Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Generic socket support routines. Memory allocators, socket lock/release
   8 *		handler for protocols to use and generic option handler.
   9 *
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Alan Cox, <A.Cox@swansea.ac.uk>
  14 *
  15 * Fixes:
  16 *		Alan Cox	: 	Numerous verify_area() problems
  17 *		Alan Cox	:	Connecting on a connecting socket
  18 *					now returns an error for tcp.
  19 *		Alan Cox	:	sock->protocol is set correctly.
  20 *					and is not sometimes left as 0.
  21 *		Alan Cox	:	connect handles icmp errors on a
  22 *					connect properly. Unfortunately there
  23 *					is a restart syscall nasty there. I
  24 *					can't match BSD without hacking the C
  25 *					library. Ideas urgently sought!
  26 *		Alan Cox	:	Disallow bind() to addresses that are
  27 *					not ours - especially broadcast ones!!
  28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
  29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
  30 *					instead they leave that for the DESTROY timer.
  31 *		Alan Cox	:	Clean up error flag in accept
  32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
  33 *					was buggy. Put a remove_sock() in the handler
  34 *					for memory when we hit 0. Also altered the timer
  35 *					code. The ACK stuff can wait and needs major
  36 *					TCP layer surgery.
  37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
  38 *					and fixed timer/inet_bh race.
  39 *		Alan Cox	:	Added zapped flag for TCP
  40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
  41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
  43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
  46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
  47 *	Pauline Middelink	:	identd support
  48 *		Alan Cox	:	Fixed connect() taking signals I think.
  49 *		Alan Cox	:	SO_LINGER supported
  50 *		Alan Cox	:	Error reporting fixes
  51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
  52 *		Alan Cox	:	inet sockets don't set sk->type!
  53 *		Alan Cox	:	Split socket option code
  54 *		Alan Cox	:	Callbacks
  55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
  56 *		Alex		:	Removed restriction on inet fioctl
  57 *		Alan Cox	:	Splitting INET from NET core
  58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
  59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
  60 *		Alan Cox	:	Split IP from generic code
  61 *		Alan Cox	:	New kfree_skbmem()
  62 *		Alan Cox	:	Make SO_DEBUG superuser only.
  63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
  64 *					(compatibility fix)
  65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
  66 *		Alan Cox	:	Allocator for a socket is settable.
  67 *		Alan Cox	:	SO_ERROR includes soft errors.
  68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
  69 *		Alan Cox	: 	Generic socket allocation to make hooks
  70 *					easier (suggested by Craig Metz).
  71 *		Michael Pall	:	SO_ERROR returns positive errno again
  72 *              Steve Whitehouse:       Added default destructor to free
  73 *                                      protocol private data.
  74 *              Steve Whitehouse:       Added various other default routines
  75 *                                      common to several socket families.
  76 *              Chris Evans     :       Call suser() check last on F_SETOWN
  77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
  79 *		Andi Kleen	:	Fix write_space callback
  80 *		Chris Evans	:	Security fixes - signedness again
  81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
  82 *
  83 * To Fix:
  84 */
  85
  86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  87
  88#include <asm/unaligned.h>
  89#include <linux/capability.h>
  90#include <linux/errno.h>
  91#include <linux/errqueue.h>
  92#include <linux/types.h>
  93#include <linux/socket.h>
  94#include <linux/in.h>
  95#include <linux/kernel.h>
  96#include <linux/module.h>
  97#include <linux/proc_fs.h>
  98#include <linux/seq_file.h>
  99#include <linux/sched.h>
 100#include <linux/sched/mm.h>
 101#include <linux/timer.h>
 102#include <linux/string.h>
 103#include <linux/sockios.h>
 104#include <linux/net.h>
 105#include <linux/mm.h>
 106#include <linux/slab.h>
 107#include <linux/interrupt.h>
 108#include <linux/poll.h>
 109#include <linux/tcp.h>
 110#include <linux/init.h>
 111#include <linux/highmem.h>
 112#include <linux/user_namespace.h>
 113#include <linux/static_key.h>
 114#include <linux/memcontrol.h>
 115#include <linux/prefetch.h>
 116#include <linux/compat.h>
 117
 118#include <linux/uaccess.h>
 119
 120#include <linux/netdevice.h>
 121#include <net/protocol.h>
 122#include <linux/skbuff.h>
 123#include <net/net_namespace.h>
 124#include <net/request_sock.h>
 125#include <net/sock.h>
 126#include <linux/net_tstamp.h>
 127#include <net/xfrm.h>
 128#include <linux/ipsec.h>
 129#include <net/cls_cgroup.h>
 130#include <net/netprio_cgroup.h>
 131#include <linux/sock_diag.h>
 132
 133#include <linux/filter.h>
 134#include <net/sock_reuseport.h>
 135#include <net/bpf_sk_storage.h>
 136
 137#include <trace/events/sock.h>
 138
 139#include <net/tcp.h>
 140#include <net/busy_poll.h>
 141
 
 
 
 
 142static DEFINE_MUTEX(proto_list_mutex);
 143static LIST_HEAD(proto_list);
 144
 145static void sock_inuse_add(struct net *net, int val);
 
 146
 147/**
 148 * sk_ns_capable - General socket capability test
 149 * @sk: Socket to use a capability on or through
 150 * @user_ns: The user namespace of the capability to use
 151 * @cap: The capability to use
 152 *
 153 * Test to see if the opener of the socket had when the socket was
 154 * created and the current process has the capability @cap in the user
 155 * namespace @user_ns.
 156 */
 157bool sk_ns_capable(const struct sock *sk,
 158		   struct user_namespace *user_ns, int cap)
 159{
 160	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
 161		ns_capable(user_ns, cap);
 162}
 163EXPORT_SYMBOL(sk_ns_capable);
 164
 165/**
 166 * sk_capable - Socket global capability test
 167 * @sk: Socket to use a capability on or through
 168 * @cap: The global capability to use
 169 *
 170 * Test to see if the opener of the socket had when the socket was
 171 * created and the current process has the capability @cap in all user
 172 * namespaces.
 173 */
 174bool sk_capable(const struct sock *sk, int cap)
 175{
 176	return sk_ns_capable(sk, &init_user_ns, cap);
 177}
 178EXPORT_SYMBOL(sk_capable);
 179
 180/**
 181 * sk_net_capable - Network namespace socket capability test
 182 * @sk: Socket to use a capability on or through
 183 * @cap: The capability to use
 184 *
 185 * Test to see if the opener of the socket had when the socket was created
 186 * and the current process has the capability @cap over the network namespace
 187 * the socket is a member of.
 188 */
 189bool sk_net_capable(const struct sock *sk, int cap)
 190{
 191	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
 192}
 193EXPORT_SYMBOL(sk_net_capable);
 194
 195/*
 196 * Each address family might have different locking rules, so we have
 197 * one slock key per address family and separate keys for internal and
 198 * userspace sockets.
 199 */
 200static struct lock_class_key af_family_keys[AF_MAX];
 201static struct lock_class_key af_family_kern_keys[AF_MAX];
 202static struct lock_class_key af_family_slock_keys[AF_MAX];
 203static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
 204
 205/*
 206 * Make lock validator output more readable. (we pre-construct these
 207 * strings build-time, so that runtime initialization of socket
 208 * locks is fast):
 209 */
 210
 211#define _sock_locks(x)						  \
 212  x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
 213  x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
 214  x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
 215  x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
 216  x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
 217  x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
 218  x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
 219  x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
 220  x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
 221  x "27"       ,	x "28"          ,	x "AF_CAN"      , \
 222  x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
 223  x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
 224  x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
 225  x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
 226  x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
 
 227  x "AF_MAX"
 228
 229static const char *const af_family_key_strings[AF_MAX+1] = {
 230	_sock_locks("sk_lock-")
 231};
 232static const char *const af_family_slock_key_strings[AF_MAX+1] = {
 233	_sock_locks("slock-")
 234};
 235static const char *const af_family_clock_key_strings[AF_MAX+1] = {
 236	_sock_locks("clock-")
 237};
 238
 239static const char *const af_family_kern_key_strings[AF_MAX+1] = {
 240	_sock_locks("k-sk_lock-")
 241};
 242static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
 243	_sock_locks("k-slock-")
 244};
 245static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
 246	_sock_locks("k-clock-")
 247};
 248static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
 249	_sock_locks("rlock-")
 250};
 251static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
 252	_sock_locks("wlock-")
 253};
 254static const char *const af_family_elock_key_strings[AF_MAX+1] = {
 255	_sock_locks("elock-")
 256};
 257
 258/*
 259 * sk_callback_lock and sk queues locking rules are per-address-family,
 260 * so split the lock classes by using a per-AF key:
 261 */
 262static struct lock_class_key af_callback_keys[AF_MAX];
 263static struct lock_class_key af_rlock_keys[AF_MAX];
 264static struct lock_class_key af_wlock_keys[AF_MAX];
 265static struct lock_class_key af_elock_keys[AF_MAX];
 266static struct lock_class_key af_kern_callback_keys[AF_MAX];
 267
 268/* Run time adjustable parameters. */
 269__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
 270EXPORT_SYMBOL(sysctl_wmem_max);
 271__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
 272EXPORT_SYMBOL(sysctl_rmem_max);
 273__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
 274__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
 275
 276/* Maximal space eaten by iovec or ancillary data plus some space */
 277int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
 278EXPORT_SYMBOL(sysctl_optmem_max);
 279
 280int sysctl_tstamp_allow_data __read_mostly = 1;
 281
 282DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
 283EXPORT_SYMBOL_GPL(memalloc_socks_key);
 284
 285/**
 286 * sk_set_memalloc - sets %SOCK_MEMALLOC
 287 * @sk: socket to set it on
 288 *
 289 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
 290 * It's the responsibility of the admin to adjust min_free_kbytes
 291 * to meet the requirements
 292 */
 293void sk_set_memalloc(struct sock *sk)
 294{
 295	sock_set_flag(sk, SOCK_MEMALLOC);
 296	sk->sk_allocation |= __GFP_MEMALLOC;
 297	static_branch_inc(&memalloc_socks_key);
 298}
 299EXPORT_SYMBOL_GPL(sk_set_memalloc);
 300
 301void sk_clear_memalloc(struct sock *sk)
 302{
 303	sock_reset_flag(sk, SOCK_MEMALLOC);
 304	sk->sk_allocation &= ~__GFP_MEMALLOC;
 305	static_branch_dec(&memalloc_socks_key);
 306
 307	/*
 308	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
 309	 * progress of swapping. SOCK_MEMALLOC may be cleared while
 310	 * it has rmem allocations due to the last swapfile being deactivated
 311	 * but there is a risk that the socket is unusable due to exceeding
 312	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
 313	 */
 314	sk_mem_reclaim(sk);
 315}
 316EXPORT_SYMBOL_GPL(sk_clear_memalloc);
 317
 318int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 319{
 320	int ret;
 321	unsigned int noreclaim_flag;
 322
 323	/* these should have been dropped before queueing */
 324	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
 325
 326	noreclaim_flag = memalloc_noreclaim_save();
 327	ret = sk->sk_backlog_rcv(sk, skb);
 
 
 
 328	memalloc_noreclaim_restore(noreclaim_flag);
 329
 330	return ret;
 331}
 332EXPORT_SYMBOL(__sk_backlog_rcv);
 333
 334static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 335{
 336	struct __kernel_sock_timeval tv;
 337
 338	if (timeo == MAX_SCHEDULE_TIMEOUT) {
 339		tv.tv_sec = 0;
 340		tv.tv_usec = 0;
 341	} else {
 342		tv.tv_sec = timeo / HZ;
 343		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
 344	}
 345
 346	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 347		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
 348		*(struct old_timeval32 *)optval = tv32;
 349		return sizeof(tv32);
 350	}
 351
 352	if (old_timeval) {
 353		struct __kernel_old_timeval old_tv;
 354		old_tv.tv_sec = tv.tv_sec;
 355		old_tv.tv_usec = tv.tv_usec;
 356		*(struct __kernel_old_timeval *)optval = old_tv;
 357		return sizeof(old_tv);
 358	}
 359
 360	*(struct __kernel_sock_timeval *)optval = tv;
 361	return sizeof(tv);
 362}
 
 363
 364static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
 365			    bool old_timeval)
 366{
 367	struct __kernel_sock_timeval tv;
 368
 369	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 370		struct old_timeval32 tv32;
 371
 372		if (optlen < sizeof(tv32))
 373			return -EINVAL;
 374
 375		if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
 376			return -EFAULT;
 377		tv.tv_sec = tv32.tv_sec;
 378		tv.tv_usec = tv32.tv_usec;
 379	} else if (old_timeval) {
 380		struct __kernel_old_timeval old_tv;
 381
 382		if (optlen < sizeof(old_tv))
 383			return -EINVAL;
 384		if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
 385			return -EFAULT;
 386		tv.tv_sec = old_tv.tv_sec;
 387		tv.tv_usec = old_tv.tv_usec;
 388	} else {
 389		if (optlen < sizeof(tv))
 390			return -EINVAL;
 391		if (copy_from_sockptr(&tv, optval, sizeof(tv)))
 392			return -EFAULT;
 393	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 394	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
 395		return -EDOM;
 396
 397	if (tv.tv_sec < 0) {
 398		static int warned __read_mostly;
 399
 400		*timeo_p = 0;
 401		if (warned < 10 && net_ratelimit()) {
 402			warned++;
 403			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
 404				__func__, current->comm, task_pid_nr(current));
 405		}
 406		return 0;
 407	}
 408	*timeo_p = MAX_SCHEDULE_TIMEOUT;
 409	if (tv.tv_sec == 0 && tv.tv_usec == 0)
 410		return 0;
 411	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
 412		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
 413	return 0;
 414}
 415
 416static void sock_warn_obsolete_bsdism(const char *name)
 417{
 418	static int warned;
 419	static char warncomm[TASK_COMM_LEN];
 420	if (strcmp(warncomm, current->comm) && warned < 5) {
 421		strcpy(warncomm,  current->comm);
 422		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
 423			warncomm, name);
 424		warned++;
 425	}
 426}
 427
 428static bool sock_needs_netstamp(const struct sock *sk)
 429{
 430	switch (sk->sk_family) {
 431	case AF_UNSPEC:
 432	case AF_UNIX:
 433		return false;
 434	default:
 435		return true;
 436	}
 437}
 438
 439static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
 440{
 441	if (sk->sk_flags & flags) {
 442		sk->sk_flags &= ~flags;
 443		if (sock_needs_netstamp(sk) &&
 444		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
 445			net_disable_timestamp();
 446	}
 447}
 448
 449
 450int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 451{
 452	unsigned long flags;
 453	struct sk_buff_head *list = &sk->sk_receive_queue;
 454
 455	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
 456		atomic_inc(&sk->sk_drops);
 457		trace_sock_rcvqueue_full(sk, skb);
 458		return -ENOMEM;
 459	}
 460
 461	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
 462		atomic_inc(&sk->sk_drops);
 463		return -ENOBUFS;
 464	}
 465
 466	skb->dev = NULL;
 467	skb_set_owner_r(skb, sk);
 468
 469	/* we escape from rcu protected region, make sure we dont leak
 470	 * a norefcounted dst
 471	 */
 472	skb_dst_force(skb);
 473
 474	spin_lock_irqsave(&list->lock, flags);
 475	sock_skb_set_dropcount(sk, skb);
 476	__skb_queue_tail(list, skb);
 477	spin_unlock_irqrestore(&list->lock, flags);
 478
 479	if (!sock_flag(sk, SOCK_DEAD))
 480		sk->sk_data_ready(sk);
 481	return 0;
 482}
 483EXPORT_SYMBOL(__sock_queue_rcv_skb);
 484
 485int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 
 486{
 
 487	int err;
 488
 489	err = sk_filter(sk, skb);
 490	if (err)
 491		return err;
 492
 493	return __sock_queue_rcv_skb(sk, skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 494}
 495EXPORT_SYMBOL(sock_queue_rcv_skb);
 496
 497int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
 498		     const int nested, unsigned int trim_cap, bool refcounted)
 499{
 500	int rc = NET_RX_SUCCESS;
 501
 502	if (sk_filter_trim_cap(sk, skb, trim_cap))
 503		goto discard_and_relse;
 504
 505	skb->dev = NULL;
 506
 507	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
 508		atomic_inc(&sk->sk_drops);
 509		goto discard_and_relse;
 510	}
 511	if (nested)
 512		bh_lock_sock_nested(sk);
 513	else
 514		bh_lock_sock(sk);
 515	if (!sock_owned_by_user(sk)) {
 516		/*
 517		 * trylock + unlock semantics:
 518		 */
 519		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
 520
 521		rc = sk_backlog_rcv(sk, skb);
 522
 523		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
 524	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
 525		bh_unlock_sock(sk);
 526		atomic_inc(&sk->sk_drops);
 527		goto discard_and_relse;
 528	}
 529
 530	bh_unlock_sock(sk);
 531out:
 532	if (refcounted)
 533		sock_put(sk);
 534	return rc;
 535discard_and_relse:
 536	kfree_skb(skb);
 537	goto out;
 538}
 539EXPORT_SYMBOL(__sk_receive_skb);
 540
 
 
 
 
 541struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
 542{
 543	struct dst_entry *dst = __sk_dst_get(sk);
 544
 545	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 
 
 546		sk_tx_queue_clear(sk);
 547		sk->sk_dst_pending_confirm = 0;
 548		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
 549		dst_release(dst);
 550		return NULL;
 551	}
 552
 553	return dst;
 554}
 555EXPORT_SYMBOL(__sk_dst_check);
 556
 557struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
 558{
 559	struct dst_entry *dst = sk_dst_get(sk);
 560
 561	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 
 
 562		sk_dst_reset(sk);
 563		dst_release(dst);
 564		return NULL;
 565	}
 566
 567	return dst;
 568}
 569EXPORT_SYMBOL(sk_dst_check);
 570
 571static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
 572{
 573	int ret = -ENOPROTOOPT;
 574#ifdef CONFIG_NETDEVICES
 575	struct net *net = sock_net(sk);
 576
 577	/* Sorry... */
 578	ret = -EPERM;
 579	if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
 580		goto out;
 581
 582	ret = -EINVAL;
 583	if (ifindex < 0)
 584		goto out;
 585
 586	sk->sk_bound_dev_if = ifindex;
 
 
 587	if (sk->sk_prot->rehash)
 588		sk->sk_prot->rehash(sk);
 589	sk_dst_reset(sk);
 590
 591	ret = 0;
 592
 593out:
 594#endif
 595
 596	return ret;
 597}
 598
 599int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
 600{
 601	int ret;
 602
 603	if (lock_sk)
 604		lock_sock(sk);
 605	ret = sock_bindtoindex_locked(sk, ifindex);
 606	if (lock_sk)
 607		release_sock(sk);
 608
 609	return ret;
 610}
 611EXPORT_SYMBOL(sock_bindtoindex);
 612
 613static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
 614{
 615	int ret = -ENOPROTOOPT;
 616#ifdef CONFIG_NETDEVICES
 617	struct net *net = sock_net(sk);
 618	char devname[IFNAMSIZ];
 619	int index;
 620
 621	ret = -EINVAL;
 622	if (optlen < 0)
 623		goto out;
 624
 625	/* Bind this socket to a particular device like "eth0",
 626	 * as specified in the passed interface name. If the
 627	 * name is "" or the option length is zero the socket
 628	 * is not bound.
 629	 */
 630	if (optlen > IFNAMSIZ - 1)
 631		optlen = IFNAMSIZ - 1;
 632	memset(devname, 0, sizeof(devname));
 633
 634	ret = -EFAULT;
 635	if (copy_from_sockptr(devname, optval, optlen))
 636		goto out;
 637
 638	index = 0;
 639	if (devname[0] != '\0') {
 640		struct net_device *dev;
 641
 642		rcu_read_lock();
 643		dev = dev_get_by_name_rcu(net, devname);
 644		if (dev)
 645			index = dev->ifindex;
 646		rcu_read_unlock();
 647		ret = -ENODEV;
 648		if (!dev)
 649			goto out;
 650	}
 651
 652	return sock_bindtoindex(sk, index, true);
 
 
 653out:
 654#endif
 655
 656	return ret;
 657}
 658
 659static int sock_getbindtodevice(struct sock *sk, char __user *optval,
 660				int __user *optlen, int len)
 661{
 662	int ret = -ENOPROTOOPT;
 663#ifdef CONFIG_NETDEVICES
 
 664	struct net *net = sock_net(sk);
 665	char devname[IFNAMSIZ];
 666
 667	if (sk->sk_bound_dev_if == 0) {
 668		len = 0;
 669		goto zero;
 670	}
 671
 672	ret = -EINVAL;
 673	if (len < IFNAMSIZ)
 674		goto out;
 675
 676	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
 677	if (ret)
 678		goto out;
 679
 680	len = strlen(devname) + 1;
 681
 682	ret = -EFAULT;
 683	if (copy_to_user(optval, devname, len))
 684		goto out;
 685
 686zero:
 687	ret = -EFAULT;
 688	if (put_user(len, optlen))
 689		goto out;
 690
 691	ret = 0;
 692
 693out:
 694#endif
 695
 696	return ret;
 697}
 698
 699bool sk_mc_loop(struct sock *sk)
 700{
 701	if (dev_recursion_level())
 702		return false;
 703	if (!sk)
 704		return true;
 705	switch (sk->sk_family) {
 706	case AF_INET:
 707		return inet_sk(sk)->mc_loop;
 708#if IS_ENABLED(CONFIG_IPV6)
 709	case AF_INET6:
 710		return inet6_sk(sk)->mc_loop;
 711#endif
 712	}
 713	WARN_ON_ONCE(1);
 714	return true;
 715}
 716EXPORT_SYMBOL(sk_mc_loop);
 717
 718void sock_set_reuseaddr(struct sock *sk)
 719{
 720	lock_sock(sk);
 721	sk->sk_reuse = SK_CAN_REUSE;
 722	release_sock(sk);
 723}
 724EXPORT_SYMBOL(sock_set_reuseaddr);
 725
 726void sock_set_reuseport(struct sock *sk)
 727{
 728	lock_sock(sk);
 729	sk->sk_reuseport = true;
 730	release_sock(sk);
 731}
 732EXPORT_SYMBOL(sock_set_reuseport);
 733
 734void sock_no_linger(struct sock *sk)
 735{
 736	lock_sock(sk);
 737	sk->sk_lingertime = 0;
 738	sock_set_flag(sk, SOCK_LINGER);
 739	release_sock(sk);
 740}
 741EXPORT_SYMBOL(sock_no_linger);
 742
 743void sock_set_priority(struct sock *sk, u32 priority)
 744{
 745	lock_sock(sk);
 746	sk->sk_priority = priority;
 747	release_sock(sk);
 748}
 749EXPORT_SYMBOL(sock_set_priority);
 750
 751void sock_set_sndtimeo(struct sock *sk, s64 secs)
 752{
 753	lock_sock(sk);
 754	if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
 755		sk->sk_sndtimeo = secs * HZ;
 756	else
 757		sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
 758	release_sock(sk);
 759}
 760EXPORT_SYMBOL(sock_set_sndtimeo);
 761
 762static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
 763{
 764	if (val)  {
 765		sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
 766		sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
 767		sock_set_flag(sk, SOCK_RCVTSTAMP);
 768		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
 769	} else {
 770		sock_reset_flag(sk, SOCK_RCVTSTAMP);
 771		sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 772		sock_reset_flag(sk, SOCK_TSTAMP_NEW);
 773	}
 774}
 775
 776void sock_enable_timestamps(struct sock *sk)
 777{
 778	lock_sock(sk);
 779	__sock_set_timestamps(sk, true, false, true);
 780	release_sock(sk);
 781}
 782EXPORT_SYMBOL(sock_enable_timestamps);
 783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 784void sock_set_keepalive(struct sock *sk)
 785{
 786	lock_sock(sk);
 787	if (sk->sk_prot->keepalive)
 788		sk->sk_prot->keepalive(sk, true);
 789	sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
 790	release_sock(sk);
 791}
 792EXPORT_SYMBOL(sock_set_keepalive);
 793
 794static void __sock_set_rcvbuf(struct sock *sk, int val)
 795{
 796	/* Ensure val * 2 fits into an int, to prevent max_t() from treating it
 797	 * as a negative value.
 798	 */
 799	val = min_t(int, val, INT_MAX / 2);
 800	sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
 801
 802	/* We double it on the way in to account for "struct sk_buff" etc.
 803	 * overhead.   Applications assume that the SO_RCVBUF setting they make
 804	 * will allow that much actual data to be received on that socket.
 805	 *
 806	 * Applications are unaware that "struct sk_buff" and other overheads
 807	 * allocate from the receive buffer during socket buffer allocation.
 808	 *
 809	 * And after considering the possible alternatives, returning the value
 810	 * we actually used in getsockopt is the most desirable behavior.
 811	 */
 812	WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
 813}
 814
 815void sock_set_rcvbuf(struct sock *sk, int val)
 816{
 817	lock_sock(sk);
 818	__sock_set_rcvbuf(sk, val);
 819	release_sock(sk);
 820}
 821EXPORT_SYMBOL(sock_set_rcvbuf);
 822
 
 
 
 
 
 
 
 
 823void sock_set_mark(struct sock *sk, u32 val)
 824{
 825	lock_sock(sk);
 826	sk->sk_mark = val;
 827	release_sock(sk);
 828}
 829EXPORT_SYMBOL(sock_set_mark);
 830
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 831/*
 832 *	This is meant for all protocols to use and covers goings on
 833 *	at the socket level. Everything here is generic.
 834 */
 835
 836int sock_setsockopt(struct socket *sock, int level, int optname,
 837		    sockptr_t optval, unsigned int optlen)
 838{
 
 
 839	struct sock_txtime sk_txtime;
 840	struct sock *sk = sock->sk;
 841	int val;
 842	int valbool;
 843	struct linger ling;
 844	int ret = 0;
 845
 846	/*
 847	 *	Options without arguments
 848	 */
 849
 850	if (optname == SO_BINDTODEVICE)
 851		return sock_setbindtodevice(sk, optval, optlen);
 852
 853	if (optlen < sizeof(int))
 854		return -EINVAL;
 855
 856	if (copy_from_sockptr(&val, optval, sizeof(val)))
 857		return -EFAULT;
 858
 859	valbool = val ? 1 : 0;
 860
 861	lock_sock(sk);
 862
 863	switch (optname) {
 864	case SO_DEBUG:
 865		if (val && !capable(CAP_NET_ADMIN))
 866			ret = -EACCES;
 867		else
 868			sock_valbool_flag(sk, SOCK_DBG, valbool);
 869		break;
 870	case SO_REUSEADDR:
 871		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
 872		break;
 873	case SO_REUSEPORT:
 874		sk->sk_reuseport = valbool;
 875		break;
 876	case SO_TYPE:
 877	case SO_PROTOCOL:
 878	case SO_DOMAIN:
 879	case SO_ERROR:
 880		ret = -ENOPROTOOPT;
 881		break;
 882	case SO_DONTROUTE:
 883		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
 884		sk_dst_reset(sk);
 885		break;
 886	case SO_BROADCAST:
 887		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
 888		break;
 889	case SO_SNDBUF:
 890		/* Don't error on this BSD doesn't and if you think
 891		 * about it this is right. Otherwise apps have to
 892		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
 893		 * are treated in BSD as hints
 894		 */
 895		val = min_t(u32, val, sysctl_wmem_max);
 896set_sndbuf:
 897		/* Ensure val * 2 fits into an int, to prevent max_t()
 898		 * from treating it as a negative value.
 899		 */
 900		val = min_t(int, val, INT_MAX / 2);
 901		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
 902		WRITE_ONCE(sk->sk_sndbuf,
 903			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
 904		/* Wake up sending tasks if we upped the value. */
 905		sk->sk_write_space(sk);
 906		break;
 907
 908	case SO_SNDBUFFORCE:
 909		if (!capable(CAP_NET_ADMIN)) {
 910			ret = -EPERM;
 911			break;
 912		}
 913
 914		/* No negative values (to prevent underflow, as val will be
 915		 * multiplied by 2).
 916		 */
 917		if (val < 0)
 918			val = 0;
 919		goto set_sndbuf;
 920
 921	case SO_RCVBUF:
 922		/* Don't error on this BSD doesn't and if you think
 923		 * about it this is right. Otherwise apps have to
 924		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
 925		 * are treated in BSD as hints
 926		 */
 927		__sock_set_rcvbuf(sk, min_t(u32, val, sysctl_rmem_max));
 928		break;
 929
 930	case SO_RCVBUFFORCE:
 931		if (!capable(CAP_NET_ADMIN)) {
 932			ret = -EPERM;
 933			break;
 934		}
 935
 936		/* No negative values (to prevent underflow, as val will be
 937		 * multiplied by 2).
 938		 */
 939		__sock_set_rcvbuf(sk, max(val, 0));
 940		break;
 941
 942	case SO_KEEPALIVE:
 943		if (sk->sk_prot->keepalive)
 944			sk->sk_prot->keepalive(sk, valbool);
 945		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
 946		break;
 947
 948	case SO_OOBINLINE:
 949		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
 950		break;
 951
 952	case SO_NO_CHECK:
 953		sk->sk_no_check_tx = valbool;
 954		break;
 955
 956	case SO_PRIORITY:
 957		if ((val >= 0 && val <= 6) ||
 958		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
 
