Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/vmalloc.c
   4 *
   5 *  Copyright (C) 1993  Linus Torvalds
   6 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   7 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
   8 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
   9 *  Numa awareness, Christoph Lameter, SGI, June 2005
  10 *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
  11 */
  12
  13#include <linux/vmalloc.h>
  14#include <linux/mm.h>
  15#include <linux/module.h>
  16#include <linux/highmem.h>
  17#include <linux/sched/signal.h>
  18#include <linux/slab.h>
  19#include <linux/spinlock.h>
  20#include <linux/interrupt.h>
  21#include <linux/proc_fs.h>
  22#include <linux/seq_file.h>
  23#include <linux/set_memory.h>
  24#include <linux/debugobjects.h>
  25#include <linux/kallsyms.h>
  26#include <linux/list.h>
  27#include <linux/notifier.h>
  28#include <linux/rbtree.h>
  29#include <linux/xarray.h>
 
  30#include <linux/rcupdate.h>
  31#include <linux/pfn.h>
  32#include <linux/kmemleak.h>
  33#include <linux/atomic.h>
  34#include <linux/compiler.h>
 
  35#include <linux/llist.h>
 
  36#include <linux/bitops.h>
  37#include <linux/rbtree_augmented.h>
  38#include <linux/overflow.h>
  39
  40#include <linux/uaccess.h>
 
  41#include <asm/tlbflush.h>
  42#include <asm/shmparam.h>
  43
 
 
 
  44#include "internal.h"
  45#include "pgalloc-track.h"
  46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  47bool is_vmalloc_addr(const void *x)
  48{
  49	unsigned long addr = (unsigned long)x;
  50
  51	return addr >= VMALLOC_START && addr < VMALLOC_END;
  52}
  53EXPORT_SYMBOL(is_vmalloc_addr);
  54
  55struct vfree_deferred {
  56	struct llist_head list;
  57	struct work_struct wq;
  58};
  59static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  60
  61static void __vunmap(const void *, int);
 
 
 
 
 
 
 
  62
  63static void free_work(struct work_struct *w)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64{
  65	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  66	struct llist_node *t, *llnode;
  67
  68	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
  69		__vunmap((void *)llnode, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  70}
  71
  72/*** Page table manipulation functions ***/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  73
  74static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  75			     pgtbl_mod_mask *mask)
  76{
  77	pte_t *pte;
  78
  79	pte = pte_offset_kernel(pmd, addr);
  80	do {
  81		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  82		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  83	} while (pte++, addr += PAGE_SIZE, addr != end);
  84	*mask |= PGTBL_PTE_MODIFIED;
  85}
  86
  87static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
  88			     pgtbl_mod_mask *mask)
  89{
  90	pmd_t *pmd;
  91	unsigned long next;
  92	int cleared;
  93
  94	pmd = pmd_offset(pud, addr);
  95	do {
  96		next = pmd_addr_end(addr, end);
  97
  98		cleared = pmd_clear_huge(pmd);
  99		if (cleared || pmd_bad(*pmd))
 100			*mask |= PGTBL_PMD_MODIFIED;
 101
 102		if (cleared)
 103			continue;
 104		if (pmd_none_or_clear_bad(pmd))
 105			continue;
 106		vunmap_pte_range(pmd, addr, next, mask);
 107
 108		cond_resched();
 109	} while (pmd++, addr = next, addr != end);
 110}
 111
 112static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
 113			     pgtbl_mod_mask *mask)
 114{
 115	pud_t *pud;
 116	unsigned long next;
 117	int cleared;
 118
 119	pud = pud_offset(p4d, addr);
 120	do {
 121		next = pud_addr_end(addr, end);
 122
 123		cleared = pud_clear_huge(pud);
 124		if (cleared || pud_bad(*pud))
 125			*mask |= PGTBL_PUD_MODIFIED;
 126
 127		if (cleared)
 128			continue;
 129		if (pud_none_or_clear_bad(pud))
 130			continue;
 131		vunmap_pmd_range(pud, addr, next, mask);
 132	} while (pud++, addr = next, addr != end);
 133}
 134
 135static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
 136			     pgtbl_mod_mask *mask)
 137{
 138	p4d_t *p4d;
 139	unsigned long next;
 140	int cleared;
 141
 142	p4d = p4d_offset(pgd, addr);
 143	do {
 144		next = p4d_addr_end(addr, end);
 145
 146		cleared = p4d_clear_huge(p4d);
 147		if (cleared || p4d_bad(*p4d))
 148			*mask |= PGTBL_P4D_MODIFIED;
 149
 150		if (cleared)
 151			continue;
 152		if (p4d_none_or_clear_bad(p4d))
 153			continue;
 154		vunmap_pud_range(p4d, addr, next, mask);
 155	} while (p4d++, addr = next, addr != end);
 156}
 157
 158/**
 159 * unmap_kernel_range_noflush - unmap kernel VM area
 160 * @start: start of the VM area to unmap
 161 * @size: size of the VM area to unmap
 162 *
 163 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify
 164 * should have been allocated using get_vm_area() and its friends.
 
 
 
 165 *
 166 * NOTE:
 167 * This function does NOT do any cache flushing.  The caller is responsible
 168 * for calling flush_cache_vunmap() on to-be-mapped areas before calling this
 169 * function and flush_tlb_kernel_range() after.
 170 */
 171void unmap_kernel_range_noflush(unsigned long start, unsigned long size)
 172{
 173	unsigned long end = start + size;
 174	unsigned long next;
 175	pgd_t *pgd;
 176	unsigned long addr = start;
 177	pgtbl_mod_mask mask = 0;
 178
 179	BUG_ON(addr >= end);
 180	pgd = pgd_offset_k(addr);
 181	do {
 182		next = pgd_addr_end(addr, end);
 183		if (pgd_bad(*pgd))
 184			mask |= PGTBL_PGD_MODIFIED;
 185		if (pgd_none_or_clear_bad(pgd))
 186			continue;
 187		vunmap_p4d_range(pgd, addr, next, &mask);
 188	} while (pgd++, addr = next, addr != end);
 189
 190	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
 191		arch_sync_kernel_mappings(start, end);
 192}
 193
 194static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 195		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 196		pgtbl_mod_mask *mask)
 197{
 198	pte_t *pte;
 199
 200	/*
 201	 * nr is a running index into the array which helps higher level
 202	 * callers keep track of where we're up to.
 203	 */
 204
 205	pte = pte_alloc_kernel_track(pmd, addr, mask);
 206	if (!pte)
 207		return -ENOMEM;
 208	do {
 209		struct page *page = pages[*nr];
 210
 211		if (WARN_ON(!pte_none(*pte)))
 212			return -EBUSY;
 213		if (WARN_ON(!page))
 214			return -ENOMEM;
 
 
 
 215		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 216		(*nr)++;
 217	} while (pte++, addr += PAGE_SIZE, addr != end);
 218	*mask |= PGTBL_PTE_MODIFIED;
 219	return 0;
 220}
 221
 222static int vmap_pmd_range(pud_t *pud, unsigned long addr,
 223		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 224		pgtbl_mod_mask *mask)
 225{
 226	pmd_t *pmd;
 227	unsigned long next;
 228
 229	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
 230	if (!pmd)
 231		return -ENOMEM;
 232	do {
 233		next = pmd_addr_end(addr, end);
 234		if (vmap_pte_range(pmd, addr, next, prot, pages, nr, mask))
 235			return -ENOMEM;
 236	} while (pmd++, addr = next, addr != end);
 237	return 0;
 238}
 239
 240static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
 241		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 242		pgtbl_mod_mask *mask)
 243{
 244	pud_t *pud;
 245	unsigned long next;
 246
 247	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
 248	if (!pud)
 249		return -ENOMEM;
 250	do {
 251		next = pud_addr_end(addr, end);
 252		if (vmap_pmd_range(pud, addr, next, prot, pages, nr, mask))
 253			return -ENOMEM;
 254	} while (pud++, addr = next, addr != end);
 255	return 0;
 256}
 257
 258static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
 259		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 260		pgtbl_mod_mask *mask)
 261{
 262	p4d_t *p4d;
 263	unsigned long next;
 264
 265	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
 266	if (!p4d)
 267		return -ENOMEM;
 268	do {
 269		next = p4d_addr_end(addr, end);
 270		if (vmap_pud_range(p4d, addr, next, prot, pages, nr, mask))
 271			return -ENOMEM;
 272	} while (p4d++, addr = next, addr != end);
 273	return 0;
 274}
 275
 276/**
 277 * map_kernel_range_noflush - map kernel VM area with the specified pages
 278 * @addr: start of the VM area to map
 279 * @size: size of the VM area to map
 280 * @prot: page protection flags to use
 281 * @pages: pages to map
 282 *
 283 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify should
 284 * have been allocated using get_vm_area() and its friends.
 285 *
 286 * NOTE:
 287 * This function does NOT do any cache flushing.  The caller is responsible for
 288 * calling flush_cache_vmap() on to-be-mapped areas before calling this
 289 * function.
 290 *
 291 * RETURNS:
 292 * 0 on success, -errno on failure.
 293 */
 294int map_kernel_range_noflush(unsigned long addr, unsigned long size,
 295			     pgprot_t prot, struct page **pages)
 296{
 297	unsigned long start = addr;
 298	unsigned long end = addr + size;
 299	unsigned long next;
 300	pgd_t *pgd;
 
 301	int err = 0;
 302	int nr = 0;
 303	pgtbl_mod_mask mask = 0;
 304
 305	BUG_ON(addr >= end);
 306	pgd = pgd_offset_k(addr);
 307	do {
 308		next = pgd_addr_end(addr, end);
 309		if (pgd_bad(*pgd))
 310			mask |= PGTBL_PGD_MODIFIED;
 311		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
 312		if (err)
 313			return err;
 314	} while (pgd++, addr = next, addr != end);
 315
 316	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
 317		arch_sync_kernel_mappings(start, end);
 318
 319	return 0;
 320}
 321
 322int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot,
 323		struct page **pages)
 
 
 
 
 
 
 
 
 
 324{
 325	int ret;
 326
 327	ret = map_kernel_range_noflush(start, size, prot, pages);
 328	flush_cache_vmap(start, start + size);
 329	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 330}
 331
 332int is_vmalloc_or_module_addr(const void *x)
 333{
 334	/*
 335	 * ARM, x86-64 and sparc64 put modules in a special place,
 336	 * and fall back on vmalloc() if that fails. Others
 337	 * just put it in the vmalloc space.
 338	 */
 339#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 340	unsigned long addr = (unsigned long)x;
 341	if (addr >= MODULES_VADDR && addr < MODULES_END)
 342		return 1;
 343#endif
 344	return is_vmalloc_addr(x);
 345}
 
 346
 347/*
 348 * Walk a vmap address to the struct page it maps.
 
 
 349 */
 350struct page *vmalloc_to_page(const void *vmalloc_addr)
 351{
 352	unsigned long addr = (unsigned long) vmalloc_addr;
 353	struct page *page = NULL;
 354	pgd_t *pgd = pgd_offset_k(addr);
 355	p4d_t *p4d;
 356	pud_t *pud;
 357	pmd_t *pmd;
 358	pte_t *ptep, pte;
 359
 360	/*
 361	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 362	 * architectures that do not vmalloc module space
 363	 */
 364	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 365
 366	if (pgd_none(*pgd))
 367		return NULL;
 
 
 
 
 
 368	p4d = p4d_offset(pgd, addr);
 369	if (p4d_none(*p4d))
 370		return NULL;
 371	pud = pud_offset(p4d, addr);
 
 
 
 372
 373	/*
 374	 * Don't dereference bad PUD or PMD (below) entries. This will also
 375	 * identify huge mappings, which we may encounter on architectures
 376	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
 377	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
 378	 * not [unambiguously] associated with a struct page, so there is
 379	 * no correct value to return for them.
 380	 */
 381	WARN_ON_ONCE(pud_bad(*pud));
 382	if (pud_none(*pud) || pud_bad(*pud))
 383		return NULL;
 
 
 
 
 
 384	pmd = pmd_offset(pud, addr);
 385	WARN_ON_ONCE(pmd_bad(*pmd));
 386	if (pmd_none(*pmd) || pmd_bad(*pmd))
 
 
 
 387		return NULL;
 388
 389	ptep = pte_offset_map(pmd, addr);
 390	pte = *ptep;
 391	if (pte_present(pte))
 392		page = pte_page(pte);
 393	pte_unmap(ptep);
 394	return page;
 395}
 396EXPORT_SYMBOL(vmalloc_to_page);
 397
 398/*
 399 * Map a vmalloc()-space virtual address to the physical page frame number.
 400 */
 401unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 402{
 403	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 404}
 405EXPORT_SYMBOL(vmalloc_to_pfn);
 406
 407
 408/*** Global kva allocator ***/
 409
 410#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
 411#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
 412
 413
 414static DEFINE_SPINLOCK(vmap_area_lock);
 415static DEFINE_SPINLOCK(free_vmap_area_lock);
 416/* Export for kexec only */
 417LIST_HEAD(vmap_area_list);
 418static LLIST_HEAD(vmap_purge_list);
 419static struct rb_root vmap_area_root = RB_ROOT;
 420static bool vmap_initialized __read_mostly;
 421
 422/*
 423 * This kmem_cache is used for vmap_area objects. Instead of
 424 * allocating from slab we reuse an object from this cache to
 425 * make things faster. Especially in "no edge" splitting of
 426 * free block.
 427 */
 428static struct kmem_cache *vmap_area_cachep;
 429
 430/*
 431 * This linked list is used in pair with free_vmap_area_root.
 432 * It gives O(1) access to prev/next to perform fast coalescing.
 433 */
 434static LIST_HEAD(free_vmap_area_list);
 435
 436/*
 437 * This augment red-black tree represents the free vmap space.
 438 * All vmap_area objects in this tree are sorted by va->va_start
 439 * address. It is used for allocation and merging when a vmap
 440 * object is released.
 441 *
 442 * Each vmap_area node contains a maximum available free block
 443 * of its sub-tree, right or left. Therefore it is possible to
 444 * find a lowest match of free area.
 445 */
 446static struct rb_root free_vmap_area_root = RB_ROOT;
 447
 448/*
 449 * Preload a CPU with one object for "no edge" split case. The
 450 * aim is to get rid of allocations from the atomic context, thus
 451 * to use more permissive allocation masks.
 452 */
 453static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
 454
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 455static __always_inline unsigned long
 456va_size(struct vmap_area *va)
 457{
 458	return (va->va_end - va->va_start);
 459}
 460
 461static __always_inline unsigned long
 462get_subtree_max_size(struct rb_node *node)
 463{
 464	struct vmap_area *va;
 465
 466	va = rb_entry_safe(node, struct vmap_area, rb_node);
 467	return va ? va->subtree_max_size : 0;
 468}
 469
 470/*
 471 * Gets called when remove the node and rotate.
 472 */
 473static __always_inline unsigned long
 474compute_subtree_max_size(struct vmap_area *va)
 475{
 476	return max3(va_size(va),
 477		get_subtree_max_size(va->rb_node.rb_left),
 478		get_subtree_max_size(va->rb_node.rb_right));
 479}
 480
 481RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
 482	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
 483
 484static void purge_vmap_area_lazy(void);
 485static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
 486static unsigned long lazy_max_pages(void);
 
 487
 488static atomic_long_t nr_vmalloc_pages;
 489
 490unsigned long vmalloc_nr_pages(void)
 491{
 492	return atomic_long_read(&nr_vmalloc_pages);
 493}
 494
 495static struct vmap_area *__find_vmap_area(unsigned long addr)
 496{
 497	struct rb_node *n = vmap_area_root.rb_node;
 
 
 498
 499	while (n) {
 500		struct vmap_area *va;
 501
 502		va = rb_entry(n, struct vmap_area, rb_node);
 503		if (addr < va->va_start)
 504			n = n->rb_left;
 505		else if (addr >= va->va_end)
 506			n = n->rb_right;
 507		else
 508			return va;
 509	}
 510
 511	return NULL;
 512}
 513
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 514/*
 515 * This function returns back addresses of parent node
 516 * and its left or right link for further processing.
 517 *
 518 * Otherwise NULL is returned. In that case all further
 519 * steps regarding inserting of conflicting overlap range
 520 * have to be declined and actually considered as a bug.
 521 */
 522static __always_inline struct rb_node **
 523find_va_links(struct vmap_area *va,
 524	struct rb_root *root, struct rb_node *from,
 525	struct rb_node **parent)
 526{
 527	struct vmap_area *tmp_va;
 528	struct rb_node **link;
 529
 530	if (root) {
 531		link = &root->rb_node;
 532		if (unlikely(!*link)) {
 533			*parent = NULL;
 534			return link;
 535		}
 536	} else {
 537		link = &from;
 538	}
 539
 540	/*
 541	 * Go to the bottom of the tree. When we hit the last point
 542	 * we end up with parent rb_node and correct direction, i name
 543	 * it link, where the new va->rb_node will be attached to.
 544	 */
 545	do {
 546		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
 547
 548		/*
 549		 * During the traversal we also do some sanity check.
 550		 * Trigger the BUG() if there are sides(left/right)
 551		 * or full overlaps.
 552		 */
 553		if (va->va_start < tmp_va->va_end &&
 554				va->va_end <= tmp_va->va_start)
 555			link = &(*link)->rb_left;
 556		else if (va->va_end > tmp_va->va_start &&
 557				va->va_start >= tmp_va->va_end)
 558			link = &(*link)->rb_right;
 559		else {
 560			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
 561				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
 562
 563			return NULL;
 564		}
 565	} while (*link);
 566
 567	*parent = &tmp_va->rb_node;
 568	return link;
 569}
 570
 571static __always_inline struct list_head *
 572get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
 573{
 574	struct list_head *list;
 575
 576	if (unlikely(!parent))
 577		/*
 578		 * The red-black tree where we try to find VA neighbors
 579		 * before merging or inserting is empty, i.e. it means
 580		 * there is no free vmap space. Normally it does not
 581		 * happen but we handle this case anyway.
 582		 */
 583		return NULL;
 584
 585	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
 586	return (&parent->rb_right == link ? list->next : list);
 587}
 588
 589static __always_inline void
 590link_va(struct vmap_area *va, struct rb_root *root,
 591	struct rb_node *parent, struct rb_node **link, struct list_head *head)
 
