepalive(sk, valbool);
 945		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
 946		break;
 947
 948	case SO_OOBINLINE:
 949		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
 950		break;
 951
 952	case SO_NO_CHECK:
 953		sk->sk_no_check_tx = valbool;
 954		break;
 955
 956	case SO_PRIORITY:
 957		if ((val >= 0 && val <= 6) ||
 958		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
 959			sk->sk_priority = val;
 960		else
 961			ret = -EPERM;
 962		break;
 963
 964	case SO_LINGER:
 965		if (optlen < sizeof(ling)) {
 966			ret = -EINVAL;	/* 1003.1g */
 967			break;
 968		}
 969		if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
 970			ret = -EFAULT;
 971			break;
 972		}
 973		if (!ling.l_onoff)
 974			sock_reset_flag(sk, SOCK_LINGER);
 975		else {
 976#if (BITS_PER_LONG == 32)
 977			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
 978				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
 979			else
 980#endif
 981				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
 982			sock_set_flag(sk, SOCK_LINGER);
 983		}
 984		break;
 985
 986	case SO_BSDCOMPAT:
 987		sock_warn_obsolete_bsdism("setsockopt");
 988		break;
 989
 990	case SO_PASSCRED:
 991		if (valbool)
 992			set_bit(SOCK_PASSCRED, &sock->flags);
 993		else
 994			clear_bit(SOCK_PASSCRED, &sock->flags);
 995		break;
 996
 997	case SO_TIMESTAMP_OLD:
 998		__sock_set_timestamps(sk, valbool, false, false);
 999		break;
1000	case SO_TIMESTAMP_NEW:
1001		__sock_set_timestamps(sk, valbool, true, false);
1002		break;
1003	case SO_TIMESTAMPNS_OLD:
1004		__sock_set_timestamps(sk, valbool, false, true);
1005		break;
1006	case SO_TIMESTAMPNS_NEW:
1007		__sock_set_timestamps(sk, valbool, true, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1008		break;
 
1009	case SO_TIMESTAMPING_NEW:
1010		sock_set_flag(sk, SOCK_TSTAMP_NEW);
1011		fallthrough;
1012	case SO_TIMESTAMPING_OLD:
1013		if (val & ~SOF_TIMESTAMPING_MASK) {
1014			ret = -EINVAL;
1015			break;
1016		}
1017
1018		if (val & SOF_TIMESTAMPING_OPT_ID &&
1019		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
1020			if (sk->sk_protocol == IPPROTO_TCP &&
1021			    sk->sk_type == SOCK_STREAM) {
1022				if ((1 << sk->sk_state) &
1023				    (TCPF_CLOSE | TCPF_LISTEN)) {
1024					ret = -EINVAL;
1025					break;
1026				}
1027				sk->sk_tskey = tcp_sk(sk)->snd_una;
1028			} else {
1029				sk->sk_tskey = 0;
1030			}
1031		}
1032
1033		if (val & SOF_TIMESTAMPING_OPT_STATS &&
1034		    !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
1035			ret = -EINVAL;
1036			break;
1037		}
1038
1039		sk->sk_tsflags = val;
1040		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
1041			sock_enable_timestamp(sk,
1042					      SOCK_TIMESTAMPING_RX_SOFTWARE);
1043		else {
1044			if (optname == SO_TIMESTAMPING_NEW)
1045				sock_reset_flag(sk, SOCK_TSTAMP_NEW);
1046
1047			sock_disable_timestamp(sk,
1048					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
1049		}
1050		break;
1051
1052	case SO_RCVLOWAT:
1053		if (val < 0)
1054			val = INT_MAX;
1055		if (sock->ops->set_rcvlowat)
1056			ret = sock->ops->set_rcvlowat(sk, val);
1057		else
1058			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1059		break;
1060
1061	case SO_RCVTIMEO_OLD:
1062	case SO_RCVTIMEO_NEW:
1063		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1064				       optlen, optname == SO_RCVTIMEO_OLD);
1065		break;
1066
1067	case SO_SNDTIMEO_OLD:
1068	case SO_SNDTIMEO_NEW:
1069		ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1070				       optlen, optname == SO_SNDTIMEO_OLD);
1071		break;
1072
1073	case SO_ATTACH_FILTER: {
1074		struct sock_fprog fprog;
 
 
 
 
 
 
1075
1076		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1077		if (!ret)
1078			ret = sk_attach_filter(&fprog, sk);
 
1079		break;
1080	}
1081	case SO_ATTACH_BPF:
1082		ret = -EINVAL;
1083		if (optlen == sizeof(u32)) {
1084			u32 ufd;
1085
1086			ret = -EFAULT;
1087			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1088				break;
1089
1090			ret = sk_attach_bpf(ufd, sk);
1091		}
1092		break;
1093
1094	case SO_ATTACH_REUSEPORT_CBPF: {
1095		struct sock_fprog fprog;
 
 
 
 
 
 
1096
1097		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1098		if (!ret)
1099			ret = sk_reuseport_attach_filter(&fprog, sk);
 
1100		break;
1101	}
1102	case SO_ATTACH_REUSEPORT_EBPF:
1103		ret = -EINVAL;
1104		if (optlen == sizeof(u32)) {
1105			u32 ufd;
1106
1107			ret = -EFAULT;
1108			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1109				break;
1110
1111			ret = sk_reuseport_attach_bpf(ufd, sk);
1112		}
1113		break;
1114
1115	case SO_DETACH_REUSEPORT_BPF:
1116		ret = reuseport_detach_prog(sk);
1117		break;
1118
1119	case SO_DETACH_FILTER:
1120		ret = sk_detach_filter(sk);
1121		break;
1122
1123	case SO_LOCK_FILTER:
1124		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1125			ret = -EPERM;
1126		else
1127			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1128		break;
1129
1130	case SO_PASSSEC:
1131		if (valbool)
1132			set_bit(SOCK_PASSSEC, &sock->flags);
1133		else
1134			clear_bit(SOCK_PASSSEC, &sock->flags);
1135		break;
1136	case SO_MARK:
1137		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1138			ret = -EPERM;
1139		} else if (val != sk->sk_mark) {
1140			sk->sk_mark = val;
1141			sk_dst_reset(sk);
1142		}
1143		break;
1144
1145	case SO_RXQ_OVFL:
1146		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1147		break;
1148
1149	case SO_WIFI_STATUS:
1150		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1151		break;
1152
1153	case SO_PEEK_OFF:
1154		if (sock->ops->set_peek_off)
1155			ret = sock->ops->set_peek_off(sk, val);
1156		else
1157			ret = -EOPNOTSUPP;
1158		break;
1159
1160	case SO_NOFCS:
1161		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1162		break;
1163
1164	case SO_SELECT_ERR_QUEUE:
1165		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1166		break;
1167
1168#ifdef CONFIG_NET_RX_BUSY_POLL
1169	case SO_BUSY_POLL:
1170		/* allow unprivileged users to decrease the value */
1171		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1172			ret = -EPERM;
1173		else {
1174			if (val < 0)
1175				ret = -EINVAL;
1176			else
1177				sk->sk_ll_usec = val;
1178		}
1179		break;
1180#endif
1181
1182	case SO_MAX_PACING_RATE:
1183		{
1184		unsigned long ulval = (val == ~0U) ? ~0UL : val;
1185
1186		if (sizeof(ulval) != sizeof(val) &&
1187		    optlen >= sizeof(ulval) &&
1188		    copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1189			ret = -EFAULT;
1190			break;
1191		}
1192		if (ulval != ~0UL)
1193			cmpxchg(&sk->sk_pacing_status,
1194				SK_PACING_NONE,
1195				SK_PACING_NEEDED);
1196		sk->sk_max_pacing_rate = ulval;
1197		sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1198		break;
1199		}
1200	case SO_INCOMING_CPU:
1201		WRITE_ONCE(sk->sk_incoming_cpu, val);
1202		break;
1203
1204	case SO_CNX_ADVICE:
1205		if (val == 1)
1206			dst_negative_advice(sk);
1207		break;
1208
1209	case SO_ZEROCOPY:
1210		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1211			if (!((sk->sk_type == SOCK_STREAM &&
1212			       sk->sk_protocol == IPPROTO_TCP) ||
1213			      (sk->sk_type == SOCK_DGRAM &&
1214			       sk->sk_protocol == IPPROTO_UDP)))
1215				ret = -ENOTSUPP;
1216		} else if (sk->sk_family != PF_RDS) {
1217			ret = -ENOTSUPP;
1218		}
1219		if (!ret) {
1220			if (val < 0 || val > 1)
1221				ret = -EINVAL;
1222			else
1223				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1224		}
1225		break;
1226
1227	case SO_TXTIME:
1228		if (optlen != sizeof(struct sock_txtime)) {
 
