Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/vmalloc.c
   4 *
   5 *  Copyright (C) 1993  Linus Torvalds
   6 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   7 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
   8 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
   9 *  Numa awareness, Christoph Lameter, SGI, June 2005
  10 *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
  11 */
  12
  13#include <linux/vmalloc.h>
  14#include <linux/mm.h>
  15#include <linux/module.h>
  16#include <linux/highmem.h>
  17#include <linux/sched/signal.h>
  18#include <linux/slab.h>
  19#include <linux/spinlock.h>
  20#include <linux/interrupt.h>
  21#include <linux/proc_fs.h>
  22#include <linux/seq_file.h>
  23#include <linux/set_memory.h>
  24#include <linux/debugobjects.h>
  25#include <linux/kallsyms.h>
  26#include <linux/list.h>
  27#include <linux/notifier.h>
  28#include <linux/rbtree.h>
  29#include <linux/xarray.h>
  30#include <linux/rcupdate.h>
  31#include <linux/pfn.h>
  32#include <linux/kmemleak.h>
  33#include <linux/atomic.h>
  34#include <linux/compiler.h>
  35#include <linux/llist.h>
  36#include <linux/bitops.h>
  37#include <linux/rbtree_augmented.h>
  38#include <linux/overflow.h>
  39
  40#include <linux/uaccess.h>
  41#include <asm/tlbflush.h>
  42#include <asm/shmparam.h>
  43
  44#include "internal.h"
  45#include "pgalloc-track.h"
  46
  47bool is_vmalloc_addr(const void *x)
  48{
  49	unsigned long addr = (unsigned long)x;
  50
  51	return addr >= VMALLOC_START && addr < VMALLOC_END;
  52}
  53EXPORT_SYMBOL(is_vmalloc_addr);
  54
  55struct vfree_deferred {
  56	struct llist_head list;
  57	struct work_struct wq;
  58};
  59static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  60
  61static void __vunmap(const void *, int);
  62
  63static void free_work(struct work_struct *w)
  64{
  65	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  66	struct llist_node *t, *llnode;
  67
  68	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
  69		__vunmap((void *)llnode, 1);
  70}
  71
  72/*** Page table manipulation functions ***/
  73
  74static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  75			     pgtbl_mod_mask *mask)
  76{
  77	pte_t *pte;
  78
  79	pte = pte_offset_kernel(pmd, addr);
  80	do {
  81		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  82		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  83	} while (pte++, addr += PAGE_SIZE, addr != end);
  84	*mask |= PGTBL_PTE_MODIFIED;
  85}
  86
  87static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
  88			     pgtbl_mod_mask *mask)
  89{
  90	pmd_t *pmd;
  91	unsigned long next;
  92	int cleared;
  93
  94	pmd = pmd_offset(pud, addr);
  95	do {
  96		next = pmd_addr_end(addr, end);
  97
  98		cleared = pmd_clear_huge(pmd);
  99		if (cleared || pmd_bad(*pmd))
 100			*mask |= PGTBL_PMD_MODIFIED;
 101
 102		if (cleared)
 103			continue;
 104		if (pmd_none_or_clear_bad(pmd))
 105			continue;
 106		vunmap_pte_range(pmd, addr, next, mask);
 107
 108		cond_resched();
 109	} while (pmd++, addr = next, addr != end);
 110}
 111
 112static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
 113			     pgtbl_mod_mask *mask)
 114{
 115	pud_t *pud;
 116	unsigned long next;
 117	int cleared;
 118
 119	pud = pud_offset(p4d, addr);
 120	do {
 121		next = pud_addr_end(addr, end);
 122
 123		cleared = pud_clear_huge(pud);
 124		if (cleared || pud_bad(*pud))
 125			*mask |= PGTBL_PUD_MODIFIED;
 126
 127		if (cleared)
 128			continue;
 129		if (pud_none_or_clear_bad(pud))
 130			continue;
 131		vunmap_pmd_range(pud, addr, next, mask);
 132	} while (pud++, addr = next, addr != end);
 133}
 134
 135static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
 136			     pgtbl_mod_mask *mask)
 137{
 138	p4d_t *p4d;
 139	unsigned long next;
 140	int cleared;
 141
 142	p4d = p4d_offset(pgd, addr);
 143	do {
 144		next = p4d_addr_end(addr, end);
 145
 146		cleared = p4d_clear_huge(p4d);
 147		if (cleared || p4d_bad(*p4d))
 148			*mask |= PGTBL_P4D_MODIFIED;
 149
 150		if (cleared)
 151			continue;
 152		if (p4d_none_or_clear_bad(p4d))
 153			continue;
 154		vunmap_pud_range(p4d, addr, next, mask);
 155	} while (p4d++, addr = next, addr != end);
 156}
 157
 158/**
 159 * unmap_kernel_range_noflush - unmap kernel VM area
 160 * @start: start of the VM area to unmap
 161 * @size: size of the VM area to unmap
 162 *
 163 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify
 164 * should have been allocated using get_vm_area() and its friends.
 165 *
 166 * NOTE:
 167 * This function does NOT do any cache flushing.  The caller is responsible
 168 * for calling flush_cache_vunmap() on to-be-mapped areas before calling this
 169 * function and flush_tlb_kernel_range() after.
 170 */
 171void unmap_kernel_range_noflush(unsigned long start, unsigned long size)
 172{
 173	unsigned long end = start + size;
 174	unsigned long next;
 175	pgd_t *pgd;
 176	unsigned long addr = start;
 177	pgtbl_mod_mask mask = 0;
 178
 179	BUG_ON(addr >= end);
 180	pgd = pgd_offset_k(addr);
 181	do {
 182		next = pgd_addr_end(addr, end);
 183		if (pgd_bad(*pgd))
 184			mask |= PGTBL_PGD_MODIFIED;
 185		if (pgd_none_or_clear_bad(pgd))
 186			continue;
 187		vunmap_p4d_range(pgd, addr, next, &mask);
 188	} while (pgd++, addr = next, addr != end);
 189
 190	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
 191		arch_sync_kernel_mappings(start, end);
 192}
 193
 194static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
 195		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 196		pgtbl_mod_mask *mask)
 197{
 198	pte_t *pte;
 199
 200	/*
 201	 * nr is a running index into the array which helps higher level
 202	 * callers keep track of where we're up to.
 203	 */
 204
 205	pte = pte_alloc_kernel_track(pmd, addr, mask);
 206	if (!pte)
 207		return -ENOMEM;
 208	do {
 209		struct page *page = pages[*nr];
 210
 211		if (WARN_ON(!pte_none(*pte)))
 212			return -EBUSY;
 213		if (WARN_ON(!page))
 214			return -ENOMEM;
 215		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 216		(*nr)++;
 217	} while (pte++, addr += PAGE_SIZE, addr != end);
 218	*mask |= PGTBL_PTE_MODIFIED;
 219	return 0;
 220}
 221
 222static int vmap_pmd_range(pud_t *pud, unsigned long addr,
 223		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 224		pgtbl_mod_mask *mask)
 225{
 226	pmd_t *pmd;
 227	unsigned long next;
 228
 229	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
 230	if (!pmd)
 231		return -ENOMEM;
 232	do {
 233		next = pmd_addr_end(addr, end);
 234		if (vmap_pte_range(pmd, addr, next, prot, pages, nr, mask))
 235			return -ENOMEM;
 236	} while (pmd++, addr = next, addr != end);
 237	return 0;
 238}
 239
 240static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
 241		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 242		pgtbl_mod_mask *mask)
 243{
 244	pud_t *pud;
 245	unsigned long next;
 246
 247	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
 248	if (!pud)
 249		return -ENOMEM;
 250	do {
 251		next = pud_addr_end(addr, end);
 252		if (vmap_pmd_range(pud, addr, next, prot, pages, nr, mask))
 253			return -ENOMEM;
 254	} while (pud++, addr = next, addr != end);
 255	return 0;
 256}
 257
 258static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
 259		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 260		pgtbl_mod_mask *mask)
 261{
 262	p4d_t *p4d;
 263	unsigned long next;
 264
 265	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
 266	if (!p4d)
 267		return -ENOMEM;
 268	do {
 269		next = p4d_addr_end(addr, end);
 270		if (vmap_pud_range(p4d, addr, next, prot, pages, nr, mask))
 271			return -ENOMEM;
 272	} while (p4d++, addr = next, addr != end);
 273	return 0;
 274}
 275
 276/**
 277 * map_kernel_range_noflush - map kernel VM area with the specified pages
 278 * @addr: start of the VM area to map
 279 * @size: size of the VM area to map
 280 * @prot: page protection flags to use
 281 * @pages: pages to map
 282 *
 283 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify should
 284 * have been allocated using get_vm_area() and its friends.
 285 *
 286 * NOTE:
 287 * This function does NOT do any cache flushing.  The caller is responsible for
 288 * calling flush_cache_vmap() on to-be-mapped areas before calling this
 289 * function.
 290 *
 291 * RETURNS:
 292 * 0 on success, -errno on failure.
 293 */
 294int map_kernel_range_noflush(unsigned long addr, unsigned long size,
 295			     pgprot_t prot, struct page **pages)
 296{
 297	unsigned long start = addr;
 298	unsigned long end = addr + size;
 299	unsigned long next;
 300	pgd_t *pgd;
 
 
 301	int err = 0;
 302	int nr = 0;
 303	pgtbl_mod_mask mask = 0;
 304
 305	BUG_ON(addr >= end);
 306	pgd = pgd_offset_k(addr);
 307	do {
 308		next = pgd_addr_end(addr, end);
 309		if (pgd_bad(*pgd))
 310			mask |= PGTBL_PGD_MODIFIED;
 311		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
 312		if (err)
 313			return err;
 314	} while (pgd++, addr = next, addr != end);
 315
 316	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
 317		arch_sync_kernel_mappings(start, end);
 318
 319	return 0;
 320}
 321
 322int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot,
 323		struct page **pages)
 324{
 325	int ret;
 326
 327	ret = map_kernel_range_noflush(start, size, prot, pages);
 328	flush_cache_vmap(start, start + size);
 329	return ret;
 330}
 331
 332int is_vmalloc_or_module_addr(const void *x)
 333{
 334	/*
 335	 * ARM, x86-64 and sparc64 put modules in a special place,
 336	 * and fall back on vmalloc() if that fails. Others
 337	 * just put it in the vmalloc space.
 338	 */
 339#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 340	unsigned long addr = (unsigned long)x;
 341	if (addr >= MODULES_VADDR && addr < MODULES_END)
 342		return 1;
 343#endif
 344	return is_vmalloc_addr(x);
 345}
 346
 347/*
 348 * Walk a vmap address to the struct page it maps.
 349 */
 350struct page *vmalloc_to_page(const void *vmalloc_addr)
 351{
 352	unsigned long addr = (unsigned long) vmalloc_addr;
 353	struct page *page = NULL;
 354	pgd_t *pgd = pgd_offset_k(addr);
 355	p4d_t *p4d;
 356	pud_t *pud;
 357	pmd_t *pmd;
 358	pte_t *ptep, pte;
 359
 360	/*
 361	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 362	 * architectures that do not vmalloc module space
 363	 */
 364	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 365
 366	if (pgd_none(*pgd))
 367		return NULL;
 368	p4d = p4d_offset(pgd, addr);
 369	if (p4d_none(*p4d))
 370		return NULL;
 371	pud = pud_offset(p4d, addr);
 372
 373	/*
 374	 * Don't dereference bad PUD or PMD (below) entries. This will also
 375	 * identify huge mappings, which we may encounter on architectures
 376	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
 377	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
 378	 * not [unambiguously] associated with a struct page, so there is
 379	 * no correct value to return for them.
 380	 */
 381	WARN_ON_ONCE(pud_bad(*pud));
 382	if (pud_none(*pud) || pud_bad(*pud))
 383		return NULL;
 384	pmd = pmd_offset(pud, addr);
 385	WARN_ON_ONCE(pmd_bad(*pmd));
 386	if (pmd_none(*pmd) || pmd_bad(*pmd))
 387		return NULL;
 388
 389	ptep = pte_offset_map(pmd, addr);
 390	pte = *ptep;
 391	if (pte_present(pte))
 392		page = pte_page(pte);
 393	pte_unmap(ptep);
 394	return page;
 395}
 396EXPORT_SYMBOL(vmalloc_to_page);
 397
 398/*
 399 * Map a vmalloc()-space virtual address to the physical page frame number.
 400 */
 401unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 402{
 403	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 404}
 405EXPORT_SYMBOL(vmalloc_to_pfn);
 406
 407
 408/*** Global kva allocator ***/
 409
 410#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
 411#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
 412
 413
 414static DEFINE_SPINLOCK(vmap_area_lock);
 415static DEFINE_SPINLOCK(free_vmap_area_lock);
 416/* Export for kexec only */
 417LIST_HEAD(vmap_area_list);
 418static LLIST_HEAD(vmap_purge_list);
 419static struct rb_root vmap_area_root = RB_ROOT;
 420static bool vmap_initialized __read_mostly;
 421
 422/*
 423 * This kmem_cache is used for vmap_area objects. Instead of
 424 * allocating from slab we reuse an object from this cache to
 425 * make things faster. Especially in "no edge" splitting of
 426 * free block.
 427 */
 428static struct kmem_cache *vmap_area_cachep;
 429
 430/*
 431 * This linked list is used in pair with free_vmap_area_root.
 432 * It gives O(1) access to prev/next to perform fast coalescing.
 433 */
 434static LIST_HEAD(free_vmap_area_list);
 435
 436/*
 437 * This augment red-black tree represents the free vmap space.
 438 * All vmap_area objects in this tree are sorted by va->va_start
 439 * address. It is used for allocation and merging when a vmap
 440 * object is released.
 441 *
 442 * Each vmap_area node contains a maximum available free block
 443 * of its sub-tree, right or left. Therefore it is possible to
 444 * find a lowest match of free area.
 445 */
 446static struct rb_root free_vmap_area_root = RB_ROOT;
 447
 448/*
 449 * Preload a CPU with one object for "no edge" split case. The
 450 * aim is to get rid of allocations from the atomic context, thus
 451 * to use more permissive allocation masks.
 452 */
 453static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
 454
 455static __always_inline unsigned long
 456va_size(struct vmap_area *va)
 457{
 458	return (va->va_end - va->va_start);
 459}
 460
 461static __always_inline unsigned long
 462get_subtree_max_size(struct rb_node *node)
 463{
 464	struct vmap_area *va;
 465
 466	va = rb_entry_safe(node, struct vmap_area, rb_node);
 467	return va ? va->subtree_max_size : 0;
 468}
 469
 470/*
 471 * Gets called when remove the node and rotate.
 472 */
 473static __always_inline unsigned long
 474compute_subtree_max_size(struct vmap_area *va)
 475{
 476	return max3(va_size(va),
 477		get_subtree_max_size(va->rb_node.rb_left),
 478		get_subtree_max_size(va->rb_node.rb_right));
 479}
 480
 481RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
 482	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
 483
 484static void purge_vmap_area_lazy(void);
 485static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
 486static unsigned long lazy_max_pages(void);
 487
 488static atomic_long_t nr_vmalloc_pages;
 489
 490unsigned long vmalloc_nr_pages(void)
 491{
 492	return atomic_long_read(&nr_vmalloc_pages);
 493}
 494
 495static struct vmap_area *__find_vmap_area(unsigned long addr)
 496{
 497	struct rb_node *n = vmap_area_root.rb_node;
 498
 499	while (n) {
 500		struct vmap_area *va;
 501
 502		va = rb_entry(n, struct vmap_area, rb_node);
 503		if (addr < va->va_start)
 504			n = n->rb_left;
 505		else if (addr >= va->va_end)
 506			n = n->rb_right;
 507		else
 508			return va;
 509	}
 510
 511	return NULL;
 512}
 513
 514/*
 515 * This function returns back addresses of parent node
 516 * and its left or right link for further processing.
 517 *
 518 * Otherwise NULL is returned. In that case all further
 519 * steps regarding inserting of conflicting overlap range
 520 * have to be declined and actually considered as a bug.
 521 */
 522static __always_inline struct rb_node **
 523find_va_links(struct vmap_area *va,
 524	struct rb_root *root, struct rb_node *from,
 525	struct rb_node **parent)
 526{
 527	struct vmap_area *tmp_va;
 528	struct rb_node **link;
 529
 530	if (root) {
 531		link = &root->rb_node;
 532		if (unlikely(!*link)) {
 533			*parent = NULL;
 534			return link;
 535		}
 536	} else {
 537		link = &from;
 538	}
 539
 540	/*
 541	 * Go to the bottom of the tree. When we hit the last point
 542	 * we end up with parent rb_node and correct direction, i name
 543	 * it link, where the new va->rb_node will be attached to.
 544	 */
 545	do {
 546		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
 547
 548		/*
 549		 * During the traversal we also do some sanity check.
 550		 * Trigger the BUG() if there are sides(left/right)
 551		 * or full overlaps.
 552		 */
 553		if (va->va_start < tmp_va->va_end &&
 554				va->va_end <= tmp_va->va_start)
 555			link = &(*link)->rb_left;
 556		else if (va->va_end > tmp_va->va_start &&
 557				va->va_start >= tmp_va->va_end)
 558			link = &(*link)->rb_right;
 559		else {
 560			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
 561				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
 562
 563			return NULL;
 564		}
 565	} while (*link);
 566
 567	*parent = &tmp_va->rb_node;
 568	return link;
 569}
 570
 571static __always_inline struct list_head *
 572get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
 573{
 574	struct list_head *list;
 575
 576	if (unlikely(!parent))
 577		/*
 578		 * The red-black tree where we try to find VA neighbors
 579		 * before merging or inserting is empty, i.e. it means
 580		 * there is no free vmap space. Normally it does not
 581		 * happen but we handle this case anyway.
 582		 */
 583		return NULL;
 584
 585	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
 586	return (&parent->rb_right == link ? list->next : list);
 587}
 588
 589static __always_inline void
 590link_va(struct vmap_area *va, struct rb_root *root,
 591	struct rb_node *parent, struct rb_node **link, struct list_head *head)
 592{
 593	/*
 594	 * VA is still not in the list, but we can
 595	 * identify its future previous list_head node.
 596	 */
 597	if (likely(parent)) {
 598		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
 599		if (&parent->rb_right != link)
 600			head = head->prev;
 601	}
 602
 603	/* Insert to the rb-tree */
 604	rb_link_node(&va->rb_node, parent, link);
 605	if (root == &free_vmap_area_root) {
 606		/*
 607		 * Some explanation here. Just perform simple insertion
 608		 * to the tree. We do not set va->subtree_max_size to
 609		 * its current size before calling rb_insert_augmented().
 610		 * It is because of we populate the tree from the bottom
 611		 * to parent levels when the node _is_ in the tree.
 612		 *
 613		 * Therefore we set subtree_max_size to zero after insertion,
 614		 * to let __augment_tree_propagate_from() puts everything to
 615		 * the correct order later on.
 616		 */
 617		rb_insert_augmented(&va->rb_node,
 618			root, &free_vmap_area_rb_augment_cb);
 619		va->subtree_max_size = 0;
 620	} else {
 621		rb_insert_color(&va->rb_node, root);
 622	}
 623
 624	/* Address-sort this list */
 625	list_add(&va->list, head);
 626}
 627
 628static __always_inline void
 629unlink_va(struct vmap_area *va, struct rb_root *root)
 630{
 631	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
 632		return;
 633
 634	if (root == &free_vmap_area_root)
 635		rb_erase_augmented(&va->rb_node,
 636			root, &free_vmap_area_rb_augment_cb);
 637	else
 638		rb_erase(&va->rb_node, root);
 639
 640	list_del(&va->list);
 641	RB_CLEAR_NODE(&va->rb_node);
 642}
 643
 644#if DEBUG_AUGMENT_PROPAGATE_CHECK
 645static void
 646augment_tree_propagate_check(void)
 647{
 648	struct vmap_area *va;
 649	unsigned long computed_size;
 
 
 650
 651	list_for_each_entry(va, &free_vmap_area_list, list) {
 652		computed_size = compute_subtree_max_size(va);
 653		if (computed_size != va->subtree_max_size)
 654			pr_emerg("tree is corrupted: %lu, %lu\n",
 655				va_size(va), va->subtree_max_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 656	}
 
 
 
 
 
 
 
 
 
 657}
 658#endif
 659
 660/*
 661 * This function populates subtree_max_size from bottom to upper
 662 * levels starting from VA point. The propagation must be done
 663 * when VA size is modified by changing its va_start/va_end. Or
 664 * in case of newly inserting of VA to the tree.
 665 *
 666 * It means that __augment_tree_propagate_from() must be called:
 667 * - After VA has been inserted to the tree(free path);
 668 * - After VA has been shrunk(allocation path);
 669 * - After VA has been increased(merging path).
 670 *
 671 * Please note that, it does not mean that upper parent nodes
 672 * and their subtree_max_size are recalculated all the time up
 673 * to the root node.
 674 *
 675 *       4--8
 676 *        /\
 677 *       /  \
 678 *      /    \
 679 *    2--2  8--8
 680 *
 681 * For example if we modify the node 4, shrinking it to 2, then
 682 * no any modification is required. If we shrink the node 2 to 1
 683 * its subtree_max_size is updated only, and set to 1. If we shrink
 684 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
 685 * node becomes 4--6.
 686 */
 687static __always_inline void
 688augment_tree_propagate_from(struct vmap_area *va)
 689{
 690	/*
 691	 * Populate the tree from bottom towards the root until
 692	 * the calculated maximum available size of checked node
 693	 * is equal to its current one.
 694	 */
 695	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 696
 697#if DEBUG_AUGMENT_PROPAGATE_CHECK
 698	augment_tree_propagate_check();
 699#endif
 700}
 701
 702static void
 703insert_vmap_area(struct vmap_area *va,
 704	struct rb_root *root, struct list_head *head)
 705{
 706	struct rb_node **link;
 707	struct rb_node *parent;
 708
 709	link = find_va_links(va, root, NULL, &parent);
 710	if (link)
 711		link_va(va, root, parent, link, head);
 712}
 713
 714static void
 715insert_vmap_area_augment(struct vmap_area *va,
 716	struct rb_node *from, struct rb_root *root,
 717	struct list_head *head)
 718{
 719	struct rb_node **link;
 720	struct rb_node *parent;
 721
 722	if (from)
 723		link = find_va_links(va, NULL, from, &parent);
 724	else
 725		link = find_va_links(va, root, NULL, &parent);
 726
 727	if (link) {
 728		link_va(va, root, parent, link, head);
 729		augment_tree_propagate_from(va);
 730	}
 731}
 732
 733/*
 734 * Merge de-allocated chunk of VA memory with previous
 735 * and next free blocks. If coalesce is not done a new
 736 * free area is inserted. If VA has been merged, it is
 737 * freed.
 738 *
 739 * Please note, it can return NULL in case of overlap
 740 * ranges, followed by WARN() report. Despite it is a
 741 * buggy behaviour, a system can be alive and keep
 742 * ongoing.
 743 */
 744static __always_inline struct vmap_area *
 745merge_or_add_vmap_area(struct vmap_area *va,
 746	struct rb_root *root, struct list_head *head)
 747{
 748	struct vmap_area *sibling;
 749	struct list_head *next;
 750	struct rb_node **link;
 751	struct rb_node *parent;
 752	bool merged = false;
 753
 754	/*
 755	 * Find a place in the tree where VA potentially will be
 756	 * inserted, unless it is merged with its sibling/siblings.
 757	 */
 758	link = find_va_links(va, root, NULL, &parent);
 759	if (!link)
 760		return NULL;
 761
 762	/*
 763	 * Get next node of VA to check if merging can be done.
 764	 */
 765	next = get_va_next_sibling(parent, link);
 766	if (unlikely(next == NULL))
 767		goto insert;
 768
 769	/*
 770	 * start            end
 771	 * |                |
 772	 * |<------VA------>|<-----Next----->|
 773	 *                  |                |
 774	 *                  start            end
 775	 */
 776	if (next != head) {
 777		sibling = list_entry(next, struct vmap_area, list);
 778		if (sibling->va_start == va->va_end) {
 779			sibling->va_start = va->va_start;
 780
 
 
 