 592{
 593	/*
 594	 * VA is still not in the list, but we can
 595	 * identify its future previous list_head node.
 596	 */
 597	if (likely(parent)) {
 598		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
 599		if (&parent->rb_right != link)
 600			head = head->prev;
 601	}
 602
 603	/* Insert to the rb-tree */
 604	rb_link_node(&va->rb_node, parent, link);
 605	if (root == &free_vmap_area_root) {
 606		/*
 607		 * Some explanation here. Just perform simple insertion
 608		 * to the tree. We do not set va->subtree_max_size to
 609		 * its current size before calling rb_insert_augmented().
 610		 * It is because of we populate the tree from the bottom
 611		 * to parent levels when the node _is_ in the tree.
 612		 *
 613		 * Therefore we set subtree_max_size to zero after insertion,
 614		 * to let __augment_tree_propagate_from() puts everything to
 615		 * the correct order later on.
 616		 */
 617		rb_insert_augmented(&va->rb_node,
 618			root, &free_vmap_area_rb_augment_cb);
 619		va->subtree_max_size = 0;
 620	} else {
 621		rb_insert_color(&va->rb_node, root);
 622	}
 623
 624	/* Address-sort this list */
 625	list_add(&va->list, head);
 626}
 627
 628static __always_inline void
 629unlink_va(struct vmap_area *va, struct rb_root *root)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 630{
 631	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
 632		return;
 633
 634	if (root == &free_vmap_area_root)
 635		rb_erase_augmented(&va->rb_node,
 636			root, &free_vmap_area_rb_augment_cb);
 637	else
 638		rb_erase(&va->rb_node, root);
 639
 640	list_del(&va->list);
 641	RB_CLEAR_NODE(&va->rb_node);
 642}
 643
 
 
 
 
 
 
 
 
 
 
 
 
 644#if DEBUG_AUGMENT_PROPAGATE_CHECK
 
 
 
 
 
 
 
 
 
 
 
 645static void
 646augment_tree_propagate_check(void)
 647{
 648	struct vmap_area *va;
 649	unsigned long computed_size;
 650
 651	list_for_each_entry(va, &free_vmap_area_list, list) {
 652		computed_size = compute_subtree_max_size(va);
 653		if (computed_size != va->subtree_max_size)
 654			pr_emerg("tree is corrupted: %lu, %lu\n",
 655				va_size(va), va->subtree_max_size);
 656	}
 657}
 658#endif
 659
 660/*
 661 * This function populates subtree_max_size from bottom to upper
 662 * levels starting from VA point. The propagation must be done
 663 * when VA size is modified by changing its va_start/va_end. Or
 664 * in case of newly inserting of VA to the tree.
 665 *
 666 * It means that __augment_tree_propagate_from() must be called:
 667 * - After VA has been inserted to the tree(free path);
 668 * - After VA has been shrunk(allocation path);
 669 * - After VA has been increased(merging path).
 670 *
 671 * Please note that, it does not mean that upper parent nodes
 672 * and their subtree_max_size are recalculated all the time up
 673 * to the root node.
 674 *
 675 *       4--8
 676 *        /\
 677 *       /  \
 678 *      /    \
 679 *    2--2  8--8
 680 *
 681 * For example if we modify the node 4, shrinking it to 2, then
 682 * no any modification is required. If we shrink the node 2 to 1
 683 * its subtree_max_size is updated only, and set to 1. If we shrink
 684 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
 685 * node becomes 4--6.
 686 */
 687static __always_inline void
 688augment_tree_propagate_from(struct vmap_area *va)
 689{
 690	/*
 691	 * Populate the tree from bottom towards the root until
 692	 * the calculated maximum available size of checked node
 693	 * is equal to its current one.
 694	 */
 695	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
 696
 697#if DEBUG_AUGMENT_PROPAGATE_CHECK
 698	augment_tree_propagate_check();
 699#endif
 700}
 701
 702static void
 703insert_vmap_area(struct vmap_area *va,
 704	struct rb_root *root, struct list_head *head)
 705{
 706	struct rb_node **link;
 707	struct rb_node *parent;
 708
 709	link = find_va_links(va, root, NULL, &parent);
 710	if (link)
 711		link_va(va, root, parent, link, head);
 712}
 713
 714static void
 715insert_vmap_area_augment(struct vmap_area *va,
 716	struct rb_node *from, struct rb_root *root,
 717	struct list_head *head)
 718{
 719	struct rb_node **link;
 720	struct rb_node *parent;
 721
 722	if (from)
 723		link = find_va_links(va, NULL, from, &parent);
 724	else
 725		link = find_va_links(va, root, NULL, &parent);
 726
 727	if (link) {
 728		link_va(va, root, parent, link, head);
 729		augment_tree_propagate_from(va);
 730	}
 731}
 732
 733/*
 734 * Merge de-allocated chunk of VA memory with previous
 735 * and next free blocks. If coalesce is not done a new
 736 * free area is inserted. If VA has been merged, it is
 737 * freed.
 738 *
 739 * Please note, it can return NULL in case of overlap
 740 * ranges, followed by WARN() report. Despite it is a
 741 * buggy behaviour, a system can be alive and keep
 742 * ongoing.
 743 */
 744static __always_inline struct vmap_area *
 745merge_or_add_vmap_area(struct vmap_area *va,
 746	struct rb_root *root, struct list_head *head)
 747{
 748	struct vmap_area *sibling;
 749	struct list_head *next;
 750	struct rb_node **link;
 751	struct rb_node *parent;
 752	bool merged = false;
 753
 754	/*
 755	 * Find a place in the tree where VA potentially will be
 756	 * inserted, unless it is merged with its sibling/siblings.
 757	 */
 758	link = find_va_links(va, root, NULL, &parent);
 759	if (!link)
 760		return NULL;
 761
 762	/*
 763	 * Get next node of VA to check if merging can be done.
 764	 */
 765	next = get_va_next_sibling(parent, link);
 766	if (unlikely(next == NULL))
 767		goto insert;
 768
 769	/*
 770	 * start            end
 771	 * |                |
 772	 * |<------VA------>|<-----Next----->|
 773	 *                  |                |
 774	 *                  start            end
 775	 */
 776	if (next != head) {
 777		sibling = list_entry(next, struct vmap_area, list);
 778		if (sibling->va_start == va->va_end) {
 779			sibling->va_start = va->va_start;
 780
 781			/* Free vmap_area object. */
 782			kmem_cache_free(vmap_area_cachep, va);
 783
 784			/* Point to the new merged area. */
 785			va = sibling;
 786			merged = true;
 787		}
 788	}
 789
 790	/*
 791	 * start            end
 792	 * |                |
 793	 * |<-----Prev----->|<------VA------>|
 794	 *                  |                |
 795	 *                  start            end
 796	 */
 797	if (next->prev != head) {
 798		sibling = list_entry(next->prev, struct vmap_area, list);
 799		if (sibling->va_end == va->va_start) {
 800			/*
 801			 * If both neighbors are coalesced, it is important
 802			 * to unlink the "next" node first, followed by merging
 803			 * with "previous" one. Otherwise the tree might not be
 804			 * fully populated if a sibling's augmented value is
 805			 * "normalized" because of rotation operations.
 806			 */
 807			if (merged)
 808				unlink_va(va, root);
 809
 810			sibling->va_end = va->va_end;
 811
 812			/* Free vmap_area object. */
 813			kmem_cache_free(vmap_area_cachep, va);
 814
 815			/* Point to the new merged area. */
 816			va = sibling;
 817			merged = true;
 818		}
 819	}
 820
 821insert:
 822	if (!merged)
 823		link_va(va, root, parent, link, head);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 824
 825	/*
 826	 * Last step is to check and update the tree.
 827	 */
 828	augment_tree_propagate_from(va);
 829	return va;
 830}
 831
 832static __always_inline bool
 833is_within_this_va(struct vmap_area *va, unsigned long size,
 834	unsigned long align, unsigned long vstart)
 835{
 836	unsigned long nva_start_addr;
 837
 838	if (va->va_start > vstart)
 839		nva_start_addr = ALIGN(va->va_start, align);
 840	else
 841		nva_start_addr = ALIGN(vstart, align);
 842
 843	/* Can be overflowed due to big size or alignment. */
 844	if (nva_start_addr + size < nva_start_addr ||
 845			nva_start_addr < vstart)
 846		return false;
 847
 848	return (nva_start_addr + size <= va->va_end);
 849}
 850
 851/*
 852 * Find the first free block(lowest start address) in the tree,
 853 * that will accomplish the request corresponding to passing
 854 * parameters.
 
 
 855 */
 856static __always_inline struct vmap_area *
 857find_vmap_lowest_match(unsigned long size,
 858	unsigned long align, unsigned long vstart)
 859{
 860	struct vmap_area *va;
 861	struct rb_node *node;
 862	unsigned long length;
 863
 864	/* Start from the root. */
 865	node = free_vmap_area_root.rb_node;
 866
 867	/* Adjust the search size for alignment overhead. */
 868	length = size + align - 1;
 869
 870	while (node) {
 871		va = rb_entry(node, struct vmap_area, rb_node);
 872
 873		if (get_subtree_max_size(node->rb_left) >= length &&
 874				vstart < va->va_start) {
 875			node = node->rb_left;
 876		} else {
 877			if (is_within_this_va(va, size, align, vstart))
 878				return va;
 879
 880			/*
 881			 * Does not make sense to go deeper towards the right
 882			 * sub-tree if it does not have a free block that is
 883			 * equal or bigger to the requested search length.
 884			 */
 885			if (get_subtree_max_size(node->rb_right) >= length) {
 886				node = node->rb_right;
 887				continue;
 888			}
 889
 890			/*
 891			 * OK. We roll back and find the first right sub-tree,
 892			 * that will satisfy the search criteria. It can happen
 893			 * only once due to "vstart" restriction.
 
 894			 */
 895			while ((node = rb_parent(node))) {
 896				va = rb_entry(node, struct vmap_area, rb_node);
 897				if (is_within_this_va(va, size, align, vstart))
 898					return va;
 899
 900				if (get_subtree_max_size(node->rb_right) >= length &&
 901						vstart <= va->va_start) {
 
 
 
 
 
 
 
 902					node = node->rb_right;
 903					break;
 904				}
 905			}
 906		}
 907	}
 908
 909	return NULL;
 910}
 911
 912#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
 913#include <linux/random.h>
 914
 915static struct vmap_area *
 916find_vmap_lowest_linear_match(unsigned long size,
 917	unsigned long align, unsigned long vstart)
 918{
 919	struct vmap_area *va;
 920
 921	list_for_each_entry(va, &free_vmap_area_list, list) {
 922		if (!is_within_this_va(va, size, align, vstart))
 923			continue;
 924
 925		return va;
 926	}
 927
 928	return NULL;
 929}
 930
 931static void
 932find_vmap_lowest_match_check(unsigned long size)
 
 933{
 934	struct vmap_area *va_1, *va_2;
 935	unsigned long vstart;
 936	unsigned int rnd;
 937
 938	get_random_bytes(&rnd, sizeof(rnd));
 939	vstart = VMALLOC_START + rnd;
 940
 941	va_1 = find_vmap_lowest_match(size, 1, vstart);
 942	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
 943
 944	if (va_1 != va_2)
 945		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
 946			va_1, va_2, vstart);
 947}
 948#endif
 949
 950enum fit_type {
 951	NOTHING_FIT = 0,
 952	FL_FIT_TYPE = 1,	/* full fit */
 953	LE_FIT_TYPE = 2,	/* left edge fit */
 954	RE_FIT_TYPE = 3,	/* right edge fit */
 955	NE_FIT_TYPE = 4		/* no edge fit */
 956};
 957
 958static __always_inline enum fit_type
 959classify_va_fit_type(struct vmap_area *va,
 960	unsigned long nva_start_addr, unsigned long size)
 961{
 962	enum fit_type type;
 963
 964	/* Check if it is within VA. */
 965	if (nva_start_addr < va->va_start ||
 966			nva_start_addr + size > va->va_end)
 967		return NOTHING_FIT;
 968
 969	/* Now classify. */
 970	if (va->va_start == nva_start_addr) {
 971		if (va->va_end == nva_start_addr + size)
 972			type = FL_FIT_TYPE;
 973		else
 974			type = LE_FIT_TYPE;
 975	} else if (va->va_end == nva_start_addr + size) {
 976		type = RE_FIT_TYPE;
 977	} else {
 978		type = NE_FIT_TYPE;
 979	}
 980
 981	return type;
 982}
 983
 984static __always_inline int
 985adjust_va_to_fit_type(struct vmap_area *va,
 986	unsigned long nva_start_addr, unsigned long size,
 987	enum fit_type type)
 988{
 989	struct vmap_area *lva = NULL;
 
 990
 991	if (type == FL_FIT_TYPE) {
 992		/*
 993		 * No need to split VA, it fully fits.
 994		 *
 995		 * |               |
 996		 * V      NVA      V
 997		 * |---------------|
 998		 */
 999		unlink_va(va, &free_vmap_area_root);
1000		kmem_cache_free(vmap_area_cachep, va);
1001	} else if (type == LE_FIT_TYPE) {
1002		/*
1003		 * Split left edge of fit VA.
1004		 *
1005		 * |       |
1006		 * V  NVA  V   R
1007		 * |-------|-------|
1008		 */
1009		va->va_start += size;
1010	} else if (type == RE_FIT_TYPE) {
1011		/*
1012		 * Split right edge of fit VA.
1013		 *
1014		 *         |       |
1015		 *     L   V  NVA  V
1016		 * |-------|-------|
1017		 */
1018		va->va_end = nva_start_addr;
1019	} else if (type == NE_FIT_TYPE) {
1020		/*
1021		 * Split no edge of fit VA.
1022		 *
1023		 *     |       |
1024		 *   L V  NVA  V R
1025		 * |---|-------|---|
1026		 */
1027		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1028		if (unlikely(!lva)) {
1029			/*
1030			 * For percpu allocator we do not do any pre-allocation
1031			 * and leave it as it is. The reason is it most likely
1032			 * never ends up with NE_FIT_TYPE splitting. In case of
1033			 * percpu allocations offsets and sizes are aligned to
1034			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1035			 * are its main fitting cases.
1036			 *
1037			 * There are a few exceptions though, as an example it is
1038			 * a first allocation (early boot up) when we have "one"
1039			 * big free space that has to be split.
1040			 *
1041			 * Also we can hit this path in case of regular "vmap"
1042			 * allocations, if "this" current CPU was not preloaded.
1043			 * See the comment in alloc_vmap_area() why. If so, then
1044			 * GFP_NOWAIT is used instead to get an extra object for
1045			 * split purpose. That is rare and most time does not
1046			 * occur.
1047			 *
1048			 * What happens if an allocation gets failed. Basically,
1049			 * an "overflow" path is triggered to purge lazily freed
1050			 * areas to free some memory, then, the "retry" path is
1051			 * triggered to repeat one more time. See more details
1052			 * in alloc_vmap_area() function.
1053			 */
1054			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1055			if (!lva)
1056				return -1;
1057		}
1058
1059		/*
1060		 * Build the remainder.
1061		 */
1062		lva->va_start = va->va_start;
1063		lva->va_end = nva_start_addr;
1064
1065		/*
1066		 * Shrink this VA to remaining size.
1067		 */
1068		va->va_start = nva_start_addr + size;
1069	} else {
1070		return -1;
1071	}
1072
1073	if (type != FL_FIT_TYPE) {
1074		augment_tree_propagate_from(va);
1075
1076		if (lva)	/* type == NE_FIT_TYPE */
1077			insert_vmap_area_augment(lva, &va->rb_node,
1078				&free_vmap_area_root, &free_vmap_area_list);
1079	}
1080
1081	return 0;
1082}
1083
1084/*
1085 * Returns a start address of the newly allocated area, if success.
1086 * Otherwise a vend is returned that indicates failure.
1087 */
1088static __always_inline unsigned long
1089__alloc_vmap_area(unsigned long size, unsigned long align,
1090	unsigned long vstart, unsigned long vend)
1091{
1092	unsigned long nva_start_addr;
1093	struct vmap_area *va;
1094	enum fit_type type;
1095	int ret;
1096
1097	va = find_vmap_lowest_match(size, align, vstart);
1098	if (unlikely(!va))
1099		return vend;
1100
1101	if (va->va_start > vstart)
1102		nva_start_addr = ALIGN(va->va_start, align);
1103	else
1104		nva_start_addr = ALIGN(vstart, align);
1105
1106	/* Check the "vend" restriction. */
1107	if (nva_start_addr + size > vend)
1108		return vend;
1109
1110	/* Classify what we have found. */
1111	type = classify_va_fit_type(va, nva_start_addr, size);
1112	if (WARN_ON_ONCE(type == NOTHING_FIT))
1113		return vend;
1114
1115	/* Update the free vmap_area. */
1116	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1117	if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1118		return vend;
1119
1120#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1121	find_vmap_lowest_match_check(size);
1122#endif
1123
1124	return nva_start_addr;
1125}
1126
1127/*
1128 * Free a region of KVA allocated by alloc_vmap_area
1129 */
1130static void free_vmap_area(struct vmap_area *va)
1131{
 
 
1132	/*
1133	 * Remove from the busy tree/list.
1134	 */
1135	spin_lock(&vmap_area_lock);
1136	unlink_va(va, &vmap_area_root);
1137	spin_unlock(&vmap_area_lock);
1138
1139	/*
1140	 * Insert/Merge it back to the free tree/list.
1141	 */
1142	spin_lock(&free_vmap_area_lock);
1143	merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
1144	spin_unlock(&free_vmap_area_lock);
1145}
1146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1147/*
1148 * Allocate a region of KVA of the specified size and alignment, within the
1149 * vstart and vend.
1150 */
1151static struct vmap_area *alloc_vmap_area(unsigned long size,
1152				unsigned long align,
1153				unsigned long vstart, unsigned long vend,
1154				int node, gfp_t gfp_mask)
 
1155{
1156	struct vmap_area *va, *pva;
 
 
1157	unsigned long addr;
 
1158	int purged = 0;
1159	int ret;
1160
1161	BUG_ON(!size);
1162	BUG_ON(offset_in_page(size));
1163	BUG_ON(!is_power_of_2(align));
1164
1165	if (unlikely(!vmap_initialized))
1166		return ERR_PTR(-EBUSY);
1167
1168	might_sleep();
1169	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1170
1171	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1172	if (unlikely(!va))
1173		return ERR_PTR(-ENOMEM);
1174
1175	/*
1176	 * Only scan the relevant parts containing pointers to other objects
1177	 * to avoid false negatives.
1178	 */
1179	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1180
1181retry:
1182	/*
1183	 * Preload this CPU with one extra vmap_area object. It is used
1184	 * when fit type of free area is NE_FIT_TYPE. Please note, it
1185	 * does not guarantee that an allocation occurs on a CPU that
1186	 * is preloaded, instead we minimize the case when it is not.
1187	 * It can happen because of cpu migration, because there is a
1188	 * race until the below spinlock is taken.
1189	 *
1190	 * The preload is done in non-atomic context, thus it allows us
1191	 * to use more permissive allocation masks to be more stable under
1192	 * low memory condition and high memory pressure. In rare case,
1193	 * if not preloaded, GFP_NOWAIT is used.
1194	 *
1195	 * Set "pva" to NULL here, because of "retry" path.
1196	 */
1197	pva = NULL;
 
 
 
 
 
 
1198
1199	if (!this_cpu_read(ne_fit_preload_node))
1200		/*
1201		 * Even if it fails we do not really care about that.
1202		 * Just proceed as it is. If needed "overflow" path
1203		 * will refill the cache we allocate from.
1204		 */
1205		pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
 
1206
1207	spin_lock(&free_vmap_area_lock);
 
 
 
 
 