 
1229			ret = -EINVAL;
1230			break;
1231		} else if (copy_from_sockptr(&sk_txtime, optval,
1232			   sizeof(struct sock_txtime))) {
1233			ret = -EFAULT;
1234			break;
1235		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1236			ret = -EINVAL;
1237			break;
1238		}
1239		/* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1240		 * scheduler has enough safe guards.
1241		 */
1242		if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1243		    !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1244			ret = -EPERM;
1245			break;
1246		}
1247		sock_valbool_flag(sk, SOCK_TXTIME, true);
1248		sk->sk_clockid = sk_txtime.clockid;
1249		sk->sk_txtime_deadline_mode =
1250			!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1251		sk->sk_txtime_report_errors =
1252			!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1253		break;
1254
1255	case SO_BINDTOIFINDEX:
1256		ret = sock_bindtoindex_locked(sk, val);
1257		break;
1258
1259	default:
1260		ret = -ENOPROTOOPT;
1261		break;
1262	}
1263	release_sock(sk);
1264	return ret;
1265}
1266EXPORT_SYMBOL(sock_setsockopt);
1267
1268
1269static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1270			  struct ucred *ucred)
1271{
1272	ucred->pid = pid_vnr(pid);
1273	ucred->uid = ucred->gid = -1;
1274	if (cred) {
1275		struct user_namespace *current_ns = current_user_ns();
1276
1277		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1278		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1279	}
1280}
1281
1282static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1283{
1284	struct user_namespace *user_ns = current_user_ns();
1285	int i;
1286
1287	for (i = 0; i < src->ngroups; i++)
1288		if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1289			return -EFAULT;
1290
1291	return 0;
1292}
1293
1294int sock_getsockopt(struct socket *sock, int level, int optname,
1295		    char __user *optval, int __user *optlen)
1296{
1297	struct sock *sk = sock->sk;
1298
1299	union {
1300		int val;
1301		u64 val64;
1302		unsigned long ulval;
1303		struct linger ling;
1304		struct old_timeval32 tm32;
1305		struct __kernel_old_timeval tm;
1306		struct  __kernel_sock_timeval stm;
1307		struct sock_txtime txtime;
1308	} v;
1309
1310	int lv = sizeof(int);
1311	int len;
1312
1313	if (get_user(len, optlen))
1314		return -EFAULT;
1315	if (len < 0)
1316		return -EINVAL;
1317
1318	memset(&v, 0, sizeof(v));
1319
1320	switch (optname) {
1321	case SO_DEBUG:
1322		v.val = sock_flag(sk, SOCK_DBG);
1323		break;
1324
1325	case SO_DONTROUTE:
1326		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1327		break;
1328
1329	case SO_BROADCAST:
1330		v.val = sock_flag(sk, SOCK_BROADCAST);
1331		break;
1332
1333	case SO_SNDBUF:
1334		v.val = sk->sk_sndbuf;
1335		break;
1336
1337	case SO_RCVBUF:
1338		v.val = sk->sk_rcvbuf;
1339		break;
1340
1341	case SO_REUSEADDR:
1342		v.val = sk->sk_reuse;
1343		break;
1344
1345	case SO_REUSEPORT:
1346		v.val = sk->sk_reuseport;
1347		break;
1348
1349	case SO_KEEPALIVE:
1350		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1351		break;
1352
1353	case SO_TYPE:
1354		v.val = sk->sk_type;
1355		break;
1356
1357	case SO_PROTOCOL:
1358		v.val = sk->sk_protocol;
1359		break;
1360
1361	case SO_DOMAIN:
1362		v.val = sk->sk_family;
1363		break;
1364
1365	case SO_ERROR:
1366		v.val = -sock_error(sk);
1367		if (v.val == 0)
1368			v.val = xchg(&sk->sk_err_soft, 0);
1369		break;
1370
1371	case SO_OOBINLINE:
1372		v.val = sock_flag(sk, SOCK_URGINLINE);
1373		break;
1374
1375	case SO_NO_CHECK:
1376		v.val = sk->sk_no_check_tx;
1377		break;
1378
1379	case SO_PRIORITY:
1380		v.val = sk->sk_priority;
1381		break;
1382
1383	case SO_LINGER:
1384		lv		= sizeof(v.ling);
1385		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1386		v.ling.l_linger	= sk->sk_lingertime / HZ;
1387		break;
1388
1389	case SO_BSDCOMPAT:
1390		sock_warn_obsolete_bsdism("getsockopt");
1391		break;
1392
1393	case SO_TIMESTAMP_OLD:
1394		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1395				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1396				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1397		break;
1398
1399	case SO_TIMESTAMPNS_OLD:
1400		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1401		break;
1402
1403	case SO_TIMESTAMP_NEW:
1404		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1405		break;
1406
1407	case SO_TIMESTAMPNS_NEW:
1408		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1409		break;
1410
1411	case SO_TIMESTAMPING_OLD:
1412		v.val = sk->sk_tsflags;
1413		break;
1414
1415	case SO_RCVTIMEO_OLD:
1416	case SO_RCVTIMEO_NEW:
1417		lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1418		break;
1419
1420	case SO_SNDTIMEO_OLD:
1421	case SO_SNDTIMEO_NEW:
1422		lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1423		break;
1424
1425	case SO_RCVLOWAT:
1426		v.val = sk->sk_rcvlowat;
1427		break;
1428
1429	case SO_SNDLOWAT:
1430		v.val = 1;
1431		break;
1432
1433	case SO_PASSCRED:
1434		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1435		break;
1436
1437	case SO_PEERCRED:
1438	{
1439		struct ucred peercred;
1440		if (len > sizeof(peercred))
1441			len = sizeof(peercred);
1442		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1443		if (copy_to_user(optval, &peercred, len))
1444			return -EFAULT;
1445		goto lenout;
1446	}
1447
1448	case SO_PEERGROUPS:
1449	{
1450		int ret, n;
1451
1452		if (!sk->sk_peer_cred)
1453			return -ENODATA;
1454
1455		n = sk->sk_peer_cred->group_info->ngroups;
1456		if (len < n * sizeof(gid_t)) {
1457			len = n * sizeof(gid_t);
1458			return put_user(len, optlen) ? -EFAULT : -ERANGE;
1459		}
1460		len = n * sizeof(gid_t);
1461
1462		ret = groups_to_user((gid_t __user *)optval,
1463				     sk->sk_peer_cred->group_info);
1464		if (ret)
1465			return ret;
1466		goto lenout;
1467	}
1468
1469	case SO_PEERNAME:
1470	{
1471		char address[128];
1472
1473		lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1474		if (lv < 0)
1475			return -ENOTCONN;
1476		if (lv < len)
1477			return -EINVAL;
1478		if (copy_to_user(optval, address, len))
1479			return -EFAULT;
1480		goto lenout;
1481	}
1482
1483	/* Dubious BSD thing... Probably nobody even uses it, but
1484	 * the UNIX standard wants it for whatever reason... -DaveM
1485	 */
1486	case SO_ACCEPTCONN:
1487		v.val = sk->sk_state == TCP_LISTEN;
1488		break;
1489
1490	case SO_PASSSEC:
1491		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1492		break;
1493
1494	case SO_PEERSEC:
1495		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1496
1497	case SO_MARK:
1498		v.val = sk->sk_mark;
1499		break;
1500
1501	case SO_RXQ_OVFL:
1502		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1503		break;
1504
1505	case SO_WIFI_STATUS:
1506		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1507		break;
1508
1509	case SO_PEEK_OFF:
1510		if (!sock->ops->set_peek_off)
1511			return -EOPNOTSUPP;
1512
1513		v.val = sk->sk_peek_off;
1514		break;
1515	case SO_NOFCS:
1516		v.val = sock_flag(sk, SOCK_NOFCS);
1517		break;
1518
1519	case SO_BINDTODEVICE:
1520		return sock_getbindtodevice(sk, optval, optlen, len);
1521
1522	case SO_GET_FILTER:
1523		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1524		if (len < 0)
1525			return len;
1526
1527		goto lenout;
1528
1529	case SO_LOCK_FILTER:
1530		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1531		break;
1532
1533	case SO_BPF_EXTENSIONS:
1534		v.val = bpf_tell_extensions();
1535		break;
1536
1537	case SO_SELECT_ERR_QUEUE:
1538		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1539		break;
1540
1541#ifdef CONFIG_NET_RX_BUSY_POLL
1542	case SO_BUSY_POLL:
1543		v.val = sk->sk_ll_usec;
1544		break;
1545#endif
1546
1547	case SO_MAX_PACING_RATE:
1548		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1549			lv = sizeof(v.ulval);
1550			v.ulval = sk->sk_max_pacing_rate;
1551		} else {
1552			/* 32bit version */
1553			v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1554		}
1555		break;
1556
1557	case SO_INCOMING_CPU:
1558		v.val = READ_ONCE(sk->sk_incoming_cpu);
1559		break;
1560
1561	case SO_MEMINFO:
1562	{
1563		u32 meminfo[SK_MEMINFO_VARS];
1564
1565		sk_get_meminfo(sk, meminfo);
1566
1567		len = min_t(unsigned int, len, sizeof(meminfo));
1568		if (copy_to_user(optval, &meminfo, len))
1569			return -EFAULT;
1570
1571		goto lenout;
1572	}
1573
1574#ifdef CONFIG_NET_RX_BUSY_POLL
1575	case SO_INCOMING_NAPI_ID:
1576		v.val = READ_ONCE(sk->sk_napi_id);
1577
1578		/* aggregate non-NAPI IDs down to 0 */
1579		if (v.val < MIN_NAPI_ID)
1580			v.val = 0;
1581
1582		break;
1583#endif
1584
1585	case SO_COOKIE:
1586		lv = sizeof(u64);
1587		if (len < lv)
1588			return -EINVAL;
1589		v.val64 = sock_gen_cookie(sk);
1590		break;
1591
1592	case SO_ZEROCOPY:
1593		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1594		break;
1595
1596	case SO_TXTIME:
1597		lv = sizeof(v.txtime);
1598		v.txtime.clockid = sk->sk_clockid;
1599		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1600				  SOF_TXTIME_DEADLINE_MODE : 0;
1601		v.txtime.flags |= sk->sk_txtime_report_errors ?
1602				  SOF_TXTIME_REPORT_ERRORS : 0;
1603		break;
1604
1605	case SO_BINDTOIFINDEX:
1606		v.val = sk->sk_bound_dev_if;
1607		break;
1608
1609	default:
1610		/* We implement the SO_SNDLOWAT etc to not be settable
1611		 * (1003.1g 7).
1612		 */
1613		return -ENOPROTOOPT;
1614	}
1615
1616	if (len > lv)
1617		len = lv;
1618	if (copy_to_user(optval, &v, len))
1619		return -EFAULT;
1620lenout:
1621	if (put_user(len, optlen))
1622		return -EFAULT;
1623	return 0;
1624}
1625
1626/*
1627 * Initialize an sk_lock.
1628 *
1629 * (We also register the sk_lock with the lock validator.)
1630 */
1631static inline void sock_lock_init(struct sock *sk)
1632{
1633	if (sk->sk_kern_sock)
1634		sock_lock_init_class_and_name(
1635			sk,
1636			af_family_kern_slock_key_strings[sk->sk_family],
1637			af_family_kern_slock_keys + sk->sk_family,
1638			af_family_kern_key_strings[sk->sk_family],
1639			af_family_kern_keys + sk->sk_family);
1640	else
1641		sock_lock_init_class_and_name(
1642			sk,
1643			af_family_slock_key_strings[sk->sk_family],
1644			af_family_slock_keys + sk->sk_family,
1645			af_family_key_strings[sk->sk_family],
1646			af_family_keys + sk->sk_family);
1647}
1648
1649/*
1650 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1651 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1652 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1653 */
1654static void sock_copy(struct sock *nsk, const struct sock *osk)
1655{
1656	const struct proto *prot = READ_ONCE(osk->sk_prot);
1657#ifdef CONFIG_SECURITY_NETWORK
1658	void *sptr = nsk->sk_security;
1659#endif
1660	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1661
1662	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1663	       prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1664
1665#ifdef CONFIG_SECURITY_NETWORK
1666	nsk->sk_security = sptr;
1667	security_sk_clone(osk, nsk);
1668#endif
1669}
1670
1671static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1672		int family)
1673{
1674	struct sock *sk;
1675	struct kmem_cache *slab;
1676
1677	slab = prot->slab;
1678	if (slab != NULL) {
1679		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1680		if (!sk)
1681			return sk;
1682		if (want_init_on_alloc(priority))
1683			sk_prot_clear_nulls(sk, prot->obj_size);
1684	} else
1685		sk = kmalloc(prot->obj_size, priority);
1686
1687	if (sk != NULL) {
1688		if (security_sk_alloc(sk, family, priority))
1689			goto out_free;
1690
1691		if (!try_module_get(prot->owner))
1692			goto out_free_sec;
1693		sk_tx_queue_clear(sk);
1694	}
1695
1696	return sk;
1697
1698out_free_sec:
1699	security_sk_free(sk);
1700out_free:
1701	if (slab != NULL)
1702		kmem_cache_free(slab, sk);
1703	else
1704		kfree(sk);
1705	return NULL;
1706}
1707
1708static void sk_prot_free(struct proto *prot, struct sock *sk)
1709{
1710	struct kmem_cache *slab;
1711	struct module *owner;
1712
1713	owner = prot->owner;
1714	slab = prot->slab;
1715
1716	cgroup_sk_free(&sk->sk_cgrp_data);
1717	mem_cgroup_sk_free(sk);
1718	security_sk_free(sk);
1719	if (slab != NULL)
1720		kmem_cache_free(slab, sk);
1721	else
1722		kfree(sk);
1723	module_put(owner);
1724}
1725
1726/**
1727 *	sk_alloc - All socket objects are allocated here
1728 *	@net: the applicable net namespace
1729 *	@family: protocol family
1730 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1731 *	@prot: struct proto associated with this new sock instance
1732 *	@kern: is this to be a kernel socket?
1733 */
1734struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1735		      struct proto *prot, int kern)
1736{
1737	struct sock *sk;
1738
1739	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1740	if (sk) {
1741		sk->sk_family = family;
1742		/*
1743		 * See comment in struct sock definition to understand
1744		 * why we need sk_prot_creator -acme
1745		 */
1746		sk->sk_prot = sk->sk_prot_creator = prot;
1747		sk->sk_kern_sock = kern;
1748		sock_lock_init(sk);
1749		sk->sk_net_refcnt = kern ? 0 : 1;
1750		if (likely(sk->sk_net_refcnt)) {
1751			get_net(net);
1752			sock_inuse_add(net, 1);
1753		}
1754
1755		sock_net_set(sk, net);
1756		refcount_set(&sk->sk_wmem_alloc, 1);
1757
1758		mem_cgroup_sk_alloc(sk);
1759		cgroup_sk_alloc(&sk->sk_cgrp_data);
1760		sock_update_classid(&sk->sk_cgrp_data);
1761		sock_update_netprioidx(&sk->sk_cgrp_data);
1762		sk_tx_queue_clear(sk);
1763	}
1764
1765	return sk;
1766}
1767EXPORT_SYMBOL(sk_alloc);
1768
1769/* Sockets having SOCK_RCU_FREE will call this function after one RCU
1770 * grace period. This is the case for UDP sockets and TCP listeners.
1771 */
1772static void __sk_destruct(struct rcu_head *head)
1773{
1774	struct sock *sk = container_of(head, struct sock, sk_rcu);
1775	struct sk_filter *filter;
1776
1777	if (sk->sk_destruct)
1778		sk->sk_destruct(sk);
1779
1780	filter = rcu_dereference_check(sk->sk_filter,
1781				       refcount_read(&sk->sk_wmem_alloc) == 0);
1782	if (filter) {
1783		sk_filter_uncharge(sk, filter);
1784		RCU_INIT_POINTER(sk->sk_filter, NULL);
1785	}
1786
1787	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1788
1789#ifdef CONFIG_BPF_SYSCALL
1790	bpf_sk_storage_free(sk);
1791#endif
1792
1793	if (atomic_read(&sk->sk_omem_alloc))
1794		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1795			 __func__, atomic_read(&sk->sk_omem_alloc));
1796
1797	if (sk->sk_frag.page) {
1798		put_page(sk->sk_frag.page);
1799		sk->sk_frag.page = NULL;
1800	}
1801
1802	if (sk->sk_peer_cred)
1803		put_cred(sk->sk_peer_cred);
1804	put_pid(sk->sk_peer_pid);
1805	if (likely(sk->sk_net_refcnt))
1806		put_net(sock_net(sk));
1807	sk_prot_free(sk->sk_prot_creator, sk);
1808}
1809
1810void sk_destruct(struct sock *sk)
1811{
1812	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
1813
1814	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
1815		reuseport_detach_sock(sk);
1816		use_call_rcu = true;
1817	}
1818
1819	if (use_call_rcu)
1820		call_rcu(&sk->sk_rcu, __sk_destruct);
1821	else
1822		__sk_destruct(&sk->sk_rcu);
1823}
1824
1825static void __sk_free(struct sock *sk)
1826{
1827	if (likely(sk->sk_net_refcnt))
1828		sock_inuse_add(sock_net(sk), -1);
1829
1830	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1831		sock_diag_broadcast_destroy(sk);
1832	else
1833		sk_destruct(sk);
1834}
1835
1836void sk_free(struct sock *sk)
1837{
1838	/*
1839	 * We subtract one from sk_wmem_alloc and can know if
1840	 * some packets are still in some tx queue.
1841	 * If not null, sock_wfree() will call __sk_free(sk) later
1842	 */
1843	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1844		__sk_free(sk);
1845}
1846EXPORT_SYMBOL(sk_free);
1847
1848static void sk_init_common(struct sock *sk)
1849{
1850	skb_queue_head_init(&sk->sk_receive_queue);
1851	skb_queue_head_init(&sk->sk_write_queue);
1852	skb_queue_head_init(&sk->sk_error_queue);
1853
1854	rwlock_init(&sk->sk_callback_lock);
1855	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1856			af_rlock_keys + sk->sk_family,
1857			af_family_rlock_key_strings[sk->sk_family]);
1858	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1859			af_wlock_keys + sk->sk_family,
1860			af_family_wlock_key_strings[sk->sk_family]);
1861	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1862			af_elock_keys + sk->sk_family,
1863			af_family_elock_key_strings[sk->sk_family]);
1864	lockdep_set_class_and_name(&sk->sk_callback_lock,
1865			af_callback_keys + sk->sk_family,
1866			af_family_clock_key_strings[sk->sk_family]);
1867}
1868
1869/**
1870 *	sk_clone_lock - clone a socket, and lock its clone
1871 *	@sk: the socket to clone
1872 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1873 *
1874 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1875 */
1876struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1877{
1878	struct proto *prot = READ_ONCE(sk->sk_prot);
1879	struct sock *newsk;
1880	bool is_charged = true;
1881
1882	newsk = sk_prot_alloc(prot, priority, sk->sk_family);
1883	if (newsk != NULL) {
1884		struct sk_filter *filter;
1885
1886		sock_copy(newsk, sk);
1887
1888		newsk->sk_prot_creator = prot;
1889
1890		/* SANITY */
1891		if (likely(newsk->sk_net_refcnt))
1892			get_net(sock_net(newsk));
1893		sk_node_init(&newsk->sk_node);
1894		sock_lock_init(newsk);
1895		bh_lock_sock(newsk);
1896		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1897		newsk->sk_backlog.len = 0;
1898
1899		atomic_set(&newsk->sk_rmem_alloc, 0);
1900		/*
1901		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1902		 */
1903		refcount_set(&newsk->sk_wmem_alloc, 1);
1904		atomic_set(&newsk->sk_omem_alloc, 0);
1905		sk_init_common(newsk);
1906
1907		newsk->sk_dst_cache	= NULL;
1908		newsk->sk_dst_pending_confirm = 0;
1909		newsk->sk_wmem_queued	= 0;
1910		newsk->sk_forward_alloc = 0;
1911		atomic_set(&newsk->sk_drops, 0);
1912		newsk->sk_send_head	= NULL;
1913		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1914		atomic_set(&newsk->sk_zckey, 0);
1915
1916		sock_reset_flag(newsk, SOCK_DONE);
1917
1918		/* sk->sk_memcg will be populated at accept() time */
1919		newsk->sk_memcg = NULL;
1920
1921		cgroup_sk_clone(&newsk->sk_cgrp_data);
1922
1923		rcu_read_lock();
1924		filter = rcu_dereference(sk->sk_filter);
1925		if (filter != NULL)
1926			/* though it's an empty new sock, the charging may fail
1927			 * if sysctl_optmem_max was changed between creation of
1928			 * original socket and cloning
1929			 */
1930			is_charged = sk_filter_charge(newsk, filter);
1931		RCU_INIT_POINTER(newsk->sk_filter, filter);
1932		rcu_read_unlock();
1933
1934		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1935			/* We need to make sure that we don't uncharge the new
1936			 * socket if we couldn't charge it in the first place
1937			 * as otherwise we uncharge the parent's filter.
1938			 */
1939			if (!is_charged)
1940				RCU_INIT_POINTER(newsk->sk_filter, NULL);
1941			sk_free_unlock_clone(newsk);
1942			newsk = NULL;
1943			goto out;
1944		}
1945		RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1946
1947		if (bpf_sk_storage_clone(sk, newsk)) {
1948			sk_free_unlock_clone(newsk);
1949			newsk = NULL;
1950			goto out;
1951		}
1952
1953		/* Clear sk_user_data if parent had the pointer tagged
1954		 * as not suitable for copying when cloning.
1955		 */
1956		if (sk_user_data_is_nocopy(newsk))
1957			newsk->sk_user_data = NULL;
1958
1959		newsk->sk_err	   = 0;
1960		newsk->sk_err_soft = 0;
1961		newsk->sk_priority = 0;
1962		newsk->sk_incoming_cpu = raw_smp_processor_id();
1963		if (likely(newsk->sk_net_refcnt))
1964			sock_inuse_add(sock_net(newsk), 1);
1965
1966		/*
1967		 * Before updating sk_refcnt, we must commit prior changes to memory
1968		 * (Documentation/RCU/rculist_nulls.rst for details)
1969		 */
1970		smp_wmb();
1971		refcount_set(&newsk->sk_refcnt, 2);
1972
1973		/*
1974		 * Increment the counter in the same struct proto as the master
1975		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1976		 * is the same as sk->sk_prot->socks, as this field was copied
1977		 * with memcpy).
1978		 *
1979		 * This _changes_ the previous behaviour, where
1980		 * tcp_create_openreq_child always was incrementing the
1981		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1982		 * to be taken into account in all callers. -acme
1983		 */
1984		sk_refcnt_debug_inc(newsk);
1985		sk_set_socket(newsk, NULL);
1986		sk_tx_queue_clear(newsk);
1987		RCU_INIT_POINTER(newsk->sk_wq, NULL);
1988
1989		if (newsk->sk_prot->sockets_allocated)
1990			sk_sockets_allocated_inc(newsk);
1991
1992		if (sock_needs_netstamp(sk) &&
1993		    newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1994			net_enable_timestamp();
1995	}
1996out:
1997	return newsk;
1998}
1999EXPORT_SYMBOL_GPL(sk_clone_lock);
2000
2001void sk_free_unlock_clone(struct sock *sk)
2002{
2003	/* It is still raw copy of parent, so invalidate
2004	 * destructor and make plain sk_free() */
2005	sk->sk_destruct = NULL;
2006	bh_unlock_sock(sk);
2007	sk_free(sk);
2008}
2009EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2010
2011void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2012{
2013	u32 max_segs = 1;
2014
2015	sk_dst_set(sk, dst);
2016	sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
2017	if (sk->sk_route_caps & NETIF_F_GSO)
2018		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2019	sk->sk_route_caps &= ~sk->sk_route_nocaps;
2020	if (sk_can_gso(sk)) {
2021		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2022			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2023		} else {
2024			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2025			sk->sk_gso_max_size = dst->dev->gso_max_size;
2026			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
2027		}
2028	}
2029	sk->sk_gso_max_segs = max_segs;
2030}
2031EXPORT_SYMBOL_GPL(sk_setup_caps);
2032
2033/*
2034 *	Simple resource managers for sockets.
2035 */
2036
2037
2038/*
2039 * Write buffer destructor automatically called from kfree_skb.
2040 */
2041void sock_wfree(struct sk_buff *skb)
2042{
2043	struct sock *sk = skb->sk;
2044	unsigned int len = skb->truesize;
2045
2046	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2047		/*
2048		 * Keep a reference on sk_wmem_alloc, this will be released
2049		 * after sk_write_space() call
2050		 */
2051		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2052		sk->sk_write_space(sk);
2053		len = 1;
2054	}
2055	/*
2056	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2057	 * could not do because of in-flight packets
2058	 */
2059	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2060		__sk_free(sk);
2061}
2062EXPORT_SYMBOL(sock_wfree);
2063
2064/* This variant of sock_wfree() is used by TCP,
2065 * since it sets SOCK_USE_WRITE_QUEUE.
2066 */
2067void __sock_wfree(struct sk_buff *skb)
2068{
2069	struct sock *sk = skb->sk;
2070
2071	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2072		__sk_free(sk);
2073}
2074
2075void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2076{
2077	skb_orphan(skb);
2078	skb->sk = sk;
2079#ifdef CONFIG_INET
2080	if (unlikely(!sk_fullsock(sk))) {
2081		skb->destructor = sock_edemux;
2082		sock_hold(sk);
2083		return;
2084	}
2085#endif
2086	skb->destructor = sock_wfree;
2087	skb_set_hash_from_sk(skb, sk);
2088	/*
2089	 * We used to take a refcount on sk, but following operation
2090	 * is enough to guarantee sk_free() wont free this sock until
2091	 * all in-flight packets are completed
2092	 */
2093	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2094}
2095EXPORT_SYMBOL(skb_set_owner_w);
2096
2097static bool can_skb_orphan_partial(const struct sk_buff *skb)
2098{
2099#ifdef CONFIG_TLS_DEVICE
2100	/* Drivers depend on in-order delivery for crypto offload,
2101	 * partial orphan breaks out-of-order-OK logic.
2102	 */
2103	if (skb->decrypted)
2104		return false;
2105#endif
2106	return (skb->destructor == sock_wfree ||
2107		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2108}
2109
2110/* This helper is used by netem, as it can hold packets in its
2111 * delay queue. We want to allow the owner socket to send more
2112 * packets, as if they were already TX completed by a typical driver.
2113 * But we also want to keep skb->sk set because some packet schedulers
2114 * rely on it (sch_fq for example).
2115 */
2116void skb_orphan_partial(struct sk_buff *skb)
2117{
2118	if (skb_is_tcp_pure_ack(skb))
2119		return;
2120
2121	if (can_skb_orphan_partial(skb)) {
2122		struct sock *sk = skb->sk;
2123
2124		if (refcount_inc_not_zero(&sk->sk_refcnt)) {
2125			WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
2126			skb->destructor = sock_efree;
2127		}
2128	} else {
2129		skb_orphan(skb);
2130	}
2131}
2132EXPORT_SYMBOL(skb_orphan_partial);
2133
2134/*
2135 * Read buffer destructor automatically called from kfree_skb.
2136 */
2137void sock_rfree(struct sk_buff *skb)
2138{
2139	struct sock *sk = skb->sk;
2140	unsigned int len = skb->truesize;
2141
2142	atomic_sub(len, &sk->sk_rmem_alloc);
2143	sk_mem_uncharge(sk, len);
2144}
2145EXPORT_SYMBOL(sock_rfree);
2146
2147/*
2148 * Buffer destructor for skbs that are not used directly in read or write
2149 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2150 */
2151void sock_efree(struct sk_buff *skb)
2152{
2153	sock_put(skb->sk);
2154}
2155EXPORT_SYMBOL(sock_efree);
2156
2157/* Buffer destructor for prefetch/receive path where reference count may
2158 * not be held, e.g. for listen sockets.
2159 */
2160#ifdef CONFIG_INET
2161void sock_pfree(struct sk_buff *skb)
2162{
2163	if (sk_is_refcounted(skb->sk))
2164		sock_gen_put(skb->sk);
2165}
2166EXPORT_SYMBOL(sock_pfree);
2167#endif /* CONFIG_INET */
2168
2169kuid_t sock_i_uid(struct sock *sk)
2170{
2171	kuid_t uid;
2172
2173	read_lock_bh(&sk->sk_callback_lock);
2174	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2175	read_unlock_bh(&sk->sk_callback_lock);
2176	return uid;
2177}
2178EXPORT_SYMBOL(sock_i_uid);
2179
2180unsigned long sock_i_ino(struct sock *sk)
2181{
2182	unsigned long ino;
2183
2184	read_lock_bh(&sk->sk_callback_lock);
2185	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2186	read_unlock_bh(&sk->sk_callback_lock);
2187	return ino;
2188}
2189EXPORT_SYMBOL(sock_i_ino);
2190
2191/*
2192 * Allocate a skb from the socket's send buffer.
2193 */
2194struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2195			     gfp_t priority)
2196{
2197	if (force ||
2198	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2199		struct sk_buff *skb = alloc_skb(size, priority);
2200
2201		if (skb) {
2202			skb_set_owner_w(skb, sk);
2203			return skb;
2204		}
2205	}
2206	return NULL;
2207}
2208EXPORT_SYMBOL(sock_wmalloc);
2209
2210static void sock_ofree(struct sk_buff *skb)
2211{
2212	struct sock *sk = skb->sk;
2213
2214	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2215}
2216
2217struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2218			     gfp_t priority)
2219{
2220	struct sk_buff *skb;
2221
2222	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2223	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2224	    sysctl_optmem_max)
2225		return NULL;
2226
2227	skb = alloc_skb(size, priority);
2228	if (!skb)
2229		return NULL;
2230
2231	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2232	skb->sk = sk;
2233	skb->destructor = sock_ofree;
2234	return skb;
2235}
2236
2237/*
2238 * Allocate a memory block from the socket's option memory buffer.
2239 */
2240void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2241{
2242	if ((unsigned int)size <= sysctl_optmem_max &&
2243	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2244		void *mem;
2245		/* First do the add, to avoid the race if kmalloc
2246		 * might sleep.
2247		 */
2248		atomic_add(size, &sk->sk_omem_alloc);
2249		mem = kmalloc(size, priority);
2250		if (mem)
2251			return mem;
2252		atomic_sub(size, &sk->sk_omem_alloc);
2253	}
2254	return NULL;
2255}
2256EXPORT_SYMBOL(sock_kmalloc);
2257
2258/* Free an option memory block. Note, we actually want the inline
2259 * here as this allows gcc to detect the nullify and fold away the
2260 * condition entirely.
2261 */
2262static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2263				  const bool nullify)
2264{
2265	if (WARN_ON_ONCE(!mem))
2266		return;
2267	if (nullify)
2268		kfree_sensitive(mem);
2269	else
2270		kfree(mem);
2271	atomic_sub(size, &sk->sk_omem_alloc);
2272}
2273
2274void sock_kfree_s(struct sock *sk, void *mem, int size)
2275{
2276	__sock_kfree_s(sk, mem, size, false);
2277}
2278EXPORT_SYMBOL(sock_kfree_s);
2279
2280void sock_kzfree_s(struct sock *sk, void *mem, int size)
2281{
2282	__sock_kfree_s(sk, mem, size, true);
2283}
2284EXPORT_SYMBOL(sock_kzfree_s);
2285
2286/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2287   I think, these locks should be removed for datagram sockets.
2288 */
2289static long sock_wait_for_wmem(struct sock *sk, long timeo)
2290{
2291	DEFINE_WAIT(wait);
2292
2293	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2294	for (;;) {
2295		if (!timeo)
2296			break;
2297		if (signal_pending(current))
2298			break;
2299		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2300		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2301		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2302			break;
2303		if (sk->sk_shutdown & SEND_SHUTDOWN)
2304			break;
2305		if (sk->sk_err)
2306			break;
2307		timeo = schedule_timeout(timeo);
2308	}
2309	finish_wait(sk_sleep(sk), &wait);
2310	return timeo;
2311}
2312
2313
2314/*
2315 *	Generic send/receive buffer handlers
2316 */
2317
2318struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2319				     unsigned long data_len, int noblock,
2320				     int *errcode, int max_page_order)
2321{
2322	struct sk_buff *skb;
2323	long timeo;
2324	int err;
2325
2326	timeo = sock_sndtimeo(sk, noblock);
2327	for (;;) {
2328		err = sock_error(sk);
2329		if (err != 0)
2330			goto failure;
2331
2332		err = -EPIPE;
2333		if (sk->sk_shutdown & SEND_SHUTDOWN)
2334			goto failure;
2335
2336		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2337			break;
2338
2339		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2340		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2341		err = -EAGAIN;
2342		if (!timeo)
2343			goto failure;
2344		if (signal_pending(current))
2345			goto interrupted;
2346		timeo = sock_wait_for_wmem(sk, timeo);
2347	}
2348	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2349				   errcode, sk->sk_allocation);
2350	if (skb)
2351		skb_set_owner_w(skb, sk);
2352	return skb;
2353
2354interrupted:
2355	err = sock_intr_errno(timeo);
2356failure:
2357	*errcode = err;
2358	return NULL;
2359}
2360EXPORT_SYMBOL(sock_alloc_send_pskb);
2361
2362struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2363				    int noblock, int *errcode)
2364{
2365	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2366}
2367EXPORT_SYMBOL(sock_alloc_send_skb);
2368
2369int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2370		     struct sockcm_cookie *sockc)
2371{
2372	u32 tsflags;
2373
2374	switch (cmsg->cmsg_type) {
2375	case SO_MARK:
2376		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2377			return -EPERM;
2378		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2379			return -EINVAL;
2380		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2381		break;
2382	case SO_TIMESTAMPING_OLD:
2383		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2384			return -EINVAL;
2385
2386		tsflags = *(u32 *)CMSG_DATA(cmsg);
2387		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2388			return -EINVAL;
2389
2390		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2391		sockc->tsflags |= tsflags;
2392		break;
2393	case SCM_TXTIME:
2394		if (!sock_flag(sk, SOCK_TXTIME))
2395			return -EINVAL;
2396		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2397			return -EINVAL;
2398		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2399		break;
2400	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2401	case SCM_RIGHTS:
2402	case SCM_CREDENTIALS:
2403		break;
2404	default:
2405		return -EINVAL;
2406	}
2407	return 0;
2408}
2409EXPORT_SYMBOL(__sock_cmsg_send);
2410
2411int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2412		   struct sockcm_cookie *sockc)
2413{
2414	struct cmsghdr *cmsg;
2415	int ret;
2416
2417	for_each_cmsghdr(cmsg, msg) {
2418		if (!CMSG_OK(msg, cmsg))
2419			return -EINVAL;
2420		if (cmsg->cmsg_level != SOL_SOCKET)
2421			continue;
2422		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2423		if (ret)
2424			return ret;
2425	}
2426	return 0;
2427}
2428EXPORT_SYMBOL(sock_cmsg_send);
2429
2430static void sk_enter_memory_pressure(struct sock *sk)
2431{
2432	if (!sk->sk_prot->enter_memory_pressure)
2433		return;
2434
2435	sk->sk_prot->enter_memory_pressure(sk);
2436}
2437
2438static void sk_leave_memory_pressure(struct sock *sk)
2439{
2440	if (sk->sk_prot->leave_memory_pressure) {
2441		sk->sk_prot->leave_memory_pressure(sk);
2442	} else {
2443		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2444
2445		if (memory_pressure && READ_ONCE(*memory_pressure))
2446			WRITE_ONCE(*memory_pressure, 0);
2447	}
2448}
2449
 