 959			sk->sk_priority = val;
 960		else
 961			ret = -EPERM;
 962		break;
 963
 964	case SO_LINGER:
 965		if (optlen < sizeof(ling)) {
 966			ret = -EINVAL;	/* 1003.1g */
 967			break;
 968		}
 969		if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
 970			ret = -EFAULT;
 971			break;
 972		}
 973		if (!ling.l_onoff)
 974			sock_reset_flag(sk, SOCK_LINGER);
 975		else {
 976#if (BITS_PER_LONG == 32)
 977			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
 978				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
 979			else
 980#endif
 981				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
 982			sock_set_flag(sk, SOCK_LINGER);
 983		}
 984		break;
 985
 986	case SO_BSDCOMPAT:
 987		sock_warn_obsolete_bsdism("setsockopt");
 988		break;
 989
 990	case SO_PASSCRED:
 991		if (valbool)
 992			set_bit(SOCK_PASSCRED, &sock->flags);
 993		else
 994			clear_bit(SOCK_PASSCRED, &sock->flags);
 995		break;
 996
 997	case SO_TIMESTAMP_OLD:
 998		__sock_set_timestamps(sk, valbool, false, false);
 999		break;
1000	case SO_TIMESTAMP_NEW:
1001		__sock_set_timestamps(sk, valbool, true, false);
1002		break;
1003	case SO_TIMESTAMPNS_OLD:
1004		__sock_set_timestamps(sk, valbool, false, true);
1005		break;
1006	case SO_TIMESTAMPNS_NEW:
1007		__sock_set_timestamps(sk, valbool, true, true);
1008		break;
 
1009	case SO_TIMESTAMPING_NEW:
1010		sock_set_flag(sk, SOCK_TSTAMP_NEW);
1011		fallthrough;
1012	case SO_TIMESTAMPING_OLD:
1013		if (val & ~SOF_TIMESTAMPING_MASK) {
1014			ret = -EINVAL;
1015			break;
1016		}
1017
1018		if (val & SOF_TIMESTAMPING_OPT_ID &&
1019		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
1020			if (sk->sk_protocol == IPPROTO_TCP &&
1021			    sk->sk_type == SOCK_STREAM) {
1022				if ((1 << sk->sk_state) &
1023				    (TCPF_CLOSE | TCPF_LISTEN)) {
1024					ret = -EINVAL;
1025					break;
1026				}
1027				sk->sk_tskey = tcp_sk(sk)->snd_una;
1028			} else {
1029				sk->sk_tskey = 0;
1030			}
 
 
 
1031		}
1032
1033		if (val & SOF_TIMESTAMPING_OPT_STATS &&
1034		    !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
1035			ret = -EINVAL;
1036			break;
1037		}
1038
1039		sk->sk_tsflags = val;
1040		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
1041			sock_enable_timestamp(sk,
1042					      SOCK_TIMESTAMPING_RX_SOFTWARE);
1043		else {
1044			if (optname == SO_TIMESTAMPING_NEW)
1045				sock_reset_flag(sk, SOCK_TSTAMP_NEW);
1046
1047			sock_disable_timestamp(sk,
1048					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
1049		}
1050		break;
1051
1052	case SO_RCVLOWAT:
1053		if (val < 0)
1054			val = INT_MAX;
1055		if (sock->ops->set_rcvlowat)
1056			ret = sock->ops->set_rcvlowat(sk, val);
1057		else
1058			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1059		break;
1060
1061	case SO_RCVTIMEO_OLD:
1062	case SO_RCVTIMEO_NEW:
1063		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1064				       optlen, optname == SO_RCVTIMEO_OLD);
1065		break;
1066
1067	case SO_SNDTIMEO_OLD:
1068	case SO_SNDTIMEO_NEW:
1069		ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1070				       optlen, optname == SO_SNDTIMEO_OLD);
1071		break;
1072
1073	case SO_ATTACH_FILTER: {
1074		struct sock_fprog fprog;
1075
1076		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1077		if (!ret)
1078			ret = sk_attach_filter(&fprog, sk);
1079		break;
1080	}
1081	case SO_ATTACH_BPF:
1082		ret = -EINVAL;
1083		if (optlen == sizeof(u32)) {
1084			u32 ufd;
1085
1086			ret = -EFAULT;
1087			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1088				break;
1089
1090			ret = sk_attach_bpf(ufd, sk);
1091		}
1092		break;
1093
1094	case SO_ATTACH_REUSEPORT_CBPF: {
1095		struct sock_fprog fprog;
1096
1097		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1098		if (!ret)
1099			ret = sk_reuseport_attach_filter(&fprog, sk);
1100		break;
1101	}
1102	case SO_ATTACH_REUSEPORT_EBPF:
1103		ret = -EINVAL;
1104		if (optlen == sizeof(u32)) {
1105			u32 ufd;
1106
1107			ret = -EFAULT;
1108			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1109				break;
1110
1111			ret = sk_reuseport_attach_bpf(ufd, sk);
1112		}
1113		break;
1114
1115	case SO_DETACH_REUSEPORT_BPF:
1116		ret = reuseport_detach_prog(sk);
1117		break;
1118
1119	case SO_DETACH_FILTER:
1120		ret = sk_detach_filter(sk);
1121		break;
1122
1123	case SO_LOCK_FILTER:
1124		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1125			ret = -EPERM;
1126		else
1127			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1128		break;
1129
1130	case SO_PASSSEC:
1131		if (valbool)
1132			set_bit(SOCK_PASSSEC, &sock->flags);
1133		else
1134			clear_bit(SOCK_PASSSEC, &sock->flags);
1135		break;
1136	case SO_MARK:
1137		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
 
1138			ret = -EPERM;
1139		} else if (val != sk->sk_mark) {
1140			sk->sk_mark = val;
1141			sk_dst_reset(sk);
 
 
 
 
 
 
 
1142		}
 
 
1143		break;
1144
1145	case SO_RXQ_OVFL:
1146		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1147		break;
1148
1149	case SO_WIFI_STATUS:
1150		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1151		break;
1152
1153	case SO_PEEK_OFF:
1154		if (sock->ops->set_peek_off)
1155			ret = sock->ops->set_peek_off(sk, val);
1156		else
1157			ret = -EOPNOTSUPP;
1158		break;
1159
1160	case SO_NOFCS:
1161		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1162		break;
1163
1164	case SO_SELECT_ERR_QUEUE:
1165		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1166		break;
1167
1168#ifdef CONFIG_NET_RX_BUSY_POLL
1169	case SO_BUSY_POLL:
1170		/* allow unprivileged users to decrease the value */
1171		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1172			ret = -EPERM;
1173		else {
1174			if (val < 0)
1175				ret = -EINVAL;
1176			else
1177				sk->sk_ll_usec = val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1178		}
1179		break;
1180#endif
1181
1182	case SO_MAX_PACING_RATE:
1183		{
1184		unsigned long ulval = (val == ~0U) ? ~0UL : val;
1185
1186		if (sizeof(ulval) != sizeof(val) &&
1187		    optlen >= sizeof(ulval) &&
1188		    copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1189			ret = -EFAULT;
1190			break;
1191		}
1192		if (ulval != ~0UL)
1193			cmpxchg(&sk->sk_pacing_status,
1194				SK_PACING_NONE,
1195				SK_PACING_NEEDED);
1196		sk->sk_max_pacing_rate = ulval;
1197		sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1198		break;
1199		}
1200	case SO_INCOMING_CPU:
1201		WRITE_ONCE(sk->sk_incoming_cpu, val);
1202		break;
1203
1204	case SO_CNX_ADVICE:
1205		if (val == 1)
1206			dst_negative_advice(sk);
1207		break;
1208
1209	case SO_ZEROCOPY:
1210		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1211			if (!((sk->sk_type == SOCK_STREAM &&
1212			       sk->sk_protocol == IPPROTO_TCP) ||
1213			      (sk->sk_type == SOCK_DGRAM &&
1214			       sk->sk_protocol == IPPROTO_UDP)))
1215				ret = -ENOTSUPP;
1216		} else if (sk->sk_family != PF_RDS) {
1217			ret = -ENOTSUPP;
1218		}
1219		if (!ret) {
1220			if (val < 0 || val > 1)
1221				ret = -EINVAL;
1222			else
1223				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1224		}
1225		break;
1226
1227	case SO_TXTIME:
1228		if (optlen != sizeof(struct sock_txtime)) {
1229			ret = -EINVAL;
1230			break;
1231		} else if (copy_from_sockptr(&sk_txtime, optval,
1232			   sizeof(struct sock_txtime))) {
1233			ret = -EFAULT;
1234			break;
1235		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1236			ret = -EINVAL;
1237			break;
1238		}
1239		/* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1240		 * scheduler has enough safe guards.
1241		 */
1242		if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1243		    !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1244			ret = -EPERM;
1245			break;
1246		}
1247		sock_valbool_flag(sk, SOCK_TXTIME, true);
1248		sk->sk_clockid = sk_txtime.clockid;
1249		sk->sk_txtime_deadline_mode =
1250			!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1251		sk->sk_txtime_report_errors =
1252			!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1253		break;
1254
1255	case SO_BINDTOIFINDEX:
1256		ret = sock_bindtoindex_locked(sk, val);
1257		break;
1258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1259	default:
1260		ret = -ENOPROTOOPT;
1261		break;
1262	}
1263	release_sock(sk);
1264	return ret;
1265}
 
 
 
 
 
 
 
1266EXPORT_SYMBOL(sock_setsockopt);
1267
 
 
 
 
 
 
 
 
 
 
1268
1269static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1270			  struct ucred *ucred)
1271{
1272	ucred->pid = pid_vnr(pid);
1273	ucred->uid = ucred->gid = -1;
1274	if (cred) {
1275		struct user_namespace *current_ns = current_user_ns();
1276
1277		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1278		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1279	}
1280}
1281
1282static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1283{
1284	struct user_namespace *user_ns = current_user_ns();
1285	int i;
1286
1287	for (i = 0; i < src->ngroups; i++)
1288		if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
 
 
1289			return -EFAULT;
 
1290
1291	return 0;
1292}
1293
1294int sock_getsockopt(struct socket *sock, int level, int optname,
1295		    char __user *optval, int __user *optlen)
1296{
1297	struct sock *sk = sock->sk;
1298
1299	union {
1300		int val;
1301		u64 val64;
1302		unsigned long ulval;
1303		struct linger ling;
1304		struct old_timeval32 tm32;
1305		struct __kernel_old_timeval tm;
1306		struct  __kernel_sock_timeval stm;
1307		struct sock_txtime txtime;
 
1308	} v;
1309
1310	int lv = sizeof(int);
1311	int len;
1312
1313	if (get_user(len, optlen))
1314		return -EFAULT;
1315	if (len < 0)
1316		return -EINVAL;
1317
1318	memset(&v, 0, sizeof(v));
1319
1320	switch (optname) {
1321	case SO_DEBUG:
1322		v.val = sock_flag(sk, SOCK_DBG);
1323		break;
1324
1325	case SO_DONTROUTE:
1326		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1327		break;
1328
1329	case SO_BROADCAST:
1330		v.val = sock_flag(sk, SOCK_BROADCAST);
1331		break;
1332
1333	case SO_SNDBUF:
1334		v.val = sk->sk_sndbuf;
1335		break;
1336
1337	case SO_RCVBUF:
1338		v.val = sk->sk_rcvbuf;
1339		break;
1340
1341	case SO_REUSEADDR:
1342		v.val = sk->sk_reuse;
1343		break;
1344
1345	case SO_REUSEPORT:
1346		v.val = sk->sk_reuseport;
1347		break;
1348
1349	case SO_KEEPALIVE:
1350		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1351		break;
1352
1353	case SO_TYPE:
1354		v.val = sk->sk_type;
1355		break;
1356
1357	case SO_PROTOCOL:
1358		v.val = sk->sk_protocol;
1359		break;
1360
1361	case SO_DOMAIN:
1362		v.val = sk->sk_family;
1363		break;
1364
1365	case SO_ERROR:
1366		v.val = -sock_error(sk);
1367		if (v.val == 0)
1368			v.val = xchg(&sk->sk_err_soft, 0);
1369		break;
1370
1371	case SO_OOBINLINE:
1372		v.val = sock_flag(sk, SOCK_URGINLINE);
1373		break;
1374
1375	case SO_NO_CHECK:
1376		v.val = sk->sk_no_check_tx;
1377		break;
1378
1379	case SO_PRIORITY:
1380		v.val = sk->sk_priority;
1381		break;
1382
1383	case SO_LINGER:
1384		lv		= sizeof(v.ling);
1385		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1386		v.ling.l_linger	= sk->sk_lingertime / HZ;
1387		break;
1388
1389	case SO_BSDCOMPAT:
1390		sock_warn_obsolete_bsdism("getsockopt");
1391		break;
1392
1393	case SO_TIMESTAMP_OLD:
1394		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1395				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1396				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1397		break;
1398
1399	case SO_TIMESTAMPNS_OLD:
1400		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1401		break;
1402
1403	case SO_TIMESTAMP_NEW:
1404		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1405		break;
1406
1407	case SO_TIMESTAMPNS_NEW:
1408		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1409		break;
1410
1411	case SO_TIMESTAMPING_OLD:
1412		v.val = sk->sk_tsflags;
 
 
1413		break;
1414
1415	case SO_RCVTIMEO_OLD:
1416	case SO_RCVTIMEO_NEW:
1417		lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1418		break;
1419
1420	case SO_SNDTIMEO_OLD:
1421	case SO_SNDTIMEO_NEW:
1422		lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1423		break;
1424
1425	case SO_RCVLOWAT:
1426		v.val = sk->sk_rcvlowat;
1427		break;
1428
1429	case SO_SNDLOWAT:
1430		v.val = 1;
1431		break;
1432
1433	case SO_PASSCRED:
1434		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1435		break;
1436
1437	case SO_PEERCRED:
1438	{
1439		struct ucred peercred;
1440		if (len > sizeof(peercred))
1441			len = sizeof(peercred);
 
 
1442		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1443		if (copy_to_user(optval, &peercred, len))
 
 
1444			return -EFAULT;
1445		goto lenout;
1446	}
1447
1448	case SO_PEERGROUPS:
1449	{
 
1450		int ret, n;
1451
1452		if (!sk->sk_peer_cred)
 
1453			return -ENODATA;
1454
1455		n = sk->sk_peer_cred->group_info->ngroups;
1456		if (len < n * sizeof(gid_t)) {
1457			len = n * sizeof(gid_t);
1458			return put_user(len, optlen) ? -EFAULT : -ERANGE;
 
1459		}
1460		len = n * sizeof(gid_t);
1461
1462		ret = groups_to_user((gid_t __user *)optval,
1463				     sk->sk_peer_cred->group_info);
1464		if (ret)
1465			return ret;
1466		goto lenout;
1467	}
1468
1469	case SO_PEERNAME:
1470	{
1471		char address[128];
1472
1473		lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1474		if (lv < 0)
1475			return -ENOTCONN;
1476		if (lv < len)
1477			return -EINVAL;
1478		if (copy_to_user(optval, address, len))
1479			return -EFAULT;
1480		goto lenout;
1481	}
1482
1483	/* Dubious BSD thing... Probably nobody even uses it, but
1484	 * the UNIX standard wants it for whatever reason... -DaveM
1485	 */
1486	case SO_ACCEPTCONN:
1487		v.val = sk->sk_state == TCP_LISTEN;
1488		break;
1489
1490	case SO_PASSSEC:
1491		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1492		break;
1493
1494	case SO_PEERSEC:
1495		return security_socket_getpeersec_stream(sock, optval, optlen, len);
 
1496
1497	case SO_MARK:
1498		v.val = sk->sk_mark;
1499		break;
1500
 
 
 
 
1501	case SO_RXQ_OVFL:
1502		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1503		break;
1504
1505	case SO_WIFI_STATUS:
1506		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1507		break;
1508
1509	case SO_PEEK_OFF:
1510		if (!sock->ops->set_peek_off)
1511			return -EOPNOTSUPP;
1512
1513		v.val = sk->sk_peek_off;
1514		break;
1515	case SO_NOFCS:
1516		v.val = sock_flag(sk, SOCK_NOFCS);
1517		break;
1518
1519	case SO_BINDTODEVICE:
1520		return sock_getbindtodevice(sk, optval, optlen, len);
1521
1522	case SO_GET_FILTER:
1523		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1524		if (len < 0)
1525			return len;
1526
1527		goto lenout;
1528
1529	case SO_LOCK_FILTER:
1530		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1531		break;
1532
1533	case SO_BPF_EXTENSIONS:
1534		v.val = bpf_tell_extensions();
1535		break;
1536
1537	case SO_SELECT_ERR_QUEUE:
1538		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1539		break;
1540
1541#ifdef CONFIG_NET_RX_BUSY_POLL
1542	case SO_BUSY_POLL:
1543		v.val = sk->sk_ll_usec;
1544		break;
 
 
 
1545#endif
1546
1547	case SO_MAX_PACING_RATE:
1548		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1549			lv = sizeof(v.ulval);
1550			v.ulval = sk->sk_max_pacing_rate;
1551		} else {
1552			/* 32bit version */
1553			v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1554		}
1555		break;
1556
1557	case SO_INCOMING_CPU:
1558		v.val = READ_ONCE(sk->sk_incoming_cpu);
1559		break;
1560
1561	case SO_MEMINFO:
1562	{
1563		u32 meminfo[SK_MEMINFO_VARS];
1564
1565		sk_get_meminfo(sk, meminfo);
1566
1567		len = min_t(unsigned int, len, sizeof(meminfo));
1568		if (copy_to_user(optval, &meminfo, len))
1569			return -EFAULT;
1570
1571		goto lenout;
1572	}
1573
1574#ifdef CONFIG_NET_RX_BUSY_POLL
1575	case SO_INCOMING_NAPI_ID:
1576		v.val = READ_ONCE(sk->sk_napi_id);
1577
1578		/* aggregate non-NAPI IDs down to 0 */
1579		if (v.val < MIN_NAPI_ID)
1580			v.val = 0;
1581
1582		break;
1583#endif
1584
1585	case SO_COOKIE:
1586		lv = sizeof(u64);
1587		if (len < lv)
1588			return -EINVAL;
1589		v.val64 = sock_gen_cookie(sk);
1590		break;
1591
1592	case SO_ZEROCOPY:
1593		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1594		break;
1595
1596	case SO_TXTIME:
1597		lv = sizeof(v.txtime);
1598		v.txtime.clockid = sk->sk_clockid;
1599		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1600				  SOF_TXTIME_DEADLINE_MODE : 0;
1601		v.txtime.flags |= sk->sk_txtime_report_errors ?
1602				  SOF_TXTIME_REPORT_ERRORS : 0;
1603		break;
1604
1605	case SO_BINDTOIFINDEX:
1606		v.val = sk->sk_bound_dev_if;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1607		break;
1608
1609	default:
1610		/* We implement the SO_SNDLOWAT etc to not be settable
1611		 * (1003.1g 7).
1612		 */
1613		return -ENOPROTOOPT;
1614	}
1615
1616	if (len > lv)
1617		len = lv;
1618	if (copy_to_user(optval, &v, len))
1619		return -EFAULT;
1620lenout:
1621	if (put_user(len, optlen))
1622		return -EFAULT;
1623	return 0;
1624}
1625
 
 
 
 
 
 
 
 
1626/*
1627 * Initialize an sk_lock.
1628 *
1629 * (We also register the sk_lock with the lock validator.)
1630 */
1631static inline void sock_lock_init(struct sock *sk)
1632{
1633	if (sk->sk_kern_sock)
1634		sock_lock_init_class_and_name(
1635			sk,
1636			af_family_kern_slock_key_strings[sk->sk_family],
1637			af_family_kern_slock_keys + sk->sk_family,
1638			af_family_kern_key_strings[sk->sk_family],
1639			af_family_kern_keys + sk->sk_family);
1640	else
1641		sock_lock_init_class_and_name(
1642			sk,
1643			af_family_slock_key_strings[sk->sk_family],
1644			af_family_slock_keys + sk->sk_family,
1645			af_family_key_strings[sk->sk_family],
1646			af_family_keys + sk->sk_family);
1647}
1648
1649/*
1650 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1651 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1652 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1653 */
1654static void sock_copy(struct sock *nsk, const struct sock *osk)
1655{
1656	const struct proto *prot = READ_ONCE(osk->sk_prot);
1657#ifdef CONFIG_SECURITY_NETWORK
1658	void *sptr = nsk->sk_security;
1659#endif
 
 
 
 
 
 
 
 
 
 
1660	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1661
1662	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1663	       prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1664
1665#ifdef CONFIG_SECURITY_NETWORK
1666	nsk->sk_security = sptr;
1667	security_sk_clone(osk, nsk);
1668#endif
1669}
1670
1671static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1672		int family)
1673{
1674	struct sock *sk;
1675	struct kmem_cache *slab;
1676
1677	slab = prot->slab;
1678	if (slab != NULL) {
1679		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1680		if (!sk)
1681			return sk;
1682		if (want_init_on_alloc(priority))
1683			sk_prot_clear_nulls(sk, prot->obj_size);
1684	} else
1685		sk = kmalloc(prot->obj_size, priority);
1686
1687	if (sk != NULL) {
1688		if (security_sk_alloc(sk, family, priority))
1689			goto out_free;
1690
1691		if (!try_module_get(prot->owner))
1692			goto out_free_sec;
1693		sk_tx_queue_clear(sk);
1694	}
1695
1696	return sk;
1697
1698out_free_sec:
1699	security_sk_free(sk);
1700out_free:
1701	if (slab != NULL)
1702		kmem_cache_free(slab, sk);
1703	else
1704		kfree(sk);
1705	return NULL;
1706}
1707
1708static void sk_prot_free(struct proto *prot, struct sock *sk)
1709{
1710	struct kmem_cache *slab;
1711	struct module *owner;
1712
1713	owner = prot->owner;
1714	slab = prot->slab;
1715
1716	cgroup_sk_free(&sk->sk_cgrp_data);
1717	mem_cgroup_sk_free(sk);
1718	security_sk_free(sk);
1719	if (slab != NULL)
1720		kmem_cache_free(slab, sk);
1721	else
1722		kfree(sk);
1723	module_put(owner);
1724}
1725
1726/**
1727 *	sk_alloc - All socket objects are allocated here
1728 *	@net: the applicable net namespace
1729 *	@family: protocol family
1730 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1731 *	@prot: struct proto associated with this new sock instance
1732 *	@kern: is this to be a kernel socket?
1733 */
1734struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1735		      struct proto *prot, int kern)
1736{
1737	struct sock *sk;
1738
1739	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1740	if (sk) {
1741		sk->sk_family = family;
1742		/*
1743		 * See comment in struct sock definition to understand
1744		 * why we need sk_prot_creator -acme
1745		 */
1746		sk->sk_prot = sk->sk_prot_creator = prot;
1747		sk->sk_kern_sock = kern;
1748		sock_lock_init(sk);
1749		sk->sk_net_refcnt = kern ? 0 : 1;
1750		if (likely(sk->sk_net_refcnt)) {
1751			get_net(net);
1752			sock_inuse_add(net, 1);
 
 
 
1753		}
1754
1755		sock_net_set(sk, net);
1756		refcount_set(&sk->sk_wmem_alloc, 1);
1757
1758		mem_cgroup_sk_alloc(sk);
1759		cgroup_sk_alloc(&sk->sk_cgrp_data);
1760		sock_update_classid(&sk->sk_cgrp_data);
1761		sock_update_netprioidx(&sk->sk_cgrp_data);
1762		sk_tx_queue_clear(sk);
1763	}
1764
1765	return sk;
1766}
1767EXPORT_SYMBOL(sk_alloc);
1768
1769/* Sockets having SOCK_RCU_FREE will call this function after one RCU
1770 * grace period. This is the case for UDP sockets and TCP listeners.
1771 */
1772static void __sk_destruct(struct rcu_head *head)
1773{
1774	struct sock *sk = container_of(head, struct sock, sk_rcu);
1775	struct sk_filter *filter;
1776
1777	if (sk->sk_destruct)
1778		sk->sk_destruct(sk);
1779
1780	filter = rcu_dereference_check(sk->sk_filter,
1781				       refcount_read(&sk->sk_wmem_alloc) == 0);
1782	if (filter) {
1783		sk_filter_uncharge(sk, filter);
1784		RCU_INIT_POINTER(sk->sk_filter, NULL);
1785	}
1786
1787	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1788
1789#ifdef CONFIG_BPF_SYSCALL
1790	bpf_sk_storage_free(sk);
1791#endif
1792
1793	if (atomic_read(&sk->sk_omem_alloc))
1794		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1795			 __func__, atomic_read(&sk->sk_omem_alloc));
1796
1797	if (sk->sk_frag.page) {
1798		put_page(sk->sk_frag.page);
1799		sk->sk_frag.page = NULL;
1800	}
1801
1802	if (sk->sk_peer_cred)
1803		put_cred(sk->sk_peer_cred);
1804	put_pid(sk->sk_peer_pid);
 
1805	if (likely(sk->sk_net_refcnt))
1806		put_net(sock_net(sk));
 
 
 
1807	sk_prot_free(sk->sk_prot_creator, sk);
1808}
1809
1810void sk_destruct(struct sock *sk)
1811{
1812	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
1813
1814	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
1815		reuseport_detach_sock(sk);
1816		use_call_rcu = true;
1817	}
1818
1819	if (use_call_rcu)
1820		call_rcu(&sk->sk_rcu, __sk_destruct);
1821	else
1822		__sk_destruct(&sk->sk_rcu);
1823}
1824
1825static void __sk_free(struct sock *sk)
1826{
1827	if (likely(sk->sk_net_refcnt))
1828		sock_inuse_add(sock_net(sk), -1);
1829
1830	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1831		sock_diag_broadcast_destroy(sk);
1832	else
1833		sk_destruct(sk);
1834}
1835
1836void sk_free(struct sock *sk)
1837{
1838	/*
1839	 * We subtract one from sk_wmem_alloc and can know if
1840	 * some packets are still in some tx queue.
1841	 * If not null, sock_wfree() will call __sk_free(sk) later
1842	 */
1843	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1844		__sk_free(sk);
1845}
1846EXPORT_SYMBOL(sk_free);
1847
1848static void sk_init_common(struct sock *sk)
1849{
1850	skb_queue_head_init(&sk->sk_receive_queue);
1851	skb_queue_head_init(&sk->sk_write_queue);
1852	skb_queue_head_init(&sk->sk_error_queue);
1853
1854	rwlock_init(&sk->sk_callback_lock);
1855	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1856			af_rlock_keys + sk->sk_family,
1857			af_family_rlock_key_strings[sk->sk_family]);
1858	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1859			af_wlock_keys + sk->sk_family,
1860			af_family_wlock_key_strings[sk->sk_family]);
1861	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1862			af_elock_keys + sk->sk_family,
1863			af_family_elock_key_strings[sk->sk_family]);
1864	lockdep_set_class_and_name(&sk->sk_callback_lock,
1865			af_callback_keys + sk->sk_family,
1866			af_family_clock_key_strings[sk->sk_family]);
1867}
1868
1869/**
1870 *	sk_clone_lock - clone a socket, and lock its clone
1871 *	@sk: the socket to clone
1872 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1873 *
1874 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1875 */
1876struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1877{
1878	struct proto *prot = READ_ONCE(sk->sk_prot);
1879	struct sock *newsk;
1880	bool is_charged = true;
 
1881
1882	newsk = sk_prot_alloc(prot, priority, sk->sk_family);
1883	if (newsk != NULL) {
1884		struct sk_filter *filter;
1885
1886		sock_copy(newsk, sk);
1887
1888		newsk->sk_prot_creator = prot;
1889
1890		/* SANITY */
1891		if (likely(newsk->sk_net_refcnt))
1892			get_net(sock_net(newsk));
1893		sk_node_init(&newsk->sk_node);
1894		sock_lock_init(newsk);
1895		bh_lock_sock(newsk);
1896		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1897		newsk->sk_backlog.len = 0;
1898
1899		atomic_set(&newsk->sk_rmem_alloc, 0);
1900		/*
1901		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
 
 
 
 
 