 
1208
1209	if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
1210		kmem_cache_free(vmap_area_cachep, pva);
1211
1212	/*
1213	 * If an allocation fails, the "vend" address is
1214	 * returned. Therefore trigger the overflow path.
1215	 */
1216	addr = __alloc_vmap_area(size, align, vstart, vend);
1217	spin_unlock(&free_vmap_area_lock);
1218
1219	if (unlikely(addr == vend))
1220		goto overflow;
1221
1222	va->va_start = addr;
1223	va->va_end = addr + size;
1224	va->vm = NULL;
 
1225
 
1226
1227	spin_lock(&vmap_area_lock);
1228	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1229	spin_unlock(&vmap_area_lock);
1230
1231	BUG_ON(!IS_ALIGNED(va->va_start, align));
1232	BUG_ON(va->va_start < vstart);
1233	BUG_ON(va->va_end > vend);
1234
1235	ret = kasan_populate_vmalloc(addr, size);
1236	if (ret) {
1237		free_vmap_area(va);
1238		return ERR_PTR(ret);
1239	}
1240
1241	return va;
1242
1243overflow:
1244	if (!purged) {
1245		purge_vmap_area_lazy();
1246		purged = 1;
1247		goto retry;
1248	}
1249
1250	if (gfpflags_allow_blocking(gfp_mask)) {
1251		unsigned long freed = 0;
1252		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1253		if (freed > 0) {
1254			purged = 0;
1255			goto retry;
1256		}
1257	}
1258
1259	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1260		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1261			size);
1262
1263	kmem_cache_free(vmap_area_cachep, va);
1264	return ERR_PTR(-EBUSY);
1265}
1266
1267int register_vmap_purge_notifier(struct notifier_block *nb)
1268{
1269	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1270}
1271EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1272
1273int unregister_vmap_purge_notifier(struct notifier_block *nb)
1274{
1275	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1276}
1277EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1278
1279/*
1280 * lazy_max_pages is the maximum amount of virtual address space we gather up
1281 * before attempting to purge with a TLB flush.
1282 *
1283 * There is a tradeoff here: a larger number will cover more kernel page tables
1284 * and take slightly longer to purge, but it will linearly reduce the number of
1285 * global TLB flushes that must be performed. It would seem natural to scale
1286 * this number up linearly with the number of CPUs (because vmapping activity
1287 * could also scale linearly with the number of CPUs), however it is likely
1288 * that in practice, workloads might be constrained in other ways that mean
1289 * vmap activity will not scale linearly with CPUs. Also, I want to be
1290 * conservative and not introduce a big latency on huge systems, so go with
1291 * a less aggressive log scale. It will still be an improvement over the old
1292 * code, and it will be simple to change the scale factor if we find that it
1293 * becomes a problem on bigger systems.
1294 */
1295static unsigned long lazy_max_pages(void)
1296{
1297	unsigned int log;
1298
1299	log = fls(num_online_cpus());
1300
1301	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1302}
1303
1304static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1305
1306/*
1307 * Serialize vmap purging.  There is no actual criticial section protected
1308 * by this look, but we want to avoid concurrent calls for performance
1309 * reasons and to make the pcpu_get_vm_areas more deterministic.
1310 */
1311static DEFINE_MUTEX(vmap_purge_lock);
1312
1313/* for per-CPU blocks */
1314static void purge_fragmented_blocks_allcpus(void);
 
1315
1316/*
1317 * called before a call to iounmap() if the caller wants vm_area_struct's
1318 * immediately freed.
1319 */
1320void set_iounmap_nonlazy(void)
1321{
1322	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
 
 
 
 
 
 
 
 
 
1323}
1324
1325/*
1326 * Purges all lazily-freed vmap areas.
1327 */
1328static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1329{
1330	unsigned long resched_threshold;
1331	struct llist_node *valist;
1332	struct vmap_area *va;
1333	struct vmap_area *n_va;
 
1334
1335	lockdep_assert_held(&vmap_purge_lock);
 
1336
1337	valist = llist_del_all(&vmap_purge_list);
1338	if (unlikely(valist == NULL))
1339		return false;
1340
1341	/*
1342	 * TODO: to calculate a flush range without looping.
1343	 * The list can be up to lazy_max_pages() elements.
1344	 */
1345	llist_for_each_entry(va, valist, purge_list) {
1346		if (va->va_start < start)
1347			start = va->va_start;
1348		if (va->va_end > end)
1349			end = va->va_end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1350	}
1351
1352	flush_tlb_kernel_range(start, end);
1353	resched_threshold = lazy_max_pages() << 1;
1354
1355	spin_lock(&free_vmap_area_lock);
1356	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
 
 
 
 
 
 
 
 
1357		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1358		unsigned long orig_start = va->va_start;
1359		unsigned long orig_end = va->va_end;
 
1360
1361		/*
1362		 * Finally insert or merge lazily-freed area. It is
1363		 * detached and there is no need to "unlink" it from
1364		 * anything.
1365		 */
1366		va = merge_or_add_vmap_area(va, &free_vmap_area_root,
1367					    &free_vmap_area_list);
1368
1369		if (!va)
1370			continue;
1371
1372		if (is_vmalloc_or_module_addr((void *)orig_start))
1373			kasan_release_vmalloc(orig_start, orig_end,
1374					      va->va_start, va->va_end);
1375
1376		atomic_long_sub(nr, &vmap_lazy_nr);
 
1377
1378		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1379			cond_resched_lock(&free_vmap_area_lock);
 
 
 
 
1380	}
1381	spin_unlock(&free_vmap_area_lock);
1382	return true;
1383}
1384
1385/*
1386 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1387 * is already purging.
1388 */
1389static void try_purge_vmap_area_lazy(void)
 
1390{
1391	if (mutex_trylock(&vmap_purge_lock)) {
1392		__purge_vmap_area_lazy(ULONG_MAX, 0);
1393		mutex_unlock(&vmap_purge_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1394	}
 
 
 
1395}
1396
1397/*
1398 * Kick off a purge of the outstanding lazy areas.
1399 */
1400static void purge_vmap_area_lazy(void)
 
1401{
1402	mutex_lock(&vmap_purge_lock);
1403	purge_fragmented_blocks_allcpus();
1404	__purge_vmap_area_lazy(ULONG_MAX, 0);
 
 
 
 
 
 
 
1405	mutex_unlock(&vmap_purge_lock);
1406}
1407
1408/*
1409 * Free a vmap area, caller ensuring that the area has been unmapped
1410 * and flush_cache_vunmap had been called for the correct range
1411 * previously.
1412 */
1413static void free_vmap_area_noflush(struct vmap_area *va)
1414{
 
 
 
 
1415	unsigned long nr_lazy;
1416
1417	spin_lock(&vmap_area_lock);
1418	unlink_va(va, &vmap_area_root);
1419	spin_unlock(&vmap_area_lock);
1420
1421	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1422				PAGE_SHIFT, &vmap_lazy_nr);
1423
1424	/* After this point, we may free va at any time */
1425	llist_add(&va->purge_list, &vmap_purge_list);
 
 
 
 
 
 
 
 
1426
1427	if (unlikely(nr_lazy > lazy_max_pages()))
1428		try_purge_vmap_area_lazy();
 
 
 
1429}
1430
1431/*
1432 * Free and unmap a vmap area
1433 */
1434static void free_unmap_vmap_area(struct vmap_area *va)
1435{
1436	flush_cache_vunmap(va->va_start, va->va_end);
1437	unmap_kernel_range_noflush(va->va_start, va->va_end - va->va_start);
1438	if (debug_pagealloc_enabled_static())
1439		flush_tlb_kernel_range(va->va_start, va->va_end);
1440
1441	free_vmap_area_noflush(va);
1442}
1443
1444static struct vmap_area *find_vmap_area(unsigned long addr)
1445{
 
1446	struct vmap_area *va;
 
1447
1448	spin_lock(&vmap_area_lock);
1449	va = __find_vmap_area(addr);
1450	spin_unlock(&vmap_area_lock);
1451
1452	return va;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1453}
1454
1455/*** Per cpu kva allocator ***/
1456
1457/*
1458 * vmap space is limited especially on 32 bit architectures. Ensure there is
1459 * room for at least 16 percpu vmap blocks per CPU.
1460 */
1461/*
1462 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1463 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1464 * instead (we just need a rough idea)
1465 */
1466#if BITS_PER_LONG == 32
1467#define VMALLOC_SPACE		(128UL*1024*1024)
1468#else
1469#define VMALLOC_SPACE		(128UL*1024*1024*1024)
1470#endif
1471
1472#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1473#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1474#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1475#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1476#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1477#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1478#define VMAP_BBMAP_BITS		\
1479		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1480		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1481			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1482
1483#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1484
 
 
 
 
 
 
 
 
 
 
1485struct vmap_block_queue {
1486	spinlock_t lock;
1487	struct list_head free;
 
 
 
 
 
 
 
1488};
1489
1490struct vmap_block {
1491	spinlock_t lock;
1492	struct vmap_area *va;
1493	unsigned long free, dirty;
 
1494	unsigned long dirty_min, dirty_max; /*< dirty range */
1495	struct list_head free_list;
1496	struct rcu_head rcu_head;
1497	struct list_head purge;
1498};
1499
1500/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1501static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1502
1503/*
1504 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1505 * in the free path. Could get rid of this if we change the API to return a
1506 * "cookie" from alloc, to be passed to free. But no big deal yet.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1507 */
1508static DEFINE_XARRAY(vmap_blocks);
 
 
 
 
 
 
1509
1510/*
1511 * We should probably have a fallback mechanism to allocate virtual memory
1512 * out of partially filled vmap blocks. However vmap block sizing should be
1513 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1514 * big problem.
1515 */
1516
1517static unsigned long addr_to_vb_idx(unsigned long addr)
1518{
1519	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1520	addr /= VMAP_BLOCK_SIZE;
1521	return addr;
1522}
1523
1524static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1525{
1526	unsigned long addr;
1527
1528	addr = va_start + (pages_off << PAGE_SHIFT);
1529	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1530	return (void *)addr;
1531}
1532
1533/**
1534 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1535 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1536 * @order:    how many 2^order pages should be occupied in newly allocated block
1537 * @gfp_mask: flags for the page level allocator
1538 *
1539 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1540 */
1541static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1542{
1543	struct vmap_block_queue *vbq;
1544	struct vmap_block *vb;
1545	struct vmap_area *va;
 
1546	unsigned long vb_idx;
1547	int node, err;
1548	void *vaddr;
1549
1550	node = numa_node_id();
1551
1552	vb = kmalloc_node(sizeof(struct vmap_block),
1553			gfp_mask & GFP_RECLAIM_MASK, node);
1554	if (unlikely(!vb))
1555		return ERR_PTR(-ENOMEM);
1556
1557	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1558					VMALLOC_START, VMALLOC_END,
1559					node, gfp_mask);
 
1560	if (IS_ERR(va)) {
1561		kfree(vb);
1562		return ERR_CAST(va);
1563	}
1564
1565	vaddr = vmap_block_vaddr(va->va_start, 0);
1566	spin_lock_init(&vb->lock);
1567	vb->va = va;
1568	/* At least something should be left free */
1569	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
 
1570	vb->free = VMAP_BBMAP_BITS - (1UL << order);
1571	vb->dirty = 0;
1572	vb->dirty_min = VMAP_BBMAP_BITS;
1573	vb->dirty_max = 0;
 
1574	INIT_LIST_HEAD(&vb->free_list);
1575
 
1576	vb_idx = addr_to_vb_idx(va->va_start);
1577	err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1578	if (err) {
1579		kfree(vb);
1580		free_vmap_area(va);
1581		return ERR_PTR(err);
1582	}
1583
1584	vbq = &get_cpu_var(vmap_block_queue);
1585	spin_lock(&vbq->lock);
1586	list_add_tail_rcu(&vb->free_list, &vbq->free);
1587	spin_unlock(&vbq->lock);
1588	put_cpu_var(vmap_block_queue);
1589
1590	return vaddr;
1591}
1592
1593static void free_vmap_block(struct vmap_block *vb)
1594{
 
1595	struct vmap_block *tmp;
 
1596
1597	tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
 
1598	BUG_ON(tmp != vb);
1599
 
 
 
 
 
1600	free_vmap_area_noflush(vb->va);
1601	kfree_rcu(vb, rcu_head);
1602}
1603
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1604static void purge_fragmented_blocks(int cpu)
1605{
1606	LIST_HEAD(purge);
1607	struct vmap_block *vb;
1608	struct vmap_block *n_vb;
1609	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1610
1611	rcu_read_lock();
1612	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 
 
1613
1614		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
 
1615			continue;
1616
1617		spin_lock(&vb->lock);
1618		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1619			vb->free = 0; /* prevent further allocs after releasing lock */
1620			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1621			vb->dirty_min = 0;
1622			vb->dirty_max = VMAP_BBMAP_BITS;
1623			spin_lock(&vbq->lock);
1624			list_del_rcu(&vb->free_list);
1625			spin_unlock(&vbq->lock);
1626			spin_unlock(&vb->lock);
1627			list_add_tail(&vb->purge, &purge);
1628		} else
1629			spin_unlock(&vb->lock);
1630	}
1631	rcu_read_unlock();
1632
1633	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1634		list_del(&vb->purge);
1635		free_vmap_block(vb);
1636	}
1637}
1638
1639static void purge_fragmented_blocks_allcpus(void)
1640{
1641	int cpu;
1642
1643	for_each_possible_cpu(cpu)
1644		purge_fragmented_blocks(cpu);
1645}
1646
1647static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1648{
1649	struct vmap_block_queue *vbq;
1650	struct vmap_block *vb;
1651	void *vaddr = NULL;
1652	unsigned int order;
1653
1654	BUG_ON(offset_in_page(size));
1655	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1656	if (WARN_ON(size == 0)) {
1657		/*
1658		 * Allocating 0 bytes isn't what caller wants since
1659		 * get_order(0) returns funny result. Just warn and terminate
1660		 * early.
1661		 */
1662		return NULL;
1663	}
1664	order = get_order(size);
1665
1666	rcu_read_lock();
1667	vbq = &get_cpu_var(vmap_block_queue);
1668	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1669		unsigned long pages_off;
1670
 
 
 
1671		spin_lock(&vb->lock);
1672		if (vb->free < (1UL << order)) {
1673			spin_unlock(&vb->lock);
1674			continue;
1675		}
1676
1677		pages_off = VMAP_BBMAP_BITS - vb->free;
1678		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1679		vb->free -= 1UL << order;
 
1680		if (vb->free == 0) {
1681			spin_lock(&vbq->lock);
1682			list_del_rcu(&vb->free_list);
1683			spin_unlock(&vbq->lock);
1684		}
1685
1686		spin_unlock(&vb->lock);
1687		break;
1688	}
1689
1690	put_cpu_var(vmap_block_queue);
1691	rcu_read_unlock();
1692
1693	/* Allocate new block if nothing was found */
1694	if (!vaddr)
1695		vaddr = new_vmap_block(order, gfp_mask);
1696
1697	return vaddr;
1698}
1699
1700static void vb_free(unsigned long addr, unsigned long size)
1701{
1702	unsigned long offset;
1703	unsigned int order;
1704	struct vmap_block *vb;
 
1705
1706	BUG_ON(offset_in_page(size));
1707	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1708
1709	flush_cache_vunmap(addr, addr + size);
1710
1711	order = get_order(size);
1712	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
1713	vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
1714
1715	unmap_kernel_range_noflush(addr, size);
 
 
 
 
 
 
 
1716
1717	if (debug_pagealloc_enabled_static())
1718		flush_tlb_kernel_range(addr, addr + size);
1719
1720	spin_lock(&vb->lock);
1721
1722	/* Expand dirty range */
1723	vb->dirty_min = min(vb->dirty_min, offset);
1724	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1725
1726	vb->dirty += 1UL << order;
1727	if (vb->dirty == VMAP_BBMAP_BITS) {
1728		BUG_ON(vb->free);
1729		spin_unlock(&vb->lock);
1730		free_vmap_block(vb);
1731	} else
1732		spin_unlock(&vb->lock);
1733}
1734
1735static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1736{
 
1737	int cpu;
1738
1739	if (unlikely(!vmap_initialized))
1740		return;
1741
1742	might_sleep();
1743
1744	for_each_possible_cpu(cpu) {
1745		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1746		struct vmap_block *vb;
 
1747
1748		rcu_read_lock();
1749		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1750			spin_lock(&vb->lock);
1751			if (vb->dirty) {
 
 
 
 
 
 
 
1752				unsigned long va_start = vb->va->va_start;
1753				unsigned long s, e;
1754
1755				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1756				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1757
1758				start = min(s, start);
1759				end   = max(e, end);
1760
 
 
 
 
1761				flush = 1;
1762			}
1763			spin_unlock(&vb->lock);
1764		}
1765		rcu_read_unlock();
1766	}
 
1767
1768	mutex_lock(&vmap_purge_lock);
1769	purge_fragmented_blocks_allcpus();
1770	if (!__purge_vmap_area_lazy(start, end) && flush)
1771		flush_tlb_kernel_range(start, end);
1772	mutex_unlock(&vmap_purge_lock);
1773}
1774
1775/**
1776 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1777 *
1778 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1779 * to amortize TLB flushing overheads. What this means is that any page you
1780 * have now, may, in a former life, have been mapped into kernel virtual
1781 * address by the vmap layer and so there might be some CPUs with TLB entries
1782 * still referencing that page (additional to the regular 1:1 kernel mapping).
1783 *
1784 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1785 * be sure that none of the pages we have control over will have any aliases
1786 * from the vmap layer.
1787 */
1788void vm_unmap_aliases(void)
1789{
1790	unsigned long start = ULONG_MAX, end = 0;
1791	int flush = 0;
1792
1793	_vm_unmap_aliases(start, end, flush);
1794}
1795EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1796
1797/**
1798 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1799 * @mem: the pointer returned by vm_map_ram
1800 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1801 */
1802void vm_unmap_ram(const void *mem, unsigned int count)
1803{
1804	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1805	unsigned long addr = (unsigned long)mem;
1806	struct vmap_area *va;
1807
1808	might_sleep();
1809	BUG_ON(!addr);
1810	BUG_ON(addr < VMALLOC_START);
1811	BUG_ON(addr > VMALLOC_END);
1812	BUG_ON(!PAGE_ALIGNED(addr));
1813
1814	kasan_poison_vmalloc(mem, size);
1815
1816	if (likely(count <= VMAP_MAX_ALLOC)) {
1817		debug_check_no_locks_freed(mem, size);
1818		vb_free(addr, size);
1819		return;
1820	}
1821
1822	va = find_vmap_area(addr);
1823	BUG_ON(!va);
 