2450#define SKB_FRAG_PAGE_ORDER	get_order(32768)
2451DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2452
2453/**
2454 * skb_page_frag_refill - check that a page_frag contains enough room
2455 * @sz: minimum size of the fragment we want to get
2456 * @pfrag: pointer to page_frag
2457 * @gfp: priority for memory allocation
2458 *
2459 * Note: While this allocator tries to use high order pages, there is
2460 * no guarantee that allocations succeed. Therefore, @sz MUST be
2461 * less or equal than PAGE_SIZE.
2462 */
2463bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2464{
2465	if (pfrag->page) {
2466		if (page_ref_count(pfrag->page) == 1) {
2467			pfrag->offset = 0;
2468			return true;
2469		}
2470		if (pfrag->offset + sz <= pfrag->size)
2471			return true;
2472		put_page(pfrag->page);
2473	}
2474
2475	pfrag->offset = 0;
2476	if (SKB_FRAG_PAGE_ORDER &&
2477	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2478		/* Avoid direct reclaim but allow kswapd to wake */
2479		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2480					  __GFP_COMP | __GFP_NOWARN |
2481					  __GFP_NORETRY,
2482					  SKB_FRAG_PAGE_ORDER);
2483		if (likely(pfrag->page)) {
2484			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2485			return true;
2486		}
2487	}
2488	pfrag->page = alloc_page(gfp);
2489	if (likely(pfrag->page)) {
2490		pfrag->size = PAGE_SIZE;
2491		return true;
2492	}
2493	return false;
2494}
2495EXPORT_SYMBOL(skb_page_frag_refill);
2496
2497bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2498{
2499	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2500		return true;
2501
2502	sk_enter_memory_pressure(sk);
2503	sk_stream_moderate_sndbuf(sk);
2504	return false;
2505}
2506EXPORT_SYMBOL(sk_page_frag_refill);
2507
2508static void __lock_sock(struct sock *sk)
2509	__releases(&sk->sk_lock.slock)
2510	__acquires(&sk->sk_lock.slock)
2511{
2512	DEFINE_WAIT(wait);
2513
2514	for (;;) {
2515		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2516					TASK_UNINTERRUPTIBLE);
2517		spin_unlock_bh(&sk->sk_lock.slock);
2518		schedule();
2519		spin_lock_bh(&sk->sk_lock.slock);
2520		if (!sock_owned_by_user(sk))
2521			break;
2522	}
2523	finish_wait(&sk->sk_lock.wq, &wait);
2524}
2525
2526void __release_sock(struct sock *sk)
2527	__releases(&sk->sk_lock.slock)
2528	__acquires(&sk->sk_lock.slock)
2529{
2530	struct sk_buff *skb, *next;
2531
2532	while ((skb = sk->sk_backlog.head) != NULL) {
2533		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2534
2535		spin_unlock_bh(&sk->sk_lock.slock);
2536
2537		do {
2538			next = skb->next;
2539			prefetch(next);
2540			WARN_ON_ONCE(skb_dst_is_noref(skb));
2541			skb_mark_not_on_list(skb);
2542			sk_backlog_rcv(sk, skb);
2543
2544			cond_resched();
2545
2546			skb = next;
2547		} while (skb != NULL);
2548
2549		spin_lock_bh(&sk->sk_lock.slock);
2550	}
2551
2552	/*
2553	 * Doing the zeroing here guarantee we can not loop forever
2554	 * while a wild producer attempts to flood us.
2555	 */
2556	sk->sk_backlog.len = 0;
2557}
2558
2559void __sk_flush_backlog(struct sock *sk)
2560{
2561	spin_lock_bh(&sk->sk_lock.slock);
2562	__release_sock(sk);
2563	spin_unlock_bh(&sk->sk_lock.slock);
2564}
2565
2566/**
2567 * sk_wait_data - wait for data to arrive at sk_receive_queue
2568 * @sk:    sock to wait on
2569 * @timeo: for how long
2570 * @skb:   last skb seen on sk_receive_queue
2571 *
2572 * Now socket state including sk->sk_err is changed only under lock,
2573 * hence we may omit checks after joining wait queue.
2574 * We check receive queue before schedule() only as optimization;
2575 * it is very likely that release_sock() added new data.
2576 */
2577int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2578{
2579	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2580	int rc;
2581
2582	add_wait_queue(sk_sleep(sk), &wait);
2583	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2584	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2585	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2586	remove_wait_queue(sk_sleep(sk), &wait);
2587	return rc;
2588}
2589EXPORT_SYMBOL(sk_wait_data);
2590
2591/**
2592 *	__sk_mem_raise_allocated - increase memory_allocated
2593 *	@sk: socket
2594 *	@size: memory size to allocate
2595 *	@amt: pages to allocate
2596 *	@kind: allocation type
2597 *
2598 *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2599 */
2600int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2601{
2602	struct proto *prot = sk->sk_prot;
2603	long allocated = sk_memory_allocated_add(sk, amt);
2604	bool charged = true;
2605
2606	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2607	    !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2608		goto suppress_allocation;
2609
2610	/* Under limit. */
2611	if (allocated <= sk_prot_mem_limits(sk, 0)) {
2612		sk_leave_memory_pressure(sk);
2613		return 1;
2614	}
2615
2616	/* Under pressure. */
2617	if (allocated > sk_prot_mem_limits(sk, 1))
2618		sk_enter_memory_pressure(sk);
2619
2620	/* Over hard limit. */
2621	if (allocated > sk_prot_mem_limits(sk, 2))
2622		goto suppress_allocation;
2623
2624	/* guarantee minimum buffer size under pressure */
2625	if (kind == SK_MEM_RECV) {
2626		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2627			return 1;
2628
2629	} else { /* SK_MEM_SEND */
2630		int wmem0 = sk_get_wmem0(sk, prot);
2631
2632		if (sk->sk_type == SOCK_STREAM) {
2633			if (sk->sk_wmem_queued < wmem0)
2634				return 1;
2635		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2636				return 1;
2637		}
2638	}
2639
2640	if (sk_has_memory_pressure(sk)) {
2641		u64 alloc;
2642
2643		if (!sk_under_memory_pressure(sk))
2644			return 1;
2645		alloc = sk_sockets_allocated_read_positive(sk);
2646		if (sk_prot_mem_limits(sk, 2) > alloc *
2647		    sk_mem_pages(sk->sk_wmem_queued +
2648				 atomic_read(&sk->sk_rmem_alloc) +
2649				 sk->sk_forward_alloc))
2650			return 1;
2651	}
2652
2653suppress_allocation:
2654
2655	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2656		sk_stream_moderate_sndbuf(sk);
2657
2658		/* Fail only if socket is _under_ its sndbuf.
2659		 * In this case we cannot block, so that we have to fail.
2660		 */
2661		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2662			return 1;
2663	}
2664
2665	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2666		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2667
2668	sk_memory_allocated_sub(sk, amt);
2669
2670	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2671		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2672
2673	return 0;
2674}
2675EXPORT_SYMBOL(__sk_mem_raise_allocated);
2676
2677/**
2678 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2679 *	@sk: socket
2680 *	@size: memory size to allocate
2681 *	@kind: allocation type
2682 *
2683 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2684 *	rmem allocation. This function assumes that protocols which have
2685 *	memory_pressure use sk_wmem_queued as write buffer accounting.
2686 */
2687int __sk_mem_schedule(struct sock *sk, int size, int kind)
2688{
2689	int ret, amt = sk_mem_pages(size);
2690
2691	sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2692	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2693	if (!ret)
2694		sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2695	return ret;
2696}
2697EXPORT_SYMBOL(__sk_mem_schedule);
2698
2699/**
2700 *	__sk_mem_reduce_allocated - reclaim memory_allocated
2701 *	@sk: socket
2702 *	@amount: number of quanta
2703 *
2704 *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2705 */
2706void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2707{
2708	sk_memory_allocated_sub(sk, amount);
2709
2710	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2711		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2712
2713	if (sk_under_memory_pressure(sk) &&
2714	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2715		sk_leave_memory_pressure(sk);
2716}
2717EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2718
2719/**
2720 *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2721 *	@sk: socket
2722 *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2723 */
2724void __sk_mem_reclaim(struct sock *sk, int amount)
2725{
2726	amount >>= SK_MEM_QUANTUM_SHIFT;
2727	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2728	__sk_mem_reduce_allocated(sk, amount);
2729}
2730EXPORT_SYMBOL(__sk_mem_reclaim);
2731
2732int sk_set_peek_off(struct sock *sk, int val)
2733{
2734	sk->sk_peek_off = val;
2735	return 0;
2736}
2737EXPORT_SYMBOL_GPL(sk_set_peek_off);
2738
2739/*
2740 * Set of default routines for initialising struct proto_ops when
2741 * the protocol does not support a particular function. In certain
2742 * cases where it makes no sense for a protocol to have a "do nothing"
2743 * function, some default processing is provided.
2744 */
2745
2746int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2747{
2748	return -EOPNOTSUPP;
2749}
2750EXPORT_SYMBOL(sock_no_bind);
2751
2752int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2753		    int len, int flags)
2754{
2755	return -EOPNOTSUPP;
2756}
2757EXPORT_SYMBOL(sock_no_connect);
2758
2759int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2760{
2761	return -EOPNOTSUPP;
2762}
2763EXPORT_SYMBOL(sock_no_socketpair);
2764
2765int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2766		   bool kern)
2767{
2768	return -EOPNOTSUPP;
2769}
2770EXPORT_SYMBOL(sock_no_accept);
2771
2772int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2773		    int peer)
2774{
2775	return -EOPNOTSUPP;
2776}
2777EXPORT_SYMBOL(sock_no_getname);
2778
2779int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2780{
2781	return -EOPNOTSUPP;
2782}
2783EXPORT_SYMBOL(sock_no_ioctl);
2784
2785int sock_no_listen(struct socket *sock, int backlog)
2786{
2787	return -EOPNOTSUPP;
2788}
2789EXPORT_SYMBOL(sock_no_listen);
2790
2791int sock_no_shutdown(struct socket *sock, int how)
2792{
2793	return -EOPNOTSUPP;
2794}
2795EXPORT_SYMBOL(sock_no_shutdown);
2796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2797int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2798{
2799	return -EOPNOTSUPP;
2800}
2801EXPORT_SYMBOL(sock_no_sendmsg);
2802
2803int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2804{
2805	return -EOPNOTSUPP;
2806}
2807EXPORT_SYMBOL(sock_no_sendmsg_locked);
2808
2809int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2810		    int flags)
2811{
2812	return -EOPNOTSUPP;
2813}
2814EXPORT_SYMBOL(sock_no_recvmsg);
2815
2816int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2817{
2818	/* Mirror missing mmap method error code */
2819	return -ENODEV;
2820}
2821EXPORT_SYMBOL(sock_no_mmap);
2822
2823/*
2824 * When a file is received (via SCM_RIGHTS, etc), we must bump the
2825 * various sock-based usage counts.
2826 */
2827void __receive_sock(struct file *file)
2828{
2829	struct socket *sock;
2830	int error;
2831
2832	/*
2833	 * The resulting value of "error" is ignored here since we only
2834	 * need to take action when the file is a socket and testing
2835	 * "sock" for NULL is sufficient.
2836	 */
2837	sock = sock_from_file(file, &error);
2838	if (sock) {
2839		sock_update_netprioidx(&sock->sk->sk_cgrp_data);
2840		sock_update_classid(&sock->sk->sk_cgrp_data);
2841	}
2842}
2843
2844ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2845{
2846	ssize_t res;
2847	struct msghdr msg = {.msg_flags = flags};
2848	struct kvec iov;
2849	char *kaddr = kmap(page);
2850	iov.iov_base = kaddr + offset;
2851	iov.iov_len = size;
2852	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2853	kunmap(page);
2854	return res;
2855}
2856EXPORT_SYMBOL(sock_no_sendpage);
2857
2858ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2859				int offset, size_t size, int flags)
2860{
2861	ssize_t res;
2862	struct msghdr msg = {.msg_flags = flags};
2863	struct kvec iov;
2864	char *kaddr = kmap(page);
2865
2866	iov.iov_base = kaddr + offset;
2867	iov.iov_len = size;
2868	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2869	kunmap(page);
2870	return res;
2871}
2872EXPORT_SYMBOL(sock_no_sendpage_locked);
2873
2874/*
2875 *	Default Socket Callbacks
2876 */
2877
2878static void sock_def_wakeup(struct sock *sk)
2879{
2880	struct socket_wq *wq;
2881
2882	rcu_read_lock();
2883	wq = rcu_dereference(sk->sk_wq);
2884	if (skwq_has_sleeper(wq))
2885		wake_up_interruptible_all(&wq->wait);
2886	rcu_read_unlock();
2887}
2888
2889static void sock_def_error_report(struct sock *sk)
2890{
2891	struct socket_wq *wq;
2892
2893	rcu_read_lock();
2894	wq = rcu_dereference(sk->sk_wq);
2895	if (skwq_has_sleeper(wq))
2896		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2897	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2898	rcu_read_unlock();
2899}
2900
2901void sock_def_readable(struct sock *sk)
2902{
2903	struct socket_wq *wq;
2904
2905	rcu_read_lock();
2906	wq = rcu_dereference(sk->sk_wq);
2907	if (skwq_has_sleeper(wq))
2908		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2909						EPOLLRDNORM | EPOLLRDBAND);
2910	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2911	rcu_read_unlock();
2912}
2913
2914static void sock_def_write_space(struct sock *sk)
2915{
2916	struct socket_wq *wq;
2917
2918	rcu_read_lock();
2919
2920	/* Do not wake up a writer until he can make "significant"
2921	 * progress.  --DaveM
2922	 */
2923	if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
2924		wq = rcu_dereference(sk->sk_wq);
2925		if (skwq_has_sleeper(wq))
2926			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2927						EPOLLWRNORM | EPOLLWRBAND);
2928
2929		/* Should agree with poll, otherwise some programs break */
2930		if (sock_writeable(sk))
2931			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2932	}
2933
2934	rcu_read_unlock();
2935}
2936
2937static void sock_def_destruct(struct sock *sk)
2938{
2939}
2940
2941void sk_send_sigurg(struct sock *sk)
2942{
2943	if (sk->sk_socket && sk->sk_socket->file)
2944		if (send_sigurg(&sk->sk_socket->file->f_owner))
2945			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2946}
2947EXPORT_SYMBOL(sk_send_sigurg);
2948
2949void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2950		    unsigned long expires)
2951{
2952	if (!mod_timer(timer, expires))
2953		sock_hold(sk);
2954}
2955EXPORT_SYMBOL(sk_reset_timer);
2956
2957void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2958{
2959	if (del_timer(timer))
2960		__sock_put(sk);
2961}
2962EXPORT_SYMBOL(sk_stop_timer);
2963
2964void sock_init_data(struct socket *sock, struct sock *sk)
2965{
2966	sk_init_common(sk);
2967	sk->sk_send_head	=	NULL;
2968
2969	timer_setup(&sk->sk_timer, NULL, 0);
2970
2971	sk->sk_allocation	=	GFP_KERNEL;
2972	sk->sk_rcvbuf		=	sysctl_rmem_default;
2973	sk->sk_sndbuf		=	sysctl_wmem_default;
2974	sk->sk_state		=	TCP_CLOSE;
2975	sk_set_socket(sk, sock);
2976
2977	sock_set_flag(sk, SOCK_ZAPPED);
2978
2979	if (sock) {
2980		sk->sk_type	=	sock->type;
2981		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
2982		sock->sk	=	sk;
2983		sk->sk_uid	=	SOCK_INODE(sock)->i_uid;
2984	} else {
2985		RCU_INIT_POINTER(sk->sk_wq, NULL);
2986		sk->sk_uid	=	make_kuid(sock_net(sk)->user_ns, 0);
2987	}
2988
2989	rwlock_init(&sk->sk_callback_lock);
2990	if (sk->sk_kern_sock)
2991		lockdep_set_class_and_name(
2992			&sk->sk_callback_lock,
2993			af_kern_callback_keys + sk->sk_family,
2994			af_family_kern_clock_key_strings[sk->sk_family]);
2995	else
2996		lockdep_set_class_and_name(
2997			&sk->sk_callback_lock,
2998			af_callback_keys + sk->sk_family,
2999			af_family_clock_key_strings[sk->sk_family]);
3000
3001	sk->sk_state_change	=	sock_def_wakeup;
3002	sk->sk_data_ready	=	sock_def_readable;
3003	sk->sk_write_space	=	sock_def_write_space;
3004	sk->sk_error_report	=	sock_def_error_report;
3005	sk->sk_destruct		=	sock_def_destruct;
3006
3007	sk->sk_frag.page	=	NULL;
3008	sk->sk_frag.offset	=	0;
3009	sk->sk_peek_off		=	-1;
3010
3011	sk->sk_peer_pid 	=	NULL;
3012	sk->sk_peer_cred	=	NULL;
3013	sk->sk_write_pending	=	0;
3014	sk->sk_rcvlowat		=	1;
3015	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
3016	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
3017
3018	sk->sk_stamp = SK_DEFAULT_STAMP;
3019#if BITS_PER_LONG==32
3020	seqlock_init(&sk->sk_stamp_seq);
3021#endif
3022	atomic_set(&sk->sk_zckey, 0);
3023
3024#ifdef CONFIG_NET_RX_BUSY_POLL
3025	sk->sk_napi_id		=	0;
3026	sk->sk_ll_usec		=	sysctl_net_busy_read;
3027#endif
3028
3029	sk->sk_max_pacing_rate = ~0UL;
3030	sk->sk_pacing_rate = ~0UL;
3031	WRITE_ONCE(sk->sk_pacing_shift, 10);
3032	sk->sk_incoming_cpu = -1;
3033
3034	sk_rx_queue_clear(sk);
3035	/*
3036	 * Before updating sk_refcnt, we must commit prior changes to memory
3037	 * (Documentation/RCU/rculist_nulls.rst for details)
3038	 */
3039	smp_wmb();
3040	refcount_set(&sk->sk_refcnt, 1);
3041	atomic_set(&sk->sk_drops, 0);
3042}
3043EXPORT_SYMBOL(sock_init_data);
3044
3045void lock_sock_nested(struct sock *sk, int subclass)
3046{
3047	might_sleep();
3048	spin_lock_bh(&sk->sk_lock.slock);
3049	if (sk->sk_lock.owned)
3050		__lock_sock(sk);
3051	sk->sk_lock.owned = 1;
3052	spin_unlock(&sk->sk_lock.slock);
3053	/*
3054	 * The sk_lock has mutex_lock() semantics here:
3055	 */
3056	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3057	local_bh_enable();
3058}
3059EXPORT_SYMBOL(lock_sock_nested);
3060
3061void release_sock(struct sock *sk)
3062{
3063	spin_lock_bh(&sk->sk_lock.slock);
3064	if (sk->sk_backlog.tail)
3065		__release_sock(sk);
3066
3067	/* Warning : release_cb() might need to release sk ownership,
3068	 * ie call sock_release_ownership(sk) before us.
3069	 */
3070	if (sk->sk_prot->release_cb)
3071		sk->sk_prot->release_cb(sk);
3072
3073	sock_release_ownership(sk);
3074	if (waitqueue_active(&sk->sk_lock.wq))
3075		wake_up(&sk->sk_lock.wq);
3076	spin_unlock_bh(&sk->sk_lock.slock);
3077}
3078EXPORT_SYMBOL(release_sock);
3079
3080/**
3081 * lock_sock_fast - fast version of lock_sock
3082 * @sk: socket
3083 *
3084 * This version should be used for very small section, where process wont block
3085 * return false if fast path is taken:
3086 *
3087 *   sk_lock.slock locked, owned = 0, BH disabled
3088 *
3089 * return true if slow path is taken:
3090 *
3091 *   sk_lock.slock unlocked, owned = 1, BH enabled
3092 */
3093bool lock_sock_fast(struct sock *sk)
3094{
3095	might_sleep();
3096	spin_lock_bh(&sk->sk_lock.slock);
3097
3098	if (!sk->sk_lock.owned)
3099		/*
3100		 * Note : We must disable BH
3101		 */
3102		return false;
3103
3104	__lock_sock(sk);
3105	sk->sk_lock.owned = 1;
3106	spin_unlock(&sk->sk_lock.slock);
3107	/*
3108	 * The sk_lock has mutex_lock() semantics here:
3109	 */
3110	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
3111	local_bh_enable();
3112	return true;
3113}
3114EXPORT_SYMBOL(lock_sock_fast);
3115
3116int sock_gettstamp(struct socket *sock, void __user *userstamp,
3117		   bool timeval, bool time32)
3118{
3119	struct sock *sk = sock->sk;
3120	struct timespec64 ts;
3121
3122	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3123	ts = ktime_to_timespec64(sock_read_timestamp(sk));
3124	if (ts.tv_sec == -1)
3125		return -ENOENT;
3126	if (ts.tv_sec == 0) {
3127		ktime_t kt = ktime_get_real();
3128		sock_write_timestamp(sk, kt);
3129		ts = ktime_to_timespec64(kt);
3130	}
3131
3132	if (timeval)
3133		ts.tv_nsec /= 1000;
3134
3135#ifdef CONFIG_COMPAT_32BIT_TIME
3136	if (time32)
3137		return put_old_timespec32(&ts, userstamp);
3138#endif
3139#ifdef CONFIG_SPARC64
3140	/* beware of padding in sparc64 timeval */
3141	if (timeval && !in_compat_syscall()) {
3142		struct __kernel_old_timeval __user tv = {
3143			.tv_sec = ts.tv_sec,
3144			.tv_usec = ts.tv_nsec,
3145		};
3146		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3147			return -EFAULT;
3148		return 0;
3149	}
3150#endif
3151	return put_timespec64(&ts, userstamp);
3152}
3153EXPORT_SYMBOL(sock_gettstamp);
3154
3155void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3156{
3157	if (!sock_flag(sk, flag)) {
3158		unsigned long previous_flags = sk->sk_flags;
3159
3160		sock_set_flag(sk, flag);
3161		/*
3162		 * we just set one of the two flags which require net
3163		 * time stamping, but time stamping might have been on
3164		 * already because of the other one
3165		 */
3166		if (sock_needs_netstamp(sk) &&
3167		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3168			net_enable_timestamp();
3169	}
3170}
3171
3172int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3173		       int level, int type)
3174{
3175	struct sock_exterr_skb *serr;
3176	struct sk_buff *skb;
3177	int copied, err;
3178
3179	err = -EAGAIN;
3180	skb = sock_dequeue_err_skb(sk);
3181	if (skb == NULL)
3182		goto out;
3183
3184	copied = skb->len;
3185	if (copied > len) {
3186		msg->msg_flags |= MSG_TRUNC;
3187		copied = len;
3188	}
3189	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3190	if (err)
3191		goto out_free_skb;
3192
3193	sock_recv_timestamp(msg, sk, skb);
3194
3195	serr = SKB_EXT_ERR(skb);
3196	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3197
3198	msg->msg_flags |= MSG_ERRQUEUE;
3199	err = copied;
3200
3201out_free_skb:
3202	kfree_skb(skb);
3203out:
3204	return err;
3205}
3206EXPORT_SYMBOL(sock_recv_errqueue);
3207
3208/*
3209 *	Get a socket option on an socket.
3210 *
3211 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3212 *	asynchronous errors should be reported by getsockopt. We assume
3213 *	this means if you specify SO_ERROR (otherwise whats the point of it).
3214 */
3215int sock_common_getsockopt(struct socket *sock, int level, int optname,
3216			   char __user *optval, int __user *optlen)
3217{
3218	struct sock *sk = sock->sk;
3219
3220	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3221}
3222EXPORT_SYMBOL(sock_common_getsockopt);
3223
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3224int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3225			int flags)
3226{
3227	struct sock *sk = sock->sk;
3228	int addr_len = 0;
3229	int err;
3230
3231	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3232				   flags & ~MSG_DONTWAIT, &addr_len);
3233	if (err >= 0)
3234		msg->msg_namelen = addr_len;
3235	return err;
3236}
3237EXPORT_SYMBOL(sock_common_recvmsg);
3238
3239/*
3240 *	Set socket options on an inet socket.
3241 */
3242int sock_common_setsockopt(struct socket *sock, int level, int optname,
3243			   sockptr_t optval, unsigned int optlen)
3244{
3245	struct sock *sk = sock->sk;
3246
3247	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3248}
3249EXPORT_SYMBOL(sock_common_setsockopt);
3250
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3251void sk_common_release(struct sock *sk)
3252{
3253	if (sk->sk_prot->destroy)
3254		sk->sk_prot->destroy(sk);
3255
3256	/*
3257	 * Observation: when sk_common_release is called, processes have
3258	 * no access to socket. But net still has.
3259	 * Step one, detach it from networking:
3260	 *
3261	 * A. Remove from hash tables.
3262	 */
3263
3264	sk->sk_prot->unhash(sk);
3265
3266	/*
3267	 * In this point socket cannot receive new packets, but it is possible
3268	 * that some packets are in flight because some CPU runs receiver and
3269	 * did hash table lookup before we unhashed socket. They will achieve
3270	 * receive queue and will be purged by socket destructor.
3271	 *
3272	 * Also we still have packets pending on receive queue and probably,
3273	 * our own packets waiting in device queues. sock_destroy will drain
3274	 * receive queue, but transmitted packets will delay socket destruction
3275	 * until the last reference will be released.
3276	 */
3277
3278	sock_orphan(sk);
3279
3280	xfrm_sk_free_policy(sk);
3281
3282	sk_refcnt_debug_release(sk);
3283
3284	sock_put(sk);
3285}
3286EXPORT_SYMBOL(sk_common_release);
3287
3288void sk_get_meminfo(const struct sock *sk, u32 *mem)
3289{
3290	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3291
3292	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3293	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3294	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3295	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3296	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3297	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3298	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3299	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3300	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3301}
3302
3303#ifdef CONFIG_PROC_FS
3304#define PROTO_INUSE_NR	64	/* should be enough for the first time */
3305struct prot_inuse {
3306	int val[PROTO_INUSE_NR];
3307};
3308
3309static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3310
3311void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3312{
3313	__this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3314}
3315EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3316
3317int sock_prot_inuse_get(struct net *net, struct proto *prot)
3318{
3319	int cpu, idx = prot->inuse_idx;
3320	int res = 0;
3321
3322	for_each_possible_cpu(cpu)
3323		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3324
3325	return res >= 0 ? res : 0;
3326}
3327EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3328
3329static void sock_inuse_add(struct net *net, int val)
3330{
3331	this_cpu_add(*net->core.sock_inuse, val);
3332}
3333
3334int sock_inuse_get(struct net *net)
3335{
3336	int cpu, res = 0;
3337
3338	for_each_possible_cpu(cpu)
3339		res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3340
3341	return res;
3342}
3343
3344EXPORT_SYMBOL_GPL(sock_inuse_get);
3345
3346static int __net_init sock_inuse_init_net(struct net *net)
3347{
3348	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3349	if (net->core.prot_inuse == NULL)
3350		return -ENOMEM;
3351
3352	net->core.sock_inuse = alloc_percpu(int);
3353	if (net->core.sock_inuse == NULL)
3354		goto out;
3355
3356	return 0;
3357
3358out:
3359	free_percpu(net->core.prot_inuse);
3360	return -ENOMEM;
3361}
3362
3363static void __net_exit sock_inuse_exit_net(struct net *net)
3364{
3365	free_percpu(net->core.prot_inuse);
3366	free_percpu(net->core.sock_inuse);
3367}
3368
3369static struct pernet_operations net_inuse_ops = {
3370	.init = sock_inuse_init_net,
3371	.exit = sock_inuse_exit_net,
3372};
3373
3374static __init int net_inuse_init(void)
3375{
3376	if (register_pernet_subsys(&net_inuse_ops))
3377		panic("Cannot initialize net inuse counters");
3378
3379	return 0;
3380}
3381
3382core_initcall(net_inuse_init);
3383
3384static int assign_proto_idx(struct proto *prot)
3385{
3386	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3387
3388	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3389		pr_err("PROTO_INUSE_NR exhausted\n");
3390		return -ENOSPC;
3391	}
3392
3393	set_bit(prot->inuse_idx, proto_inuse_idx);
3394	return 0;
3395}
3396
3397static void release_proto_idx(struct proto *prot)
3398{
3399	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3400		clear_bit(prot->inuse_idx, proto_inuse_idx);
3401}
3402#else
3403static inline int assign_proto_idx(struct proto *prot)
3404{
3405	return 0;
3406}
3407
3408static inline void release_proto_idx(struct proto *prot)
3409{
3410}
3411
3412static void sock_inuse_add(struct net *net, int val)
3413{
3414}
3415#endif
3416
3417static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3418{
3419	if (!twsk_prot)
3420		return;
3421	kfree(twsk_prot->twsk_slab_name);
3422	twsk_prot->twsk_slab_name = NULL;
3423	kmem_cache_destroy(twsk_prot->twsk_slab);
3424	twsk_prot->twsk_slab = NULL;
3425}
3426
3427static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3428{
3429	if (!rsk_prot)
3430		return;
3431	kfree(rsk_prot->slab_name);
3432	rsk_prot->slab_name = NULL;
3433	kmem_cache_destroy(rsk_prot->slab);
3434	rsk_prot->slab = NULL;
3435}
3436
3437static int req_prot_init(const struct proto *prot)
3438{
3439	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3440
3441	if (!rsk_prot)
3442		return 0;
3443
3444	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3445					prot->name);
3446	if (!rsk_prot->slab_name)
3447		return -ENOMEM;
3448
3449	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3450					   rsk_prot->obj_size, 0,
3451					   SLAB_ACCOUNT | prot->slab_flags,
3452					   NULL);
3453
3454	if (!rsk_prot->slab) {
3455		pr_crit("%s: Can't create request sock SLAB cache!\n",
3456			prot->name);
3457		return -ENOMEM;
3458	}
3459	return 0;
3460}
3461
3462int proto_register(struct proto *prot, int alloc_slab)
3463{
3464	int ret = -ENOBUFS;
3465
3466	if (alloc_slab) {
3467		prot->slab = kmem_cache_create_usercopy(prot->name,
3468					prot->obj_size, 0,
3469					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3470					prot->slab_flags,
3471					prot->useroffset, prot->usersize,
3472					NULL);
3473
3474		if (prot->slab == NULL) {
3475			pr_crit("%s: Can't create sock SLAB cache!\n",
3476				prot->name);
3477			goto out;
3478		}
3479
3480		if (req_prot_init(prot))
3481			goto out_free_request_sock_slab;
3482
3483		if (prot->twsk_prot != NULL) {
3484			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3485
3486			if (prot->twsk_prot->twsk_slab_name == NULL)
3487				goto out_free_request_sock_slab;
3488
3489			prot->twsk_prot->twsk_slab =
3490				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3491						  prot->twsk_prot->twsk_obj_size,
3492						  0,
3493						  SLAB_ACCOUNT |
3494						  prot->slab_flags,
3495						  NULL);
3496			if (prot->twsk_prot->twsk_slab == NULL)
3497				goto out_free_timewait_sock_slab;
3498		}
3499	}
3500
3501	mutex_lock(&proto_list_mutex);
3502	ret = assign_proto_idx(prot);
3503	if (ret) {
3504		mutex_unlock(&proto_list_mutex);
3505		goto out_free_timewait_sock_slab;
3506	}
3507	list_add(&prot->node, &proto_list);
3508	mutex_unlock(&proto_list_mutex);
3509	return ret;
3510
3511out_free_timewait_sock_slab:
3512	if (alloc_slab && prot->twsk_prot)
3513		tw_prot_cleanup(prot->twsk_prot);
3514out_free_request_sock_slab:
3515	if (alloc_slab) {
3516		req_prot_cleanup(prot->rsk_prot);
3517
3518		kmem_cache_destroy(prot->slab);
3519		prot->slab = NULL;
3520	}
3521out:
3522	return ret;
3523}
3524EXPORT_SYMBOL(proto_register);
3525
3526void proto_unregister(struct proto *prot)
3527{
3528	mutex_lock(&proto_list_mutex);
3529	release_proto_idx(prot);
3530	list_del(&prot->node);
3531	mutex_unlock(&proto_list_mutex);
3532
3533	kmem_cache_destroy(prot->slab);
3534	prot->slab = NULL;
3535
3536	req_prot_cleanup(prot->rsk_prot);
3537	tw_prot_cleanup(prot->twsk_prot);
 