 
1902		 */
1903		refcount_set(&newsk->sk_wmem_alloc, 1);
1904		atomic_set(&newsk->sk_omem_alloc, 0);
1905		sk_init_common(newsk);
1906
1907		newsk->sk_dst_cache	= NULL;
1908		newsk->sk_dst_pending_confirm = 0;
1909		newsk->sk_wmem_queued	= 0;
1910		newsk->sk_forward_alloc = 0;
1911		atomic_set(&newsk->sk_drops, 0);
1912		newsk->sk_send_head	= NULL;
1913		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1914		atomic_set(&newsk->sk_zckey, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1915
1916		sock_reset_flag(newsk, SOCK_DONE);
1917
1918		/* sk->sk_memcg will be populated at accept() time */
1919		newsk->sk_memcg = NULL;
1920
1921		cgroup_sk_clone(&newsk->sk_cgrp_data);
1922
1923		rcu_read_lock();
1924		filter = rcu_dereference(sk->sk_filter);
1925		if (filter != NULL)
1926			/* though it's an empty new sock, the charging may fail
1927			 * if sysctl_optmem_max was changed between creation of
1928			 * original socket and cloning
1929			 */
1930			is_charged = sk_filter_charge(newsk, filter);
1931		RCU_INIT_POINTER(newsk->sk_filter, filter);
1932		rcu_read_unlock();
1933
1934		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1935			/* We need to make sure that we don't uncharge the new
1936			 * socket if we couldn't charge it in the first place
1937			 * as otherwise we uncharge the parent's filter.
1938			 */
1939			if (!is_charged)
1940				RCU_INIT_POINTER(newsk->sk_filter, NULL);
1941			sk_free_unlock_clone(newsk);
1942			newsk = NULL;
1943			goto out;
1944		}
1945		RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1946
1947		if (bpf_sk_storage_clone(sk, newsk)) {
1948			sk_free_unlock_clone(newsk);
1949			newsk = NULL;
1950			goto out;
1951		}
1952
1953		/* Clear sk_user_data if parent had the pointer tagged
1954		 * as not suitable for copying when cloning.
1955		 */
1956		if (sk_user_data_is_nocopy(newsk))
1957			newsk->sk_user_data = NULL;
1958
1959		newsk->sk_err	   = 0;
1960		newsk->sk_err_soft = 0;
1961		newsk->sk_priority = 0;
1962		newsk->sk_incoming_cpu = raw_smp_processor_id();
1963		if (likely(newsk->sk_net_refcnt))
1964			sock_inuse_add(sock_net(newsk), 1);
1965
1966		/*
1967		 * Before updating sk_refcnt, we must commit prior changes to memory
1968		 * (Documentation/RCU/rculist_nulls.rst for details)
1969		 */
1970		smp_wmb();
1971		refcount_set(&newsk->sk_refcnt, 2);
1972
1973		/*
1974		 * Increment the counter in the same struct proto as the master
1975		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1976		 * is the same as sk->sk_prot->socks, as this field was copied
1977		 * with memcpy).
1978		 *
1979		 * This _changes_ the previous behaviour, where
1980		 * tcp_create_openreq_child always was incrementing the
1981		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1982		 * to be taken into account in all callers. -acme
1983		 */
1984		sk_refcnt_debug_inc(newsk);
1985		sk_set_socket(newsk, NULL);
1986		sk_tx_queue_clear(newsk);
1987		RCU_INIT_POINTER(newsk->sk_wq, NULL);
1988
1989		if (newsk->sk_prot->sockets_allocated)
1990			sk_sockets_allocated_inc(newsk);
1991
1992		if (sock_needs_netstamp(sk) &&
1993		    newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1994			net_enable_timestamp();
1995	}
1996out:
1997	return newsk;
1998}
1999EXPORT_SYMBOL_GPL(sk_clone_lock);
2000
2001void sk_free_unlock_clone(struct sock *sk)
2002{
2003	/* It is still raw copy of parent, so invalidate
2004	 * destructor and make plain sk_free() */
2005	sk->sk_destruct = NULL;
2006	bh_unlock_sock(sk);
2007	sk_free(sk);
2008}
2009EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2010
 
 
 
 
 
 
 
 
 
 
 
 
 
2011void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2012{
2013	u32 max_segs = 1;
2014
2015	sk_dst_set(sk, dst);
2016	sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
 
 
2017	if (sk->sk_route_caps & NETIF_F_GSO)
2018		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2019	sk->sk_route_caps &= ~sk->sk_route_nocaps;
 
2020	if (sk_can_gso(sk)) {
2021		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2022			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2023		} else {
2024			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2025			sk->sk_gso_max_size = dst->dev->gso_max_size;
2026			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
 
 
 
 
2027		}
2028	}
2029	sk->sk_gso_max_segs = max_segs;
2030}
2031EXPORT_SYMBOL_GPL(sk_setup_caps);
2032
2033/*
2034 *	Simple resource managers for sockets.
2035 */
2036
2037
2038/*
2039 * Write buffer destructor automatically called from kfree_skb.
2040 */
2041void sock_wfree(struct sk_buff *skb)
2042{
2043	struct sock *sk = skb->sk;
2044	unsigned int len = skb->truesize;
 
2045
2046	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
 
 
 
 
 
 
 
 
 
 
 
2047		/*
2048		 * Keep a reference on sk_wmem_alloc, this will be released
2049		 * after sk_write_space() call
2050		 */
2051		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2052		sk->sk_write_space(sk);
2053		len = 1;
2054	}
2055	/*
2056	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2057	 * could not do because of in-flight packets
2058	 */
2059	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2060		__sk_free(sk);
2061}
2062EXPORT_SYMBOL(sock_wfree);
2063
2064/* This variant of sock_wfree() is used by TCP,
2065 * since it sets SOCK_USE_WRITE_QUEUE.
2066 */
2067void __sock_wfree(struct sk_buff *skb)
2068{
2069	struct sock *sk = skb->sk;
2070
2071	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2072		__sk_free(sk);
2073}
2074
2075void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2076{
2077	skb_orphan(skb);
2078	skb->sk = sk;
2079#ifdef CONFIG_INET
2080	if (unlikely(!sk_fullsock(sk))) {
2081		skb->destructor = sock_edemux;
2082		sock_hold(sk);
2083		return;
2084	}
2085#endif
2086	skb->destructor = sock_wfree;
2087	skb_set_hash_from_sk(skb, sk);
2088	/*
2089	 * We used to take a refcount on sk, but following operation
2090	 * is enough to guarantee sk_free() wont free this sock until
2091	 * all in-flight packets are completed
2092	 */
2093	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2094}
2095EXPORT_SYMBOL(skb_set_owner_w);
2096
2097static bool can_skb_orphan_partial(const struct sk_buff *skb)
2098{
2099#ifdef CONFIG_TLS_DEVICE
2100	/* Drivers depend on in-order delivery for crypto offload,
2101	 * partial orphan breaks out-of-order-OK logic.
2102	 */
2103	if (skb->decrypted)
2104		return false;
2105#endif
2106	return (skb->destructor == sock_wfree ||
2107		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2108}
2109
2110/* This helper is used by netem, as it can hold packets in its
2111 * delay queue. We want to allow the owner socket to send more
2112 * packets, as if they were already TX completed by a typical driver.
2113 * But we also want to keep skb->sk set because some packet schedulers
2114 * rely on it (sch_fq for example).
2115 */
2116void skb_orphan_partial(struct sk_buff *skb)
2117{
2118	if (skb_is_tcp_pure_ack(skb))
2119		return;
2120
2121	if (can_skb_orphan_partial(skb)) {
2122		struct sock *sk = skb->sk;
2123
2124		if (refcount_inc_not_zero(&sk->sk_refcnt)) {
2125			WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
2126			skb->destructor = sock_efree;
2127		}
2128	} else {
2129		skb_orphan(skb);
2130	}
2131}
2132EXPORT_SYMBOL(skb_orphan_partial);
2133
2134/*
2135 * Read buffer destructor automatically called from kfree_skb.
2136 */
2137void sock_rfree(struct sk_buff *skb)
2138{
2139	struct sock *sk = skb->sk;
2140	unsigned int len = skb->truesize;
2141
2142	atomic_sub(len, &sk->sk_rmem_alloc);
2143	sk_mem_uncharge(sk, len);
2144}
2145EXPORT_SYMBOL(sock_rfree);
2146
2147/*
2148 * Buffer destructor for skbs that are not used directly in read or write
2149 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2150 */
2151void sock_efree(struct sk_buff *skb)
2152{
2153	sock_put(skb->sk);
2154}
2155EXPORT_SYMBOL(sock_efree);
2156
2157/* Buffer destructor for prefetch/receive path where reference count may
2158 * not be held, e.g. for listen sockets.
2159 */
2160#ifdef CONFIG_INET
2161void sock_pfree(struct sk_buff *skb)
2162{
2163	if (sk_is_refcounted(skb->sk))
2164		sock_gen_put(skb->sk);
2165}
2166EXPORT_SYMBOL(sock_pfree);
2167#endif /* CONFIG_INET */
2168
2169kuid_t sock_i_uid(struct sock *sk)
2170{
2171	kuid_t uid;
2172
2173	read_lock_bh(&sk->sk_callback_lock);
2174	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2175	read_unlock_bh(&sk->sk_callback_lock);
2176	return uid;
2177}
2178EXPORT_SYMBOL(sock_i_uid);
2179
2180unsigned long sock_i_ino(struct sock *sk)
2181{
2182	unsigned long ino;
2183
2184	read_lock_bh(&sk->sk_callback_lock);
2185	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2186	read_unlock_bh(&sk->sk_callback_lock);
2187	return ino;
2188}
2189EXPORT_SYMBOL(sock_i_ino);
2190
2191/*
2192 * Allocate a skb from the socket's send buffer.
2193 */
2194struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2195			     gfp_t priority)
2196{
2197	if (force ||
2198	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2199		struct sk_buff *skb = alloc_skb(size, priority);
2200
2201		if (skb) {
2202			skb_set_owner_w(skb, sk);
2203			return skb;
2204		}
2205	}
2206	return NULL;
2207}
2208EXPORT_SYMBOL(sock_wmalloc);
2209
2210static void sock_ofree(struct sk_buff *skb)
2211{
2212	struct sock *sk = skb->sk;
2213
2214	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2215}
2216
2217struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2218			     gfp_t priority)
2219{
2220	struct sk_buff *skb;
2221
2222	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2223	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2224	    sysctl_optmem_max)
2225		return NULL;
2226
2227	skb = alloc_skb(size, priority);
2228	if (!skb)
2229		return NULL;
2230
2231	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2232	skb->sk = sk;
2233	skb->destructor = sock_ofree;
2234	return skb;
2235}
2236
2237/*
2238 * Allocate a memory block from the socket's option memory buffer.
2239 */
2240void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2241{
2242	if ((unsigned int)size <= sysctl_optmem_max &&
2243	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
 
 
2244		void *mem;
2245		/* First do the add, to avoid the race if kmalloc
2246		 * might sleep.
2247		 */
2248		atomic_add(size, &sk->sk_omem_alloc);
2249		mem = kmalloc(size, priority);
2250		if (mem)
2251			return mem;
2252		atomic_sub(size, &sk->sk_omem_alloc);
2253	}
2254	return NULL;
2255}
2256EXPORT_SYMBOL(sock_kmalloc);
2257
2258/* Free an option memory block. Note, we actually want the inline
2259 * here as this allows gcc to detect the nullify and fold away the
2260 * condition entirely.
2261 */
2262static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2263				  const bool nullify)
2264{
2265	if (WARN_ON_ONCE(!mem))
2266		return;
2267	if (nullify)
2268		kfree_sensitive(mem);
2269	else
2270		kfree(mem);
2271	atomic_sub(size, &sk->sk_omem_alloc);
2272}
2273
2274void sock_kfree_s(struct sock *sk, void *mem, int size)
2275{
2276	__sock_kfree_s(sk, mem, size, false);
2277}
2278EXPORT_SYMBOL(sock_kfree_s);
2279
2280void sock_kzfree_s(struct sock *sk, void *mem, int size)
2281{
2282	__sock_kfree_s(sk, mem, size, true);
2283}
2284EXPORT_SYMBOL(sock_kzfree_s);
2285
2286/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2287   I think, these locks should be removed for datagram sockets.
2288 */
2289static long sock_wait_for_wmem(struct sock *sk, long timeo)
2290{
2291	DEFINE_WAIT(wait);
2292
2293	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2294	for (;;) {
2295		if (!timeo)
2296			break;
2297		if (signal_pending(current))
2298			break;
2299		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2300		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2301		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2302			break;
2303		if (sk->sk_shutdown & SEND_SHUTDOWN)
2304			break;
2305		if (sk->sk_err)
2306			break;
2307		timeo = schedule_timeout(timeo);
2308	}
2309	finish_wait(sk_sleep(sk), &wait);
2310	return timeo;
2311}
2312
2313
2314/*
2315 *	Generic send/receive buffer handlers
2316 */
2317
2318struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2319				     unsigned long data_len, int noblock,
2320				     int *errcode, int max_page_order)
2321{
2322	struct sk_buff *skb;
2323	long timeo;
2324	int err;
2325
2326	timeo = sock_sndtimeo(sk, noblock);
2327	for (;;) {
2328		err = sock_error(sk);
2329		if (err != 0)
2330			goto failure;
2331
2332		err = -EPIPE;
2333		if (sk->sk_shutdown & SEND_SHUTDOWN)
2334			goto failure;
2335
2336		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2337			break;
2338
2339		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2340		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2341		err = -EAGAIN;
2342		if (!timeo)
2343			goto failure;
2344		if (signal_pending(current))
2345			goto interrupted;
2346		timeo = sock_wait_for_wmem(sk, timeo);
2347	}
2348	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2349				   errcode, sk->sk_allocation);
2350	if (skb)
2351		skb_set_owner_w(skb, sk);
2352	return skb;
2353
2354interrupted:
2355	err = sock_intr_errno(timeo);
2356failure:
2357	*errcode = err;
2358	return NULL;
2359}
2360EXPORT_SYMBOL(sock_alloc_send_pskb);
2361
2362struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2363				    int noblock, int *errcode)
2364{
2365	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2366}
2367EXPORT_SYMBOL(sock_alloc_send_skb);
2368
2369int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2370		     struct sockcm_cookie *sockc)
2371{
2372	u32 tsflags;
2373
2374	switch (cmsg->cmsg_type) {
2375	case SO_MARK:
2376		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
 
2377			return -EPERM;
2378		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2379			return -EINVAL;
2380		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2381		break;
2382	case SO_TIMESTAMPING_OLD:
2383		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2384			return -EINVAL;
2385
2386		tsflags = *(u32 *)CMSG_DATA(cmsg);
2387		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2388			return -EINVAL;
2389
2390		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2391		sockc->tsflags |= tsflags;
2392		break;
2393	case SCM_TXTIME:
2394		if (!sock_flag(sk, SOCK_TXTIME))
2395			return -EINVAL;
2396		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2397			return -EINVAL;
2398		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2399		break;
2400	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2401	case SCM_RIGHTS:
2402	case SCM_CREDENTIALS:
2403		break;
2404	default:
2405		return -EINVAL;
2406	}
2407	return 0;
2408}
2409EXPORT_SYMBOL(__sock_cmsg_send);
2410
2411int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2412		   struct sockcm_cookie *sockc)
2413{
2414	struct cmsghdr *cmsg;
2415	int ret;
2416
2417	for_each_cmsghdr(cmsg, msg) {
2418		if (!CMSG_OK(msg, cmsg))
2419			return -EINVAL;
2420		if (cmsg->cmsg_level != SOL_SOCKET)
2421			continue;
2422		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2423		if (ret)
2424			return ret;
2425	}
2426	return 0;
2427}
2428EXPORT_SYMBOL(sock_cmsg_send);
2429
2430static void sk_enter_memory_pressure(struct sock *sk)
2431{
2432	if (!sk->sk_prot->enter_memory_pressure)
2433		return;
2434
2435	sk->sk_prot->enter_memory_pressure(sk);
2436}
2437
2438static void sk_leave_memory_pressure(struct sock *sk)
2439{
2440	if (sk->sk_prot->leave_memory_pressure) {
2441		sk->sk_prot->leave_memory_pressure(sk);
2442	} else {
2443		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2444
2445		if (memory_pressure && READ_ONCE(*memory_pressure))
2446			WRITE_ONCE(*memory_pressure, 0);
2447	}
2448}
2449
2450#define SKB_FRAG_PAGE_ORDER	get_order(32768)
2451DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2452
2453/**
2454 * skb_page_frag_refill - check that a page_frag contains enough room
2455 * @sz: minimum size of the fragment we want to get
2456 * @pfrag: pointer to page_frag
2457 * @gfp: priority for memory allocation
2458 *
2459 * Note: While this allocator tries to use high order pages, there is
2460 * no guarantee that allocations succeed. Therefore, @sz MUST be
2461 * less or equal than PAGE_SIZE.
2462 */
2463bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2464{
2465	if (pfrag->page) {
2466		if (page_ref_count(pfrag->page) == 1) {
2467			pfrag->offset = 0;
2468			return true;
2469		}
2470		if (pfrag->offset + sz <= pfrag->size)
2471			return true;
2472		put_page(pfrag->page);
2473	}
2474
2475	pfrag->offset = 0;
2476	if (SKB_FRAG_PAGE_ORDER &&
2477	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2478		/* Avoid direct reclaim but allow kswapd to wake */
2479		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2480					  __GFP_COMP | __GFP_NOWARN |
2481					  __GFP_NORETRY,
2482					  SKB_FRAG_PAGE_ORDER);
2483		if (likely(pfrag->page)) {
2484			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2485			return true;
2486		}
2487	}
2488	pfrag->page = alloc_page(gfp);
2489	if (likely(pfrag->page)) {
2490		pfrag->size = PAGE_SIZE;
2491		return true;
2492	}
2493	return false;
2494}
2495EXPORT_SYMBOL(skb_page_frag_refill);
2496
2497bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2498{
2499	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2500		return true;
2501
2502	sk_enter_memory_pressure(sk);
2503	sk_stream_moderate_sndbuf(sk);
2504	return false;
2505}
2506EXPORT_SYMBOL(sk_page_frag_refill);
2507
2508static void __lock_sock(struct sock *sk)
2509	__releases(&sk->sk_lock.slock)
2510	__acquires(&sk->sk_lock.slock)
2511{
2512	DEFINE_WAIT(wait);
2513
2514	for (;;) {
2515		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2516					TASK_UNINTERRUPTIBLE);
2517		spin_unlock_bh(&sk->sk_lock.slock);
2518		schedule();
2519		spin_lock_bh(&sk->sk_lock.slock);
2520		if (!sock_owned_by_user(sk))
2521			break;
2522	}
2523	finish_wait(&sk->sk_lock.wq, &wait);
2524}
2525
2526void __release_sock(struct sock *sk)
2527	__releases(&sk->sk_lock.slock)
2528	__acquires(&sk->sk_lock.slock)
2529{
2530	struct sk_buff *skb, *next;
2531
2532	while ((skb = sk->sk_backlog.head) != NULL) {
2533		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2534
2535		spin_unlock_bh(&sk->sk_lock.slock);
2536
2537		do {
2538			next = skb->next;
2539			prefetch(next);
2540			WARN_ON_ONCE(skb_dst_is_noref(skb));
2541			skb_mark_not_on_list(skb);
2542			sk_backlog_rcv(sk, skb);
2543
2544			cond_resched();
2545
2546			skb = next;
2547		} while (skb != NULL);
2548
2549		spin_lock_bh(&sk->sk_lock.slock);
2550	}
2551
2552	/*
2553	 * Doing the zeroing here guarantee we can not loop forever
2554	 * while a wild producer attempts to flood us.
2555	 */
2556	sk->sk_backlog.len = 0;
2557}
2558
2559void __sk_flush_backlog(struct sock *sk)
2560{
2561	spin_lock_bh(&sk->sk_lock.slock);
2562	__release_sock(sk);
2563	spin_unlock_bh(&sk->sk_lock.slock);
2564}
 
2565
2566/**
2567 * sk_wait_data - wait for data to arrive at sk_receive_queue
2568 * @sk:    sock to wait on
2569 * @timeo: for how long
2570 * @skb:   last skb seen on sk_receive_queue
2571 *
2572 * Now socket state including sk->sk_err is changed only under lock,
2573 * hence we may omit checks after joining wait queue.
2574 * We check receive queue before schedule() only as optimization;
2575 * it is very likely that release_sock() added new data.
2576 */
2577int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2578{
2579	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2580	int rc;
2581
2582	add_wait_queue(sk_sleep(sk), &wait);
2583	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2584	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2585	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2586	remove_wait_queue(sk_sleep(sk), &wait);
2587	return rc;
2588}
2589EXPORT_SYMBOL(sk_wait_data);
2590
2591/**
2592 *	__sk_mem_raise_allocated - increase memory_allocated
2593 *	@sk: socket
2594 *	@size: memory size to allocate
2595 *	@amt: pages to allocate
2596 *	@kind: allocation type
2597 *
2598 *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2599 */
2600int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2601{
 
2602	struct proto *prot = sk->sk_prot;
2603	long allocated = sk_memory_allocated_add(sk, amt);
2604	bool charged = true;
 
2605
2606	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2607	    !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
 
 
 
2608		goto suppress_allocation;
2609
2610	/* Under limit. */
2611	if (allocated <= sk_prot_mem_limits(sk, 0)) {
2612		sk_leave_memory_pressure(sk);
2613		return 1;
2614	}
2615
2616	/* Under pressure. */
2617	if (allocated > sk_prot_mem_limits(sk, 1))
2618		sk_enter_memory_pressure(sk);
2619
2620	/* Over hard limit. */
2621	if (allocated > sk_prot_mem_limits(sk, 2))
2622		goto suppress_allocation;
2623
2624	/* guarantee minimum buffer size under pressure */
2625	if (kind == SK_MEM_RECV) {
2626		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2627			return 1;
2628
2629	} else { /* SK_MEM_SEND */
2630		int wmem0 = sk_get_wmem0(sk, prot);
2631
2632		if (sk->sk_type == SOCK_STREAM) {
2633			if (sk->sk_wmem_queued < wmem0)
2634				return 1;
2635		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2636				return 1;
2637		}
2638	}
2639
2640	if (sk_has_memory_pressure(sk)) {
2641		u64 alloc;
2642
2643		if (!sk_under_memory_pressure(sk))
2644			return 1;
2645		alloc = sk_sockets_allocated_read_positive(sk);
2646		if (sk_prot_mem_limits(sk, 2) > alloc *
2647		    sk_mem_pages(sk->sk_wmem_queued +
2648				 atomic_read(&sk->sk_rmem_alloc) +
2649				 sk->sk_forward_alloc))
2650			return 1;
2651	}
2652
2653suppress_allocation:
2654
2655	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2656		sk_stream_moderate_sndbuf(sk);
2657
2658		/* Fail only if socket is _under_ its sndbuf.
2659		 * In this case we cannot block, so that we have to fail.
2660		 */
2661		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
 
 
 
 
 
2662			return 1;
 
2663	}
2664
2665	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2666		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2667
2668	sk_memory_allocated_sub(sk, amt);
2669
2670	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2671		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2672
2673	return 0;
2674}
2675EXPORT_SYMBOL(__sk_mem_raise_allocated);
2676
2677/**
2678 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2679 *	@sk: socket
2680 *	@size: memory size to allocate
2681 *	@kind: allocation type
2682 *
2683 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2684 *	rmem allocation. This function assumes that protocols which have
2685 *	memory_pressure use sk_wmem_queued as write buffer accounting.
2686 */
2687int __sk_mem_schedule(struct sock *sk, int size, int kind)
2688{
2689	int ret, amt = sk_mem_pages(size);
2690
2691	sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2692	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2693	if (!ret)
2694		sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2695	return ret;
2696}
2697EXPORT_SYMBOL(__sk_mem_schedule);
2698
2699/**
2700 *	__sk_mem_reduce_allocated - reclaim memory_allocated
2701 *	@sk: socket
2702 *	@amount: number of quanta
2703 *
2704 *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2705 */
2706void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2707{
2708	sk_memory_allocated_sub(sk, amount);
2709
2710	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2711		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2712
2713	if (sk_under_memory_pressure(sk) &&
2714	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2715		sk_leave_memory_pressure(sk);
2716}
2717EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2718
2719/**
2720 *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2721 *	@sk: socket
2722 *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2723 */
2724void __sk_mem_reclaim(struct sock *sk, int amount)
2725{
2726	amount >>= SK_MEM_QUANTUM_SHIFT;
2727	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2728	__sk_mem_reduce_allocated(sk, amount);
2729}
2730EXPORT_SYMBOL(__sk_mem_reclaim);
2731
2732int sk_set_peek_off(struct sock *sk, int val)
2733{
2734	sk->sk_peek_off = val;
2735	return 0;
2736}
2737EXPORT_SYMBOL_GPL(sk_set_peek_off);
2738
2739/*
2740 * Set of default routines for initialising struct proto_ops when
2741 * the protocol does not support a particular function. In certain
2742 * cases where it makes no sense for a protocol to have a "do nothing"
2743 * function, some default processing is provided.
2744 */
2745
2746int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2747{
2748	return -EOPNOTSUPP;
2749}
2750EXPORT_SYMBOL(sock_no_bind);
2751
2752int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2753		    int len, int flags)
2754{
2755	return -EOPNOTSUPP;
2756}
2757EXPORT_SYMBOL(sock_no_connect);
2758
2759int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2760{
2761	return -EOPNOTSUPP;
2762}
2763EXPORT_SYMBOL(sock_no_socketpair);
2764
2765int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2766		   bool kern)
2767{
2768	return -EOPNOTSUPP;
2769}
2770EXPORT_SYMBOL(sock_no_accept);
2771
2772int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2773		    int peer)
2774{
2775	return -EOPNOTSUPP;
2776}
2777EXPORT_SYMBOL(sock_no_getname);
2778
2779int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2780{
2781	return -EOPNOTSUPP;
2782}
2783EXPORT_SYMBOL(sock_no_ioctl);
2784
2785int sock_no_listen(struct socket *sock, int backlog)
2786{
2787	return -EOPNOTSUPP;
2788}
2789EXPORT_SYMBOL(sock_no_listen);
2790
2791int sock_no_shutdown(struct socket *sock, int how)
2792{
2793	return -EOPNOTSUPP;
2794}
2795EXPORT_SYMBOL(sock_no_shutdown);
2796
2797int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2798{
2799	return -EOPNOTSUPP;
2800}
2801EXPORT_SYMBOL(sock_no_sendmsg);
2802
2803int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2804{
2805	return -EOPNOTSUPP;
2806}
2807EXPORT_SYMBOL(sock_no_sendmsg_locked);
2808
2809int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2810		    int flags)
2811{
2812	return -EOPNOTSUPP;
2813}
2814EXPORT_SYMBOL(sock_no_recvmsg);
2815
2816int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2817{
2818	/* Mirror missing mmap method error code */
2819	return -ENODEV;
2820}
2821EXPORT_SYMBOL(sock_no_mmap);
2822
2823/*
2824 * When a file is received (via SCM_RIGHTS, etc), we must bump the
2825 * various sock-based usage counts.
2826 */
2827void __receive_sock(struct file *file)
2828{
2829	struct socket *sock;
2830	int error;
2831
2832	/*
2833	 * The resulting value of "error" is ignored here since we only
2834	 * need to take action when the file is a socket and testing
2835	 * "sock" for NULL is sufficient.
2836	 */
2837	sock = sock_from_file(file, &error);
2838	if (sock) {
2839		sock_update_netprioidx(&sock->sk->sk_cgrp_data);
2840		sock_update_classid(&sock->sk->sk_cgrp_data);
2841	}
2842}
2843
2844ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2845{
2846	ssize_t res;
2847	struct msghdr msg = {.msg_flags = flags};
2848	struct kvec iov;
2849	char *kaddr = kmap(page);
2850	iov.iov_base = kaddr + offset;
2851	iov.iov_len = size;
2852	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2853	kunmap(page);
2854	return res;
2855}
2856EXPORT_SYMBOL(sock_no_sendpage);
2857
2858ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2859				int offset, size_t size, int flags)
2860{
2861	ssize_t res;
2862	struct msghdr msg = {.msg_flags = flags};
2863	struct kvec iov;
2864	char *kaddr = kmap(page);
2865
2866	iov.iov_base = kaddr + offset;
2867	iov.iov_len = size;
2868	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2869	kunmap(page);
2870	return res;
2871}
2872EXPORT_SYMBOL(sock_no_sendpage_locked);
2873
2874/*
2875 *	Default Socket Callbacks
2876 */
2877
2878static void sock_def_wakeup(struct sock *sk)
2879{
2880	struct socket_wq *wq;
2881
2882	rcu_read_lock();
2883	wq = rcu_dereference(sk->sk_wq);
2884	if (skwq_has_sleeper(wq))
2885		wake_up_interruptible_all(&wq->wait);
2886	rcu_read_unlock();
2887}
2888
2889static void sock_def_error_report(struct sock *sk)
2890{
2891	struct socket_wq *wq;
2892
2893	rcu_read_lock();
2894	wq = rcu_dereference(sk->sk_wq);
2895	if (skwq_has_sleeper(wq))
2896		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2897	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2898	rcu_read_unlock();
2899}
2900
2901void sock_def_readable(struct sock *sk)
2902{
2903	struct socket_wq *wq;
2904
2905	rcu_read_lock();
2906	wq = rcu_dereference(sk->sk_wq);
2907	if (skwq_has_sleeper(wq))
2908		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2909						EPOLLRDNORM | EPOLLRDBAND);
2910	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2911	rcu_read_unlock();
2912}
2913
2914static void sock_def_write_space(struct sock *sk)
2915{
2916	struct socket_wq *wq;
2917
2918	rcu_read_lock();
2919
2920	/* Do not wake up a writer until he can make "significant"
2921	 * progress.  --DaveM
2922	 */
2923	if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
2924		wq = rcu_dereference(sk->sk_wq);
2925		if (skwq_has_sleeper(wq))
2926			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2927						EPOLLWRNORM | EPOLLWRBAND);
2928
2929		/* Should agree with poll, otherwise some programs break */
2930		if (sock_writeable(sk))
2931			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2932	}
2933
2934	rcu_read_unlock();
2935}
2936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2937static void sock_def_destruct(struct sock *sk)
2938{
2939}
2940
2941void sk_send_sigurg(struct sock *sk)
2942{
2943	if (sk->sk_socket && sk->sk_socket->file)
2944		if (send_sigurg(&sk->sk_socket->file->f_owner))
2945			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2946}
2947EXPORT_SYMBOL(sk_send_sigurg);
2948
2949void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2950		    unsigned long expires)
2951{
2952	if (!mod_timer(timer, expires))
2953		sock_hold(sk);
2954}
2955EXPORT_SYMBOL(sk_reset_timer);
2956
2957void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2958{
2959	if (del_timer(timer))
2960		__sock_put(sk);
2961}
2962EXPORT_SYMBOL(sk_stop_timer);
2963
 
 
 
 
 
 
 
2964void sock_init_data(struct socket *sock, struct sock *sk)
2965{
2966	sk_init_common(sk);
2967	sk->sk_send_head	=	NULL;
2968
2969	timer_setup(&sk->sk_timer, NULL, 0);
2970
2971	sk->sk_allocation	=	GFP_KERNEL;
2972	sk->sk_rcvbuf		=	sysctl_rmem_default;
2973	sk->sk_sndbuf		=	sysctl_wmem_default;
2974	sk->sk_state		=	TCP_CLOSE;
 