 781			/* Free vmap_area object. */
 782			kmem_cache_free(vmap_area_cachep, va);
 783
 784			/* Point to the new merged area. */
 785			va = sibling;
 786			merged = true;
 787		}
 788	}
 789
 790	/*
 791	 * start            end
 792	 * |                |
 793	 * |<-----Prev----->|<------VA------>|
 794	 *                  |                |
 795	 *                  start            end
 796	 */
 797	if (next->prev != head) {
 798		sibling = list_entry(next->prev, struct vmap_area, list);
 799		if (sibling->va_end == va->va_start) {
 800			/*
 801			 * If both neighbors are coalesced, it is important
 802			 * to unlink the "next" node first, followed by merging
 803			 * with "previous" one. Otherwise the tree might not be
 804			 * fully populated if a sibling's augmented value is
 805			 * "normalized" because of rotation operations.
 806			 */
 807			if (merged)
 808				unlink_va(va, root);
 809
 810			sibling->va_end = va->va_end;
 811
 812			/* Free vmap_area object. */
 813			kmem_cache_free(vmap_area_cachep, va);
 814
 815			/* Point to the new merged area. */
 816			va = sibling;
 817			merged = true;
 818		}
 819	}
 820
 821insert:
 822	if (!merged)
 823		link_va(va, root, parent, link, head);
 824
 825	/*
 826	 * Last step is to check and update the tree.
 827	 */
 828	augment_tree_propagate_from(va);
 829	return va;
 830}
 831
 832static __always_inline bool
 833is_within_this_va(struct vmap_area *va, unsigned long size,
 834	unsigned long align, unsigned long vstart)
 835{
 836	unsigned long nva_start_addr;
 837
 838	if (va->va_start > vstart)
 839		nva_start_addr = ALIGN(va->va_start, align);
 840	else
 841		nva_start_addr = ALIGN(vstart, align);
 842
 843	/* Can be overflowed due to big size or alignment. */
 844	if (nva_start_addr + size < nva_start_addr ||
 845			nva_start_addr < vstart)
 846		return false;
 847
 848	return (nva_start_addr + size <= va->va_end);
 849}
 850
 851/*
 852 * Find the first free block(lowest start address) in the tree,
 853 * that will accomplish the request corresponding to passing
 854 * parameters.
 855 */
 856static __always_inline struct vmap_area *
 857find_vmap_lowest_match(unsigned long size,
 858	unsigned long align, unsigned long vstart)
 859{
 860	struct vmap_area *va;
 861	struct rb_node *node;
 862	unsigned long length;
 863
 864	/* Start from the root. */
 865	node = free_vmap_area_root.rb_node;
 866
 867	/* Adjust the search size for alignment overhead. */
 868	length = size + align - 1;
 869
 870	while (node) {
 871		va = rb_entry(node, struct vmap_area, rb_node);
 872
 873		if (get_subtree_max_size(node->rb_left) >= length &&
 874				vstart < va->va_start) {
 875			node = node->rb_left;
 876		} else {
 877			if (is_within_this_va(va, size, align, vstart))
 878				return va;
 879
 880			/*
 881			 * Does not make sense to go deeper towards the right
 882			 * sub-tree if it does not have a free block that is
 883			 * equal or bigger to the requested search length.
 884			 */
 885			if (get_subtree_max_size(node->rb_right) >= length) {
 886				node = node->rb_right;
 887				continue;
 888			}
 889
 890			/*
 891			 * OK. We roll back and find the first right sub-tree,
 892			 * that will satisfy the search criteria. It can happen
 893			 * only once due to "vstart" restriction.
 894			 */
 895			while ((node = rb_parent(node))) {
 896				va = rb_entry(node, struct vmap_area, rb_node);
 897				if (is_within_this_va(va, size, align, vstart))
 898					return va;
 899
 900				if (get_subtree_max_size(node->rb_right) >= length &&
 901						vstart <= va->va_start) {
 902					node = node->rb_right;
 903					break;
 904				}
 905			}
 906		}
 907	}
 908
 909	return NULL;
 910}
 911
 912#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
 913#include <linux/random.h>
 914
 915static struct vmap_area *
 916find_vmap_lowest_linear_match(unsigned long size,
 917	unsigned long align, unsigned long vstart)
 918{
 919	struct vmap_area *va;
 920
 921	list_for_each_entry(va, &free_vmap_area_list, list) {
 922		if (!is_within_this_va(va, size, align, vstart))
 923			continue;
 924
 925		return va;
 926	}
 927
 928	return NULL;
 929}
 930
 931static void
 932find_vmap_lowest_match_check(unsigned long size)
 933{
 934	struct vmap_area *va_1, *va_2;
 935	unsigned long vstart;
 936	unsigned int rnd;
 937
 938	get_random_bytes(&rnd, sizeof(rnd));
 939	vstart = VMALLOC_START + rnd;
 940
 941	va_1 = find_vmap_lowest_match(size, 1, vstart);
 942	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
 943
 944	if (va_1 != va_2)
 945		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
 946			va_1, va_2, vstart);
 947}
 948#endif
 949
 950enum fit_type {
 951	NOTHING_FIT = 0,
 952	FL_FIT_TYPE = 1,	/* full fit */
 953	LE_FIT_TYPE = 2,	/* left edge fit */
 954	RE_FIT_TYPE = 3,	/* right edge fit */
 955	NE_FIT_TYPE = 4		/* no edge fit */
 956};
 957
 958static __always_inline enum fit_type
 959classify_va_fit_type(struct vmap_area *va,
 960	unsigned long nva_start_addr, unsigned long size)
 961{
 962	enum fit_type type;
 963
 964	/* Check if it is within VA. */
 965	if (nva_start_addr < va->va_start ||
 966			nva_start_addr + size > va->va_end)
 967		return NOTHING_FIT;
 968
 969	/* Now classify. */
 970	if (va->va_start == nva_start_addr) {
 971		if (va->va_end == nva_start_addr + size)
 972			type = FL_FIT_TYPE;
 973		else
 974			type = LE_FIT_TYPE;
 975	} else if (va->va_end == nva_start_addr + size) {
 976		type = RE_FIT_TYPE;
 977	} else {
 978		type = NE_FIT_TYPE;
 979	}
 980
 981	return type;
 982}
 983
 984static __always_inline int
 985adjust_va_to_fit_type(struct vmap_area *va,
 986	unsigned long nva_start_addr, unsigned long size,
 987	enum fit_type type)
 988{
 989	struct vmap_area *lva = NULL;
 990
 991	if (type == FL_FIT_TYPE) {
 992		/*
 993		 * No need to split VA, it fully fits.
 994		 *
 995		 * |               |
 996		 * V      NVA      V
 997		 * |---------------|
 998		 */
 999		unlink_va(va, &free_vmap_area_root);
1000		kmem_cache_free(vmap_area_cachep, va);
1001	} else if (type == LE_FIT_TYPE) {
1002		/*
1003		 * Split left edge of fit VA.
1004		 *
1005		 * |       |
1006		 * V  NVA  V   R
1007		 * |-------|-------|
1008		 */
1009		va->va_start += size;
1010	} else if (type == RE_FIT_TYPE) {
1011		/*
1012		 * Split right edge of fit VA.
1013		 *
1014		 *         |       |
1015		 *     L   V  NVA  V
1016		 * |-------|-------|
1017		 */
1018		va->va_end = nva_start_addr;
1019	} else if (type == NE_FIT_TYPE) {
1020		/*
1021		 * Split no edge of fit VA.
1022		 *
1023		 *     |       |
1024		 *   L V  NVA  V R
1025		 * |---|-------|---|
1026		 */
1027		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1028		if (unlikely(!lva)) {
1029			/*
1030			 * For percpu allocator we do not do any pre-allocation
1031			 * and leave it as it is. The reason is it most likely
1032			 * never ends up with NE_FIT_TYPE splitting. In case of
1033			 * percpu allocations offsets and sizes are aligned to
1034			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1035			 * are its main fitting cases.
1036			 *
1037			 * There are a few exceptions though, as an example it is
1038			 * a first allocation (early boot up) when we have "one"
1039			 * big free space that has to be split.
1040			 *
1041			 * Also we can hit this path in case of regular "vmap"
1042			 * allocations, if "this" current CPU was not preloaded.
1043			 * See the comment in alloc_vmap_area() why. If so, then
1044			 * GFP_NOWAIT is used instead to get an extra object for
1045			 * split purpose. That is rare and most time does not
1046			 * occur.
1047			 *
1048			 * What happens if an allocation gets failed. Basically,
1049			 * an "overflow" path is triggered to purge lazily freed
1050			 * areas to free some memory, then, the "retry" path is
1051			 * triggered to repeat one more time. See more details
1052			 * in alloc_vmap_area() function.
1053			 */
1054			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1055			if (!lva)
1056				return -1;
1057		}
1058
1059		/*
1060		 * Build the remainder.
1061		 */
1062		lva->va_start = va->va_start;
1063		lva->va_end = nva_start_addr;
1064
1065		/*
1066		 * Shrink this VA to remaining size.
1067		 */
1068		va->va_start = nva_start_addr + size;
1069	} else {
1070		return -1;
1071	}
1072
1073	if (type != FL_FIT_TYPE) {
1074		augment_tree_propagate_from(va);
1075
1076		if (lva)	/* type == NE_FIT_TYPE */
1077			insert_vmap_area_augment(lva, &va->rb_node,
1078				&free_vmap_area_root, &free_vmap_area_list);
1079	}
1080
1081	return 0;
1082}
1083
1084/*
1085 * Returns a start address of the newly allocated area, if success.
1086 * Otherwise a vend is returned that indicates failure.
1087 */
1088static __always_inline unsigned long
1089__alloc_vmap_area(unsigned long size, unsigned long align,
1090	unsigned long vstart, unsigned long vend)
1091{
1092	unsigned long nva_start_addr;
1093	struct vmap_area *va;
1094	enum fit_type type;
1095	int ret;
1096
1097	va = find_vmap_lowest_match(size, align, vstart);
1098	if (unlikely(!va))
1099		return vend;
1100
1101	if (va->va_start > vstart)
1102		nva_start_addr = ALIGN(va->va_start, align);
1103	else
1104		nva_start_addr = ALIGN(vstart, align);
1105
1106	/* Check the "vend" restriction. */
1107	if (nva_start_addr + size > vend)
1108		return vend;
1109
1110	/* Classify what we have found. */
1111	type = classify_va_fit_type(va, nva_start_addr, size);
1112	if (WARN_ON_ONCE(type == NOTHING_FIT))
1113		return vend;
1114
1115	/* Update the free vmap_area. */
1116	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1117	if (ret)
1118		return vend;
1119
1120#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1121	find_vmap_lowest_match_check(size);
1122#endif
1123
1124	return nva_start_addr;
1125}
1126
1127/*
1128 * Free a region of KVA allocated by alloc_vmap_area
1129 */
1130static void free_vmap_area(struct vmap_area *va)
1131{
1132	/*
1133	 * Remove from the busy tree/list.
1134	 */
1135	spin_lock(&vmap_area_lock);
1136	unlink_va(va, &vmap_area_root);
1137	spin_unlock(&vmap_area_lock);
1138
1139	/*
1140	 * Insert/Merge it back to the free tree/list.
1141	 */
1142	spin_lock(&free_vmap_area_lock);
1143	merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
1144	spin_unlock(&free_vmap_area_lock);
1145}
1146
1147/*
1148 * Allocate a region of KVA of the specified size and alignment, within the
1149 * vstart and vend.
1150 */
1151static struct vmap_area *alloc_vmap_area(unsigned long size,
1152				unsigned long align,
1153				unsigned long vstart, unsigned long vend,
1154				int node, gfp_t gfp_mask)
1155{
1156	struct vmap_area *va, *pva;
1157	unsigned long addr;
1158	int purged = 0;
1159	int ret;
1160
1161	BUG_ON(!size);
1162	BUG_ON(offset_in_page(size));
1163	BUG_ON(!is_power_of_2(align));
1164
1165	if (unlikely(!vmap_initialized))
1166		return ERR_PTR(-EBUSY);
1167
1168	might_sleep();
1169	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1170
1171	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
 
1172	if (unlikely(!va))
1173		return ERR_PTR(-ENOMEM);
1174
1175	/*
1176	 * Only scan the relevant parts containing pointers to other objects
1177	 * to avoid false negatives.
1178	 */
1179	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1180
1181retry:
1182	/*
1183	 * Preload this CPU with one extra vmap_area object. It is used
1184	 * when fit type of free area is NE_FIT_TYPE. Please note, it
1185	 * does not guarantee that an allocation occurs on a CPU that
1186	 * is preloaded, instead we minimize the case when it is not.
1187	 * It can happen because of cpu migration, because there is a
1188	 * race until the below spinlock is taken.
1189	 *
1190	 * The preload is done in non-atomic context, thus it allows us
1191	 * to use more permissive allocation masks to be more stable under
1192	 * low memory condition and high memory pressure. In rare case,
1193	 * if not preloaded, GFP_NOWAIT is used.
1194	 *
1195	 * Set "pva" to NULL here, because of "retry" path.
 
1196	 */
1197	pva = NULL;
1198
1199	if (!this_cpu_read(ne_fit_preload_node))
1200		/*
1201		 * Even if it fails we do not really care about that.
1202		 * Just proceed as it is. If needed "overflow" path
1203		 * will refill the cache we allocate from.
1204		 */
1205		pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1206
1207	spin_lock(&free_vmap_area_lock);
1208
1209	if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
1210		kmem_cache_free(vmap_area_cachep, pva);
1211
1212	/*
1213	 * If an allocation fails, the "vend" address is
1214	 * returned. Therefore trigger the overflow path.
1215	 */
1216	addr = __alloc_vmap_area(size, align, vstart, vend);
1217	spin_unlock(&free_vmap_area_lock);
1218
1219	if (unlikely(addr == vend))
1220		goto overflow;
1221
1222	va->va_start = addr;
1223	va->va_end = addr + size;
1224	va->vm = NULL;
1225
1226
1227	spin_lock(&vmap_area_lock);
1228	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
 
1229	spin_unlock(&vmap_area_lock);
1230
1231	BUG_ON(!IS_ALIGNED(va->va_start, align));
1232	BUG_ON(va->va_start < vstart);
1233	BUG_ON(va->va_end > vend);
1234
1235	ret = kasan_populate_vmalloc(addr, size);
1236	if (ret) {
1237		free_vmap_area(va);
1238		return ERR_PTR(ret);
1239	}
1240
1241	return va;
1242
1243overflow:
 
1244	if (!purged) {
1245		purge_vmap_area_lazy();
1246		purged = 1;
1247		goto retry;
1248	}
1249
1250	if (gfpflags_allow_blocking(gfp_mask)) {
1251		unsigned long freed = 0;
1252		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1253		if (freed > 0) {
1254			purged = 0;
1255			goto retry;
1256		}
1257	}
1258
1259	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1260		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1261			size);
1262
1263	kmem_cache_free(vmap_area_cachep, va);
1264	return ERR_PTR(-EBUSY);
1265}
1266
1267int register_vmap_purge_notifier(struct notifier_block *nb)
1268{
1269	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1270}
1271EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1272
1273int unregister_vmap_purge_notifier(struct notifier_block *nb)
1274{
1275	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1276}
1277EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1279/*
1280 * lazy_max_pages is the maximum amount of virtual address space we gather up
1281 * before attempting to purge with a TLB flush.
1282 *
1283 * There is a tradeoff here: a larger number will cover more kernel page tables
1284 * and take slightly longer to purge, but it will linearly reduce the number of
1285 * global TLB flushes that must be performed. It would seem natural to scale
1286 * this number up linearly with the number of CPUs (because vmapping activity
1287 * could also scale linearly with the number of CPUs), however it is likely
1288 * that in practice, workloads might be constrained in other ways that mean
1289 * vmap activity will not scale linearly with CPUs. Also, I want to be
1290 * conservative and not introduce a big latency on huge systems, so go with
1291 * a less aggressive log scale. It will still be an improvement over the old
1292 * code, and it will be simple to change the scale factor if we find that it
1293 * becomes a problem on bigger systems.
1294 */
1295static unsigned long lazy_max_pages(void)
1296{
1297	unsigned int log;
1298
1299	log = fls(num_online_cpus());
1300
1301	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1302}
1303
1304static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1305
1306/*
1307 * Serialize vmap purging.  There is no actual criticial section protected
1308 * by this look, but we want to avoid concurrent calls for performance
1309 * reasons and to make the pcpu_get_vm_areas more deterministic.
1310 */
1311static DEFINE_MUTEX(vmap_purge_lock);
1312
1313/* for per-CPU blocks */
1314static void purge_fragmented_blocks_allcpus(void);
1315
1316/*
1317 * called before a call to iounmap() if the caller wants vm_area_struct's
1318 * immediately freed.
1319 */
1320void set_iounmap_nonlazy(void)
1321{
1322	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1323}
1324
1325/*
1326 * Purges all lazily-freed vmap areas.
1327 */
1328static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1329{
1330	unsigned long resched_threshold;
1331	struct llist_node *valist;
1332	struct vmap_area *va;
1333	struct vmap_area *n_va;
1334
1335	lockdep_assert_held(&vmap_purge_lock);
1336
1337	valist = llist_del_all(&vmap_purge_list);
1338	if (unlikely(valist == NULL))
1339		return false;
1340
1341	/*
 
 
 
 
 
 
1342	 * TODO: to calculate a flush range without looping.
1343	 * The list can be up to lazy_max_pages() elements.
1344	 */
1345	llist_for_each_entry(va, valist, purge_list) {
1346		if (va->va_start < start)
1347			start = va->va_start;
1348		if (va->va_end > end)
1349			end = va->va_end;
1350	}
1351
1352	flush_tlb_kernel_range(start, end);
1353	resched_threshold = lazy_max_pages() << 1;
1354
1355	spin_lock(&free_vmap_area_lock);
1356	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1357		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1358		unsigned long orig_start = va->va_start;
1359		unsigned long orig_end = va->va_end;
1360
1361		/*
1362		 * Finally insert or merge lazily-freed area. It is
1363		 * detached and there is no need to "unlink" it from
1364		 * anything.
1365		 */
1366		va = merge_or_add_vmap_area(va, &free_vmap_area_root,
1367					    &free_vmap_area_list);
1368
1369		if (!va)
1370			continue;
1371
1372		if (is_vmalloc_or_module_addr((void *)orig_start))
1373			kasan_release_vmalloc(orig_start, orig_end,
1374					      va->va_start, va->va_end);
1375
1376		atomic_long_sub(nr, &vmap_lazy_nr);
1377
1378		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1379			cond_resched_lock(&free_vmap_area_lock);
1380	}
1381	spin_unlock(&free_vmap_area_lock);
1382	return true;
1383}
1384
1385/*
1386 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1387 * is already purging.
1388 */
1389static void try_purge_vmap_area_lazy(void)
1390{
1391	if (mutex_trylock(&vmap_purge_lock)) {
1392		__purge_vmap_area_lazy(ULONG_MAX, 0);
1393		mutex_unlock(&vmap_purge_lock);
1394	}
1395}
1396
1397/*
1398 * Kick off a purge of the outstanding lazy areas.
1399 */
1400static void purge_vmap_area_lazy(void)
1401{
1402	mutex_lock(&vmap_purge_lock);
1403	purge_fragmented_blocks_allcpus();
1404	__purge_vmap_area_lazy(ULONG_MAX, 0);
1405	mutex_unlock(&vmap_purge_lock);
1406}
1407
1408/*
1409 * Free a vmap area, caller ensuring that the area has been unmapped
1410 * and flush_cache_vunmap had been called for the correct range
1411 * previously.
1412 */
1413static void free_vmap_area_noflush(struct vmap_area *va)
1414{
1415	unsigned long nr_lazy;
1416
1417	spin_lock(&vmap_area_lock);
1418	unlink_va(va, &vmap_area_root);
1419	spin_unlock(&vmap_area_lock);
1420
1421	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1422				PAGE_SHIFT, &vmap_lazy_nr);
1423
1424	/* After this point, we may free va at any time */
1425	llist_add(&va->purge_list, &vmap_purge_list);
1426
1427	if (unlikely(nr_lazy > lazy_max_pages()))
1428		try_purge_vmap_area_lazy();
1429}
1430
1431/*
1432 * Free and unmap a vmap area
1433 */
1434static void free_unmap_vmap_area(struct vmap_area *va)
1435{
1436	flush_cache_vunmap(va->va_start, va->va_end);
1437	unmap_kernel_range_noflush(va->va_start, va->va_end - va->va_start);
1438	if (debug_pagealloc_enabled_static())
1439		flush_tlb_kernel_range(va->va_start, va->va_end);
1440
1441	free_vmap_area_noflush(va);
1442}
1443
1444static struct vmap_area *find_vmap_area(unsigned long addr)
1445{
1446	struct vmap_area *va;
1447
1448	spin_lock(&vmap_area_lock);
1449	va = __find_vmap_area(addr);
1450	spin_unlock(&vmap_area_lock);
1451
1452	return va;
1453}
1454
1455/*** Per cpu kva allocator ***/
1456
1457/*
1458 * vmap space is limited especially on 32 bit architectures. Ensure there is
1459 * room for at least 16 percpu vmap blocks per CPU.
1460 */
1461/*
1462 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1463 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1464 * instead (we just need a rough idea)
1465 */
1466#if BITS_PER_LONG == 32
1467#define VMALLOC_SPACE		(128UL*1024*1024)
1468#else
1469#define VMALLOC_SPACE		(128UL*1024*1024*1024)
1470#endif
1471
1472#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1473#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1474#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1475#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1476#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1477#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1478#define VMAP_BBMAP_BITS		\
1479		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1480		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1481			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1482
1483#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1484
1485struct vmap_block_queue {
1486	spinlock_t lock;
1487	struct list_head free;
1488};
1489
1490struct vmap_block {
1491	spinlock_t lock;
1492	struct vmap_area *va;
1493	unsigned long free, dirty;
1494	unsigned long dirty_min, dirty_max; /*< dirty range */
1495	struct list_head free_list;
1496	struct rcu_head rcu_head;
1497	struct list_head purge;
1498};
1499
1500/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1501static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1502
1503/*
1504 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1505 * in the free path. Could get rid of this if we change the API to return a
1506 * "cookie" from alloc, to be passed to free. But no big deal yet.
1507 */
1508static DEFINE_XARRAY(vmap_blocks);
 
1509
1510/*
1511 * We should probably have a fallback mechanism to allocate virtual memory
1512 * out of partially filled vmap blocks. However vmap block sizing should be
1513 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1514 * big problem.
1515 */
1516
1517static unsigned long addr_to_vb_idx(unsigned long addr)
1518{
1519	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1520	addr /= VMAP_BLOCK_SIZE;
1521	return addr;
1522}
1523
1524static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1525{
1526	unsigned long addr;
1527
1528	addr = va_start + (pages_off << PAGE_SHIFT);
1529	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1530	return (void *)addr;
1531}
1532
1533/**
1534 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1535 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1536 * @order:    how many 2^order pages should be occupied in newly allocated block
1537 * @gfp_mask: flags for the page level allocator
1538 *
1539 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1540 */
1541static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1542{
1543	struct vmap_block_queue *vbq;
1544	struct vmap_block *vb;
1545	struct vmap_area *va;
1546	unsigned long vb_idx;
1547	int node, err;
1548	void *vaddr;
1549
1550	node = numa_node_id();
1551
1552	vb = kmalloc_node(sizeof(struct vmap_block),
1553			gfp_mask & GFP_RECLAIM_MASK, node);
1554	if (unlikely(!vb))
1555		return ERR_PTR(-ENOMEM);
1556
1557	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1558					VMALLOC_START, VMALLOC_END,
1559					node, gfp_mask);
1560	if (IS_ERR(va)) {
1561		kfree(vb);
1562		return ERR_CAST(va);
1563	}
1564
 
 
 
 
 
 
 
1565	vaddr = vmap_block_vaddr(va->va_start, 0);
1566	spin_lock_init(&vb->lock);
1567	vb->va = va;
1568	/* At least something should be left free */
1569	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1570	vb->free = VMAP_BBMAP_BITS - (1UL << order);
1571	vb->dirty = 0;
1572	vb->dirty_min = VMAP_BBMAP_BITS;
1573	vb->dirty_max = 0;
1574	INIT_LIST_HEAD(&vb->free_list);
1575
1576	vb_idx = addr_to_vb_idx(va->va_start);
1577	err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1578	if (err) {
1579		kfree(vb);
1580		free_vmap_area(va);
1581		return ERR_PTR(err);
1582	}
1583
1584	vbq = &get_cpu_var(vmap_block_queue);
1585	spin_lock(&vbq->lock);
1586	list_add_tail_rcu(&vb->free_list, &vbq->free);
1587	spin_unlock(&vbq->lock);
1588	put_cpu_var(vmap_block_queue);
1589
1590	return vaddr;
1591}
1592
1593static void free_vmap_block(struct vmap_block *vb)
1594{
1595	struct vmap_block *tmp;
 
1596
1597	tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
 
 
 
1598	BUG_ON(tmp != vb);
1599
1600	free_vmap_area_noflush(vb->va);
1601	kfree_rcu(vb, rcu_head);
1602}
1603
1604static void purge_fragmented_blocks(int cpu)
1605{
1606	LIST_HEAD(purge);
1607	struct vmap_block *vb;
1608	struct vmap_block *n_vb;
1609	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1610
1611	rcu_read_lock();
1612	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1613
1614		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1615			continue;
1616
1617		spin_lock(&vb->lock);
1618		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1619			vb->free = 0; /* prevent further allocs after releasing lock */
1620			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1621			vb->dirty_min = 0;
1622			vb->dirty_max = VMAP_BBMAP_BITS;
1623			spin_lock(&vbq->lock);
1624			list_del_rcu(&vb->free_list);
1625			spin_unlock(&vbq->lock);
1626			spin_unlock(&vb->lock);
1627			list_add_tail(&vb->purge, &purge);
1628		} else
1629			spin_unlock(&vb->lock);
1630	}
1631	rcu_read_unlock();
1632
1633	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1634		list_del(&vb->purge);
1635		free_vmap_block(vb);
1636	}
1637}
1638
1639static void purge_fragmented_blocks_allcpus(void)
1640{
1641	int cpu;
1642
1643	for_each_possible_cpu(cpu)
1644		purge_fragmented_blocks(cpu);
1645}
1646
1647static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1648{
1649	struct vmap_block_queue *vbq;
1650	struct vmap_block *vb;
1651	void *vaddr = NULL;
1652	unsigned int order;
1653
1654	BUG_ON(offset_in_page(size));
1655	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1656	if (WARN_ON(size == 0)) {
1657		/*
1658		 * Allocating 0 bytes isn't what caller wants since
1659		 * get_order(0) returns funny result. Just warn and terminate
1660		 * early.
1661		 */
1662		return NULL;
1663	}
1664	order = get_order(size);
1665
1666	rcu_read_lock();
1667	vbq = &get_cpu_var(vmap_block_queue);
1668	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1669		unsigned long pages_off;
1670
1671		spin_lock(&vb->lock);
1672		if (vb->free < (1UL << order)) {
1673			spin_unlock(&vb->lock);
1674			continue;
1675		}
1676
1677		pages_off = VMAP_BBMAP_BITS - vb->free;
1678		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1679		vb->free -= 1UL << order;
1680		if (vb->free == 0) {
1681			spin_lock(&vbq->lock);
1682			list_del_rcu(&vb->free_list);
1683			spin_unlock(&vbq->lock);
1684		}
1685
1686		spin_unlock(&vb->lock);
1687		break;
1688	}
1689
1690	put_cpu_var(vmap_block_queue);
1691	rcu_read_unlock();
1692
1693	/* Allocate new block if nothing was found */
1694	if (!vaddr)
1695		vaddr = new_vmap_block(order, gfp_mask);
1696
1697	return vaddr;
1698}
1699
1700static void vb_free(unsigned long addr, unsigned long size)
1701{
1702	unsigned long offset;
 
1703	unsigned int order;
1704	struct vmap_block *vb;
1705
1706	BUG_ON(offset_in_page(size));
1707	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1708
1709	flush_cache_vunmap(addr, addr + size);
1710
1711	order = get_order(size);
1712	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
1713	vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
1714
1715	unmap_kernel_range_noflush(addr, size);
 
 
 
 
 
 
 
 
 
1716
1717	if (debug_pagealloc_enabled_static())
1718		flush_tlb_kernel_range(addr, addr + size);
 