 
1824	debug_check_no_locks_freed((void *)va->va_start,
1825				    (va->va_end - va->va_start));
1826	free_unmap_vmap_area(va);
1827}
1828EXPORT_SYMBOL(vm_unmap_ram);
1829
1830/**
1831 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1832 * @pages: an array of pointers to the pages to be mapped
1833 * @count: number of pages
1834 * @node: prefer to allocate data structures on this node
1835 *
1836 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1837 * faster than vmap so it's good.  But if you mix long-life and short-life
1838 * objects with vm_map_ram(), it could consume lots of address space through
1839 * fragmentation (especially on a 32bit machine).  You could see failures in
1840 * the end.  Please use this function for short-lived objects.
1841 *
1842 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1843 */
1844void *vm_map_ram(struct page **pages, unsigned int count, int node)
1845{
1846	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1847	unsigned long addr;
1848	void *mem;
1849
1850	if (likely(count <= VMAP_MAX_ALLOC)) {
1851		mem = vb_alloc(size, GFP_KERNEL);
1852		if (IS_ERR(mem))
1853			return NULL;
1854		addr = (unsigned long)mem;
1855	} else {
1856		struct vmap_area *va;
1857		va = alloc_vmap_area(size, PAGE_SIZE,
1858				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
 
1859		if (IS_ERR(va))
1860			return NULL;
1861
1862		addr = va->va_start;
1863		mem = (void *)addr;
1864	}
1865
1866	kasan_unpoison_vmalloc(mem, size);
1867
1868	if (map_kernel_range(addr, size, PAGE_KERNEL, pages) < 0) {
1869		vm_unmap_ram(mem, count);
1870		return NULL;
1871	}
 
 
 
 
 
 
 
 
1872	return mem;
1873}
1874EXPORT_SYMBOL(vm_map_ram);
1875
1876static struct vm_struct *vmlist __initdata;
1877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1878/**
1879 * vm_area_add_early - add vmap area early during boot
1880 * @vm: vm_struct to add
1881 *
1882 * This function is used to add fixed kernel vm area to vmlist before
1883 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1884 * should contain proper values and the other fields should be zero.
1885 *
1886 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1887 */
1888void __init vm_area_add_early(struct vm_struct *vm)
1889{
1890	struct vm_struct *tmp, **p;
1891
1892	BUG_ON(vmap_initialized);
1893	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1894		if (tmp->addr >= vm->addr) {
1895			BUG_ON(tmp->addr < vm->addr + vm->size);
1896			break;
1897		} else
1898			BUG_ON(tmp->addr + tmp->size > vm->addr);
1899	}
1900	vm->next = *p;
1901	*p = vm;
1902}
1903
1904/**
1905 * vm_area_register_early - register vmap area early during boot
1906 * @vm: vm_struct to register
1907 * @align: requested alignment
1908 *
1909 * This function is used to register kernel vm area before
1910 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1911 * proper values on entry and other fields should be zero.  On return,
1912 * vm->addr contains the allocated address.
1913 *
1914 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1915 */
1916void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1917{
1918	static size_t vm_init_off __initdata;
1919	unsigned long addr;
1920
1921	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1922	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1923
1924	vm->addr = (void *)addr;
1925
1926	vm_area_add_early(vm);
1927}
1928
1929static void vmap_init_free_space(void)
1930{
1931	unsigned long vmap_start = 1;
1932	const unsigned long vmap_end = ULONG_MAX;
1933	struct vmap_area *busy, *free;
1934
1935	/*
1936	 *     B     F     B     B     B     F
1937	 * -|-----|.....|-----|-----|-----|.....|-
1938	 *  |           The KVA space           |
1939	 *  |<--------------------------------->|
1940	 */
1941	list_for_each_entry(busy, &vmap_area_list, list) {
1942		if (busy->va_start - vmap_start > 0) {
1943			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1944			if (!WARN_ON_ONCE(!free)) {
1945				free->va_start = vmap_start;
1946				free->va_end = busy->va_start;
1947
1948				insert_vmap_area_augment(free, NULL,
1949					&free_vmap_area_root,
1950						&free_vmap_area_list);
1951			}
1952		}
1953
1954		vmap_start = busy->va_end;
1955	}
1956
1957	if (vmap_end - vmap_start > 0) {
1958		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1959		if (!WARN_ON_ONCE(!free)) {
1960			free->va_start = vmap_start;
1961			free->va_end = vmap_end;
1962
1963			insert_vmap_area_augment(free, NULL,
1964				&free_vmap_area_root,
1965					&free_vmap_area_list);
1966		}
1967	}
1968}
1969
1970void __init vmalloc_init(void)
1971{
1972	struct vmap_area *va;
1973	struct vm_struct *tmp;
1974	int i;
1975
1976	/*
1977	 * Create the cache for vmap_area objects.
1978	 */
1979	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1980
1981	for_each_possible_cpu(i) {
1982		struct vmap_block_queue *vbq;
1983		struct vfree_deferred *p;
1984
1985		vbq = &per_cpu(vmap_block_queue, i);
1986		spin_lock_init(&vbq->lock);
1987		INIT_LIST_HEAD(&vbq->free);
1988		p = &per_cpu(vfree_deferred, i);
1989		init_llist_head(&p->list);
1990		INIT_WORK(&p->wq, free_work);
1991	}
1992
1993	/* Import existing vmlist entries. */
1994	for (tmp = vmlist; tmp; tmp = tmp->next) {
1995		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1996		if (WARN_ON_ONCE(!va))
1997			continue;
1998
1999		va->va_start = (unsigned long)tmp->addr;
2000		va->va_end = va->va_start + tmp->size;
2001		va->vm = tmp;
2002		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2003	}
2004
2005	/*
2006	 * Now we can initialize a free vmap space.
2007	 */
2008	vmap_init_free_space();
2009	vmap_initialized = true;
2010}
2011
2012/**
2013 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
2014 * @addr: start of the VM area to unmap
2015 * @size: size of the VM area to unmap
2016 *
2017 * Similar to unmap_kernel_range_noflush() but flushes vcache before
2018 * the unmapping and tlb after.
2019 */
2020void unmap_kernel_range(unsigned long addr, unsigned long size)
2021{
2022	unsigned long end = addr + size;
2023
2024	flush_cache_vunmap(addr, end);
2025	unmap_kernel_range_noflush(addr, size);
2026	flush_tlb_kernel_range(addr, end);
2027}
2028
2029static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2030	struct vmap_area *va, unsigned long flags, const void *caller)
2031{
2032	vm->flags = flags;
2033	vm->addr = (void *)va->va_start;
2034	vm->size = va->va_end - va->va_start;
2035	vm->caller = caller;
2036	va->vm = vm;
2037}
2038
2039static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2040			      unsigned long flags, const void *caller)
2041{
2042	spin_lock(&vmap_area_lock);
 
 
2043	setup_vmalloc_vm_locked(vm, va, flags, caller);
2044	spin_unlock(&vmap_area_lock);
2045}
2046
2047static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2048{
2049	/*
2050	 * Before removing VM_UNINITIALIZED,
2051	 * we should make sure that vm has proper values.
2052	 * Pair with smp_rmb() in show_numa_info().
2053	 */
2054	smp_wmb();
2055	vm->flags &= ~VM_UNINITIALIZED;
2056}
2057
2058static struct vm_struct *__get_vm_area_node(unsigned long size,
2059		unsigned long align, unsigned long flags, unsigned long start,
2060		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
 
2061{
2062	struct vmap_area *va;
2063	struct vm_struct *area;
2064	unsigned long requested_size = size;
2065
2066	BUG_ON(in_interrupt());
2067	size = PAGE_ALIGN(size);
2068	if (unlikely(!size))
2069		return NULL;
2070
2071	if (flags & VM_IOREMAP)
2072		align = 1ul << clamp_t(int, get_count_order_long(size),
2073				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2074
2075	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2076	if (unlikely(!area))
2077		return NULL;
2078
2079	if (!(flags & VM_NO_GUARD))
2080		size += PAGE_SIZE;
2081
2082	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2083	if (IS_ERR(va)) {
2084		kfree(area);
2085		return NULL;
2086	}
2087
2088	kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2089
2090	setup_vmalloc_vm(area, va, flags, caller);
2091
 
 
 
 
 
 
 
 
 
 
 
 
2092	return area;
2093}
2094
2095struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2096				       unsigned long start, unsigned long end,
2097				       const void *caller)
2098{
2099	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2100				  GFP_KERNEL, caller);
2101}
2102
2103/**
2104 * get_vm_area - reserve a contiguous kernel virtual area
2105 * @size:	 size of the area
2106 * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2107 *
2108 * Search an area of @size in the kernel virtual mapping area,
2109 * and reserved it for out purposes.  Returns the area descriptor
2110 * on success or %NULL on failure.
2111 *
2112 * Return: the area descriptor on success or %NULL on failure.
2113 */
2114struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2115{
2116	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
 
2117				  NUMA_NO_NODE, GFP_KERNEL,
2118				  __builtin_return_address(0));
2119}
2120
2121struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2122				const void *caller)
2123{
2124	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
 
2125				  NUMA_NO_NODE, GFP_KERNEL, caller);
2126}
2127
2128/**
2129 * find_vm_area - find a continuous kernel virtual area
2130 * @addr:	  base address
2131 *
2132 * Search for the kernel VM area starting at @addr, and return it.
2133 * It is up to the caller to do all required locking to keep the returned
2134 * pointer valid.
2135 *
2136 * Return: pointer to the found area or %NULL on faulure
2137 */
2138struct vm_struct *find_vm_area(const void *addr)
2139{
2140	struct vmap_area *va;
2141
2142	va = find_vmap_area((unsigned long)addr);
2143	if (!va)
2144		return NULL;
2145
2146	return va->vm;
2147}
2148
2149/**
2150 * remove_vm_area - find and remove a continuous kernel virtual area
2151 * @addr:	    base address
2152 *
2153 * Search for the kernel VM area starting at @addr, and remove it.
2154 * This function returns the found VM area, but using it is NOT safe
2155 * on SMP machines, except for its size or flags.
2156 *
2157 * Return: pointer to the found area or %NULL on faulure
2158 */
2159struct vm_struct *remove_vm_area(const void *addr)
2160{
2161	struct vmap_area *va;
 
2162
2163	might_sleep();
2164
2165	spin_lock(&vmap_area_lock);
2166	va = __find_vmap_area((unsigned long)addr);
2167	if (va && va->vm) {
2168		struct vm_struct *vm = va->vm;
2169
2170		va->vm = NULL;
2171		spin_unlock(&vmap_area_lock);
2172
2173		kasan_free_shadow(vm);
2174		free_unmap_vmap_area(va);
 
 
2175
2176		return vm;
2177	}
 
 
2178
2179	spin_unlock(&vmap_area_lock);
2180	return NULL;
2181}
2182
2183static inline void set_area_direct_map(const struct vm_struct *area,
2184				       int (*set_direct_map)(struct page *page))
2185{
2186	int i;
2187
 
2188	for (i = 0; i < area->nr_pages; i++)
2189		if (page_address(area->pages[i]))
2190			set_direct_map(area->pages[i]);
2191}
2192
2193/* Handle removing and resetting vm mappings related to the vm_struct. */
2194static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
 
 
2195{
2196	unsigned long start = ULONG_MAX, end = 0;
2197	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2198	int flush_dmap = 0;
2199	int i;
2200
2201	remove_vm_area(area->addr);
2202
2203	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2204	if (!flush_reset)
2205		return;
2206
2207	/*
2208	 * If not deallocating pages, just do the flush of the VM area and
2209	 * return.
2210	 */
2211	if (!deallocate_pages) {
2212		vm_unmap_aliases();
2213		return;
2214	}
2215
2216	/*
2217	 * If execution gets here, flush the vm mapping and reset the direct
2218	 * map. Find the start and end range of the direct mappings to make sure
2219	 * the vm_unmap_aliases() flush includes the direct map.
2220	 */
2221	for (i = 0; i < area->nr_pages; i++) {
2222		unsigned long addr = (unsigned long)page_address(area->pages[i]);
 
2223		if (addr) {
 
 
 
2224			start = min(addr, start);
2225			end = max(addr + PAGE_SIZE, end);
2226			flush_dmap = 1;
2227		}
2228	}
2229
2230	/*
2231	 * Set direct map to something invalid so that it won't be cached if
2232	 * there are any accesses after the TLB flush, then flush the TLB and
2233	 * reset the direct map permissions to the default.
2234	 */
2235	set_area_direct_map(area, set_direct_map_invalid_noflush);
2236	_vm_unmap_aliases(start, end, flush_dmap);
2237	set_area_direct_map(area, set_direct_map_default_noflush);
2238}
2239
2240static void __vunmap(const void *addr, int deallocate_pages)
2241{
2242	struct vm_struct *area;
2243
2244	if (!addr)
2245		return;
2246
2247	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2248			addr))
2249		return;
2250
2251	area = find_vm_area(addr);
2252	if (unlikely(!area)) {
2253		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2254				addr);
2255		return;
2256	}
2257
2258	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2259	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2260
2261	kasan_poison_vmalloc(area->addr, area->size);
2262
2263	vm_remove_mappings(area, deallocate_pages);
2264
2265	if (deallocate_pages) {
2266		int i;
2267
2268		for (i = 0; i < area->nr_pages; i++) {
2269			struct page *page = area->pages[i];
2270
2271			BUG_ON(!page);
2272			__free_pages(page, 0);
2273		}
2274		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2275
2276		kvfree(area->pages);
2277	}
2278
2279	kfree(area);
2280	return;
2281}
2282
2283static inline void __vfree_deferred(const void *addr)
2284{
2285	/*
2286	 * Use raw_cpu_ptr() because this can be called from preemptible
2287	 * context. Preemption is absolutely fine here, because the llist_add()
2288	 * implementation is lockless, so it works even if we are adding to
2289	 * another cpu's list. schedule_work() should be fine with this too.
2290	 */
2291	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2292
2293	if (llist_add((struct llist_node *)addr, &p->list))
2294		schedule_work(&p->wq);
2295}
2296
2297/**
2298 * vfree_atomic - release memory allocated by vmalloc()
2299 * @addr:	  memory base address
2300 *
2301 * This one is just like vfree() but can be called in any atomic context
2302 * except NMIs.
2303 */
2304void vfree_atomic(const void *addr)
2305{
2306	BUG_ON(in_nmi());
2307
 
2308	kmemleak_free(addr);
2309
2310	if (!addr)
2311		return;
2312	__vfree_deferred(addr);
2313}
2314
2315static void __vfree(const void *addr)
2316{
2317	if (unlikely(in_interrupt()))
2318		__vfree_deferred(addr);
2319	else
2320		__vunmap(addr, 1);
2321}
2322
2323/**
2324 * vfree - release memory allocated by vmalloc()
2325 * @addr:  memory base address
2326 *
2327 * Free the virtually continuous memory area starting at @addr, as
2328 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2329 * NULL, no operation is performed.
 
2330 *
2331 * Must not be called in NMI context (strictly speaking, only if we don't
2332 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2333 * conventions for vfree() arch-depenedent would be a really bad idea)
2334 *
 
2335 * May sleep if called *not* from interrupt context.
2336 *
2337 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
 
2338 */
2339void vfree(const void *addr)
2340{
2341	BUG_ON(in_nmi());
 
2342
2343	kmemleak_free(addr);
 
 
 
2344
2345	might_sleep_if(!in_interrupt());
 
 
2346
2347	if (!addr)
2348		return;
2349
2350	__vfree(addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2351}
2352EXPORT_SYMBOL(vfree);
2353
2354/**
2355 * vunmap - release virtual mapping obtained by vmap()
2356 * @addr:   memory base address
2357 *
2358 * Free the virtually contiguous memory area starting at @addr,
2359 * which was created from the page array passed to vmap().
2360 *
2361 * Must not be called in interrupt context.
2362 */
2363void vunmap(const void *addr)
2364{
 
 
2365	BUG_ON(in_interrupt());
2366	might_sleep();
2367	if (addr)
2368		__vunmap(addr, 0);
 
 
 
 
 
 
 
 
2369}
2370EXPORT_SYMBOL(vunmap);
2371
2372/**
2373 * vmap - map an array of pages into virtually contiguous space
2374 * @pages: array of page pointers
2375 * @count: number of pages to map
2376 * @flags: vm_area->flags
2377 * @prot: page protection for the mapping
2378 *
2379 * Maps @count pages from @pages into contiguous kernel virtual
2380 * space.
 
 
 
2381 *
2382 * Return: the address of the area or %NULL on failure
2383 */
2384void *vmap(struct page **pages, unsigned int count,
2385	   unsigned long flags, pgprot_t prot)
2386{
2387	struct vm_struct *area;
 
2388	unsigned long size;		/* In bytes */
2389
2390	might_sleep();
2391
 
 
 
 
 
 
 
 
 
 
2392	if (count > totalram_pages())
2393		return NULL;
2394
2395	size = (unsigned long)count << PAGE_SHIFT;
2396	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2397	if (!area)
2398		return NULL;
2399
2400	if (map_kernel_range((unsigned long)area->addr, size, pgprot_nx(prot),
2401			pages) < 0) {
 
2402		vunmap(area->addr);
2403		return NULL;
2404	}
2405
 
 
 
 
2406	return area->addr;
2407}
2408EXPORT_SYMBOL(vmap);
2409
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2410static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2411				 pgprot_t prot, int node)
 
2412{
2413	struct page **pages;
2414	unsigned int nr_pages, array_size, i;
2415	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2416	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2417	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2418					0 :
2419					__GFP_HIGHMEM;
 
 
 
 
 
 
2420
2421	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2422	array_size = (nr_pages * sizeof(struct page *));
2423
2424	/* Please note that the recursion is strictly bounded. */
2425	if (array_size > PAGE_SIZE) {
2426		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2427				node, area->caller);
2428	} else {
2429		pages = kmalloc_node(array_size, nested_gfp, node);
2430	}
2431
2432	if (!pages) {
2433		remove_vm_area(area->addr);
2434		kfree(area);
 
 
2435		return NULL;
2436	}
2437
2438	area->pages = pages;
2439	area->nr_pages = nr_pages;
2440
2441	for (i = 0; i < area->nr_pages; i++) {
2442		struct page *page;
2443
2444		if (node == NUMA_NO_NODE)
2445			page = alloc_page(alloc_mask|highmem_mask);
2446		else
2447			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2448
2449		if (unlikely(!page)) {
2450			/* Successfully allocated i pages, free them in __vunmap() */
2451			area->nr_pages = i;
2452			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2453			goto fail;
2454		}
2455		area->pages[i] = page;
2456		if (gfpflags_allow_blocking(gfp_mask))
2457			cond_resched();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2458	}
2459	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2460
2461	if (map_kernel_range((unsigned long)area->addr, get_vm_area_size(area),
2462			prot, pages) < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2463		goto fail;
 
2464
2465	return area->addr;
2466
2467fail:
2468	warn_alloc(gfp_mask, NULL,
2469			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
2470			  (area->nr_pages*PAGE_SIZE), area->size);
2471	__vfree(area->addr);
2472	return NULL;
2473}
2474
2475/**
2476 * __vmalloc_node_range - allocate virtually contiguous memory
2477 * @size:		  allocation size
2478 * @align:		  desired alignment
2479 * @start:		  vm area range start
2480 * @end:		  vm area range end
2481 * @gfp_mask:		  flags for the page level allocator
2482 * @prot:		  protection mask for the allocated pages
2483 * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
2484 * @node:		  node to use for allocation or NUMA_NO_NODE
2485 * @caller:		  caller's return address
2486 *
2487 * Allocate enough pages to cover @size from the page level
2488 * allocator with @gfp_mask flags.  Map them into contiguous
2489 * kernel virtual space, using a pagetable protection of @prot.
 