2975	sk_set_socket(sk, sock);
2976
2977	sock_set_flag(sk, SOCK_ZAPPED);
2978
2979	if (sock) {
2980		sk->sk_type	=	sock->type;
2981		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
2982		sock->sk	=	sk;
2983		sk->sk_uid	=	SOCK_INODE(sock)->i_uid;
2984	} else {
2985		RCU_INIT_POINTER(sk->sk_wq, NULL);
2986		sk->sk_uid	=	make_kuid(sock_net(sk)->user_ns, 0);
2987	}
2988
2989	rwlock_init(&sk->sk_callback_lock);
2990	if (sk->sk_kern_sock)
2991		lockdep_set_class_and_name(
2992			&sk->sk_callback_lock,
2993			af_kern_callback_keys + sk->sk_family,
2994			af_family_kern_clock_key_strings[sk->sk_family]);
2995	else
2996		lockdep_set_class_and_name(
2997			&sk->sk_callback_lock,
2998			af_callback_keys + sk->sk_family,
2999			af_family_clock_key_strings[sk->sk_family]);
3000
3001	sk->sk_state_change	=	sock_def_wakeup;
3002	sk->sk_data_ready	=	sock_def_readable;
3003	sk->sk_write_space	=	sock_def_write_space;
3004	sk->sk_error_report	=	sock_def_error_report;
3005	sk->sk_destruct		=	sock_def_destruct;
3006
3007	sk->sk_frag.page	=	NULL;
3008	sk->sk_frag.offset	=	0;
3009	sk->sk_peek_off		=	-1;
3010
3011	sk->sk_peer_pid 	=	NULL;
3012	sk->sk_peer_cred	=	NULL;
 
 
3013	sk->sk_write_pending	=	0;
3014	sk->sk_rcvlowat		=	1;
3015	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
3016	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
3017
3018	sk->sk_stamp = SK_DEFAULT_STAMP;
3019#if BITS_PER_LONG==32
3020	seqlock_init(&sk->sk_stamp_seq);
3021#endif
3022	atomic_set(&sk->sk_zckey, 0);
3023
3024#ifdef CONFIG_NET_RX_BUSY_POLL
3025	sk->sk_napi_id		=	0;
3026	sk->sk_ll_usec		=	sysctl_net_busy_read;
3027#endif
3028
3029	sk->sk_max_pacing_rate = ~0UL;
3030	sk->sk_pacing_rate = ~0UL;
3031	WRITE_ONCE(sk->sk_pacing_shift, 10);
3032	sk->sk_incoming_cpu = -1;
3033
3034	sk_rx_queue_clear(sk);
3035	/*
3036	 * Before updating sk_refcnt, we must commit prior changes to memory
3037	 * (Documentation/RCU/rculist_nulls.rst for details)
3038	 */
3039	smp_wmb();
3040	refcount_set(&sk->sk_refcnt, 1);
3041	atomic_set(&sk->sk_drops, 0);
3042}
3043EXPORT_SYMBOL(sock_init_data);
3044
3045void lock_sock_nested(struct sock *sk, int subclass)
3046{
 
 
 
3047	might_sleep();
3048	spin_lock_bh(&sk->sk_lock.slock);
3049	if (sk->sk_lock.owned)
3050		__lock_sock(sk);
3051	sk->sk_lock.owned = 1;
3052	spin_unlock(&sk->sk_lock.slock);
3053	/*
3054	 * The sk_lock has mutex_lock() semantics here:
3055	 */
3056	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3057	local_bh_enable();
3058}
3059EXPORT_SYMBOL(lock_sock_nested);
3060
3061void release_sock(struct sock *sk)
3062{
3063	spin_lock_bh(&sk->sk_lock.slock);
3064	if (sk->sk_backlog.tail)
3065		__release_sock(sk);
3066
3067	/* Warning : release_cb() might need to release sk ownership,
3068	 * ie call sock_release_ownership(sk) before us.
3069	 */
3070	if (sk->sk_prot->release_cb)
3071		sk->sk_prot->release_cb(sk);
3072
3073	sock_release_ownership(sk);
3074	if (waitqueue_active(&sk->sk_lock.wq))
3075		wake_up(&sk->sk_lock.wq);
3076	spin_unlock_bh(&sk->sk_lock.slock);
3077}
3078EXPORT_SYMBOL(release_sock);
3079
3080/**
3081 * lock_sock_fast - fast version of lock_sock
3082 * @sk: socket
3083 *
3084 * This version should be used for very small section, where process wont block
3085 * return false if fast path is taken:
3086 *
3087 *   sk_lock.slock locked, owned = 0, BH disabled
3088 *
3089 * return true if slow path is taken:
3090 *
3091 *   sk_lock.slock unlocked, owned = 1, BH enabled
3092 */
3093bool lock_sock_fast(struct sock *sk)
3094{
3095	might_sleep();
3096	spin_lock_bh(&sk->sk_lock.slock);
3097
3098	if (!sk->sk_lock.owned)
3099		/*
3100		 * Note : We must disable BH
 
 
 
 
 
 
 
 
 
 
 
 
3101		 */
3102		return false;
 
3103
3104	__lock_sock(sk);
3105	sk->sk_lock.owned = 1;
3106	spin_unlock(&sk->sk_lock.slock);
3107	/*
3108	 * The sk_lock has mutex_lock() semantics here:
3109	 */
3110	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
3111	local_bh_enable();
3112	return true;
3113}
3114EXPORT_SYMBOL(lock_sock_fast);
3115
3116int sock_gettstamp(struct socket *sock, void __user *userstamp,
3117		   bool timeval, bool time32)
3118{
3119	struct sock *sk = sock->sk;
3120	struct timespec64 ts;
3121
3122	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3123	ts = ktime_to_timespec64(sock_read_timestamp(sk));
3124	if (ts.tv_sec == -1)
3125		return -ENOENT;
3126	if (ts.tv_sec == 0) {
3127		ktime_t kt = ktime_get_real();
3128		sock_write_timestamp(sk, kt);
3129		ts = ktime_to_timespec64(kt);
3130	}
3131
3132	if (timeval)
3133		ts.tv_nsec /= 1000;
3134
3135#ifdef CONFIG_COMPAT_32BIT_TIME
3136	if (time32)
3137		return put_old_timespec32(&ts, userstamp);
3138#endif
3139#ifdef CONFIG_SPARC64
3140	/* beware of padding in sparc64 timeval */
3141	if (timeval && !in_compat_syscall()) {
3142		struct __kernel_old_timeval __user tv = {
3143			.tv_sec = ts.tv_sec,
3144			.tv_usec = ts.tv_nsec,
3145		};
3146		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3147			return -EFAULT;
3148		return 0;
3149	}
3150#endif
3151	return put_timespec64(&ts, userstamp);
3152}
3153EXPORT_SYMBOL(sock_gettstamp);
3154
3155void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3156{
3157	if (!sock_flag(sk, flag)) {
3158		unsigned long previous_flags = sk->sk_flags;
3159
3160		sock_set_flag(sk, flag);
3161		/*
3162		 * we just set one of the two flags which require net
3163		 * time stamping, but time stamping might have been on
3164		 * already because of the other one
3165		 */
3166		if (sock_needs_netstamp(sk) &&
3167		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3168			net_enable_timestamp();
3169	}
3170}
3171
3172int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3173		       int level, int type)
3174{
3175	struct sock_exterr_skb *serr;
3176	struct sk_buff *skb;
3177	int copied, err;
3178
3179	err = -EAGAIN;
3180	skb = sock_dequeue_err_skb(sk);
3181	if (skb == NULL)
3182		goto out;
3183
3184	copied = skb->len;
3185	if (copied > len) {
3186		msg->msg_flags |= MSG_TRUNC;
3187		copied = len;
3188	}
3189	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3190	if (err)
3191		goto out_free_skb;
3192
3193	sock_recv_timestamp(msg, sk, skb);
3194
3195	serr = SKB_EXT_ERR(skb);
3196	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3197
3198	msg->msg_flags |= MSG_ERRQUEUE;
3199	err = copied;
3200
3201out_free_skb:
3202	kfree_skb(skb);
3203out:
3204	return err;
3205}
3206EXPORT_SYMBOL(sock_recv_errqueue);
3207
3208/*
3209 *	Get a socket option on an socket.
3210 *
3211 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3212 *	asynchronous errors should be reported by getsockopt. We assume
3213 *	this means if you specify SO_ERROR (otherwise whats the point of it).
3214 */
3215int sock_common_getsockopt(struct socket *sock, int level, int optname,
3216			   char __user *optval, int __user *optlen)
3217{
3218	struct sock *sk = sock->sk;
3219
3220	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
 
3221}
3222EXPORT_SYMBOL(sock_common_getsockopt);
3223
3224int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3225			int flags)
3226{
3227	struct sock *sk = sock->sk;
3228	int addr_len = 0;
3229	int err;
3230
3231	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3232				   flags & ~MSG_DONTWAIT, &addr_len);
3233	if (err >= 0)
3234		msg->msg_namelen = addr_len;
3235	return err;
3236}
3237EXPORT_SYMBOL(sock_common_recvmsg);
3238
3239/*
3240 *	Set socket options on an inet socket.
3241 */
3242int sock_common_setsockopt(struct socket *sock, int level, int optname,
3243			   sockptr_t optval, unsigned int optlen)
3244{
3245	struct sock *sk = sock->sk;
3246
3247	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
 
3248}
3249EXPORT_SYMBOL(sock_common_setsockopt);
3250
3251void sk_common_release(struct sock *sk)
3252{
3253	if (sk->sk_prot->destroy)
3254		sk->sk_prot->destroy(sk);
3255
3256	/*
3257	 * Observation: when sk_common_release is called, processes have
3258	 * no access to socket. But net still has.
3259	 * Step one, detach it from networking:
3260	 *
3261	 * A. Remove from hash tables.
3262	 */
3263
3264	sk->sk_prot->unhash(sk);
3265
3266	/*
3267	 * In this point socket cannot receive new packets, but it is possible
3268	 * that some packets are in flight because some CPU runs receiver and
3269	 * did hash table lookup before we unhashed socket. They will achieve
3270	 * receive queue and will be purged by socket destructor.
3271	 *
3272	 * Also we still have packets pending on receive queue and probably,
3273	 * our own packets waiting in device queues. sock_destroy will drain
3274	 * receive queue, but transmitted packets will delay socket destruction
3275	 * until the last reference will be released.
3276	 */
3277
3278	sock_orphan(sk);
3279
3280	xfrm_sk_free_policy(sk);
3281
3282	sk_refcnt_debug_release(sk);
3283
3284	sock_put(sk);
3285}
3286EXPORT_SYMBOL(sk_common_release);
3287
3288void sk_get_meminfo(const struct sock *sk, u32 *mem)
3289{
3290	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3291
3292	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3293	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3294	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3295	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3296	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3297	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3298	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3299	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3300	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3301}
3302
3303#ifdef CONFIG_PROC_FS
3304#define PROTO_INUSE_NR	64	/* should be enough for the first time */
3305struct prot_inuse {
3306	int val[PROTO_INUSE_NR];
3307};
3308
3309static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3310
3311void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3312{
3313	__this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3314}
3315EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3316
3317int sock_prot_inuse_get(struct net *net, struct proto *prot)
3318{
3319	int cpu, idx = prot->inuse_idx;
3320	int res = 0;
3321
3322	for_each_possible_cpu(cpu)
3323		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3324
3325	return res >= 0 ? res : 0;
3326}
3327EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3328
3329static void sock_inuse_add(struct net *net, int val)
3330{
3331	this_cpu_add(*net->core.sock_inuse, val);
3332}
3333
3334int sock_inuse_get(struct net *net)
3335{
3336	int cpu, res = 0;
3337
3338	for_each_possible_cpu(cpu)
3339		res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3340
3341	return res;
3342}
3343
3344EXPORT_SYMBOL_GPL(sock_inuse_get);
3345
3346static int __net_init sock_inuse_init_net(struct net *net)
3347{
3348	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3349	if (net->core.prot_inuse == NULL)
3350		return -ENOMEM;
3351
3352	net->core.sock_inuse = alloc_percpu(int);
3353	if (net->core.sock_inuse == NULL)
3354		goto out;
3355
3356	return 0;
3357
3358out:
3359	free_percpu(net->core.prot_inuse);
3360	return -ENOMEM;
3361}
3362
3363static void __net_exit sock_inuse_exit_net(struct net *net)
3364{
3365	free_percpu(net->core.prot_inuse);
3366	free_percpu(net->core.sock_inuse);
3367}
3368
3369static struct pernet_operations net_inuse_ops = {
3370	.init = sock_inuse_init_net,
3371	.exit = sock_inuse_exit_net,
3372};
3373
3374static __init int net_inuse_init(void)
3375{
3376	if (register_pernet_subsys(&net_inuse_ops))
3377		panic("Cannot initialize net inuse counters");
3378
3379	return 0;
3380}
3381
3382core_initcall(net_inuse_init);
3383
3384static int assign_proto_idx(struct proto *prot)
3385{
3386	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3387
3388	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3389		pr_err("PROTO_INUSE_NR exhausted\n");
3390		return -ENOSPC;
3391	}
3392
3393	set_bit(prot->inuse_idx, proto_inuse_idx);
3394	return 0;
3395}
3396
3397static void release_proto_idx(struct proto *prot)
3398{
3399	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3400		clear_bit(prot->inuse_idx, proto_inuse_idx);
3401}
3402#else
3403static inline int assign_proto_idx(struct proto *prot)
3404{
3405	return 0;
3406}
3407
3408static inline void release_proto_idx(struct proto *prot)
3409{
3410}
3411
3412static void sock_inuse_add(struct net *net, int val)
3413{
3414}
3415#endif
3416
3417static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3418{
3419	if (!twsk_prot)
3420		return;
3421	kfree(twsk_prot->twsk_slab_name);
3422	twsk_prot->twsk_slab_name = NULL;
3423	kmem_cache_destroy(twsk_prot->twsk_slab);
3424	twsk_prot->twsk_slab = NULL;
3425}
3426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3427static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3428{
3429	if (!rsk_prot)
3430		return;
3431	kfree(rsk_prot->slab_name);
3432	rsk_prot->slab_name = NULL;
3433	kmem_cache_destroy(rsk_prot->slab);
3434	rsk_prot->slab = NULL;
3435}
3436
3437static int req_prot_init(const struct proto *prot)
3438{
3439	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3440
3441	if (!rsk_prot)
3442		return 0;
3443
3444	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3445					prot->name);
3446	if (!rsk_prot->slab_name)
3447		return -ENOMEM;
3448
3449	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3450					   rsk_prot->obj_size, 0,
3451					   SLAB_ACCOUNT | prot->slab_flags,
3452					   NULL);
3453
3454	if (!rsk_prot->slab) {
3455		pr_crit("%s: Can't create request sock SLAB cache!\n",
3456			prot->name);
3457		return -ENOMEM;
3458	}
3459	return 0;
3460}
3461
3462int proto_register(struct proto *prot, int alloc_slab)
3463{
3464	int ret = -ENOBUFS;
3465
 
 
 
 
 
 
 
 
3466	if (alloc_slab) {
3467		prot->slab = kmem_cache_create_usercopy(prot->name,
3468					prot->obj_size, 0,
3469					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3470					prot->slab_flags,
3471					prot->useroffset, prot->usersize,
3472					NULL);
3473
3474		if (prot->slab == NULL) {
3475			pr_crit("%s: Can't create sock SLAB cache!\n",
3476				prot->name);
3477			goto out;
3478		}
3479
3480		if (req_prot_init(prot))
3481			goto out_free_request_sock_slab;
3482
3483		if (prot->twsk_prot != NULL) {
3484			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3485
3486			if (prot->twsk_prot->twsk_slab_name == NULL)
3487				goto out_free_request_sock_slab;
3488
3489			prot->twsk_prot->twsk_slab =
3490				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3491						  prot->twsk_prot->twsk_obj_size,
3492						  0,
3493						  SLAB_ACCOUNT |
3494						  prot->slab_flags,
3495						  NULL);
3496			if (prot->twsk_prot->twsk_slab == NULL)
3497				goto out_free_timewait_sock_slab;
3498		}
3499	}
3500
3501	mutex_lock(&proto_list_mutex);
3502	ret = assign_proto_idx(prot);
3503	if (ret) {
3504		mutex_unlock(&proto_list_mutex);
3505		goto out_free_timewait_sock_slab;
3506	}
3507	list_add(&prot->node, &proto_list);
3508	mutex_unlock(&proto_list_mutex);
3509	return ret;
3510
3511out_free_timewait_sock_slab:
3512	if (alloc_slab && prot->twsk_prot)
3513		tw_prot_cleanup(prot->twsk_prot);
3514out_free_request_sock_slab:
3515	if (alloc_slab) {
3516		req_prot_cleanup(prot->rsk_prot);
3517
3518		kmem_cache_destroy(prot->slab);
3519		prot->slab = NULL;
3520	}
3521out:
3522	return ret;
3523}
3524EXPORT_SYMBOL(proto_register);
3525
3526void proto_unregister(struct proto *prot)
3527{
3528	mutex_lock(&proto_list_mutex);
3529	release_proto_idx(prot);
3530	list_del(&prot->node);
3531	mutex_unlock(&proto_list_mutex);
3532
3533	kmem_cache_destroy(prot->slab);
3534	prot->slab = NULL;
3535
3536	req_prot_cleanup(prot->rsk_prot);
3537	tw_prot_cleanup(prot->twsk_prot);
3538}
3539EXPORT_SYMBOL(proto_unregister);
3540
3541int sock_load_diag_module(int family, int protocol)
3542{
3543	if (!protocol) {
3544		if (!sock_is_registered(family))
3545			return -ENOENT;
3546
3547		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3548				      NETLINK_SOCK_DIAG, family);
3549	}
3550
3551#ifdef CONFIG_INET
3552	if (family == AF_INET &&
3553	    protocol != IPPROTO_RAW &&
3554	    protocol < MAX_INET_PROTOS &&
3555	    !rcu_access_pointer(inet_protos[protocol]))
3556		return -ENOENT;
3557#endif
3558
3559	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3560			      NETLINK_SOCK_DIAG, family, protocol);
3561}
3562EXPORT_SYMBOL(sock_load_diag_module);
3563
3564#ifdef CONFIG_PROC_FS
3565static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3566	__acquires(proto_list_mutex)
3567{
3568	mutex_lock(&proto_list_mutex);
3569	return seq_list_start_head(&proto_list, *pos);
3570}
3571
3572static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3573{
3574	return seq_list_next(v, &proto_list, pos);
3575}
3576
3577static void proto_seq_stop(struct seq_file *seq, void *v)
3578	__releases(proto_list_mutex)
3579{
3580	mutex_unlock(&proto_list_mutex);
3581}
3582
3583static char proto_method_implemented(const void *method)
3584{
3585	return method == NULL ? 'n' : 'y';
3586}
3587static long sock_prot_memory_allocated(struct proto *proto)
3588{
3589	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3590}
3591
3592static const char *sock_prot_memory_pressure(struct proto *proto)
3593{
3594	return proto->memory_pressure != NULL ?
3595	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3596}
3597
3598static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3599{
3600
3601	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3602			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3603		   proto->name,
3604		   proto->obj_size,
3605		   sock_prot_inuse_get(seq_file_net(seq), proto),
3606		   sock_prot_memory_allocated(proto),
3607		   sock_prot_memory_pressure(proto),
3608		   proto->max_header,
3609		   proto->slab == NULL ? "no" : "yes",
3610		   module_name(proto->owner),
3611		   proto_method_implemented(proto->close),
3612		   proto_method_implemented(proto->connect),
3613		   proto_method_implemented(proto->disconnect),
3614		   proto_method_implemented(proto->accept),
3615		   proto_method_implemented(proto->ioctl),
3616		   proto_method_implemented(proto->init),
3617		   proto_method_implemented(proto->destroy),
3618		   proto_method_implemented(proto->shutdown),
3619		   proto_method_implemented(proto->setsockopt),
3620		   proto_method_implemented(proto->getsockopt),
3621		   proto_method_implemented(proto->sendmsg),
3622		   proto_method_implemented(proto->recvmsg),
3623		   proto_method_implemented(proto->sendpage),
3624		   proto_method_implemented(proto->bind),
3625		   proto_method_implemented(proto->backlog_rcv),
3626		   proto_method_implemented(proto->hash),
3627		   proto_method_implemented(proto->unhash),
3628		   proto_method_implemented(proto->get_port),
3629		   proto_method_implemented(proto->enter_memory_pressure));
3630}
3631
3632static int proto_seq_show(struct seq_file *seq, void *v)
3633{
3634	if (v == &proto_list)
3635		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3636			   "protocol",
3637			   "size",
3638			   "sockets",
3639			   "memory",
3640			   "press",
3641			   "maxhdr",
3642			   "slab",
3643			   "module",
3644			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3645	else
3646		proto_seq_printf(seq, list_entry(v, struct proto, node));
3647	return 0;
3648}
3649
3650static const struct seq_operations proto_seq_ops = {
3651	.start  = proto_seq_start,
3652	.next   = proto_seq_next,
3653	.stop   = proto_seq_stop,
3654	.show   = proto_seq_show,
3655};
3656
3657static __net_init int proto_init_net(struct net *net)
3658{
3659	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3660			sizeof(struct seq_net_private)))
3661		return -ENOMEM;
3662
3663	return 0;
3664}
3665
3666static __net_exit void proto_exit_net(struct net *net)
3667{
3668	remove_proc_entry("protocols", net->proc_net);
3669}
3670
3671
3672static __net_initdata struct pernet_operations proto_net_ops = {
3673	.init = proto_init_net,
3674	.exit = proto_exit_net,
3675};
3676
3677static int __init proto_init(void)
3678{
3679	return register_pernet_subsys(&proto_net_ops);
3680}
3681
3682subsys_initcall(proto_init);
3683
3684#endif /* PROC_FS */
3685
3686#ifdef CONFIG_NET_RX_BUSY_POLL
3687bool sk_busy_loop_end(void *p, unsigned long start_time)
3688{
3689	struct sock *sk = p;
3690
3691	return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3692	       sk_busy_loop_timeout(sk, start_time);
3693}
3694EXPORT_SYMBOL(sk_busy_loop_end);
3695#endif /* CONFIG_NET_RX_BUSY_POLL */
3696
3697int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
3698{
3699	if (!sk->sk_prot->bind_add)
3700		return -EOPNOTSUPP;
3701	return sk->sk_prot->bind_add(sk, addr, addr_len);
3702}
3703EXPORT_SYMBOL(sock_bind_add);
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Generic socket support routines. Memory allocators, socket lock/release
   8 *		handler for protocols to use and generic option handler.
   9 *
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Alan Cox, <A.Cox@swansea.ac.uk>
  14 *
  15 * Fixes:
  16 *		Alan Cox	: 	Numerous verify_area() problems
  17 *		Alan Cox	:	Connecting on a connecting socket
  18 *					now returns an error for tcp.
  19 *		Alan Cox	:	sock->protocol is set correctly.
  20 *					and is not sometimes left as 0.
  21 *		Alan Cox	:	connect handles icmp errors on a
  22 *					connect properly. Unfortunately there
  23 *					is a restart syscall nasty there. I
  24 *					can't match BSD without hacking the C
  25 *					library. Ideas urgently sought!
  26 *		Alan Cox	:	Disallow bind() to addresses that are
  27 *					not ours - especially broadcast ones!!
  28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
  29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
  30 *					instead they leave that for the DESTROY timer.
  31 *		Alan Cox	:	Clean up error flag in accept
  32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
  33 *					was buggy. Put a remove_sock() in the handler
  34 *					for memory when we hit 0. Also altered the timer
  35 *					code. The ACK stuff can wait and needs major
  36 *					TCP layer surgery.
  37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
  38 *					and fixed timer/inet_bh race.
  39 *		Alan Cox	:	Added zapped flag for TCP
  40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
  41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
  43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
  46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
  47 *	Pauline Middelink	:	identd support
  48 *		Alan Cox	:	Fixed connect() taking signals I think.
  49 *		Alan Cox	:	SO_LINGER supported
  50 *		Alan Cox	:	Error reporting fixes
  51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
  52 *		Alan Cox	:	inet sockets don't set sk->type!
  53 *		Alan Cox	:	Split socket option code
  54 *		Alan Cox	:	Callbacks
  55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
  56 *		Alex		:	Removed restriction on inet fioctl
  57 *		Alan Cox	:	Splitting INET from NET core
  58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
  59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
  60 *		Alan Cox	:	Split IP from generic code
  61 *		Alan Cox	:	New kfree_skbmem()
  62 *		Alan Cox	:	Make SO_DEBUG superuser only.
  63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
  64 *					(compatibility fix)
  65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
  66 *		Alan Cox	:	Allocator for a socket is settable.
  67 *		Alan Cox	:	SO_ERROR includes soft errors.
  68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
  69 *		Alan Cox	: 	Generic socket allocation to make hooks
  70 *					easier (suggested by Craig Metz).
  71 *		Michael Pall	:	SO_ERROR returns positive errno again
  72 *              Steve Whitehouse:       Added default destructor to free
  73 *                                      protocol private data.
  74 *              Steve Whitehouse:       Added various other default routines
  75 *                                      common to several socket families.
  76 *              Chris Evans     :       Call suser() check last on F_SETOWN
  77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
  79 *		Andi Kleen	:	Fix write_space callback
  80 *		Chris Evans	:	Security fixes - signedness again
  81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
  82 *
  83 * To Fix:
  84 */
  85
  86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  87
  88#include <asm/unaligned.h>
  89#include <linux/capability.h>
  90#include <linux/errno.h>
  91#include <linux/errqueue.h>
  92#include <linux/types.h>
  93#include <linux/socket.h>
  94#include <linux/in.h>
  95#include <linux/kernel.h>
  96#include <linux/module.h>
  97#include <linux/proc_fs.h>
  98#include <linux/seq_file.h>
  99#include <linux/sched.h>
 100#include <linux/sched/mm.h>
 101#include <linux/timer.h>
 102#include <linux/string.h>
 103#include <linux/sockios.h>
 104#include <linux/net.h>
 105#include <linux/mm.h>
 106#include <linux/slab.h>
 107#include <linux/interrupt.h>
 108#include <linux/poll.h>
 109#include <linux/tcp.h>
 110#include <linux/init.h>
 111#include <linux/highmem.h>
 112#include <linux/user_namespace.h>
 113#include <linux/static_key.h>
 114#include <linux/memcontrol.h>
 115#include <linux/prefetch.h>
 116#include <linux/compat.h>
 117
 118#include <linux/uaccess.h>
 119
 120#include <linux/netdevice.h>
 121#include <net/protocol.h>
 122#include <linux/skbuff.h>
 123#include <net/net_namespace.h>
 124#include <net/request_sock.h>
 125#include <net/sock.h>
 126#include <linux/net_tstamp.h>
 127#include <net/xfrm.h>
 128#include <linux/ipsec.h>
 129#include <net/cls_cgroup.h>
 130#include <net/netprio_cgroup.h>
 131#include <linux/sock_diag.h>
 132
 133#include <linux/filter.h>
 134#include <net/sock_reuseport.h>
 135#include <net/bpf_sk_storage.h>
 136
 137#include <trace/events/sock.h>
 138
 139#include <net/tcp.h>
 140#include <net/busy_poll.h>
 141
 142#include <linux/ethtool.h>
 143
 144#include "dev.h"
 145
 146static DEFINE_MUTEX(proto_list_mutex);
 147static LIST_HEAD(proto_list);
 148
 149static void sock_def_write_space_wfree(struct sock *sk);
 150static void sock_def_write_space(struct sock *sk);
 151
 152/**
 153 * sk_ns_capable - General socket capability test
 154 * @sk: Socket to use a capability on or through
 155 * @user_ns: The user namespace of the capability to use
 156 * @cap: The capability to use
 157 *
 158 * Test to see if the opener of the socket had when the socket was
 159 * created and the current process has the capability @cap in the user
 160 * namespace @user_ns.
 161 */
 162bool sk_ns_capable(const struct sock *sk,
 163		   struct user_namespace *user_ns, int cap)
 164{
 165	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
 166		ns_capable(user_ns, cap);
 167}
 168EXPORT_SYMBOL(sk_ns_capable);
 169
 170/**
 171 * sk_capable - Socket global capability test
 172 * @sk: Socket to use a capability on or through
 173 * @cap: The global capability to use
 174 *
 175 * Test to see if the opener of the socket had when the socket was
 176 * created and the current process has the capability @cap in all user
 177 * namespaces.
 178 */
 179bool sk_capable(const struct sock *sk, int cap)
 180{
 181	return sk_ns_capable(sk, &init_user_ns, cap);
 182}
 183EXPORT_SYMBOL(sk_capable);
 184
 185/**
 186 * sk_net_capable - Network namespace socket capability test
 187 * @sk: Socket to use a capability on or through
 188 * @cap: The capability to use
 189 *
 190 * Test to see if the opener of the socket had when the socket was created
 191 * and the current process has the capability @cap over the network namespace
 192 * the socket is a member of.
 193 */
 194bool sk_net_capable(const struct sock *sk, int cap)
 195{
 196	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
 197}
 198EXPORT_SYMBOL(sk_net_capable);
 199
 200/*
 201 * Each address family might have different locking rules, so we have
 202 * one slock key per address family and separate keys for internal and
 203 * userspace sockets.
 204 */
 205static struct lock_class_key af_family_keys[AF_MAX];
 206static struct lock_class_key af_family_kern_keys[AF_MAX];
 207static struct lock_class_key af_family_slock_keys[AF_MAX];
 208static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
 209
 210/*
 211 * Make lock validator output more readable. (we pre-construct these
 212 * strings build-time, so that runtime initialization of socket
 213 * locks is fast):
 214 */
 215
 216#define _sock_locks(x)						  \
 217  x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
 218  x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
 219  x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
 220  x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
 221  x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
 222  x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
 223  x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
 224  x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
 225  x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
 226  x "27"       ,	x "28"          ,	x "AF_CAN"      , \
 227  x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
 228  x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
 229  x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
 230  x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
 231  x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
 232  x "AF_MCTP"  , \
 233  x "AF_MAX"
 234
 235static const char *const af_family_key_strings[AF_MAX+1] = {
 236	_sock_locks("sk_lock-")
 237};
 238static const char *const af_family_slock_key_strings[AF_MAX+1] = {
 239	_sock_locks("slock-")
 240};
 241static const char *const af_family_clock_key_strings[AF_MAX+1] = {
 242	_sock_locks("clock-")
 243};
 244
 245static const char *const af_family_kern_key_strings[AF_MAX+1] = {
 246	_sock_locks("k-sk_lock-")
 247};
 248static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
 249	_sock_locks("k-slock-")
 250};
 251static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
 252	_sock_locks("k-clock-")
 253};
 254static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
 255	_sock_locks("rlock-")
 256};
 257static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
 258	_sock_locks("wlock-")
 259};
 260static const char *const af_family_elock_key_strings[AF_MAX+1] = {
 261	_sock_locks("elock-")
 262};
 263
 264/*
 265 * sk_callback_lock and sk queues locking rules are per-address-family,
 266 * so split the lock classes by using a per-AF key:
 267 */
 268static struct lock_class_key af_callback_keys[AF_MAX];
 269static struct lock_class_key af_rlock_keys[AF_MAX];
 270static struct lock_class_key af_wlock_keys[AF_MAX];
 271static struct lock_class_key af_elock_keys[AF_MAX];
 272static struct lock_class_key af_kern_callback_keys[AF_MAX];
 273
 274/* Run time adjustable parameters. */
 275__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
 276EXPORT_SYMBOL(sysctl_wmem_max);
 277__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
 278EXPORT_SYMBOL(sysctl_rmem_max);
 279__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
 280__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
 281
 282/* Maximal space eaten by iovec or ancillary data plus some space */
 283int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
 284EXPORT_SYMBOL(sysctl_optmem_max);
 285
 286int sysctl_tstamp_allow_data __read_mostly = 1;
 287
 288DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
 289EXPORT_SYMBOL_GPL(memalloc_socks_key);
 290
 291/**
 292 * sk_set_memalloc - sets %SOCK_MEMALLOC
 293 * @sk: socket to set it on
 294 *
 295 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
 296 * It's the responsibility of the admin to adjust min_free_kbytes
 297 * to meet the requirements
 298 */
 299void sk_set_memalloc(struct sock *sk)
 300{
 301	sock_set_flag(sk, SOCK_MEMALLOC);
 302	sk->sk_allocation |= __GFP_MEMALLOC;
 303	static_branch_inc(&memalloc_socks_key);
 304}
 305EXPORT_SYMBOL_GPL(sk_set_memalloc);
 306
 307void sk_clear_memalloc(struct sock *sk)
 308{
 309	sock_reset_flag(sk, SOCK_MEMALLOC);
 310	sk->sk_allocation &= ~__GFP_MEMALLOC;
 311	static_branch_dec(&memalloc_socks_key);
 312
 313	/*
 314	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
 315	 * progress of swapping. SOCK_MEMALLOC may be cleared while
 316	 * it has rmem allocations due to the last swapfile being deactivated
 317	 * but there is a risk that the socket is unusable due to exceeding
 318	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
 319	 */
 320	sk_mem_reclaim(sk);
 321}
 322EXPORT_SYMBOL_GPL(sk_clear_memalloc);
 323
 324int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 325{
 326	int ret;
 327	unsigned int noreclaim_flag;
 328
 329	/* these should have been dropped before queueing */
 330	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
 331
 332	noreclaim_flag = memalloc_noreclaim_save();
 333	ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv,
 334				 tcp_v6_do_rcv,
 335				 tcp_v4_do_rcv,
 336				 sk, skb);
 337	memalloc_noreclaim_restore(noreclaim_flag);
 338
 339	return ret;
 340}
 341EXPORT_SYMBOL(__sk_backlog_rcv);
 342
 343void sk_error_report(struct sock *sk)
 344{
 345	sk->sk_error_report(sk);
 346
 347	switch (sk->sk_family) {
 348	case AF_INET:
 349		fallthrough;
 350	case AF_INET6:
 351		trace_inet_sk_error_report(sk);
 352		break;
 353	default:
 354		break;
 355	}
 356}
 357EXPORT_SYMBOL(sk_error_report);
 358
 359int sock_get_timeout(long timeo, void *optval, bool old_timeval)
 360{
 361	struct __kernel_sock_timeval tv;
 362
 363	if (timeo == MAX_SCHEDULE_TIMEOUT) {
 364		tv.tv_sec = 0;
 365		tv.tv_usec = 0;
 366	} else {
 367		tv.tv_sec = timeo / HZ;
 368		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
 369	}
 370
 371	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 372		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
 373		*(struct old_timeval32 *)optval = tv32;
 374		return sizeof(tv32);
 375	}
 376
 377	if (old_timeval) {
 378		struct __kernel_old_timeval old_tv;
 379		old_tv.tv_sec = tv.tv_sec;
 380		old_tv.tv_usec = tv.tv_usec;
 381		*(struct __kernel_old_timeval *)optval = old_tv;
 382		return sizeof(old_tv);
 383	}
 384
 385	*(struct __kernel_sock_timeval *)optval = tv;
 386	return sizeof(tv);
 387}
 388EXPORT_SYMBOL(sock_get_timeout);
 389
 390int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
 391			   sockptr_t optval, int optlen, bool old_timeval)
 392{
 