1719
1720	spin_lock(&vb->lock);
1721
1722	/* Expand dirty range */
1723	vb->dirty_min = min(vb->dirty_min, offset);
1724	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1725
1726	vb->dirty += 1UL << order;
1727	if (vb->dirty == VMAP_BBMAP_BITS) {
1728		BUG_ON(vb->free);
1729		spin_unlock(&vb->lock);
1730		free_vmap_block(vb);
1731	} else
1732		spin_unlock(&vb->lock);
1733}
1734
1735static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1736{
1737	int cpu;
1738
1739	if (unlikely(!vmap_initialized))
1740		return;
1741
1742	might_sleep();
1743
1744	for_each_possible_cpu(cpu) {
1745		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1746		struct vmap_block *vb;
1747
1748		rcu_read_lock();
1749		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1750			spin_lock(&vb->lock);
1751			if (vb->dirty) {
1752				unsigned long va_start = vb->va->va_start;
1753				unsigned long s, e;
1754
1755				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1756				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1757
1758				start = min(s, start);
1759				end   = max(e, end);
1760
1761				flush = 1;
1762			}
1763			spin_unlock(&vb->lock);
1764		}
1765		rcu_read_unlock();
1766	}
1767
1768	mutex_lock(&vmap_purge_lock);
1769	purge_fragmented_blocks_allcpus();
1770	if (!__purge_vmap_area_lazy(start, end) && flush)
1771		flush_tlb_kernel_range(start, end);
1772	mutex_unlock(&vmap_purge_lock);
1773}
1774
1775/**
1776 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1777 *
1778 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1779 * to amortize TLB flushing overheads. What this means is that any page you
1780 * have now, may, in a former life, have been mapped into kernel virtual
1781 * address by the vmap layer and so there might be some CPUs with TLB entries
1782 * still referencing that page (additional to the regular 1:1 kernel mapping).
1783 *
1784 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1785 * be sure that none of the pages we have control over will have any aliases
1786 * from the vmap layer.
1787 */
1788void vm_unmap_aliases(void)
1789{
1790	unsigned long start = ULONG_MAX, end = 0;
1791	int flush = 0;
1792
1793	_vm_unmap_aliases(start, end, flush);
1794}
1795EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1796
1797/**
1798 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1799 * @mem: the pointer returned by vm_map_ram
1800 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1801 */
1802void vm_unmap_ram(const void *mem, unsigned int count)
1803{
1804	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1805	unsigned long addr = (unsigned long)mem;
1806	struct vmap_area *va;
1807
1808	might_sleep();
1809	BUG_ON(!addr);
1810	BUG_ON(addr < VMALLOC_START);
1811	BUG_ON(addr > VMALLOC_END);
1812	BUG_ON(!PAGE_ALIGNED(addr));
1813
1814	kasan_poison_vmalloc(mem, size);
1815
1816	if (likely(count <= VMAP_MAX_ALLOC)) {
1817		debug_check_no_locks_freed(mem, size);
1818		vb_free(addr, size);
1819		return;
1820	}
1821
1822	va = find_vmap_area(addr);
1823	BUG_ON(!va);
1824	debug_check_no_locks_freed((void *)va->va_start,
1825				    (va->va_end - va->va_start));
1826	free_unmap_vmap_area(va);
1827}
1828EXPORT_SYMBOL(vm_unmap_ram);
1829
1830/**
1831 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1832 * @pages: an array of pointers to the pages to be mapped
1833 * @count: number of pages
1834 * @node: prefer to allocate data structures on this node
 
1835 *
1836 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1837 * faster than vmap so it's good.  But if you mix long-life and short-life
1838 * objects with vm_map_ram(), it could consume lots of address space through
1839 * fragmentation (especially on a 32bit machine).  You could see failures in
1840 * the end.  Please use this function for short-lived objects.
1841 *
1842 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1843 */
1844void *vm_map_ram(struct page **pages, unsigned int count, int node)
1845{
1846	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1847	unsigned long addr;
1848	void *mem;
1849
1850	if (likely(count <= VMAP_MAX_ALLOC)) {
1851		mem = vb_alloc(size, GFP_KERNEL);
1852		if (IS_ERR(mem))
1853			return NULL;
1854		addr = (unsigned long)mem;
1855	} else {
1856		struct vmap_area *va;
1857		va = alloc_vmap_area(size, PAGE_SIZE,
1858				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1859		if (IS_ERR(va))
1860			return NULL;
1861
1862		addr = va->va_start;
1863		mem = (void *)addr;
1864	}
1865
1866	kasan_unpoison_vmalloc(mem, size);
1867
1868	if (map_kernel_range(addr, size, PAGE_KERNEL, pages) < 0) {
1869		vm_unmap_ram(mem, count);
1870		return NULL;
1871	}
1872	return mem;
1873}
1874EXPORT_SYMBOL(vm_map_ram);
1875
1876static struct vm_struct *vmlist __initdata;
1877
1878/**
1879 * vm_area_add_early - add vmap area early during boot
1880 * @vm: vm_struct to add
1881 *
1882 * This function is used to add fixed kernel vm area to vmlist before
1883 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1884 * should contain proper values and the other fields should be zero.
1885 *
1886 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1887 */
1888void __init vm_area_add_early(struct vm_struct *vm)
1889{
1890	struct vm_struct *tmp, **p;
1891
1892	BUG_ON(vmap_initialized);
1893	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1894		if (tmp->addr >= vm->addr) {
1895			BUG_ON(tmp->addr < vm->addr + vm->size);
1896			break;
1897		} else
1898			BUG_ON(tmp->addr + tmp->size > vm->addr);
1899	}
1900	vm->next = *p;
1901	*p = vm;
1902}
1903
1904/**
1905 * vm_area_register_early - register vmap area early during boot
1906 * @vm: vm_struct to register
1907 * @align: requested alignment
1908 *
1909 * This function is used to register kernel vm area before
1910 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1911 * proper values on entry and other fields should be zero.  On return,
1912 * vm->addr contains the allocated address.
1913 *
1914 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1915 */
1916void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1917{
1918	static size_t vm_init_off __initdata;
1919	unsigned long addr;
1920
1921	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1922	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1923
1924	vm->addr = (void *)addr;
1925
1926	vm_area_add_early(vm);
1927}
1928
1929static void vmap_init_free_space(void)
1930{
1931	unsigned long vmap_start = 1;
1932	const unsigned long vmap_end = ULONG_MAX;
1933	struct vmap_area *busy, *free;
1934
1935	/*
1936	 *     B     F     B     B     B     F
1937	 * -|-----|.....|-----|-----|-----|.....|-
1938	 *  |           The KVA space           |
1939	 *  |<--------------------------------->|
1940	 */
1941	list_for_each_entry(busy, &vmap_area_list, list) {
1942		if (busy->va_start - vmap_start > 0) {
1943			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1944			if (!WARN_ON_ONCE(!free)) {
1945				free->va_start = vmap_start;
1946				free->va_end = busy->va_start;
1947
1948				insert_vmap_area_augment(free, NULL,
1949					&free_vmap_area_root,
1950						&free_vmap_area_list);
1951			}
1952		}
1953
1954		vmap_start = busy->va_end;
1955	}
1956
1957	if (vmap_end - vmap_start > 0) {
1958		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1959		if (!WARN_ON_ONCE(!free)) {
1960			free->va_start = vmap_start;
1961			free->va_end = vmap_end;
1962
1963			insert_vmap_area_augment(free, NULL,
1964				&free_vmap_area_root,
1965					&free_vmap_area_list);
1966		}
1967	}
1968}
1969
1970void __init vmalloc_init(void)
1971{
1972	struct vmap_area *va;
1973	struct vm_struct *tmp;
1974	int i;
1975
1976	/*
1977	 * Create the cache for vmap_area objects.
1978	 */
1979	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1980
1981	for_each_possible_cpu(i) {
1982		struct vmap_block_queue *vbq;
1983		struct vfree_deferred *p;
1984
1985		vbq = &per_cpu(vmap_block_queue, i);
1986		spin_lock_init(&vbq->lock);
1987		INIT_LIST_HEAD(&vbq->free);
1988		p = &per_cpu(vfree_deferred, i);
1989		init_llist_head(&p->list);
1990		INIT_WORK(&p->wq, free_work);
1991	}
1992
1993	/* Import existing vmlist entries. */
1994	for (tmp = vmlist; tmp; tmp = tmp->next) {
1995		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1996		if (WARN_ON_ONCE(!va))
1997			continue;
1998
1999		va->va_start = (unsigned long)tmp->addr;
2000		va->va_end = va->va_start + tmp->size;
2001		va->vm = tmp;
2002		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2003	}
2004
2005	/*
2006	 * Now we can initialize a free vmap space.
2007	 */
2008	vmap_init_free_space();
2009	vmap_initialized = true;
2010}
2011
2012/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2013 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
2014 * @addr: start of the VM area to unmap
2015 * @size: size of the VM area to unmap
2016 *
2017 * Similar to unmap_kernel_range_noflush() but flushes vcache before
2018 * the unmapping and tlb after.
2019 */
2020void unmap_kernel_range(unsigned long addr, unsigned long size)
2021{
2022	unsigned long end = addr + size;
2023
2024	flush_cache_vunmap(addr, end);
2025	unmap_kernel_range_noflush(addr, size);
2026	flush_tlb_kernel_range(addr, end);
2027}
 
2028
2029static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2030	struct vmap_area *va, unsigned long flags, const void *caller)
2031{
2032	vm->flags = flags;
2033	vm->addr = (void *)va->va_start;
2034	vm->size = va->va_end - va->va_start;
2035	vm->caller = caller;
2036	va->vm = vm;
 
 
2037}
 
2038
2039static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2040			      unsigned long flags, const void *caller)
2041{
2042	spin_lock(&vmap_area_lock);
2043	setup_vmalloc_vm_locked(vm, va, flags, caller);
 
 
 
 
2044	spin_unlock(&vmap_area_lock);
2045}
2046
2047static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2048{
2049	/*
2050	 * Before removing VM_UNINITIALIZED,
2051	 * we should make sure that vm has proper values.
2052	 * Pair with smp_rmb() in show_numa_info().
2053	 */
2054	smp_wmb();
2055	vm->flags &= ~VM_UNINITIALIZED;
2056}
2057
2058static struct vm_struct *__get_vm_area_node(unsigned long size,
2059		unsigned long align, unsigned long flags, unsigned long start,
2060		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
2061{
2062	struct vmap_area *va;
2063	struct vm_struct *area;
2064	unsigned long requested_size = size;
2065
2066	BUG_ON(in_interrupt());
2067	size = PAGE_ALIGN(size);
2068	if (unlikely(!size))
2069		return NULL;
2070
2071	if (flags & VM_IOREMAP)
2072		align = 1ul << clamp_t(int, get_count_order_long(size),
2073				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2074
2075	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2076	if (unlikely(!area))
2077		return NULL;
2078
2079	if (!(flags & VM_NO_GUARD))
2080		size += PAGE_SIZE;
2081
2082	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2083	if (IS_ERR(va)) {
2084		kfree(area);
2085		return NULL;
2086	}
2087
2088	kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2089
2090	setup_vmalloc_vm(area, va, flags, caller);
2091
2092	return area;
2093}
2094
 
 
 
 
 
 
 
 
2095struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2096				       unsigned long start, unsigned long end,
2097				       const void *caller)
2098{
2099	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2100				  GFP_KERNEL, caller);
2101}
2102
2103/**
2104 * get_vm_area - reserve a contiguous kernel virtual area
2105 * @size:	 size of the area
2106 * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2107 *
2108 * Search an area of @size in the kernel virtual mapping area,
2109 * and reserved it for out purposes.  Returns the area descriptor
2110 * on success or %NULL on failure.
2111 *
2112 * Return: the area descriptor on success or %NULL on failure.
2113 */
2114struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2115{
2116	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2117				  NUMA_NO_NODE, GFP_KERNEL,
2118				  __builtin_return_address(0));
2119}
2120
2121struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2122				const void *caller)
2123{
2124	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2125				  NUMA_NO_NODE, GFP_KERNEL, caller);
2126}
2127
2128/**
2129 * find_vm_area - find a continuous kernel virtual area
2130 * @addr:	  base address
2131 *
2132 * Search for the kernel VM area starting at @addr, and return it.
2133 * It is up to the caller to do all required locking to keep the returned
2134 * pointer valid.
2135 *
2136 * Return: pointer to the found area or %NULL on faulure
2137 */
2138struct vm_struct *find_vm_area(const void *addr)
2139{
2140	struct vmap_area *va;
2141
2142	va = find_vmap_area((unsigned long)addr);
2143	if (!va)
2144		return NULL;
2145
2146	return va->vm;
2147}
2148
2149/**
2150 * remove_vm_area - find and remove a continuous kernel virtual area
2151 * @addr:	    base address
2152 *
2153 * Search for the kernel VM area starting at @addr, and remove it.
2154 * This function returns the found VM area, but using it is NOT safe
2155 * on SMP machines, except for its size or flags.
2156 *
2157 * Return: pointer to the found area or %NULL on faulure
2158 */
2159struct vm_struct *remove_vm_area(const void *addr)
2160{
2161	struct vmap_area *va;
2162
2163	might_sleep();
2164
2165	spin_lock(&vmap_area_lock);
2166	va = __find_vmap_area((unsigned long)addr);
2167	if (va && va->vm) {
2168		struct vm_struct *vm = va->vm;
2169
2170		va->vm = NULL;
2171		spin_unlock(&vmap_area_lock);
2172
2173		kasan_free_shadow(vm);
2174		free_unmap_vmap_area(va);
2175
2176		return vm;
2177	}
2178
2179	spin_unlock(&vmap_area_lock);
2180	return NULL;
2181}
2182
2183static inline void set_area_direct_map(const struct vm_struct *area,
2184				       int (*set_direct_map)(struct page *page))
2185{
2186	int i;
2187
2188	for (i = 0; i < area->nr_pages; i++)
2189		if (page_address(area->pages[i]))
2190			set_direct_map(area->pages[i]);
2191}
2192
2193/* Handle removing and resetting vm mappings related to the vm_struct. */
2194static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2195{
2196	unsigned long start = ULONG_MAX, end = 0;
2197	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2198	int flush_dmap = 0;
2199	int i;
2200
2201	remove_vm_area(area->addr);
2202
2203	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2204	if (!flush_reset)
2205		return;
2206
2207	/*
2208	 * If not deallocating pages, just do the flush of the VM area and
2209	 * return.
2210	 */
2211	if (!deallocate_pages) {
2212		vm_unmap_aliases();
2213		return;
2214	}
2215
2216	/*
2217	 * If execution gets here, flush the vm mapping and reset the direct
2218	 * map. Find the start and end range of the direct mappings to make sure
2219	 * the vm_unmap_aliases() flush includes the direct map.
2220	 */
2221	for (i = 0; i < area->nr_pages; i++) {
2222		unsigned long addr = (unsigned long)page_address(area->pages[i]);
2223		if (addr) {
2224			start = min(addr, start);
2225			end = max(addr + PAGE_SIZE, end);
2226			flush_dmap = 1;
2227		}
2228	}
2229
2230	/*
2231	 * Set direct map to something invalid so that it won't be cached if
2232	 * there are any accesses after the TLB flush, then flush the TLB and
2233	 * reset the direct map permissions to the default.
2234	 */
2235	set_area_direct_map(area, set_direct_map_invalid_noflush);
2236	_vm_unmap_aliases(start, end, flush_dmap);
2237	set_area_direct_map(area, set_direct_map_default_noflush);
2238}
2239
2240static void __vunmap(const void *addr, int deallocate_pages)
2241{
2242	struct vm_struct *area;
2243
2244	if (!addr)
2245		return;
2246
2247	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2248			addr))
2249		return;
2250
2251	area = find_vm_area(addr);
2252	if (unlikely(!area)) {
2253		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2254				addr);
2255		return;
2256	}
2257
2258	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2259	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2260
2261	kasan_poison_vmalloc(area->addr, area->size);
2262
2263	vm_remove_mappings(area, deallocate_pages);
2264
2265	if (deallocate_pages) {
2266		int i;
2267
2268		for (i = 0; i < area->nr_pages; i++) {
2269			struct page *page = area->pages[i];
2270
2271			BUG_ON(!page);
2272			__free_pages(page, 0);
2273		}
2274		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2275
2276		kvfree(area->pages);
2277	}
2278
2279	kfree(area);
2280	return;
2281}
2282
2283static inline void __vfree_deferred(const void *addr)
2284{
2285	/*
2286	 * Use raw_cpu_ptr() because this can be called from preemptible
2287	 * context. Preemption is absolutely fine here, because the llist_add()
2288	 * implementation is lockless, so it works even if we are adding to
2289	 * another cpu's list. schedule_work() should be fine with this too.
2290	 */
2291	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2292
2293	if (llist_add((struct llist_node *)addr, &p->list))
2294		schedule_work(&p->wq);
2295}
2296
2297/**
2298 * vfree_atomic - release memory allocated by vmalloc()
2299 * @addr:	  memory base address
2300 *
2301 * This one is just like vfree() but can be called in any atomic context
2302 * except NMIs.
2303 */
2304void vfree_atomic(const void *addr)
2305{
2306	BUG_ON(in_nmi());
2307
2308	kmemleak_free(addr);
2309
2310	if (!addr)
2311		return;
2312	__vfree_deferred(addr);
2313}
2314
2315static void __vfree(const void *addr)
2316{
2317	if (unlikely(in_interrupt()))
2318		__vfree_deferred(addr);
2319	else
2320		__vunmap(addr, 1);
2321}
2322
2323/**
2324 * vfree - release memory allocated by vmalloc()
2325 * @addr:  memory base address
2326 *
2327 * Free the virtually continuous memory area starting at @addr, as
2328 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2329 * NULL, no operation is performed.
2330 *
2331 * Must not be called in NMI context (strictly speaking, only if we don't
2332 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2333 * conventions for vfree() arch-depenedent would be a really bad idea)
2334 *
2335 * May sleep if called *not* from interrupt context.
2336 *
2337 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
2338 */
2339void vfree(const void *addr)
2340{
2341	BUG_ON(in_nmi());
2342
2343	kmemleak_free(addr);
2344
2345	might_sleep_if(!in_interrupt());
2346
2347	if (!addr)
2348		return;
2349
2350	__vfree(addr);
2351}
2352EXPORT_SYMBOL(vfree);
2353
2354/**
2355 * vunmap - release virtual mapping obtained by vmap()
2356 * @addr:   memory base address
2357 *
2358 * Free the virtually contiguous memory area starting at @addr,
2359 * which was created from the page array passed to vmap().
2360 *
2361 * Must not be called in interrupt context.
2362 */
2363void vunmap(const void *addr)
2364{
2365	BUG_ON(in_interrupt());
2366	might_sleep();
2367	if (addr)
2368		__vunmap(addr, 0);
2369}
2370EXPORT_SYMBOL(vunmap);
2371
2372/**
2373 * vmap - map an array of pages into virtually contiguous space
2374 * @pages: array of page pointers
2375 * @count: number of pages to map
2376 * @flags: vm_area->flags
2377 * @prot: page protection for the mapping
2378 *
2379 * Maps @count pages from @pages into contiguous kernel virtual
2380 * space.
2381 *
2382 * Return: the address of the area or %NULL on failure
2383 */
2384void *vmap(struct page **pages, unsigned int count,
2385	   unsigned long flags, pgprot_t prot)
2386{
2387	struct vm_struct *area;
2388	unsigned long size;		/* In bytes */
2389
2390	might_sleep();
2391
2392	if (count > totalram_pages())
2393		return NULL;
2394
2395	size = (unsigned long)count << PAGE_SHIFT;
2396	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2397	if (!area)
2398		return NULL;
2399
2400	if (map_kernel_range((unsigned long)area->addr, size, pgprot_nx(prot),
2401			pages) < 0) {
2402		vunmap(area->addr);
2403		return NULL;
2404	}
2405
2406	return area->addr;
2407}
2408EXPORT_SYMBOL(vmap);
2409
 
 
 
2410static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2411				 pgprot_t prot, int node)
2412{
2413	struct page **pages;
2414	unsigned int nr_pages, array_size, i;
2415	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2416	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2417	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2418					0 :
2419					__GFP_HIGHMEM;
2420
2421	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2422	array_size = (nr_pages * sizeof(struct page *));
2423
2424	/* Please note that the recursion is strictly bounded. */
2425	if (array_size > PAGE_SIZE) {
2426		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2427				node, area->caller);
2428	} else {
2429		pages = kmalloc_node(array_size, nested_gfp, node);
2430	}
2431
2432	if (!pages) {
2433		remove_vm_area(area->addr);
2434		kfree(area);
2435		return NULL;
2436	}
2437
2438	area->pages = pages;
2439	area->nr_pages = nr_pages;
2440
2441	for (i = 0; i < area->nr_pages; i++) {
2442		struct page *page;
2443
2444		if (node == NUMA_NO_NODE)
2445			page = alloc_page(alloc_mask|highmem_mask);
2446		else
2447			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2448
2449		if (unlikely(!page)) {
2450			/* Successfully allocated i pages, free them in __vunmap() */
2451			area->nr_pages = i;
2452			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2453			goto fail;
2454		}
2455		area->pages[i] = page;
2456		if (gfpflags_allow_blocking(gfp_mask))
2457			cond_resched();
2458	}
2459	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2460
2461	if (map_kernel_range((unsigned long)area->addr, get_vm_area_size(area),
2462			prot, pages) < 0)
2463		goto fail;
2464
2465	return area->addr;
2466
2467fail:
2468	warn_alloc(gfp_mask, NULL,
2469			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
2470			  (area->nr_pages*PAGE_SIZE), area->size);
2471	__vfree(area->addr);
2472	return NULL;
2473}
2474
2475/**
2476 * __vmalloc_node_range - allocate virtually contiguous memory
2477 * @size:		  allocation size
2478 * @align:		  desired alignment
2479 * @start:		  vm area range start
2480 * @end:		  vm area range end
2481 * @gfp_mask:		  flags for the page level allocator
2482 * @prot:		  protection mask for the allocated pages
2483 * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
2484 * @node:		  node to use for allocation or NUMA_NO_NODE
2485 * @caller:		  caller's return address
2486 *
2487 * Allocate enough pages to cover @size from the page level
2488 * allocator with @gfp_mask flags.  Map them into contiguous
2489 * kernel virtual space, using a pagetable protection of @prot.
2490 *
2491 * Return: the address of the area or %NULL on failure
2492 */
2493void *__vmalloc_node_range(unsigned long size, unsigned long align,
2494			unsigned long start, unsigned long end, gfp_t gfp_mask,
2495			pgprot_t prot, unsigned long vm_flags, int node,
2496			const void *caller)
2497{
2498	struct vm_struct *area;
2499	void *addr;
2500	unsigned long real_size = size;
2501
2502	size = PAGE_ALIGN(size);
2503	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2504		goto fail;
2505
2506	area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
2507				vm_flags, start, end, node, gfp_mask, caller);
2508	if (!area)
2509		goto fail;
2510
2511	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2512	if (!addr)
2513		return NULL;
2514
2515	/*
2516	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2517	 * flag. It means that vm_struct is not fully initialized.
2518	 * Now, it is fully initialized, so remove this flag here.
2519	 */
2520	clear_vm_uninitialized_flag(area);
2521
2522	kmemleak_vmalloc(area, size, gfp_mask);
2523
2524	return addr;
2525
2526fail:
2527	warn_alloc(gfp_mask, NULL,
2528			  "vmalloc: allocation failure: %lu bytes", real_size);
2529	return NULL;
2530}
2531
 
 
 
 
 
 
 
 
 
2532/**
2533 * __vmalloc_node - allocate virtually contiguous memory
2534 * @size:	    allocation size
2535 * @align:	    desired alignment
2536 * @gfp_mask:	    flags for the page level allocator
 
2537 * @node:	    node to use for allocation or NUMA_NO_NODE
2538 * @caller:	    caller's return address
2539 *
2540 * Allocate enough pages to cover @size from the page level allocator with
2541 * @gfp_mask flags.  Map them into contiguous kernel virtual space.
 
2542 *
2543 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2544 * and __GFP_NOFAIL are not supported
2545 *
2546 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2547 * with mm people.
2548 *
2549 * Return: pointer to the allocated memory or %NULL on error
2550 */
2551void *__vmalloc_node(unsigned long size, unsigned long align,
2552			    gfp_t gfp_mask, int node, const void *caller)
 
2553{
2554	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2555				gfp_mask, PAGE_KERNEL, 0, node, caller);
2556}
2557/*
2558 * This is only for performance analysis of vmalloc and stress purpose.
2559 * It is required by vmalloc test module, therefore do not use it other
2560 * than that.
2561 */
2562#ifdef CONFIG_TEST_VMALLOC_MODULE
2563EXPORT_SYMBOL_GPL(__vmalloc_node);
2564#endif
2565
2566void *__vmalloc(unsigned long size, gfp_t gfp_mask)
2567{
2568	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
2569				__builtin_return_address(0));
2570}
2571EXPORT_SYMBOL(__vmalloc);
2572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2573/**
2574 * vmalloc - allocate virtually contiguous memory
2575 * @size:    allocation size
2576 *
2577 * Allocate enough pages to cover @size from the page level
2578 * allocator and map them into contiguous kernel virtual space.
2579 *
2580 * For tight control over page level allocator and protection flags
2581 * use __vmalloc() instead.
2582 *
2583 * Return: pointer to the allocated memory or %NULL on error
2584 */
2585void *vmalloc(unsigned long size)
2586{
2587	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
2588				__builtin_return_address(0));
2589}
2590EXPORT_SYMBOL(vmalloc);
2591
2592/**
2593 * vzalloc - allocate virtually contiguous memory with zero fill
2594 * @size:    allocation size
2595 *
2596 * Allocate enough pages to cover @size from the page level
2597 * allocator and map them into contiguous kernel virtual space.
2598 * The memory allocated is set to zero.
2599 *
2600 * For tight control over page level allocator and protection flags
2601 * use __vmalloc() instead.
2602 *
2603 * Return: pointer to the allocated memory or %NULL on error
2604 */
2605void *vzalloc(unsigned long size)
2606{
2607	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
2608				__builtin_return_address(0));
2609}
2610EXPORT_SYMBOL(vzalloc);
2611
2612/**
2613 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2614 * @size: allocation size
2615 *
2616 * The resulting memory area is zeroed so it can be mapped to userspace
2617 * without leaking data.
2618 *
2619 * Return: pointer to the allocated memory or %NULL on error
2620 */
2621void *vmalloc_user(unsigned long size)
2622{
2623	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2624				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2625				    VM_USERMAP, NUMA_NO_NODE,
2626				    __builtin_return_address(0));
2627}
2628EXPORT_SYMBOL(vmalloc_user);
2629
2630/**
2631 * vmalloc_node - allocate memory on a specific node
2632 * @size:	  allocation size
2633 * @node:	  numa node
2634 *
2635 * Allocate enough pages to cover @size from the page level
2636 * allocator and map them into contiguous kernel virtual space.
2637 *
2638 * For tight control over page level allocator and protection flags
2639 * use __vmalloc() instead.
2640 *
2641 * Return: pointer to the allocated memory or %NULL on error
2642 */
2643void *vmalloc_node(unsigned long size, int node)
2644{
2645	return __vmalloc_node(size, 1, GFP_KERNEL, node,
2646			__builtin_return_address(0));
2647}
2648EXPORT_SYMBOL(vmalloc_node);
2649
2650/**
2651 * vzalloc_node - allocate memory on a specific node with zero fill
2652 * @size:	allocation size
2653 * @node:	numa node
2654 *
2655 * Allocate enough pages to cover @size from the page level
2656 * allocator and map them into contiguous kernel virtual space.
2657 * The memory allocated is set to zero.
2658 *
 
 
 