 
 
 
 
 
 
 
 
 
2490 *
2491 * Return: the address of the area or %NULL on failure
2492 */
2493void *__vmalloc_node_range(unsigned long size, unsigned long align,
2494			unsigned long start, unsigned long end, gfp_t gfp_mask,
2495			pgprot_t prot, unsigned long vm_flags, int node,
2496			const void *caller)
2497{
2498	struct vm_struct *area;
2499	void *addr;
 
2500	unsigned long real_size = size;
 
 
2501
2502	size = PAGE_ALIGN(size);
2503	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2504		goto fail;
 
2505
2506	area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
2507				vm_flags, start, end, node, gfp_mask, caller);
2508	if (!area)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2509		goto fail;
2510
2511	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2512	if (!addr)
2513		return NULL;
 
 
 
 
 
 
 
 
 
 
 
2514
2515	/*
2516	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2517	 * flag. It means that vm_struct is not fully initialized.
2518	 * Now, it is fully initialized, so remove this flag here.
2519	 */
2520	clear_vm_uninitialized_flag(area);
2521
2522	kmemleak_vmalloc(area, size, gfp_mask);
 
 
2523
2524	return addr;
2525
2526fail:
2527	warn_alloc(gfp_mask, NULL,
2528			  "vmalloc: allocation failure: %lu bytes", real_size);
 
 
 
 
 
2529	return NULL;
2530}
2531
2532/**
2533 * __vmalloc_node - allocate virtually contiguous memory
2534 * @size:	    allocation size
2535 * @align:	    desired alignment
2536 * @gfp_mask:	    flags for the page level allocator
2537 * @node:	    node to use for allocation or NUMA_NO_NODE
2538 * @caller:	    caller's return address
2539 *
2540 * Allocate enough pages to cover @size from the page level allocator with
2541 * @gfp_mask flags.  Map them into contiguous kernel virtual space.
2542 *
2543 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2544 * and __GFP_NOFAIL are not supported
2545 *
2546 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2547 * with mm people.
2548 *
2549 * Return: pointer to the allocated memory or %NULL on error
2550 */
2551void *__vmalloc_node(unsigned long size, unsigned long align,
2552			    gfp_t gfp_mask, int node, const void *caller)
2553{
2554	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2555				gfp_mask, PAGE_KERNEL, 0, node, caller);
2556}
2557/*
2558 * This is only for performance analysis of vmalloc and stress purpose.
2559 * It is required by vmalloc test module, therefore do not use it other
2560 * than that.
2561 */
2562#ifdef CONFIG_TEST_VMALLOC_MODULE
2563EXPORT_SYMBOL_GPL(__vmalloc_node);
2564#endif
2565
2566void *__vmalloc(unsigned long size, gfp_t gfp_mask)
2567{
2568	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
2569				__builtin_return_address(0));
2570}
2571EXPORT_SYMBOL(__vmalloc);
2572
2573/**
2574 * vmalloc - allocate virtually contiguous memory
2575 * @size:    allocation size
2576 *
2577 * Allocate enough pages to cover @size from the page level
2578 * allocator and map them into contiguous kernel virtual space.
2579 *
2580 * For tight control over page level allocator and protection flags
2581 * use __vmalloc() instead.
2582 *
2583 * Return: pointer to the allocated memory or %NULL on error
2584 */
2585void *vmalloc(unsigned long size)
2586{
2587	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
2588				__builtin_return_address(0));
2589}
2590EXPORT_SYMBOL(vmalloc);
2591
2592/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2593 * vzalloc - allocate virtually contiguous memory with zero fill
2594 * @size:    allocation size
2595 *
2596 * Allocate enough pages to cover @size from the page level
2597 * allocator and map them into contiguous kernel virtual space.
2598 * The memory allocated is set to zero.
2599 *
2600 * For tight control over page level allocator and protection flags
2601 * use __vmalloc() instead.
2602 *
2603 * Return: pointer to the allocated memory or %NULL on error
2604 */
2605void *vzalloc(unsigned long size)
2606{
2607	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
2608				__builtin_return_address(0));
2609}
2610EXPORT_SYMBOL(vzalloc);
2611
2612/**
2613 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2614 * @size: allocation size
2615 *
2616 * The resulting memory area is zeroed so it can be mapped to userspace
2617 * without leaking data.
2618 *
2619 * Return: pointer to the allocated memory or %NULL on error
2620 */
2621void *vmalloc_user(unsigned long size)
2622{
2623	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2624				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2625				    VM_USERMAP, NUMA_NO_NODE,
2626				    __builtin_return_address(0));
2627}
2628EXPORT_SYMBOL(vmalloc_user);
2629
2630/**
2631 * vmalloc_node - allocate memory on a specific node
2632 * @size:	  allocation size
2633 * @node:	  numa node
2634 *
2635 * Allocate enough pages to cover @size from the page level
2636 * allocator and map them into contiguous kernel virtual space.
2637 *
2638 * For tight control over page level allocator and protection flags
2639 * use __vmalloc() instead.
2640 *
2641 * Return: pointer to the allocated memory or %NULL on error
2642 */
2643void *vmalloc_node(unsigned long size, int node)
2644{
2645	return __vmalloc_node(size, 1, GFP_KERNEL, node,
2646			__builtin_return_address(0));
2647}
2648EXPORT_SYMBOL(vmalloc_node);
2649
2650/**
2651 * vzalloc_node - allocate memory on a specific node with zero fill
2652 * @size:	allocation size
2653 * @node:	numa node
2654 *
2655 * Allocate enough pages to cover @size from the page level
2656 * allocator and map them into contiguous kernel virtual space.
2657 * The memory allocated is set to zero.
2658 *
2659 * Return: pointer to the allocated memory or %NULL on error
2660 */
2661void *vzalloc_node(unsigned long size, int node)
2662{
2663	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
2664				__builtin_return_address(0));
2665}
2666EXPORT_SYMBOL(vzalloc_node);
2667
2668#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2669#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2670#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2671#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2672#else
2673/*
2674 * 64b systems should always have either DMA or DMA32 zones. For others
2675 * GFP_DMA32 should do the right thing and use the normal zone.
2676 */
2677#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2678#endif
2679
2680/**
2681 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2682 * @size:	allocation size
2683 *
2684 * Allocate enough 32bit PA addressable pages to cover @size from the
2685 * page level allocator and map them into contiguous kernel virtual space.
2686 *
2687 * Return: pointer to the allocated memory or %NULL on error
2688 */
2689void *vmalloc_32(unsigned long size)
2690{
2691	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
2692			__builtin_return_address(0));
2693}
2694EXPORT_SYMBOL(vmalloc_32);
2695
2696/**
2697 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2698 * @size:	     allocation size
2699 *
2700 * The resulting memory area is 32bit addressable and zeroed so it can be
2701 * mapped to userspace without leaking data.
2702 *
2703 * Return: pointer to the allocated memory or %NULL on error
2704 */
2705void *vmalloc_32_user(unsigned long size)
2706{
2707	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2708				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2709				    VM_USERMAP, NUMA_NO_NODE,
2710				    __builtin_return_address(0));
2711}
2712EXPORT_SYMBOL(vmalloc_32_user);
2713
2714/*
2715 * small helper routine , copy contents to buf from addr.
2716 * If the page is not present, fill zero.
 
2717 */
 
 
 
 
 
 
2718
2719static int aligned_vread(char *buf, char *addr, unsigned long count)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2720{
2721	struct page *p;
2722	int copied = 0;
2723
2724	while (count) {
2725		unsigned long offset, length;
 
2726
2727		offset = offset_in_page(addr);
2728		length = PAGE_SIZE - offset;
2729		if (length > count)
2730			length = count;
2731		p = vmalloc_to_page(addr);
2732		/*
2733		 * To do safe access to this _mapped_ area, we need
2734		 * lock. But adding lock here means that we need to add
2735		 * overhead of vmalloc()/vfree() calles for this _debug_
2736		 * interface, rarely used. Instead of that, we'll use
2737		 * kmap() and get small overhead in this access function.
 
2738		 */
2739		if (p) {
2740			/*
2741			 * we can expect USER0 is not used (see vread/vwrite's
2742			 * function description)
2743			 */
2744			void *map = kmap_atomic(p);
2745			memcpy(buf, map + offset, length);
2746			kunmap_atomic(map);
2747		} else
2748			memset(buf, 0, length);
2749
2750		addr += length;
2751		buf += length;
2752		copied += length;
2753		count -= length;
2754	}
2755	return copied;
 
2756}
2757
2758static int aligned_vwrite(char *buf, char *addr, unsigned long count)
 
 
 
 
 
 
2759{
2760	struct page *p;
2761	int copied = 0;
 
 
 
 
2762
2763	while (count) {
2764		unsigned long offset, length;
 
 
 
 
 
2765
2766		offset = offset_in_page(addr);
2767		length = PAGE_SIZE - offset;
2768		if (length > count)
2769			length = count;
2770		p = vmalloc_to_page(addr);
2771		/*
2772		 * To do safe access to this _mapped_ area, we need
2773		 * lock. But adding lock here means that we need to add
2774		 * overhead of vmalloc()/vfree() calles for this _debug_
2775		 * interface, rarely used. Instead of that, we'll use
2776		 * kmap() and get small overhead in this access function.
2777		 */
2778		if (p) {
2779			/*
2780			 * we can expect USER0 is not used (see vread/vwrite's
2781			 * function description)
2782			 */
2783			void *map = kmap_atomic(p);
2784			memcpy(map + offset, buf, length);
2785			kunmap_atomic(map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2786		}
2787		addr += length;
2788		buf += length;
2789		copied += length;
2790		count -= length;
 
 
 
 
 
 
 
 
 
 
2791	}
2792	return copied;
 
 
 
 
 
 
 
 
 
2793}
2794
2795/**
2796 * vread() - read vmalloc area in a safe way.
2797 * @buf:     buffer for reading data
2798 * @addr:    vm address.
2799 * @count:   number of bytes to be read.
2800 *
2801 * This function checks that addr is a valid vmalloc'ed area, and
2802 * copy data from that area to a given buffer. If the given memory range
2803 * of [addr...addr+count) includes some valid address, data is copied to
2804 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2805 * IOREMAP area is treated as memory hole and no copy is done.
2806 *
2807 * If [addr...addr+count) doesn't includes any intersects with alive
2808 * vm_struct area, returns 0. @buf should be kernel's buffer.
2809 *
2810 * Note: In usual ops, vread() is never necessary because the caller
2811 * should know vmalloc() area is valid and can use memcpy().
2812 * This is for routines which have to access vmalloc area without
2813 * any information, as /dev/kmem.
2814 *
2815 * Return: number of bytes for which addr and buf should be increased
2816 * (same number as @count) or %0 if [addr...addr+count) doesn't
2817 * include any intersection with valid vmalloc area
2818 */
2819long vread(char *buf, char *addr, unsigned long count)
2820{
 
2821	struct vmap_area *va;
2822	struct vm_struct *vm;
2823	char *vaddr, *buf_start = buf;
2824	unsigned long buflen = count;
2825	unsigned long n;
 
 
2826
2827	/* Don't allow overflow */
2828	if ((unsigned long) addr + count < count)
2829		count = -(unsigned long) addr;
2830
2831	spin_lock(&vmap_area_lock);
2832	list_for_each_entry(va, &vmap_area_list, list) {
2833		if (!count)
2834			break;
2835
2836		if (!va->vm)
2837			continue;
 
 
 
 
 
 
 
 
 
 
 
2838
2839		vm = va->vm;
2840		vaddr = (char *) vm->addr;
2841		if (addr >= vaddr + get_vm_area_size(vm))
2842			continue;
2843		while (addr < vaddr) {
2844			if (count == 0)
2845				goto finished;
2846			*buf = '\0';
2847			buf++;
2848			addr++;
2849			count--;
2850		}
2851		n = vaddr + get_vm_area_size(vm) - addr;
2852		if (n > count)
2853			n = count;
2854		if (!(vm->flags & VM_IOREMAP))
2855			aligned_vread(buf, addr, n);
2856		else /* IOREMAP area is treated as memory hole */
2857			memset(buf, 0, n);
2858		buf += n;
2859		addr += n;
2860		count -= n;
2861	}
2862finished:
2863	spin_unlock(&vmap_area_lock);
2864
2865	if (buf == buf_start)
2866		return 0;
2867	/* zero-fill memory holes */
2868	if (buf != buf_start + buflen)
2869		memset(buf, 0, buflen - (buf - buf_start));
2870
2871	return buflen;
2872}
2873
2874/**
2875 * vwrite() - write vmalloc area in a safe way.
2876 * @buf:      buffer for source data
2877 * @addr:     vm address.
2878 * @count:    number of bytes to be read.
2879 *
2880 * This function checks that addr is a valid vmalloc'ed area, and
2881 * copy data from a buffer to the given addr. If specified range of
2882 * [addr...addr+count) includes some valid address, data is copied from
2883 * proper area of @buf. If there are memory holes, no copy to hole.
2884 * IOREMAP area is treated as memory hole and no copy is done.
2885 *
2886 * If [addr...addr+count) doesn't includes any intersects with alive
2887 * vm_struct area, returns 0. @buf should be kernel's buffer.
2888 *
2889 * Note: In usual ops, vwrite() is never necessary because the caller
2890 * should know vmalloc() area is valid and can use memcpy().
2891 * This is for routines which have to access vmalloc area without
2892 * any information, as /dev/kmem.
2893 *
2894 * Return: number of bytes for which addr and buf should be
2895 * increased (same number as @count) or %0 if [addr...addr+count)
2896 * doesn't include any intersection with valid vmalloc area
2897 */
2898long vwrite(char *buf, char *addr, unsigned long count)
2899{
2900	struct vmap_area *va;
2901	struct vm_struct *vm;
2902	char *vaddr;
2903	unsigned long n, buflen;
2904	int copied = 0;
2905
2906	/* Don't allow overflow */
2907	if ((unsigned long) addr + count < count)
2908		count = -(unsigned long) addr;
2909	buflen = count;
2910
2911	spin_lock(&vmap_area_lock);
2912	list_for_each_entry(va, &vmap_area_list, list) {
2913		if (!count)
2914			break;
2915
2916		if (!va->vm)
2917			continue;
 
2918
2919		vm = va->vm;
2920		vaddr = (char *) vm->addr;
2921		if (addr >= vaddr + get_vm_area_size(vm))
2922			continue;
2923		while (addr < vaddr) {
2924			if (count == 0)
2925				goto finished;
2926			buf++;
2927			addr++;
2928			count--;
2929		}
2930		n = vaddr + get_vm_area_size(vm) - addr;
2931		if (n > count)
2932			n = count;
2933		if (!(vm->flags & VM_IOREMAP)) {
2934			aligned_vwrite(buf, addr, n);
2935			copied++;
2936		}
2937		buf += n;
2938		addr += n;
2939		count -= n;
2940	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2941finished:
2942	spin_unlock(&vmap_area_lock);
2943	if (!copied)
2944		return 0;
2945	return buflen;
 
2946}
2947
2948/**
2949 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2950 * @vma:		vma to cover
2951 * @uaddr:		target user address to start at
2952 * @kaddr:		virtual address of vmalloc kernel memory
2953 * @pgoff:		offset from @kaddr to start at
2954 * @size:		size of map area
2955 *
2956 * Returns:	0 for success, -Exxx on failure
2957 *
2958 * This function checks that @kaddr is a valid vmalloc'ed area,
2959 * and that it is big enough to cover the range starting at
2960 * @uaddr in @vma. Will return failure if that criteria isn't
2961 * met.
2962 *
2963 * Similar to remap_pfn_range() (see mm/memory.c)
2964 */
2965int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2966				void *kaddr, unsigned long pgoff,
2967				unsigned long size)
2968{
2969	struct vm_struct *area;
2970	unsigned long off;
2971	unsigned long end_index;
2972
2973	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
2974		return -EINVAL;
2975
2976	size = PAGE_ALIGN(size);
2977
2978	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2979		return -EINVAL;
2980
2981	area = find_vm_area(kaddr);
2982	if (!area)
2983		return -EINVAL;
2984
2985	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
2986		return -EINVAL;
2987
2988	if (check_add_overflow(size, off, &end_index) ||
2989	    end_index > get_vm_area_size(area))
2990		return -EINVAL;
2991	kaddr += off;
2992
2993	do {
2994		struct page *page = vmalloc_to_page(kaddr);
2995		int ret;
2996
2997		ret = vm_insert_page(vma, uaddr, page);
2998		if (ret)
2999			return ret;
3000
3001		uaddr += PAGE_SIZE;
3002		kaddr += PAGE_SIZE;
3003		size -= PAGE_SIZE;
3004	} while (size > 0);
3005
3006	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3007
3008	return 0;
3009}
3010EXPORT_SYMBOL(remap_vmalloc_range_partial);
3011
3012/**
3013 * remap_vmalloc_range - map vmalloc pages to userspace
3014 * @vma:		vma to cover (map full range of vma)
3015 * @addr:		vmalloc memory
3016 * @pgoff:		number of pages into addr before first page to map
3017 *
3018 * Returns:	0 for success, -Exxx on failure
3019 *
3020 * This function checks that addr is a valid vmalloc'ed area, and
3021 * that it is big enough to cover the vma. Will return failure if
3022 * that criteria isn't met.
3023 *
3024 * Similar to remap_pfn_range() (see mm/memory.c)
3025 */
3026int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3027						unsigned long pgoff)
3028{
3029	return remap_vmalloc_range_partial(vma, vma->vm_start,
3030					   addr, pgoff,
3031					   vma->vm_end - vma->vm_start);
3032}
3033EXPORT_SYMBOL(remap_vmalloc_range);
3034
3035static int f(pte_t *pte, unsigned long addr, void *data)
3036{
3037	pte_t ***p = data;
3038
3039	if (p) {
3040		*(*p) = pte;
3041		(*p)++;
3042	}
3043	return 0;
3044}
3045
3046/**
3047 * alloc_vm_area - allocate a range of kernel address space
3048 * @size:	   size of the area
3049 * @ptes:	   returns the PTEs for the address space
3050 *
3051 * Returns:	NULL on failure, vm_struct on success
3052 *
3053 * This function reserves a range of kernel address space, and
3054 * allocates pagetables to map that range.  No actual mappings
3055 * are created.
3056 *
3057 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3058 * allocated for the VM area are returned.
3059 */
3060struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3061{
3062	struct vm_struct *area;
3063
3064	area = get_vm_area_caller(size, VM_IOREMAP,
3065				__builtin_return_address(0));
3066	if (area == NULL)
3067		return NULL;
3068
3069	/*
3070	 * This ensures that page tables are constructed for this region
3071	 * of kernel virtual address space and mapped into init_mm.
3072	 */
3073	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3074				size, f, ptes ? &ptes : NULL)) {
3075		free_vm_area(area);
3076		return NULL;
3077	}
3078
3079	return area;
3080}
3081EXPORT_SYMBOL_GPL(alloc_vm_area);
3082
3083void free_vm_area(struct vm_struct *area)
3084{
3085	struct vm_struct *ret;
3086	ret = remove_vm_area(area->addr);
3087	BUG_ON(ret != area);
3088	kfree(area);
3089}
3090EXPORT_SYMBOL_GPL(free_vm_area);
3091
3092#ifdef CONFIG_SMP
3093static struct vmap_area *node_to_va(struct rb_node *n)
3094{
3095	return rb_entry_safe(n, struct vmap_area, rb_node);
3096}
3097
3098/**
3099 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3100 * @addr: target address
3101 *
3102 * Returns: vmap_area if it is found. If there is no such area
3103 *   the first highest(reverse order) vmap_area is returned
3104 *   i.e. va->va_start < addr && va->va_end < addr or NULL
3105 *   if there are no any areas before @addr.
3106 */
3107static struct vmap_area *
3108pvm_find_va_enclose_addr(unsigned long addr)
3109{
3110	struct vmap_area *va, *tmp;
3111	struct rb_node *n;
3112
3113	n = free_vmap_area_root.rb_node;
3114	va = NULL;
3115
3116	while (n) {
3117		tmp = rb_entry(n, struct vmap_area, rb_node);
3118		if (tmp->va_start <= addr) {
3119			va = tmp;
3120			if (tmp->va_end >= addr)
3121				break;
3122
3123			n = n->rb_right;
3124		} else {
3125			n = n->rb_left;
3126		}
3127	}
3128
3129	return va;
3130}
3131
3132/**
3133 * pvm_determine_end_from_reverse - find the highest aligned address
3134 * of free block below VMALLOC_END
3135 * @va:
3136 *   in - the VA we start the search(reverse order);
3137 *   out - the VA with the highest aligned end address.
 