 
 393	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 394		struct old_timeval32 tv32;
 395
 396		if (optlen < sizeof(tv32))
 397			return -EINVAL;
 398
 399		if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
 400			return -EFAULT;
 401		tv->tv_sec = tv32.tv_sec;
 402		tv->tv_usec = tv32.tv_usec;
 403	} else if (old_timeval) {
 404		struct __kernel_old_timeval old_tv;
 405
 406		if (optlen < sizeof(old_tv))
 407			return -EINVAL;
 408		if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
 409			return -EFAULT;
 410		tv->tv_sec = old_tv.tv_sec;
 411		tv->tv_usec = old_tv.tv_usec;
 412	} else {
 413		if (optlen < sizeof(*tv))
 414			return -EINVAL;
 415		if (copy_from_sockptr(tv, optval, sizeof(*tv)))
 416			return -EFAULT;
 417	}
 418
 419	return 0;
 420}
 421EXPORT_SYMBOL(sock_copy_user_timeval);
 422
 423static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
 424			    bool old_timeval)
 425{
 426	struct __kernel_sock_timeval tv;
 427	int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval);
 428
 429	if (err)
 430		return err;
 431
 432	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
 433		return -EDOM;
 434
 435	if (tv.tv_sec < 0) {
 436		static int warned __read_mostly;
 437
 438		*timeo_p = 0;
 439		if (warned < 10 && net_ratelimit()) {
 440			warned++;
 441			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
 442				__func__, current->comm, task_pid_nr(current));
 443		}
 444		return 0;
 445	}
 446	*timeo_p = MAX_SCHEDULE_TIMEOUT;
 447	if (tv.tv_sec == 0 && tv.tv_usec == 0)
 448		return 0;
 449	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
 450		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
 451	return 0;
 452}
 453
 
 
 
 
 
 
 
 
 
 
 
 
 454static bool sock_needs_netstamp(const struct sock *sk)
 455{
 456	switch (sk->sk_family) {
 457	case AF_UNSPEC:
 458	case AF_UNIX:
 459		return false;
 460	default:
 461		return true;
 462	}
 463}
 464
 465static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
 466{
 467	if (sk->sk_flags & flags) {
 468		sk->sk_flags &= ~flags;
 469		if (sock_needs_netstamp(sk) &&
 470		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
 471			net_disable_timestamp();
 472	}
 473}
 474
 475
 476int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 477{
 478	unsigned long flags;
 479	struct sk_buff_head *list = &sk->sk_receive_queue;
 480
 481	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
 482		atomic_inc(&sk->sk_drops);
 483		trace_sock_rcvqueue_full(sk, skb);
 484		return -ENOMEM;
 485	}
 486
 487	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
 488		atomic_inc(&sk->sk_drops);
 489		return -ENOBUFS;
 490	}
 491
 492	skb->dev = NULL;
 493	skb_set_owner_r(skb, sk);
 494
 495	/* we escape from rcu protected region, make sure we dont leak
 496	 * a norefcounted dst
 497	 */
 498	skb_dst_force(skb);
 499
 500	spin_lock_irqsave(&list->lock, flags);
 501	sock_skb_set_dropcount(sk, skb);
 502	__skb_queue_tail(list, skb);
 503	spin_unlock_irqrestore(&list->lock, flags);
 504
 505	if (!sock_flag(sk, SOCK_DEAD))
 506		sk->sk_data_ready(sk);
 507	return 0;
 508}
 509EXPORT_SYMBOL(__sock_queue_rcv_skb);
 510
 511int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
 512			      enum skb_drop_reason *reason)
 513{
 514	enum skb_drop_reason drop_reason;
 515	int err;
 516
 517	err = sk_filter(sk, skb);
 518	if (err) {
 519		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
 520		goto out;
 521	}
 522	err = __sock_queue_rcv_skb(sk, skb);
 523	switch (err) {
 524	case -ENOMEM:
 525		drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
 526		break;
 527	case -ENOBUFS:
 528		drop_reason = SKB_DROP_REASON_PROTO_MEM;
 529		break;
 530	default:
 531		drop_reason = SKB_NOT_DROPPED_YET;
 532		break;
 533	}
 534out:
 535	if (reason)
 536		*reason = drop_reason;
 537	return err;
 538}
 539EXPORT_SYMBOL(sock_queue_rcv_skb_reason);
 540
 541int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
 542		     const int nested, unsigned int trim_cap, bool refcounted)
 543{
 544	int rc = NET_RX_SUCCESS;
 545
 546	if (sk_filter_trim_cap(sk, skb, trim_cap))
 547		goto discard_and_relse;
 548
 549	skb->dev = NULL;
 550
 551	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
 552		atomic_inc(&sk->sk_drops);
 553		goto discard_and_relse;
 554	}
 555	if (nested)
 556		bh_lock_sock_nested(sk);
 557	else
 558		bh_lock_sock(sk);
 559	if (!sock_owned_by_user(sk)) {
 560		/*
 561		 * trylock + unlock semantics:
 562		 */
 563		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
 564
 565		rc = sk_backlog_rcv(sk, skb);
 566
 567		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
 568	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
 569		bh_unlock_sock(sk);
 570		atomic_inc(&sk->sk_drops);
 571		goto discard_and_relse;
 572	}
 573
 574	bh_unlock_sock(sk);
 575out:
 576	if (refcounted)
 577		sock_put(sk);
 578	return rc;
 579discard_and_relse:
 580	kfree_skb(skb);
 581	goto out;
 582}
 583EXPORT_SYMBOL(__sk_receive_skb);
 584
 585INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
 586							  u32));
 587INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
 588							   u32));
 589struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
 590{
 591	struct dst_entry *dst = __sk_dst_get(sk);
 592
 593	if (dst && dst->obsolete &&
 594	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
 595			       dst, cookie) == NULL) {
 596		sk_tx_queue_clear(sk);
 597		sk->sk_dst_pending_confirm = 0;
 598		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
 599		dst_release(dst);
 600		return NULL;
 601	}
 602
 603	return dst;
 604}
 605EXPORT_SYMBOL(__sk_dst_check);
 606
 607struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
 608{
 609	struct dst_entry *dst = sk_dst_get(sk);
 610
 611	if (dst && dst->obsolete &&
 612	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
 613			       dst, cookie) == NULL) {
 614		sk_dst_reset(sk);
 615		dst_release(dst);
 616		return NULL;
 617	}
 618
 619	return dst;
 620}
 621EXPORT_SYMBOL(sk_dst_check);
 622
 623static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
 624{
 625	int ret = -ENOPROTOOPT;
 626#ifdef CONFIG_NETDEVICES
 627	struct net *net = sock_net(sk);
 628
 629	/* Sorry... */
 630	ret = -EPERM;
 631	if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
 632		goto out;
 633
 634	ret = -EINVAL;
 635	if (ifindex < 0)
 636		goto out;
 637
 638	/* Paired with all READ_ONCE() done locklessly. */
 639	WRITE_ONCE(sk->sk_bound_dev_if, ifindex);
 640
 641	if (sk->sk_prot->rehash)
 642		sk->sk_prot->rehash(sk);
 643	sk_dst_reset(sk);
 644
 645	ret = 0;
 646
 647out:
 648#endif
 649
 650	return ret;
 651}
 652
 653int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
 654{
 655	int ret;
 656
 657	if (lock_sk)
 658		lock_sock(sk);
 659	ret = sock_bindtoindex_locked(sk, ifindex);
 660	if (lock_sk)
 661		release_sock(sk);
 662
 663	return ret;
 664}
 665EXPORT_SYMBOL(sock_bindtoindex);
 666
 667static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
 668{
 669	int ret = -ENOPROTOOPT;
 670#ifdef CONFIG_NETDEVICES
 671	struct net *net = sock_net(sk);
 672	char devname[IFNAMSIZ];
 673	int index;
 674
 675	ret = -EINVAL;
 676	if (optlen < 0)
 677		goto out;
 678
 679	/* Bind this socket to a particular device like "eth0",
 680	 * as specified in the passed interface name. If the
 681	 * name is "" or the option length is zero the socket
 682	 * is not bound.
 683	 */
 684	if (optlen > IFNAMSIZ - 1)
 685		optlen = IFNAMSIZ - 1;
 686	memset(devname, 0, sizeof(devname));
 687
 688	ret = -EFAULT;
 689	if (copy_from_sockptr(devname, optval, optlen))
 690		goto out;
 691
 692	index = 0;
 693	if (devname[0] != '\0') {
 694		struct net_device *dev;
 695
 696		rcu_read_lock();
 697		dev = dev_get_by_name_rcu(net, devname);
 698		if (dev)
 699			index = dev->ifindex;
 700		rcu_read_unlock();
 701		ret = -ENODEV;
 702		if (!dev)
 703			goto out;
 704	}
 705
 706	sockopt_lock_sock(sk);
 707	ret = sock_bindtoindex_locked(sk, index);
 708	sockopt_release_sock(sk);
 709out:
 710#endif
 711
 712	return ret;
 713}
 714
 715static int sock_getbindtodevice(struct sock *sk, sockptr_t optval,
 716				sockptr_t optlen, int len)
 717{
 718	int ret = -ENOPROTOOPT;
 719#ifdef CONFIG_NETDEVICES
 720	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
 721	struct net *net = sock_net(sk);
 722	char devname[IFNAMSIZ];
 723
 724	if (bound_dev_if == 0) {
 725		len = 0;
 726		goto zero;
 727	}
 728
 729	ret = -EINVAL;
 730	if (len < IFNAMSIZ)
 731		goto out;
 732
 733	ret = netdev_get_name(net, devname, bound_dev_if);
 734	if (ret)
 735		goto out;
 736
 737	len = strlen(devname) + 1;
 738
 739	ret = -EFAULT;
 740	if (copy_to_sockptr(optval, devname, len))
 741		goto out;
 742
 743zero:
 744	ret = -EFAULT;
 745	if (copy_to_sockptr(optlen, &len, sizeof(int)))
 746		goto out;
 747
 748	ret = 0;
 749
 750out:
 751#endif
 752
 753	return ret;
 754}
 755
 756bool sk_mc_loop(struct sock *sk)
 757{
 758	if (dev_recursion_level())
 759		return false;
 760	if (!sk)
 761		return true;
 762	switch (sk->sk_family) {
 763	case AF_INET:
 764		return inet_sk(sk)->mc_loop;
 765#if IS_ENABLED(CONFIG_IPV6)
 766	case AF_INET6:
 767		return inet6_sk(sk)->mc_loop;
 768#endif
 769	}
 770	WARN_ON_ONCE(1);
 771	return true;
 772}
 773EXPORT_SYMBOL(sk_mc_loop);
 774
 775void sock_set_reuseaddr(struct sock *sk)
 776{
 777	lock_sock(sk);
 778	sk->sk_reuse = SK_CAN_REUSE;
 779	release_sock(sk);
 780}
 781EXPORT_SYMBOL(sock_set_reuseaddr);
 782
 783void sock_set_reuseport(struct sock *sk)
 784{
 785	lock_sock(sk);
 786	sk->sk_reuseport = true;
 787	release_sock(sk);
 788}
 789EXPORT_SYMBOL(sock_set_reuseport);
 790
 791void sock_no_linger(struct sock *sk)
 792{
 793	lock_sock(sk);
 794	sk->sk_lingertime = 0;
 795	sock_set_flag(sk, SOCK_LINGER);
 796	release_sock(sk);
 797}
 798EXPORT_SYMBOL(sock_no_linger);
 799
 800void sock_set_priority(struct sock *sk, u32 priority)
 801{
 802	lock_sock(sk);
 803	sk->sk_priority = priority;
 804	release_sock(sk);
 805}
 806EXPORT_SYMBOL(sock_set_priority);
 807
 808void sock_set_sndtimeo(struct sock *sk, s64 secs)
 809{
 810	lock_sock(sk);
 811	if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
 812		sk->sk_sndtimeo = secs * HZ;
 813	else
 814		sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
 815	release_sock(sk);
 816}
 817EXPORT_SYMBOL(sock_set_sndtimeo);
 818
 819static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
 820{
 821	if (val)  {
 822		sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
 823		sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
 824		sock_set_flag(sk, SOCK_RCVTSTAMP);
 825		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
 826	} else {
 827		sock_reset_flag(sk, SOCK_RCVTSTAMP);
 828		sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 
 829	}
 830}
 831
 832void sock_enable_timestamps(struct sock *sk)
 833{
 834	lock_sock(sk);
 835	__sock_set_timestamps(sk, true, false, true);
 836	release_sock(sk);
 837}
 838EXPORT_SYMBOL(sock_enable_timestamps);
 839
 840void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
 841{
 842	switch (optname) {
 843	case SO_TIMESTAMP_OLD:
 844		__sock_set_timestamps(sk, valbool, false, false);
 845		break;
 846	case SO_TIMESTAMP_NEW:
 847		__sock_set_timestamps(sk, valbool, true, false);
 848		break;
 849	case SO_TIMESTAMPNS_OLD:
 850		__sock_set_timestamps(sk, valbool, false, true);
 851		break;
 852	case SO_TIMESTAMPNS_NEW:
 853		__sock_set_timestamps(sk, valbool, true, true);
 854		break;
 855	}
 856}
 857
 858static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
 859{
 860	struct net *net = sock_net(sk);
 861	struct net_device *dev = NULL;
 862	bool match = false;
 863	int *vclock_index;
 864	int i, num;
 865
 866	if (sk->sk_bound_dev_if)
 867		dev = dev_get_by_index(net, sk->sk_bound_dev_if);
 868
 869	if (!dev) {
 870		pr_err("%s: sock not bind to device\n", __func__);
 871		return -EOPNOTSUPP;
 872	}
 873
 874	num = ethtool_get_phc_vclocks(dev, &vclock_index);
 875	dev_put(dev);
 876
 877	for (i = 0; i < num; i++) {
 878		if (*(vclock_index + i) == phc_index) {
 879			match = true;
 880			break;
 881		}
 882	}
 883
 884	if (num > 0)
 885		kfree(vclock_index);
 886
 887	if (!match)
 888		return -EINVAL;
 889
 890	sk->sk_bind_phc = phc_index;
 891
 892	return 0;
 893}
 894
 895int sock_set_timestamping(struct sock *sk, int optname,
 896			  struct so_timestamping timestamping)
 897{
 898	int val = timestamping.flags;
 899	int ret;
 900
 901	if (val & ~SOF_TIMESTAMPING_MASK)
 902		return -EINVAL;
 903
 904	if (val & SOF_TIMESTAMPING_OPT_ID_TCP &&
 905	    !(val & SOF_TIMESTAMPING_OPT_ID))
 906		return -EINVAL;
 907
 908	if (val & SOF_TIMESTAMPING_OPT_ID &&
 909	    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
 910		if (sk_is_tcp(sk)) {
 911			if ((1 << sk->sk_state) &
 912			    (TCPF_CLOSE | TCPF_LISTEN))
 913				return -EINVAL;
 914			if (val & SOF_TIMESTAMPING_OPT_ID_TCP)
 915				atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq);
 916			else
 917				atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una);
 918		} else {
 919			atomic_set(&sk->sk_tskey, 0);
 920		}
 921	}
 922
 923	if (val & SOF_TIMESTAMPING_OPT_STATS &&
 924	    !(val & SOF_TIMESTAMPING_OPT_TSONLY))
 925		return -EINVAL;
 926
 927	if (val & SOF_TIMESTAMPING_BIND_PHC) {
 928		ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
 929		if (ret)
 930			return ret;
 931	}
 932
 933	sk->sk_tsflags = val;
 934	sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
 935
 936	if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
 937		sock_enable_timestamp(sk,
 938				      SOCK_TIMESTAMPING_RX_SOFTWARE);
 939	else
 940		sock_disable_timestamp(sk,
 941				       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
 942	return 0;
 943}
 944
 945void sock_set_keepalive(struct sock *sk)
 946{
 947	lock_sock(sk);
 948	if (sk->sk_prot->keepalive)
 949		sk->sk_prot->keepalive(sk, true);
 950	sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
 951	release_sock(sk);
 952}
 953EXPORT_SYMBOL(sock_set_keepalive);
 954
 955static void __sock_set_rcvbuf(struct sock *sk, int val)
 956{
 957	/* Ensure val * 2 fits into an int, to prevent max_t() from treating it
 958	 * as a negative value.
 959	 */
 960	val = min_t(int, val, INT_MAX / 2);
 961	sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
 962
 963	/* We double it on the way in to account for "struct sk_buff" etc.
 964	 * overhead.   Applications assume that the SO_RCVBUF setting they make
 965	 * will allow that much actual data to be received on that socket.
 966	 *
 967	 * Applications are unaware that "struct sk_buff" and other overheads
 968	 * allocate from the receive buffer during socket buffer allocation.
 969	 *
 970	 * And after considering the possible alternatives, returning the value
 971	 * we actually used in getsockopt is the most desirable behavior.
 972	 */
 973	WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
 974}
 975
 976void sock_set_rcvbuf(struct sock *sk, int val)
 977{
 978	lock_sock(sk);
 979	__sock_set_rcvbuf(sk, val);
 980	release_sock(sk);
 981}
 982EXPORT_SYMBOL(sock_set_rcvbuf);
 983
 984static void __sock_set_mark(struct sock *sk, u32 val)
 985{
 986	if (val != sk->sk_mark) {
 987		sk->sk_mark = val;
 988		sk_dst_reset(sk);
 989	}
 990}
 991
 992void sock_set_mark(struct sock *sk, u32 val)
 993{
 994	lock_sock(sk);
 995	__sock_set_mark(sk, val);
 996	release_sock(sk);
 997}
 998EXPORT_SYMBOL(sock_set_mark);
 999
1000static void sock_release_reserved_memory(struct sock *sk, int bytes)
1001{
1002	/* Round down bytes to multiple of pages */
1003	bytes = round_down(bytes, PAGE_SIZE);
1004
1005	WARN_ON(bytes > sk->sk_reserved_mem);
1006	sk->sk_reserved_mem -= bytes;
1007	sk_mem_reclaim(sk);
1008}
1009
1010static int sock_reserve_memory(struct sock *sk, int bytes)
1011{
1012	long allocated;
1013	bool charged;
1014	int pages;
1015
1016	if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk))
1017		return -EOPNOTSUPP;
1018
1019	if (!bytes)
1020		return 0;
1021
1022	pages = sk_mem_pages(bytes);
1023
1024	/* pre-charge to memcg */
1025	charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages,
1026					  GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1027	if (!charged)
1028		return -ENOMEM;
1029
1030	/* pre-charge to forward_alloc */
1031	sk_memory_allocated_add(sk, pages);
1032	allocated = sk_memory_allocated(sk);
1033	/* If the system goes into memory pressure with this
1034	 * precharge, give up and return error.
1035	 */
1036	if (allocated > sk_prot_mem_limits(sk, 1)) {
1037		sk_memory_allocated_sub(sk, pages);
1038		mem_cgroup_uncharge_skmem(sk->sk_memcg, pages);
1039		return -ENOMEM;
1040	}
1041	sk->sk_forward_alloc += pages << PAGE_SHIFT;
1042
1043	sk->sk_reserved_mem += pages << PAGE_SHIFT;
1044
1045	return 0;
1046}
1047
1048void sockopt_lock_sock(struct sock *sk)
1049{
1050	/* When current->bpf_ctx is set, the setsockopt is called from
1051	 * a bpf prog.  bpf has ensured the sk lock has been
1052	 * acquired before calling setsockopt().
1053	 */
1054	if (has_current_bpf_ctx())
1055		return;
1056
1057	lock_sock(sk);
1058}
1059EXPORT_SYMBOL(sockopt_lock_sock);
1060
1061void sockopt_release_sock(struct sock *sk)
1062{
1063	if (has_current_bpf_ctx())
1064		return;
1065
1066	release_sock(sk);
1067}
1068EXPORT_SYMBOL(sockopt_release_sock);
1069
1070bool sockopt_ns_capable(struct user_namespace *ns, int cap)
1071{
1072	return has_current_bpf_ctx() || ns_capable(ns, cap);
1073}
1074EXPORT_SYMBOL(sockopt_ns_capable);
1075
1076bool sockopt_capable(int cap)
1077{
1078	return has_current_bpf_ctx() || capable(cap);
1079}
1080EXPORT_SYMBOL(sockopt_capable);
1081
1082/*
1083 *	This is meant for all protocols to use and covers goings on
1084 *	at the socket level. Everything here is generic.
1085 */
1086
1087int sk_setsockopt(struct sock *sk, int level, int optname,
1088		  sockptr_t optval, unsigned int optlen)
1089{
1090	struct so_timestamping timestamping;
1091	struct socket *sock = sk->sk_socket;
1092	struct sock_txtime sk_txtime;
 
1093	int val;
1094	int valbool;
1095	struct linger ling;
1096	int ret = 0;
1097
1098	/*
1099	 *	Options without arguments
1100	 */
1101
1102	if (optname == SO_BINDTODEVICE)
1103		return sock_setbindtodevice(sk, optval, optlen);
1104
1105	if (optlen < sizeof(int))
1106		return -EINVAL;
1107
1108	if (copy_from_sockptr(&val, optval, sizeof(val)))
1109		return -EFAULT;
1110
1111	valbool = val ? 1 : 0;
1112
1113	sockopt_lock_sock(sk);
1114
1115	switch (optname) {
1116	case SO_DEBUG:
1117		if (val && !sockopt_capable(CAP_NET_ADMIN))
1118			ret = -EACCES;
1119		else
1120			sock_valbool_flag(sk, SOCK_DBG, valbool);
1121		break;
1122	case SO_REUSEADDR:
1123		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
1124		break;
1125	case SO_REUSEPORT:
1126		sk->sk_reuseport = valbool;
1127		break;
1128	case SO_TYPE:
1129	case SO_PROTOCOL:
1130	case SO_DOMAIN:
1131	case SO_ERROR:
1132		ret = -ENOPROTOOPT;
1133		break;
1134	case SO_DONTROUTE:
1135		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1136		sk_dst_reset(sk);
1137		break;
1138	case SO_BROADCAST:
1139		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1140		break;
1141	case SO_SNDBUF:
1142		/* Don't error on this BSD doesn't and if you think
1143		 * about it this is right. Otherwise apps have to
1144		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1145		 * are treated in BSD as hints
1146		 */
1147		val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
1148set_sndbuf:
1149		/* Ensure val * 2 fits into an int, to prevent max_t()
1150		 * from treating it as a negative value.
1151		 */
1152		val = min_t(int, val, INT_MAX / 2);
1153		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1154		WRITE_ONCE(sk->sk_sndbuf,
1155			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
1156		/* Wake up sending tasks if we upped the value. */
1157		sk->sk_write_space(sk);
1158		break;
1159
1160	case SO_SNDBUFFORCE:
1161		if (!sockopt_capable(CAP_NET_ADMIN)) {
1162			ret = -EPERM;
1163			break;
1164		}
1165
1166		/* No negative values (to prevent underflow, as val will be
1167		 * multiplied by 2).
1168		 */
1169		if (val < 0)
1170			val = 0;
1171		goto set_sndbuf;
1172
1173	case SO_RCVBUF:
1174		/* Don't error on this BSD doesn't and if you think
1175		 * about it this is right. Otherwise apps have to
1176		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1177		 * are treated in BSD as hints
1178		 */
1179		__sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max)));
1180		break;
1181
1182	case SO_RCVBUFFORCE:
1183		if (!sockopt_capable(CAP_NET_ADMIN)) {
1184			ret = -EPERM;
1185			break;
1186		}
1187
1188		/* No negative values (to prevent underflow, as val will be
1189		 * multiplied by 2).
1190		 */
1191		__sock_set_rcvbuf(sk, max(val, 0));
1192		break;
1193
1194	case SO_KEEPALIVE:
1195		if (sk->sk_prot->keepalive)
1196			sk->sk_prot->keepalive(sk, valbool);
1197		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1198		break;
1199
1200	case SO_OOBINLINE:
1201		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1202		break;
1203
1204	case SO_NO_CHECK:
1205		sk->sk_no_check_tx = valbool;
1206		break;
1207
1208	case SO_PRIORITY:
1209		if ((val >= 0 && val <= 6) ||
1210		    sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) ||
1211		    sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1212			sk->sk_priority = val;
1213		else
1214			ret = -EPERM;
1215		break;
1216
1217	case SO_LINGER:
1218		if (optlen < sizeof(ling)) {
1219			ret = -EINVAL;	/* 1003.1g */
1220			break;
1221		}
1222		if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1223			ret = -EFAULT;
1224			break;
1225		}
1226		if (!ling.l_onoff)
1227			sock_reset_flag(sk, SOCK_LINGER);
1228		else {
1229#if (BITS_PER_LONG == 32)
1230			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
1231				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
1232			else
1233#endif
1234				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
1235			sock_set_flag(sk, SOCK_LINGER);
1236		}
1237		break;
1238
1239	case SO_BSDCOMPAT:
 