2659 * Return: pointer to the allocated memory or %NULL on error
2660 */
2661void *vzalloc_node(unsigned long size, int node)
2662{
2663	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
2664				__builtin_return_address(0));
2665}
2666EXPORT_SYMBOL(vzalloc_node);
2667
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2668#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2669#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2670#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2671#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2672#else
2673/*
2674 * 64b systems should always have either DMA or DMA32 zones. For others
2675 * GFP_DMA32 should do the right thing and use the normal zone.
2676 */
2677#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2678#endif
2679
2680/**
2681 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2682 * @size:	allocation size
2683 *
2684 * Allocate enough 32bit PA addressable pages to cover @size from the
2685 * page level allocator and map them into contiguous kernel virtual space.
2686 *
2687 * Return: pointer to the allocated memory or %NULL on error
2688 */
2689void *vmalloc_32(unsigned long size)
2690{
2691	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
2692			__builtin_return_address(0));
2693}
2694EXPORT_SYMBOL(vmalloc_32);
2695
2696/**
2697 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2698 * @size:	     allocation size
2699 *
2700 * The resulting memory area is 32bit addressable and zeroed so it can be
2701 * mapped to userspace without leaking data.
2702 *
2703 * Return: pointer to the allocated memory or %NULL on error
2704 */
2705void *vmalloc_32_user(unsigned long size)
2706{
2707	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2708				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2709				    VM_USERMAP, NUMA_NO_NODE,
2710				    __builtin_return_address(0));
2711}
2712EXPORT_SYMBOL(vmalloc_32_user);
2713
2714/*
2715 * small helper routine , copy contents to buf from addr.
2716 * If the page is not present, fill zero.
2717 */
2718
2719static int aligned_vread(char *buf, char *addr, unsigned long count)
2720{
2721	struct page *p;
2722	int copied = 0;
2723
2724	while (count) {
2725		unsigned long offset, length;
2726
2727		offset = offset_in_page(addr);
2728		length = PAGE_SIZE - offset;
2729		if (length > count)
2730			length = count;
2731		p = vmalloc_to_page(addr);
2732		/*
2733		 * To do safe access to this _mapped_ area, we need
2734		 * lock. But adding lock here means that we need to add
2735		 * overhead of vmalloc()/vfree() calles for this _debug_
2736		 * interface, rarely used. Instead of that, we'll use
2737		 * kmap() and get small overhead in this access function.
2738		 */
2739		if (p) {
2740			/*
2741			 * we can expect USER0 is not used (see vread/vwrite's
2742			 * function description)
2743			 */
2744			void *map = kmap_atomic(p);
2745			memcpy(buf, map + offset, length);
2746			kunmap_atomic(map);
2747		} else
2748			memset(buf, 0, length);
2749
2750		addr += length;
2751		buf += length;
2752		copied += length;
2753		count -= length;
2754	}
2755	return copied;
2756}
2757
2758static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2759{
2760	struct page *p;
2761	int copied = 0;
2762
2763	while (count) {
2764		unsigned long offset, length;
2765
2766		offset = offset_in_page(addr);
2767		length = PAGE_SIZE - offset;
2768		if (length > count)
2769			length = count;
2770		p = vmalloc_to_page(addr);
2771		/*
2772		 * To do safe access to this _mapped_ area, we need
2773		 * lock. But adding lock here means that we need to add
2774		 * overhead of vmalloc()/vfree() calles for this _debug_
2775		 * interface, rarely used. Instead of that, we'll use
2776		 * kmap() and get small overhead in this access function.
2777		 */
2778		if (p) {
2779			/*
2780			 * we can expect USER0 is not used (see vread/vwrite's
2781			 * function description)
2782			 */
2783			void *map = kmap_atomic(p);
2784			memcpy(map + offset, buf, length);
2785			kunmap_atomic(map);
2786		}
2787		addr += length;
2788		buf += length;
2789		copied += length;
2790		count -= length;
2791	}
2792	return copied;
2793}
2794
2795/**
2796 * vread() - read vmalloc area in a safe way.
2797 * @buf:     buffer for reading data
2798 * @addr:    vm address.
2799 * @count:   number of bytes to be read.
2800 *
2801 * This function checks that addr is a valid vmalloc'ed area, and
2802 * copy data from that area to a given buffer. If the given memory range
2803 * of [addr...addr+count) includes some valid address, data is copied to
2804 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2805 * IOREMAP area is treated as memory hole and no copy is done.
2806 *
2807 * If [addr...addr+count) doesn't includes any intersects with alive
2808 * vm_struct area, returns 0. @buf should be kernel's buffer.
2809 *
2810 * Note: In usual ops, vread() is never necessary because the caller
2811 * should know vmalloc() area is valid and can use memcpy().
2812 * This is for routines which have to access vmalloc area without
2813 * any information, as /dev/kmem.
2814 *
2815 * Return: number of bytes for which addr and buf should be increased
2816 * (same number as @count) or %0 if [addr...addr+count) doesn't
2817 * include any intersection with valid vmalloc area
2818 */
2819long vread(char *buf, char *addr, unsigned long count)
2820{
2821	struct vmap_area *va;
2822	struct vm_struct *vm;
2823	char *vaddr, *buf_start = buf;
2824	unsigned long buflen = count;
2825	unsigned long n;
2826
2827	/* Don't allow overflow */
2828	if ((unsigned long) addr + count < count)
2829		count = -(unsigned long) addr;
2830
2831	spin_lock(&vmap_area_lock);
2832	list_for_each_entry(va, &vmap_area_list, list) {
2833		if (!count)
2834			break;
2835
2836		if (!va->vm)
2837			continue;
2838
2839		vm = va->vm;
2840		vaddr = (char *) vm->addr;
2841		if (addr >= vaddr + get_vm_area_size(vm))
2842			continue;
2843		while (addr < vaddr) {
2844			if (count == 0)
2845				goto finished;
2846			*buf = '\0';
2847			buf++;
2848			addr++;
2849			count--;
2850		}
2851		n = vaddr + get_vm_area_size(vm) - addr;
2852		if (n > count)
2853			n = count;
2854		if (!(vm->flags & VM_IOREMAP))
2855			aligned_vread(buf, addr, n);
2856		else /* IOREMAP area is treated as memory hole */
2857			memset(buf, 0, n);
2858		buf += n;
2859		addr += n;
2860		count -= n;
2861	}
2862finished:
2863	spin_unlock(&vmap_area_lock);
2864
2865	if (buf == buf_start)
2866		return 0;
2867	/* zero-fill memory holes */
2868	if (buf != buf_start + buflen)
2869		memset(buf, 0, buflen - (buf - buf_start));
2870
2871	return buflen;
2872}
2873
2874/**
2875 * vwrite() - write vmalloc area in a safe way.
2876 * @buf:      buffer for source data
2877 * @addr:     vm address.
2878 * @count:    number of bytes to be read.
2879 *
2880 * This function checks that addr is a valid vmalloc'ed area, and
2881 * copy data from a buffer to the given addr. If specified range of
2882 * [addr...addr+count) includes some valid address, data is copied from
2883 * proper area of @buf. If there are memory holes, no copy to hole.
2884 * IOREMAP area is treated as memory hole and no copy is done.
2885 *
2886 * If [addr...addr+count) doesn't includes any intersects with alive
2887 * vm_struct area, returns 0. @buf should be kernel's buffer.
2888 *
2889 * Note: In usual ops, vwrite() is never necessary because the caller
2890 * should know vmalloc() area is valid and can use memcpy().
2891 * This is for routines which have to access vmalloc area without
2892 * any information, as /dev/kmem.
2893 *
2894 * Return: number of bytes for which addr and buf should be
2895 * increased (same number as @count) or %0 if [addr...addr+count)
2896 * doesn't include any intersection with valid vmalloc area
2897 */
2898long vwrite(char *buf, char *addr, unsigned long count)
2899{
2900	struct vmap_area *va;
2901	struct vm_struct *vm;
2902	char *vaddr;
2903	unsigned long n, buflen;
2904	int copied = 0;
2905
2906	/* Don't allow overflow */
2907	if ((unsigned long) addr + count < count)
2908		count = -(unsigned long) addr;
2909	buflen = count;
2910
2911	spin_lock(&vmap_area_lock);
2912	list_for_each_entry(va, &vmap_area_list, list) {
2913		if (!count)
2914			break;
2915
2916		if (!va->vm)
2917			continue;
2918
2919		vm = va->vm;
2920		vaddr = (char *) vm->addr;
2921		if (addr >= vaddr + get_vm_area_size(vm))
2922			continue;
2923		while (addr < vaddr) {
2924			if (count == 0)
2925				goto finished;
2926			buf++;
2927			addr++;
2928			count--;
2929		}
2930		n = vaddr + get_vm_area_size(vm) - addr;
2931		if (n > count)
2932			n = count;
2933		if (!(vm->flags & VM_IOREMAP)) {
2934			aligned_vwrite(buf, addr, n);
2935			copied++;
2936		}
2937		buf += n;
2938		addr += n;
2939		count -= n;
2940	}
2941finished:
2942	spin_unlock(&vmap_area_lock);
2943	if (!copied)
2944		return 0;
2945	return buflen;
2946}
2947
2948/**
2949 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2950 * @vma:		vma to cover
2951 * @uaddr:		target user address to start at
2952 * @kaddr:		virtual address of vmalloc kernel memory
2953 * @pgoff:		offset from @kaddr to start at
2954 * @size:		size of map area
2955 *
2956 * Returns:	0 for success, -Exxx on failure
2957 *
2958 * This function checks that @kaddr is a valid vmalloc'ed area,
2959 * and that it is big enough to cover the range starting at
2960 * @uaddr in @vma. Will return failure if that criteria isn't
2961 * met.
2962 *
2963 * Similar to remap_pfn_range() (see mm/memory.c)
2964 */
2965int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2966				void *kaddr, unsigned long pgoff,
2967				unsigned long size)
2968{
2969	struct vm_struct *area;
2970	unsigned long off;
2971	unsigned long end_index;
2972
2973	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
2974		return -EINVAL;
2975
2976	size = PAGE_ALIGN(size);
2977
2978	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2979		return -EINVAL;
2980
2981	area = find_vm_area(kaddr);
2982	if (!area)
2983		return -EINVAL;
2984
2985	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
2986		return -EINVAL;
2987
2988	if (check_add_overflow(size, off, &end_index) ||
2989	    end_index > get_vm_area_size(area))
2990		return -EINVAL;
2991	kaddr += off;
2992
2993	do {
2994		struct page *page = vmalloc_to_page(kaddr);
2995		int ret;
2996
2997		ret = vm_insert_page(vma, uaddr, page);
2998		if (ret)
2999			return ret;
3000
3001		uaddr += PAGE_SIZE;
3002		kaddr += PAGE_SIZE;
3003		size -= PAGE_SIZE;
3004	} while (size > 0);
3005
3006	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3007
3008	return 0;
3009}
3010EXPORT_SYMBOL(remap_vmalloc_range_partial);
3011
3012/**
3013 * remap_vmalloc_range - map vmalloc pages to userspace
3014 * @vma:		vma to cover (map full range of vma)
3015 * @addr:		vmalloc memory
3016 * @pgoff:		number of pages into addr before first page to map
3017 *
3018 * Returns:	0 for success, -Exxx on failure
3019 *
3020 * This function checks that addr is a valid vmalloc'ed area, and
3021 * that it is big enough to cover the vma. Will return failure if
3022 * that criteria isn't met.
3023 *
3024 * Similar to remap_pfn_range() (see mm/memory.c)
3025 */
3026int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3027						unsigned long pgoff)
3028{
3029	return remap_vmalloc_range_partial(vma, vma->vm_start,
3030					   addr, pgoff,
3031					   vma->vm_end - vma->vm_start);
3032}
3033EXPORT_SYMBOL(remap_vmalloc_range);
3034
 
 
 
 
 
 
 
 
 
 
 
 
3035static int f(pte_t *pte, unsigned long addr, void *data)
3036{
3037	pte_t ***p = data;
3038
3039	if (p) {
3040		*(*p) = pte;
3041		(*p)++;
3042	}
3043	return 0;
3044}
3045
3046/**
3047 * alloc_vm_area - allocate a range of kernel address space
3048 * @size:	   size of the area
3049 * @ptes:	   returns the PTEs for the address space
3050 *
3051 * Returns:	NULL on failure, vm_struct on success
3052 *
3053 * This function reserves a range of kernel address space, and
3054 * allocates pagetables to map that range.  No actual mappings
3055 * are created.
3056 *
3057 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3058 * allocated for the VM area are returned.
3059 */
3060struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3061{
3062	struct vm_struct *area;
3063
3064	area = get_vm_area_caller(size, VM_IOREMAP,
3065				__builtin_return_address(0));
3066	if (area == NULL)
3067		return NULL;
3068
3069	/*
3070	 * This ensures that page tables are constructed for this region
3071	 * of kernel virtual address space and mapped into init_mm.
3072	 */
3073	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3074				size, f, ptes ? &ptes : NULL)) {
3075		free_vm_area(area);
3076		return NULL;
3077	}
3078
3079	return area;
3080}
3081EXPORT_SYMBOL_GPL(alloc_vm_area);
3082
3083void free_vm_area(struct vm_struct *area)
3084{
3085	struct vm_struct *ret;
3086	ret = remove_vm_area(area->addr);
3087	BUG_ON(ret != area);
3088	kfree(area);
3089}
3090EXPORT_SYMBOL_GPL(free_vm_area);
3091
3092#ifdef CONFIG_SMP
3093static struct vmap_area *node_to_va(struct rb_node *n)
3094{
3095	return rb_entry_safe(n, struct vmap_area, rb_node);
3096}
3097
3098/**
3099 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3100 * @addr: target address
3101 *
3102 * Returns: vmap_area if it is found. If there is no such area
3103 *   the first highest(reverse order) vmap_area is returned
3104 *   i.e. va->va_start < addr && va->va_end < addr or NULL
3105 *   if there are no any areas before @addr.
3106 */
3107static struct vmap_area *
3108pvm_find_va_enclose_addr(unsigned long addr)
3109{
3110	struct vmap_area *va, *tmp;
3111	struct rb_node *n;
3112
3113	n = free_vmap_area_root.rb_node;
3114	va = NULL;
3115
3116	while (n) {
3117		tmp = rb_entry(n, struct vmap_area, rb_node);
3118		if (tmp->va_start <= addr) {
3119			va = tmp;
3120			if (tmp->va_end >= addr)
3121				break;
3122
3123			n = n->rb_right;
3124		} else {
3125			n = n->rb_left;
3126		}
3127	}
3128
3129	return va;
3130}
3131
3132/**
3133 * pvm_determine_end_from_reverse - find the highest aligned address
3134 * of free block below VMALLOC_END
3135 * @va:
3136 *   in - the VA we start the search(reverse order);
3137 *   out - the VA with the highest aligned end address.
3138 *
3139 * Returns: determined end address within vmap_area
3140 */
3141static unsigned long
3142pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3143{
3144	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3145	unsigned long addr;
3146
3147	if (likely(*va)) {
3148		list_for_each_entry_from_reverse((*va),
3149				&free_vmap_area_list, list) {
3150			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3151			if ((*va)->va_start < addr)
3152				return addr;
3153		}
3154	}
3155
3156	return 0;
3157}
3158
3159/**
3160 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3161 * @offsets: array containing offset of each area
3162 * @sizes: array containing size of each area
3163 * @nr_vms: the number of areas to allocate
3164 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3165 *
3166 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3167 *	    vm_structs on success, %NULL on failure
3168 *
3169 * Percpu allocator wants to use congruent vm areas so that it can
3170 * maintain the offsets among percpu areas.  This function allocates
3171 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3172 * be scattered pretty far, distance between two areas easily going up
3173 * to gigabytes.  To avoid interacting with regular vmallocs, these
3174 * areas are allocated from top.
3175 *
3176 * Despite its complicated look, this allocator is rather simple. It
3177 * does everything top-down and scans free blocks from the end looking
3178 * for matching base. While scanning, if any of the areas do not fit the
3179 * base address is pulled down to fit the area. Scanning is repeated till
3180 * all the areas fit and then all necessary data structures are inserted
3181 * and the result is returned.
3182 */
3183struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3184				     const size_t *sizes, int nr_vms,
3185				     size_t align)
3186{
3187	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3188	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3189	struct vmap_area **vas, *va;
3190	struct vm_struct **vms;
3191	int area, area2, last_area, term_area;
3192	unsigned long base, start, size, end, last_end, orig_start, orig_end;
3193	bool purged = false;
3194	enum fit_type type;
3195
3196	/* verify parameters and allocate data structures */
3197	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3198	for (last_area = 0, area = 0; area < nr_vms; area++) {
3199		start = offsets[area];
3200		end = start + sizes[area];
3201
3202		/* is everything aligned properly? */
3203		BUG_ON(!IS_ALIGNED(offsets[area], align));
3204		BUG_ON(!IS_ALIGNED(sizes[area], align));
3205
3206		/* detect the area with the highest address */
3207		if (start > offsets[last_area])
3208			last_area = area;
3209
3210		for (area2 = area + 1; area2 < nr_vms; area2++) {
3211			unsigned long start2 = offsets[area2];
3212			unsigned long end2 = start2 + sizes[area2];
3213
3214			BUG_ON(start2 < end && start < end2);
3215		}
3216	}
3217	last_end = offsets[last_area] + sizes[last_area];
3218
3219	if (vmalloc_end - vmalloc_start < last_end) {
3220		WARN_ON(true);
3221		return NULL;
3222	}
3223
3224	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3225	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3226	if (!vas || !vms)
3227		goto err_free2;
3228
3229	for (area = 0; area < nr_vms; area++) {
3230		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3231		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3232		if (!vas[area] || !vms[area])
3233			goto err_free;
3234	}
3235retry:
3236	spin_lock(&free_vmap_area_lock);
3237
3238	/* start scanning - we scan from the top, begin with the last area */
3239	area = term_area = last_area;
3240	start = offsets[area];
3241	end = start + sizes[area];
3242
3243	va = pvm_find_va_enclose_addr(vmalloc_end);
3244	base = pvm_determine_end_from_reverse(&va, align) - end;
3245
3246	while (true) {
3247		/*
3248		 * base might have underflowed, add last_end before
3249		 * comparing.
3250		 */
3251		if (base + last_end < vmalloc_start + last_end)
3252			goto overflow;
3253
3254		/*
3255		 * Fitting base has not been found.
3256		 */
3257		if (va == NULL)
3258			goto overflow;
3259
3260		/*
3261		 * If required width exceeds current VA block, move
3262		 * base downwards and then recheck.
3263		 */
3264		if (base + end > va->va_end) {
3265			base = pvm_determine_end_from_reverse(&va, align) - end;
3266			term_area = area;
3267			continue;
3268		}
3269
3270		/*
3271		 * If this VA does not fit, move base downwards and recheck.
3272		 */
3273		if (base + start < va->va_start) {
3274			va = node_to_va(rb_prev(&va->rb_node));
3275			base = pvm_determine_end_from_reverse(&va, align) - end;
3276			term_area = area;
3277			continue;
3278		}
3279
3280		/*
3281		 * This area fits, move on to the previous one.  If
3282		 * the previous one is the terminal one, we're done.
3283		 */
3284		area = (area + nr_vms - 1) % nr_vms;
3285		if (area == term_area)
3286			break;
3287
3288		start = offsets[area];
3289		end = start + sizes[area];
3290		va = pvm_find_va_enclose_addr(base + end);
3291	}
3292
3293	/* we've found a fitting base, insert all va's */
3294	for (area = 0; area < nr_vms; area++) {
3295		int ret;
3296
3297		start = base + offsets[area];
3298		size = sizes[area];
3299
3300		va = pvm_find_va_enclose_addr(start);
3301		if (WARN_ON_ONCE(va == NULL))
3302			/* It is a BUG(), but trigger recovery instead. */
3303			goto recovery;
3304
3305		type = classify_va_fit_type(va, start, size);
3306		if (WARN_ON_ONCE(type == NOTHING_FIT))
3307			/* It is a BUG(), but trigger recovery instead. */
3308			goto recovery;
3309
3310		ret = adjust_va_to_fit_type(va, start, size, type);
3311		if (unlikely(ret))
3312			goto recovery;
3313
3314		/* Allocated area. */
3315		va = vas[area];
3316		va->va_start = start;
3317		va->va_end = start + size;
3318	}
3319
3320	spin_unlock(&free_vmap_area_lock);
3321
3322	/* populate the kasan shadow space */
3323	for (area = 0; area < nr_vms; area++) {
3324		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3325			goto err_free_shadow;
3326
3327		kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3328				       sizes[area]);
3329	}
3330
3331	/* insert all vm's */
3332	spin_lock(&vmap_area_lock);
3333	for (area = 0; area < nr_vms; area++) {
3334		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3335
3336		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
 
 
3337				 pcpu_get_vm_areas);
3338	}
3339	spin_unlock(&vmap_area_lock);
3340
3341	kfree(vas);
3342	return vms;
3343
3344recovery:
3345	/*
3346	 * Remove previously allocated areas. There is no
3347	 * need in removing these areas from the busy tree,
3348	 * because they are inserted only on the final step
3349	 * and when pcpu_get_vm_areas() is success.
3350	 */
3351	while (area--) {
3352		orig_start = vas[area]->va_start;
3353		orig_end = vas[area]->va_end;
3354		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3355					    &free_vmap_area_list);
3356		if (va)
3357			kasan_release_vmalloc(orig_start, orig_end,
3358				va->va_start, va->va_end);
3359		vas[area] = NULL;
3360	}
3361
3362overflow:
3363	spin_unlock(&free_vmap_area_lock);
3364	if (!purged) {
3365		purge_vmap_area_lazy();
3366		purged = true;
3367
3368		/* Before "retry", check if we recover. */
3369		for (area = 0; area < nr_vms; area++) {
3370			if (vas[area])
3371				continue;
3372
3373			vas[area] = kmem_cache_zalloc(
3374				vmap_area_cachep, GFP_KERNEL);
3375			if (!vas[area])
3376				goto err_free;
3377		}
3378
3379		goto retry;
3380	}
3381
3382err_free:
3383	for (area = 0; area < nr_vms; area++) {
3384		if (vas[area])
3385			kmem_cache_free(vmap_area_cachep, vas[area]);
3386
3387		kfree(vms[area]);
3388	}
3389err_free2:
3390	kfree(vas);
3391	kfree(vms);
3392	return NULL;
3393
3394err_free_shadow:
3395	spin_lock(&free_vmap_area_lock);
3396	/*
3397	 * We release all the vmalloc shadows, even the ones for regions that
3398	 * hadn't been successfully added. This relies on kasan_release_vmalloc
3399	 * being able to tolerate this case.
3400	 */
3401	for (area = 0; area < nr_vms; area++) {
3402		orig_start = vas[area]->va_start;
3403		orig_end = vas[area]->va_end;
3404		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3405					    &free_vmap_area_list);
3406		if (va)
3407			kasan_release_vmalloc(orig_start, orig_end,
3408				va->va_start, va->va_end);
3409		vas[area] = NULL;
3410		kfree(vms[area]);
3411	}
3412	spin_unlock(&free_vmap_area_lock);
3413	kfree(vas);
3414	kfree(vms);
3415	return NULL;
3416}
3417
3418/**
3419 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3420 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3421 * @nr_vms: the number of allocated areas
3422 *
3423 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3424 */
3425void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3426{
3427	int i;
3428
3429	for (i = 0; i < nr_vms; i++)
3430		free_vm_area(vms[i]);
3431	kfree(vms);
3432}
3433#endif	/* CONFIG_SMP */
3434
3435#ifdef CONFIG_PROC_FS
3436static void *s_start(struct seq_file *m, loff_t *pos)
3437	__acquires(&vmap_purge_lock)
3438	__acquires(&vmap_area_lock)
3439{
3440	mutex_lock(&vmap_purge_lock);
3441	spin_lock(&vmap_area_lock);
3442
3443	return seq_list_start(&vmap_area_list, *pos);
3444}
3445
3446static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3447{
3448	return seq_list_next(p, &vmap_area_list, pos);
3449}
3450
3451static void s_stop(struct seq_file *m, void *p)
3452	__releases(&vmap_purge_lock)
3453	__releases(&vmap_area_lock)
3454{
3455	mutex_unlock(&vmap_purge_lock);
3456	spin_unlock(&vmap_area_lock);
3457}
3458
3459static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3460{
3461	if (IS_ENABLED(CONFIG_NUMA)) {
3462		unsigned int nr, *counters = m->private;
3463
3464		if (!counters)
3465			return;
3466
3467		if (v->flags & VM_UNINITIALIZED)
3468			return;
3469		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3470		smp_rmb();
3471
3472		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3473
3474		for (nr = 0; nr < v->nr_pages; nr++)
3475			counters[page_to_nid(v->pages[nr])]++;
3476
3477		for_each_node_state(nr, N_HIGH_MEMORY)
3478			if (counters[nr])
3479				seq_printf(m, " N%u=%u", nr, counters[nr]);
3480	}
3481}
3482
3483static void show_purge_info(struct seq_file *m)
3484{
3485	struct llist_node *head;
3486	struct vmap_area *va;
3487
3488	head = READ_ONCE(vmap_purge_list.first);
3489	if (head == NULL)
3490		return;
3491
3492	llist_for_each_entry(va, head, purge_list) {
3493		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3494			(void *)va->va_start, (void *)va->va_end,
3495			va->va_end - va->va_start);
3496	}
3497}
3498
3499static int s_show(struct seq_file *m, void *p)
3500{
3501	struct vmap_area *va;
3502	struct vm_struct *v;
3503
3504	va = list_entry(p, struct vmap_area, list);
3505
3506	/*
3507	 * s_show can encounter race with remove_vm_area, !vm on behalf
3508	 * of vmap area is being tear down or vm_map_ram allocation.
3509	 */
3510	if (!va->vm) {
3511		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3512			(void *)va->va_start, (void *)va->va_end,
3513			va->va_end - va->va_start);
3514
3515		return 0;
3516	}
3517
3518	v = va->vm;
3519
3520	seq_printf(m, "0x%pK-0x%pK %7ld",
3521		v->addr, v->addr + v->size, v->size);
3522
3523	if (v->caller)
3524		seq_printf(m, " %pS", v->caller);
3525
3526	if (v->nr_pages)
3527		seq_printf(m, " pages=%d", v->nr_pages);
3528
3529	if (v->phys_addr)
3530		seq_printf(m, " phys=%pa", &v->phys_addr);
3531
3532	if (v->flags & VM_IOREMAP)
3533		seq_puts(m, " ioremap");
3534
3535	if (v->flags & VM_ALLOC)
3536		seq_puts(m, " vmalloc");
3537
3538	if (v->flags & VM_MAP)
3539		seq_puts(m, " vmap");
3540
3541	if (v->flags & VM_USERMAP)
3542		seq_puts(m, " user");
3543
3544	if (v->flags & VM_DMA_COHERENT)
3545		seq_puts(m, " dma-coherent");
3546
3547	if (is_vmalloc_addr(v->pages))
3548		seq_puts(m, " vpages");
3549
3550	show_numa_info(m, v);
3551	seq_putc(m, '\n');
3552
3553	/*
3554	 * As a final step, dump "unpurged" areas. Note,
3555	 * that entire "/proc/vmallocinfo" output will not
3556	 * be address sorted, because the purge list is not
3557	 * sorted.
3558	 */
3559	if (list_is_last(&va->list, &vmap_area_list))
3560		show_purge_info(m);
3561
3562	return 0;
3563}
3564
3565static const struct seq_operations vmalloc_op = {
3566	.start = s_start,
3567	.next = s_next,
3568	.stop = s_stop,
3569	.show = s_show,
3570};
3571
3572static int __init proc_vmalloc_init(void)
3573{
3574	if (IS_ENABLED(CONFIG_NUMA))
3575		proc_create_seq_private("vmallocinfo", 0400, NULL,
3576				&vmalloc_op,
3577				nr_node_ids * sizeof(unsigned int), NULL);
3578	else
3579		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3580	return 0;
3581}
3582module_init(proc_vmalloc_init);
3583
3584#endif
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/vmalloc.c
   4 *
   5 *  Copyright (C) 1993  Linus Torvalds
   6 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   7 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
   8 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
   9 *  Numa awareness, Christoph Lameter, SGI, June 2005
 