 
 
 
 
3538}
3539EXPORT_SYMBOL(proto_unregister);
3540
3541int sock_load_diag_module(int family, int protocol)
3542{
3543	if (!protocol) {
3544		if (!sock_is_registered(family))
3545			return -ENOENT;
3546
3547		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3548				      NETLINK_SOCK_DIAG, family);
3549	}
3550
3551#ifdef CONFIG_INET
3552	if (family == AF_INET &&
3553	    protocol != IPPROTO_RAW &&
3554	    protocol < MAX_INET_PROTOS &&
3555	    !rcu_access_pointer(inet_protos[protocol]))
3556		return -ENOENT;
3557#endif
3558
3559	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3560			      NETLINK_SOCK_DIAG, family, protocol);
3561}
3562EXPORT_SYMBOL(sock_load_diag_module);
3563
3564#ifdef CONFIG_PROC_FS
3565static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3566	__acquires(proto_list_mutex)
3567{
3568	mutex_lock(&proto_list_mutex);
3569	return seq_list_start_head(&proto_list, *pos);
3570}
3571
3572static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3573{
3574	return seq_list_next(v, &proto_list, pos);
3575}
3576
3577static void proto_seq_stop(struct seq_file *seq, void *v)
3578	__releases(proto_list_mutex)
3579{
3580	mutex_unlock(&proto_list_mutex);
3581}
3582
3583static char proto_method_implemented(const void *method)
3584{
3585	return method == NULL ? 'n' : 'y';
3586}
3587static long sock_prot_memory_allocated(struct proto *proto)
3588{
3589	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3590}
3591
3592static const char *sock_prot_memory_pressure(struct proto *proto)
3593{
3594	return proto->memory_pressure != NULL ?
3595	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3596}
3597
3598static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3599{
3600
3601	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3602			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3603		   proto->name,
3604		   proto->obj_size,
3605		   sock_prot_inuse_get(seq_file_net(seq), proto),
3606		   sock_prot_memory_allocated(proto),
3607		   sock_prot_memory_pressure(proto),
3608		   proto->max_header,
3609		   proto->slab == NULL ? "no" : "yes",
3610		   module_name(proto->owner),
3611		   proto_method_implemented(proto->close),
3612		   proto_method_implemented(proto->connect),
3613		   proto_method_implemented(proto->disconnect),
3614		   proto_method_implemented(proto->accept),
3615		   proto_method_implemented(proto->ioctl),
3616		   proto_method_implemented(proto->init),
3617		   proto_method_implemented(proto->destroy),
3618		   proto_method_implemented(proto->shutdown),
3619		   proto_method_implemented(proto->setsockopt),
3620		   proto_method_implemented(proto->getsockopt),
3621		   proto_method_implemented(proto->sendmsg),
3622		   proto_method_implemented(proto->recvmsg),
3623		   proto_method_implemented(proto->sendpage),
3624		   proto_method_implemented(proto->bind),
3625		   proto_method_implemented(proto->backlog_rcv),
3626		   proto_method_implemented(proto->hash),
3627		   proto_method_implemented(proto->unhash),
3628		   proto_method_implemented(proto->get_port),
3629		   proto_method_implemented(proto->enter_memory_pressure));
3630}
3631
3632static int proto_seq_show(struct seq_file *seq, void *v)
3633{
3634	if (v == &proto_list)
3635		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3636			   "protocol",
3637			   "size",
3638			   "sockets",
3639			   "memory",
3640			   "press",
3641			   "maxhdr",
3642			   "slab",
3643			   "module",
3644			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3645	else
3646		proto_seq_printf(seq, list_entry(v, struct proto, node));
3647	return 0;
3648}
3649
3650static const struct seq_operations proto_seq_ops = {
3651	.start  = proto_seq_start,
3652	.next   = proto_seq_next,
3653	.stop   = proto_seq_stop,
3654	.show   = proto_seq_show,
3655};
3656
3657static __net_init int proto_init_net(struct net *net)
3658{
3659	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3660			sizeof(struct seq_net_private)))
3661		return -ENOMEM;
3662
3663	return 0;
3664}
3665
3666static __net_exit void proto_exit_net(struct net *net)
3667{
3668	remove_proc_entry("protocols", net->proc_net);
3669}
3670
3671
3672static __net_initdata struct pernet_operations proto_net_ops = {
3673	.init = proto_init_net,
3674	.exit = proto_exit_net,
3675};
3676
3677static int __init proto_init(void)
3678{
3679	return register_pernet_subsys(&proto_net_ops);
3680}
3681
3682subsys_initcall(proto_init);
3683
3684#endif /* PROC_FS */
3685
3686#ifdef CONFIG_NET_RX_BUSY_POLL
3687bool sk_busy_loop_end(void *p, unsigned long start_time)
3688{
3689	struct sock *sk = p;
3690
3691	return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3692	       sk_busy_loop_timeout(sk, start_time);
3693}
3694EXPORT_SYMBOL(sk_busy_loop_end);
3695#endif /* CONFIG_NET_RX_BUSY_POLL */
3696
3697int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
3698{
3699	if (!sk->sk_prot->bind_add)
3700		return -EOPNOTSUPP;
3701	return sk->sk_prot->bind_add(sk, addr, addr_len);
3702}
3703EXPORT_SYMBOL(sock_bind_add);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Generic socket support routines. Memory allocators, socket lock/release
   8 *		handler for protocols to use and generic option handler.
   9 *
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Alan Cox, <A.Cox@swansea.ac.uk>
  14 *
  15 * Fixes:
  16 *		Alan Cox	: 	Numerous verify_area() problems
  17 *		Alan Cox	:	Connecting on a connecting socket
  18 *					now returns an error for tcp.
  19 *		Alan Cox	:	sock->protocol is set correctly.
  20 *					and is not sometimes left as 0.
  21 *		Alan Cox	:	connect handles icmp errors on a
  22 *					connect properly. Unfortunately there
  23 *					is a restart syscall nasty there. I
  24 *					can't match BSD without hacking the C
  25 *					library. Ideas urgently sought!
  26 *		Alan Cox	:	Disallow bind() to addresses that are
  27 *					not ours - especially broadcast ones!!
  28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
  29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
  30 *					instead they leave that for the DESTROY timer.
  31 *		Alan Cox	:	Clean up error flag in accept
  32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
  33 *					was buggy. Put a remove_sock() in the handler
  34 *					for memory when we hit 0. Also altered the timer
  35 *					code. The ACK stuff can wait and needs major
  36 *					TCP layer surgery.
  37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
  38 *					and fixed timer/inet_bh race.
  39 *		Alan Cox	:	Added zapped flag for TCP
  40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
  41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
  43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
  46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
  47 *	Pauline Middelink	:	identd support
  48 *		Alan Cox	:	Fixed connect() taking signals I think.
  49 *		Alan Cox	:	SO_LINGER supported
  50 *		Alan Cox	:	Error reporting fixes
  51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
  52 *		Alan Cox	:	inet sockets don't set sk->type!
  53 *		Alan Cox	:	Split socket option code
  54 *		Alan Cox	:	Callbacks
  55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
  56 *		Alex		:	Removed restriction on inet fioctl
  57 *		Alan Cox	:	Splitting INET from NET core
  58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
  59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
  60 *		Alan Cox	:	Split IP from generic code
  61 *		Alan Cox	:	New kfree_skbmem()
  62 *		Alan Cox	:	Make SO_DEBUG superuser only.
  63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
  64 *					(compatibility fix)
  65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
  66 *		Alan Cox	:	Allocator for a socket is settable.
  67 *		Alan Cox	:	SO_ERROR includes soft errors.
  68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
  69 *		Alan Cox	: 	Generic socket allocation to make hooks
  70 *					easier (suggested by Craig Metz).
  71 *		Michael Pall	:	SO_ERROR returns positive errno again
  72 *              Steve Whitehouse:       Added default destructor to free
  73 *                                      protocol private data.
  74 *              Steve Whitehouse:       Added various other default routines
  75 *                                      common to several socket families.
  76 *              Chris Evans     :       Call suser() check last on F_SETOWN
  77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
  79 *		Andi Kleen	:	Fix write_space callback
  80 *		Chris Evans	:	Security fixes - signedness again
  81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
  82 *
  83 * To Fix:
  84 */
  85
  86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  87
  88#include <asm/unaligned.h>
  89#include <linux/capability.h>
  90#include <linux/errno.h>
  91#include <linux/errqueue.h>
  92#include <linux/types.h>
  93#include <linux/socket.h>
  94#include <linux/in.h>
  95#include <linux/kernel.h>
  96#include <linux/module.h>
  97#include <linux/proc_fs.h>
  98#include <linux/seq_file.h>
  99#include <linux/sched.h>
 100#include <linux/sched/mm.h>
 101#include <linux/timer.h>
 102#include <linux/string.h>
 103#include <linux/sockios.h>
 104#include <linux/net.h>
 105#include <linux/mm.h>
 106#include <linux/slab.h>
 107#include <linux/interrupt.h>
 108#include <linux/poll.h>
 109#include <linux/tcp.h>
 110#include <linux/init.h>
 111#include <linux/highmem.h>
 112#include <linux/user_namespace.h>
 113#include <linux/static_key.h>
 114#include <linux/memcontrol.h>
 115#include <linux/prefetch.h>
 
 116
 117#include <linux/uaccess.h>
 118
 119#include <linux/netdevice.h>
 120#include <net/protocol.h>
 121#include <linux/skbuff.h>
 122#include <net/net_namespace.h>
 123#include <net/request_sock.h>
 124#include <net/sock.h>
 125#include <linux/net_tstamp.h>
 126#include <net/xfrm.h>
 127#include <linux/ipsec.h>
 128#include <net/cls_cgroup.h>
 129#include <net/netprio_cgroup.h>
 130#include <linux/sock_diag.h>
 131
 132#include <linux/filter.h>
 133#include <net/sock_reuseport.h>
 134#include <net/bpf_sk_storage.h>
 135
 136#include <trace/events/sock.h>
 137
 138#include <net/tcp.h>
 139#include <net/busy_poll.h>
 140
 141static DEFINE_MUTEX(proto_list_mutex);
 142static LIST_HEAD(proto_list);
 143
 144static void sock_inuse_add(struct net *net, int val);
 145
 146/**
 147 * sk_ns_capable - General socket capability test
 148 * @sk: Socket to use a capability on or through
 149 * @user_ns: The user namespace of the capability to use
 150 * @cap: The capability to use
 151 *
 152 * Test to see if the opener of the socket had when the socket was
 153 * created and the current process has the capability @cap in the user
 154 * namespace @user_ns.
 155 */
 156bool sk_ns_capable(const struct sock *sk,
 157		   struct user_namespace *user_ns, int cap)
 158{
 159	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
 160		ns_capable(user_ns, cap);
 161}
 162EXPORT_SYMBOL(sk_ns_capable);
 163
 164/**
 165 * sk_capable - Socket global capability test
 166 * @sk: Socket to use a capability on or through
 167 * @cap: The global capability to use
 168 *
 169 * Test to see if the opener of the socket had when the socket was
 170 * created and the current process has the capability @cap in all user
 171 * namespaces.
 172 */
 173bool sk_capable(const struct sock *sk, int cap)
 174{
 175	return sk_ns_capable(sk, &init_user_ns, cap);
 176}
 177EXPORT_SYMBOL(sk_capable);
 178
 179/**
 180 * sk_net_capable - Network namespace socket capability test
 181 * @sk: Socket to use a capability on or through
 182 * @cap: The capability to use
 183 *
 184 * Test to see if the opener of the socket had when the socket was created
 185 * and the current process has the capability @cap over the network namespace
 186 * the socket is a member of.
 187 */
 188bool sk_net_capable(const struct sock *sk, int cap)
 189{
 190	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
 191}
 192EXPORT_SYMBOL(sk_net_capable);
 193
 194/*
 195 * Each address family might have different locking rules, so we have
 196 * one slock key per address family and separate keys for internal and
 197 * userspace sockets.
 198 */
 199static struct lock_class_key af_family_keys[AF_MAX];
 200static struct lock_class_key af_family_kern_keys[AF_MAX];
 201static struct lock_class_key af_family_slock_keys[AF_MAX];
 202static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
 203
 204/*
 205 * Make lock validator output more readable. (we pre-construct these
 206 * strings build-time, so that runtime initialization of socket
 207 * locks is fast):
 208 */
 209
 210#define _sock_locks(x)						  \
 211  x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
 212  x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
 213  x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
 214  x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
 215  x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
 216  x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
 217  x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
 218  x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
 219  x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
 220  x "27"       ,	x "28"          ,	x "AF_CAN"      , \
 221  x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
 222  x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
 223  x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
 224  x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
 225  x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
 226  x "AF_MAX"
 227
 228static const char *const af_family_key_strings[AF_MAX+1] = {
 229	_sock_locks("sk_lock-")
 230};
 231static const char *const af_family_slock_key_strings[AF_MAX+1] = {
 232	_sock_locks("slock-")
 233};
 234static const char *const af_family_clock_key_strings[AF_MAX+1] = {
 235	_sock_locks("clock-")
 236};
 237
 238static const char *const af_family_kern_key_strings[AF_MAX+1] = {
 239	_sock_locks("k-sk_lock-")
 240};
 241static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
 242	_sock_locks("k-slock-")
 243};
 244static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
 245	_sock_locks("k-clock-")
 246};
 247static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
 248	_sock_locks("rlock-")
 249};
 250static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
 251	_sock_locks("wlock-")
 252};
 253static const char *const af_family_elock_key_strings[AF_MAX+1] = {
 254	_sock_locks("elock-")
 255};
 256
 257/*
 258 * sk_callback_lock and sk queues locking rules are per-address-family,
 259 * so split the lock classes by using a per-AF key:
 260 */
 261static struct lock_class_key af_callback_keys[AF_MAX];
 262static struct lock_class_key af_rlock_keys[AF_MAX];
 263static struct lock_class_key af_wlock_keys[AF_MAX];
 264static struct lock_class_key af_elock_keys[AF_MAX];
 265static struct lock_class_key af_kern_callback_keys[AF_MAX];
 266
 267/* Run time adjustable parameters. */
 268__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
 269EXPORT_SYMBOL(sysctl_wmem_max);
 270__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
 271EXPORT_SYMBOL(sysctl_rmem_max);
 272__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
 273__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
 274
 275/* Maximal space eaten by iovec or ancillary data plus some space */
 276int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
 277EXPORT_SYMBOL(sysctl_optmem_max);
 278
 279int sysctl_tstamp_allow_data __read_mostly = 1;
 280
 281DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
 282EXPORT_SYMBOL_GPL(memalloc_socks_key);
 283
 284/**
 285 * sk_set_memalloc - sets %SOCK_MEMALLOC
 286 * @sk: socket to set it on
 287 *
 288 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
 289 * It's the responsibility of the admin to adjust min_free_kbytes
 290 * to meet the requirements
 291 */
 292void sk_set_memalloc(struct sock *sk)
 293{
 294	sock_set_flag(sk, SOCK_MEMALLOC);
 295	sk->sk_allocation |= __GFP_MEMALLOC;
 296	static_branch_inc(&memalloc_socks_key);
 297}
 298EXPORT_SYMBOL_GPL(sk_set_memalloc);
 299
 300void sk_clear_memalloc(struct sock *sk)
 301{
 302	sock_reset_flag(sk, SOCK_MEMALLOC);
 303	sk->sk_allocation &= ~__GFP_MEMALLOC;
 304	static_branch_dec(&memalloc_socks_key);
 305
 306	/*
 307	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
 308	 * progress of swapping. SOCK_MEMALLOC may be cleared while
 309	 * it has rmem allocations due to the last swapfile being deactivated
 310	 * but there is a risk that the socket is unusable due to exceeding
 311	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
 312	 */
 313	sk_mem_reclaim(sk);
 314}
 315EXPORT_SYMBOL_GPL(sk_clear_memalloc);
 316
 317int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 318{
 319	int ret;
 320	unsigned int noreclaim_flag;
 321
 322	/* these should have been dropped before queueing */
 323	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
 324
 325	noreclaim_flag = memalloc_noreclaim_save();
 326	ret = sk->sk_backlog_rcv(sk, skb);
 327	memalloc_noreclaim_restore(noreclaim_flag);
 328
 329	return ret;
 330}
 331EXPORT_SYMBOL(__sk_backlog_rcv);
 332
 333static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
 334{
 335	struct __kernel_sock_timeval tv;
 336	int size;
 337
 338	if (timeo == MAX_SCHEDULE_TIMEOUT) {
 339		tv.tv_sec = 0;
 340		tv.tv_usec = 0;
 341	} else {
 342		tv.tv_sec = timeo / HZ;
 343		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
 344	}
 345
 346	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 347		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
 348		*(struct old_timeval32 *)optval = tv32;
 349		return sizeof(tv32);
 350	}
 351
 352	if (old_timeval) {
 353		struct __kernel_old_timeval old_tv;
 354		old_tv.tv_sec = tv.tv_sec;
 355		old_tv.tv_usec = tv.tv_usec;
 356		*(struct __kernel_old_timeval *)optval = old_tv;
 357		size = sizeof(old_tv);
 358	} else {
 359		*(struct __kernel_sock_timeval *)optval = tv;
 360		size = sizeof(tv);
 361	}
 362
 363	return size;
 
 364}
 365
 366static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen, bool old_timeval)
 