1240		break;
1241
1242	case SO_PASSCRED:
1243		if (valbool)
1244			set_bit(SOCK_PASSCRED, &sock->flags);
1245		else
1246			clear_bit(SOCK_PASSCRED, &sock->flags);
1247		break;
1248
1249	case SO_TIMESTAMP_OLD:
 
 
1250	case SO_TIMESTAMP_NEW:
 
 
1251	case SO_TIMESTAMPNS_OLD:
 
 
1252	case SO_TIMESTAMPNS_NEW:
1253		sock_set_timestamp(sk, optname, valbool);
1254		break;
1255
1256	case SO_TIMESTAMPING_NEW:
 
 
1257	case SO_TIMESTAMPING_OLD:
1258		if (optlen == sizeof(timestamping)) {
1259			if (copy_from_sockptr(&timestamping, optval,
1260					      sizeof(timestamping))) {
1261				ret = -EFAULT;
1262				break;
 
 
 
 
 
 
 
 
 
 
 
 
1263			}
1264		} else {
1265			memset(&timestamping, 0, sizeof(timestamping));
1266			timestamping.flags = val;
1267		}
1268		ret = sock_set_timestamping(sk, optname, timestamping);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1269		break;
1270
1271	case SO_RCVLOWAT:
1272		if (val < 0)
1273			val = INT_MAX;
1274		if (sock && sock->ops->set_rcvlowat)
1275			ret = sock->ops->set_rcvlowat(sk, val);
1276		else
1277			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1278		break;
1279
1280	case SO_RCVTIMEO_OLD:
1281	case SO_RCVTIMEO_NEW:
1282		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1283				       optlen, optname == SO_RCVTIMEO_OLD);
1284		break;
1285
1286	case SO_SNDTIMEO_OLD:
1287	case SO_SNDTIMEO_NEW:
1288		ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1289				       optlen, optname == SO_SNDTIMEO_OLD);
1290		break;
1291
1292	case SO_ATTACH_FILTER: {
1293		struct sock_fprog fprog;
1294
1295		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1296		if (!ret)
1297			ret = sk_attach_filter(&fprog, sk);
1298		break;
1299	}
1300	case SO_ATTACH_BPF:
1301		ret = -EINVAL;
1302		if (optlen == sizeof(u32)) {
1303			u32 ufd;
1304
1305			ret = -EFAULT;
1306			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1307				break;
1308
1309			ret = sk_attach_bpf(ufd, sk);
1310		}
1311		break;
1312
1313	case SO_ATTACH_REUSEPORT_CBPF: {
1314		struct sock_fprog fprog;
1315
1316		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1317		if (!ret)
1318			ret = sk_reuseport_attach_filter(&fprog, sk);
1319		break;
1320	}
1321	case SO_ATTACH_REUSEPORT_EBPF:
1322		ret = -EINVAL;
1323		if (optlen == sizeof(u32)) {
1324			u32 ufd;
1325
1326			ret = -EFAULT;
1327			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1328				break;
1329
1330			ret = sk_reuseport_attach_bpf(ufd, sk);
1331		}
1332		break;
1333
1334	case SO_DETACH_REUSEPORT_BPF:
1335		ret = reuseport_detach_prog(sk);
1336		break;
1337
1338	case SO_DETACH_FILTER:
1339		ret = sk_detach_filter(sk);
1340		break;
1341
1342	case SO_LOCK_FILTER:
1343		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1344			ret = -EPERM;
1345		else
1346			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1347		break;
1348
1349	case SO_PASSSEC:
1350		if (valbool)
1351			set_bit(SOCK_PASSSEC, &sock->flags);
1352		else
1353			clear_bit(SOCK_PASSSEC, &sock->flags);
1354		break;
1355	case SO_MARK:
1356		if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1357		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1358			ret = -EPERM;
1359			break;
1360		}
1361
1362		__sock_set_mark(sk, val);
1363		break;
1364	case SO_RCVMARK:
1365		if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1366		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1367			ret = -EPERM;
1368			break;
1369		}
1370
1371		sock_valbool_flag(sk, SOCK_RCVMARK, valbool);
1372		break;
1373
1374	case SO_RXQ_OVFL:
1375		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1376		break;
1377
1378	case SO_WIFI_STATUS:
1379		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1380		break;
1381
1382	case SO_PEEK_OFF:
1383		if (sock->ops->set_peek_off)
1384			ret = sock->ops->set_peek_off(sk, val);
1385		else
1386			ret = -EOPNOTSUPP;
1387		break;
1388
1389	case SO_NOFCS:
1390		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1391		break;
1392
1393	case SO_SELECT_ERR_QUEUE:
1394		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1395		break;
1396
1397#ifdef CONFIG_NET_RX_BUSY_POLL
1398	case SO_BUSY_POLL:
1399		/* allow unprivileged users to decrease the value */
1400		if ((val > sk->sk_ll_usec) && !sockopt_capable(CAP_NET_ADMIN))
1401			ret = -EPERM;
1402		else {
1403			if (val < 0)
1404				ret = -EINVAL;
1405			else
1406				WRITE_ONCE(sk->sk_ll_usec, val);
1407		}
1408		break;
1409	case SO_PREFER_BUSY_POLL:
1410		if (valbool && !sockopt_capable(CAP_NET_ADMIN))
1411			ret = -EPERM;
1412		else
1413			WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1414		break;
1415	case SO_BUSY_POLL_BUDGET:
1416		if (val > READ_ONCE(sk->sk_busy_poll_budget) && !sockopt_capable(CAP_NET_ADMIN)) {
1417			ret = -EPERM;
1418		} else {
1419			if (val < 0 || val > U16_MAX)
1420				ret = -EINVAL;
1421			else
1422				WRITE_ONCE(sk->sk_busy_poll_budget, val);
1423		}
1424		break;
1425#endif
1426
1427	case SO_MAX_PACING_RATE:
1428		{
1429		unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1430
1431		if (sizeof(ulval) != sizeof(val) &&
1432		    optlen >= sizeof(ulval) &&
1433		    copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1434			ret = -EFAULT;
1435			break;
1436		}
1437		if (ulval != ~0UL)
1438			cmpxchg(&sk->sk_pacing_status,
1439				SK_PACING_NONE,
1440				SK_PACING_NEEDED);
1441		sk->sk_max_pacing_rate = ulval;
1442		sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1443		break;
1444		}
1445	case SO_INCOMING_CPU:
1446		reuseport_update_incoming_cpu(sk, val);
1447		break;
1448
1449	case SO_CNX_ADVICE:
1450		if (val == 1)
1451			dst_negative_advice(sk);
1452		break;
1453
1454	case SO_ZEROCOPY:
1455		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1456			if (!(sk_is_tcp(sk) ||
 
1457			      (sk->sk_type == SOCK_DGRAM &&
1458			       sk->sk_protocol == IPPROTO_UDP)))
1459				ret = -EOPNOTSUPP;
1460		} else if (sk->sk_family != PF_RDS) {
1461			ret = -EOPNOTSUPP;
1462		}
1463		if (!ret) {
1464			if (val < 0 || val > 1)
1465				ret = -EINVAL;
1466			else
1467				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1468		}
1469		break;
1470
1471	case SO_TXTIME:
1472		if (optlen != sizeof(struct sock_txtime)) {
1473			ret = -EINVAL;
1474			break;
1475		} else if (copy_from_sockptr(&sk_txtime, optval,
1476			   sizeof(struct sock_txtime))) {
1477			ret = -EFAULT;
1478			break;
1479		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1480			ret = -EINVAL;
1481			break;
1482		}
1483		/* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1484		 * scheduler has enough safe guards.
1485		 */
1486		if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1487		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1488			ret = -EPERM;
1489			break;
1490		}
1491		sock_valbool_flag(sk, SOCK_TXTIME, true);
1492		sk->sk_clockid = sk_txtime.clockid;
1493		sk->sk_txtime_deadline_mode =
1494			!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1495		sk->sk_txtime_report_errors =
1496			!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1497		break;
1498
1499	case SO_BINDTOIFINDEX:
1500		ret = sock_bindtoindex_locked(sk, val);
1501		break;
1502
1503	case SO_BUF_LOCK:
1504		if (val & ~SOCK_BUF_LOCK_MASK) {
1505			ret = -EINVAL;
1506			break;
1507		}
1508		sk->sk_userlocks = val | (sk->sk_userlocks &
1509					  ~SOCK_BUF_LOCK_MASK);
1510		break;
1511
1512	case SO_RESERVE_MEM:
1513	{
1514		int delta;
1515
1516		if (val < 0) {
1517			ret = -EINVAL;
1518			break;
1519		}
1520
1521		delta = val - sk->sk_reserved_mem;
1522		if (delta < 0)
1523			sock_release_reserved_memory(sk, -delta);
1524		else
1525			ret = sock_reserve_memory(sk, delta);
1526		break;
1527	}
1528
1529	case SO_TXREHASH:
1530		if (val < -1 || val > 1) {
1531			ret = -EINVAL;
1532			break;
1533		}
1534		if ((u8)val == SOCK_TXREHASH_DEFAULT)
1535			val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash);
1536		/* Paired with READ_ONCE() in tcp_rtx_synack() */
1537		WRITE_ONCE(sk->sk_txrehash, (u8)val);
1538		break;
1539
1540	default:
1541		ret = -ENOPROTOOPT;
1542		break;
1543	}
1544	sockopt_release_sock(sk);
1545	return ret;
1546}
1547
1548int sock_setsockopt(struct socket *sock, int level, int optname,
1549		    sockptr_t optval, unsigned int optlen)
1550{
1551	return sk_setsockopt(sock->sk, level, optname,
1552			     optval, optlen);
1553}
1554EXPORT_SYMBOL(sock_setsockopt);
1555
1556static const struct cred *sk_get_peer_cred(struct sock *sk)
1557{
1558	const struct cred *cred;
1559
1560	spin_lock(&sk->sk_peer_lock);
1561	cred = get_cred(sk->sk_peer_cred);
1562	spin_unlock(&sk->sk_peer_lock);
1563
1564	return cred;
1565}
1566
1567static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1568			  struct ucred *ucred)
1569{
1570	ucred->pid = pid_vnr(pid);
1571	ucred->uid = ucred->gid = -1;
1572	if (cred) {
1573		struct user_namespace *current_ns = current_user_ns();
1574
1575		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1576		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1577	}
1578}
1579
1580static int groups_to_user(sockptr_t dst, const struct group_info *src)
1581{
1582	struct user_namespace *user_ns = current_user_ns();
1583	int i;
1584
1585	for (i = 0; i < src->ngroups; i++) {
1586		gid_t gid = from_kgid_munged(user_ns, src->gid[i]);
1587
1588		if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid)))
1589			return -EFAULT;
1590	}
1591
1592	return 0;
1593}
1594
1595int sk_getsockopt(struct sock *sk, int level, int optname,
1596		  sockptr_t optval, sockptr_t optlen)
1597{
1598	struct socket *sock = sk->sk_socket;
1599
1600	union {
1601		int val;
1602		u64 val64;
1603		unsigned long ulval;
1604		struct linger ling;
1605		struct old_timeval32 tm32;
1606		struct __kernel_old_timeval tm;
1607		struct  __kernel_sock_timeval stm;
1608		struct sock_txtime txtime;
1609		struct so_timestamping timestamping;
1610	} v;
1611
1612	int lv = sizeof(int);
1613	int len;
1614
1615	if (copy_from_sockptr(&len, optlen, sizeof(int)))
1616		return -EFAULT;
1617	if (len < 0)
1618		return -EINVAL;
1619
1620	memset(&v, 0, sizeof(v));
1621
1622	switch (optname) {
1623	case SO_DEBUG:
1624		v.val = sock_flag(sk, SOCK_DBG);
1625		break;
1626
1627	case SO_DONTROUTE:
1628		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1629		break;
1630
1631	case SO_BROADCAST:
1632		v.val = sock_flag(sk, SOCK_BROADCAST);
1633		break;
1634
1635	case SO_SNDBUF:
1636		v.val = sk->sk_sndbuf;
1637		break;
1638
1639	case SO_RCVBUF:
1640		v.val = sk->sk_rcvbuf;
1641		break;
1642
1643	case SO_REUSEADDR:
1644		v.val = sk->sk_reuse;
1645		break;
1646
1647	case SO_REUSEPORT:
1648		v.val = sk->sk_reuseport;
1649		break;
1650
1651	case SO_KEEPALIVE:
1652		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1653		break;
1654
1655	case SO_TYPE:
1656		v.val = sk->sk_type;
1657		break;
1658
1659	case SO_PROTOCOL:
1660		v.val = sk->sk_protocol;
1661		break;
1662
1663	case SO_DOMAIN:
1664		v.val = sk->sk_family;
1665		break;
1666
1667	case SO_ERROR:
1668		v.val = -sock_error(sk);
1669		if (v.val == 0)
1670			v.val = xchg(&sk->sk_err_soft, 0);
1671		break;
1672
1673	case SO_OOBINLINE:
1674		v.val = sock_flag(sk, SOCK_URGINLINE);
1675		break;
1676
1677	case SO_NO_CHECK:
1678		v.val = sk->sk_no_check_tx;
1679		break;
1680
1681	case SO_PRIORITY:
1682		v.val = sk->sk_priority;
1683		break;
1684
1685	case SO_LINGER:
1686		lv		= sizeof(v.ling);
1687		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1688		v.ling.l_linger	= sk->sk_lingertime / HZ;
1689		break;
1690
1691	case SO_BSDCOMPAT:
 
1692		break;
1693
1694	case SO_TIMESTAMP_OLD:
1695		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1696				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1697				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1698		break;
1699
1700	case SO_TIMESTAMPNS_OLD:
1701		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1702		break;
1703
1704	case SO_TIMESTAMP_NEW:
1705		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1706		break;
1707
1708	case SO_TIMESTAMPNS_NEW:
1709		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1710		break;
1711
1712	case SO_TIMESTAMPING_OLD:
1713		lv = sizeof(v.timestamping);
1714		v.timestamping.flags = sk->sk_tsflags;
1715		v.timestamping.bind_phc = sk->sk_bind_phc;
1716		break;
1717
1718	case SO_RCVTIMEO_OLD:
1719	case SO_RCVTIMEO_NEW:
1720		lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1721		break;
1722
1723	case SO_SNDTIMEO_OLD:
1724	case SO_SNDTIMEO_NEW:
1725		lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1726		break;
1727
1728	case SO_RCVLOWAT:
1729		v.val = sk->sk_rcvlowat;
1730		break;
1731
1732	case SO_SNDLOWAT:
1733		v.val = 1;
1734		break;
1735
1736	case SO_PASSCRED:
1737		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1738		break;
1739
1740	case SO_PEERCRED:
1741	{
1742		struct ucred peercred;
1743		if (len > sizeof(peercred))
1744			len = sizeof(peercred);
1745
1746		spin_lock(&sk->sk_peer_lock);
1747		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1748		spin_unlock(&sk->sk_peer_lock);
1749
1750		if (copy_to_sockptr(optval, &peercred, len))
1751			return -EFAULT;
1752		goto lenout;
1753	}
1754
1755	case SO_PEERGROUPS:
1756	{
1757		const struct cred *cred;
1758		int ret, n;
1759
1760		cred = sk_get_peer_cred(sk);
1761		if (!cred)
1762			return -ENODATA;
1763
1764		n = cred->group_info->ngroups;
1765		if (len < n * sizeof(gid_t)) {
1766			len = n * sizeof(gid_t);
1767			put_cred(cred);
1768			return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE;
1769		}
1770		len = n * sizeof(gid_t);
1771
1772		ret = groups_to_user(optval, cred->group_info);
1773		put_cred(cred);
1774		if (ret)
1775			return ret;
1776		goto lenout;
1777	}
1778
1779	case SO_PEERNAME:
1780	{
1781		char address[128];
1782
1783		lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1784		if (lv < 0)
1785			return -ENOTCONN;
1786		if (lv < len)
1787			return -EINVAL;
1788		if (copy_to_sockptr(optval, address, len))
1789			return -EFAULT;
1790		goto lenout;
1791	}
1792
1793	/* Dubious BSD thing... Probably nobody even uses it, but
1794	 * the UNIX standard wants it for whatever reason... -DaveM
1795	 */
1796	case SO_ACCEPTCONN:
1797		v.val = sk->sk_state == TCP_LISTEN;
1798		break;
1799
1800	case SO_PASSSEC:
1801		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1802		break;
1803
1804	case SO_PEERSEC:
1805		return security_socket_getpeersec_stream(sock,
1806							 optval, optlen, len);
1807
1808	case SO_MARK:
1809		v.val = sk->sk_mark;
1810		break;
1811
1812	case SO_RCVMARK:
1813		v.val = sock_flag(sk, SOCK_RCVMARK);
1814		break;
1815
1816	case SO_RXQ_OVFL:
1817		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1818		break;
1819
1820	case SO_WIFI_STATUS:
1821		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1822		break;
1823
1824	case SO_PEEK_OFF:
1825		if (!sock->ops->set_peek_off)
1826			return -EOPNOTSUPP;
1827
1828		v.val = sk->sk_peek_off;
1829		break;
1830	case SO_NOFCS:
1831		v.val = sock_flag(sk, SOCK_NOFCS);
1832		break;
1833
1834	case SO_BINDTODEVICE:
1835		return sock_getbindtodevice(sk, optval, optlen, len);
1836
1837	case SO_GET_FILTER:
1838		len = sk_get_filter(sk, optval, len);
1839		if (len < 0)
1840			return len;
1841
1842		goto lenout;
1843
1844	case SO_LOCK_FILTER:
1845		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1846		break;
1847
1848	case SO_BPF_EXTENSIONS:
1849		v.val = bpf_tell_extensions();
1850		break;
1851
1852	case SO_SELECT_ERR_QUEUE:
1853		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1854		break;
1855
1856#ifdef CONFIG_NET_RX_BUSY_POLL
1857	case SO_BUSY_POLL:
1858		v.val = sk->sk_ll_usec;
1859		break;
1860	case SO_PREFER_BUSY_POLL:
1861		v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1862		break;
1863#endif
1864
1865	case SO_MAX_PACING_RATE:
1866		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1867			lv = sizeof(v.ulval);
1868			v.ulval = sk->sk_max_pacing_rate;
1869		} else {
1870			/* 32bit version */
1871			v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1872		}
1873		break;
1874
1875	case SO_INCOMING_CPU:
1876		v.val = READ_ONCE(sk->sk_incoming_cpu);
1877		break;
1878
1879	case SO_MEMINFO:
1880	{
1881		u32 meminfo[SK_MEMINFO_VARS];
1882
1883		sk_get_meminfo(sk, meminfo);
1884
1885		len = min_t(unsigned int, len, sizeof(meminfo));
1886		if (copy_to_sockptr(optval, &meminfo, len))
1887			return -EFAULT;
1888
1889		goto lenout;
1890	}
1891
1892#ifdef CONFIG_NET_RX_BUSY_POLL
1893	case SO_INCOMING_NAPI_ID:
1894		v.val = READ_ONCE(sk->sk_napi_id);
1895
1896		/* aggregate non-NAPI IDs down to 0 */
1897		if (v.val < MIN_NAPI_ID)
1898			v.val = 0;
1899
1900		break;
1901#endif
1902
1903	case SO_COOKIE:
1904		lv = sizeof(u64);
1905		if (len < lv)
1906			return -EINVAL;
1907		v.val64 = sock_gen_cookie(sk);
1908		break;
1909
1910	case SO_ZEROCOPY:
1911		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1912		break;
1913
1914	case SO_TXTIME:
1915		lv = sizeof(v.txtime);
1916		v.txtime.clockid = sk->sk_clockid;
1917		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1918				  SOF_TXTIME_DEADLINE_MODE : 0;
1919		v.txtime.flags |= sk->sk_txtime_report_errors ?
1920				  SOF_TXTIME_REPORT_ERRORS : 0;
1921		break;
1922
1923	case SO_BINDTOIFINDEX:
1924		v.val = READ_ONCE(sk->sk_bound_dev_if);
1925		break;
1926
1927	case SO_NETNS_COOKIE:
1928		lv = sizeof(u64);
1929		if (len != lv)
1930			return -EINVAL;
1931		v.val64 = sock_net(sk)->net_cookie;
1932		break;
1933
1934	case SO_BUF_LOCK:
1935		v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK;
1936		break;
1937
1938	case SO_RESERVE_MEM:
1939		v.val = sk->sk_reserved_mem;
1940		break;
1941
1942	case SO_TXREHASH:
1943		v.val = sk->sk_txrehash;
1944		break;
1945
1946	default:
1947		/* We implement the SO_SNDLOWAT etc to not be settable
1948		 * (1003.1g 7).
1949		 */
1950		return -ENOPROTOOPT;
1951	}
1952
1953	if (len > lv)
1954		len = lv;
1955	if (copy_to_sockptr(optval, &v, len))
1956		return -EFAULT;
1957lenout:
1958	if (copy_to_sockptr(optlen, &len, sizeof(int)))
1959		return -EFAULT;
1960	return 0;
1961}
1962
1963int sock_getsockopt(struct socket *sock, int level, int optname,
1964		    char __user *optval, int __user *optlen)
1965{
1966	return sk_getsockopt(sock->sk, level, optname,
1967			     USER_SOCKPTR(optval),
1968			     USER_SOCKPTR(optlen));
1969}
1970
1971/*
1972 * Initialize an sk_lock.
1973 *
1974 * (We also register the sk_lock with the lock validator.)
1975 */
1976static inline void sock_lock_init(struct sock *sk)
1977{
1978	if (sk->sk_kern_sock)
1979		sock_lock_init_class_and_name(
1980			sk,
1981			af_family_kern_slock_key_strings[sk->sk_family],
1982			af_family_kern_slock_keys + sk->sk_family,
1983			af_family_kern_key_strings[sk->sk_family],
1984			af_family_kern_keys + sk->sk_family);
1985	else
1986		sock_lock_init_class_and_name(
1987			sk,
1988			af_family_slock_key_strings[sk->sk_family],
1989			af_family_slock_keys + sk->sk_family,
1990			af_family_key_strings[sk->sk_family],
1991			af_family_keys + sk->sk_family);
1992}
1993
1994/*
1995 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1996 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1997 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1998 */
1999static void sock_copy(struct sock *nsk, const struct sock *osk)
2000{
2001	const struct proto *prot = READ_ONCE(osk->sk_prot);
2002#ifdef CONFIG_SECURITY_NETWORK
2003	void *sptr = nsk->sk_security;
2004#endif
2005
2006	/* If we move sk_tx_queue_mapping out of the private section,
2007	 * we must check if sk_tx_queue_clear() is called after
2008	 * sock_copy() in sk_clone_lock().
2009	 */
2010	BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
2011		     offsetof(struct sock, sk_dontcopy_begin) ||
2012		     offsetof(struct sock, sk_tx_queue_mapping) >=
2013		     offsetof(struct sock, sk_dontcopy_end));
2014
2015	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
2016
2017	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
2018	       prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
2019
2020#ifdef CONFIG_SECURITY_NETWORK
2021	nsk->sk_security = sptr;
2022	security_sk_clone(osk, nsk);
2023#endif
2024}
2025
2026static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
2027		int family)
2028{
2029	struct sock *sk;
2030	struct kmem_cache *slab;
2031
2032	slab = prot->slab;
2033	if (slab != NULL) {
2034		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
2035		if (!sk)
2036			return sk;
2037		if (want_init_on_alloc(priority))
2038			sk_prot_clear_nulls(sk, prot->obj_size);
2039	} else
2040		sk = kmalloc(prot->obj_size, priority);
2041
2042	if (sk != NULL) {
2043		if (security_sk_alloc(sk, family, priority))
2044			goto out_free;
2045
2046		if (!try_module_get(prot->owner))
2047			goto out_free_sec;
 
2048	}
2049
2050	return sk;
2051
2052out_free_sec:
2053	security_sk_free(sk);
2054out_free:
2055	if (slab != NULL)
2056		kmem_cache_free(slab, sk);
2057	else
2058		kfree(sk);
2059	return NULL;
2060}
2061
2062static void sk_prot_free(struct proto *prot, struct sock *sk)
2063{
2064	struct kmem_cache *slab;
2065	struct module *owner;
2066
2067	owner = prot->owner;
2068	slab = prot->slab;
2069
2070	cgroup_sk_free(&sk->sk_cgrp_data);
2071	mem_cgroup_sk_free(sk);
2072	security_sk_free(sk);
2073	if (slab != NULL)
2074		kmem_cache_free(slab, sk);
2075	else
2076		kfree(sk);
2077	module_put(owner);
2078}
2079
2080/**
2081 *	sk_alloc - All socket objects are allocated here
2082 *	@net: the applicable net namespace
2083 *	@family: protocol family
2084 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2085 *	@prot: struct proto associated with this new sock instance
2086 *	@kern: is this to be a kernel socket?
2087 */
2088struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
2089		      struct proto *prot, int kern)
2090{
2091	struct sock *sk;
2092
2093	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
2094	if (sk) {
2095		sk->sk_family = family;
2096		/*
2097		 * See comment in struct sock definition to understand
2098		 * why we need sk_prot_creator -acme
2099		 */
2100		sk->sk_prot = sk->sk_prot_creator = prot;
2101		sk->sk_kern_sock = kern;
2102		sock_lock_init(sk);
2103		sk->sk_net_refcnt = kern ? 0 : 1;
2104		if (likely(sk->sk_net_refcnt)) {
2105			get_net_track(net, &sk->ns_tracker, priority);
2106			sock_inuse_add(net, 1);
2107		} else {
2108			__netns_tracker_alloc(net, &sk->ns_tracker,
2109					      false, priority);
2110		}
2111
2112		sock_net_set(sk, net);
2113		refcount_set(&sk->sk_wmem_alloc, 1);
2114
2115		mem_cgroup_sk_alloc(sk);
2116		cgroup_sk_alloc(&sk->sk_cgrp_data);
2117		sock_update_classid(&sk->sk_cgrp_data);
2118		sock_update_netprioidx(&sk->sk_cgrp_data);
2119		sk_tx_queue_clear(sk);
2120	}
2121
2122	return sk;
2123}
2124EXPORT_SYMBOL(sk_alloc);
2125
2126/* Sockets having SOCK_RCU_FREE will call this function after one RCU
2127 * grace period. This is the case for UDP sockets and TCP listeners.
2128 */
2129static void __sk_destruct(struct rcu_head *head)
2130{
2131	struct sock *sk = container_of(head, struct sock, sk_rcu);
2132	struct sk_filter *filter;
2133
2134	if (sk->sk_destruct)
2135		sk->sk_destruct(sk);
2136
2137	filter = rcu_dereference_check(sk->sk_filter,
2138				       refcount_read(&sk->sk_wmem_alloc) == 0);
2139	if (filter) {
2140		sk_filter_uncharge(sk, filter);
2141		RCU_INIT_POINTER(sk->sk_filter, NULL);
2142	}
2143
2144	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
2145
2146#ifdef CONFIG_BPF_SYSCALL
2147	bpf_sk_storage_free(sk);
2148#endif
2149
2150	if (atomic_read(&sk->sk_omem_alloc))
2151		pr_debug("%s: optmem leakage (%d bytes) detected\n",
2152			 __func__, atomic_read(&sk->sk_omem_alloc));
2153
2154	if (sk->sk_frag.page) {
2155		put_page(sk->sk_frag.page);
2156		sk->sk_frag.page = NULL;
2157	}
2158
2159	/* We do not need to acquire sk->sk_peer_lock, we are the last user. */
2160	put_cred(sk->sk_peer_cred);
2161	put_pid(sk->sk_peer_pid);
2162
2163	if (likely(sk->sk_net_refcnt))
2164		put_net_track(sock_net(sk), &sk->ns_tracker);
2165	else
2166		__netns_tracker_free(sock_net(sk), &sk->ns_tracker, false);
2167
2168	sk_prot_free(sk->sk_prot_creator, sk);
2169}
2170
2171void sk_destruct(struct sock *sk)
2172{
2173	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
2174
2175	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
2176		reuseport_detach_sock(sk);
2177		use_call_rcu = true;
2178	}
2179
2180	if (use_call_rcu)
2181		call_rcu(&sk->sk_rcu, __sk_destruct);
2182	else
2183		__sk_destruct(&sk->sk_rcu);
2184}
2185
2186static void __sk_free(struct sock *sk)
2187{
2188	if (likely(sk->sk_net_refcnt))
2189		sock_inuse_add(sock_net(sk), -1);
2190
2191	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
2192		sock_diag_broadcast_destroy(sk);
2193	else
2194		sk_destruct(sk);
2195}
2196
2197void sk_free(struct sock *sk)
2198{
2199	/*
2200	 * We subtract one from sk_wmem_alloc and can know if
2201	 * some packets are still in some tx queue.
2202	 * If not null, sock_wfree() will call __sk_free(sk) later
2203	 */
2204	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
2205		__sk_free(sk);
2206}
2207EXPORT_SYMBOL(sk_free);
2208
2209static void sk_init_common(struct sock *sk)
2210{
2211	skb_queue_head_init(&sk->sk_receive_queue);
2212	skb_queue_head_init(&sk->sk_write_queue);
2213	skb_queue_head_init(&sk->sk_error_queue);
2214
2215	rwlock_init(&sk->sk_callback_lock);
2216	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
2217			af_rlock_keys + sk->sk_family,
2218			af_family_rlock_key_strings[sk->sk_family]);
2219	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
2220			af_wlock_keys + sk->sk_family,
2221			af_family_wlock_key_strings[sk->sk_family]);
2222	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2223			af_elock_keys + sk->sk_family,
2224			af_family_elock_key_strings[sk->sk_family]);
2225	lockdep_set_class_and_name(&sk->sk_callback_lock,
2226			af_callback_keys + sk->sk_family,
2227			af_family_clock_key_strings[sk->sk_family]);
2228}
2229
2230/**
2231 *	sk_clone_lock - clone a socket, and lock its clone
2232 *	@sk: the socket to clone
2233 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2234 *
2235 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2236 */
2237struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2238{
2239	struct proto *prot = READ_ONCE(sk->sk_prot);
2240	struct sk_filter *filter;
2241	bool is_charged = true;
2242	struct sock *newsk;
2243
2244	newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2245	if (!newsk)
2246		goto out;
 