  10 */
  11
  12#include <linux/vmalloc.h>
  13#include <linux/mm.h>
  14#include <linux/module.h>
  15#include <linux/highmem.h>
  16#include <linux/sched/signal.h>
  17#include <linux/slab.h>
  18#include <linux/spinlock.h>
  19#include <linux/interrupt.h>
  20#include <linux/proc_fs.h>
  21#include <linux/seq_file.h>
  22#include <linux/set_memory.h>
  23#include <linux/debugobjects.h>
  24#include <linux/kallsyms.h>
  25#include <linux/list.h>
  26#include <linux/notifier.h>
  27#include <linux/rbtree.h>
  28#include <linux/radix-tree.h>
  29#include <linux/rcupdate.h>
  30#include <linux/pfn.h>
  31#include <linux/kmemleak.h>
  32#include <linux/atomic.h>
  33#include <linux/compiler.h>
  34#include <linux/llist.h>
  35#include <linux/bitops.h>
  36#include <linux/rbtree_augmented.h>
 
  37
  38#include <linux/uaccess.h>
  39#include <asm/tlbflush.h>
  40#include <asm/shmparam.h>
  41
  42#include "internal.h"
 
 
 
 
 
 
 
 
 
  43
  44struct vfree_deferred {
  45	struct llist_head list;
  46	struct work_struct wq;
  47};
  48static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  49
  50static void __vunmap(const void *, int);
  51
  52static void free_work(struct work_struct *w)
  53{
  54	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  55	struct llist_node *t, *llnode;
  56
  57	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
  58		__vunmap((void *)llnode, 1);
  59}
  60
  61/*** Page table manipulation functions ***/
  62
  63static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
 
  64{
  65	pte_t *pte;
  66
  67	pte = pte_offset_kernel(pmd, addr);
  68	do {
  69		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  70		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  71	} while (pte++, addr += PAGE_SIZE, addr != end);
 
  72}
  73
  74static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
 
  75{
  76	pmd_t *pmd;
  77	unsigned long next;
 
  78
  79	pmd = pmd_offset(pud, addr);
  80	do {
  81		next = pmd_addr_end(addr, end);
  82		if (pmd_clear_huge(pmd))
 
 
 
 
 
  83			continue;
  84		if (pmd_none_or_clear_bad(pmd))
  85			continue;
  86		vunmap_pte_range(pmd, addr, next);
 
 
  87	} while (pmd++, addr = next, addr != end);
  88}
  89
  90static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
 
  91{
  92	pud_t *pud;
  93	unsigned long next;
 
  94
  95	pud = pud_offset(p4d, addr);
  96	do {
  97		next = pud_addr_end(addr, end);
  98		if (pud_clear_huge(pud))
 
 
 
 
 
  99			continue;
 100		if (pud_none_or_clear_bad(pud))
 101			continue;
 102		vunmap_pmd_range(pud, addr, next);
 103	} while (pud++, addr = next, addr != end);
 104}
 105
 106static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
 
 107{
 108	p4d_t *p4d;
 109	unsigned long next;
 
 110
 111	p4d = p4d_offset(pgd, addr);
 112	do {
 113		next = p4d_addr_end(addr, end);
 114		if (p4d_clear_huge(p4d))
 
 
 
 
 
 115			continue;
 116		if (p4d_none_or_clear_bad(p4d))
 117			continue;
 118		vunmap_pud_range(p4d, addr, next);
 119	} while (p4d++, addr = next, addr != end);
 120}
 121
 122static void vunmap_page_range(unsigned long addr, unsigned long end)
 
 
 
 
 
 
 
 
 
 
 
 
 
 123{
 
 
 124	pgd_t *pgd;
 125	unsigned long next;
 
 126
 127	BUG_ON(addr >= end);
 128	pgd = pgd_offset_k(addr);
 129	do {
 130		next = pgd_addr_end(addr, end);
 
 
 131		if (pgd_none_or_clear_bad(pgd))
 132			continue;
 133		vunmap_p4d_range(pgd, addr, next);
 134	} while (pgd++, addr = next, addr != end);
 
 
 
 135}
 136
 137static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
 138		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 
 139{
 140	pte_t *pte;
 141
 142	/*
 143	 * nr is a running index into the array which helps higher level
 144	 * callers keep track of where we're up to.
 145	 */
 146
 147	pte = pte_alloc_kernel(pmd, addr);
 148	if (!pte)
 149		return -ENOMEM;
 150	do {
 151		struct page *page = pages[*nr];
 152
 153		if (WARN_ON(!pte_none(*pte)))
 154			return -EBUSY;
 155		if (WARN_ON(!page))
 156			return -ENOMEM;
 157		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 158		(*nr)++;
 159	} while (pte++, addr += PAGE_SIZE, addr != end);
 
 160	return 0;
 161}
 162
 163static int vmap_pmd_range(pud_t *pud, unsigned long addr,
 164		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 
 165{
 166	pmd_t *pmd;
 167	unsigned long next;
 168
 169	pmd = pmd_alloc(&init_mm, pud, addr);
 170	if (!pmd)
 171		return -ENOMEM;
 172	do {
 173		next = pmd_addr_end(addr, end);
 174		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
 175			return -ENOMEM;
 176	} while (pmd++, addr = next, addr != end);
 177	return 0;
 178}
 179
 180static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
 181		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 
 182{
 183	pud_t *pud;
 184	unsigned long next;
 185
 186	pud = pud_alloc(&init_mm, p4d, addr);
 187	if (!pud)
 188		return -ENOMEM;
 189	do {
 190		next = pud_addr_end(addr, end);
 191		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
 192			return -ENOMEM;
 193	} while (pud++, addr = next, addr != end);
 194	return 0;
 195}
 196
 197static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
 198		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 
 199{
 200	p4d_t *p4d;
 201	unsigned long next;
 202
 203	p4d = p4d_alloc(&init_mm, pgd, addr);
 204	if (!p4d)
 205		return -ENOMEM;
 206	do {
 207		next = p4d_addr_end(addr, end);
 208		if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
 209			return -ENOMEM;
 210	} while (p4d++, addr = next, addr != end);
 211	return 0;
 212}
 213
 214/*
 215 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 216 * will have pfns corresponding to the "pages" array.
 
 
 
 
 
 
 
 
 
 
 
 217 *
 218 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 
 219 */
 220static int vmap_page_range_noflush(unsigned long start, unsigned long end,
 221				   pgprot_t prot, struct page **pages)
 222{
 
 
 
 223	pgd_t *pgd;
 224	unsigned long next;
 225	unsigned long addr = start;
 226	int err = 0;
 227	int nr = 0;
 
 228
 229	BUG_ON(addr >= end);
 230	pgd = pgd_offset_k(addr);
 231	do {
 232		next = pgd_addr_end(addr, end);
 233		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
 
 
 234		if (err)
 235			return err;
 236	} while (pgd++, addr = next, addr != end);
 237
 238	return nr;
 
 
 
 239}
 240
 241static int vmap_page_range(unsigned long start, unsigned long end,
 242			   pgprot_t prot, struct page **pages)
 243{
 244	int ret;
 245
 246	ret = vmap_page_range_noflush(start, end, prot, pages);
 247	flush_cache_vmap(start, end);
 248	return ret;
 249}
 250
 251int is_vmalloc_or_module_addr(const void *x)
 252{
 253	/*
 254	 * ARM, x86-64 and sparc64 put modules in a special place,
 255	 * and fall back on vmalloc() if that fails. Others
 256	 * just put it in the vmalloc space.
 257	 */
 258#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 259	unsigned long addr = (unsigned long)x;
 260	if (addr >= MODULES_VADDR && addr < MODULES_END)
 261		return 1;
 262#endif
 263	return is_vmalloc_addr(x);
 264}
 265
 266/*
 267 * Walk a vmap address to the struct page it maps.
 268 */
 269struct page *vmalloc_to_page(const void *vmalloc_addr)
 270{
 271	unsigned long addr = (unsigned long) vmalloc_addr;
 272	struct page *page = NULL;
 273	pgd_t *pgd = pgd_offset_k(addr);
 274	p4d_t *p4d;
 275	pud_t *pud;
 276	pmd_t *pmd;
 277	pte_t *ptep, pte;
 278
 279	/*
 280	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 281	 * architectures that do not vmalloc module space
 282	 */
 283	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 284
 285	if (pgd_none(*pgd))
 286		return NULL;
 287	p4d = p4d_offset(pgd, addr);
 288	if (p4d_none(*p4d))
 289		return NULL;
 290	pud = pud_offset(p4d, addr);
 291
 292	/*
 293	 * Don't dereference bad PUD or PMD (below) entries. This will also
 294	 * identify huge mappings, which we may encounter on architectures
 295	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
 296	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
 297	 * not [unambiguously] associated with a struct page, so there is
 298	 * no correct value to return for them.
 299	 */
 300	WARN_ON_ONCE(pud_bad(*pud));
 301	if (pud_none(*pud) || pud_bad(*pud))
 302		return NULL;
 303	pmd = pmd_offset(pud, addr);
 304	WARN_ON_ONCE(pmd_bad(*pmd));
 305	if (pmd_none(*pmd) || pmd_bad(*pmd))
 306		return NULL;
 307
 308	ptep = pte_offset_map(pmd, addr);
 309	pte = *ptep;
 310	if (pte_present(pte))
 311		page = pte_page(pte);
 312	pte_unmap(ptep);
 313	return page;
 314}
 315EXPORT_SYMBOL(vmalloc_to_page);
 316
 317/*
 318 * Map a vmalloc()-space virtual address to the physical page frame number.
 319 */
 320unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 321{
 322	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 323}
 324EXPORT_SYMBOL(vmalloc_to_pfn);
 325
 326
 327/*** Global kva allocator ***/
 328
 329#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
 330#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
 331
 332
 333static DEFINE_SPINLOCK(vmap_area_lock);
 
 334/* Export for kexec only */
 335LIST_HEAD(vmap_area_list);
 336static LLIST_HEAD(vmap_purge_list);
 337static struct rb_root vmap_area_root = RB_ROOT;
 338static bool vmap_initialized __read_mostly;
 339
 340/*
 341 * This kmem_cache is used for vmap_area objects. Instead of
 342 * allocating from slab we reuse an object from this cache to
 343 * make things faster. Especially in "no edge" splitting of
 344 * free block.
 345 */
 346static struct kmem_cache *vmap_area_cachep;
 347
 348/*
 349 * This linked list is used in pair with free_vmap_area_root.
 350 * It gives O(1) access to prev/next to perform fast coalescing.
 351 */
 352static LIST_HEAD(free_vmap_area_list);
 353
 354/*
 355 * This augment red-black tree represents the free vmap space.
 356 * All vmap_area objects in this tree are sorted by va->va_start
 357 * address. It is used for allocation and merging when a vmap
 358 * object is released.
 359 *
 360 * Each vmap_area node contains a maximum available free block
 361 * of its sub-tree, right or left. Therefore it is possible to
 362 * find a lowest match of free area.
 363 */
 364static struct rb_root free_vmap_area_root = RB_ROOT;
 365
 366/*
 367 * Preload a CPU with one object for "no edge" split case. The
 368 * aim is to get rid of allocations from the atomic context, thus
 369 * to use more permissive allocation masks.
 370 */
 371static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
 372
 373static __always_inline unsigned long
 374va_size(struct vmap_area *va)
 375{
 376	return (va->va_end - va->va_start);
 377}
 378
 379static __always_inline unsigned long
 380get_subtree_max_size(struct rb_node *node)
 381{
 382	struct vmap_area *va;
 383
 384	va = rb_entry_safe(node, struct vmap_area, rb_node);
 385	return va ? va->subtree_max_size : 0;
 386}
 387
 388/*
 389 * Gets called when remove the node and rotate.
 390 */
 391static __always_inline unsigned long
 392compute_subtree_max_size(struct vmap_area *va)
 393{
 394	return max3(va_size(va),
 395		get_subtree_max_size(va->rb_node.rb_left),
 396		get_subtree_max_size(va->rb_node.rb_right));
 397}
 398
 399RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
 400	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
 401
 402static void purge_vmap_area_lazy(void);
 403static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
 404static unsigned long lazy_max_pages(void);
 405
 406static atomic_long_t nr_vmalloc_pages;
 407
 408unsigned long vmalloc_nr_pages(void)
 409{
 410	return atomic_long_read(&nr_vmalloc_pages);
 411}
 412
 413static struct vmap_area *__find_vmap_area(unsigned long addr)
 414{
 415	struct rb_node *n = vmap_area_root.rb_node;
 416
 417	while (n) {
 418		struct vmap_area *va;
 419
 420		va = rb_entry(n, struct vmap_area, rb_node);
 421		if (addr < va->va_start)
 422			n = n->rb_left;
 423		else if (addr >= va->va_end)
 424			n = n->rb_right;
 425		else
 426			return va;
 427	}
 428
 429	return NULL;
 430}
 431
 432/*
 433 * This function returns back addresses of parent node
 434 * and its left or right link for further processing.
 
 
 
 
 435 */
 436static __always_inline struct rb_node **
 437find_va_links(struct vmap_area *va,
 438	struct rb_root *root, struct rb_node *from,
 439	struct rb_node **parent)
 440{
 441	struct vmap_area *tmp_va;
 442	struct rb_node **link;
 443
 444	if (root) {
 445		link = &root->rb_node;
 446		if (unlikely(!*link)) {
 447			*parent = NULL;
 448			return link;
 449		}
 450	} else {
 451		link = &from;
 452	}
 453
 454	/*
 455	 * Go to the bottom of the tree. When we hit the last point
 456	 * we end up with parent rb_node and correct direction, i name
 457	 * it link, where the new va->rb_node will be attached to.
 458	 */
 459	do {
 460		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
 461
 462		/*
 463		 * During the traversal we also do some sanity check.
 464		 * Trigger the BUG() if there are sides(left/right)
 465		 * or full overlaps.
 466		 */
 467		if (va->va_start < tmp_va->va_end &&
 468				va->va_end <= tmp_va->va_start)
 469			link = &(*link)->rb_left;
 470		else if (va->va_end > tmp_va->va_start &&
 471				va->va_start >= tmp_va->va_end)
 472			link = &(*link)->rb_right;
 473		else
 474			BUG();
 
 
 
 
 475	} while (*link);
 476
 477	*parent = &tmp_va->rb_node;
 478	return link;
 479}
 480
 481static __always_inline struct list_head *
 482get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
 483{
 484	struct list_head *list;
 485
 486	if (unlikely(!parent))
 487		/*
 488		 * The red-black tree where we try to find VA neighbors
 489		 * before merging or inserting is empty, i.e. it means
 490		 * there is no free vmap space. Normally it does not
 491		 * happen but we handle this case anyway.
 492		 */
 493		return NULL;
 494
 495	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
 496	return (&parent->rb_right == link ? list->next : list);
 497}
 498
 499static __always_inline void
 500link_va(struct vmap_area *va, struct rb_root *root,
 501	struct rb_node *parent, struct rb_node **link, struct list_head *head)
 502{
 503	/*
 504	 * VA is still not in the list, but we can
 505	 * identify its future previous list_head node.
 506	 */
 507	if (likely(parent)) {
 508		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
 509		if (&parent->rb_right != link)
 510			head = head->prev;
 511	}
 512
 513	/* Insert to the rb-tree */
 514	rb_link_node(&va->rb_node, parent, link);
 515	if (root == &free_vmap_area_root) {
 516		/*
 517		 * Some explanation here. Just perform simple insertion
 518		 * to the tree. We do not set va->subtree_max_size to
 519		 * its current size before calling rb_insert_augmented().
 520		 * It is because of we populate the tree from the bottom
 521		 * to parent levels when the node _is_ in the tree.
 522		 *
 523		 * Therefore we set subtree_max_size to zero after insertion,
 524		 * to let __augment_tree_propagate_from() puts everything to
 525		 * the correct order later on.
 526		 */
 527		rb_insert_augmented(&va->rb_node,
 528			root, &free_vmap_area_rb_augment_cb);
 529		va->subtree_max_size = 0;
 530	} else {
 531		rb_insert_color(&va->rb_node, root);
 532	}
 533
 534	/* Address-sort this list */
 535	list_add(&va->list, head);
 536}
 537
 538static __always_inline void
 539unlink_va(struct vmap_area *va, struct rb_root *root)
 540{
 541	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
 542		return;
 543
 544	if (root == &free_vmap_area_root)
 545		rb_erase_augmented(&va->rb_node,
 546			root, &free_vmap_area_rb_augment_cb);
 547	else
 548		rb_erase(&va->rb_node, root);
 549
 550	list_del(&va->list);
 551	RB_CLEAR_NODE(&va->rb_node);
 552}
 553
 554#if DEBUG_AUGMENT_PROPAGATE_CHECK
 555static void
 556augment_tree_propagate_check(struct rb_node *n)
 557{
 558	struct vmap_area *va;
 559	struct rb_node *node;
 560	unsigned long size;
 561	bool found = false;
 562
 563	if (n == NULL)
 564		return;
 565
 566	va = rb_entry(n, struct vmap_area, rb_node);
 567	size = va->subtree_max_size;
 568	node = n;
 569
 570	while (node) {
 571		va = rb_entry(node, struct vmap_area, rb_node);
 572
 573		if (get_subtree_max_size(node->rb_left) == size) {
 574			node = node->rb_left;
 575		} else {
 576			if (va_size(va) == size) {
 577				found = true;
 578				break;
 579			}
 580
 581			node = node->rb_right;
 582		}
 583	}
 584
 585	if (!found) {
 586		va = rb_entry(n, struct vmap_area, rb_node);
 587		pr_emerg("tree is corrupted: %lu, %lu\n",
 588			va_size(va), va->subtree_max_size);
 589	}
 590
 591	augment_tree_propagate_check(n->rb_left);
 592	augment_tree_propagate_check(n->rb_right);
 593}
 594#endif
 595
 596/*
 597 * This function populates subtree_max_size from bottom to upper
 598 * levels starting from VA point. The propagation must be done
 599 * when VA size is modified by changing its va_start/va_end. Or
 600 * in case of newly inserting of VA to the tree.
 601 *
 602 * It means that __augment_tree_propagate_from() must be called:
 603 * - After VA has been inserted to the tree(free path);
 604 * - After VA has been shrunk(allocation path);
 605 * - After VA has been increased(merging path).
 606 *
 607 * Please note that, it does not mean that upper parent nodes
 608 * and their subtree_max_size are recalculated all the time up
 609 * to the root node.
 610 *
 611 *       4--8
 612 *        /\
 613 *       /  \
 614 *      /    \
 615 *    2--2  8--8
 616 *
 617 * For example if we modify the node 4, shrinking it to 2, then
 618 * no any modification is required. If we shrink the node 2 to 1
 619 * its subtree_max_size is updated only, and set to 1. If we shrink
 620 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
 621 * node becomes 4--6.
 622 */
 623static __always_inline void
 624augment_tree_propagate_from(struct vmap_area *va)
 625{
 626	struct rb_node *node = &va->rb_node;
 627	unsigned long new_va_sub_max_size;
 628
 629	while (node) {
 630		va = rb_entry(node, struct vmap_area, rb_node);
 631		new_va_sub_max_size = compute_subtree_max_size(va);
 632
 633		/*
 634		 * If the newly calculated maximum available size of the
 635		 * subtree is equal to the current one, then it means that
 636		 * the tree is propagated correctly. So we have to stop at
 637		 * this point to save cycles.
 638		 */
 639		if (va->subtree_max_size == new_va_sub_max_size)
 640			break;
 641
 642		va->subtree_max_size = new_va_sub_max_size;
 643		node = rb_parent(&va->rb_node);
 644	}
 645
 646#if DEBUG_AUGMENT_PROPAGATE_CHECK
 647	augment_tree_propagate_check(free_vmap_area_root.rb_node);
 648#endif
 649}
 650
 651static void
 652insert_vmap_area(struct vmap_area *va,
 653	struct rb_root *root, struct list_head *head)
 654{
 655	struct rb_node **link;
 656	struct rb_node *parent;
 657
 658	link = find_va_links(va, root, NULL, &parent);
 659	link_va(va, root, parent, link, head);
 
 660}
 661
 662static void
 663insert_vmap_area_augment(struct vmap_area *va,
 664	struct rb_node *from, struct rb_root *root,
 665	struct list_head *head)
 666{
 667	struct rb_node **link;
 668	struct rb_node *parent;
 669
 670	if (from)
 671		link = find_va_links(va, NULL, from, &parent);
 672	else
 673		link = find_va_links(va, root, NULL, &parent);
 674
 675	link_va(va, root, parent, link, head);
 676	augment_tree_propagate_from(va);
 
 
 677}
 678
 679/*
 680 * Merge de-allocated chunk of VA memory with previous
 681 * and next free blocks. If coalesce is not done a new
 682 * free area is inserted. If VA has been merged, it is
 683 * freed.
 
 
 
 
 
 684 */
 685static __always_inline void
 686merge_or_add_vmap_area(struct vmap_area *va,
 687	struct rb_root *root, struct list_head *head)
 688{
 689	struct vmap_area *sibling;
 690	struct list_head *next;
 691	struct rb_node **link;
 692	struct rb_node *parent;
 693	bool merged = false;
 694
 695	/*
 696	 * Find a place in the tree where VA potentially will be
 697	 * inserted, unless it is merged with its sibling/siblings.
 698	 */
 699	link = find_va_links(va, root, NULL, &parent);
 
 
 700
 701	/*
 702	 * Get next node of VA to check if merging can be done.
 703	 */
 704	next = get_va_next_sibling(parent, link);
 705	if (unlikely(next == NULL))
 706		goto insert;
 707
 708	/*
 709	 * start            end
 710	 * |                |
 711	 * |<------VA------>|<-----Next----->|
 712	 *                  |                |
 713	 *                  start            end
 714	 */
 715	if (next != head) {
 716		sibling = list_entry(next, struct vmap_area, list);
 717		if (sibling->va_start == va->va_end) {
 718			sibling->va_start = va->va_start;
 719
 720			/* Check and update the tree if needed. */
 721			augment_tree_propagate_from(sibling);
 722
 723			/* Free vmap_area object. */
 724			kmem_cache_free(vmap_area_cachep, va);
 725
 726			/* Point to the new merged area. */
 727			va = sibling;
 728			merged = true;
 729		}
 730	}
 731
 732	/*
 733	 * start            end
 734	 * |                |
 735	 * |<-----Prev----->|<------VA------>|
 736	 *                  |                |
 737	 *                  start            end
 738	 */
 739	if (next->prev != head) {
 740		sibling = list_entry(next->prev, struct vmap_area, list);
 741		if (sibling->va_end == va->va_start) {
 742			sibling->va_end = va->va_end;
 743
 744			/* Check and update the tree if needed. */
 745			augment_tree_propagate_from(sibling);
 746
 
 
 747			if (merged)
 748				unlink_va(va, root);
 749
 
 
 750			/* Free vmap_area object. */
 751			kmem_cache_free(vmap_area_cachep, va);
 752			return;
 
 
 
 753		}
 754	}
 755
 756insert:
 757	if (!merged) {
 758		link_va(va, root, parent, link, head);
 759		augment_tree_propagate_from(va);
 760	}
 
 
 
 
 761}
 762
 763static __always_inline bool
 764is_within_this_va(struct vmap_area *va, unsigned long size,
 765	unsigned long align, unsigned long vstart)
 766{
 767	unsigned long nva_start_addr;
 768
 769	if (va->va_start > vstart)
 770		nva_start_addr = ALIGN(va->va_start, align);
 771	else
 772		nva_start_addr = ALIGN(vstart, align);
 773
 774	/* Can be overflowed due to big size or alignment. */
 775	if (nva_start_addr + size < nva_start_addr ||
 776			nva_start_addr < vstart)
 777		return false;
 778
 779	return (nva_start_addr + size <= va->va_end);
 780}
 781
 782/*
 783 * Find the first free block(lowest start address) in the tree,
 784 * that will accomplish the request corresponding to passing
 785 * parameters.
 786 */
 787static __always_inline struct vmap_area *
 788find_vmap_lowest_match(unsigned long size,
 789	unsigned long align, unsigned long vstart)
 790{
 791	struct vmap_area *va;
 792	struct rb_node *node;
 793	unsigned long length;
 794
 795	/* Start from the root. */
 796	node = free_vmap_area_root.rb_node;
 797
 798	/* Adjust the search size for alignment overhead. */
 799	length = size + align - 1;
 800
 801	while (node) {
 802		va = rb_entry(node, struct vmap_area, rb_node);
 803
 804		if (get_subtree_max_size(node->rb_left) >= length &&
 805				vstart < va->va_start) {
 806			node = node->rb_left;
 807		} else {
 808			if (is_within_this_va(va, size, align, vstart))
 809				return va;
 810
 811			/*
 812			 * Does not make sense to go deeper towards the right
 813			 * sub-tree if it does not have a free block that is
 814			 * equal or bigger to the requested search length.
 815			 */
 816			if (get_subtree_max_size(node->rb_right) >= length) {
 817				node = node->rb_right;
 818				continue;
 819			}
 820
 821			/*
 822			 * OK. We roll back and find the first right sub-tree,
 823			 * that will satisfy the search criteria. It can happen
 824			 * only once due to "vstart" restriction.
 825			 */
 826			while ((node = rb_parent(node))) {
 827				va = rb_entry(node, struct vmap_area, rb_node);
 828				if (is_within_this_va(va, size, align, vstart))
 829					return va;
 830
 831				if (get_subtree_max_size(node->rb_right) >= length &&
 832						vstart <= va->va_start) {
 833					node = node->rb_right;
 834					break;
 835				}
 836			}
 837		}
 838	}
 839
 840	return NULL;
 841}
 842
 843#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
 844#include <linux/random.h>
 845
 846static struct vmap_area *
 847find_vmap_lowest_linear_match(unsigned long size,
 848	unsigned long align, unsigned long vstart)
 849{
 850	struct vmap_area *va;
 851
 852	list_for_each_entry(va, &free_vmap_area_list, list) {
 853		if (!is_within_this_va(va, size, align, vstart))
 854			continue;
 855
 856		return va;
 857	}
 858
 859	return NULL;
 860}
 861
 862static void
 863find_vmap_lowest_match_check(unsigned long size)
 864{
 865	struct vmap_area *va_1, *va_2;
 866	unsigned long vstart;
 867	unsigned int rnd;
 868
 869	get_random_bytes(&rnd, sizeof(rnd));
 870	vstart = VMALLOC_START + rnd;
 871
 872	va_1 = find_vmap_lowest_match(size, 1, vstart);
 873	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
 874
 875	if (va_1 != va_2)
 876		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
 877			va_1, va_2, vstart);
 878}
 879#endif
 880
 881enum fit_type {
 882	NOTHING_FIT = 0,
 883	FL_FIT_TYPE = 1,	/* full fit */
 884	LE_FIT_TYPE = 2,	/* left edge fit */
 885	RE_FIT_TYPE = 3,	/* right edge fit */
 886	NE_FIT_TYPE = 4		/* no edge fit */
 887};
 888
 889static __always_inline enum fit_type
 890classify_va_fit_type(struct vmap_area *va,
 891	unsigned long nva_start_addr, unsigned long size)
 892{
 893	enum fit_type type;
 894
 895	/* Check if it is within VA. */
 896	if (nva_start_addr < va->va_start ||
 897			nva_start_addr + size > va->va_end)
 898		return NOTHING_FIT;
 899
 900	/* Now classify. */
 901	if (va->va_start == nva_start_addr) {
 902		if (va->va_end == nva_start_addr + size)
 903			type = FL_FIT_TYPE;
 904		else
 905			type = LE_FIT_TYPE;
 906	} else if (va->va_end == nva_start_addr + size) {
 907		type = RE_FIT_TYPE;
 908	} else {
 909		type = NE_FIT_TYPE;
 910	}
 911
 912	return type;
 913}
 914
 915static __always_inline int
 916adjust_va_to_fit_type(struct vmap_area *va,
 917	unsigned long nva_start_addr, unsigned long size,
 918	enum fit_type type)
 919{
 920	struct vmap_area *lva = NULL;
 921
 922	if (type == FL_FIT_TYPE) {
 923		/*
 924		 * No need to split VA, it fully fits.
 925		 *
 926		 * |               |
 927		 * V      NVA      V
 928		 * |---------------|
 929		 */
 930		unlink_va(va, &free_vmap_area_root);
 931		kmem_cache_free(vmap_area_cachep, va);
 932	} else if (type == LE_FIT_TYPE) {
 933		/*
 934		 * Split left edge of fit VA.
 935		 *
 936		 * |       |
 937		 * V  NVA  V   R
 938		 * |-------|-------|
 939		 */
 940		va->va_start += size;
 941	} else if (type == RE_FIT_TYPE) {
 942		/*
 943		 * Split right edge of fit VA.
 944		 *
 945		 *         |       |
 946		 *     L   V  NVA  V
 947		 * |-------|-------|
 948		 */
 949		va->va_end = nva_start_addr;
 950	} else if (type == NE_FIT_TYPE) {
 951		/*
 952		 * Split no edge of fit VA.
 953		 *
 954		 *     |       |
 955		 *   L V  NVA  V R
 956		 * |---|-------|---|
 957		 */
 958		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
 959		if (unlikely(!lva)) {
 960			/*
 961			 * For percpu allocator we do not do any pre-allocation
 962			 * and leave it as it is. The reason is it most likely
 963			 * never ends up with NE_FIT_TYPE splitting. In case of
 964			 * percpu allocations offsets and sizes are aligned to
 965			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
 966			 * are its main fitting cases.
 967			 *
 968			 * There are a few exceptions though, as an example it is
 969			 * a first allocation (early boot up) when we have "one"
 970			 * big free space that has to be split.
 