 367{
 368	struct __kernel_sock_timeval tv;
 369
 370	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 371		struct old_timeval32 tv32;
 372
 373		if (optlen < sizeof(tv32))
 374			return -EINVAL;
 375
 376		if (copy_from_user(&tv32, optval, sizeof(tv32)))
 377			return -EFAULT;
 378		tv.tv_sec = tv32.tv_sec;
 379		tv.tv_usec = tv32.tv_usec;
 380	} else if (old_timeval) {
 381		struct __kernel_old_timeval old_tv;
 382
 383		if (optlen < sizeof(old_tv))
 384			return -EINVAL;
 385		if (copy_from_user(&old_tv, optval, sizeof(old_tv)))
 386			return -EFAULT;
 387		tv.tv_sec = old_tv.tv_sec;
 388		tv.tv_usec = old_tv.tv_usec;
 389	} else {
 390		if (optlen < sizeof(tv))
 391			return -EINVAL;
 392		if (copy_from_user(&tv, optval, sizeof(tv)))
 393			return -EFAULT;
 394	}
 395	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
 396		return -EDOM;
 397
 398	if (tv.tv_sec < 0) {
 399		static int warned __read_mostly;
 400
 401		*timeo_p = 0;
 402		if (warned < 10 && net_ratelimit()) {
 403			warned++;
 404			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
 405				__func__, current->comm, task_pid_nr(current));
 406		}
 407		return 0;
 408	}
 409	*timeo_p = MAX_SCHEDULE_TIMEOUT;
 410	if (tv.tv_sec == 0 && tv.tv_usec == 0)
 411		return 0;
 412	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
 413		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
 414	return 0;
 415}
 416
 417static void sock_warn_obsolete_bsdism(const char *name)
 418{
 419	static int warned;
 420	static char warncomm[TASK_COMM_LEN];
 421	if (strcmp(warncomm, current->comm) && warned < 5) {
 422		strcpy(warncomm,  current->comm);
 423		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
 424			warncomm, name);
 425		warned++;
 426	}
 427}
 428
 429static bool sock_needs_netstamp(const struct sock *sk)
 430{
 431	switch (sk->sk_family) {
 432	case AF_UNSPEC:
 433	case AF_UNIX:
 434		return false;
 435	default:
 436		return true;
 437	}
 438}
 439
 440static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
 441{
 442	if (sk->sk_flags & flags) {
 443		sk->sk_flags &= ~flags;
 444		if (sock_needs_netstamp(sk) &&
 445		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
 446			net_disable_timestamp();
 447	}
 448}
 449
 450
 451int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 452{
 453	unsigned long flags;
 454	struct sk_buff_head *list = &sk->sk_receive_queue;
 455
 456	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
 457		atomic_inc(&sk->sk_drops);
 458		trace_sock_rcvqueue_full(sk, skb);
 459		return -ENOMEM;
 460	}
 461
 462	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
 463		atomic_inc(&sk->sk_drops);
 464		return -ENOBUFS;
 465	}
 466
 467	skb->dev = NULL;
 468	skb_set_owner_r(skb, sk);
 469
 470	/* we escape from rcu protected region, make sure we dont leak
 471	 * a norefcounted dst
 472	 */
 473	skb_dst_force(skb);
 474
 475	spin_lock_irqsave(&list->lock, flags);
 476	sock_skb_set_dropcount(sk, skb);
 477	__skb_queue_tail(list, skb);
 478	spin_unlock_irqrestore(&list->lock, flags);
 479
 480	if (!sock_flag(sk, SOCK_DEAD))
 481		sk->sk_data_ready(sk);
 482	return 0;
 483}
 484EXPORT_SYMBOL(__sock_queue_rcv_skb);
 485
 486int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 487{
 488	int err;
 489
 490	err = sk_filter(sk, skb);
 491	if (err)
 492		return err;
 493
 494	return __sock_queue_rcv_skb(sk, skb);
 495}
 496EXPORT_SYMBOL(sock_queue_rcv_skb);
 497
 498int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
 499		     const int nested, unsigned int trim_cap, bool refcounted)
 500{
 501	int rc = NET_RX_SUCCESS;
 502
 503	if (sk_filter_trim_cap(sk, skb, trim_cap))
 504		goto discard_and_relse;
 505
 506	skb->dev = NULL;
 507
 508	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
 509		atomic_inc(&sk->sk_drops);
 510		goto discard_and_relse;
 511	}
 512	if (nested)
 513		bh_lock_sock_nested(sk);
 514	else
 515		bh_lock_sock(sk);
 516	if (!sock_owned_by_user(sk)) {
 517		/*
 518		 * trylock + unlock semantics:
 519		 */
 520		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
 521
 522		rc = sk_backlog_rcv(sk, skb);
 523
 524		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
 525	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
 526		bh_unlock_sock(sk);
 527		atomic_inc(&sk->sk_drops);
 528		goto discard_and_relse;
 529	}
 530
 531	bh_unlock_sock(sk);
 532out:
 533	if (refcounted)
 534		sock_put(sk);
 535	return rc;
 536discard_and_relse:
 537	kfree_skb(skb);
 538	goto out;
 539}
 540EXPORT_SYMBOL(__sk_receive_skb);
 541
 542struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
 543{
 544	struct dst_entry *dst = __sk_dst_get(sk);
 545
 546	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 547		sk_tx_queue_clear(sk);
 548		sk->sk_dst_pending_confirm = 0;
 549		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
 550		dst_release(dst);
 551		return NULL;
 552	}
 553
 554	return dst;
 555}
 556EXPORT_SYMBOL(__sk_dst_check);
 557
 558struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
 559{
 560	struct dst_entry *dst = sk_dst_get(sk);
 561
 562	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 563		sk_dst_reset(sk);
 564		dst_release(dst);
 565		return NULL;
 566	}
 567
 568	return dst;
 569}
 570EXPORT_SYMBOL(sk_dst_check);
 571
 572static int sock_setbindtodevice_locked(struct sock *sk, int ifindex)
 573{
 574	int ret = -ENOPROTOOPT;
 575#ifdef CONFIG_NETDEVICES
 576	struct net *net = sock_net(sk);
 577
 578	/* Sorry... */
 579	ret = -EPERM;
 580	if (!ns_capable(net->user_ns, CAP_NET_RAW))
 581		goto out;
 582
 583	ret = -EINVAL;
 584	if (ifindex < 0)
 585		goto out;
 586
 587	sk->sk_bound_dev_if = ifindex;
 588	if (sk->sk_prot->rehash)
 589		sk->sk_prot->rehash(sk);
 590	sk_dst_reset(sk);
 591
 592	ret = 0;
 593
 594out:
 595#endif
 596
 597	return ret;
 598}
 599
 600static int sock_setbindtodevice(struct sock *sk, char __user *optval,
 601				int optlen)
 
 
 
 
 
 
 
 
 
 
 
 
 
 602{
 603	int ret = -ENOPROTOOPT;
 604#ifdef CONFIG_NETDEVICES
 605	struct net *net = sock_net(sk);
 606	char devname[IFNAMSIZ];
 607	int index;
 608
 609	ret = -EINVAL;
 610	if (optlen < 0)
 611		goto out;
 612
 613	/* Bind this socket to a particular device like "eth0",
 614	 * as specified in the passed interface name. If the
 615	 * name is "" or the option length is zero the socket
 616	 * is not bound.
 617	 */
 618	if (optlen > IFNAMSIZ - 1)
 619		optlen = IFNAMSIZ - 1;
 620	memset(devname, 0, sizeof(devname));
 621
 622	ret = -EFAULT;
 623	if (copy_from_user(devname, optval, optlen))
 624		goto out;
 625
 626	index = 0;
 627	if (devname[0] != '\0') {
 628		struct net_device *dev;
 629
 630		rcu_read_lock();
 631		dev = dev_get_by_name_rcu(net, devname);
 632		if (dev)
 633			index = dev->ifindex;
 634		rcu_read_unlock();
 635		ret = -ENODEV;
 636		if (!dev)
 637			goto out;
 638	}
 639
 640	lock_sock(sk);
 641	ret = sock_setbindtodevice_locked(sk, index);
 642	release_sock(sk);
 643
 644out:
 645#endif
 646
 647	return ret;
 648}
 649
 650static int sock_getbindtodevice(struct sock *sk, char __user *optval,
 651				int __user *optlen, int len)
 652{
 653	int ret = -ENOPROTOOPT;
 654#ifdef CONFIG_NETDEVICES
 655	struct net *net = sock_net(sk);
 656	char devname[IFNAMSIZ];
 657
 658	if (sk->sk_bound_dev_if == 0) {
 659		len = 0;
 660		goto zero;
 661	}
 662
 663	ret = -EINVAL;
 664	if (len < IFNAMSIZ)
 665		goto out;
 666
 667	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
 668	if (ret)
 669		goto out;
 670
 671	len = strlen(devname) + 1;
 672
 673	ret = -EFAULT;
 674	if (copy_to_user(optval, devname, len))
 675		goto out;
 676
 677zero:
 678	ret = -EFAULT;
 679	if (put_user(len, optlen))
 680		goto out;
 681
 682	ret = 0;
 683
 684out:
 685#endif
 686
 687	return ret;
 688}
 689
 690static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
 691{
 692	if (valbool)
 693		sock_set_flag(sk, bit);
 694	else
 695		sock_reset_flag(sk, bit);
 696}
 697
 698bool sk_mc_loop(struct sock *sk)
 699{
 700	if (dev_recursion_level())
 701		return false;
 702	if (!sk)
 703		return true;
 704	switch (sk->sk_family) {
 705	case AF_INET:
 706		return inet_sk(sk)->mc_loop;
 707#if IS_ENABLED(CONFIG_IPV6)
 708	case AF_INET6:
 709		return inet6_sk(sk)->mc_loop;
 710#endif
 711	}
 712	WARN_ON(1);
 713	return true;
 714}
 715EXPORT_SYMBOL(sk_mc_loop);
 716
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 717/*
 718 *	This is meant for all protocols to use and covers goings on
 719 *	at the socket level. Everything here is generic.
 720 */
 721
 722int sock_setsockopt(struct socket *sock, int level, int optname,
 723		    char __user *optval, unsigned int optlen)
 724{
 725	struct sock_txtime sk_txtime;
 726	struct sock *sk = sock->sk;
 727	int val;
 728	int valbool;
 729	struct linger ling;
 730	int ret = 0;
 731
 732	/*
 733	 *	Options without arguments
 734	 */
 735
 736	if (optname == SO_BINDTODEVICE)
 737		return sock_setbindtodevice(sk, optval, optlen);
 738
 739	if (optlen < sizeof(int))
 740		return -EINVAL;
 741
 742	if (get_user(val, (int __user *)optval))
 743		return -EFAULT;
 744
 745	valbool = val ? 1 : 0;
 746
 747	lock_sock(sk);
 748
 749	switch (optname) {
 750	case SO_DEBUG:
 751		if (val && !capable(CAP_NET_ADMIN))
 752			ret = -EACCES;
 753		else
 754			sock_valbool_flag(sk, SOCK_DBG, valbool);
 755		break;
 756	case SO_REUSEADDR:
 757		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
 758		break;
 759	case SO_REUSEPORT:
 760		sk->sk_reuseport = valbool;
 761		break;
 762	case SO_TYPE:
 763	case SO_PROTOCOL:
 764	case SO_DOMAIN:
 765	case SO_ERROR:
 766		ret = -ENOPROTOOPT;
 767		break;
 768	case SO_DONTROUTE:
 769		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
 770		sk_dst_reset(sk);
 771		break;
 772	case SO_BROADCAST:
 773		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
 774		break;
 775	case SO_SNDBUF:
 776		/* Don't error on this BSD doesn't and if you think
 777		 * about it this is right. Otherwise apps have to
 778		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
 779		 * are treated in BSD as hints
 780		 */
 781		val = min_t(u32, val, sysctl_wmem_max);
 782set_sndbuf:
 783		/* Ensure val * 2 fits into an int, to prevent max_t()
 784		 * from treating it as a negative value.
 785		 */
 786		val = min_t(int, val, INT_MAX / 2);
 787		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
 788		WRITE_ONCE(sk->sk_sndbuf,
 789			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
 790		/* Wake up sending tasks if we upped the value. */
 791		sk->sk_write_space(sk);
 792		break;
 793
 794	case SO_SNDBUFFORCE:
 795		if (!capable(CAP_NET_ADMIN)) {
 796			ret = -EPERM;
 797			break;
 798		}
 799
 800		/* No negative values (to prevent underflow, as val will be
 801		 * multiplied by 2).
 802		 */
 803		if (val < 0)
 804			val = 0;
 805		goto set_sndbuf;
 806
 807	case SO_RCVBUF:
 808		/* Don't error on this BSD doesn't and if you think
 809		 * about it this is right. Otherwise apps have to
 810		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
 811		 * are treated in BSD as hints
 812		 */
 813		val = min_t(u32, val, sysctl_rmem_max);
 814set_rcvbuf:
 815		/* Ensure val * 2 fits into an int, to prevent max_t()
 816		 * from treating it as a negative value.
 817		 */
 818		val = min_t(int, val, INT_MAX / 2);
 819		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
 820		/*
 821		 * We double it on the way in to account for
 822		 * "struct sk_buff" etc. overhead.   Applications
 823		 * assume that the SO_RCVBUF setting they make will
 824		 * allow that much actual data to be received on that
 825		 * socket.
 826		 *
 827		 * Applications are unaware that "struct sk_buff" and
 828		 * other overheads allocate from the receive buffer
 829		 * during socket buffer allocation.
 830		 *
 831		 * And after considering the possible alternatives,
 832		 * returning the value we actually used in getsockopt
 833		 * is the most desirable behavior.
 834		 */
 835		WRITE_ONCE(sk->sk_rcvbuf,
 836			   max_t(int, val * 2, SOCK_MIN_RCVBUF));
 837		break;
 838
 839	case SO_RCVBUFFORCE:
 840		if (!capable(CAP_NET_ADMIN)) {
 841			ret = -EPERM;
 842			break;
 843		}
 844
 845		/* No negative values (to prevent underflow, as val will be
 846		 * multiplied by 2).
 847		 */
 848		if (val < 0)
 849			val = 0;
 850		goto set_rcvbuf;
 851
 852	case SO_KEEPALIVE:
 853		if (sk->sk_prot->keepalive)
 854			sk->sk_prot->keepalive(sk, valbool);
 855		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
 856		break;
 857
 858	case SO_OOBINLINE:
 859		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
 860		break;
 861
 862	case SO_NO_CHECK:
 863		sk->sk_no_check_tx = valbool;
 864		break;
 865
 866	case SO_PRIORITY:
 867		if ((val >= 0 && val <= 6) ||
 868		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
 869			sk->sk_priority = val;
 870		else
 871			ret = -EPERM;
 872		break;
 873
 874	case SO_LINGER:
 875		if (optlen < sizeof(ling)) {
 876			ret = -EINVAL;	/* 1003.1g */
 877			break;
 878		}
 879		if (copy_from_user(&ling, optval, sizeof(ling))) {
 880			ret = -EFAULT;
 881			break;
 882		}
 883		if (!ling.l_onoff)
 884			sock_reset_flag(sk, SOCK_LINGER);
 885		else {
 886#if (BITS_PER_LONG == 32)
 887			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
 888				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
 889			else
 890#endif
 891				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
 892			sock_set_flag(sk, SOCK_LINGER);
 893		}
 894		break;
 895
 896	case SO_BSDCOMPAT:
 897		sock_warn_obsolete_bsdism("setsockopt");
 898		break;
 899
 900	case SO_PASSCRED:
 901		if (valbool)
 902			set_bit(SOCK_PASSCRED, &sock->flags);
 903		else
 904			clear_bit(SOCK_PASSCRED, &sock->flags);
 905		break;
 906
 907	case SO_TIMESTAMP_OLD:
 
 
 908	case SO_TIMESTAMP_NEW:
 
 
 909	case SO_TIMESTAMPNS_OLD:
 
 
 910	case SO_TIMESTAMPNS_NEW:
 911		if (valbool)  {
 912			if (optname == SO_TIMESTAMP_NEW || optname == SO_TIMESTAMPNS_NEW)
 913				sock_set_flag(sk, SOCK_TSTAMP_NEW);
 914			else
 915				sock_reset_flag(sk, SOCK_TSTAMP_NEW);
 916
 917			if (optname == SO_TIMESTAMP_OLD || optname == SO_TIMESTAMP_NEW)
 918				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 919			else
 920				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
 921			sock_set_flag(sk, SOCK_RCVTSTAMP);
 922			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
 923		} else {
 924			sock_reset_flag(sk, SOCK_RCVTSTAMP);
 925			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 926			sock_reset_flag(sk, SOCK_TSTAMP_NEW);
 927		}
 928		break;
 929
 930	case SO_TIMESTAMPING_NEW:
 931		sock_set_flag(sk, SOCK_TSTAMP_NEW);
 932		/* fall through */
 933	case SO_TIMESTAMPING_OLD:
 934		if (val & ~SOF_TIMESTAMPING_MASK) {
 935			ret = -EINVAL;
 936			break;
 937		}
 938
 939		if (val & SOF_TIMESTAMPING_OPT_ID &&
 940		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
 941			if (sk->sk_protocol == IPPROTO_TCP &&
 942			    sk->sk_type == SOCK_STREAM) {
 943				if ((1 << sk->sk_state) &
 944				    (TCPF_CLOSE | TCPF_LISTEN)) {
 945					ret = -EINVAL;
 946					break;
 947				}
 948				sk->sk_tskey = tcp_sk(sk)->snd_una;
 949			} else {
 950				sk->sk_tskey = 0;
 951			}
 952		}
 953
 954		if (val & SOF_TIMESTAMPING_OPT_STATS &&
 955		    !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
 956			ret = -EINVAL;
 957			break;
 958		}
 959
 960		sk->sk_tsflags = val;
 961		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
 962			sock_enable_timestamp(sk,
 963					      SOCK_TIMESTAMPING_RX_SOFTWARE);
 964		else {
 965			if (optname == SO_TIMESTAMPING_NEW)
 966				sock_reset_flag(sk, SOCK_TSTAMP_NEW);
 967
 968			sock_disable_timestamp(sk,
 969					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
 970		}
 971		break;
 972
 973	case SO_RCVLOWAT:
 974		if (val < 0)
 975			val = INT_MAX;
 976		if (sock->ops->set_rcvlowat)
 977			ret = sock->ops->set_rcvlowat(sk, val);
 978		else
 979			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
 980		break;
 981
 982	case SO_RCVTIMEO_OLD:
 983	case SO_RCVTIMEO_NEW:
 984		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen, optname == SO_RCVTIMEO_OLD);
 
 985		break;
 986
 987	case SO_SNDTIMEO_OLD:
 988	case SO_SNDTIMEO_NEW:
 989		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen, optname == SO_SNDTIMEO_OLD);
 
 990		break;
 991
 992	case SO_ATTACH_FILTER:
 993		ret = -EINVAL;
 994		if (optlen == sizeof(struct sock_fprog)) {
 995			struct sock_fprog fprog;
 996
 997			ret = -EFAULT;
 998			if (copy_from_user(&fprog, optval, sizeof(fprog)))
 999				break;
1000
 
 
1001			ret = sk_attach_filter(&fprog, sk);
1002		}
1003		break;
1004
1005	case SO_ATTACH_BPF:
1006		ret = -EINVAL;
1007		if (optlen == sizeof(u32)) {
1008			u32 ufd;
1009
1010			ret = -EFAULT;
1011			if (copy_from_user(&ufd, optval, sizeof(ufd)))
1012				break;
1013
1014			ret = sk_attach_bpf(ufd, sk);
1015		}
1016		break;
1017
1018	case SO_ATTACH_REUSEPORT_CBPF:
1019		ret = -EINVAL;
1020		if (optlen == sizeof(struct sock_fprog)) {
1021			struct sock_fprog fprog;
1022
1023			ret = -EFAULT;
1024			if (copy_from_user(&fprog, optval, sizeof(fprog)))
1025				break;
1026
 
 
1027			ret = sk_reuseport_attach_filter(&fprog, sk);
1028		}
1029		break;
1030
1031	case SO_ATTACH_REUSEPORT_EBPF:
1032		ret = -EINVAL;
1033		if (optlen == sizeof(u32)) {
1034			u32 ufd;
1035
1036			ret = -EFAULT;
1037			if (copy_from_user(&ufd, optval, sizeof(ufd)))
1038				break;
1039
1040			ret = sk_reuseport_attach_bpf(ufd, sk);
1041		}
1042		break;
1043
1044	case SO_DETACH_REUSEPORT_BPF:
1045		ret = reuseport_detach_prog(sk);
1046		break;
1047
1048	case SO_DETACH_FILTER:
1049		ret = sk_detach_filter(sk);
1050		break;
1051
1052	case SO_LOCK_FILTER:
1053		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1054			ret = -EPERM;
1055		else
1056			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1057		break;
1058
1059	case SO_PASSSEC:
1060		if (valbool)
1061			set_bit(SOCK_PASSSEC, &sock->flags);
1062		else
1063			clear_bit(SOCK_PASSSEC, &sock->flags);
1064		break;
1065	case SO_MARK:
1066		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1067			ret = -EPERM;
1068		} else if (val != sk->sk_mark) {
1069			sk->sk_mark = val;
1070			sk_dst_reset(sk);
1071		}
1072		break;
1073
1074	case SO_RXQ_OVFL:
1075		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1076		break;
1077
1078	case SO_WIFI_STATUS:
1079		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1080		break;
1081
1082	case SO_PEEK_OFF:
1083		if (sock->ops->set_peek_off)
1084			ret = sock->ops->set_peek_off(sk, val);
1085		else
1086			ret = -EOPNOTSUPP;
1087		break;
1088
1089	case SO_NOFCS:
1090		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1091		break;
1092
1093	case SO_SELECT_ERR_QUEUE:
1094		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1095		break;
1096
1097#ifdef CONFIG_NET_RX_BUSY_POLL
1098	case SO_BUSY_POLL:
1099		/* allow unprivileged users to decrease the value */
1100		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1101			ret = -EPERM;
1102		else {
1103			if (val < 0)
1104				ret = -EINVAL;
1105			else
1106				sk->sk_ll_usec = val;
1107		}
1108		break;
1109#endif
1110
1111	case SO_MAX_PACING_RATE:
1112		{
1113		unsigned long ulval = (val == ~0U) ? ~0UL : val;
1114
1115		if (sizeof(ulval) != sizeof(val) &&
1116		    optlen >= sizeof(ulval) &&
1117		    get_user(ulval, (unsigned long __user *)optval)) {
1118			ret = -EFAULT;
1119			break;
1120		}
1121		if (ulval != ~0UL)
1122			cmpxchg(&sk->sk_pacing_status,
1123				SK_PACING_NONE,
1124				SK_PACING_NEEDED);
1125		sk->sk_max_pacing_rate = ulval;
1126		sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1127		break;
1128		}
1129	case SO_INCOMING_CPU:
1130		WRITE_ONCE(sk->sk_incoming_cpu, val);
1131		break;
1132
1133	case SO_CNX_ADVICE:
1134		if (val == 1)
1135			dst_negative_advice(sk);
1136		break;
1137
1138	case SO_ZEROCOPY:
1139		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1140			if (!((sk->sk_type == SOCK_STREAM &&
1141			       sk->sk_protocol == IPPROTO_TCP) ||
1142			      (sk->sk_type == SOCK_DGRAM &&
1143			       sk->sk_protocol == IPPROTO_UDP)))
1144				ret = -ENOTSUPP;
1145		} else if (sk->sk_family != PF_RDS) {
1146			ret = -ENOTSUPP;
1147		}
1148		if (!ret) {
1149			if (val < 0 || val > 1)
1150				ret = -EINVAL;
1151			else
1152				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1153		}
1154		break;
1155
1156	case SO_TXTIME:
1157		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1158			ret = -EPERM;
1159		} else if (optlen != sizeof(struct sock_txtime)) {
1160			ret = -EINVAL;
1161		} else if (copy_from_user(&sk_txtime, optval,
 
1162			   sizeof(struct sock_txtime))) {
1163			ret = -EFAULT;
 
1164		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1165			ret = -EINVAL;
1166		} else {
1167			sock_valbool_flag(sk, SOCK_TXTIME, true);
1168			sk->sk_clockid = sk_txtime.clockid;
1169			sk->sk_txtime_deadline_mode =
1170				!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1171			sk->sk_txtime_report_errors =
1172				!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
 
 
1173		}
 
 
 
 
 