3138 *
3139 * Returns: determined end address within vmap_area
3140 */
3141static unsigned long
3142pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3143{
3144	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3145	unsigned long addr;
3146
3147	if (likely(*va)) {
3148		list_for_each_entry_from_reverse((*va),
3149				&free_vmap_area_list, list) {
3150			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3151			if ((*va)->va_start < addr)
3152				return addr;
3153		}
3154	}
3155
3156	return 0;
3157}
3158
3159/**
3160 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3161 * @offsets: array containing offset of each area
3162 * @sizes: array containing size of each area
3163 * @nr_vms: the number of areas to allocate
3164 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3165 *
3166 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3167 *	    vm_structs on success, %NULL on failure
3168 *
3169 * Percpu allocator wants to use congruent vm areas so that it can
3170 * maintain the offsets among percpu areas.  This function allocates
3171 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3172 * be scattered pretty far, distance between two areas easily going up
3173 * to gigabytes.  To avoid interacting with regular vmallocs, these
3174 * areas are allocated from top.
3175 *
3176 * Despite its complicated look, this allocator is rather simple. It
3177 * does everything top-down and scans free blocks from the end looking
3178 * for matching base. While scanning, if any of the areas do not fit the
3179 * base address is pulled down to fit the area. Scanning is repeated till
3180 * all the areas fit and then all necessary data structures are inserted
3181 * and the result is returned.
3182 */
3183struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3184				     const size_t *sizes, int nr_vms,
3185				     size_t align)
3186{
3187	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3188	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3189	struct vmap_area **vas, *va;
3190	struct vm_struct **vms;
3191	int area, area2, last_area, term_area;
3192	unsigned long base, start, size, end, last_end, orig_start, orig_end;
3193	bool purged = false;
3194	enum fit_type type;
3195
3196	/* verify parameters and allocate data structures */
3197	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3198	for (last_area = 0, area = 0; area < nr_vms; area++) {
3199		start = offsets[area];
3200		end = start + sizes[area];
3201
3202		/* is everything aligned properly? */
3203		BUG_ON(!IS_ALIGNED(offsets[area], align));
3204		BUG_ON(!IS_ALIGNED(sizes[area], align));
3205
3206		/* detect the area with the highest address */
3207		if (start > offsets[last_area])
3208			last_area = area;
3209
3210		for (area2 = area + 1; area2 < nr_vms; area2++) {
3211			unsigned long start2 = offsets[area2];
3212			unsigned long end2 = start2 + sizes[area2];
3213
3214			BUG_ON(start2 < end && start < end2);
3215		}
3216	}
3217	last_end = offsets[last_area] + sizes[last_area];
3218
3219	if (vmalloc_end - vmalloc_start < last_end) {
3220		WARN_ON(true);
3221		return NULL;
3222	}
3223
3224	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3225	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3226	if (!vas || !vms)
3227		goto err_free2;
3228
3229	for (area = 0; area < nr_vms; area++) {
3230		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3231		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3232		if (!vas[area] || !vms[area])
3233			goto err_free;
3234	}
3235retry:
3236	spin_lock(&free_vmap_area_lock);
3237
3238	/* start scanning - we scan from the top, begin with the last area */
3239	area = term_area = last_area;
3240	start = offsets[area];
3241	end = start + sizes[area];
3242
3243	va = pvm_find_va_enclose_addr(vmalloc_end);
3244	base = pvm_determine_end_from_reverse(&va, align) - end;
3245
3246	while (true) {
3247		/*
3248		 * base might have underflowed, add last_end before
3249		 * comparing.
3250		 */
3251		if (base + last_end < vmalloc_start + last_end)
3252			goto overflow;
3253
3254		/*
3255		 * Fitting base has not been found.
3256		 */
3257		if (va == NULL)
3258			goto overflow;
3259
3260		/*
3261		 * If required width exceeds current VA block, move
3262		 * base downwards and then recheck.
3263		 */
3264		if (base + end > va->va_end) {
3265			base = pvm_determine_end_from_reverse(&va, align) - end;
3266			term_area = area;
3267			continue;
3268		}
3269
3270		/*
3271		 * If this VA does not fit, move base downwards and recheck.
3272		 */
3273		if (base + start < va->va_start) {
3274			va = node_to_va(rb_prev(&va->rb_node));
3275			base = pvm_determine_end_from_reverse(&va, align) - end;
3276			term_area = area;
3277			continue;
3278		}
3279
3280		/*
3281		 * This area fits, move on to the previous one.  If
3282		 * the previous one is the terminal one, we're done.
3283		 */
3284		area = (area + nr_vms - 1) % nr_vms;
3285		if (area == term_area)
3286			break;
3287
3288		start = offsets[area];
3289		end = start + sizes[area];
3290		va = pvm_find_va_enclose_addr(base + end);
3291	}
3292
3293	/* we've found a fitting base, insert all va's */
3294	for (area = 0; area < nr_vms; area++) {
3295		int ret;
3296
3297		start = base + offsets[area];
3298		size = sizes[area];
3299
3300		va = pvm_find_va_enclose_addr(start);
3301		if (WARN_ON_ONCE(va == NULL))
3302			/* It is a BUG(), but trigger recovery instead. */
3303			goto recovery;
3304
3305		type = classify_va_fit_type(va, start, size);
3306		if (WARN_ON_ONCE(type == NOTHING_FIT))
 
3307			/* It is a BUG(), but trigger recovery instead. */
3308			goto recovery;
3309
3310		ret = adjust_va_to_fit_type(va, start, size, type);
3311		if (unlikely(ret))
3312			goto recovery;
3313
3314		/* Allocated area. */
3315		va = vas[area];
3316		va->va_start = start;
3317		va->va_end = start + size;
3318	}
3319
3320	spin_unlock(&free_vmap_area_lock);
3321
3322	/* populate the kasan shadow space */
3323	for (area = 0; area < nr_vms; area++) {
3324		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3325			goto err_free_shadow;
3326
3327		kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3328				       sizes[area]);
3329	}
3330
3331	/* insert all vm's */
3332	spin_lock(&vmap_area_lock);
3333	for (area = 0; area < nr_vms; area++) {
3334		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3335
 
 
3336		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3337				 pcpu_get_vm_areas);
 
3338	}
3339	spin_unlock(&vmap_area_lock);
 
 
 
 
 
 
 
 
 
3340
3341	kfree(vas);
3342	return vms;
3343
3344recovery:
3345	/*
3346	 * Remove previously allocated areas. There is no
3347	 * need in removing these areas from the busy tree,
3348	 * because they are inserted only on the final step
3349	 * and when pcpu_get_vm_areas() is success.
3350	 */
3351	while (area--) {
3352		orig_start = vas[area]->va_start;
3353		orig_end = vas[area]->va_end;
3354		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3355					    &free_vmap_area_list);
3356		if (va)
3357			kasan_release_vmalloc(orig_start, orig_end,
3358				va->va_start, va->va_end);
3359		vas[area] = NULL;
3360	}
3361
3362overflow:
3363	spin_unlock(&free_vmap_area_lock);
3364	if (!purged) {
3365		purge_vmap_area_lazy();
3366		purged = true;
3367
3368		/* Before "retry", check if we recover. */
3369		for (area = 0; area < nr_vms; area++) {
3370			if (vas[area])
3371				continue;
3372
3373			vas[area] = kmem_cache_zalloc(
3374				vmap_area_cachep, GFP_KERNEL);
3375			if (!vas[area])
3376				goto err_free;
3377		}
3378
3379		goto retry;
3380	}
3381
3382err_free:
3383	for (area = 0; area < nr_vms; area++) {
3384		if (vas[area])
3385			kmem_cache_free(vmap_area_cachep, vas[area]);
3386
3387		kfree(vms[area]);
3388	}
3389err_free2:
3390	kfree(vas);
3391	kfree(vms);
3392	return NULL;
3393
3394err_free_shadow:
3395	spin_lock(&free_vmap_area_lock);
3396	/*
3397	 * We release all the vmalloc shadows, even the ones for regions that
3398	 * hadn't been successfully added. This relies on kasan_release_vmalloc
3399	 * being able to tolerate this case.
3400	 */
3401	for (area = 0; area < nr_vms; area++) {
3402		orig_start = vas[area]->va_start;
3403		orig_end = vas[area]->va_end;
3404		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3405					    &free_vmap_area_list);
3406		if (va)
3407			kasan_release_vmalloc(orig_start, orig_end,
3408				va->va_start, va->va_end);
3409		vas[area] = NULL;
3410		kfree(vms[area]);
3411	}
3412	spin_unlock(&free_vmap_area_lock);
3413	kfree(vas);
3414	kfree(vms);
3415	return NULL;
3416}
3417
3418/**
3419 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3420 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3421 * @nr_vms: the number of allocated areas
3422 *
3423 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3424 */
3425void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3426{
3427	int i;
3428
3429	for (i = 0; i < nr_vms; i++)
3430		free_vm_area(vms[i]);
3431	kfree(vms);
3432}
3433#endif	/* CONFIG_SMP */
3434
3435#ifdef CONFIG_PROC_FS
3436static void *s_start(struct seq_file *m, loff_t *pos)
3437	__acquires(&vmap_purge_lock)
3438	__acquires(&vmap_area_lock)
3439{
3440	mutex_lock(&vmap_purge_lock);
3441	spin_lock(&vmap_area_lock);
 
 
 
 
3442
3443	return seq_list_start(&vmap_area_list, *pos);
3444}
3445
3446static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3447{
3448	return seq_list_next(p, &vmap_area_list, pos);
3449}
3450
3451static void s_stop(struct seq_file *m, void *p)
3452	__releases(&vmap_purge_lock)
3453	__releases(&vmap_area_lock)
3454{
3455	mutex_unlock(&vmap_purge_lock);
3456	spin_unlock(&vmap_area_lock);
 
 
 
 
 
 
 
 
 
 
3457}
 
3458
 
3459static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3460{
3461	if (IS_ENABLED(CONFIG_NUMA)) {
3462		unsigned int nr, *counters = m->private;
 
3463
3464		if (!counters)
3465			return;
3466
3467		if (v->flags & VM_UNINITIALIZED)
3468			return;
3469		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3470		smp_rmb();
3471
3472		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3473
3474		for (nr = 0; nr < v->nr_pages; nr++)
3475			counters[page_to_nid(v->pages[nr])]++;
3476
3477		for_each_node_state(nr, N_HIGH_MEMORY)
3478			if (counters[nr])
3479				seq_printf(m, " N%u=%u", nr, counters[nr]);
3480	}
3481}
3482
3483static void show_purge_info(struct seq_file *m)
3484{
3485	struct llist_node *head;
3486	struct vmap_area *va;
 
3487
3488	head = READ_ONCE(vmap_purge_list.first);
3489	if (head == NULL)
3490		return;
3491
3492	llist_for_each_entry(va, head, purge_list) {
3493		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3494			(void *)va->va_start, (void *)va->va_end,
3495			va->va_end - va->va_start);
 
 
 
3496	}
3497}
3498
3499static int s_show(struct seq_file *m, void *p)
3500{
 
3501	struct vmap_area *va;
3502	struct vm_struct *v;
 
3503
3504	va = list_entry(p, struct vmap_area, list);
 
3505
3506	/*
3507	 * s_show can encounter race with remove_vm_area, !vm on behalf
3508	 * of vmap area is being tear down or vm_map_ram allocation.
3509	 */
3510	if (!va->vm) {
3511		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3512			(void *)va->va_start, (void *)va->va_end,
3513			va->va_end - va->va_start);
3514
3515		return 0;
3516	}
 
 
3517
3518	v = va->vm;
 
3519
3520	seq_printf(m, "0x%pK-0x%pK %7ld",
3521		v->addr, v->addr + v->size, v->size);
3522
3523	if (v->caller)
3524		seq_printf(m, " %pS", v->caller);
3525
3526	if (v->nr_pages)
3527		seq_printf(m, " pages=%d", v->nr_pages);
3528
3529	if (v->phys_addr)
3530		seq_printf(m, " phys=%pa", &v->phys_addr);
3531
3532	if (v->flags & VM_IOREMAP)
3533		seq_puts(m, " ioremap");
3534
3535	if (v->flags & VM_ALLOC)
3536		seq_puts(m, " vmalloc");
3537
3538	if (v->flags & VM_MAP)
3539		seq_puts(m, " vmap");
3540
3541	if (v->flags & VM_USERMAP)
3542		seq_puts(m, " user");
3543
3544	if (v->flags & VM_DMA_COHERENT)
3545		seq_puts(m, " dma-coherent");
3546
3547	if (is_vmalloc_addr(v->pages))
3548		seq_puts(m, " vpages");
3549
3550	show_numa_info(m, v);
3551	seq_putc(m, '\n');
 
 
 
3552
3553	/*
3554	 * As a final step, dump "unpurged" areas. Note,
3555	 * that entire "/proc/vmallocinfo" output will not
3556	 * be address sorted, because the purge list is not
3557	 * sorted.
3558	 */
3559	if (list_is_last(&va->list, &vmap_area_list))
3560		show_purge_info(m);
3561
3562	return 0;
3563}
3564
3565static const struct seq_operations vmalloc_op = {
3566	.start = s_start,
3567	.next = s_next,
3568	.stop = s_stop,
3569	.show = s_show,
3570};
3571
3572static int __init proc_vmalloc_init(void)
3573{
 
 
3574	if (IS_ENABLED(CONFIG_NUMA))
3575		proc_create_seq_private("vmallocinfo", 0400, NULL,
3576				&vmalloc_op,
3577				nr_node_ids * sizeof(unsigned int), NULL);
3578	else
3579		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3580	return 0;
3581}
3582module_init(proc_vmalloc_init);
3583
3584#endif
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
 