 
2247
2248	sock_copy(newsk, sk);
2249
2250	newsk->sk_prot_creator = prot;
 
 
 
 
 
 
 
2251
2252	/* SANITY */
2253	if (likely(newsk->sk_net_refcnt)) {
2254		get_net_track(sock_net(newsk), &newsk->ns_tracker, priority);
2255		sock_inuse_add(sock_net(newsk), 1);
2256	} else {
2257		/* Kernel sockets are not elevating the struct net refcount.
2258		 * Instead, use a tracker to more easily detect if a layer
2259		 * is not properly dismantling its kernel sockets at netns
2260		 * destroy time.
2261		 */
2262		__netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker,
2263				      false, priority);
2264	}
2265	sk_node_init(&newsk->sk_node);
2266	sock_lock_init(newsk);
2267	bh_lock_sock(newsk);
2268	newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
2269	newsk->sk_backlog.len = 0;
2270
2271	atomic_set(&newsk->sk_rmem_alloc, 0);
2272
2273	/* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2274	refcount_set(&newsk->sk_wmem_alloc, 1);
2275
2276	atomic_set(&newsk->sk_omem_alloc, 0);
2277	sk_init_common(newsk);
2278
2279	newsk->sk_dst_cache	= NULL;
2280	newsk->sk_dst_pending_confirm = 0;
2281	newsk->sk_wmem_queued	= 0;
2282	newsk->sk_forward_alloc = 0;
2283	newsk->sk_reserved_mem  = 0;
2284	atomic_set(&newsk->sk_drops, 0);
2285	newsk->sk_send_head	= NULL;
2286	newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2287	atomic_set(&newsk->sk_zckey, 0);
2288
2289	sock_reset_flag(newsk, SOCK_DONE);
2290
2291	/* sk->sk_memcg will be populated at accept() time */
2292	newsk->sk_memcg = NULL;
2293
2294	cgroup_sk_clone(&newsk->sk_cgrp_data);
2295
2296	rcu_read_lock();
2297	filter = rcu_dereference(sk->sk_filter);
2298	if (filter != NULL)
2299		/* though it's an empty new sock, the charging may fail
2300		 * if sysctl_optmem_max was changed between creation of
2301		 * original socket and cloning
2302		 */
2303		is_charged = sk_filter_charge(newsk, filter);
2304	RCU_INIT_POINTER(newsk->sk_filter, filter);
2305	rcu_read_unlock();
2306
2307	if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2308		/* We need to make sure that we don't uncharge the new
2309		 * socket if we couldn't charge it in the first place
2310		 * as otherwise we uncharge the parent's filter.
2311		 */
2312		if (!is_charged)
2313			RCU_INIT_POINTER(newsk->sk_filter, NULL);
2314		sk_free_unlock_clone(newsk);
2315		newsk = NULL;
2316		goto out;
2317	}
2318	RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2319
2320	if (bpf_sk_storage_clone(sk, newsk)) {
2321		sk_free_unlock_clone(newsk);
2322		newsk = NULL;
2323		goto out;
2324	}
2325
2326	/* Clear sk_user_data if parent had the pointer tagged
2327	 * as not suitable for copying when cloning.
2328	 */
2329	if (sk_user_data_is_nocopy(newsk))
2330		newsk->sk_user_data = NULL;
2331
2332	newsk->sk_err	   = 0;
2333	newsk->sk_err_soft = 0;
2334	newsk->sk_priority = 0;
2335	newsk->sk_incoming_cpu = raw_smp_processor_id();
 
 
2336
2337	/* Before updating sk_refcnt, we must commit prior changes to memory
2338	 * (Documentation/RCU/rculist_nulls.rst for details)
2339	 */
2340	smp_wmb();
2341	refcount_set(&newsk->sk_refcnt, 2);
 
2342
2343	/* Increment the counter in the same struct proto as the master
2344	 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
2345	 * is the same as sk->sk_prot->socks, as this field was copied
2346	 * with memcpy).
2347	 *
2348	 * This _changes_ the previous behaviour, where
2349	 * tcp_create_openreq_child always was incrementing the
2350	 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
2351	 * to be taken into account in all callers. -acme
2352	 */
2353	sk_refcnt_debug_inc(newsk);
2354	sk_set_socket(newsk, NULL);
2355	sk_tx_queue_clear(newsk);
2356	RCU_INIT_POINTER(newsk->sk_wq, NULL);
 
2357
2358	if (newsk->sk_prot->sockets_allocated)
2359		sk_sockets_allocated_inc(newsk);
2360
2361	if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2362		net_enable_timestamp();
 
 
2363out:
2364	return newsk;
2365}
2366EXPORT_SYMBOL_GPL(sk_clone_lock);
2367
2368void sk_free_unlock_clone(struct sock *sk)
2369{
2370	/* It is still raw copy of parent, so invalidate
2371	 * destructor and make plain sk_free() */
2372	sk->sk_destruct = NULL;
2373	bh_unlock_sock(sk);
2374	sk_free(sk);
2375}
2376EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2377
2378static void sk_trim_gso_size(struct sock *sk)
2379{
2380	if (sk->sk_gso_max_size <= GSO_LEGACY_MAX_SIZE)
2381		return;
2382#if IS_ENABLED(CONFIG_IPV6)
2383	if (sk->sk_family == AF_INET6 &&
2384	    sk_is_tcp(sk) &&
2385	    !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
2386		return;
2387#endif
2388	sk->sk_gso_max_size = GSO_LEGACY_MAX_SIZE;
2389}
2390
2391void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2392{
2393	u32 max_segs = 1;
2394
2395	sk_dst_set(sk, dst);
2396	sk->sk_route_caps = dst->dev->features;
2397	if (sk_is_tcp(sk))
2398		sk->sk_route_caps |= NETIF_F_GSO;
2399	if (sk->sk_route_caps & NETIF_F_GSO)
2400		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2401	if (unlikely(sk->sk_gso_disabled))
2402		sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2403	if (sk_can_gso(sk)) {
2404		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2405			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2406		} else {
2407			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2408			/* pairs with the WRITE_ONCE() in netif_set_gso_max_size() */
2409			sk->sk_gso_max_size = READ_ONCE(dst->dev->gso_max_size);
2410			sk_trim_gso_size(sk);
2411			sk->sk_gso_max_size -= (MAX_TCP_HEADER + 1);
2412			/* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */
2413			max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1);
2414		}
2415	}
2416	sk->sk_gso_max_segs = max_segs;
2417}
2418EXPORT_SYMBOL_GPL(sk_setup_caps);
2419
2420/*
2421 *	Simple resource managers for sockets.
2422 */
2423
2424
2425/*
2426 * Write buffer destructor automatically called from kfree_skb.
2427 */
2428void sock_wfree(struct sk_buff *skb)
2429{
2430	struct sock *sk = skb->sk;
2431	unsigned int len = skb->truesize;
2432	bool free;
2433
2434	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2435		if (sock_flag(sk, SOCK_RCU_FREE) &&
2436		    sk->sk_write_space == sock_def_write_space) {
2437			rcu_read_lock();
2438			free = refcount_sub_and_test(len, &sk->sk_wmem_alloc);
2439			sock_def_write_space_wfree(sk);
2440			rcu_read_unlock();
2441			if (unlikely(free))
2442				__sk_free(sk);
2443			return;
2444		}
2445
2446		/*
2447		 * Keep a reference on sk_wmem_alloc, this will be released
2448		 * after sk_write_space() call
2449		 */
2450		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2451		sk->sk_write_space(sk);
2452		len = 1;
2453	}
2454	/*
2455	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2456	 * could not do because of in-flight packets
2457	 */
2458	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2459		__sk_free(sk);
2460}
2461EXPORT_SYMBOL(sock_wfree);
2462
2463/* This variant of sock_wfree() is used by TCP,
2464 * since it sets SOCK_USE_WRITE_QUEUE.
2465 */
2466void __sock_wfree(struct sk_buff *skb)
2467{
2468	struct sock *sk = skb->sk;
2469
2470	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2471		__sk_free(sk);
2472}
2473
2474void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2475{
2476	skb_orphan(skb);
2477	skb->sk = sk;
2478#ifdef CONFIG_INET
2479	if (unlikely(!sk_fullsock(sk))) {
2480		skb->destructor = sock_edemux;
2481		sock_hold(sk);
2482		return;
2483	}
2484#endif
2485	skb->destructor = sock_wfree;
2486	skb_set_hash_from_sk(skb, sk);
2487	/*
2488	 * We used to take a refcount on sk, but following operation
2489	 * is enough to guarantee sk_free() wont free this sock until
2490	 * all in-flight packets are completed
2491	 */
2492	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2493}
2494EXPORT_SYMBOL(skb_set_owner_w);
2495
2496static bool can_skb_orphan_partial(const struct sk_buff *skb)
2497{
2498#ifdef CONFIG_TLS_DEVICE
2499	/* Drivers depend on in-order delivery for crypto offload,
2500	 * partial orphan breaks out-of-order-OK logic.
2501	 */
2502	if (skb->decrypted)
2503		return false;
2504#endif
2505	return (skb->destructor == sock_wfree ||
2506		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2507}
2508
2509/* This helper is used by netem, as it can hold packets in its
2510 * delay queue. We want to allow the owner socket to send more
2511 * packets, as if they were already TX completed by a typical driver.
2512 * But we also want to keep skb->sk set because some packet schedulers
2513 * rely on it (sch_fq for example).
2514 */
2515void skb_orphan_partial(struct sk_buff *skb)
2516{
2517	if (skb_is_tcp_pure_ack(skb))
2518		return;
2519
2520	if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2521		return;
2522
2523	skb_orphan(skb);
 
 
 
 
 
 
2524}
2525EXPORT_SYMBOL(skb_orphan_partial);
2526
2527/*
2528 * Read buffer destructor automatically called from kfree_skb.
2529 */
2530void sock_rfree(struct sk_buff *skb)
2531{
2532	struct sock *sk = skb->sk;
2533	unsigned int len = skb->truesize;
2534
2535	atomic_sub(len, &sk->sk_rmem_alloc);
2536	sk_mem_uncharge(sk, len);
2537}
2538EXPORT_SYMBOL(sock_rfree);
2539
2540/*
2541 * Buffer destructor for skbs that are not used directly in read or write
2542 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2543 */
2544void sock_efree(struct sk_buff *skb)
2545{
2546	sock_put(skb->sk);
2547}
2548EXPORT_SYMBOL(sock_efree);
2549
2550/* Buffer destructor for prefetch/receive path where reference count may
2551 * not be held, e.g. for listen sockets.
2552 */
2553#ifdef CONFIG_INET
2554void sock_pfree(struct sk_buff *skb)
2555{
2556	if (sk_is_refcounted(skb->sk))
2557		sock_gen_put(skb->sk);
2558}
2559EXPORT_SYMBOL(sock_pfree);
2560#endif /* CONFIG_INET */
2561
2562kuid_t sock_i_uid(struct sock *sk)
2563{
2564	kuid_t uid;
2565
2566	read_lock_bh(&sk->sk_callback_lock);
2567	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2568	read_unlock_bh(&sk->sk_callback_lock);
2569	return uid;
2570}
2571EXPORT_SYMBOL(sock_i_uid);
2572
2573unsigned long sock_i_ino(struct sock *sk)
2574{
2575	unsigned long ino;
2576
2577	read_lock_bh(&sk->sk_callback_lock);
2578	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2579	read_unlock_bh(&sk->sk_callback_lock);
2580	return ino;
2581}
2582EXPORT_SYMBOL(sock_i_ino);
2583
2584/*
2585 * Allocate a skb from the socket's send buffer.
2586 */
2587struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2588			     gfp_t priority)
2589{
2590	if (force ||
2591	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2592		struct sk_buff *skb = alloc_skb(size, priority);
2593
2594		if (skb) {
2595			skb_set_owner_w(skb, sk);
2596			return skb;
2597		}
2598	}
2599	return NULL;
2600}
2601EXPORT_SYMBOL(sock_wmalloc);
2602
2603static void sock_ofree(struct sk_buff *skb)
2604{
2605	struct sock *sk = skb->sk;
2606
2607	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2608}
2609
2610struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2611			     gfp_t priority)
2612{
2613	struct sk_buff *skb;
2614
2615	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2616	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2617	    READ_ONCE(sysctl_optmem_max))
2618		return NULL;
2619
2620	skb = alloc_skb(size, priority);
2621	if (!skb)
2622		return NULL;
2623
2624	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2625	skb->sk = sk;
2626	skb->destructor = sock_ofree;
2627	return skb;
2628}
2629
2630/*
2631 * Allocate a memory block from the socket's option memory buffer.
2632 */
2633void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2634{
2635	int optmem_max = READ_ONCE(sysctl_optmem_max);
2636
2637	if ((unsigned int)size <= optmem_max &&
2638	    atomic_read(&sk->sk_omem_alloc) + size < optmem_max) {
2639		void *mem;
2640		/* First do the add, to avoid the race if kmalloc
2641		 * might sleep.
2642		 */
2643		atomic_add(size, &sk->sk_omem_alloc);
2644		mem = kmalloc(size, priority);
2645		if (mem)
2646			return mem;
2647		atomic_sub(size, &sk->sk_omem_alloc);
2648	}
2649	return NULL;
2650}
2651EXPORT_SYMBOL(sock_kmalloc);
2652
2653/* Free an option memory block. Note, we actually want the inline
2654 * here as this allows gcc to detect the nullify and fold away the
2655 * condition entirely.
2656 */
2657static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2658				  const bool nullify)
2659{
2660	if (WARN_ON_ONCE(!mem))
2661		return;
2662	if (nullify)
2663		kfree_sensitive(mem);
2664	else
2665		kfree(mem);
2666	atomic_sub(size, &sk->sk_omem_alloc);
2667}
2668
2669void sock_kfree_s(struct sock *sk, void *mem, int size)
2670{
2671	__sock_kfree_s(sk, mem, size, false);
2672}
2673EXPORT_SYMBOL(sock_kfree_s);
2674
2675void sock_kzfree_s(struct sock *sk, void *mem, int size)
2676{
2677	__sock_kfree_s(sk, mem, size, true);
2678}
2679EXPORT_SYMBOL(sock_kzfree_s);
2680
2681/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2682   I think, these locks should be removed for datagram sockets.
2683 */
2684static long sock_wait_for_wmem(struct sock *sk, long timeo)
2685{
2686	DEFINE_WAIT(wait);
2687
2688	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2689	for (;;) {
2690		if (!timeo)
2691			break;
2692		if (signal_pending(current))
2693			break;
2694		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2695		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2696		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2697			break;
2698		if (sk->sk_shutdown & SEND_SHUTDOWN)
2699			break;
2700		if (sk->sk_err)
2701			break;
2702		timeo = schedule_timeout(timeo);
2703	}
2704	finish_wait(sk_sleep(sk), &wait);
2705	return timeo;
2706}
2707
2708
2709/*
2710 *	Generic send/receive buffer handlers
2711 */
2712
2713struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2714				     unsigned long data_len, int noblock,
2715				     int *errcode, int max_page_order)
2716{
2717	struct sk_buff *skb;
2718	long timeo;
2719	int err;
2720
2721	timeo = sock_sndtimeo(sk, noblock);
2722	for (;;) {
2723		err = sock_error(sk);
2724		if (err != 0)
2725			goto failure;
2726
2727		err = -EPIPE;
2728		if (sk->sk_shutdown & SEND_SHUTDOWN)
2729			goto failure;
2730
2731		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2732			break;
2733
2734		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2735		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2736		err = -EAGAIN;
2737		if (!timeo)
2738			goto failure;
2739		if (signal_pending(current))
2740			goto interrupted;
2741		timeo = sock_wait_for_wmem(sk, timeo);
2742	}
2743	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2744				   errcode, sk->sk_allocation);
2745	if (skb)
2746		skb_set_owner_w(skb, sk);
2747	return skb;
2748
2749interrupted:
2750	err = sock_intr_errno(timeo);
2751failure:
2752	*errcode = err;
2753	return NULL;
2754}
2755EXPORT_SYMBOL(sock_alloc_send_pskb);
2756
2757int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
 
 
 
 
 
 
 
2758		     struct sockcm_cookie *sockc)
2759{
2760	u32 tsflags;
2761
2762	switch (cmsg->cmsg_type) {
2763	case SO_MARK:
2764		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
2765		    !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2766			return -EPERM;
2767		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2768			return -EINVAL;
2769		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2770		break;
2771	case SO_TIMESTAMPING_OLD:
2772		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2773			return -EINVAL;
2774
2775		tsflags = *(u32 *)CMSG_DATA(cmsg);
2776		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2777			return -EINVAL;
2778
2779		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2780		sockc->tsflags |= tsflags;
2781		break;
2782	case SCM_TXTIME:
2783		if (!sock_flag(sk, SOCK_TXTIME))
2784			return -EINVAL;
2785		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2786			return -EINVAL;
2787		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2788		break;
2789	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2790	case SCM_RIGHTS:
2791	case SCM_CREDENTIALS:
2792		break;
2793	default:
2794		return -EINVAL;
2795	}
2796	return 0;
2797}
2798EXPORT_SYMBOL(__sock_cmsg_send);
2799
2800int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2801		   struct sockcm_cookie *sockc)
2802{
2803	struct cmsghdr *cmsg;
2804	int ret;
2805
2806	for_each_cmsghdr(cmsg, msg) {
2807		if (!CMSG_OK(msg, cmsg))
2808			return -EINVAL;
2809		if (cmsg->cmsg_level != SOL_SOCKET)
2810			continue;
2811		ret = __sock_cmsg_send(sk, cmsg, sockc);
2812		if (ret)
2813			return ret;
2814	}
2815	return 0;
2816}
2817EXPORT_SYMBOL(sock_cmsg_send);
2818
2819static void sk_enter_memory_pressure(struct sock *sk)
2820{
2821	if (!sk->sk_prot->enter_memory_pressure)
2822		return;
2823
2824	sk->sk_prot->enter_memory_pressure(sk);
2825}
2826
2827static void sk_leave_memory_pressure(struct sock *sk)
2828{
2829	if (sk->sk_prot->leave_memory_pressure) {
2830		sk->sk_prot->leave_memory_pressure(sk);
2831	} else {
2832		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2833
2834		if (memory_pressure && READ_ONCE(*memory_pressure))
2835			WRITE_ONCE(*memory_pressure, 0);
2836	}
2837}
2838
 
2839DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2840
2841/**
2842 * skb_page_frag_refill - check that a page_frag contains enough room
2843 * @sz: minimum size of the fragment we want to get
2844 * @pfrag: pointer to page_frag
2845 * @gfp: priority for memory allocation
2846 *
2847 * Note: While this allocator tries to use high order pages, there is
2848 * no guarantee that allocations succeed. Therefore, @sz MUST be
2849 * less or equal than PAGE_SIZE.
2850 */
2851bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2852{
2853	if (pfrag->page) {
2854		if (page_ref_count(pfrag->page) == 1) {
2855			pfrag->offset = 0;
2856			return true;
2857		}
2858		if (pfrag->offset + sz <= pfrag->size)
2859			return true;
2860		put_page(pfrag->page);
2861	}
2862
2863	pfrag->offset = 0;
2864	if (SKB_FRAG_PAGE_ORDER &&
2865	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2866		/* Avoid direct reclaim but allow kswapd to wake */
2867		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2868					  __GFP_COMP | __GFP_NOWARN |
2869					  __GFP_NORETRY,
2870					  SKB_FRAG_PAGE_ORDER);
2871		if (likely(pfrag->page)) {
2872			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2873			return true;
2874		}
2875	}
2876	pfrag->page = alloc_page(gfp);
2877	if (likely(pfrag->page)) {
2878		pfrag->size = PAGE_SIZE;
2879		return true;
2880	}
2881	return false;
2882}
2883EXPORT_SYMBOL(skb_page_frag_refill);
2884
2885bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2886{
2887	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2888		return true;
2889
2890	sk_enter_memory_pressure(sk);
2891	sk_stream_moderate_sndbuf(sk);
2892	return false;
2893}
2894EXPORT_SYMBOL(sk_page_frag_refill);
2895
2896void __lock_sock(struct sock *sk)
2897	__releases(&sk->sk_lock.slock)
2898	__acquires(&sk->sk_lock.slock)
2899{
2900	DEFINE_WAIT(wait);
2901
2902	for (;;) {
2903		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2904					TASK_UNINTERRUPTIBLE);
2905		spin_unlock_bh(&sk->sk_lock.slock);
2906		schedule();
2907		spin_lock_bh(&sk->sk_lock.slock);
2908		if (!sock_owned_by_user(sk))
2909			break;
2910	}
2911	finish_wait(&sk->sk_lock.wq, &wait);
2912}
2913
2914void __release_sock(struct sock *sk)
2915	__releases(&sk->sk_lock.slock)
2916	__acquires(&sk->sk_lock.slock)
2917{
2918	struct sk_buff *skb, *next;
2919
2920	while ((skb = sk->sk_backlog.head) != NULL) {
2921		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2922
2923		spin_unlock_bh(&sk->sk_lock.slock);
2924
2925		do {
2926			next = skb->next;
2927			prefetch(next);
2928			DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb));
2929			skb_mark_not_on_list(skb);
2930			sk_backlog_rcv(sk, skb);
2931
2932			cond_resched();
2933
2934			skb = next;
2935		} while (skb != NULL);
2936
2937		spin_lock_bh(&sk->sk_lock.slock);
2938	}
2939
2940	/*
2941	 * Doing the zeroing here guarantee we can not loop forever
2942	 * while a wild producer attempts to flood us.
2943	 */
2944	sk->sk_backlog.len = 0;
2945}
2946
2947void __sk_flush_backlog(struct sock *sk)
2948{
2949	spin_lock_bh(&sk->sk_lock.slock);
2950	__release_sock(sk);
2951	spin_unlock_bh(&sk->sk_lock.slock);
2952}
2953EXPORT_SYMBOL_GPL(__sk_flush_backlog);
2954
2955/**
2956 * sk_wait_data - wait for data to arrive at sk_receive_queue
2957 * @sk:    sock to wait on
2958 * @timeo: for how long
2959 * @skb:   last skb seen on sk_receive_queue
2960 *
2961 * Now socket state including sk->sk_err is changed only under lock,
2962 * hence we may omit checks after joining wait queue.
2963 * We check receive queue before schedule() only as optimization;
2964 * it is very likely that release_sock() added new data.
2965 */
2966int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2967{
2968	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2969	int rc;
2970
2971	add_wait_queue(sk_sleep(sk), &wait);
2972	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2973	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2974	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2975	remove_wait_queue(sk_sleep(sk), &wait);
2976	return rc;
2977}
2978EXPORT_SYMBOL(sk_wait_data);
2979
2980/**
2981 *	__sk_mem_raise_allocated - increase memory_allocated
2982 *	@sk: socket
2983 *	@size: memory size to allocate
2984 *	@amt: pages to allocate
2985 *	@kind: allocation type
2986 *
2987 *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2988 */
2989int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2990{
2991	bool memcg_charge = mem_cgroup_sockets_enabled && sk->sk_memcg;
2992	struct proto *prot = sk->sk_prot;
 
2993	bool charged = true;
2994	long allocated;
2995
2996	sk_memory_allocated_add(sk, amt);
2997	allocated = sk_memory_allocated(sk);
2998	if (memcg_charge &&
2999	    !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3000						gfp_memcg_charge())))
3001		goto suppress_allocation;
3002
3003	/* Under limit. */
3004	if (allocated <= sk_prot_mem_limits(sk, 0)) {
3005		sk_leave_memory_pressure(sk);
3006		return 1;
3007	}
3008
3009	/* Under pressure. */
3010	if (allocated > sk_prot_mem_limits(sk, 1))
3011		sk_enter_memory_pressure(sk);
3012
3013	/* Over hard limit. */
3014	if (allocated > sk_prot_mem_limits(sk, 2))
3015		goto suppress_allocation;
3016
3017	/* guarantee minimum buffer size under pressure */
3018	if (kind == SK_MEM_RECV) {
3019		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
3020			return 1;
3021
3022	} else { /* SK_MEM_SEND */
3023		int wmem0 = sk_get_wmem0(sk, prot);
3024
3025		if (sk->sk_type == SOCK_STREAM) {
3026			if (sk->sk_wmem_queued < wmem0)
3027				return 1;
3028		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
3029				return 1;
3030		}
3031	}
3032
3033	if (sk_has_memory_pressure(sk)) {
3034		u64 alloc;
3035
3036		if (!sk_under_memory_pressure(sk))
3037			return 1;
3038		alloc = sk_sockets_allocated_read_positive(sk);
3039		if (sk_prot_mem_limits(sk, 2) > alloc *
3040		    sk_mem_pages(sk->sk_wmem_queued +
3041				 atomic_read(&sk->sk_rmem_alloc) +
3042				 sk->sk_forward_alloc))
3043			return 1;
3044	}
3045
3046suppress_allocation:
3047
3048	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
3049		sk_stream_moderate_sndbuf(sk);
3050
3051		/* Fail only if socket is _under_ its sndbuf.
3052		 * In this case we cannot block, so that we have to fail.
3053		 */
3054		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) {
3055			/* Force charge with __GFP_NOFAIL */
3056			if (memcg_charge && !charged) {
3057				mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3058					gfp_memcg_charge() | __GFP_NOFAIL);
3059			}
3060			return 1;
3061		}
3062	}
3063
3064	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
3065		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
3066
3067	sk_memory_allocated_sub(sk, amt);
3068
3069	if (memcg_charge && charged)
3070		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
3071
3072	return 0;
3073}
 
3074
3075/**
3076 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
3077 *	@sk: socket
3078 *	@size: memory size to allocate
3079 *	@kind: allocation type
3080 *
3081 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
3082 *	rmem allocation. This function assumes that protocols which have
3083 *	memory_pressure use sk_wmem_queued as write buffer accounting.
3084 */
3085int __sk_mem_schedule(struct sock *sk, int size, int kind)
3086{
3087	int ret, amt = sk_mem_pages(size);
3088
3089	sk->sk_forward_alloc += amt << PAGE_SHIFT;
3090	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
3091	if (!ret)
3092		sk->sk_forward_alloc -= amt << PAGE_SHIFT;
3093	return ret;
3094}
3095EXPORT_SYMBOL(__sk_mem_schedule);
3096
3097/**
3098 *	__sk_mem_reduce_allocated - reclaim memory_allocated
3099 *	@sk: socket
3100 *	@amount: number of quanta
3101 *
3102 *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
3103 */
3104void __sk_mem_reduce_allocated(struct sock *sk, int amount)
3105{
3106	sk_memory_allocated_sub(sk, amount);
3107
3108	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3109		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
3110
3111	if (sk_under_memory_pressure(sk) &&
3112	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
3113		sk_leave_memory_pressure(sk);
3114}
 