 
1174		break;
1175
1176	case SO_BINDTOIFINDEX:
1177		ret = sock_setbindtodevice_locked(sk, val);
1178		break;
1179
1180	default:
1181		ret = -ENOPROTOOPT;
1182		break;
1183	}
1184	release_sock(sk);
1185	return ret;
1186}
1187EXPORT_SYMBOL(sock_setsockopt);
1188
1189
1190static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1191			  struct ucred *ucred)
1192{
1193	ucred->pid = pid_vnr(pid);
1194	ucred->uid = ucred->gid = -1;
1195	if (cred) {
1196		struct user_namespace *current_ns = current_user_ns();
1197
1198		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1199		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1200	}
1201}
1202
1203static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1204{
1205	struct user_namespace *user_ns = current_user_ns();
1206	int i;
1207
1208	for (i = 0; i < src->ngroups; i++)
1209		if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1210			return -EFAULT;
1211
1212	return 0;
1213}
1214
1215int sock_getsockopt(struct socket *sock, int level, int optname,
1216		    char __user *optval, int __user *optlen)
1217{
1218	struct sock *sk = sock->sk;
1219
1220	union {
1221		int val;
1222		u64 val64;
1223		unsigned long ulval;
1224		struct linger ling;
1225		struct old_timeval32 tm32;
1226		struct __kernel_old_timeval tm;
1227		struct  __kernel_sock_timeval stm;
1228		struct sock_txtime txtime;
1229	} v;
1230
1231	int lv = sizeof(int);
1232	int len;
1233
1234	if (get_user(len, optlen))
1235		return -EFAULT;
1236	if (len < 0)
1237		return -EINVAL;
1238
1239	memset(&v, 0, sizeof(v));
1240
1241	switch (optname) {
1242	case SO_DEBUG:
1243		v.val = sock_flag(sk, SOCK_DBG);
1244		break;
1245
1246	case SO_DONTROUTE:
1247		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1248		break;
1249
1250	case SO_BROADCAST:
1251		v.val = sock_flag(sk, SOCK_BROADCAST);
1252		break;
1253
1254	case SO_SNDBUF:
1255		v.val = sk->sk_sndbuf;
1256		break;
1257
1258	case SO_RCVBUF:
1259		v.val = sk->sk_rcvbuf;
1260		break;
1261
1262	case SO_REUSEADDR:
1263		v.val = sk->sk_reuse;
1264		break;
1265
1266	case SO_REUSEPORT:
1267		v.val = sk->sk_reuseport;
1268		break;
1269
1270	case SO_KEEPALIVE:
1271		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1272		break;
1273
1274	case SO_TYPE:
1275		v.val = sk->sk_type;
1276		break;
1277
1278	case SO_PROTOCOL:
1279		v.val = sk->sk_protocol;
1280		break;
1281
1282	case SO_DOMAIN:
1283		v.val = sk->sk_family;
1284		break;
1285
1286	case SO_ERROR:
1287		v.val = -sock_error(sk);
1288		if (v.val == 0)
1289			v.val = xchg(&sk->sk_err_soft, 0);
1290		break;
1291
1292	case SO_OOBINLINE:
1293		v.val = sock_flag(sk, SOCK_URGINLINE);
1294		break;
1295
1296	case SO_NO_CHECK:
1297		v.val = sk->sk_no_check_tx;
1298		break;
1299
1300	case SO_PRIORITY:
1301		v.val = sk->sk_priority;
1302		break;
1303
1304	case SO_LINGER:
1305		lv		= sizeof(v.ling);
1306		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1307		v.ling.l_linger	= sk->sk_lingertime / HZ;
1308		break;
1309
1310	case SO_BSDCOMPAT:
1311		sock_warn_obsolete_bsdism("getsockopt");
1312		break;
1313
1314	case SO_TIMESTAMP_OLD:
1315		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1316				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1317				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1318		break;
1319
1320	case SO_TIMESTAMPNS_OLD:
1321		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1322		break;
1323
1324	case SO_TIMESTAMP_NEW:
1325		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1326		break;
1327
1328	case SO_TIMESTAMPNS_NEW:
1329		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1330		break;
1331
1332	case SO_TIMESTAMPING_OLD:
1333		v.val = sk->sk_tsflags;
1334		break;
1335
1336	case SO_RCVTIMEO_OLD:
1337	case SO_RCVTIMEO_NEW:
1338		lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1339		break;
1340
1341	case SO_SNDTIMEO_OLD:
1342	case SO_SNDTIMEO_NEW:
1343		lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1344		break;
1345
1346	case SO_RCVLOWAT:
1347		v.val = sk->sk_rcvlowat;
1348		break;
1349
1350	case SO_SNDLOWAT:
1351		v.val = 1;
1352		break;
1353
1354	case SO_PASSCRED:
1355		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1356		break;
1357
1358	case SO_PEERCRED:
1359	{
1360		struct ucred peercred;
1361		if (len > sizeof(peercred))
1362			len = sizeof(peercred);
1363		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1364		if (copy_to_user(optval, &peercred, len))
1365			return -EFAULT;
1366		goto lenout;
1367	}
1368
1369	case SO_PEERGROUPS:
1370	{
1371		int ret, n;
1372
1373		if (!sk->sk_peer_cred)
1374			return -ENODATA;
1375
1376		n = sk->sk_peer_cred->group_info->ngroups;
1377		if (len < n * sizeof(gid_t)) {
1378			len = n * sizeof(gid_t);
1379			return put_user(len, optlen) ? -EFAULT : -ERANGE;
1380		}
1381		len = n * sizeof(gid_t);
1382
1383		ret = groups_to_user((gid_t __user *)optval,
1384				     sk->sk_peer_cred->group_info);
1385		if (ret)
1386			return ret;
1387		goto lenout;
1388	}
1389
1390	case SO_PEERNAME:
1391	{
1392		char address[128];
1393
1394		lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1395		if (lv < 0)
1396			return -ENOTCONN;
1397		if (lv < len)
1398			return -EINVAL;
1399		if (copy_to_user(optval, address, len))
1400			return -EFAULT;
1401		goto lenout;
1402	}
1403
1404	/* Dubious BSD thing... Probably nobody even uses it, but
1405	 * the UNIX standard wants it for whatever reason... -DaveM
1406	 */
1407	case SO_ACCEPTCONN:
1408		v.val = sk->sk_state == TCP_LISTEN;
1409		break;
1410
1411	case SO_PASSSEC:
1412		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1413		break;
1414
1415	case SO_PEERSEC:
1416		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1417
1418	case SO_MARK:
1419		v.val = sk->sk_mark;
1420		break;
1421
1422	case SO_RXQ_OVFL:
1423		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1424		break;
1425
1426	case SO_WIFI_STATUS:
1427		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1428		break;
1429
1430	case SO_PEEK_OFF:
1431		if (!sock->ops->set_peek_off)
1432			return -EOPNOTSUPP;
1433
1434		v.val = sk->sk_peek_off;
1435		break;
1436	case SO_NOFCS:
1437		v.val = sock_flag(sk, SOCK_NOFCS);
1438		break;
1439
1440	case SO_BINDTODEVICE:
1441		return sock_getbindtodevice(sk, optval, optlen, len);
1442
1443	case SO_GET_FILTER:
1444		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1445		if (len < 0)
1446			return len;
1447
1448		goto lenout;
1449
1450	case SO_LOCK_FILTER:
1451		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1452		break;
1453
1454	case SO_BPF_EXTENSIONS:
1455		v.val = bpf_tell_extensions();
1456		break;
1457
1458	case SO_SELECT_ERR_QUEUE:
1459		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1460		break;
1461
1462#ifdef CONFIG_NET_RX_BUSY_POLL
1463	case SO_BUSY_POLL:
1464		v.val = sk->sk_ll_usec;
1465		break;
1466#endif
1467
1468	case SO_MAX_PACING_RATE:
1469		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1470			lv = sizeof(v.ulval);
1471			v.ulval = sk->sk_max_pacing_rate;
1472		} else {
1473			/* 32bit version */
1474			v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1475		}
1476		break;
1477
1478	case SO_INCOMING_CPU:
1479		v.val = READ_ONCE(sk->sk_incoming_cpu);
1480		break;
1481
1482	case SO_MEMINFO:
1483	{
1484		u32 meminfo[SK_MEMINFO_VARS];
1485
1486		sk_get_meminfo(sk, meminfo);
1487
1488		len = min_t(unsigned int, len, sizeof(meminfo));
1489		if (copy_to_user(optval, &meminfo, len))
1490			return -EFAULT;
1491
1492		goto lenout;
1493	}
1494
1495#ifdef CONFIG_NET_RX_BUSY_POLL
1496	case SO_INCOMING_NAPI_ID:
1497		v.val = READ_ONCE(sk->sk_napi_id);
1498
1499		/* aggregate non-NAPI IDs down to 0 */
1500		if (v.val < MIN_NAPI_ID)
1501			v.val = 0;
1502
1503		break;
1504#endif
1505
1506	case SO_COOKIE:
1507		lv = sizeof(u64);
1508		if (len < lv)
1509			return -EINVAL;
1510		v.val64 = sock_gen_cookie(sk);
1511		break;
1512
1513	case SO_ZEROCOPY:
1514		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1515		break;
1516
1517	case SO_TXTIME:
1518		lv = sizeof(v.txtime);
1519		v.txtime.clockid = sk->sk_clockid;
1520		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1521				  SOF_TXTIME_DEADLINE_MODE : 0;
1522		v.txtime.flags |= sk->sk_txtime_report_errors ?
1523				  SOF_TXTIME_REPORT_ERRORS : 0;
1524		break;
1525
1526	case SO_BINDTOIFINDEX:
1527		v.val = sk->sk_bound_dev_if;
1528		break;
1529
1530	default:
1531		/* We implement the SO_SNDLOWAT etc to not be settable
1532		 * (1003.1g 7).
1533		 */
1534		return -ENOPROTOOPT;
1535	}
1536
1537	if (len > lv)
1538		len = lv;
1539	if (copy_to_user(optval, &v, len))
1540		return -EFAULT;
1541lenout:
1542	if (put_user(len, optlen))
1543		return -EFAULT;
1544	return 0;
1545}
1546
1547/*
1548 * Initialize an sk_lock.
1549 *
1550 * (We also register the sk_lock with the lock validator.)
1551 */
1552static inline void sock_lock_init(struct sock *sk)
1553{
1554	if (sk->sk_kern_sock)
1555		sock_lock_init_class_and_name(
1556			sk,
1557			af_family_kern_slock_key_strings[sk->sk_family],
1558			af_family_kern_slock_keys + sk->sk_family,
1559			af_family_kern_key_strings[sk->sk_family],
1560			af_family_kern_keys + sk->sk_family);
1561	else
1562		sock_lock_init_class_and_name(
1563			sk,
1564			af_family_slock_key_strings[sk->sk_family],
1565			af_family_slock_keys + sk->sk_family,
1566			af_family_key_strings[sk->sk_family],
1567			af_family_keys + sk->sk_family);
1568}
1569
1570/*
1571 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1572 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1573 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1574 */
1575static void sock_copy(struct sock *nsk, const struct sock *osk)
1576{
 
1577#ifdef CONFIG_SECURITY_NETWORK
1578	void *sptr = nsk->sk_security;
1579#endif
1580	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1581
1582	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1583	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1584
1585#ifdef CONFIG_SECURITY_NETWORK
1586	nsk->sk_security = sptr;
1587	security_sk_clone(osk, nsk);
1588#endif
1589}
1590
1591static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1592		int family)
1593{
1594	struct sock *sk;
1595	struct kmem_cache *slab;
1596
1597	slab = prot->slab;
1598	if (slab != NULL) {
1599		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1600		if (!sk)
1601			return sk;
1602		if (want_init_on_alloc(priority))
1603			sk_prot_clear_nulls(sk, prot->obj_size);
1604	} else
1605		sk = kmalloc(prot->obj_size, priority);
1606
1607	if (sk != NULL) {
1608		if (security_sk_alloc(sk, family, priority))
1609			goto out_free;
1610
1611		if (!try_module_get(prot->owner))
1612			goto out_free_sec;
1613		sk_tx_queue_clear(sk);
1614	}
1615
1616	return sk;
1617
1618out_free_sec:
1619	security_sk_free(sk);
1620out_free:
1621	if (slab != NULL)
1622		kmem_cache_free(slab, sk);
1623	else
1624		kfree(sk);
1625	return NULL;
1626}
1627
1628static void sk_prot_free(struct proto *prot, struct sock *sk)
1629{
1630	struct kmem_cache *slab;
1631	struct module *owner;
1632
1633	owner = prot->owner;
1634	slab = prot->slab;
1635
1636	cgroup_sk_free(&sk->sk_cgrp_data);
1637	mem_cgroup_sk_free(sk);
1638	security_sk_free(sk);
1639	if (slab != NULL)
1640		kmem_cache_free(slab, sk);
1641	else
1642		kfree(sk);
1643	module_put(owner);
1644}
1645
1646/**
1647 *	sk_alloc - All socket objects are allocated here
1648 *	@net: the applicable net namespace
1649 *	@family: protocol family
1650 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1651 *	@prot: struct proto associated with this new sock instance
1652 *	@kern: is this to be a kernel socket?
1653 */
1654struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1655		      struct proto *prot, int kern)
1656{
1657	struct sock *sk;
1658
1659	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1660	if (sk) {
1661		sk->sk_family = family;
1662		/*
1663		 * See comment in struct sock definition to understand
1664		 * why we need sk_prot_creator -acme
1665		 */
1666		sk->sk_prot = sk->sk_prot_creator = prot;
1667		sk->sk_kern_sock = kern;
1668		sock_lock_init(sk);
1669		sk->sk_net_refcnt = kern ? 0 : 1;
1670		if (likely(sk->sk_net_refcnt)) {
1671			get_net(net);
1672			sock_inuse_add(net, 1);
1673		}
1674
1675		sock_net_set(sk, net);
1676		refcount_set(&sk->sk_wmem_alloc, 1);
1677
1678		mem_cgroup_sk_alloc(sk);
1679		cgroup_sk_alloc(&sk->sk_cgrp_data);
1680		sock_update_classid(&sk->sk_cgrp_data);
1681		sock_update_netprioidx(&sk->sk_cgrp_data);
 
1682	}
1683
1684	return sk;
1685}
1686EXPORT_SYMBOL(sk_alloc);
1687
1688/* Sockets having SOCK_RCU_FREE will call this function after one RCU
1689 * grace period. This is the case for UDP sockets and TCP listeners.
1690 */
1691static void __sk_destruct(struct rcu_head *head)
1692{
1693	struct sock *sk = container_of(head, struct sock, sk_rcu);
1694	struct sk_filter *filter;
1695
1696	if (sk->sk_destruct)
1697		sk->sk_destruct(sk);
1698
1699	filter = rcu_dereference_check(sk->sk_filter,
1700				       refcount_read(&sk->sk_wmem_alloc) == 0);
1701	if (filter) {
1702		sk_filter_uncharge(sk, filter);
1703		RCU_INIT_POINTER(sk->sk_filter, NULL);
1704	}
1705
1706	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1707
1708#ifdef CONFIG_BPF_SYSCALL
1709	bpf_sk_storage_free(sk);
1710#endif
1711
1712	if (atomic_read(&sk->sk_omem_alloc))
1713		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1714			 __func__, atomic_read(&sk->sk_omem_alloc));
1715
1716	if (sk->sk_frag.page) {
1717		put_page(sk->sk_frag.page);
1718		sk->sk_frag.page = NULL;
1719	}
1720
1721	if (sk->sk_peer_cred)
1722		put_cred(sk->sk_peer_cred);
1723	put_pid(sk->sk_peer_pid);
1724	if (likely(sk->sk_net_refcnt))
1725		put_net(sock_net(sk));
1726	sk_prot_free(sk->sk_prot_creator, sk);
1727}
1728
1729void sk_destruct(struct sock *sk)
1730{
1731	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
1732
1733	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
1734		reuseport_detach_sock(sk);
1735		use_call_rcu = true;
1736	}
1737
1738	if (use_call_rcu)
1739		call_rcu(&sk->sk_rcu, __sk_destruct);
1740	else
1741		__sk_destruct(&sk->sk_rcu);
1742}
1743
1744static void __sk_free(struct sock *sk)
1745{
1746	if (likely(sk->sk_net_refcnt))
1747		sock_inuse_add(sock_net(sk), -1);
1748
1749	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1750		sock_diag_broadcast_destroy(sk);
1751	else
1752		sk_destruct(sk);
1753}
1754
1755void sk_free(struct sock *sk)
1756{
1757	/*
1758	 * We subtract one from sk_wmem_alloc and can know if
1759	 * some packets are still in some tx queue.
1760	 * If not null, sock_wfree() will call __sk_free(sk) later
1761	 */
1762	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1763		__sk_free(sk);
1764}
1765EXPORT_SYMBOL(sk_free);
1766
1767static void sk_init_common(struct sock *sk)
1768{
1769	skb_queue_head_init(&sk->sk_receive_queue);
1770	skb_queue_head_init(&sk->sk_write_queue);
1771	skb_queue_head_init(&sk->sk_error_queue);
1772
1773	rwlock_init(&sk->sk_callback_lock);
1774	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1775			af_rlock_keys + sk->sk_family,
1776			af_family_rlock_key_strings[sk->sk_family]);
1777	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1778			af_wlock_keys + sk->sk_family,
1779			af_family_wlock_key_strings[sk->sk_family]);
1780	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1781			af_elock_keys + sk->sk_family,
1782			af_family_elock_key_strings[sk->sk_family]);
1783	lockdep_set_class_and_name(&sk->sk_callback_lock,
1784			af_callback_keys + sk->sk_family,
1785			af_family_clock_key_strings[sk->sk_family]);
1786}
1787
1788/**
1789 *	sk_clone_lock - clone a socket, and lock its clone
1790 *	@sk: the socket to clone
1791 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1792 *
1793 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1794 */
1795struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1796{
 
1797	struct sock *newsk;
1798	bool is_charged = true;
1799
1800	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1801	if (newsk != NULL) {
1802		struct sk_filter *filter;
1803
1804		sock_copy(newsk, sk);
1805
1806		newsk->sk_prot_creator = sk->sk_prot;
1807
1808		/* SANITY */
1809		if (likely(newsk->sk_net_refcnt))
1810			get_net(sock_net(newsk));
1811		sk_node_init(&newsk->sk_node);
1812		sock_lock_init(newsk);
1813		bh_lock_sock(newsk);
1814		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1815		newsk->sk_backlog.len = 0;
1816
1817		atomic_set(&newsk->sk_rmem_alloc, 0);
1818		/*
1819		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1820		 */
1821		refcount_set(&newsk->sk_wmem_alloc, 1);
1822		atomic_set(&newsk->sk_omem_alloc, 0);
1823		sk_init_common(newsk);
1824
1825		newsk->sk_dst_cache	= NULL;
1826		newsk->sk_dst_pending_confirm = 0;
1827		newsk->sk_wmem_queued	= 0;
1828		newsk->sk_forward_alloc = 0;
1829		atomic_set(&newsk->sk_drops, 0);
1830		newsk->sk_send_head	= NULL;
1831		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1832		atomic_set(&newsk->sk_zckey, 0);
1833
1834		sock_reset_flag(newsk, SOCK_DONE);
1835		mem_cgroup_sk_alloc(newsk);
1836		cgroup_sk_alloc(&newsk->sk_cgrp_data);
 
 
 
1837
1838		rcu_read_lock();
1839		filter = rcu_dereference(sk->sk_filter);
1840		if (filter != NULL)
1841			/* though it's an empty new sock, the charging may fail
1842			 * if sysctl_optmem_max was changed between creation of
1843			 * original socket and cloning
1844			 */
1845			is_charged = sk_filter_charge(newsk, filter);
1846		RCU_INIT_POINTER(newsk->sk_filter, filter);
1847		rcu_read_unlock();
1848
1849		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1850			/* We need to make sure that we don't uncharge the new
1851			 * socket if we couldn't charge it in the first place
1852			 * as otherwise we uncharge the parent's filter.
1853			 */
1854			if (!is_charged)
1855				RCU_INIT_POINTER(newsk->sk_filter, NULL);
1856			sk_free_unlock_clone(newsk);
1857			newsk = NULL;
1858			goto out;
1859		}
1860		RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1861
1862		if (bpf_sk_storage_clone(sk, newsk)) {
1863			sk_free_unlock_clone(newsk);
1864			newsk = NULL;
1865			goto out;
1866		}
1867
 
 
 
 
 
 
1868		newsk->sk_err	   = 0;
1869		newsk->sk_err_soft = 0;
1870		newsk->sk_priority = 0;
1871		newsk->sk_incoming_cpu = raw_smp_processor_id();
1872		if (likely(newsk->sk_net_refcnt))
1873			sock_inuse_add(sock_net(newsk), 1);
1874
1875		/*
1876		 * Before updating sk_refcnt, we must commit prior changes to memory
1877		 * (Documentation/RCU/rculist_nulls.txt for details)
1878		 */
1879		smp_wmb();
1880		refcount_set(&newsk->sk_refcnt, 2);
1881
1882		/*
1883		 * Increment the counter in the same struct proto as the master
1884		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1885		 * is the same as sk->sk_prot->socks, as this field was copied
1886		 * with memcpy).
1887		 *
1888		 * This _changes_ the previous behaviour, where
1889		 * tcp_create_openreq_child always was incrementing the
1890		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1891		 * to be taken into account in all callers. -acme
1892		 */
1893		sk_refcnt_debug_inc(newsk);
1894		sk_set_socket(newsk, NULL);
 
1895		RCU_INIT_POINTER(newsk->sk_wq, NULL);
1896
1897		if (newsk->sk_prot->sockets_allocated)
1898			sk_sockets_allocated_inc(newsk);
1899
1900		if (sock_needs_netstamp(sk) &&
1901		    newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1902			net_enable_timestamp();
1903	}
1904out:
1905	return newsk;
1906}
1907EXPORT_SYMBOL_GPL(sk_clone_lock);
1908
1909void sk_free_unlock_clone(struct sock *sk)
1910{
1911	/* It is still raw copy of parent, so invalidate
1912	 * destructor and make plain sk_free() */
1913	sk->sk_destruct = NULL;
1914	bh_unlock_sock(sk);
1915	sk_free(sk);
1916}
1917EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1918
1919void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1920{
1921	u32 max_segs = 1;
1922
1923	sk_dst_set(sk, dst);
1924	sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
1925	if (sk->sk_route_caps & NETIF_F_GSO)
1926		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1927	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1928	if (sk_can_gso(sk)) {
1929		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
1930			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1931		} else {
1932			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1933			sk->sk_gso_max_size = dst->dev->gso_max_size;
1934			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1935		}
1936	}
1937	sk->sk_gso_max_segs = max_segs;
1938}
1939EXPORT_SYMBOL_GPL(sk_setup_caps);
1940
1941/*
1942 *	Simple resource managers for sockets.
1943 */
1944
1945
1946/*
1947 * Write buffer destructor automatically called from kfree_skb.
1948 */
1949void sock_wfree(struct sk_buff *skb)
1950{
1951	struct sock *sk = skb->sk;
1952	unsigned int len = skb->truesize;
1953
1954	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1955		/*
1956		 * Keep a reference on sk_wmem_alloc, this will be released
1957		 * after sk_write_space() call
1958		 */
1959		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
1960		sk->sk_write_space(sk);
1961		len = 1;
1962	}
1963	/*
1964	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1965	 * could not do because of in-flight packets
1966	 */
1967	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
1968		__sk_free(sk);
1969}
1970EXPORT_SYMBOL(sock_wfree);
1971
1972/* This variant of sock_wfree() is used by TCP,
1973 * since it sets SOCK_USE_WRITE_QUEUE.
1974 */
1975void __sock_wfree(struct sk_buff *skb)
1976{
1977	struct sock *sk = skb->sk;
1978
1979	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1980		__sk_free(sk);
1981}
1982
1983void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1984{
1985	skb_orphan(skb);
1986	skb->sk = sk;
1987#ifdef CONFIG_INET
1988	if (unlikely(!sk_fullsock(sk))) {
1989		skb->destructor = sock_edemux;
1990		sock_hold(sk);
1991		return;
1992	}
1993#endif
1994	skb->destructor = sock_wfree;
1995	skb_set_hash_from_sk(skb, sk);
1996	/*
1997	 * We used to take a refcount on sk, but following operation
1998	 * is enough to guarantee sk_free() wont free this sock until
1999	 * all in-flight packets are completed
2000	 */
2001	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2002}
2003EXPORT_SYMBOL(skb_set_owner_w);
2004
2005static bool can_skb_orphan_partial(const struct sk_buff *skb)
2006{
2007#ifdef CONFIG_TLS_DEVICE
2008	/* Drivers depend on in-order delivery for crypto offload,
2009	 * partial orphan breaks out-of-order-OK logic.
2010	 */
2011	if (skb->decrypted)
2012		return false;
2013#endif
2014	return (skb->destructor == sock_wfree ||
2015		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2016}
2017
2018/* This helper is used by netem, as it can hold packets in its
2019 * delay queue. We want to allow the owner socket to send more
2020 * packets, as if they were already TX completed by a typical driver.
2021 * But we also want to keep skb->sk set because some packet schedulers
2022 * rely on it (sch_fq for example).
2023 */
2024void skb_orphan_partial(struct sk_buff *skb)
2025{
2026	if (skb_is_tcp_pure_ack(skb))
2027		return;
2028
2029	if (can_skb_orphan_partial(skb)) {
2030		struct sock *sk = skb->sk;
2031
2032		if (refcount_inc_not_zero(&sk->sk_refcnt)) {
2033			WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
2034			skb->destructor = sock_efree;
2035		}
2036	} else {
2037		skb_orphan(skb);
2038	}
2039}
2040EXPORT_SYMBOL(skb_orphan_partial);
2041
2042/*
2043 * Read buffer destructor automatically called from kfree_skb.
2044 */
2045void sock_rfree(struct sk_buff *skb)
2046{
2047	struct sock *sk = skb->sk;
2048	unsigned int len = skb->truesize;
2049
2050	atomic_sub(len, &sk->sk_rmem_alloc);
2051	sk_mem_uncharge(sk, len);
2052}
2053EXPORT_SYMBOL(sock_rfree);
2054
2055/*
2056 * Buffer destructor for skbs that are not used directly in read or write
2057 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2058 */
2059void sock_efree(struct sk_buff *skb)
2060{
2061	sock_put(skb->sk);
2062}
2063EXPORT_SYMBOL(sock_efree);
2064
 