 
 
 
 
 
 
 
 
 
 
 
 
 971			 */
 972			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
 973			if (!lva)
 974				return -1;
 975		}
 976
 977		/*
 978		 * Build the remainder.
 979		 */
 980		lva->va_start = va->va_start;
 981		lva->va_end = nva_start_addr;
 982
 983		/*
 984		 * Shrink this VA to remaining size.
 985		 */
 986		va->va_start = nva_start_addr + size;
 987	} else {
 988		return -1;
 989	}
 990
 991	if (type != FL_FIT_TYPE) {
 992		augment_tree_propagate_from(va);
 993
 994		if (lva)	/* type == NE_FIT_TYPE */
 995			insert_vmap_area_augment(lva, &va->rb_node,
 996				&free_vmap_area_root, &free_vmap_area_list);
 997	}
 998
 999	return 0;
1000}
1001
1002/*
1003 * Returns a start address of the newly allocated area, if success.
1004 * Otherwise a vend is returned that indicates failure.
1005 */
1006static __always_inline unsigned long
1007__alloc_vmap_area(unsigned long size, unsigned long align,
1008	unsigned long vstart, unsigned long vend)
1009{
1010	unsigned long nva_start_addr;
1011	struct vmap_area *va;
1012	enum fit_type type;
1013	int ret;
1014
1015	va = find_vmap_lowest_match(size, align, vstart);
1016	if (unlikely(!va))
1017		return vend;
1018
1019	if (va->va_start > vstart)
1020		nva_start_addr = ALIGN(va->va_start, align);
1021	else
1022		nva_start_addr = ALIGN(vstart, align);
1023
1024	/* Check the "vend" restriction. */
1025	if (nva_start_addr + size > vend)
1026		return vend;
1027
1028	/* Classify what we have found. */
1029	type = classify_va_fit_type(va, nva_start_addr, size);
1030	if (WARN_ON_ONCE(type == NOTHING_FIT))
1031		return vend;
1032
1033	/* Update the free vmap_area. */
1034	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1035	if (ret)
1036		return vend;
1037
1038#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1039	find_vmap_lowest_match_check(size);
1040#endif
1041
1042	return nva_start_addr;
1043}
1044
1045/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1046 * Allocate a region of KVA of the specified size and alignment, within the
1047 * vstart and vend.
1048 */
1049static struct vmap_area *alloc_vmap_area(unsigned long size,
1050				unsigned long align,
1051				unsigned long vstart, unsigned long vend,
1052				int node, gfp_t gfp_mask)
1053{
1054	struct vmap_area *va, *pva;
1055	unsigned long addr;
1056	int purged = 0;
 
1057
1058	BUG_ON(!size);
1059	BUG_ON(offset_in_page(size));
1060	BUG_ON(!is_power_of_2(align));
1061
1062	if (unlikely(!vmap_initialized))
1063		return ERR_PTR(-EBUSY);
1064
1065	might_sleep();
 
1066
1067	va = kmem_cache_alloc_node(vmap_area_cachep,
1068			gfp_mask & GFP_RECLAIM_MASK, node);
1069	if (unlikely(!va))
1070		return ERR_PTR(-ENOMEM);
1071
1072	/*
1073	 * Only scan the relevant parts containing pointers to other objects
1074	 * to avoid false negatives.
1075	 */
1076	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
1077
1078retry:
1079	/*
1080	 * Preload this CPU with one extra vmap_area object to ensure
1081	 * that we have it available when fit type of free area is
1082	 * NE_FIT_TYPE.
 
 
 
1083	 *
1084	 * The preload is done in non-atomic context, thus it allows us
1085	 * to use more permissive allocation masks to be more stable under
1086	 * low memory condition and high memory pressure.
 
1087	 *
1088	 * Even if it fails we do not really care about that. Just proceed
1089	 * as it is. "overflow" path will refill the cache we allocate from.
1090	 */
1091	preempt_disable();
1092	if (!__this_cpu_read(ne_fit_preload_node)) {
1093		preempt_enable();
1094		pva = kmem_cache_alloc_node(vmap_area_cachep, GFP_KERNEL, node);
1095		preempt_disable();
1096
1097		if (__this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva)) {
1098			if (pva)
1099				kmem_cache_free(vmap_area_cachep, pva);
1100		}
1101	}
1102
1103	spin_lock(&vmap_area_lock);
1104	preempt_enable();
1105
1106	/*
1107	 * If an allocation fails, the "vend" address is
1108	 * returned. Therefore trigger the overflow path.
1109	 */
1110	addr = __alloc_vmap_area(size, align, vstart, vend);
 
 
1111	if (unlikely(addr == vend))
1112		goto overflow;
1113
1114	va->va_start = addr;
1115	va->va_end = addr + size;
1116	va->vm = NULL;
 
 
 
1117	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1118
1119	spin_unlock(&vmap_area_lock);
1120
1121	BUG_ON(!IS_ALIGNED(va->va_start, align));
1122	BUG_ON(va->va_start < vstart);
1123	BUG_ON(va->va_end > vend);
1124
 
 
 
 
 
 
1125	return va;
1126
1127overflow:
1128	spin_unlock(&vmap_area_lock);
1129	if (!purged) {
1130		purge_vmap_area_lazy();
1131		purged = 1;
1132		goto retry;
1133	}
1134
1135	if (gfpflags_allow_blocking(gfp_mask)) {
1136		unsigned long freed = 0;
1137		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1138		if (freed > 0) {
1139			purged = 0;
1140			goto retry;
1141		}
1142	}
1143
1144	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1145		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1146			size);
1147
1148	kmem_cache_free(vmap_area_cachep, va);
1149	return ERR_PTR(-EBUSY);
1150}
1151
1152int register_vmap_purge_notifier(struct notifier_block *nb)
1153{
1154	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1155}
1156EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1157
1158int unregister_vmap_purge_notifier(struct notifier_block *nb)
1159{
1160	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1161}
1162EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1163
1164static void __free_vmap_area(struct vmap_area *va)
1165{
1166	/*
1167	 * Remove from the busy tree/list.
1168	 */
1169	unlink_va(va, &vmap_area_root);
1170
1171	/*
1172	 * Merge VA with its neighbors, otherwise just add it.
1173	 */
1174	merge_or_add_vmap_area(va,
1175		&free_vmap_area_root, &free_vmap_area_list);
1176}
1177
1178/*
1179 * Free a region of KVA allocated by alloc_vmap_area
1180 */
1181static void free_vmap_area(struct vmap_area *va)
1182{
1183	spin_lock(&vmap_area_lock);
1184	__free_vmap_area(va);
1185	spin_unlock(&vmap_area_lock);
1186}
1187
1188/*
1189 * Clear the pagetable entries of a given vmap_area
1190 */
1191static void unmap_vmap_area(struct vmap_area *va)
1192{
1193	vunmap_page_range(va->va_start, va->va_end);
1194}
1195
1196/*
1197 * lazy_max_pages is the maximum amount of virtual address space we gather up
1198 * before attempting to purge with a TLB flush.
1199 *
1200 * There is a tradeoff here: a larger number will cover more kernel page tables
1201 * and take slightly longer to purge, but it will linearly reduce the number of
1202 * global TLB flushes that must be performed. It would seem natural to scale
1203 * this number up linearly with the number of CPUs (because vmapping activity
1204 * could also scale linearly with the number of CPUs), however it is likely
1205 * that in practice, workloads might be constrained in other ways that mean
1206 * vmap activity will not scale linearly with CPUs. Also, I want to be
1207 * conservative and not introduce a big latency on huge systems, so go with
1208 * a less aggressive log scale. It will still be an improvement over the old
1209 * code, and it will be simple to change the scale factor if we find that it
1210 * becomes a problem on bigger systems.
1211 */
1212static unsigned long lazy_max_pages(void)
1213{
1214	unsigned int log;
1215
1216	log = fls(num_online_cpus());
1217
1218	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1219}
1220
1221static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1222
1223/*
1224 * Serialize vmap purging.  There is no actual criticial section protected
1225 * by this look, but we want to avoid concurrent calls for performance
1226 * reasons and to make the pcpu_get_vm_areas more deterministic.
1227 */
1228static DEFINE_MUTEX(vmap_purge_lock);
1229
1230/* for per-CPU blocks */
1231static void purge_fragmented_blocks_allcpus(void);
1232
1233/*
1234 * called before a call to iounmap() if the caller wants vm_area_struct's
1235 * immediately freed.
1236 */
1237void set_iounmap_nonlazy(void)
1238{
1239	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1240}
1241
1242/*
1243 * Purges all lazily-freed vmap areas.
1244 */
1245static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1246{
1247	unsigned long resched_threshold;
1248	struct llist_node *valist;
1249	struct vmap_area *va;
1250	struct vmap_area *n_va;
1251
1252	lockdep_assert_held(&vmap_purge_lock);
1253
1254	valist = llist_del_all(&vmap_purge_list);
1255	if (unlikely(valist == NULL))
1256		return false;
1257
1258	/*
1259	 * First make sure the mappings are removed from all page-tables
1260	 * before they are freed.
1261	 */
1262	vmalloc_sync_all();
1263
1264	/*
1265	 * TODO: to calculate a flush range without looping.
1266	 * The list can be up to lazy_max_pages() elements.
1267	 */
1268	llist_for_each_entry(va, valist, purge_list) {
1269		if (va->va_start < start)
1270			start = va->va_start;
1271		if (va->va_end > end)
1272			end = va->va_end;
1273	}
1274
1275	flush_tlb_kernel_range(start, end);
1276	resched_threshold = lazy_max_pages() << 1;
1277
1278	spin_lock(&vmap_area_lock);
1279	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1280		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
 
 
1281
1282		/*
1283		 * Finally insert or merge lazily-freed area. It is
1284		 * detached and there is no need to "unlink" it from
1285		 * anything.
1286		 */
1287		merge_or_add_vmap_area(va,
1288			&free_vmap_area_root, &free_vmap_area_list);
 
 
 
 
 
 
 
1289
1290		atomic_long_sub(nr, &vmap_lazy_nr);
1291
1292		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1293			cond_resched_lock(&vmap_area_lock);
1294	}
1295	spin_unlock(&vmap_area_lock);
1296	return true;
1297}
1298
1299/*
1300 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1301 * is already purging.
1302 */
1303static void try_purge_vmap_area_lazy(void)
1304{
1305	if (mutex_trylock(&vmap_purge_lock)) {
1306		__purge_vmap_area_lazy(ULONG_MAX, 0);
1307		mutex_unlock(&vmap_purge_lock);
1308	}
1309}
1310
1311/*
1312 * Kick off a purge of the outstanding lazy areas.
1313 */
1314static void purge_vmap_area_lazy(void)
1315{
1316	mutex_lock(&vmap_purge_lock);
1317	purge_fragmented_blocks_allcpus();
1318	__purge_vmap_area_lazy(ULONG_MAX, 0);
1319	mutex_unlock(&vmap_purge_lock);
1320}
1321
1322/*
1323 * Free a vmap area, caller ensuring that the area has been unmapped
1324 * and flush_cache_vunmap had been called for the correct range
1325 * previously.
1326 */
1327static void free_vmap_area_noflush(struct vmap_area *va)
1328{
1329	unsigned long nr_lazy;
1330
1331	spin_lock(&vmap_area_lock);
1332	unlink_va(va, &vmap_area_root);
1333	spin_unlock(&vmap_area_lock);
1334
1335	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1336				PAGE_SHIFT, &vmap_lazy_nr);
1337
1338	/* After this point, we may free va at any time */
1339	llist_add(&va->purge_list, &vmap_purge_list);
1340
1341	if (unlikely(nr_lazy > lazy_max_pages()))
1342		try_purge_vmap_area_lazy();
1343}
1344
1345/*
1346 * Free and unmap a vmap area
1347 */
1348static void free_unmap_vmap_area(struct vmap_area *va)
1349{
1350	flush_cache_vunmap(va->va_start, va->va_end);
1351	unmap_vmap_area(va);
1352	if (debug_pagealloc_enabled())
1353		flush_tlb_kernel_range(va->va_start, va->va_end);
1354
1355	free_vmap_area_noflush(va);
1356}
1357
1358static struct vmap_area *find_vmap_area(unsigned long addr)
1359{
1360	struct vmap_area *va;
1361
1362	spin_lock(&vmap_area_lock);
1363	va = __find_vmap_area(addr);
1364	spin_unlock(&vmap_area_lock);
1365
1366	return va;
1367}
1368
1369/*** Per cpu kva allocator ***/
1370
1371/*
1372 * vmap space is limited especially on 32 bit architectures. Ensure there is
1373 * room for at least 16 percpu vmap blocks per CPU.
1374 */
1375/*
1376 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1377 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1378 * instead (we just need a rough idea)
1379 */
1380#if BITS_PER_LONG == 32
1381#define VMALLOC_SPACE		(128UL*1024*1024)
1382#else
1383#define VMALLOC_SPACE		(128UL*1024*1024*1024)
1384#endif
1385
1386#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1387#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1388#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1389#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1390#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1391#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1392#define VMAP_BBMAP_BITS		\
1393		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1394		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1395			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1396
1397#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1398
1399struct vmap_block_queue {
1400	spinlock_t lock;
1401	struct list_head free;
1402};
1403
1404struct vmap_block {
1405	spinlock_t lock;
1406	struct vmap_area *va;
1407	unsigned long free, dirty;
1408	unsigned long dirty_min, dirty_max; /*< dirty range */
1409	struct list_head free_list;
1410	struct rcu_head rcu_head;
1411	struct list_head purge;
1412};
1413
1414/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1415static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1416
1417/*
1418 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1419 * in the free path. Could get rid of this if we change the API to return a
1420 * "cookie" from alloc, to be passed to free. But no big deal yet.
1421 */
1422static DEFINE_SPINLOCK(vmap_block_tree_lock);
1423static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1424
1425/*
1426 * We should probably have a fallback mechanism to allocate virtual memory
1427 * out of partially filled vmap blocks. However vmap block sizing should be
1428 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1429 * big problem.
1430 */
1431
1432static unsigned long addr_to_vb_idx(unsigned long addr)
1433{
1434	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1435	addr /= VMAP_BLOCK_SIZE;
1436	return addr;
1437}
1438
1439static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1440{
1441	unsigned long addr;
1442
1443	addr = va_start + (pages_off << PAGE_SHIFT);
1444	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1445	return (void *)addr;
1446}
1447
1448/**
1449 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1450 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1451 * @order:    how many 2^order pages should be occupied in newly allocated block
1452 * @gfp_mask: flags for the page level allocator
1453 *
1454 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1455 */
1456static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1457{
1458	struct vmap_block_queue *vbq;
1459	struct vmap_block *vb;
1460	struct vmap_area *va;
1461	unsigned long vb_idx;
1462	int node, err;
1463	void *vaddr;
1464
1465	node = numa_node_id();
1466
1467	vb = kmalloc_node(sizeof(struct vmap_block),
1468			gfp_mask & GFP_RECLAIM_MASK, node);
1469	if (unlikely(!vb))
1470		return ERR_PTR(-ENOMEM);
1471
1472	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1473					VMALLOC_START, VMALLOC_END,
1474					node, gfp_mask);
1475	if (IS_ERR(va)) {
1476		kfree(vb);
1477		return ERR_CAST(va);
1478	}
1479
1480	err = radix_tree_preload(gfp_mask);
1481	if (unlikely(err)) {
1482		kfree(vb);
1483		free_vmap_area(va);
1484		return ERR_PTR(err);
1485	}
1486
1487	vaddr = vmap_block_vaddr(va->va_start, 0);
1488	spin_lock_init(&vb->lock);
1489	vb->va = va;
1490	/* At least something should be left free */
1491	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1492	vb->free = VMAP_BBMAP_BITS - (1UL << order);
1493	vb->dirty = 0;
1494	vb->dirty_min = VMAP_BBMAP_BITS;
1495	vb->dirty_max = 0;
1496	INIT_LIST_HEAD(&vb->free_list);
1497
1498	vb_idx = addr_to_vb_idx(va->va_start);
1499	spin_lock(&vmap_block_tree_lock);
1500	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1501	spin_unlock(&vmap_block_tree_lock);
1502	BUG_ON(err);
1503	radix_tree_preload_end();
 
1504
1505	vbq = &get_cpu_var(vmap_block_queue);
1506	spin_lock(&vbq->lock);
1507	list_add_tail_rcu(&vb->free_list, &vbq->free);
1508	spin_unlock(&vbq->lock);
1509	put_cpu_var(vmap_block_queue);
1510
1511	return vaddr;
1512}
1513
1514static void free_vmap_block(struct vmap_block *vb)
1515{
1516	struct vmap_block *tmp;
1517	unsigned long vb_idx;
1518
1519	vb_idx = addr_to_vb_idx(vb->va->va_start);
1520	spin_lock(&vmap_block_tree_lock);
1521	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1522	spin_unlock(&vmap_block_tree_lock);
1523	BUG_ON(tmp != vb);
1524
1525	free_vmap_area_noflush(vb->va);
1526	kfree_rcu(vb, rcu_head);
1527}
1528
1529static void purge_fragmented_blocks(int cpu)
1530{
1531	LIST_HEAD(purge);
1532	struct vmap_block *vb;
1533	struct vmap_block *n_vb;
1534	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1535
1536	rcu_read_lock();
1537	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1538
1539		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1540			continue;
1541
1542		spin_lock(&vb->lock);
1543		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1544			vb->free = 0; /* prevent further allocs after releasing lock */
1545			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1546			vb->dirty_min = 0;
1547			vb->dirty_max = VMAP_BBMAP_BITS;
1548			spin_lock(&vbq->lock);
1549			list_del_rcu(&vb->free_list);
1550			spin_unlock(&vbq->lock);
1551			spin_unlock(&vb->lock);
1552			list_add_tail(&vb->purge, &purge);
1553		} else
1554			spin_unlock(&vb->lock);
1555	}
1556	rcu_read_unlock();
1557
1558	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1559		list_del(&vb->purge);
1560		free_vmap_block(vb);
1561	}
1562}
1563
1564static void purge_fragmented_blocks_allcpus(void)
1565{
1566	int cpu;
1567
1568	for_each_possible_cpu(cpu)
1569		purge_fragmented_blocks(cpu);
1570}
1571
1572static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1573{
1574	struct vmap_block_queue *vbq;
1575	struct vmap_block *vb;
1576	void *vaddr = NULL;
1577	unsigned int order;
1578
1579	BUG_ON(offset_in_page(size));
1580	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1581	if (WARN_ON(size == 0)) {
1582		/*
1583		 * Allocating 0 bytes isn't what caller wants since
1584		 * get_order(0) returns funny result. Just warn and terminate
1585		 * early.
1586		 */
1587		return NULL;
1588	}
1589	order = get_order(size);
1590
1591	rcu_read_lock();
1592	vbq = &get_cpu_var(vmap_block_queue);
1593	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1594		unsigned long pages_off;
1595
1596		spin_lock(&vb->lock);
1597		if (vb->free < (1UL << order)) {
1598			spin_unlock(&vb->lock);
1599			continue;
1600		}
1601
1602		pages_off = VMAP_BBMAP_BITS - vb->free;
1603		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1604		vb->free -= 1UL << order;
1605		if (vb->free == 0) {
1606			spin_lock(&vbq->lock);
1607			list_del_rcu(&vb->free_list);
1608			spin_unlock(&vbq->lock);
1609		}
1610
1611		spin_unlock(&vb->lock);
1612		break;
1613	}
1614
1615	put_cpu_var(vmap_block_queue);
1616	rcu_read_unlock();
1617
1618	/* Allocate new block if nothing was found */
1619	if (!vaddr)
1620		vaddr = new_vmap_block(order, gfp_mask);
1621
1622	return vaddr;
1623}
1624
1625static void vb_free(const void *addr, unsigned long size)
1626{
1627	unsigned long offset;
1628	unsigned long vb_idx;
1629	unsigned int order;
1630	struct vmap_block *vb;
1631
1632	BUG_ON(offset_in_page(size));
1633	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1634
1635	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1636
1637	order = get_order(size);
 
 
1638
1639	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1640	offset >>= PAGE_SHIFT;
1641
1642	vb_idx = addr_to_vb_idx((unsigned long)addr);
1643	rcu_read_lock();
1644	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1645	rcu_read_unlock();
1646	BUG_ON(!vb);
1647
1648	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1649
1650	if (debug_pagealloc_enabled())
1651		flush_tlb_kernel_range((unsigned long)addr,
1652					(unsigned long)addr + size);
1653
1654	spin_lock(&vb->lock);
1655
1656	/* Expand dirty range */
1657	vb->dirty_min = min(vb->dirty_min, offset);
1658	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1659
1660	vb->dirty += 1UL << order;
1661	if (vb->dirty == VMAP_BBMAP_BITS) {
1662		BUG_ON(vb->free);
1663		spin_unlock(&vb->lock);
1664		free_vmap_block(vb);
1665	} else
1666		spin_unlock(&vb->lock);
1667}
1668
1669static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1670{
1671	int cpu;
1672
1673	if (unlikely(!vmap_initialized))
1674		return;
1675
1676	might_sleep();
1677
1678	for_each_possible_cpu(cpu) {
1679		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1680		struct vmap_block *vb;
1681
1682		rcu_read_lock();
1683		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1684			spin_lock(&vb->lock);
1685			if (vb->dirty) {
1686				unsigned long va_start = vb->va->va_start;
1687				unsigned long s, e;
1688
1689				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1690				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1691
1692				start = min(s, start);
1693				end   = max(e, end);
1694
1695				flush = 1;
1696			}
1697			spin_unlock(&vb->lock);
1698		}
1699		rcu_read_unlock();
1700	}
1701
1702	mutex_lock(&vmap_purge_lock);
1703	purge_fragmented_blocks_allcpus();
1704	if (!__purge_vmap_area_lazy(start, end) && flush)
1705		flush_tlb_kernel_range(start, end);
1706	mutex_unlock(&vmap_purge_lock);
1707}
1708
1709/**
1710 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1711 *
1712 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1713 * to amortize TLB flushing overheads. What this means is that any page you
1714 * have now, may, in a former life, have been mapped into kernel virtual
1715 * address by the vmap layer and so there might be some CPUs with TLB entries
1716 * still referencing that page (additional to the regular 1:1 kernel mapping).
1717 *
1718 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1719 * be sure that none of the pages we have control over will have any aliases
1720 * from the vmap layer.
1721 */
1722void vm_unmap_aliases(void)
1723{
1724	unsigned long start = ULONG_MAX, end = 0;
1725	int flush = 0;
1726
1727	_vm_unmap_aliases(start, end, flush);
1728}
1729EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1730
1731/**
1732 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1733 * @mem: the pointer returned by vm_map_ram
1734 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1735 */
1736void vm_unmap_ram(const void *mem, unsigned int count)
1737{
1738	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1739	unsigned long addr = (unsigned long)mem;
1740	struct vmap_area *va;
1741
1742	might_sleep();
1743	BUG_ON(!addr);
1744	BUG_ON(addr < VMALLOC_START);
1745	BUG_ON(addr > VMALLOC_END);
1746	BUG_ON(!PAGE_ALIGNED(addr));
1747
 