3115
3116/**
3117 *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
3118 *	@sk: socket
3119 *	@amount: number of bytes (rounded down to a PAGE_SIZE multiple)
3120 */
3121void __sk_mem_reclaim(struct sock *sk, int amount)
3122{
3123	amount >>= PAGE_SHIFT;
3124	sk->sk_forward_alloc -= amount << PAGE_SHIFT;
3125	__sk_mem_reduce_allocated(sk, amount);
3126}
3127EXPORT_SYMBOL(__sk_mem_reclaim);
3128
3129int sk_set_peek_off(struct sock *sk, int val)
3130{
3131	sk->sk_peek_off = val;
3132	return 0;
3133}
3134EXPORT_SYMBOL_GPL(sk_set_peek_off);
3135
3136/*
3137 * Set of default routines for initialising struct proto_ops when
3138 * the protocol does not support a particular function. In certain
3139 * cases where it makes no sense for a protocol to have a "do nothing"
3140 * function, some default processing is provided.
3141 */
3142
3143int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
3144{
3145	return -EOPNOTSUPP;
3146}
3147EXPORT_SYMBOL(sock_no_bind);
3148
3149int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
3150		    int len, int flags)
3151{
3152	return -EOPNOTSUPP;
3153}
3154EXPORT_SYMBOL(sock_no_connect);
3155
3156int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
3157{
3158	return -EOPNOTSUPP;
3159}
3160EXPORT_SYMBOL(sock_no_socketpair);
3161
3162int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
3163		   bool kern)
3164{
3165	return -EOPNOTSUPP;
3166}
3167EXPORT_SYMBOL(sock_no_accept);
3168
3169int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
3170		    int peer)
3171{
3172	return -EOPNOTSUPP;
3173}
3174EXPORT_SYMBOL(sock_no_getname);
3175
3176int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3177{
3178	return -EOPNOTSUPP;
3179}
3180EXPORT_SYMBOL(sock_no_ioctl);
3181
3182int sock_no_listen(struct socket *sock, int backlog)
3183{
3184	return -EOPNOTSUPP;
3185}
3186EXPORT_SYMBOL(sock_no_listen);
3187
3188int sock_no_shutdown(struct socket *sock, int how)
3189{
3190	return -EOPNOTSUPP;
3191}
3192EXPORT_SYMBOL(sock_no_shutdown);
3193
3194int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
3195{
3196	return -EOPNOTSUPP;
3197}
3198EXPORT_SYMBOL(sock_no_sendmsg);
3199
3200int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
3201{
3202	return -EOPNOTSUPP;
3203}
3204EXPORT_SYMBOL(sock_no_sendmsg_locked);
3205
3206int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
3207		    int flags)
3208{
3209	return -EOPNOTSUPP;
3210}
3211EXPORT_SYMBOL(sock_no_recvmsg);
3212
3213int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
3214{
3215	/* Mirror missing mmap method error code */
3216	return -ENODEV;
3217}
3218EXPORT_SYMBOL(sock_no_mmap);
3219
3220/*
3221 * When a file is received (via SCM_RIGHTS, etc), we must bump the
3222 * various sock-based usage counts.
3223 */
3224void __receive_sock(struct file *file)
3225{
3226	struct socket *sock;
 
3227
3228	sock = sock_from_file(file);
 
 
 
 
 
3229	if (sock) {
3230		sock_update_netprioidx(&sock->sk->sk_cgrp_data);
3231		sock_update_classid(&sock->sk->sk_cgrp_data);
3232	}
3233}
3234
3235ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
3236{
3237	ssize_t res;
3238	struct msghdr msg = {.msg_flags = flags};
3239	struct kvec iov;
3240	char *kaddr = kmap(page);
3241	iov.iov_base = kaddr + offset;
3242	iov.iov_len = size;
3243	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
3244	kunmap(page);
3245	return res;
3246}
3247EXPORT_SYMBOL(sock_no_sendpage);
3248
3249ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
3250				int offset, size_t size, int flags)
3251{
3252	ssize_t res;
3253	struct msghdr msg = {.msg_flags = flags};
3254	struct kvec iov;
3255	char *kaddr = kmap(page);
3256
3257	iov.iov_base = kaddr + offset;
3258	iov.iov_len = size;
3259	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
3260	kunmap(page);
3261	return res;
3262}
3263EXPORT_SYMBOL(sock_no_sendpage_locked);
3264
3265/*
3266 *	Default Socket Callbacks
3267 */
3268
3269static void sock_def_wakeup(struct sock *sk)
3270{
3271	struct socket_wq *wq;
3272
3273	rcu_read_lock();
3274	wq = rcu_dereference(sk->sk_wq);
3275	if (skwq_has_sleeper(wq))
3276		wake_up_interruptible_all(&wq->wait);
3277	rcu_read_unlock();
3278}
3279
3280static void sock_def_error_report(struct sock *sk)
3281{
3282	struct socket_wq *wq;
3283
3284	rcu_read_lock();
3285	wq = rcu_dereference(sk->sk_wq);
3286	if (skwq_has_sleeper(wq))
3287		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3288	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
3289	rcu_read_unlock();
3290}
3291
3292void sock_def_readable(struct sock *sk)
3293{
3294	struct socket_wq *wq;
3295
3296	rcu_read_lock();
3297	wq = rcu_dereference(sk->sk_wq);
3298	if (skwq_has_sleeper(wq))
3299		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3300						EPOLLRDNORM | EPOLLRDBAND);
3301	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3302	rcu_read_unlock();
3303}
3304
3305static void sock_def_write_space(struct sock *sk)
3306{
3307	struct socket_wq *wq;
3308
3309	rcu_read_lock();
3310
3311	/* Do not wake up a writer until he can make "significant"
3312	 * progress.  --DaveM
3313	 */
3314	if (sock_writeable(sk)) {
3315		wq = rcu_dereference(sk->sk_wq);
3316		if (skwq_has_sleeper(wq))
3317			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3318						EPOLLWRNORM | EPOLLWRBAND);
3319
3320		/* Should agree with poll, otherwise some programs break */
3321		sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
 
3322	}
3323
3324	rcu_read_unlock();
3325}
3326
3327/* An optimised version of sock_def_write_space(), should only be called
3328 * for SOCK_RCU_FREE sockets under RCU read section and after putting
3329 * ->sk_wmem_alloc.
3330 */
3331static void sock_def_write_space_wfree(struct sock *sk)
3332{
3333	/* Do not wake up a writer until he can make "significant"
3334	 * progress.  --DaveM
3335	 */
3336	if (sock_writeable(sk)) {
3337		struct socket_wq *wq = rcu_dereference(sk->sk_wq);
3338
3339		/* rely on refcount_sub from sock_wfree() */
3340		smp_mb__after_atomic();
3341		if (wq && waitqueue_active(&wq->wait))
3342			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3343						EPOLLWRNORM | EPOLLWRBAND);
3344
3345		/* Should agree with poll, otherwise some programs break */
3346		sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3347	}
3348}
3349
3350static void sock_def_destruct(struct sock *sk)
3351{
3352}
3353
3354void sk_send_sigurg(struct sock *sk)
3355{
3356	if (sk->sk_socket && sk->sk_socket->file)
3357		if (send_sigurg(&sk->sk_socket->file->f_owner))
3358			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3359}
3360EXPORT_SYMBOL(sk_send_sigurg);
3361
3362void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3363		    unsigned long expires)
3364{
3365	if (!mod_timer(timer, expires))
3366		sock_hold(sk);
3367}
3368EXPORT_SYMBOL(sk_reset_timer);
3369
3370void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3371{
3372	if (del_timer(timer))
3373		__sock_put(sk);
3374}
3375EXPORT_SYMBOL(sk_stop_timer);
3376
3377void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3378{
3379	if (del_timer_sync(timer))
3380		__sock_put(sk);
3381}
3382EXPORT_SYMBOL(sk_stop_timer_sync);
3383
3384void sock_init_data(struct socket *sock, struct sock *sk)
3385{
3386	sk_init_common(sk);
3387	sk->sk_send_head	=	NULL;
3388
3389	timer_setup(&sk->sk_timer, NULL, 0);
3390
3391	sk->sk_allocation	=	GFP_KERNEL;
3392	sk->sk_rcvbuf		=	READ_ONCE(sysctl_rmem_default);
3393	sk->sk_sndbuf		=	READ_ONCE(sysctl_wmem_default);
3394	sk->sk_state		=	TCP_CLOSE;
3395	sk->sk_use_task_frag	=	true;
3396	sk_set_socket(sk, sock);
3397
3398	sock_set_flag(sk, SOCK_ZAPPED);
3399
3400	if (sock) {
3401		sk->sk_type	=	sock->type;
3402		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3403		sock->sk	=	sk;
3404		sk->sk_uid	=	SOCK_INODE(sock)->i_uid;
3405	} else {
3406		RCU_INIT_POINTER(sk->sk_wq, NULL);
3407		sk->sk_uid	=	make_kuid(sock_net(sk)->user_ns, 0);
3408	}
3409
3410	rwlock_init(&sk->sk_callback_lock);
3411	if (sk->sk_kern_sock)
3412		lockdep_set_class_and_name(
3413			&sk->sk_callback_lock,
3414			af_kern_callback_keys + sk->sk_family,
3415			af_family_kern_clock_key_strings[sk->sk_family]);
3416	else
3417		lockdep_set_class_and_name(
3418			&sk->sk_callback_lock,
3419			af_callback_keys + sk->sk_family,
3420			af_family_clock_key_strings[sk->sk_family]);
3421
3422	sk->sk_state_change	=	sock_def_wakeup;
3423	sk->sk_data_ready	=	sock_def_readable;
3424	sk->sk_write_space	=	sock_def_write_space;
3425	sk->sk_error_report	=	sock_def_error_report;
3426	sk->sk_destruct		=	sock_def_destruct;
3427
3428	sk->sk_frag.page	=	NULL;
3429	sk->sk_frag.offset	=	0;
3430	sk->sk_peek_off		=	-1;
3431
3432	sk->sk_peer_pid 	=	NULL;
3433	sk->sk_peer_cred	=	NULL;
3434	spin_lock_init(&sk->sk_peer_lock);
3435
3436	sk->sk_write_pending	=	0;
3437	sk->sk_rcvlowat		=	1;
3438	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
3439	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
3440
3441	sk->sk_stamp = SK_DEFAULT_STAMP;
3442#if BITS_PER_LONG==32
3443	seqlock_init(&sk->sk_stamp_seq);
3444#endif
3445	atomic_set(&sk->sk_zckey, 0);
3446
3447#ifdef CONFIG_NET_RX_BUSY_POLL
3448	sk->sk_napi_id		=	0;
3449	sk->sk_ll_usec		=	READ_ONCE(sysctl_net_busy_read);
3450#endif
3451
3452	sk->sk_max_pacing_rate = ~0UL;
3453	sk->sk_pacing_rate = ~0UL;
3454	WRITE_ONCE(sk->sk_pacing_shift, 10);
3455	sk->sk_incoming_cpu = -1;
3456
3457	sk_rx_queue_clear(sk);
3458	/*
3459	 * Before updating sk_refcnt, we must commit prior changes to memory
3460	 * (Documentation/RCU/rculist_nulls.rst for details)
3461	 */
3462	smp_wmb();
3463	refcount_set(&sk->sk_refcnt, 1);
3464	atomic_set(&sk->sk_drops, 0);
3465}
3466EXPORT_SYMBOL(sock_init_data);
3467
3468void lock_sock_nested(struct sock *sk, int subclass)
3469{
3470	/* The sk_lock has mutex_lock() semantics here. */
3471	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3472
3473	might_sleep();
3474	spin_lock_bh(&sk->sk_lock.slock);
3475	if (sock_owned_by_user_nocheck(sk))
3476		__lock_sock(sk);
3477	sk->sk_lock.owned = 1;
3478	spin_unlock_bh(&sk->sk_lock.slock);
 
 
 
 
 
3479}
3480EXPORT_SYMBOL(lock_sock_nested);
3481
3482void release_sock(struct sock *sk)
3483{
3484	spin_lock_bh(&sk->sk_lock.slock);
3485	if (sk->sk_backlog.tail)
3486		__release_sock(sk);
3487
3488	/* Warning : release_cb() might need to release sk ownership,
3489	 * ie call sock_release_ownership(sk) before us.
3490	 */
3491	if (sk->sk_prot->release_cb)
3492		sk->sk_prot->release_cb(sk);
3493
3494	sock_release_ownership(sk);
3495	if (waitqueue_active(&sk->sk_lock.wq))
3496		wake_up(&sk->sk_lock.wq);
3497	spin_unlock_bh(&sk->sk_lock.slock);
3498}
3499EXPORT_SYMBOL(release_sock);
3500
3501bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
 
 
 
 
 
 
 
 
 
 
 
 
 
3502{
3503	might_sleep();
3504	spin_lock_bh(&sk->sk_lock.slock);
3505
3506	if (!sock_owned_by_user_nocheck(sk)) {
3507		/*
3508		 * Fast path return with bottom halves disabled and
3509		 * sock::sk_lock.slock held.
3510		 *
3511		 * The 'mutex' is not contended and holding
3512		 * sock::sk_lock.slock prevents all other lockers to
3513		 * proceed so the corresponding unlock_sock_fast() can
3514		 * avoid the slow path of release_sock() completely and
3515		 * just release slock.
3516		 *
3517		 * From a semantical POV this is equivalent to 'acquiring'
3518		 * the 'mutex', hence the corresponding lockdep
3519		 * mutex_release() has to happen in the fast path of
3520		 * unlock_sock_fast().
3521		 */
3522		return false;
3523	}
3524
3525	__lock_sock(sk);
3526	sk->sk_lock.owned = 1;
3527	__acquire(&sk->sk_lock.slock);
3528	spin_unlock_bh(&sk->sk_lock.slock);
 
 
 
 
3529	return true;
3530}
3531EXPORT_SYMBOL(__lock_sock_fast);
3532
3533int sock_gettstamp(struct socket *sock, void __user *userstamp,
3534		   bool timeval, bool time32)
3535{
3536	struct sock *sk = sock->sk;
3537	struct timespec64 ts;
3538
3539	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3540	ts = ktime_to_timespec64(sock_read_timestamp(sk));
3541	if (ts.tv_sec == -1)
3542		return -ENOENT;
3543	if (ts.tv_sec == 0) {
3544		ktime_t kt = ktime_get_real();
3545		sock_write_timestamp(sk, kt);
3546		ts = ktime_to_timespec64(kt);
3547	}
3548
3549	if (timeval)
3550		ts.tv_nsec /= 1000;
3551
3552#ifdef CONFIG_COMPAT_32BIT_TIME
3553	if (time32)
3554		return put_old_timespec32(&ts, userstamp);
3555#endif
3556#ifdef CONFIG_SPARC64
3557	/* beware of padding in sparc64 timeval */
3558	if (timeval && !in_compat_syscall()) {
3559		struct __kernel_old_timeval __user tv = {
3560			.tv_sec = ts.tv_sec,
3561			.tv_usec = ts.tv_nsec,
3562		};
3563		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3564			return -EFAULT;
3565		return 0;
3566	}
3567#endif
3568	return put_timespec64(&ts, userstamp);
3569}
3570EXPORT_SYMBOL(sock_gettstamp);
3571
3572void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3573{
3574	if (!sock_flag(sk, flag)) {
3575		unsigned long previous_flags = sk->sk_flags;
3576
3577		sock_set_flag(sk, flag);
3578		/*
3579		 * we just set one of the two flags which require net
3580		 * time stamping, but time stamping might have been on
3581		 * already because of the other one
3582		 */
3583		if (sock_needs_netstamp(sk) &&
3584		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3585			net_enable_timestamp();
3586	}
3587}
3588
3589int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3590		       int level, int type)
3591{
3592	struct sock_exterr_skb *serr;
3593	struct sk_buff *skb;
3594	int copied, err;
3595
3596	err = -EAGAIN;
3597	skb = sock_dequeue_err_skb(sk);
3598	if (skb == NULL)
3599		goto out;
3600
3601	copied = skb->len;
3602	if (copied > len) {
3603		msg->msg_flags |= MSG_TRUNC;
3604		copied = len;
3605	}
3606	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3607	if (err)
3608		goto out_free_skb;
3609
3610	sock_recv_timestamp(msg, sk, skb);
3611
3612	serr = SKB_EXT_ERR(skb);
3613	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3614
3615	msg->msg_flags |= MSG_ERRQUEUE;
3616	err = copied;
3617
3618out_free_skb:
3619	kfree_skb(skb);
3620out:
3621	return err;
3622}
3623EXPORT_SYMBOL(sock_recv_errqueue);
3624
3625/*
3626 *	Get a socket option on an socket.
3627 *
3628 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3629 *	asynchronous errors should be reported by getsockopt. We assume
3630 *	this means if you specify SO_ERROR (otherwise whats the point of it).
3631 */
3632int sock_common_getsockopt(struct socket *sock, int level, int optname,
3633			   char __user *optval, int __user *optlen)
3634{
3635	struct sock *sk = sock->sk;
3636
3637	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3638	return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen);
3639}
3640EXPORT_SYMBOL(sock_common_getsockopt);
3641
3642int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3643			int flags)
3644{
3645	struct sock *sk = sock->sk;
3646	int addr_len = 0;
3647	int err;
3648
3649	err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len);
 
3650	if (err >= 0)
3651		msg->msg_namelen = addr_len;
3652	return err;
3653}
3654EXPORT_SYMBOL(sock_common_recvmsg);
3655
3656/*
3657 *	Set socket options on an inet socket.
3658 */
3659int sock_common_setsockopt(struct socket *sock, int level, int optname,
3660			   sockptr_t optval, unsigned int optlen)
3661{
3662	struct sock *sk = sock->sk;
3663
3664	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3665	return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen);
3666}
3667EXPORT_SYMBOL(sock_common_setsockopt);
3668
3669void sk_common_release(struct sock *sk)
3670{
3671	if (sk->sk_prot->destroy)
3672		sk->sk_prot->destroy(sk);
3673
3674	/*
3675	 * Observation: when sk_common_release is called, processes have
3676	 * no access to socket. But net still has.
3677	 * Step one, detach it from networking:
3678	 *
3679	 * A. Remove from hash tables.
3680	 */
3681
3682	sk->sk_prot->unhash(sk);
3683
3684	/*
3685	 * In this point socket cannot receive new packets, but it is possible
3686	 * that some packets are in flight because some CPU runs receiver and
3687	 * did hash table lookup before we unhashed socket. They will achieve
3688	 * receive queue and will be purged by socket destructor.
3689	 *
3690	 * Also we still have packets pending on receive queue and probably,
3691	 * our own packets waiting in device queues. sock_destroy will drain
3692	 * receive queue, but transmitted packets will delay socket destruction
3693	 * until the last reference will be released.
3694	 */
3695
3696	sock_orphan(sk);
3697
3698	xfrm_sk_free_policy(sk);
3699
3700	sk_refcnt_debug_release(sk);
3701
3702	sock_put(sk);
3703}
3704EXPORT_SYMBOL(sk_common_release);
3705
3706void sk_get_meminfo(const struct sock *sk, u32 *mem)
3707{
3708	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3709
3710	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3711	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3712	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3713	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3714	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3715	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3716	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3717	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3718	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3719}
3720
3721#ifdef CONFIG_PROC_FS
 
 
 
 
 
3722static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3723
 
 
 
 
 
 
3724int sock_prot_inuse_get(struct net *net, struct proto *prot)
3725{
3726	int cpu, idx = prot->inuse_idx;
3727	int res = 0;
3728
3729	for_each_possible_cpu(cpu)
3730		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3731
3732	return res >= 0 ? res : 0;
3733}
3734EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3735
 
 
 
 
 
3736int sock_inuse_get(struct net *net)
3737{
3738	int cpu, res = 0;
3739
3740	for_each_possible_cpu(cpu)
3741		res += per_cpu_ptr(net->core.prot_inuse, cpu)->all;
3742
3743	return res;
3744}
3745
3746EXPORT_SYMBOL_GPL(sock_inuse_get);
3747
3748static int __net_init sock_inuse_init_net(struct net *net)
3749{
3750	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3751	if (net->core.prot_inuse == NULL)
3752		return -ENOMEM;
 
 
 
 
 
3753	return 0;
 
 
 
 
3754}
3755
3756static void __net_exit sock_inuse_exit_net(struct net *net)
3757{
3758	free_percpu(net->core.prot_inuse);
 
3759}
3760
3761static struct pernet_operations net_inuse_ops = {
3762	.init = sock_inuse_init_net,
3763	.exit = sock_inuse_exit_net,
3764};
3765
3766static __init int net_inuse_init(void)
3767{
3768	if (register_pernet_subsys(&net_inuse_ops))
3769		panic("Cannot initialize net inuse counters");
3770
3771	return 0;
3772}
3773
3774core_initcall(net_inuse_init);
3775
3776static int assign_proto_idx(struct proto *prot)
3777{
3778	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3779
3780	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3781		pr_err("PROTO_INUSE_NR exhausted\n");
3782		return -ENOSPC;
3783	}
3784
3785	set_bit(prot->inuse_idx, proto_inuse_idx);
3786	return 0;
3787}
3788
3789static void release_proto_idx(struct proto *prot)
3790{
3791	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3792		clear_bit(prot->inuse_idx, proto_inuse_idx);
3793}
3794#else
3795static inline int assign_proto_idx(struct proto *prot)
3796{
3797	return 0;
3798}
3799
3800static inline void release_proto_idx(struct proto *prot)
3801{
3802}
3803
 
 
 
3804#endif
3805
3806static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3807{
3808	if (!twsk_prot)
3809		return;
3810	kfree(twsk_prot->twsk_slab_name);
3811	twsk_prot->twsk_slab_name = NULL;
3812	kmem_cache_destroy(twsk_prot->twsk_slab);
3813	twsk_prot->twsk_slab = NULL;
3814}
3815
3816static int tw_prot_init(const struct proto *prot)
3817{
3818	struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3819
3820	if (!twsk_prot)
3821		return 0;
3822
3823	twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3824					      prot->name);
3825	if (!twsk_prot->twsk_slab_name)
3826		return -ENOMEM;
3827
3828	twsk_prot->twsk_slab =
3829		kmem_cache_create(twsk_prot->twsk_slab_name,
3830				  twsk_prot->twsk_obj_size, 0,
3831				  SLAB_ACCOUNT | prot->slab_flags,
3832				  NULL);
3833	if (!twsk_prot->twsk_slab) {
3834		pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3835			prot->name);
3836		return -ENOMEM;
3837	}
3838
3839	return 0;
3840}
3841
3842static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3843{
3844	if (!rsk_prot)
3845		return;
3846	kfree(rsk_prot->slab_name);
3847	rsk_prot->slab_name = NULL;
3848	kmem_cache_destroy(rsk_prot->slab);
3849	rsk_prot->slab = NULL;
3850}
3851
3852static int req_prot_init(const struct proto *prot)
3853{
3854	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3855
3856	if (!rsk_prot)
3857		return 0;
3858
3859	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3860					prot->name);
3861	if (!rsk_prot->slab_name)
3862		return -ENOMEM;
3863
3864	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3865					   rsk_prot->obj_size, 0,
3866					   SLAB_ACCOUNT | prot->slab_flags,
3867					   NULL);
3868
3869	if (!rsk_prot->slab) {
3870		pr_crit("%s: Can't create request sock SLAB cache!\n",
3871			prot->name);
3872		return -ENOMEM;
3873	}
3874	return 0;
3875}
3876
3877int proto_register(struct proto *prot, int alloc_slab)
3878{
3879	int ret = -ENOBUFS;
3880
3881	if (prot->memory_allocated && !prot->sysctl_mem) {
3882		pr_err("%s: missing sysctl_mem\n", prot->name);
3883		return -EINVAL;
3884	}
3885	if (prot->memory_allocated && !prot->per_cpu_fw_alloc) {
3886		pr_err("%s: missing per_cpu_fw_alloc\n", prot->name);
3887		return -EINVAL;
3888	}
3889	if (alloc_slab) {
3890		prot->slab = kmem_cache_create_usercopy(prot->name,
3891					prot->obj_size, 0,
3892					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3893					prot->slab_flags,
3894					prot->useroffset, prot->usersize,
3895					NULL);
3896
3897		if (prot->slab == NULL) {
3898			pr_crit("%s: Can't create sock SLAB cache!\n",
3899				prot->name);
3900			goto out;
3901		}
3902
3903		if (req_prot_init(prot))
3904			goto out_free_request_sock_slab;
3905
3906		if (tw_prot_init(prot))
3907			goto out_free_timewait_sock_slab;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3908	}
3909
3910	mutex_lock(&proto_list_mutex);
3911	ret = assign_proto_idx(prot);
3912	if (ret) {
3913		mutex_unlock(&proto_list_mutex);
3914		goto out_free_timewait_sock_slab;
3915	}
3916	list_add(&prot->node, &proto_list);
3917	mutex_unlock(&proto_list_mutex);
3918	return ret;
3919
3920out_free_timewait_sock_slab:
3921	if (alloc_slab)
3922		tw_prot_cleanup(prot->twsk_prot);
3923out_free_request_sock_slab:
3924	if (alloc_slab) {
3925		req_prot_cleanup(prot->rsk_prot);
3926
3927		kmem_cache_destroy(prot->slab);
3928		prot->slab = NULL;
3929	}
3930out:
3931	return ret;
3932}
3933EXPORT_SYMBOL(proto_register);
3934
3935void proto_unregister(struct proto *prot)
3936{
3937	mutex_lock(&proto_list_mutex);
3938	release_proto_idx(prot);
3939	list_del(&prot->node);
3940	mutex_unlock(&proto_list_mutex);
3941
3942	kmem_cache_destroy(prot->slab);
3943	prot->slab = NULL;
3944
3945	req_prot_cleanup(prot->rsk_prot);
3946	tw_prot_cleanup(prot->twsk_prot);
3947}
3948EXPORT_SYMBOL(proto_unregister);
3949
3950int sock_load_diag_module(int family, int protocol)
3951{
3952	if (!protocol) {
3953		if (!sock_is_registered(family))
3954			return -ENOENT;
3955
3956		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3957				      NETLINK_SOCK_DIAG, family);
3958	}
3959
3960#ifdef CONFIG_INET
3961	if (family == AF_INET &&
3962	    protocol != IPPROTO_RAW &&
3963	    protocol < MAX_INET_PROTOS &&
3964	    !rcu_access_pointer(inet_protos[protocol]))
3965		return -ENOENT;
3966#endif
3967
3968	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3969			      NETLINK_SOCK_DIAG, family, protocol);
3970}
3971EXPORT_SYMBOL(sock_load_diag_module);
3972
3973#ifdef CONFIG_PROC_FS
3974static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3975	__acquires(proto_list_mutex)
3976{
3977	mutex_lock(&proto_list_mutex);
3978	return seq_list_start_head(&proto_list, *pos);
3979}
3980
3981static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3982{
3983	return seq_list_next(v, &proto_list, pos);
3984}
3985
3986static void proto_seq_stop(struct seq_file *seq, void *v)
3987	__releases(proto_list_mutex)
3988{
3989	mutex_unlock(&proto_list_mutex);
3990}
3991
3992static char proto_method_implemented(const void *method)
3993{
3994	return method == NULL ? 'n' : 'y';
3995}
3996static long sock_prot_memory_allocated(struct proto *proto)
3997{
3998	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3999}
4000
4001static const char *sock_prot_memory_pressure(struct proto *proto)
4002{
4003	return proto->memory_pressure != NULL ?
4004	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
4005}
4006
4007static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
4008{
4009
4010	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
4011			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
4012		   proto->name,
4013		   proto->obj_size,
4014		   sock_prot_inuse_get(seq_file_net(seq), proto),
4015		   sock_prot_memory_allocated(proto),
4016		   sock_prot_memory_pressure(proto),
4017		   proto->max_header,
4018		   proto->slab == NULL ? "no" : "yes",
4019		   module_name(proto->owner),
4020		   proto_method_implemented(proto->close),
4021		   proto_method_implemented(proto->connect),
4022		   proto_method_implemented(proto->disconnect),
4023		   proto_method_implemented(proto->accept),
4024		   proto_method_implemented(proto->ioctl),
4025		   proto_method_implemented(proto->init),
4026		   proto_method_implemented(proto->destroy),
4027		   proto_method_implemented(proto->shutdown),
4028		   proto_method_implemented(proto->setsockopt),
4029		   proto_method_implemented(proto->getsockopt),
4030		   proto_method_implemented(proto->sendmsg),
4031		   proto_method_implemented(proto->recvmsg),
4032		   proto_method_implemented(proto->sendpage),
4033		   proto_method_implemented(proto->bind),
4034		   proto_method_implemented(proto->backlog_rcv),
4035		   proto_method_implemented(proto->hash),
4036		   proto_method_implemented(proto->unhash),
4037		   proto_method_implemented(proto->get_port),
4038		   proto_method_implemented(proto->enter_memory_pressure));
4039}
4040
4041static int proto_seq_show(struct seq_file *seq, void *v)
4042{
4043	if (v == &proto_list)
4044		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
4045			   "protocol",
4046			   "size",
4047			   "sockets",
4048			   "memory",
4049			   "press",
4050			   "maxhdr",
4051			   "slab",
4052			   "module",
4053			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
4054	else
4055		proto_seq_printf(seq, list_entry(v, struct proto, node));
4056	return 0;
4057}
4058
4059static const struct seq_operations proto_seq_ops = {
4060	.start  = proto_seq_start,
4061	.next   = proto_seq_next,
4062	.stop   = proto_seq_stop,
4063	.show   = proto_seq_show,
4064};
4065
4066static __net_init int proto_init_net(struct net *net)
4067{
4068	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
4069			sizeof(struct seq_net_private)))
4070		return -ENOMEM;
4071
4072	return 0;
4073}
4074
4075static __net_exit void proto_exit_net(struct net *net)
4076{
4077	remove_proc_entry("protocols", net->proc_net);
4078}
4079
4080
4081static __net_initdata struct pernet_operations proto_net_ops = {
4082	.init = proto_init_net,
4083	.exit = proto_exit_net,
4084};
4085
4086static int __init proto_init(void)
4087{
4088	return register_pernet_subsys(&proto_net_ops);
4089}
4090
4091subsys_initcall(proto_init);
4092
4093#endif /* PROC_FS */
4094
4095#ifdef CONFIG_NET_RX_BUSY_POLL
4096bool sk_busy_loop_end(void *p, unsigned long start_time)
4097{
4098	struct sock *sk = p;
4099
4100	return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
4101	       sk_busy_loop_timeout(sk, start_time);
4102}
4103EXPORT_SYMBOL(sk_busy_loop_end);
4104#endif /* CONFIG_NET_RX_BUSY_POLL */
4105
4106int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
4107{
4108	if (!sk->sk_prot->bind_add)
4109		return -EOPNOTSUPP;
4110	return sk->sk_prot->bind_add(sk, addr, addr_len);
4111}
4112EXPORT_SYMBOL(sock_bind_add);