 
 
 
 
 
 
 
 
 
 
 
2065kuid_t sock_i_uid(struct sock *sk)
2066{
2067	kuid_t uid;
2068
2069	read_lock_bh(&sk->sk_callback_lock);
2070	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2071	read_unlock_bh(&sk->sk_callback_lock);
2072	return uid;
2073}
2074EXPORT_SYMBOL(sock_i_uid);
2075
2076unsigned long sock_i_ino(struct sock *sk)
2077{
2078	unsigned long ino;
2079
2080	read_lock_bh(&sk->sk_callback_lock);
2081	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2082	read_unlock_bh(&sk->sk_callback_lock);
2083	return ino;
2084}
2085EXPORT_SYMBOL(sock_i_ino);
2086
2087/*
2088 * Allocate a skb from the socket's send buffer.
2089 */
2090struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2091			     gfp_t priority)
2092{
2093	if (force ||
2094	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2095		struct sk_buff *skb = alloc_skb(size, priority);
2096
2097		if (skb) {
2098			skb_set_owner_w(skb, sk);
2099			return skb;
2100		}
2101	}
2102	return NULL;
2103}
2104EXPORT_SYMBOL(sock_wmalloc);
2105
2106static void sock_ofree(struct sk_buff *skb)
2107{
2108	struct sock *sk = skb->sk;
2109
2110	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2111}
2112
2113struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2114			     gfp_t priority)
2115{
2116	struct sk_buff *skb;
2117
2118	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2119	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2120	    sysctl_optmem_max)
2121		return NULL;
2122
2123	skb = alloc_skb(size, priority);
2124	if (!skb)
2125		return NULL;
2126
2127	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2128	skb->sk = sk;
2129	skb->destructor = sock_ofree;
2130	return skb;
2131}
2132
2133/*
2134 * Allocate a memory block from the socket's option memory buffer.
2135 */
2136void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2137{
2138	if ((unsigned int)size <= sysctl_optmem_max &&
2139	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2140		void *mem;
2141		/* First do the add, to avoid the race if kmalloc
2142		 * might sleep.
2143		 */
2144		atomic_add(size, &sk->sk_omem_alloc);
2145		mem = kmalloc(size, priority);
2146		if (mem)
2147			return mem;
2148		atomic_sub(size, &sk->sk_omem_alloc);
2149	}
2150	return NULL;
2151}
2152EXPORT_SYMBOL(sock_kmalloc);
2153
2154/* Free an option memory block. Note, we actually want the inline
2155 * here as this allows gcc to detect the nullify and fold away the
2156 * condition entirely.
2157 */
2158static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2159				  const bool nullify)
2160{
2161	if (WARN_ON_ONCE(!mem))
2162		return;
2163	if (nullify)
2164		kzfree(mem);
2165	else
2166		kfree(mem);
2167	atomic_sub(size, &sk->sk_omem_alloc);
2168}
2169
2170void sock_kfree_s(struct sock *sk, void *mem, int size)
2171{
2172	__sock_kfree_s(sk, mem, size, false);
2173}
2174EXPORT_SYMBOL(sock_kfree_s);
2175
2176void sock_kzfree_s(struct sock *sk, void *mem, int size)
2177{
2178	__sock_kfree_s(sk, mem, size, true);
2179}
2180EXPORT_SYMBOL(sock_kzfree_s);
2181
2182/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2183   I think, these locks should be removed for datagram sockets.
2184 */
2185static long sock_wait_for_wmem(struct sock *sk, long timeo)
2186{
2187	DEFINE_WAIT(wait);
2188
2189	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2190	for (;;) {
2191		if (!timeo)
2192			break;
2193		if (signal_pending(current))
2194			break;
2195		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2196		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2197		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2198			break;
2199		if (sk->sk_shutdown & SEND_SHUTDOWN)
2200			break;
2201		if (sk->sk_err)
2202			break;
2203		timeo = schedule_timeout(timeo);
2204	}
2205	finish_wait(sk_sleep(sk), &wait);
2206	return timeo;
2207}
2208
2209
2210/*
2211 *	Generic send/receive buffer handlers
2212 */
2213
2214struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2215				     unsigned long data_len, int noblock,
2216				     int *errcode, int max_page_order)
2217{
2218	struct sk_buff *skb;
2219	long timeo;
2220	int err;
2221
2222	timeo = sock_sndtimeo(sk, noblock);
2223	for (;;) {
2224		err = sock_error(sk);
2225		if (err != 0)
2226			goto failure;
2227
2228		err = -EPIPE;
2229		if (sk->sk_shutdown & SEND_SHUTDOWN)
2230			goto failure;
2231
2232		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2233			break;
2234
2235		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2236		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2237		err = -EAGAIN;
2238		if (!timeo)
2239			goto failure;
2240		if (signal_pending(current))
2241			goto interrupted;
2242		timeo = sock_wait_for_wmem(sk, timeo);
2243	}
2244	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2245				   errcode, sk->sk_allocation);
2246	if (skb)
2247		skb_set_owner_w(skb, sk);
2248	return skb;
2249
2250interrupted:
2251	err = sock_intr_errno(timeo);
2252failure:
2253	*errcode = err;
2254	return NULL;
2255}
2256EXPORT_SYMBOL(sock_alloc_send_pskb);
2257
2258struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2259				    int noblock, int *errcode)
2260{
2261	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2262}
2263EXPORT_SYMBOL(sock_alloc_send_skb);
2264
2265int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2266		     struct sockcm_cookie *sockc)
2267{
2268	u32 tsflags;
2269
2270	switch (cmsg->cmsg_type) {
2271	case SO_MARK:
2272		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2273			return -EPERM;
2274		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2275			return -EINVAL;
2276		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2277		break;
2278	case SO_TIMESTAMPING_OLD:
2279		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2280			return -EINVAL;
2281
2282		tsflags = *(u32 *)CMSG_DATA(cmsg);
2283		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2284			return -EINVAL;
2285
2286		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2287		sockc->tsflags |= tsflags;
2288		break;
2289	case SCM_TXTIME:
2290		if (!sock_flag(sk, SOCK_TXTIME))
2291			return -EINVAL;
2292		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2293			return -EINVAL;
2294		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2295		break;
2296	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2297	case SCM_RIGHTS:
2298	case SCM_CREDENTIALS:
2299		break;
2300	default:
2301		return -EINVAL;
2302	}
2303	return 0;
2304}
2305EXPORT_SYMBOL(__sock_cmsg_send);
2306
2307int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2308		   struct sockcm_cookie *sockc)
2309{
2310	struct cmsghdr *cmsg;
2311	int ret;
2312
2313	for_each_cmsghdr(cmsg, msg) {
2314		if (!CMSG_OK(msg, cmsg))
2315			return -EINVAL;
2316		if (cmsg->cmsg_level != SOL_SOCKET)
2317			continue;
2318		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2319		if (ret)
2320			return ret;
2321	}
2322	return 0;
2323}
2324EXPORT_SYMBOL(sock_cmsg_send);
2325
2326static void sk_enter_memory_pressure(struct sock *sk)
2327{
2328	if (!sk->sk_prot->enter_memory_pressure)
2329		return;
2330
2331	sk->sk_prot->enter_memory_pressure(sk);
2332}
2333
2334static void sk_leave_memory_pressure(struct sock *sk)
2335{
2336	if (sk->sk_prot->leave_memory_pressure) {
2337		sk->sk_prot->leave_memory_pressure(sk);
2338	} else {
2339		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2340
2341		if (memory_pressure && READ_ONCE(*memory_pressure))
2342			WRITE_ONCE(*memory_pressure, 0);
2343	}
2344}
2345
2346/* On 32bit arches, an skb frag is limited to 2^15 */
2347#define SKB_FRAG_PAGE_ORDER	get_order(32768)
2348DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2349
2350/**
2351 * skb_page_frag_refill - check that a page_frag contains enough room
2352 * @sz: minimum size of the fragment we want to get
2353 * @pfrag: pointer to page_frag
2354 * @gfp: priority for memory allocation
2355 *
2356 * Note: While this allocator tries to use high order pages, there is
2357 * no guarantee that allocations succeed. Therefore, @sz MUST be
2358 * less or equal than PAGE_SIZE.
2359 */
2360bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2361{
2362	if (pfrag->page) {
2363		if (page_ref_count(pfrag->page) == 1) {
2364			pfrag->offset = 0;
2365			return true;
2366		}
2367		if (pfrag->offset + sz <= pfrag->size)
2368			return true;
2369		put_page(pfrag->page);
2370	}
2371
2372	pfrag->offset = 0;
2373	if (SKB_FRAG_PAGE_ORDER &&
2374	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2375		/* Avoid direct reclaim but allow kswapd to wake */
2376		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2377					  __GFP_COMP | __GFP_NOWARN |
2378					  __GFP_NORETRY,
2379					  SKB_FRAG_PAGE_ORDER);
2380		if (likely(pfrag->page)) {
2381			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2382			return true;
2383		}
2384	}
2385	pfrag->page = alloc_page(gfp);
2386	if (likely(pfrag->page)) {
2387		pfrag->size = PAGE_SIZE;
2388		return true;
2389	}
2390	return false;
2391}
2392EXPORT_SYMBOL(skb_page_frag_refill);
2393
2394bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2395{
2396	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2397		return true;
2398
2399	sk_enter_memory_pressure(sk);
2400	sk_stream_moderate_sndbuf(sk);
2401	return false;
2402}
2403EXPORT_SYMBOL(sk_page_frag_refill);
2404
2405static void __lock_sock(struct sock *sk)
2406	__releases(&sk->sk_lock.slock)
2407	__acquires(&sk->sk_lock.slock)
2408{
2409	DEFINE_WAIT(wait);
2410
2411	for (;;) {
2412		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2413					TASK_UNINTERRUPTIBLE);
2414		spin_unlock_bh(&sk->sk_lock.slock);
2415		schedule();
2416		spin_lock_bh(&sk->sk_lock.slock);
2417		if (!sock_owned_by_user(sk))
2418			break;
2419	}
2420	finish_wait(&sk->sk_lock.wq, &wait);
2421}
2422
2423void __release_sock(struct sock *sk)
2424	__releases(&sk->sk_lock.slock)
2425	__acquires(&sk->sk_lock.slock)
2426{
2427	struct sk_buff *skb, *next;
2428
2429	while ((skb = sk->sk_backlog.head) != NULL) {
2430		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2431
2432		spin_unlock_bh(&sk->sk_lock.slock);
2433
2434		do {
2435			next = skb->next;
2436			prefetch(next);
2437			WARN_ON_ONCE(skb_dst_is_noref(skb));
2438			skb_mark_not_on_list(skb);
2439			sk_backlog_rcv(sk, skb);
2440
2441			cond_resched();
2442
2443			skb = next;
2444		} while (skb != NULL);
2445
2446		spin_lock_bh(&sk->sk_lock.slock);
2447	}
2448
2449	/*
2450	 * Doing the zeroing here guarantee we can not loop forever
2451	 * while a wild producer attempts to flood us.
2452	 */
2453	sk->sk_backlog.len = 0;
2454}
2455
2456void __sk_flush_backlog(struct sock *sk)
2457{
2458	spin_lock_bh(&sk->sk_lock.slock);
2459	__release_sock(sk);
2460	spin_unlock_bh(&sk->sk_lock.slock);
2461}
2462
2463/**
2464 * sk_wait_data - wait for data to arrive at sk_receive_queue
2465 * @sk:    sock to wait on
2466 * @timeo: for how long
2467 * @skb:   last skb seen on sk_receive_queue
2468 *
2469 * Now socket state including sk->sk_err is changed only under lock,
2470 * hence we may omit checks after joining wait queue.
2471 * We check receive queue before schedule() only as optimization;
2472 * it is very likely that release_sock() added new data.
2473 */
2474int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2475{
2476	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2477	int rc;
2478
2479	add_wait_queue(sk_sleep(sk), &wait);
2480	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2481	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2482	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2483	remove_wait_queue(sk_sleep(sk), &wait);
2484	return rc;
2485}
2486EXPORT_SYMBOL(sk_wait_data);
2487
2488/**
2489 *	__sk_mem_raise_allocated - increase memory_allocated
2490 *	@sk: socket
2491 *	@size: memory size to allocate
2492 *	@amt: pages to allocate
2493 *	@kind: allocation type
2494 *
2495 *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2496 */
2497int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2498{
2499	struct proto *prot = sk->sk_prot;
2500	long allocated = sk_memory_allocated_add(sk, amt);
2501	bool charged = true;
2502
2503	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2504	    !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2505		goto suppress_allocation;
2506
2507	/* Under limit. */
2508	if (allocated <= sk_prot_mem_limits(sk, 0)) {
2509		sk_leave_memory_pressure(sk);
2510		return 1;
2511	}
2512
2513	/* Under pressure. */
2514	if (allocated > sk_prot_mem_limits(sk, 1))
2515		sk_enter_memory_pressure(sk);
2516
2517	/* Over hard limit. */
2518	if (allocated > sk_prot_mem_limits(sk, 2))
2519		goto suppress_allocation;
2520
2521	/* guarantee minimum buffer size under pressure */
2522	if (kind == SK_MEM_RECV) {
2523		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2524			return 1;
2525
2526	} else { /* SK_MEM_SEND */
2527		int wmem0 = sk_get_wmem0(sk, prot);
2528
2529		if (sk->sk_type == SOCK_STREAM) {
2530			if (sk->sk_wmem_queued < wmem0)
2531				return 1;
2532		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2533				return 1;
2534		}
2535	}
2536
2537	if (sk_has_memory_pressure(sk)) {
2538		u64 alloc;
2539
2540		if (!sk_under_memory_pressure(sk))
2541			return 1;
2542		alloc = sk_sockets_allocated_read_positive(sk);
2543		if (sk_prot_mem_limits(sk, 2) > alloc *
2544		    sk_mem_pages(sk->sk_wmem_queued +
2545				 atomic_read(&sk->sk_rmem_alloc) +
2546				 sk->sk_forward_alloc))
2547			return 1;
2548	}
2549
2550suppress_allocation:
2551
2552	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2553		sk_stream_moderate_sndbuf(sk);
2554
2555		/* Fail only if socket is _under_ its sndbuf.
2556		 * In this case we cannot block, so that we have to fail.
2557		 */
2558		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2559			return 1;
2560	}
2561
2562	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2563		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2564
2565	sk_memory_allocated_sub(sk, amt);
2566
2567	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2568		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2569
2570	return 0;
2571}
2572EXPORT_SYMBOL(__sk_mem_raise_allocated);
2573
2574/**
2575 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2576 *	@sk: socket
2577 *	@size: memory size to allocate
2578 *	@kind: allocation type
2579 *
2580 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2581 *	rmem allocation. This function assumes that protocols which have
2582 *	memory_pressure use sk_wmem_queued as write buffer accounting.
2583 */
2584int __sk_mem_schedule(struct sock *sk, int size, int kind)
2585{
2586	int ret, amt = sk_mem_pages(size);
2587
2588	sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2589	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2590	if (!ret)
2591		sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2592	return ret;
2593}
2594EXPORT_SYMBOL(__sk_mem_schedule);
2595
2596/**
2597 *	__sk_mem_reduce_allocated - reclaim memory_allocated
2598 *	@sk: socket
2599 *	@amount: number of quanta
2600 *
2601 *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2602 */
2603void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2604{
2605	sk_memory_allocated_sub(sk, amount);
2606
2607	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2608		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2609
2610	if (sk_under_memory_pressure(sk) &&
2611	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2612		sk_leave_memory_pressure(sk);
2613}
2614EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2615
2616/**
2617 *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2618 *	@sk: socket
2619 *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2620 */
2621void __sk_mem_reclaim(struct sock *sk, int amount)
2622{
2623	amount >>= SK_MEM_QUANTUM_SHIFT;
2624	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2625	__sk_mem_reduce_allocated(sk, amount);
2626}
2627EXPORT_SYMBOL(__sk_mem_reclaim);
2628
2629int sk_set_peek_off(struct sock *sk, int val)
2630{
2631	sk->sk_peek_off = val;
2632	return 0;
2633}
2634EXPORT_SYMBOL_GPL(sk_set_peek_off);
2635
2636/*
2637 * Set of default routines for initialising struct proto_ops when
2638 * the protocol does not support a particular function. In certain
2639 * cases where it makes no sense for a protocol to have a "do nothing"
2640 * function, some default processing is provided.
2641 */
2642
2643int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2644{
2645	return -EOPNOTSUPP;
2646}
2647EXPORT_SYMBOL(sock_no_bind);
2648
2649int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2650		    int len, int flags)
2651{
2652	return -EOPNOTSUPP;
2653}
2654EXPORT_SYMBOL(sock_no_connect);
2655
2656int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2657{
2658	return -EOPNOTSUPP;
2659}
2660EXPORT_SYMBOL(sock_no_socketpair);
2661
2662int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2663		   bool kern)
2664{
2665	return -EOPNOTSUPP;
2666}
2667EXPORT_SYMBOL(sock_no_accept);
2668
2669int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2670		    int peer)
2671{
2672	return -EOPNOTSUPP;
2673}
2674EXPORT_SYMBOL(sock_no_getname);
2675
2676int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2677{
2678	return -EOPNOTSUPP;
2679}
2680EXPORT_SYMBOL(sock_no_ioctl);
2681
2682int sock_no_listen(struct socket *sock, int backlog)
2683{
2684	return -EOPNOTSUPP;
2685}
2686EXPORT_SYMBOL(sock_no_listen);
2687
2688int sock_no_shutdown(struct socket *sock, int how)
2689{
2690	return -EOPNOTSUPP;
2691}
2692EXPORT_SYMBOL(sock_no_shutdown);
2693
2694int sock_no_setsockopt(struct socket *sock, int level, int optname,
2695		    char __user *optval, unsigned int optlen)
2696{
2697	return -EOPNOTSUPP;
2698}
2699EXPORT_SYMBOL(sock_no_setsockopt);
2700
2701int sock_no_getsockopt(struct socket *sock, int level, int optname,
2702		    char __user *optval, int __user *optlen)
2703{
2704	return -EOPNOTSUPP;
2705}
2706EXPORT_SYMBOL(sock_no_getsockopt);
2707
2708int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2709{
2710	return -EOPNOTSUPP;
2711}
2712EXPORT_SYMBOL(sock_no_sendmsg);
2713
2714int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2715{
2716	return -EOPNOTSUPP;
2717}
2718EXPORT_SYMBOL(sock_no_sendmsg_locked);
2719
2720int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2721		    int flags)
2722{
2723	return -EOPNOTSUPP;
2724}
2725EXPORT_SYMBOL(sock_no_recvmsg);
2726
2727int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2728{
2729	/* Mirror missing mmap method error code */
2730	return -ENODEV;
2731}
2732EXPORT_SYMBOL(sock_no_mmap);
2733
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2734ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2735{
2736	ssize_t res;
2737	struct msghdr msg = {.msg_flags = flags};
2738	struct kvec iov;
2739	char *kaddr = kmap(page);
2740	iov.iov_base = kaddr + offset;
2741	iov.iov_len = size;
2742	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2743	kunmap(page);
2744	return res;
2745}
2746EXPORT_SYMBOL(sock_no_sendpage);
2747
2748ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2749				int offset, size_t size, int flags)
2750{
2751	ssize_t res;
2752	struct msghdr msg = {.msg_flags = flags};
2753	struct kvec iov;
2754	char *kaddr = kmap(page);
2755
2756	iov.iov_base = kaddr + offset;
2757	iov.iov_len = size;
2758	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2759	kunmap(page);
2760	return res;
2761}
2762EXPORT_SYMBOL(sock_no_sendpage_locked);
2763
2764/*
2765 *	Default Socket Callbacks
2766 */
2767
2768static void sock_def_wakeup(struct sock *sk)
2769{
2770	struct socket_wq *wq;
2771
2772	rcu_read_lock();
2773	wq = rcu_dereference(sk->sk_wq);
2774	if (skwq_has_sleeper(wq))
2775		wake_up_interruptible_all(&wq->wait);
2776	rcu_read_unlock();
2777}
2778
2779static void sock_def_error_report(struct sock *sk)
2780{
2781	struct socket_wq *wq;
2782
2783	rcu_read_lock();
2784	wq = rcu_dereference(sk->sk_wq);
2785	if (skwq_has_sleeper(wq))
2786		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2787	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2788	rcu_read_unlock();
2789}
2790
2791static void sock_def_readable(struct sock *sk)
2792{
2793	struct socket_wq *wq;
2794
2795	rcu_read_lock();
2796	wq = rcu_dereference(sk->sk_wq);
2797	if (skwq_has_sleeper(wq))
2798		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2799						EPOLLRDNORM | EPOLLRDBAND);
2800	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2801	rcu_read_unlock();
2802}
2803
2804static void sock_def_write_space(struct sock *sk)
2805{
2806	struct socket_wq *wq;
2807
2808	rcu_read_lock();
2809
2810	/* Do not wake up a writer until he can make "significant"
2811	 * progress.  --DaveM
2812	 */
2813	if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
2814		wq = rcu_dereference(sk->sk_wq);
2815		if (skwq_has_sleeper(wq))
2816			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2817						EPOLLWRNORM | EPOLLWRBAND);
2818
2819		/* Should agree with poll, otherwise some programs break */
2820		if (sock_writeable(sk))
2821			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2822	}
2823
2824	rcu_read_unlock();
2825}
2826
2827static void sock_def_destruct(struct sock *sk)
2828{
2829}
2830
2831void sk_send_sigurg(struct sock *sk)
2832{
2833	if (sk->sk_socket && sk->sk_socket->file)
2834		if (send_sigurg(&sk->sk_socket->file->f_owner))
2835			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2836}
2837EXPORT_SYMBOL(sk_send_sigurg);
2838
2839void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2840		    unsigned long expires)
2841{
2842	if (!mod_timer(timer, expires))
2843		sock_hold(sk);
2844}
2845EXPORT_SYMBOL(sk_reset_timer);
2846
2847void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2848{
2849	if (del_timer(timer))
2850		__sock_put(sk);
2851}
2852EXPORT_SYMBOL(sk_stop_timer);
2853
2854void sock_init_data(struct socket *sock, struct sock *sk)
2855{
2856	sk_init_common(sk);
2857	sk->sk_send_head	=	NULL;
2858
2859	timer_setup(&sk->sk_timer, NULL, 0);
2860
2861	sk->sk_allocation	=	GFP_KERNEL;
2862	sk->sk_rcvbuf		=	sysctl_rmem_default;
2863	sk->sk_sndbuf		=	sysctl_wmem_default;
2864	sk->sk_state		=	TCP_CLOSE;
2865	sk_set_socket(sk, sock);
2866
2867	sock_set_flag(sk, SOCK_ZAPPED);
2868
2869	if (sock) {
2870		sk->sk_type	=	sock->type;
2871		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
2872		sock->sk	=	sk;
2873		sk->sk_uid	=	SOCK_INODE(sock)->i_uid;
2874	} else {
2875		RCU_INIT_POINTER(sk->sk_wq, NULL);
2876		sk->sk_uid	=	make_kuid(sock_net(sk)->user_ns, 0);
2877	}
2878
2879	rwlock_init(&sk->sk_callback_lock);
2880	if (sk->sk_kern_sock)
2881		lockdep_set_class_and_name(
2882			&sk->sk_callback_lock,
2883			af_kern_callback_keys + sk->sk_family,
2884			af_family_kern_clock_key_strings[sk->sk_family]);
2885	else
2886		lockdep_set_class_and_name(
2887			&sk->sk_callback_lock,
2888			af_callback_keys + sk->sk_family,
2889			af_family_clock_key_strings[sk->sk_family]);
2890
2891	sk->sk_state_change	=	sock_def_wakeup;
2892	sk->sk_data_ready	=	sock_def_readable;
2893	sk->sk_write_space	=	sock_def_write_space;
2894	sk->sk_error_report	=	sock_def_error_report;
2895	sk->sk_destruct		=	sock_def_destruct;
2896
2897	sk->sk_frag.page	=	NULL;
2898	sk->sk_frag.offset	=	0;
2899	sk->sk_peek_off		=	-1;
2900
2901	sk->sk_peer_pid 	=	NULL;
2902	sk->sk_peer_cred	=	NULL;
2903	sk->sk_write_pending	=	0;
2904	sk->sk_rcvlowat		=	1;
2905	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2906	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2907
2908	sk->sk_stamp = SK_DEFAULT_STAMP;
2909#if BITS_PER_LONG==32
2910	seqlock_init(&sk->sk_stamp_seq);
2911#endif
2912	atomic_set(&sk->sk_zckey, 0);
2913
2914#ifdef CONFIG_NET_RX_BUSY_POLL
2915	sk->sk_napi_id		=	0;
2916	sk->sk_ll_usec		=	sysctl_net_busy_read;
2917#endif
2918
2919	sk->sk_max_pacing_rate = ~0UL;
2920	sk->sk_pacing_rate = ~0UL;
2921	sk->sk_pacing_shift = 10;
2922	sk->sk_incoming_cpu = -1;
2923
2924	sk_rx_queue_clear(sk);
2925	/*
2926	 * Before updating sk_refcnt, we must commit prior changes to memory
2927	 * (Documentation/RCU/rculist_nulls.txt for details)
2928	 */
2929	smp_wmb();
2930	refcount_set(&sk->sk_refcnt, 1);
2931	atomic_set(&sk->sk_drops, 0);
2932}
2933EXPORT_SYMBOL(sock_init_data);
2934
2935void lock_sock_nested(struct sock *sk, int subclass)
2936{
2937	might_sleep();
2938	spin_lock_bh(&sk->sk_lock.slock);
2939	if (sk->sk_lock.owned)
2940		__lock_sock(sk);
2941	sk->sk_lock.owned = 1;
2942	spin_unlock(&sk->sk_lock.slock);
2943	/*
2944	 * The sk_lock has mutex_lock() semantics here:
2945	 */
2946	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2947	local_bh_enable();
2948}
2949EXPORT_SYMBOL(lock_sock_nested);
2950
2951void release_sock(struct sock *sk)
2952{
2953	spin_lock_bh(&sk->sk_lock.slock);
2954	if (sk->sk_backlog.tail)
2955		__release_sock(sk);
2956
2957	/* Warning : release_cb() might need to release sk ownership,
2958	 * ie call sock_release_ownership(sk) before us.
2959	 */
2960	if (sk->sk_prot->release_cb)
2961		sk->sk_prot->release_cb(sk);
2962
2963	sock_release_ownership(sk);
2964	if (waitqueue_active(&sk->sk_lock.wq))
2965		wake_up(&sk->sk_lock.wq);
2966	spin_unlock_bh(&sk->sk_lock.slock);
2967}
2968EXPORT_SYMBOL(release_sock);
2969
2970/**
2971 * lock_sock_fast - fast version of lock_sock
2972 * @sk: socket
2973 *
2974 * This version should be used for very small section, where process wont block
2975 * return false if fast path is taken:
2976 *
2977 *   sk_lock.slock locked, owned = 0, BH disabled
2978 *
2979 * return true if slow path is taken:
2980 *
2981 *   sk_lock.slock unlocked, owned = 1, BH enabled
2982 */
2983bool lock_sock_fast(struct sock *sk)
2984{
2985	might_sleep();
2986	spin_lock_bh(&sk->sk_lock.slock);
2987
2988	if (!sk->sk_lock.owned)
2989		/*
2990		 * Note : We must disable BH
2991		 */
2992		return false;
2993
2994	__lock_sock(sk);
2995	sk->sk_lock.owned = 1;
2996	spin_unlock(&sk->sk_lock.slock);
2997	/*
2998	 * The sk_lock has mutex_lock() semantics here:
2999	 */
3000	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
3001	local_bh_enable();
3002	return true;
3003}
3004EXPORT_SYMBOL(lock_sock_fast);
3005
3006int sock_gettstamp(struct socket *sock, void __user *userstamp,
3007		   bool timeval, bool time32)
3008{
3009	struct sock *sk = sock->sk;
3010	struct timespec64 ts;
3011
3012	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3013	ts = ktime_to_timespec64(sock_read_timestamp(sk));
3014	if (ts.tv_sec == -1)
3015		return -ENOENT;
3016	if (ts.tv_sec == 0) {
3017		ktime_t kt = ktime_get_real();
3018		sock_write_timestamp(sk, kt);;
3019		ts = ktime_to_timespec64(kt);
3020	}
3021
3022	if (timeval)
3023		ts.tv_nsec /= 1000;
3024
3025#ifdef CONFIG_COMPAT_32BIT_TIME
3026	if (time32)
3027		return put_old_timespec32(&ts, userstamp);
3028#endif
3029#ifdef CONFIG_SPARC64
3030	/* beware of padding in sparc64 timeval */
3031	if (timeval && !in_compat_syscall()) {
3032		struct __kernel_old_timeval __user tv = {
3033			.tv_sec = ts.tv_sec,
3034			.tv_usec = ts.tv_nsec,
3035		};
3036		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3037			return -EFAULT;
3038		return 0;
3039	}
3040#endif
3041	return put_timespec64(&ts, userstamp);
3042}
3043EXPORT_SYMBOL(sock_gettstamp);
3044
3045void sock_enable_timestamp(struct sock *sk, int flag)
3046{
3047	if (!sock_flag(sk, flag)) {
3048		unsigned long previous_flags = sk->sk_flags;
3049
3050		sock_set_flag(sk, flag);
3051		/*
3052		 * we just set one of the two flags which require net
3053		 * time stamping, but time stamping might have been on
3054		 * already because of the other one
3055		 */
3056		if (sock_needs_netstamp(sk) &&
3057		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3058			net_enable_timestamp();
3059	}
3060}
3061
3062int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3063		       int level, int type)
3064{
3065	struct sock_exterr_skb *serr;
3066	struct sk_buff *skb;
3067	int copied, err;
3068
3069	err = -EAGAIN;
3070	skb = sock_dequeue_err_skb(sk);
3071	if (skb == NULL)
3072		goto out;
3073
3074	copied = skb->len;
3075	if (copied > len) {
3076		msg->msg_flags |= MSG_TRUNC;
3077		copied = len;
3078	}
3079	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3080	if (err)
3081		goto out_free_skb;
3082
3083	sock_recv_timestamp(msg, sk, skb);
3084
3085	serr = SKB_EXT_ERR(skb);
3086	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3087
3088	msg->msg_flags |= MSG_ERRQUEUE;
3089	err = copied;
3090
3091out_free_skb:
3092	kfree_skb(skb);
3093out:
3094	return err;
3095}
3096EXPORT_SYMBOL(sock_recv_errqueue);
3097
3098/*
3099 *	Get a socket option on an socket.
3100 *
3101 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3102 *	asynchronous errors should be reported by getsockopt. We assume
3103 *	this means if you specify SO_ERROR (otherwise whats the point of it).
3104 */
3105int sock_common_getsockopt(struct socket *sock, int level, int optname,
3106			   char __user *optval, int __user *optlen)
3107{
3108	struct sock *sk = sock->sk;
3109
3110	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3111}
3112EXPORT_SYMBOL(sock_common_getsockopt);
3113
3114#ifdef CONFIG_COMPAT
3115int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
3116				  char __user *optval, int __user *optlen)
3117{
3118	struct sock *sk = sock->sk;
3119
3120	if (sk->sk_prot->compat_getsockopt != NULL)
3121		return sk->sk_prot->compat_getsockopt(sk, level, optname,
3122						      optval, optlen);
3123	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3124}
3125EXPORT_SYMBOL(compat_sock_common_getsockopt);
3126#endif
3127
3128int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3129			int flags)
3130{
3131	struct sock *sk = sock->sk;
3132	int addr_len = 0;
3133	int err;
3134
3135	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3136				   flags & ~MSG_DONTWAIT, &addr_len);
3137	if (err >= 0)
3138		msg->msg_namelen = addr_len;
3139	return err;
3140}
3141EXPORT_SYMBOL(sock_common_recvmsg);
3142
3143/*
3144 *	Set socket options on an inet socket.
3145 */
3146int sock_common_setsockopt(struct socket *sock, int level, int optname,
3147			   char __user *optval, unsigned int optlen)
3148{
3149	struct sock *sk = sock->sk;
3150
3151	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3152}
3153EXPORT_SYMBOL(sock_common_setsockopt);
3154
3155#ifdef CONFIG_COMPAT
3156int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
3157				  char __user *optval, unsigned int optlen)
3158{
3159	struct sock *sk = sock->sk;
3160
3161	if (sk->sk_prot->compat_setsockopt != NULL)
3162		return sk->sk_prot->compat_setsockopt(sk, level, optname,
3163						      optval, optlen);
3164	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3165}
3166EXPORT_SYMBOL(compat_sock_common_setsockopt);
3167#endif
3168
3169void sk_common_release(struct sock *sk)
3170{
3171	if (sk->sk_prot->destroy)
3172		sk->sk_prot->destroy(sk);
3173
3174	/*
3175	 * Observation: when sock_common_release is called, processes have
3176	 * no access to socket. But net still has.
3177	 * Step one, detach it from networking:
3178	 *
3179	 * A. Remove from hash tables.
3180	 */
3181
3182	sk->sk_prot->unhash(sk);
3183
3184	/*
3185	 * In this point socket cannot receive new packets, but it is possible
3186	 * that some packets are in flight because some CPU runs receiver and
3187	 * did hash table lookup before we unhashed socket. They will achieve
3188	 * receive queue and will be purged by socket destructor.
3189	 *
3190	 * Also we still have packets pending on receive queue and probably,
3191	 * our own packets waiting in device queues. sock_destroy will drain
3192	 * receive queue, but transmitted packets will delay socket destruction
3193	 * until the last reference will be released.
3194	 */
3195
3196	sock_orphan(sk);
3197
3198	xfrm_sk_free_policy(sk);
3199
3200	sk_refcnt_debug_release(sk);
3201
3202	sock_put(sk);
3203}
3204EXPORT_SYMBOL(sk_common_release);
3205
3206void sk_get_meminfo(const struct sock *sk, u32 *mem)
3207{
3208	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3209
3210	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3211	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3212	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3213	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3214	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3215	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3216	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3217	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3218	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3219}
3220
3221#ifdef CONFIG_PROC_FS
3222#define PROTO_INUSE_NR	64	/* should be enough for the first time */
3223struct prot_inuse {
3224	int val[PROTO_INUSE_NR];
3225};
3226
3227static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3228
3229void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3230{
3231	__this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3232}
3233EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3234
3235int sock_prot_inuse_get(struct net *net, struct proto *prot)
3236{
3237	int cpu, idx = prot->inuse_idx;
3238	int res = 0;
3239
3240	for_each_possible_cpu(cpu)
3241		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3242
3243	return res >= 0 ? res : 0;
3244}
3245EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3246
3247static void sock_inuse_add(struct net *net, int val)
3248{
3249	this_cpu_add(*net->core.sock_inuse, val);
3250}
3251
3252int sock_inuse_get(struct net *net)
3253{
3254	int cpu, res = 0;
3255
3256	for_each_possible_cpu(cpu)
3257		res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3258
3259	return res;
3260}
3261
3262EXPORT_SYMBOL_GPL(sock_inuse_get);
3263
3264static int __net_init sock_inuse_init_net(struct net *net)
3265{
3266	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3267	if (net->core.prot_inuse == NULL)
3268		return -ENOMEM;
3269
3270	net->core.sock_inuse = alloc_percpu(int);
3271	if (net->core.sock_inuse == NULL)
3272		goto out;
3273
3274	return 0;
3275
3276out:
3277	free_percpu(net->core.prot_inuse);
3278	return -ENOMEM;
3279}
3280
3281static void __net_exit sock_inuse_exit_net(struct net *net)
3282{
3283	free_percpu(net->core.prot_inuse);
3284	free_percpu(net->core.sock_inuse);
3285}
3286
3287static struct pernet_operations net_inuse_ops = {
3288	.init = sock_inuse_init_net,
3289	.exit = sock_inuse_exit_net,
3290};
3291
3292static __init int net_inuse_init(void)
3293{
3294	if (register_pernet_subsys(&net_inuse_ops))
3295		panic("Cannot initialize net inuse counters");
3296
3297	return 0;
3298}
3299
3300core_initcall(net_inuse_init);
3301
3302static int assign_proto_idx(struct proto *prot)
3303{
3304	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3305
3306	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3307		pr_err("PROTO_INUSE_NR exhausted\n");
3308		return -ENOSPC;
3309	}
3310
3311	set_bit(prot->inuse_idx, proto_inuse_idx);
3312	return 0;
3313}
3314
3315static void release_proto_idx(struct proto *prot)
3316{
3317	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3318		clear_bit(prot->inuse_idx, proto_inuse_idx);
3319}
3320#else
3321static inline int assign_proto_idx(struct proto *prot)
3322{
3323	return 0;
3324}
3325
3326static inline void release_proto_idx(struct proto *prot)
3327{
3328}
3329
3330static void sock_inuse_add(struct net *net, int val)
3331{
3332}
3333#endif
3334
 