 
1748	if (likely(count <= VMAP_MAX_ALLOC)) {
1749		debug_check_no_locks_freed(mem, size);
1750		vb_free(mem, size);
1751		return;
1752	}
1753
1754	va = find_vmap_area(addr);
1755	BUG_ON(!va);
1756	debug_check_no_locks_freed((void *)va->va_start,
1757				    (va->va_end - va->va_start));
1758	free_unmap_vmap_area(va);
1759}
1760EXPORT_SYMBOL(vm_unmap_ram);
1761
1762/**
1763 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1764 * @pages: an array of pointers to the pages to be mapped
1765 * @count: number of pages
1766 * @node: prefer to allocate data structures on this node
1767 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1768 *
1769 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1770 * faster than vmap so it's good.  But if you mix long-life and short-life
1771 * objects with vm_map_ram(), it could consume lots of address space through
1772 * fragmentation (especially on a 32bit machine).  You could see failures in
1773 * the end.  Please use this function for short-lived objects.
1774 *
1775 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1776 */
1777void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1778{
1779	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1780	unsigned long addr;
1781	void *mem;
1782
1783	if (likely(count <= VMAP_MAX_ALLOC)) {
1784		mem = vb_alloc(size, GFP_KERNEL);
1785		if (IS_ERR(mem))
1786			return NULL;
1787		addr = (unsigned long)mem;
1788	} else {
1789		struct vmap_area *va;
1790		va = alloc_vmap_area(size, PAGE_SIZE,
1791				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1792		if (IS_ERR(va))
1793			return NULL;
1794
1795		addr = va->va_start;
1796		mem = (void *)addr;
1797	}
1798	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
 
 
 
1799		vm_unmap_ram(mem, count);
1800		return NULL;
1801	}
1802	return mem;
1803}
1804EXPORT_SYMBOL(vm_map_ram);
1805
1806static struct vm_struct *vmlist __initdata;
1807
1808/**
1809 * vm_area_add_early - add vmap area early during boot
1810 * @vm: vm_struct to add
1811 *
1812 * This function is used to add fixed kernel vm area to vmlist before
1813 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1814 * should contain proper values and the other fields should be zero.
1815 *
1816 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1817 */
1818void __init vm_area_add_early(struct vm_struct *vm)
1819{
1820	struct vm_struct *tmp, **p;
1821
1822	BUG_ON(vmap_initialized);
1823	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1824		if (tmp->addr >= vm->addr) {
1825			BUG_ON(tmp->addr < vm->addr + vm->size);
1826			break;
1827		} else
1828			BUG_ON(tmp->addr + tmp->size > vm->addr);
1829	}
1830	vm->next = *p;
1831	*p = vm;
1832}
1833
1834/**
1835 * vm_area_register_early - register vmap area early during boot
1836 * @vm: vm_struct to register
1837 * @align: requested alignment
1838 *
1839 * This function is used to register kernel vm area before
1840 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1841 * proper values on entry and other fields should be zero.  On return,
1842 * vm->addr contains the allocated address.
1843 *
1844 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1845 */
1846void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1847{
1848	static size_t vm_init_off __initdata;
1849	unsigned long addr;
1850
1851	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1852	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1853
1854	vm->addr = (void *)addr;
1855
1856	vm_area_add_early(vm);
1857}
1858
1859static void vmap_init_free_space(void)
1860{
1861	unsigned long vmap_start = 1;
1862	const unsigned long vmap_end = ULONG_MAX;
1863	struct vmap_area *busy, *free;
1864
1865	/*
1866	 *     B     F     B     B     B     F
1867	 * -|-----|.....|-----|-----|-----|.....|-
1868	 *  |           The KVA space           |
1869	 *  |<--------------------------------->|
1870	 */
1871	list_for_each_entry(busy, &vmap_area_list, list) {
1872		if (busy->va_start - vmap_start > 0) {
1873			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1874			if (!WARN_ON_ONCE(!free)) {
1875				free->va_start = vmap_start;
1876				free->va_end = busy->va_start;
1877
1878				insert_vmap_area_augment(free, NULL,
1879					&free_vmap_area_root,
1880						&free_vmap_area_list);
1881			}
1882		}
1883
1884		vmap_start = busy->va_end;
1885	}
1886
1887	if (vmap_end - vmap_start > 0) {
1888		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1889		if (!WARN_ON_ONCE(!free)) {
1890			free->va_start = vmap_start;
1891			free->va_end = vmap_end;
1892
1893			insert_vmap_area_augment(free, NULL,
1894				&free_vmap_area_root,
1895					&free_vmap_area_list);
1896		}
1897	}
1898}
1899
1900void __init vmalloc_init(void)
1901{
1902	struct vmap_area *va;
1903	struct vm_struct *tmp;
1904	int i;
1905
1906	/*
1907	 * Create the cache for vmap_area objects.
1908	 */
1909	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1910
1911	for_each_possible_cpu(i) {
1912		struct vmap_block_queue *vbq;
1913		struct vfree_deferred *p;
1914
1915		vbq = &per_cpu(vmap_block_queue, i);
1916		spin_lock_init(&vbq->lock);
1917		INIT_LIST_HEAD(&vbq->free);
1918		p = &per_cpu(vfree_deferred, i);
1919		init_llist_head(&p->list);
1920		INIT_WORK(&p->wq, free_work);
1921	}
1922
1923	/* Import existing vmlist entries. */
1924	for (tmp = vmlist; tmp; tmp = tmp->next) {
1925		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1926		if (WARN_ON_ONCE(!va))
1927			continue;
1928
1929		va->va_start = (unsigned long)tmp->addr;
1930		va->va_end = va->va_start + tmp->size;
1931		va->vm = tmp;
1932		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1933	}
1934
1935	/*
1936	 * Now we can initialize a free vmap space.
1937	 */
1938	vmap_init_free_space();
1939	vmap_initialized = true;
1940}
1941
1942/**
1943 * map_kernel_range_noflush - map kernel VM area with the specified pages
1944 * @addr: start of the VM area to map
1945 * @size: size of the VM area to map
1946 * @prot: page protection flags to use
1947 * @pages: pages to map
1948 *
1949 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1950 * specify should have been allocated using get_vm_area() and its
1951 * friends.
1952 *
1953 * NOTE:
1954 * This function does NOT do any cache flushing.  The caller is
1955 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1956 * before calling this function.
1957 *
1958 * RETURNS:
1959 * The number of pages mapped on success, -errno on failure.
1960 */
1961int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1962			     pgprot_t prot, struct page **pages)
1963{
1964	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1965}
1966
1967/**
1968 * unmap_kernel_range_noflush - unmap kernel VM area
1969 * @addr: start of the VM area to unmap
1970 * @size: size of the VM area to unmap
1971 *
1972 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1973 * specify should have been allocated using get_vm_area() and its
1974 * friends.
1975 *
1976 * NOTE:
1977 * This function does NOT do any cache flushing.  The caller is
1978 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1979 * before calling this function and flush_tlb_kernel_range() after.
1980 */
1981void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1982{
1983	vunmap_page_range(addr, addr + size);
1984}
1985EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1986
1987/**
1988 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1989 * @addr: start of the VM area to unmap
1990 * @size: size of the VM area to unmap
1991 *
1992 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1993 * the unmapping and tlb after.
1994 */
1995void unmap_kernel_range(unsigned long addr, unsigned long size)
1996{
1997	unsigned long end = addr + size;
1998
1999	flush_cache_vunmap(addr, end);
2000	vunmap_page_range(addr, end);
2001	flush_tlb_kernel_range(addr, end);
2002}
2003EXPORT_SYMBOL_GPL(unmap_kernel_range);
2004
2005int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
 
2006{
2007	unsigned long addr = (unsigned long)area->addr;
2008	unsigned long end = addr + get_vm_area_size(area);
2009	int err;
2010
2011	err = vmap_page_range(addr, end, prot, pages);
2012
2013	return err > 0 ? 0 : err;
2014}
2015EXPORT_SYMBOL_GPL(map_vm_area);
2016
2017static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2018			      unsigned long flags, const void *caller)
2019{
2020	spin_lock(&vmap_area_lock);
2021	vm->flags = flags;
2022	vm->addr = (void *)va->va_start;
2023	vm->size = va->va_end - va->va_start;
2024	vm->caller = caller;
2025	va->vm = vm;
2026	spin_unlock(&vmap_area_lock);
2027}
2028
2029static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2030{
2031	/*
2032	 * Before removing VM_UNINITIALIZED,
2033	 * we should make sure that vm has proper values.
2034	 * Pair with smp_rmb() in show_numa_info().
2035	 */
2036	smp_wmb();
2037	vm->flags &= ~VM_UNINITIALIZED;
2038}
2039
2040static struct vm_struct *__get_vm_area_node(unsigned long size,
2041		unsigned long align, unsigned long flags, unsigned long start,
2042		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
2043{
2044	struct vmap_area *va;
2045	struct vm_struct *area;
 
2046
2047	BUG_ON(in_interrupt());
2048	size = PAGE_ALIGN(size);
2049	if (unlikely(!size))
2050		return NULL;
2051
2052	if (flags & VM_IOREMAP)
2053		align = 1ul << clamp_t(int, get_count_order_long(size),
2054				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2055
2056	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2057	if (unlikely(!area))
2058		return NULL;
2059
2060	if (!(flags & VM_NO_GUARD))
2061		size += PAGE_SIZE;
2062
2063	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2064	if (IS_ERR(va)) {
2065		kfree(area);
2066		return NULL;
2067	}
2068
 
 
2069	setup_vmalloc_vm(area, va, flags, caller);
2070
2071	return area;
2072}
2073
2074struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
2075				unsigned long start, unsigned long end)
2076{
2077	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2078				  GFP_KERNEL, __builtin_return_address(0));
2079}
2080EXPORT_SYMBOL_GPL(__get_vm_area);
2081
2082struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2083				       unsigned long start, unsigned long end,
2084				       const void *caller)
2085{
2086	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2087				  GFP_KERNEL, caller);
2088}
2089
2090/**
2091 * get_vm_area - reserve a contiguous kernel virtual area
2092 * @size:	 size of the area
2093 * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2094 *
2095 * Search an area of @size in the kernel virtual mapping area,
2096 * and reserved it for out purposes.  Returns the area descriptor
2097 * on success or %NULL on failure.
2098 *
2099 * Return: the area descriptor on success or %NULL on failure.
2100 */
2101struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2102{
2103	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2104				  NUMA_NO_NODE, GFP_KERNEL,
2105				  __builtin_return_address(0));
2106}
2107
2108struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2109				const void *caller)
2110{
2111	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2112				  NUMA_NO_NODE, GFP_KERNEL, caller);
2113}
2114
2115/**
2116 * find_vm_area - find a continuous kernel virtual area
2117 * @addr:	  base address
2118 *
2119 * Search for the kernel VM area starting at @addr, and return it.
2120 * It is up to the caller to do all required locking to keep the returned
2121 * pointer valid.
2122 *
2123 * Return: pointer to the found area or %NULL on faulure
2124 */
2125struct vm_struct *find_vm_area(const void *addr)
2126{
2127	struct vmap_area *va;
2128
2129	va = find_vmap_area((unsigned long)addr);
2130	if (!va)
2131		return NULL;
2132
2133	return va->vm;
2134}
2135
2136/**
2137 * remove_vm_area - find and remove a continuous kernel virtual area
2138 * @addr:	    base address
2139 *
2140 * Search for the kernel VM area starting at @addr, and remove it.
2141 * This function returns the found VM area, but using it is NOT safe
2142 * on SMP machines, except for its size or flags.
2143 *
2144 * Return: pointer to the found area or %NULL on faulure
2145 */
2146struct vm_struct *remove_vm_area(const void *addr)
2147{
2148	struct vmap_area *va;
2149
2150	might_sleep();
2151
2152	spin_lock(&vmap_area_lock);
2153	va = __find_vmap_area((unsigned long)addr);
2154	if (va && va->vm) {
2155		struct vm_struct *vm = va->vm;
2156
2157		va->vm = NULL;
2158		spin_unlock(&vmap_area_lock);
2159
2160		kasan_free_shadow(vm);
2161		free_unmap_vmap_area(va);
2162
2163		return vm;
2164	}
2165
2166	spin_unlock(&vmap_area_lock);
2167	return NULL;
2168}
2169
2170static inline void set_area_direct_map(const struct vm_struct *area,
2171				       int (*set_direct_map)(struct page *page))
2172{
2173	int i;
2174
2175	for (i = 0; i < area->nr_pages; i++)
2176		if (page_address(area->pages[i]))
2177			set_direct_map(area->pages[i]);
2178}
2179
2180/* Handle removing and resetting vm mappings related to the vm_struct. */
2181static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2182{
2183	unsigned long start = ULONG_MAX, end = 0;
2184	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2185	int flush_dmap = 0;
2186	int i;
2187
2188	remove_vm_area(area->addr);
2189
2190	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2191	if (!flush_reset)
2192		return;
2193
2194	/*
2195	 * If not deallocating pages, just do the flush of the VM area and
2196	 * return.
2197	 */
2198	if (!deallocate_pages) {
2199		vm_unmap_aliases();
2200		return;
2201	}
2202
2203	/*
2204	 * If execution gets here, flush the vm mapping and reset the direct
2205	 * map. Find the start and end range of the direct mappings to make sure
2206	 * the vm_unmap_aliases() flush includes the direct map.
2207	 */
2208	for (i = 0; i < area->nr_pages; i++) {
2209		unsigned long addr = (unsigned long)page_address(area->pages[i]);
2210		if (addr) {
2211			start = min(addr, start);
2212			end = max(addr + PAGE_SIZE, end);
2213			flush_dmap = 1;
2214		}
2215	}
2216
2217	/*
2218	 * Set direct map to something invalid so that it won't be cached if
2219	 * there are any accesses after the TLB flush, then flush the TLB and
2220	 * reset the direct map permissions to the default.
2221	 */
2222	set_area_direct_map(area, set_direct_map_invalid_noflush);
2223	_vm_unmap_aliases(start, end, flush_dmap);
2224	set_area_direct_map(area, set_direct_map_default_noflush);
2225}
2226
2227static void __vunmap(const void *addr, int deallocate_pages)
2228{
2229	struct vm_struct *area;
2230
2231	if (!addr)
2232		return;
2233
2234	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2235			addr))
2236		return;
2237
2238	area = find_vm_area(addr);
2239	if (unlikely(!area)) {
2240		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2241				addr);
2242		return;
2243	}
2244
2245	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2246	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2247
 
 
2248	vm_remove_mappings(area, deallocate_pages);
2249
2250	if (deallocate_pages) {
2251		int i;
2252
2253		for (i = 0; i < area->nr_pages; i++) {
2254			struct page *page = area->pages[i];
2255
2256			BUG_ON(!page);
2257			__free_pages(page, 0);
2258		}
2259		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2260
2261		kvfree(area->pages);
2262	}
2263
2264	kfree(area);
2265	return;
2266}
2267
2268static inline void __vfree_deferred(const void *addr)
2269{
2270	/*
2271	 * Use raw_cpu_ptr() because this can be called from preemptible
2272	 * context. Preemption is absolutely fine here, because the llist_add()
2273	 * implementation is lockless, so it works even if we are adding to
2274	 * nother cpu's list.  schedule_work() should be fine with this too.
2275	 */
2276	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2277
2278	if (llist_add((struct llist_node *)addr, &p->list))
2279		schedule_work(&p->wq);
2280}
2281
2282/**
2283 * vfree_atomic - release memory allocated by vmalloc()
2284 * @addr:	  memory base address
2285 *
2286 * This one is just like vfree() but can be called in any atomic context
2287 * except NMIs.
2288 */
2289void vfree_atomic(const void *addr)
2290{
2291	BUG_ON(in_nmi());
2292
2293	kmemleak_free(addr);
2294
2295	if (!addr)
2296		return;
2297	__vfree_deferred(addr);
2298}
2299
2300static void __vfree(const void *addr)
2301{
2302	if (unlikely(in_interrupt()))
2303		__vfree_deferred(addr);
2304	else
2305		__vunmap(addr, 1);
2306}
2307
2308/**
2309 * vfree - release memory allocated by vmalloc()
2310 * @addr:  memory base address
2311 *
2312 * Free the virtually continuous memory area starting at @addr, as
2313 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2314 * NULL, no operation is performed.
2315 *
2316 * Must not be called in NMI context (strictly speaking, only if we don't
2317 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2318 * conventions for vfree() arch-depenedent would be a really bad idea)
2319 *
2320 * May sleep if called *not* from interrupt context.
2321 *
2322 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
2323 */
2324void vfree(const void *addr)
2325{
2326	BUG_ON(in_nmi());
2327
2328	kmemleak_free(addr);
2329
2330	might_sleep_if(!in_interrupt());
2331
2332	if (!addr)
2333		return;
2334
2335	__vfree(addr);
2336}
2337EXPORT_SYMBOL(vfree);
2338
2339/**
2340 * vunmap - release virtual mapping obtained by vmap()
2341 * @addr:   memory base address
2342 *
2343 * Free the virtually contiguous memory area starting at @addr,
2344 * which was created from the page array passed to vmap().
2345 *
2346 * Must not be called in interrupt context.
2347 */
2348void vunmap(const void *addr)
2349{
2350	BUG_ON(in_interrupt());
2351	might_sleep();
2352	if (addr)
2353		__vunmap(addr, 0);
2354}
2355EXPORT_SYMBOL(vunmap);
2356
2357/**
2358 * vmap - map an array of pages into virtually contiguous space
2359 * @pages: array of page pointers
2360 * @count: number of pages to map
2361 * @flags: vm_area->flags
2362 * @prot: page protection for the mapping
2363 *
2364 * Maps @count pages from @pages into contiguous kernel virtual
2365 * space.
2366 *
2367 * Return: the address of the area or %NULL on failure
2368 */
2369void *vmap(struct page **pages, unsigned int count,
2370	   unsigned long flags, pgprot_t prot)
2371{
2372	struct vm_struct *area;
2373	unsigned long size;		/* In bytes */
2374
2375	might_sleep();
2376
2377	if (count > totalram_pages())
2378		return NULL;
2379
2380	size = (unsigned long)count << PAGE_SHIFT;
2381	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2382	if (!area)
2383		return NULL;
2384
2385	if (map_vm_area(area, prot, pages)) {
 
2386		vunmap(area->addr);
2387		return NULL;
2388	}
2389
2390	return area->addr;
2391}
2392EXPORT_SYMBOL(vmap);
2393
2394static void *__vmalloc_node(unsigned long size, unsigned long align,
2395			    gfp_t gfp_mask, pgprot_t prot,
2396			    int node, const void *caller);
2397static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2398				 pgprot_t prot, int node)
2399{
2400	struct page **pages;
2401	unsigned int nr_pages, array_size, i;
2402	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2403	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2404	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2405					0 :
2406					__GFP_HIGHMEM;
2407
2408	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2409	array_size = (nr_pages * sizeof(struct page *));
2410
2411	/* Please note that the recursion is strictly bounded. */
2412	if (array_size > PAGE_SIZE) {
2413		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2414				PAGE_KERNEL, node, area->caller);
2415	} else {
2416		pages = kmalloc_node(array_size, nested_gfp, node);
2417	}
2418
2419	if (!pages) {
2420		remove_vm_area(area->addr);
2421		kfree(area);
2422		return NULL;
2423	}
2424
2425	area->pages = pages;
2426	area->nr_pages = nr_pages;
2427
2428	for (i = 0; i < area->nr_pages; i++) {
2429		struct page *page;
2430
2431		if (node == NUMA_NO_NODE)
2432			page = alloc_page(alloc_mask|highmem_mask);
2433		else
2434			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2435
2436		if (unlikely(!page)) {
2437			/* Successfully allocated i pages, free them in __vunmap() */
2438			area->nr_pages = i;
2439			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2440			goto fail;
2441		}
2442		area->pages[i] = page;
2443		if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
2444			cond_resched();
2445	}
2446	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2447
2448	if (map_vm_area(area, prot, pages))
 
2449		goto fail;
 
2450	return area->addr;
2451
2452fail:
2453	warn_alloc(gfp_mask, NULL,
2454			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
2455			  (area->nr_pages*PAGE_SIZE), area->size);
2456	__vfree(area->addr);
2457	return NULL;
2458}
2459
2460/**
2461 * __vmalloc_node_range - allocate virtually contiguous memory
2462 * @size:		  allocation size
2463 * @align:		  desired alignment
2464 * @start:		  vm area range start
2465 * @end:		  vm area range end
2466 * @gfp_mask:		  flags for the page level allocator
2467 * @prot:		  protection mask for the allocated pages
2468 * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
2469 * @node:		  node to use for allocation or NUMA_NO_NODE
2470 * @caller:		  caller's return address
2471 *
2472 * Allocate enough pages to cover @size from the page level
2473 * allocator with @gfp_mask flags.  Map them into contiguous
2474 * kernel virtual space, using a pagetable protection of @prot.
2475 *
2476 * Return: the address of the area or %NULL on failure
2477 */
2478void *__vmalloc_node_range(unsigned long size, unsigned long align,
2479			unsigned long start, unsigned long end, gfp_t gfp_mask,
2480			pgprot_t prot, unsigned long vm_flags, int node,
2481			const void *caller)
2482{
2483	struct vm_struct *area;
2484	void *addr;
2485	unsigned long real_size = size;
2486
2487	size = PAGE_ALIGN(size);
2488	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2489		goto fail;
2490
2491	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
2492				vm_flags, start, end, node, gfp_mask, caller);
2493	if (!area)
2494		goto fail;
2495
2496	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2497	if (!addr)
2498		return NULL;
2499
2500	/*
2501	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2502	 * flag. It means that vm_struct is not fully initialized.
2503	 * Now, it is fully initialized, so remove this flag here.
2504	 */
2505	clear_vm_uninitialized_flag(area);
2506
2507	kmemleak_vmalloc(area, size, gfp_mask);
2508
2509	return addr;
2510
2511fail:
2512	warn_alloc(gfp_mask, NULL,
2513			  "vmalloc: allocation failure: %lu bytes", real_size);
2514	return NULL;
2515}
2516
2517/*
2518 * This is only for performance analysis of vmalloc and stress purpose.
2519 * It is required by vmalloc test module, therefore do not use it other
2520 * than that.
2521 */
2522#ifdef CONFIG_TEST_VMALLOC_MODULE
2523EXPORT_SYMBOL_GPL(__vmalloc_node_range);
2524#endif
2525
2526/**
2527 * __vmalloc_node - allocate virtually contiguous memory
2528 * @size:	    allocation size
2529 * @align:	    desired alignment
2530 * @gfp_mask:	    flags for the page level allocator
2531 * @prot:	    protection mask for the allocated pages
2532 * @node:	    node to use for allocation or NUMA_NO_NODE
2533 * @caller:	    caller's return address
2534 *
2535 * Allocate enough pages to cover @size from the page level
2536 * allocator with @gfp_mask flags.  Map them into contiguous
2537 * kernel virtual space, using a pagetable protection of @prot.
2538 *
2539 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2540 * and __GFP_NOFAIL are not supported
2541 *
2542 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2543 * with mm people.
2544 *
2545 * Return: pointer to the allocated memory or %NULL on error
2546 */
2547static void *__vmalloc_node(unsigned long size, unsigned long align,
2548			    gfp_t gfp_mask, pgprot_t prot,
2549			    int node, const void *caller)
2550{
2551	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2552				gfp_mask, prot, 0, node, caller);
2553}
 
 
 
 
 
 
 