 
   3 *  Copyright (C) 1993  Linus Torvalds
   4 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   5 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
   6 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
   7 *  Numa awareness, Christoph Lameter, SGI, June 2005
   8 *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
   9 */
  10
  11#include <linux/vmalloc.h>
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/highmem.h>
  15#include <linux/sched/signal.h>
  16#include <linux/slab.h>
  17#include <linux/spinlock.h>
  18#include <linux/interrupt.h>
  19#include <linux/proc_fs.h>
  20#include <linux/seq_file.h>
  21#include <linux/set_memory.h>
  22#include <linux/debugobjects.h>
  23#include <linux/kallsyms.h>
  24#include <linux/list.h>
  25#include <linux/notifier.h>
  26#include <linux/rbtree.h>
  27#include <linux/xarray.h>
  28#include <linux/io.h>
  29#include <linux/rcupdate.h>
  30#include <linux/pfn.h>
  31#include <linux/kmemleak.h>
  32#include <linux/atomic.h>
  33#include <linux/compiler.h>
  34#include <linux/memcontrol.h>
  35#include <linux/llist.h>
  36#include <linux/uio.h>
  37#include <linux/bitops.h>
  38#include <linux/rbtree_augmented.h>
  39#include <linux/overflow.h>
  40#include <linux/pgtable.h>
  41#include <linux/hugetlb.h>
  42#include <linux/sched/mm.h>
  43#include <asm/tlbflush.h>
  44#include <asm/shmparam.h>
  45
  46#define CREATE_TRACE_POINTS
  47#include <trace/events/vmalloc.h>
  48
  49#include "internal.h"
  50#include "pgalloc-track.h"
  51
  52#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
  53static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
  54
  55static int __init set_nohugeiomap(char *str)
  56{
  57	ioremap_max_page_shift = PAGE_SHIFT;
  58	return 0;
  59}
  60early_param("nohugeiomap", set_nohugeiomap);
  61#else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
  62static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
  63#endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
  64
  65#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
  66static bool __ro_after_init vmap_allow_huge = true;
  67
  68static int __init set_nohugevmalloc(char *str)
  69{
  70	vmap_allow_huge = false;
  71	return 0;
  72}
  73early_param("nohugevmalloc", set_nohugevmalloc);
  74#else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
  75static const bool vmap_allow_huge = false;
  76#endif	/* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
  77
  78bool is_vmalloc_addr(const void *x)
  79{
  80	unsigned long addr = (unsigned long)kasan_reset_tag(x);
  81
  82	return addr >= VMALLOC_START && addr < VMALLOC_END;
  83}
  84EXPORT_SYMBOL(is_vmalloc_addr);
  85
  86struct vfree_deferred {
  87	struct llist_head list;
  88	struct work_struct wq;
  89};
  90static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  91
  92/*** Page table manipulation functions ***/
  93static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  94			phys_addr_t phys_addr, pgprot_t prot,
  95			unsigned int max_page_shift, pgtbl_mod_mask *mask)
  96{
  97	pte_t *pte;
  98	u64 pfn;
  99	unsigned long size = PAGE_SIZE;
 100
 101	pfn = phys_addr >> PAGE_SHIFT;
 102	pte = pte_alloc_kernel_track(pmd, addr, mask);
 103	if (!pte)
 104		return -ENOMEM;
 105	do {
 106		BUG_ON(!pte_none(ptep_get(pte)));
 107
 108#ifdef CONFIG_HUGETLB_PAGE
 109		size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
 110		if (size != PAGE_SIZE) {
 111			pte_t entry = pfn_pte(pfn, prot);
 112
 113			entry = arch_make_huge_pte(entry, ilog2(size), 0);
 114			set_huge_pte_at(&init_mm, addr, pte, entry, size);
 115			pfn += PFN_DOWN(size);
 116			continue;
 117		}
 118#endif
 119		set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
 120		pfn++;
 121	} while (pte += PFN_DOWN(size), addr += size, addr != end);
 122	*mask |= PGTBL_PTE_MODIFIED;
 123	return 0;
 124}
 125
 126static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
 127			phys_addr_t phys_addr, pgprot_t prot,
 128			unsigned int max_page_shift)
 129{
 130	if (max_page_shift < PMD_SHIFT)
 131		return 0;
 132
 133	if (!arch_vmap_pmd_supported(prot))
 134		return 0;
 135
 136	if ((end - addr) != PMD_SIZE)
 137		return 0;
 138
 139	if (!IS_ALIGNED(addr, PMD_SIZE))
 140		return 0;
 141
 142	if (!IS_ALIGNED(phys_addr, PMD_SIZE))
 143		return 0;
 144
 145	if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
 146		return 0;
 147
 148	return pmd_set_huge(pmd, phys_addr, prot);
 149}
 150
 151static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
 152			phys_addr_t phys_addr, pgprot_t prot,
 153			unsigned int max_page_shift, pgtbl_mod_mask *mask)
 154{
 155	pmd_t *pmd;
 156	unsigned long next;
 157
 158	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
 159	if (!pmd)
 160		return -ENOMEM;
 161	do {
 162		next = pmd_addr_end(addr, end);
 163
 164		if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
 165					max_page_shift)) {
 166			*mask |= PGTBL_PMD_MODIFIED;
 167			continue;
 168		}
 169
 170		if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
 171			return -ENOMEM;
 172	} while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
 173	return 0;
 174}
 175
 176static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
 177			phys_addr_t phys_addr, pgprot_t prot,
 178			unsigned int max_page_shift)
 179{
 180	if (max_page_shift < PUD_SHIFT)
 181		return 0;
 182
 183	if (!arch_vmap_pud_supported(prot))
 184		return 0;
 185
 186	if ((end - addr) != PUD_SIZE)
 187		return 0;
 188
 189	if (!IS_ALIGNED(addr, PUD_SIZE))
 190		return 0;
 191
 192	if (!IS_ALIGNED(phys_addr, PUD_SIZE))
 193		return 0;
 194
 195	if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
 196		return 0;
 197
 198	return pud_set_huge(pud, phys_addr, prot);
 199}
 200
 201static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
 202			phys_addr_t phys_addr, pgprot_t prot,
 203			unsigned int max_page_shift, pgtbl_mod_mask *mask)
 204{
 205	pud_t *pud;
 206	unsigned long next;
 207
 208	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
 209	if (!pud)
 210		return -ENOMEM;
 211	do {
 212		next = pud_addr_end(addr, end);
 213
 214		if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
 215					max_page_shift)) {
 216			*mask |= PGTBL_PUD_MODIFIED;
 217			continue;
 218		}
 219
 220		if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
 221					max_page_shift, mask))
 222			return -ENOMEM;
 223	} while (pud++, phys_addr += (next - addr), addr = next, addr != end);
 224	return 0;
 225}
 226
 227static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
 228			phys_addr_t phys_addr, pgprot_t prot,
 229			unsigned int max_page_shift)
 230{
 231	if (max_page_shift < P4D_SHIFT)
 232		return 0;
 233
 234	if (!arch_vmap_p4d_supported(prot))
 235		return 0;
 236
 237	if ((end - addr) != P4D_SIZE)
 238		return 0;
 239
 240	if (!IS_ALIGNED(addr, P4D_SIZE))
 241		return 0;
 242
 243	if (!IS_ALIGNED(phys_addr, P4D_SIZE))
 244		return 0;
 245
 246	if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
 247		return 0;
 248
 249	return p4d_set_huge(p4d, phys_addr, prot);
 250}
 251
 252static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
 253			phys_addr_t phys_addr, pgprot_t prot,
 254			unsigned int max_page_shift, pgtbl_mod_mask *mask)
 255{
 256	p4d_t *p4d;
 257	unsigned long next;
 258
 259	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
 260	if (!p4d)
 261		return -ENOMEM;
 262	do {
 263		next = p4d_addr_end(addr, end);
 264
 265		if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
 266					max_page_shift)) {
 267			*mask |= PGTBL_P4D_MODIFIED;
 268			continue;
 269		}
 270
 271		if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
 272					max_page_shift, mask))
 273			return -ENOMEM;
 274	} while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
 275	return 0;
 276}
 277
 278static int vmap_range_noflush(unsigned long addr, unsigned long end,
 279			phys_addr_t phys_addr, pgprot_t prot,
 280			unsigned int max_page_shift)
 281{
 282	pgd_t *pgd;
 283	unsigned long start;
 284	unsigned long next;
 285	int err;
 286	pgtbl_mod_mask mask = 0;
 287
 288	might_sleep();
 289	BUG_ON(addr >= end);
 290
 291	start = addr;
 292	pgd = pgd_offset_k(addr);
 293	do {
 294		next = pgd_addr_end(addr, end);
 295		err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
 296					max_page_shift, &mask);
 297		if (err)
 298			break;
 299	} while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
 300
 301	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
 302		arch_sync_kernel_mappings(start, end);
 303
 304	return err;
 305}
 306
 307int vmap_page_range(unsigned long addr, unsigned long end,
 308		    phys_addr_t phys_addr, pgprot_t prot)
 309{
 310	int err;
 311
 312	err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
 313				 ioremap_max_page_shift);
 314	flush_cache_vmap(addr, end);
 315	if (!err)
 316		err = kmsan_ioremap_page_range(addr, end, phys_addr, prot,
 317					       ioremap_max_page_shift);
 318	return err;
 319}
 320
 321int ioremap_page_range(unsigned long addr, unsigned long end,
 322		phys_addr_t phys_addr, pgprot_t prot)
 323{
 324	struct vm_struct *area;
 325
 326	area = find_vm_area((void *)addr);
 327	if (!area || !(area->flags & VM_IOREMAP)) {
 328		WARN_ONCE(1, "vm_area at addr %lx is not marked as VM_IOREMAP\n", addr);
 329		return -EINVAL;
 330	}
 331	if (addr != (unsigned long)area->addr ||
 332	    (void *)end != area->addr + get_vm_area_size(area)) {
 333		WARN_ONCE(1, "ioremap request [%lx,%lx) doesn't match vm_area [%lx, %lx)\n",
 334			  addr, end, (long)area->addr,
 335			  (long)area->addr + get_vm_area_size(area));
 336		return -ERANGE;
 337	}
 338	return vmap_page_range(addr, end, phys_addr, prot);
 339}
 340
 341static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 342			     pgtbl_mod_mask *mask)
 343{
 344	pte_t *pte;
 345
 346	pte = pte_offset_kernel(pmd, addr);
 347	do {
 348		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
 349		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
 350	} while (pte++, addr += PAGE_SIZE, addr != end);
 351	*mask |= PGTBL_PTE_MODIFIED;
 352}
 353
 354static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
 355			     pgtbl_mod_mask *mask)
 356{
 357	pmd_t *pmd;
 358	unsigned long next;
 359	int cleared;
 360
 361	pmd = pmd_offset(pud, addr);
 362	do {
 363		next = pmd_addr_end(addr, end);
 364
 365		cleared = pmd_clear_huge(pmd);
 366		if (cleared || pmd_bad(*pmd))
 367			*mask |= PGTBL_PMD_MODIFIED;
 368
 369		if (cleared)
 370			continue;
 371		if (pmd_none_or_clear_bad(pmd))
 372			continue;
 373		vunmap_pte_range(pmd, addr, next, mask);
 374
 375		cond_resched();
 376	} while (pmd++, addr = next, addr != end);
 377}
 378
 379static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
 380			     pgtbl_mod_mask *mask)
 381{
 382	pud_t *pud;
 383	unsigned long next;
 384	int cleared;
 385
 386	pud = pud_offset(p4d, addr);
 387	do {
 388		next = pud_addr_end(addr, end);
 389
 390		cleared = pud_clear_huge(pud);
 391		if (cleared || pud_bad(*pud))
 392			*mask |= PGTBL_PUD_MODIFIED;
 393
 394		if (cleared)
 395			continue;
 396		if (pud_none_or_clear_bad(pud))
 397			continue;
 398		vunmap_pmd_range(pud, addr, next, mask);
 399	} while (pud++, addr = next, addr != end);
 400}
 401
 402static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
 403			     pgtbl_mod_mask *mask)
 404{
 405	p4d_t *p4d;
 406	unsigned long next;
 
 407
 408	p4d = p4d_offset(pgd, addr);
 409	do {
 410		next = p4d_addr_end(addr, end);
 411
 412		p4d_clear_huge(p4d);
 413		if (p4d_bad(*p4d))
 414			*mask |= PGTBL_P4D_MODIFIED;
 415
 
 
 416		if (p4d_none_or_clear_bad(p4d))
 417			continue;
 418		vunmap_pud_range(p4d, addr, next, mask);
 419	} while (p4d++, addr = next, addr != end);
 420}
 421
 422/*
 423 * vunmap_range_noflush is similar to vunmap_range, but does not
 424 * flush caches or TLBs.
 
 425 *
 426 * The caller is responsible for calling flush_cache_vmap() before calling
 427 * this function, and flush_tlb_kernel_range after it has returned
 428 * successfully (and before the addresses are expected to cause a page fault
 429 * or be re-mapped for something else, if TLB flushes are being delayed or
 430 * coalesced).
 431 *
 432 * This is an internal function only. Do not use outside mm/.
 
 
 
 433 */
 434void __vunmap_range_noflush(unsigned long start, unsigned long end)
 435{
 
 436	unsigned long next;
 437	pgd_t *pgd;
 438	unsigned long addr = start;
 439	pgtbl_mod_mask mask = 0;
 440
 441	BUG_ON(addr >= end);
 442	pgd = pgd_offset_k(addr);
 443	do {
 444		next = pgd_addr_end(addr, end);
 445		if (pgd_bad(*pgd))
 446			mask |= PGTBL_PGD_MODIFIED;
 447		if (pgd_none_or_clear_bad(pgd))
 448			continue;
 449		vunmap_p4d_range(pgd, addr, next, &mask);
 450	} while (pgd++, addr = next, addr != end);
 451
 452	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
 453		arch_sync_kernel_mappings(start, end);
 454}
 455
 456void vunmap_range_noflush(unsigned long start, unsigned long end)
 457{
 458	kmsan_vunmap_range_noflush(start, end);
 459	__vunmap_range_noflush(start, end);
 460}
 461
 462/**
 463 * vunmap_range - unmap kernel virtual addresses
 464 * @addr: start of the VM area to unmap
 465 * @end: end of the VM area to unmap (non-inclusive)
 466 *
 467 * Clears any present PTEs in the virtual address range, flushes TLBs and
 468 * caches. Any subsequent access to the address before it has been re-mapped
 469 * is a kernel bug.
 470 */
 471void vunmap_range(unsigned long addr, unsigned long end)
 472{
 473	flush_cache_vunmap(addr, end);
 474	vunmap_range_noflush(addr, end);
 475	flush_tlb_kernel_range(addr, end);
 476}
 477
 478static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
 479		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 480		pgtbl_mod_mask *mask)
 481{
 482	pte_t *pte;
 483
 484	/*
 485	 * nr is a running index into the array which helps higher level
 486	 * callers keep track of where we're up to.
 487	 */
 488
 489	pte = pte_alloc_kernel_track(pmd, addr, mask);
 490	if (!pte)
 491		return -ENOMEM;
 492	do {
 493		struct page *page = pages[*nr];
 494
 495		if (WARN_ON(!pte_none(ptep_get(pte))))
 496			return -EBUSY;
 497		if (WARN_ON(!page))
 498			return -ENOMEM;
 499		if (WARN_ON(!pfn_valid(page_to_pfn(page))))
 500			return -EINVAL;
 501
 502		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 503		(*nr)++;
 504	} while (pte++, addr += PAGE_SIZE, addr != end);
 505	*mask |= PGTBL_PTE_MODIFIED;
 506	return 0;
 507}
 508
 509static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
 510		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 511		pgtbl_mod_mask *mask)
 512{
 513	pmd_t *pmd;
 514	unsigned long next;
 515
 516	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
 517	if (!pmd)
 518		return -ENOMEM;
 519	do {
 520		next = pmd_addr_end(addr, end);
 521		if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
 522			return -ENOMEM;
 523	} while (pmd++, addr = next, addr != end);
 524	return 0;
 525}
 526
 527static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
 528		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 529		pgtbl_mod_mask *mask)
 530{
 531	pud_t *pud;
 532	unsigned long next;
 533
 534	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
 535	if (!pud)
 536		return -ENOMEM;
 537	do {
 538		next = pud_addr_end(addr, end);
 539		if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
 540			return -ENOMEM;
 541	} while (pud++, addr = next, addr != end);
 542	return 0;
 543}
 544
 545static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
 546		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 547		pgtbl_mod_mask *mask)
 548{
 549	p4d_t *p4d;
 550	unsigned long next;
 551
 552	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
 553	if (!p4d)
 554		return -ENOMEM;
 555	do {
 556		next = p4d_addr_end(addr, end);
 557		if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
 558			return -ENOMEM;
 559	} while (p4d++, addr = next, addr != end);
 560	return 0;
 561}
 562
 563static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
 564		pgprot_t prot, struct page **pages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 565{
 566	unsigned long start = addr;
 
 
 567	pgd_t *pgd;
 568	unsigned long next;
 569	int err = 0;
 570	int nr = 0;
 571	pgtbl_mod_mask mask = 0;
 572
 573	BUG_ON(addr >= end);
 574	pgd = pgd_offset_k(addr);
 575	do {
 576		next = pgd_addr_end(addr, end);
 577		if (pgd_bad(*pgd))
 578			mask |= PGTBL_PGD_MODIFIED;
 579		err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
 580		if (err)
 581			return err;
 582	} while (pgd++, addr = next, addr != end);
 583
 584	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
 585		arch_sync_kernel_mappings(start, end);
 586
 587	return 0;
 588}
 589
 590/*
 591 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
 592 * flush caches.
 593 *
 594 * The caller is responsible for calling flush_cache_vmap() after this
 595 * function returns successfully and before the addresses are accessed.
 596 *
 597 * This is an internal function only. Do not use outside mm/.
 598 */
 599int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
 600		pgprot_t prot, struct page **pages, unsigned int page_shift)
 601{
 602	unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
 603
 604	WARN_ON(page_shift < PAGE_SHIFT);
 605
 606	if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
 607			page_shift == PAGE_SHIFT)
 608		return vmap_small_pages_range_noflush(addr, end, prot, pages);
 609
 610	for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
 611		int err;
 612
 613		err = vmap_range_noflush(addr, addr + (1UL << page_shift),
 614					page_to_phys(pages[i]), prot,
 615					page_shift);
 616		if (err)
 617			return err;
 618
 619		addr += 1UL << page_shift;
 620	}
 621
 622	return 0;
 623}
 624
 625int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
 626		pgprot_t prot, struct page **pages, unsigned int page_shift)
 627{
 628	int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages,
 629						 page_shift);
 630
 631	if (ret)
 632		return ret;
 633	return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
 634}
 635
 636/**
 637 * vmap_pages_range - map pages to a kernel virtual address
 638 * @addr: start of the VM area to map
 639 * @end: end of the VM area to map (non-inclusive)
 640 * @prot: page protection flags to use
 641 * @pages: pages to map (always PAGE_SIZE pages)
 642 * @page_shift: maximum shift that the pages may be mapped with, @pages must
 643 * be aligned and contiguous up to at least this shift.
 644 *
 645 * RETURNS:
 646 * 0 on success, -errno on failure.
 647 */
 648static int vmap_pages_range(unsigned long addr, unsigned long end,
 649		pgprot_t prot, struct page **pages, unsigned int page_shift)
 650{
 651	int err;
 652
 653	err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
 654	flush_cache_vmap(addr, end);
 655	return err;
 656}
 657
 658static int check_sparse_vm_area(struct vm_struct *area, unsigned long start,
 659				unsigned long end)
 660{
 661	might_sleep();
 662	if (WARN_ON_ONCE(area->flags & VM_FLUSH_RESET_PERMS))
 663		return -EINVAL;
 664	if (WARN_ON_ONCE(area->flags & VM_NO_GUARD))
 665		return -EINVAL;
 666	if (WARN_ON_ONCE(!(area->flags & VM_SPARSE)))
 667		return -EINVAL;
 668	if ((end - start) >> PAGE_SHIFT > totalram_pages())
 669		return -E2BIG;
 670	if (start < (unsigned long)area->addr ||
 671	    (void *)end > area->addr + get_vm_area_size(area))
 672		return -ERANGE;
 673	return 0;
 674}
 675
 676/**
 677 * vm_area_map_pages - map pages inside given sparse vm_area
 678 * @area: vm_area
 679 * @start: start address inside vm_area
 680 * @end: end address inside vm_area
 681 * @pages: pages to map (always PAGE_SIZE pages)
 682 */
 683int vm_area_map_pages(struct vm_struct *area, unsigned long start,
 684		      unsigned long end, struct page **pages)
 685{
 686	int err;
 687
 688	err = check_sparse_vm_area(area, start, end);
 689	if (err)
 690		return err;
 691
 692	return vmap_pages_range(start, end, PAGE_KERNEL, pages, PAGE_SHIFT);
 693}
 694
 695/**
 696 * vm_area_unmap_pages - unmap pages inside given sparse vm_area
 697 * @area: vm_area
 698 * @start: start address inside vm_area
 699 * @end: end address inside vm_area
 700 */
 701void vm_area_unmap_pages(struct vm_struct *area, unsigned long start,
 702			 unsigned long end)
 703{
 704	if (check_sparse_vm_area(area, start, end))
 705		return;
 706
 707	vunmap_range(start, end);
 708}
 709
 710int is_vmalloc_or_module_addr(const void *x)
 711{
 712	/*
 713	 * ARM, x86-64 and sparc64 put modules in a special place,
 714	 * and fall back on vmalloc() if that fails. Others
 715	 * just put it in the vmalloc space.
 716	 */
 717#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 718	unsigned long addr = (unsigned long)kasan_reset_tag(x);
 719	if (addr >= MODULES_VADDR && addr < MODULES_END)
 720		return 1;
 721#endif
 722	return is_vmalloc_addr(x);
 723}
 724EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr);
 725
 726/*
 727 * Walk a vmap address to the struct page it maps. Huge vmap mappings will
 728 * return the tail page that corresponds to the base page address, which
 729 * matches small vmap mappings.
 730 */
 731struct page *vmalloc_to_page(const void *vmalloc_addr)
 732{
 733	unsigned long addr = (unsigned long) vmalloc_addr;
 734	struct page *page = NULL;
 735	pgd_t *pgd = pgd_offset_k(addr);
 736	p4d_t *p4d;
 737	pud_t *pud;
 738	pmd_t *pmd;
 739	pte_t *ptep, pte;
 740
 741	/*
 742	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 743	 * architectures that do not vmalloc module space
 744	 */
 745	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 746
 747	if (pgd_none(*pgd))
 748		return NULL;
 749	if (WARN_ON_ONCE(pgd_leaf(*pgd)))
 750		return NULL; /* XXX: no allowance for huge pgd */
 751	if (WARN_ON_ONCE(pgd_bad(*pgd)))
 752		return NULL;
 753
 754	p4d = p4d_offset(pgd, addr);
 755	if (p4d_none(*p4d))
 756		return NULL;
 757	if (p4d_leaf(*p4d))
 758		return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
 759	if (WARN_ON_ONCE(p4d_bad(*p4d)))
 760		return NULL;
 761
 762	pud = pud_offset(p4d, addr);
 763	if (pud_none(*pud))
 