 
 
 
 
 
 
 
 
 
3335static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3336{
3337	if (!rsk_prot)
3338		return;
3339	kfree(rsk_prot->slab_name);
3340	rsk_prot->slab_name = NULL;
3341	kmem_cache_destroy(rsk_prot->slab);
3342	rsk_prot->slab = NULL;
3343}
3344
3345static int req_prot_init(const struct proto *prot)
3346{
3347	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3348
3349	if (!rsk_prot)
3350		return 0;
3351
3352	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3353					prot->name);
3354	if (!rsk_prot->slab_name)
3355		return -ENOMEM;
3356
3357	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3358					   rsk_prot->obj_size, 0,
3359					   SLAB_ACCOUNT | prot->slab_flags,
3360					   NULL);
3361
3362	if (!rsk_prot->slab) {
3363		pr_crit("%s: Can't create request sock SLAB cache!\n",
3364			prot->name);
3365		return -ENOMEM;
3366	}
3367	return 0;
3368}
3369
3370int proto_register(struct proto *prot, int alloc_slab)
3371{
3372	int ret = -ENOBUFS;
3373
3374	if (alloc_slab) {
3375		prot->slab = kmem_cache_create_usercopy(prot->name,
3376					prot->obj_size, 0,
3377					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3378					prot->slab_flags,
3379					prot->useroffset, prot->usersize,
3380					NULL);
3381
3382		if (prot->slab == NULL) {
3383			pr_crit("%s: Can't create sock SLAB cache!\n",
3384				prot->name);
3385			goto out;
3386		}
3387
3388		if (req_prot_init(prot))
3389			goto out_free_request_sock_slab;
3390
3391		if (prot->twsk_prot != NULL) {
3392			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3393
3394			if (prot->twsk_prot->twsk_slab_name == NULL)
3395				goto out_free_request_sock_slab;
3396
3397			prot->twsk_prot->twsk_slab =
3398				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3399						  prot->twsk_prot->twsk_obj_size,
3400						  0,
3401						  SLAB_ACCOUNT |
3402						  prot->slab_flags,
3403						  NULL);
3404			if (prot->twsk_prot->twsk_slab == NULL)
3405				goto out_free_timewait_sock_slab_name;
3406		}
3407	}
3408
3409	mutex_lock(&proto_list_mutex);
3410	ret = assign_proto_idx(prot);
3411	if (ret) {
3412		mutex_unlock(&proto_list_mutex);
3413		goto out_free_timewait_sock_slab_name;
3414	}
3415	list_add(&prot->node, &proto_list);
3416	mutex_unlock(&proto_list_mutex);
3417	return ret;
3418
3419out_free_timewait_sock_slab_name:
3420	if (alloc_slab && prot->twsk_prot)
3421		kfree(prot->twsk_prot->twsk_slab_name);
3422out_free_request_sock_slab:
3423	if (alloc_slab) {
3424		req_prot_cleanup(prot->rsk_prot);
3425
3426		kmem_cache_destroy(prot->slab);
3427		prot->slab = NULL;
3428	}
3429out:
3430	return ret;
3431}
3432EXPORT_SYMBOL(proto_register);
3433
3434void proto_unregister(struct proto *prot)
3435{
3436	mutex_lock(&proto_list_mutex);
3437	release_proto_idx(prot);
3438	list_del(&prot->node);
3439	mutex_unlock(&proto_list_mutex);
3440
3441	kmem_cache_destroy(prot->slab);
3442	prot->slab = NULL;
3443
3444	req_prot_cleanup(prot->rsk_prot);
3445
3446	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
3447		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
3448		kfree(prot->twsk_prot->twsk_slab_name);
3449		prot->twsk_prot->twsk_slab = NULL;
3450	}
3451}
3452EXPORT_SYMBOL(proto_unregister);
3453
3454int sock_load_diag_module(int family, int protocol)
3455{
3456	if (!protocol) {
3457		if (!sock_is_registered(family))
3458			return -ENOENT;
3459
3460		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3461				      NETLINK_SOCK_DIAG, family);
3462	}
3463
3464#ifdef CONFIG_INET
3465	if (family == AF_INET &&
3466	    protocol != IPPROTO_RAW &&
 
3467	    !rcu_access_pointer(inet_protos[protocol]))
3468		return -ENOENT;
3469#endif
3470
3471	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3472			      NETLINK_SOCK_DIAG, family, protocol);
3473}
3474EXPORT_SYMBOL(sock_load_diag_module);
3475
3476#ifdef CONFIG_PROC_FS
3477static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3478	__acquires(proto_list_mutex)
3479{
3480	mutex_lock(&proto_list_mutex);
3481	return seq_list_start_head(&proto_list, *pos);
3482}
3483
3484static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3485{
3486	return seq_list_next(v, &proto_list, pos);
3487}
3488
3489static void proto_seq_stop(struct seq_file *seq, void *v)
3490	__releases(proto_list_mutex)
3491{
3492	mutex_unlock(&proto_list_mutex);
3493}
3494
3495static char proto_method_implemented(const void *method)
3496{
3497	return method == NULL ? 'n' : 'y';
3498}
3499static long sock_prot_memory_allocated(struct proto *proto)
3500{
3501	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3502}
3503
3504static const char *sock_prot_memory_pressure(struct proto *proto)
3505{
3506	return proto->memory_pressure != NULL ?
3507	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3508}
3509
3510static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3511{
3512
3513	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3514			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3515		   proto->name,
3516		   proto->obj_size,
3517		   sock_prot_inuse_get(seq_file_net(seq), proto),
3518		   sock_prot_memory_allocated(proto),
3519		   sock_prot_memory_pressure(proto),
3520		   proto->max_header,
3521		   proto->slab == NULL ? "no" : "yes",
3522		   module_name(proto->owner),
3523		   proto_method_implemented(proto->close),
3524		   proto_method_implemented(proto->connect),
3525		   proto_method_implemented(proto->disconnect),
3526		   proto_method_implemented(proto->accept),
3527		   proto_method_implemented(proto->ioctl),
3528		   proto_method_implemented(proto->init),
3529		   proto_method_implemented(proto->destroy),
3530		   proto_method_implemented(proto->shutdown),
3531		   proto_method_implemented(proto->setsockopt),
3532		   proto_method_implemented(proto->getsockopt),
3533		   proto_method_implemented(proto->sendmsg),
3534		   proto_method_implemented(proto->recvmsg),
3535		   proto_method_implemented(proto->sendpage),
3536		   proto_method_implemented(proto->bind),
3537		   proto_method_implemented(proto->backlog_rcv),
3538		   proto_method_implemented(proto->hash),
3539		   proto_method_implemented(proto->unhash),
3540		   proto_method_implemented(proto->get_port),
3541		   proto_method_implemented(proto->enter_memory_pressure));
3542}
3543
3544static int proto_seq_show(struct seq_file *seq, void *v)
3545{
3546	if (v == &proto_list)
3547		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3548			   "protocol",
3549			   "size",
3550			   "sockets",
3551			   "memory",
3552			   "press",
3553			   "maxhdr",
3554			   "slab",
3555			   "module",
3556			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3557	else
3558		proto_seq_printf(seq, list_entry(v, struct proto, node));
3559	return 0;
3560}
3561
3562static const struct seq_operations proto_seq_ops = {
3563	.start  = proto_seq_start,
3564	.next   = proto_seq_next,
3565	.stop   = proto_seq_stop,
3566	.show   = proto_seq_show,
3567};
3568
3569static __net_init int proto_init_net(struct net *net)
3570{
3571	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3572			sizeof(struct seq_net_private)))
3573		return -ENOMEM;
3574
3575	return 0;
3576}
3577
3578static __net_exit void proto_exit_net(struct net *net)
3579{
3580	remove_proc_entry("protocols", net->proc_net);
3581}
3582
3583
3584static __net_initdata struct pernet_operations proto_net_ops = {
3585	.init = proto_init_net,
3586	.exit = proto_exit_net,
3587};
3588
3589static int __init proto_init(void)
3590{
3591	return register_pernet_subsys(&proto_net_ops);
3592}
3593
3594subsys_initcall(proto_init);
3595
3596#endif /* PROC_FS */
3597
3598#ifdef CONFIG_NET_RX_BUSY_POLL
3599bool sk_busy_loop_end(void *p, unsigned long start_time)
3600{
3601	struct sock *sk = p;
3602
3603	return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3604	       sk_busy_loop_timeout(sk, start_time);
3605}
3606EXPORT_SYMBOL(sk_busy_loop_end);
3607#endif /* CONFIG_NET_RX_BUSY_POLL */