 
2554
2555void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
2556{
2557	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
2558				__builtin_return_address(0));
2559}
2560EXPORT_SYMBOL(__vmalloc);
2561
2562static inline void *__vmalloc_node_flags(unsigned long size,
2563					int node, gfp_t flags)
2564{
2565	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
2566					node, __builtin_return_address(0));
2567}
2568
2569
2570void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
2571				  void *caller)
2572{
2573	return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
2574}
2575
2576/**
2577 * vmalloc - allocate virtually contiguous memory
2578 * @size:    allocation size
2579 *
2580 * Allocate enough pages to cover @size from the page level
2581 * allocator and map them into contiguous kernel virtual space.
2582 *
2583 * For tight control over page level allocator and protection flags
2584 * use __vmalloc() instead.
2585 *
2586 * Return: pointer to the allocated memory or %NULL on error
2587 */
2588void *vmalloc(unsigned long size)
2589{
2590	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2591				    GFP_KERNEL);
2592}
2593EXPORT_SYMBOL(vmalloc);
2594
2595/**
2596 * vzalloc - allocate virtually contiguous memory with zero fill
2597 * @size:    allocation size
2598 *
2599 * Allocate enough pages to cover @size from the page level
2600 * allocator and map them into contiguous kernel virtual space.
2601 * The memory allocated is set to zero.
2602 *
2603 * For tight control over page level allocator and protection flags
2604 * use __vmalloc() instead.
2605 *
2606 * Return: pointer to the allocated memory or %NULL on error
2607 */
2608void *vzalloc(unsigned long size)
2609{
2610	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2611				GFP_KERNEL | __GFP_ZERO);
2612}
2613EXPORT_SYMBOL(vzalloc);
2614
2615/**
2616 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2617 * @size: allocation size
2618 *
2619 * The resulting memory area is zeroed so it can be mapped to userspace
2620 * without leaking data.
2621 *
2622 * Return: pointer to the allocated memory or %NULL on error
2623 */
2624void *vmalloc_user(unsigned long size)
2625{
2626	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2627				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2628				    VM_USERMAP, NUMA_NO_NODE,
2629				    __builtin_return_address(0));
2630}
2631EXPORT_SYMBOL(vmalloc_user);
2632
2633/**
2634 * vmalloc_node - allocate memory on a specific node
2635 * @size:	  allocation size
2636 * @node:	  numa node
2637 *
2638 * Allocate enough pages to cover @size from the page level
2639 * allocator and map them into contiguous kernel virtual space.
2640 *
2641 * For tight control over page level allocator and protection flags
2642 * use __vmalloc() instead.
2643 *
2644 * Return: pointer to the allocated memory or %NULL on error
2645 */
2646void *vmalloc_node(unsigned long size, int node)
2647{
2648	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
2649					node, __builtin_return_address(0));
2650}
2651EXPORT_SYMBOL(vmalloc_node);
2652
2653/**
2654 * vzalloc_node - allocate memory on a specific node with zero fill
2655 * @size:	allocation size
2656 * @node:	numa node
2657 *
2658 * Allocate enough pages to cover @size from the page level
2659 * allocator and map them into contiguous kernel virtual space.
2660 * The memory allocated is set to zero.
2661 *
2662 * For tight control over page level allocator and protection flags
2663 * use __vmalloc_node() instead.
2664 *
2665 * Return: pointer to the allocated memory or %NULL on error
2666 */
2667void *vzalloc_node(unsigned long size, int node)
2668{
2669	return __vmalloc_node_flags(size, node,
2670			 GFP_KERNEL | __GFP_ZERO);
2671}
2672EXPORT_SYMBOL(vzalloc_node);
2673
2674/**
2675 * vmalloc_exec - allocate virtually contiguous, executable memory
2676 * @size:	  allocation size
2677 *
2678 * Kernel-internal function to allocate enough pages to cover @size
2679 * the page level allocator and map them into contiguous and
2680 * executable kernel virtual space.
2681 *
2682 * For tight control over page level allocator and protection flags
2683 * use __vmalloc() instead.
2684 *
2685 * Return: pointer to the allocated memory or %NULL on error
2686 */
2687void *vmalloc_exec(unsigned long size)
2688{
2689	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2690			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2691			NUMA_NO_NODE, __builtin_return_address(0));
2692}
2693
2694#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2695#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2696#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2697#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2698#else
2699/*
2700 * 64b systems should always have either DMA or DMA32 zones. For others
2701 * GFP_DMA32 should do the right thing and use the normal zone.
2702 */
2703#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2704#endif
2705
2706/**
2707 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2708 * @size:	allocation size
2709 *
2710 * Allocate enough 32bit PA addressable pages to cover @size from the
2711 * page level allocator and map them into contiguous kernel virtual space.
2712 *
2713 * Return: pointer to the allocated memory or %NULL on error
2714 */
2715void *vmalloc_32(unsigned long size)
2716{
2717	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
2718			      NUMA_NO_NODE, __builtin_return_address(0));
2719}
2720EXPORT_SYMBOL(vmalloc_32);
2721
2722/**
2723 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2724 * @size:	     allocation size
2725 *
2726 * The resulting memory area is 32bit addressable and zeroed so it can be
2727 * mapped to userspace without leaking data.
2728 *
2729 * Return: pointer to the allocated memory or %NULL on error
2730 */
2731void *vmalloc_32_user(unsigned long size)
2732{
2733	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2734				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2735				    VM_USERMAP, NUMA_NO_NODE,
2736				    __builtin_return_address(0));
2737}
2738EXPORT_SYMBOL(vmalloc_32_user);
2739
2740/*
2741 * small helper routine , copy contents to buf from addr.
2742 * If the page is not present, fill zero.
2743 */
2744
2745static int aligned_vread(char *buf, char *addr, unsigned long count)
2746{
2747	struct page *p;
2748	int copied = 0;
2749
2750	while (count) {
2751		unsigned long offset, length;
2752
2753		offset = offset_in_page(addr);
2754		length = PAGE_SIZE - offset;
2755		if (length > count)
2756			length = count;
2757		p = vmalloc_to_page(addr);
2758		/*
2759		 * To do safe access to this _mapped_ area, we need
2760		 * lock. But adding lock here means that we need to add
2761		 * overhead of vmalloc()/vfree() calles for this _debug_
2762		 * interface, rarely used. Instead of that, we'll use
2763		 * kmap() and get small overhead in this access function.
2764		 */
2765		if (p) {
2766			/*
2767			 * we can expect USER0 is not used (see vread/vwrite's
2768			 * function description)
2769			 */
2770			void *map = kmap_atomic(p);
2771			memcpy(buf, map + offset, length);
2772			kunmap_atomic(map);
2773		} else
2774			memset(buf, 0, length);
2775
2776		addr += length;
2777		buf += length;
2778		copied += length;
2779		count -= length;
2780	}
2781	return copied;
2782}
2783
2784static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2785{
2786	struct page *p;
2787	int copied = 0;
2788
2789	while (count) {
2790		unsigned long offset, length;
2791
2792		offset = offset_in_page(addr);
2793		length = PAGE_SIZE - offset;
2794		if (length > count)
2795			length = count;
2796		p = vmalloc_to_page(addr);
2797		/*
2798		 * To do safe access to this _mapped_ area, we need
2799		 * lock. But adding lock here means that we need to add
2800		 * overhead of vmalloc()/vfree() calles for this _debug_
2801		 * interface, rarely used. Instead of that, we'll use
2802		 * kmap() and get small overhead in this access function.
2803		 */
2804		if (p) {
2805			/*
2806			 * we can expect USER0 is not used (see vread/vwrite's
2807			 * function description)
2808			 */
2809			void *map = kmap_atomic(p);
2810			memcpy(map + offset, buf, length);
2811			kunmap_atomic(map);
2812		}
2813		addr += length;
2814		buf += length;
2815		copied += length;
2816		count -= length;
2817	}
2818	return copied;
2819}
2820
2821/**
2822 * vread() - read vmalloc area in a safe way.
2823 * @buf:     buffer for reading data
2824 * @addr:    vm address.
2825 * @count:   number of bytes to be read.
2826 *
2827 * This function checks that addr is a valid vmalloc'ed area, and
2828 * copy data from that area to a given buffer. If the given memory range
2829 * of [addr...addr+count) includes some valid address, data is copied to
2830 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2831 * IOREMAP area is treated as memory hole and no copy is done.
2832 *
2833 * If [addr...addr+count) doesn't includes any intersects with alive
2834 * vm_struct area, returns 0. @buf should be kernel's buffer.
2835 *
2836 * Note: In usual ops, vread() is never necessary because the caller
2837 * should know vmalloc() area is valid and can use memcpy().
2838 * This is for routines which have to access vmalloc area without
2839 * any information, as /dev/kmem.
2840 *
2841 * Return: number of bytes for which addr and buf should be increased
2842 * (same number as @count) or %0 if [addr...addr+count) doesn't
2843 * include any intersection with valid vmalloc area
2844 */
2845long vread(char *buf, char *addr, unsigned long count)
2846{
2847	struct vmap_area *va;
2848	struct vm_struct *vm;
2849	char *vaddr, *buf_start = buf;
2850	unsigned long buflen = count;
2851	unsigned long n;
2852
2853	/* Don't allow overflow */
2854	if ((unsigned long) addr + count < count)
2855		count = -(unsigned long) addr;
2856
2857	spin_lock(&vmap_area_lock);
2858	list_for_each_entry(va, &vmap_area_list, list) {
2859		if (!count)
2860			break;
2861
2862		if (!va->vm)
2863			continue;
2864
2865		vm = va->vm;
2866		vaddr = (char *) vm->addr;
2867		if (addr >= vaddr + get_vm_area_size(vm))
2868			continue;
2869		while (addr < vaddr) {
2870			if (count == 0)
2871				goto finished;
2872			*buf = '\0';
2873			buf++;
2874			addr++;
2875			count--;
2876		}
2877		n = vaddr + get_vm_area_size(vm) - addr;
2878		if (n > count)
2879			n = count;
2880		if (!(vm->flags & VM_IOREMAP))
2881			aligned_vread(buf, addr, n);
2882		else /* IOREMAP area is treated as memory hole */
2883			memset(buf, 0, n);
2884		buf += n;
2885		addr += n;
2886		count -= n;
2887	}
2888finished:
2889	spin_unlock(&vmap_area_lock);
2890
2891	if (buf == buf_start)
2892		return 0;
2893	/* zero-fill memory holes */
2894	if (buf != buf_start + buflen)
2895		memset(buf, 0, buflen - (buf - buf_start));
2896
2897	return buflen;
2898}
2899
2900/**
2901 * vwrite() - write vmalloc area in a safe way.
2902 * @buf:      buffer for source data
2903 * @addr:     vm address.
2904 * @count:    number of bytes to be read.
2905 *
2906 * This function checks that addr is a valid vmalloc'ed area, and
2907 * copy data from a buffer to the given addr. If specified range of
2908 * [addr...addr+count) includes some valid address, data is copied from
2909 * proper area of @buf. If there are memory holes, no copy to hole.
2910 * IOREMAP area is treated as memory hole and no copy is done.
2911 *
2912 * If [addr...addr+count) doesn't includes any intersects with alive
2913 * vm_struct area, returns 0. @buf should be kernel's buffer.
2914 *
2915 * Note: In usual ops, vwrite() is never necessary because the caller
2916 * should know vmalloc() area is valid and can use memcpy().
2917 * This is for routines which have to access vmalloc area without
2918 * any information, as /dev/kmem.
2919 *
2920 * Return: number of bytes for which addr and buf should be
2921 * increased (same number as @count) or %0 if [addr...addr+count)
2922 * doesn't include any intersection with valid vmalloc area
2923 */
2924long vwrite(char *buf, char *addr, unsigned long count)
2925{
2926	struct vmap_area *va;
2927	struct vm_struct *vm;
2928	char *vaddr;
2929	unsigned long n, buflen;
2930	int copied = 0;
2931
2932	/* Don't allow overflow */
2933	if ((unsigned long) addr + count < count)
2934		count = -(unsigned long) addr;
2935	buflen = count;
2936
2937	spin_lock(&vmap_area_lock);
2938	list_for_each_entry(va, &vmap_area_list, list) {
2939		if (!count)
2940			break;
2941
2942		if (!va->vm)
2943			continue;
2944
2945		vm = va->vm;
2946		vaddr = (char *) vm->addr;
2947		if (addr >= vaddr + get_vm_area_size(vm))
2948			continue;
2949		while (addr < vaddr) {
2950			if (count == 0)
2951				goto finished;
2952			buf++;
2953			addr++;
2954			count--;
2955		}
2956		n = vaddr + get_vm_area_size(vm) - addr;
2957		if (n > count)
2958			n = count;
2959		if (!(vm->flags & VM_IOREMAP)) {
2960			aligned_vwrite(buf, addr, n);
2961			copied++;
2962		}
2963		buf += n;
2964		addr += n;
2965		count -= n;
2966	}
2967finished:
2968	spin_unlock(&vmap_area_lock);
2969	if (!copied)
2970		return 0;
2971	return buflen;
2972}
2973
2974/**
2975 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2976 * @vma:		vma to cover
2977 * @uaddr:		target user address to start at
2978 * @kaddr:		virtual address of vmalloc kernel memory
 
2979 * @size:		size of map area
2980 *
2981 * Returns:	0 for success, -Exxx on failure
2982 *
2983 * This function checks that @kaddr is a valid vmalloc'ed area,
2984 * and that it is big enough to cover the range starting at
2985 * @uaddr in @vma. Will return failure if that criteria isn't
2986 * met.
2987 *
2988 * Similar to remap_pfn_range() (see mm/memory.c)
2989 */
2990int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2991				void *kaddr, unsigned long size)
 
2992{
2993	struct vm_struct *area;
 
 
 
 
 
2994
2995	size = PAGE_ALIGN(size);
2996
2997	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2998		return -EINVAL;
2999
3000	area = find_vm_area(kaddr);
3001	if (!area)
3002		return -EINVAL;
3003
3004	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3005		return -EINVAL;
3006
3007	if (kaddr + size > area->addr + get_vm_area_size(area))
 
3008		return -EINVAL;
 
3009
3010	do {
3011		struct page *page = vmalloc_to_page(kaddr);
3012		int ret;
3013
3014		ret = vm_insert_page(vma, uaddr, page);
3015		if (ret)
3016			return ret;
3017
3018		uaddr += PAGE_SIZE;
3019		kaddr += PAGE_SIZE;
3020		size -= PAGE_SIZE;
3021	} while (size > 0);
3022
3023	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3024
3025	return 0;
3026}
3027EXPORT_SYMBOL(remap_vmalloc_range_partial);
3028
3029/**
3030 * remap_vmalloc_range - map vmalloc pages to userspace
3031 * @vma:		vma to cover (map full range of vma)
3032 * @addr:		vmalloc memory
3033 * @pgoff:		number of pages into addr before first page to map
3034 *
3035 * Returns:	0 for success, -Exxx on failure
3036 *
3037 * This function checks that addr is a valid vmalloc'ed area, and
3038 * that it is big enough to cover the vma. Will return failure if
3039 * that criteria isn't met.
3040 *
3041 * Similar to remap_pfn_range() (see mm/memory.c)
3042 */
3043int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3044						unsigned long pgoff)
3045{
3046	return remap_vmalloc_range_partial(vma, vma->vm_start,
3047					   addr + (pgoff << PAGE_SHIFT),
3048					   vma->vm_end - vma->vm_start);
3049}
3050EXPORT_SYMBOL(remap_vmalloc_range);
3051
3052/*
3053 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
3054 * have one.
3055 *
3056 * The purpose of this function is to make sure the vmalloc area
3057 * mappings are identical in all page-tables in the system.
3058 */
3059void __weak vmalloc_sync_all(void)
3060{
3061}
3062
3063
3064static int f(pte_t *pte, unsigned long addr, void *data)
3065{
3066	pte_t ***p = data;
3067
3068	if (p) {
3069		*(*p) = pte;
3070		(*p)++;
3071	}
3072	return 0;
3073}
3074
3075/**
3076 * alloc_vm_area - allocate a range of kernel address space
3077 * @size:	   size of the area
3078 * @ptes:	   returns the PTEs for the address space
3079 *
3080 * Returns:	NULL on failure, vm_struct on success
3081 *
3082 * This function reserves a range of kernel address space, and
3083 * allocates pagetables to map that range.  No actual mappings
3084 * are created.
3085 *
3086 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3087 * allocated for the VM area are returned.
3088 */
3089struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3090{
3091	struct vm_struct *area;
3092
3093	area = get_vm_area_caller(size, VM_IOREMAP,
3094				__builtin_return_address(0));
3095	if (area == NULL)
3096		return NULL;
3097
3098	/*
3099	 * This ensures that page tables are constructed for this region
3100	 * of kernel virtual address space and mapped into init_mm.
3101	 */
3102	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3103				size, f, ptes ? &ptes : NULL)) {
3104		free_vm_area(area);
3105		return NULL;
3106	}
3107
3108	return area;
3109}
3110EXPORT_SYMBOL_GPL(alloc_vm_area);
3111
3112void free_vm_area(struct vm_struct *area)
3113{
3114	struct vm_struct *ret;
3115	ret = remove_vm_area(area->addr);
3116	BUG_ON(ret != area);
3117	kfree(area);
3118}
3119EXPORT_SYMBOL_GPL(free_vm_area);
3120
3121#ifdef CONFIG_SMP
3122static struct vmap_area *node_to_va(struct rb_node *n)
3123{
3124	return rb_entry_safe(n, struct vmap_area, rb_node);
3125}
3126
3127/**
3128 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3129 * @addr: target address
3130 *
3131 * Returns: vmap_area if it is found. If there is no such area
3132 *   the first highest(reverse order) vmap_area is returned
3133 *   i.e. va->va_start < addr && va->va_end < addr or NULL
3134 *   if there are no any areas before @addr.
3135 */
3136static struct vmap_area *
3137pvm_find_va_enclose_addr(unsigned long addr)
3138{
3139	struct vmap_area *va, *tmp;
3140	struct rb_node *n;
3141
3142	n = free_vmap_area_root.rb_node;
3143	va = NULL;
3144
3145	while (n) {
3146		tmp = rb_entry(n, struct vmap_area, rb_node);
3147		if (tmp->va_start <= addr) {
3148			va = tmp;
3149			if (tmp->va_end >= addr)
3150				break;
3151
3152			n = n->rb_right;
3153		} else {
3154			n = n->rb_left;
3155		}
3156	}
3157
3158	return va;
3159}
3160
3161/**
3162 * pvm_determine_end_from_reverse - find the highest aligned address
3163 * of free block below VMALLOC_END
3164 * @va:
3165 *   in - the VA we start the search(reverse order);
3166 *   out - the VA with the highest aligned end address.
3167 *
3168 * Returns: determined end address within vmap_area
3169 */
3170static unsigned long
3171pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3172{
3173	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3174	unsigned long addr;
3175
3176	if (likely(*va)) {
3177		list_for_each_entry_from_reverse((*va),
3178				&free_vmap_area_list, list) {
3179			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3180			if ((*va)->va_start < addr)
3181				return addr;
3182		}
3183	}
3184
3185	return 0;
3186}
3187
3188/**
3189 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3190 * @offsets: array containing offset of each area
3191 * @sizes: array containing size of each area
3192 * @nr_vms: the number of areas to allocate
3193 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3194 *
3195 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3196 *	    vm_structs on success, %NULL on failure
3197 *
3198 * Percpu allocator wants to use congruent vm areas so that it can
3199 * maintain the offsets among percpu areas.  This function allocates
3200 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3201 * be scattered pretty far, distance between two areas easily going up
3202 * to gigabytes.  To avoid interacting with regular vmallocs, these
3203 * areas are allocated from top.
3204 *
3205 * Despite its complicated look, this allocator is rather simple. It
3206 * does everything top-down and scans free blocks from the end looking
3207 * for matching base. While scanning, if any of the areas do not fit the
3208 * base address is pulled down to fit the area. Scanning is repeated till
3209 * all the areas fit and then all necessary data structures are inserted
3210 * and the result is returned.
3211 */
3212struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3213				     const size_t *sizes, int nr_vms,
3214				     size_t align)
3215{
3216	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3217	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3218	struct vmap_area **vas, *va;
3219	struct vm_struct **vms;
3220	int area, area2, last_area, term_area;
3221	unsigned long base, start, size, end, last_end;
3222	bool purged = false;
3223	enum fit_type type;
3224
3225	/* verify parameters and allocate data structures */
3226	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3227	for (last_area = 0, area = 0; area < nr_vms; area++) {
3228		start = offsets[area];
3229		end = start + sizes[area];
3230
3231		/* is everything aligned properly? */
3232		BUG_ON(!IS_ALIGNED(offsets[area], align));
3233		BUG_ON(!IS_ALIGNED(sizes[area], align));
3234
3235		/* detect the area with the highest address */
3236		if (start > offsets[last_area])
3237			last_area = area;
3238
3239		for (area2 = area + 1; area2 < nr_vms; area2++) {
3240			unsigned long start2 = offsets[area2];
3241			unsigned long end2 = start2 + sizes[area2];
3242
3243			BUG_ON(start2 < end && start < end2);
3244		}
3245	}
3246	last_end = offsets[last_area] + sizes[last_area];
3247
3248	if (vmalloc_end - vmalloc_start < last_end) {
3249		WARN_ON(true);
3250		return NULL;
3251	}
3252
3253	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3254	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3255	if (!vas || !vms)
3256		goto err_free2;
3257
3258	for (area = 0; area < nr_vms; area++) {
3259		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3260		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3261		if (!vas[area] || !vms[area])
3262			goto err_free;
3263	}
3264retry:
3265	spin_lock(&vmap_area_lock);
3266
3267	/* start scanning - we scan from the top, begin with the last area */
3268	area = term_area = last_area;
3269	start = offsets[area];
3270	end = start + sizes[area];
3271
3272	va = pvm_find_va_enclose_addr(vmalloc_end);
3273	base = pvm_determine_end_from_reverse(&va, align) - end;
3274
3275	while (true) {
3276		/*
3277		 * base might have underflowed, add last_end before
3278		 * comparing.
3279		 */
3280		if (base + last_end < vmalloc_start + last_end)
3281			goto overflow;
3282
3283		/*
3284		 * Fitting base has not been found.
3285		 */
3286		if (va == NULL)
3287			goto overflow;
3288
3289		/*
3290		 * If required width exeeds current VA block, move
3291		 * base downwards and then recheck.
3292		 */
3293		if (base + end > va->va_end) {
3294			base = pvm_determine_end_from_reverse(&va, align) - end;
3295			term_area = area;
3296			continue;
3297		}
3298
3299		/*
3300		 * If this VA does not fit, move base downwards and recheck.
3301		 */
3302		if (base + start < va->va_start) {
3303			va = node_to_va(rb_prev(&va->rb_node));
3304			base = pvm_determine_end_from_reverse(&va, align) - end;
3305			term_area = area;
3306			continue;
3307		}
3308
3309		/*
3310		 * This area fits, move on to the previous one.  If
3311		 * the previous one is the terminal one, we're done.
3312		 */
3313		area = (area + nr_vms - 1) % nr_vms;
3314		if (area == term_area)
3315			break;
3316
3317		start = offsets[area];
3318		end = start + sizes[area];
3319		va = pvm_find_va_enclose_addr(base + end);
3320	}
3321
3322	/* we've found a fitting base, insert all va's */
3323	for (area = 0; area < nr_vms; area++) {
3324		int ret;
3325
3326		start = base + offsets[area];
3327		size = sizes[area];
3328
3329		va = pvm_find_va_enclose_addr(start);
3330		if (WARN_ON_ONCE(va == NULL))
3331			/* It is a BUG(), but trigger recovery instead. */
3332			goto recovery;
3333
3334		type = classify_va_fit_type(va, start, size);
3335		if (WARN_ON_ONCE(type == NOTHING_FIT))
3336			/* It is a BUG(), but trigger recovery instead. */
3337			goto recovery;
3338
3339		ret = adjust_va_to_fit_type(va, start, size, type);
3340		if (unlikely(ret))
3341			goto recovery;
3342
3343		/* Allocated area. */
3344		va = vas[area];
3345		va->va_start = start;
3346		va->va_end = start + size;
 
 
 
 
 
 
 
 
3347
3348		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
 
3349	}
3350
3351	spin_unlock(&vmap_area_lock);
 
 
 
3352
3353	/* insert all vm's */
3354	for (area = 0; area < nr_vms; area++)
3355		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
3356				 pcpu_get_vm_areas);
 
 
3357
3358	kfree(vas);
3359	return vms;
3360
3361recovery:
3362	/* Remove previously inserted areas. */
 
 
 
 
 
3363	while (area--) {
3364		__free_vmap_area(vas[area]);
 
 
 
 
 
 
3365		vas[area] = NULL;
3366	}
3367
3368overflow:
3369	spin_unlock(&vmap_area_lock);
3370	if (!purged) {
3371		purge_vmap_area_lazy();
3372		purged = true;
3373
3374		/* Before "retry", check if we recover. */
3375		for (area = 0; area < nr_vms; area++) {
3376			if (vas[area])
3377				continue;
3378
3379			vas[area] = kmem_cache_zalloc(
3380				vmap_area_cachep, GFP_KERNEL);
3381			if (!vas[area])
3382				goto err_free;
3383		}
3384
3385		goto retry;
3386	}
3387
3388err_free:
3389	for (area = 0; area < nr_vms; area++) {
3390		if (vas[area])
3391			kmem_cache_free(vmap_area_cachep, vas[area]);
3392
3393		kfree(vms[area]);
3394	}
3395err_free2:
3396	kfree(vas);
3397	kfree(vms);
3398	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3399}
3400
3401/**
3402 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3403 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3404 * @nr_vms: the number of allocated areas
3405 *
3406 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3407 */
3408void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3409{
3410	int i;
3411
3412	for (i = 0; i < nr_vms; i++)
3413		free_vm_area(vms[i]);
3414	kfree(vms);
3415}
3416#endif	/* CONFIG_SMP */
3417
3418#ifdef CONFIG_PROC_FS
3419static void *s_start(struct seq_file *m, loff_t *pos)
 
3420	__acquires(&vmap_area_lock)
3421{
 
3422	spin_lock(&vmap_area_lock);
 
3423	return seq_list_start(&vmap_area_list, *pos);
3424}
3425
3426static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3427{
3428	return seq_list_next(p, &vmap_area_list, pos);
3429}
3430
3431static void s_stop(struct seq_file *m, void *p)
 
3432	__releases(&vmap_area_lock)
3433{
 
3434	spin_unlock(&vmap_area_lock);
3435}
3436
3437static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3438{
3439	if (IS_ENABLED(CONFIG_NUMA)) {
3440		unsigned int nr, *counters = m->private;
3441
3442		if (!counters)
3443			return;
3444
3445		if (v->flags & VM_UNINITIALIZED)
3446			return;
3447		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3448		smp_rmb();
3449
3450		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3451
3452		for (nr = 0; nr < v->nr_pages; nr++)
3453			counters[page_to_nid(v->pages[nr])]++;
3454
3455		for_each_node_state(nr, N_HIGH_MEMORY)
3456			if (counters[nr])
3457				seq_printf(m, " N%u=%u", nr, counters[nr]);
3458	}
3459}
3460
3461static void show_purge_info(struct seq_file *m)
3462{
3463	struct llist_node *head;
3464	struct vmap_area *va;
3465
3466	head = READ_ONCE(vmap_purge_list.first);
3467	if (head == NULL)
3468		return;
3469
3470	llist_for_each_entry(va, head, purge_list) {
3471		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3472			(void *)va->va_start, (void *)va->va_end,
3473			va->va_end - va->va_start);
3474	}
3475}
3476
3477static int s_show(struct seq_file *m, void *p)
3478{
3479	struct vmap_area *va;
3480	struct vm_struct *v;
3481
3482	va = list_entry(p, struct vmap_area, list);
3483
3484	/*
3485	 * s_show can encounter race with remove_vm_area, !vm on behalf
3486	 * of vmap area is being tear down or vm_map_ram allocation.
3487	 */
3488	if (!va->vm) {
3489		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3490			(void *)va->va_start, (void *)va->va_end,
3491			va->va_end - va->va_start);
3492
3493		return 0;
3494	}
3495
3496	v = va->vm;
3497
3498	seq_printf(m, "0x%pK-0x%pK %7ld",
3499		v->addr, v->addr + v->size, v->size);
3500
3501	if (v->caller)
3502		seq_printf(m, " %pS", v->caller);
3503
3504	if (v->nr_pages)
3505		seq_printf(m, " pages=%d", v->nr_pages);
3506
3507	if (v->phys_addr)
3508		seq_printf(m, " phys=%pa", &v->phys_addr);
3509
3510	if (v->flags & VM_IOREMAP)
3511		seq_puts(m, " ioremap");
3512
3513	if (v->flags & VM_ALLOC)
3514		seq_puts(m, " vmalloc");
3515
3516	if (v->flags & VM_MAP)
3517		seq_puts(m, " vmap");
3518
3519	if (v->flags & VM_USERMAP)
3520		seq_puts(m, " user");
3521
3522	if (v->flags & VM_DMA_COHERENT)
3523		seq_puts(m, " dma-coherent");
3524
3525	if (is_vmalloc_addr(v->pages))
3526		seq_puts(m, " vpages");
3527
3528	show_numa_info(m, v);
3529	seq_putc(m, '\n');
3530
3531	/*
3532	 * As a final step, dump "unpurged" areas. Note,
3533	 * that entire "/proc/vmallocinfo" output will not
3534	 * be address sorted, because the purge list is not
3535	 * sorted.
3536	 */
3537	if (list_is_last(&va->list, &vmap_area_list))
3538		show_purge_info(m);
3539
3540	return 0;
3541}
3542
3543static const struct seq_operations vmalloc_op = {
3544	.start = s_start,
3545	.next = s_next,
3546	.stop = s_stop,
3547	.show = s_show,
3548};
3549
3550static int __init proc_vmalloc_init(void)
3551{
3552	if (IS_ENABLED(CONFIG_NUMA))
3553		proc_create_seq_private("vmallocinfo", 0400, NULL,
3554				&vmalloc_op,
3555				nr_node_ids * sizeof(unsigned int), NULL);
3556	else
3557		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3558	return 0;
3559}
3560module_init(proc_vmalloc_init);
3561
3562#endif