 
 
 
 
 
 
 
 764		return NULL;
 765	if (pud_leaf(*pud))
 766		return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
 767	if (WARN_ON_ONCE(pud_bad(*pud)))
 768		return NULL;
 769
 770	pmd = pmd_offset(pud, addr);
 771	if (pmd_none(*pmd))
 772		return NULL;
 773	if (pmd_leaf(*pmd))
 774		return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
 775	if (WARN_ON_ONCE(pmd_bad(*pmd)))
 776		return NULL;
 777
 778	ptep = pte_offset_kernel(pmd, addr);
 779	pte = ptep_get(ptep);
 780	if (pte_present(pte))
 781		page = pte_page(pte);
 782
 783	return page;
 784}
 785EXPORT_SYMBOL(vmalloc_to_page);
 786
 787/*
 788 * Map a vmalloc()-space virtual address to the physical page frame number.
 789 */
 790unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 791{
 792	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 793}
 794EXPORT_SYMBOL(vmalloc_to_pfn);
 795
 796
 797/*** Global kva allocator ***/
 798
 799#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
 800#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
 801
 802
 
 803static DEFINE_SPINLOCK(free_vmap_area_lock);
 
 
 
 
 804static bool vmap_initialized __read_mostly;
 805
 806/*
 807 * This kmem_cache is used for vmap_area objects. Instead of
 808 * allocating from slab we reuse an object from this cache to
 809 * make things faster. Especially in "no edge" splitting of
 810 * free block.
 811 */
 812static struct kmem_cache *vmap_area_cachep;
 813
 814/*
 815 * This linked list is used in pair with free_vmap_area_root.
 816 * It gives O(1) access to prev/next to perform fast coalescing.
 817 */
 818static LIST_HEAD(free_vmap_area_list);
 819
 820/*
 821 * This augment red-black tree represents the free vmap space.
 822 * All vmap_area objects in this tree are sorted by va->va_start
 823 * address. It is used for allocation and merging when a vmap
 824 * object is released.
 825 *
 826 * Each vmap_area node contains a maximum available free block
 827 * of its sub-tree, right or left. Therefore it is possible to
 828 * find a lowest match of free area.
 829 */
 830static struct rb_root free_vmap_area_root = RB_ROOT;
 831
 832/*
 833 * Preload a CPU with one object for "no edge" split case. The
 834 * aim is to get rid of allocations from the atomic context, thus
 835 * to use more permissive allocation masks.
 836 */
 837static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
 838
 839/*
 840 * This structure defines a single, solid model where a list and
 841 * rb-tree are part of one entity protected by the lock. Nodes are
 842 * sorted in ascending order, thus for O(1) access to left/right
 843 * neighbors a list is used as well as for sequential traversal.
 844 */
 845struct rb_list {
 846	struct rb_root root;
 847	struct list_head head;
 848	spinlock_t lock;
 849};
 850
 851/*
 852 * A fast size storage contains VAs up to 1M size. A pool consists
 853 * of linked between each other ready to go VAs of certain sizes.
 854 * An index in the pool-array corresponds to number of pages + 1.
 855 */
 856#define MAX_VA_SIZE_PAGES 256
 857
 858struct vmap_pool {
 859	struct list_head head;
 860	unsigned long len;
 861};
 862
 863/*
 864 * An effective vmap-node logic. Users make use of nodes instead
 865 * of a global heap. It allows to balance an access and mitigate
 866 * contention.
 867 */
 868static struct vmap_node {
 869	/* Simple size segregated storage. */
 870	struct vmap_pool pool[MAX_VA_SIZE_PAGES];
 871	spinlock_t pool_lock;
 872	bool skip_populate;
 873
 874	/* Bookkeeping data of this node. */
 875	struct rb_list busy;
 876	struct rb_list lazy;
 877
 878	/*
 879	 * Ready-to-free areas.
 880	 */
 881	struct list_head purge_list;
 882	struct work_struct purge_work;
 883	unsigned long nr_purged;
 884} single;
 885
 886/*
 887 * Initial setup consists of one single node, i.e. a balancing
 888 * is fully disabled. Later on, after vmap is initialized these
 889 * parameters are updated based on a system capacity.
 890 */
 891static struct vmap_node *vmap_nodes = &single;
 892static __read_mostly unsigned int nr_vmap_nodes = 1;
 893static __read_mostly unsigned int vmap_zone_size = 1;
 894
 895static inline unsigned int
 896addr_to_node_id(unsigned long addr)
 897{
 898	return (addr / vmap_zone_size) % nr_vmap_nodes;
 899}
 900
 901static inline struct vmap_node *
 902addr_to_node(unsigned long addr)
 903{
 904	return &vmap_nodes[addr_to_node_id(addr)];
 905}
 906
 907static inline struct vmap_node *
 908id_to_node(unsigned int id)
 909{
 910	return &vmap_nodes[id % nr_vmap_nodes];
 911}
 912
 913/*
 914 * We use the value 0 to represent "no node", that is why
 915 * an encoded value will be the node-id incremented by 1.
 916 * It is always greater then 0. A valid node_id which can
 917 * be encoded is [0:nr_vmap_nodes - 1]. If a passed node_id
 918 * is not valid 0 is returned.
 919 */
 920static unsigned int
 921encode_vn_id(unsigned int node_id)
 922{
 923	/* Can store U8_MAX [0:254] nodes. */
 924	if (node_id < nr_vmap_nodes)
 925		return (node_id + 1) << BITS_PER_BYTE;
 926
 927	/* Warn and no node encoded. */
 928	WARN_ONCE(1, "Encode wrong node id (%u)\n", node_id);
 929	return 0;
 930}
 931
 932/*
 933 * Returns an encoded node-id, the valid range is within
 934 * [0:nr_vmap_nodes-1] values. Otherwise nr_vmap_nodes is
 935 * returned if extracted data is wrong.
 936 */
 937static unsigned int
 938decode_vn_id(unsigned int val)
 939{
 940	unsigned int node_id = (val >> BITS_PER_BYTE) - 1;
 941
 942	/* Can store U8_MAX [0:254] nodes. */
 943	if (node_id < nr_vmap_nodes)
 944		return node_id;
 945
 946	/* If it was _not_ zero, warn. */
 947	WARN_ONCE(node_id != UINT_MAX,
 948		"Decode wrong node id (%d)\n", node_id);
 949
 950	return nr_vmap_nodes;
 951}
 952
 953static bool
 954is_vn_id_valid(unsigned int node_id)
 955{
 956	if (node_id < nr_vmap_nodes)
 957		return true;
 958
 959	return false;
 960}
 961
 962static __always_inline unsigned long
 963va_size(struct vmap_area *va)
 964{
 965	return (va->va_end - va->va_start);
 966}
 967
 968static __always_inline unsigned long
 969get_subtree_max_size(struct rb_node *node)
 970{
 971	struct vmap_area *va;
 972
 973	va = rb_entry_safe(node, struct vmap_area, rb_node);
 974	return va ? va->subtree_max_size : 0;
 975}
 976
 
 
 
 
 
 
 
 
 
 
 
 977RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
 978	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
 979
 980static void reclaim_and_purge_vmap_areas(void);
 981static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
 982static void drain_vmap_area_work(struct work_struct *work);
 983static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
 984
 985static atomic_long_t nr_vmalloc_pages;
 986
 987unsigned long vmalloc_nr_pages(void)
 988{
 989	return atomic_long_read(&nr_vmalloc_pages);
 990}
 991
 992static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
 993{
 994	struct rb_node *n = root->rb_node;
 995
 996	addr = (unsigned long)kasan_reset_tag((void *)addr);
 997
 998	while (n) {
 999		struct vmap_area *va;
1000
1001		va = rb_entry(n, struct vmap_area, rb_node);
1002		if (addr < va->va_start)
1003			n = n->rb_left;
1004		else if (addr >= va->va_end)
1005			n = n->rb_right;
1006		else
1007			return va;
1008	}
1009
1010	return NULL;
1011}
1012
1013/* Look up the first VA which satisfies addr < va_end, NULL if none. */
1014static struct vmap_area *
1015__find_vmap_area_exceed_addr(unsigned long addr, struct rb_root *root)
1016{
1017	struct vmap_area *va = NULL;
1018	struct rb_node *n = root->rb_node;
1019
1020	addr = (unsigned long)kasan_reset_tag((void *)addr);
1021
1022	while (n) {
1023		struct vmap_area *tmp;
1024
1025		tmp = rb_entry(n, struct vmap_area, rb_node);
1026		if (tmp->va_end > addr) {
1027			va = tmp;
1028			if (tmp->va_start <= addr)
1029				break;
1030
1031			n = n->rb_left;
1032		} else
1033			n = n->rb_right;
1034	}
1035
1036	return va;
1037}
1038
1039/*
1040 * Returns a node where a first VA, that satisfies addr < va_end, resides.
1041 * If success, a node is locked. A user is responsible to unlock it when a
1042 * VA is no longer needed to be accessed.
1043 *
1044 * Returns NULL if nothing found.
1045 */
1046static struct vmap_node *
1047find_vmap_area_exceed_addr_lock(unsigned long addr, struct vmap_area **va)
1048{
1049	unsigned long va_start_lowest;
1050	struct vmap_node *vn;
1051	int i;
1052
1053repeat:
1054	for (i = 0, va_start_lowest = 0; i < nr_vmap_nodes; i++) {
1055		vn = &vmap_nodes[i];
1056
1057		spin_lock(&vn->busy.lock);
1058		*va = __find_vmap_area_exceed_addr(addr, &vn->busy.root);
1059
1060		if (*va)
1061			if (!va_start_lowest || (*va)->va_start < va_start_lowest)
1062				va_start_lowest = (*va)->va_start;
1063		spin_unlock(&vn->busy.lock);
1064	}
1065
1066	/*
1067	 * Check if found VA exists, it might have gone away.  In this case we
1068	 * repeat the search because a VA has been removed concurrently and we
1069	 * need to proceed to the next one, which is a rare case.
1070	 */
1071	if (va_start_lowest) {
1072		vn = addr_to_node(va_start_lowest);
1073
1074		spin_lock(&vn->busy.lock);
1075		*va = __find_vmap_area(va_start_lowest, &vn->busy.root);
1076
1077		if (*va)
1078			return vn;
1079
1080		spin_unlock(&vn->busy.lock);
1081		goto repeat;
1082	}
1083
1084	return NULL;
1085}
1086
1087/*
1088 * This function returns back addresses of parent node
1089 * and its left or right link for further processing.
1090 *
1091 * Otherwise NULL is returned. In that case all further
1092 * steps regarding inserting of conflicting overlap range
1093 * have to be declined and actually considered as a bug.
1094 */
1095static __always_inline struct rb_node **
1096find_va_links(struct vmap_area *va,
1097	struct rb_root *root, struct rb_node *from,
1098	struct rb_node **parent)
1099{
1100	struct vmap_area *tmp_va;
1101	struct rb_node **link;
1102
1103	if (root) {
1104		link = &root->rb_node;
1105		if (unlikely(!*link)) {
1106			*parent = NULL;
1107			return link;
1108		}
1109	} else {
1110		link = &from;
1111	}
1112
1113	/*
1114	 * Go to the bottom of the tree. When we hit the last point
1115	 * we end up with parent rb_node and correct direction, i name
1116	 * it link, where the new va->rb_node will be attached to.
1117	 */
1118	do {
1119		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
1120
1121		/*
1122		 * During the traversal we also do some sanity check.
1123		 * Trigger the BUG() if there are sides(left/right)
1124		 * or full overlaps.
1125		 */
1126		if (va->va_end <= tmp_va->va_start)
 
1127			link = &(*link)->rb_left;
1128		else if (va->va_start >= tmp_va->va_end)
 
1129			link = &(*link)->rb_right;
1130		else {
1131			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
1132				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
1133
1134			return NULL;
1135		}
1136	} while (*link);
1137
1138	*parent = &tmp_va->rb_node;
1139	return link;
1140}
1141
1142static __always_inline struct list_head *
1143get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
1144{
1145	struct list_head *list;
1146
1147	if (unlikely(!parent))
1148		/*
1149		 * The red-black tree where we try to find VA neighbors
1150		 * before merging or inserting is empty, i.e. it means
1151		 * there is no free vmap space. Normally it does not
1152		 * happen but we handle this case anyway.
1153		 */
1154		return NULL;
1155
1156	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
1157	return (&parent->rb_right == link ? list->next : list);
1158}
1159
1160static __always_inline void
1161__link_va(struct vmap_area *va, struct rb_root *root,
1162	struct rb_node *parent, struct rb_node **link,
1163	struct list_head *head, bool augment)
1164{
1165	/*
1166	 * VA is still not in the list, but we can
1167	 * identify its future previous list_head node.
1168	 */
1169	if (likely(parent)) {
1170		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
1171		if (&parent->rb_right != link)
1172			head = head->prev;
1173	}
1174
1175	/* Insert to the rb-tree */
1176	rb_link_node(&va->rb_node, parent, link);
1177	if (augment) {
1178		/*
1179		 * Some explanation here. Just perform simple insertion
1180		 * to the tree. We do not set va->subtree_max_size to
1181		 * its current size before calling rb_insert_augmented().
1182		 * It is because we populate the tree from the bottom
1183		 * to parent levels when the node _is_ in the tree.
1184		 *
1185		 * Therefore we set subtree_max_size to zero after insertion,
1186		 * to let __augment_tree_propagate_from() puts everything to
1187		 * the correct order later on.
1188		 */
1189		rb_insert_augmented(&va->rb_node,
1190			root, &free_vmap_area_rb_augment_cb);
1191		va->subtree_max_size = 0;
1192	} else {
1193		rb_insert_color(&va->rb_node, root);
1194	}
1195
1196	/* Address-sort this list */
1197	list_add(&va->list, head);
1198}
1199
1200static __always_inline void
1201link_va(struct vmap_area *va, struct rb_root *root,
1202	struct rb_node *parent, struct rb_node **link,
1203	struct list_head *head)
1204{
1205	__link_va(va, root, parent, link, head, false);
1206}
1207
1208static __always_inline void
1209link_va_augment(struct vmap_area *va, struct rb_root *root,
1210	struct rb_node *parent, struct rb_node **link,
1211	struct list_head *head)
1212{
1213	__link_va(va, root, parent, link, head, true);
1214}
1215
1216static __always_inline void
1217__unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
1218{
1219	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
1220		return;
1221
1222	if (augment)
1223		rb_erase_augmented(&va->rb_node,
1224			root, &free_vmap_area_rb_augment_cb);
1225	else
1226		rb_erase(&va->rb_node, root);
1227
1228	list_del_init(&va->list);
1229	RB_CLEAR_NODE(&va->rb_node);
1230}
1231
1232static __always_inline void
1233unlink_va(struct vmap_area *va, struct rb_root *root)
1234{
1235	__unlink_va(va, root, false);
1236}
1237
1238static __always_inline void
1239unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1240{
1241	__unlink_va(va, root, true);
1242}
1243
1244#if DEBUG_AUGMENT_PROPAGATE_CHECK
1245/*
1246 * Gets called when remove the node and rotate.
1247 */
1248static __always_inline unsigned long
1249compute_subtree_max_size(struct vmap_area *va)
1250{
1251	return max3(va_size(va),
1252		get_subtree_max_size(va->rb_node.rb_left),
1253		get_subtree_max_size(va->rb_node.rb_right));
1254}
1255
1256static void
1257augment_tree_propagate_check(void)
1258{
1259	struct vmap_area *va;
1260	unsigned long computed_size;
1261
1262	list_for_each_entry(va, &free_vmap_area_list, list) {
1263		computed_size = compute_subtree_max_size(va);
1264		if (computed_size != va->subtree_max_size)
1265			pr_emerg("tree is corrupted: %lu, %lu\n",
1266				va_size(va), va->subtree_max_size);
1267	}
1268}
1269#endif
1270
1271/*
1272 * This function populates subtree_max_size from bottom to upper
1273 * levels starting from VA point. The propagation must be done
1274 * when VA size is modified by changing its va_start/va_end. Or
1275 * in case of newly inserting of VA to the tree.
1276 *
1277 * It means that __augment_tree_propagate_from() must be called:
1278 * - After VA has been inserted to the tree(free path);
1279 * - After VA has been shrunk(allocation path);
1280 * - After VA has been increased(merging path).
1281 *
1282 * Please note that, it does not mean that upper parent nodes
1283 * and their subtree_max_size are recalculated all the time up
1284 * to the root node.
1285 *
1286 *       4--8
1287 *        /\
1288 *       /  \
1289 *      /    \
1290 *    2--2  8--8
1291 *
1292 * For example if we modify the node 4, shrinking it to 2, then
1293 * no any modification is required. If we shrink the node 2 to 1
1294 * its subtree_max_size is updated only, and set to 1. If we shrink
1295 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1296 * node becomes 4--6.
1297 */
1298static __always_inline void
1299augment_tree_propagate_from(struct vmap_area *va)
1300{
1301	/*
1302	 * Populate the tree from bottom towards the root until
1303	 * the calculated maximum available size of checked node
1304	 * is equal to its current one.
1305	 */
1306	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1307
1308#if DEBUG_AUGMENT_PROPAGATE_CHECK
1309	augment_tree_propagate_check();
1310#endif
1311}
1312
1313static void
1314insert_vmap_area(struct vmap_area *va,
1315	struct rb_root *root, struct list_head *head)
1316{
1317	struct rb_node **link;
1318	struct rb_node *parent;
1319
1320	link = find_va_links(va, root, NULL, &parent);
1321	if (link)
1322		link_va(va, root, parent, link, head);
1323}
1324
1325static void
1326insert_vmap_area_augment(struct vmap_area *va,
1327	struct rb_node *from, struct rb_root *root,
1328	struct list_head *head)
1329{
1330	struct rb_node **link;
1331	struct rb_node *parent;
1332
1333	if (from)
1334		link = find_va_links(va, NULL, from, &parent);
1335	else
1336		link = find_va_links(va, root, NULL, &parent);
1337
1338	if (link) {
1339		link_va_augment(va, root, parent, link, head);
1340		augment_tree_propagate_from(va);
1341	}
1342}
1343
1344/*
1345 * Merge de-allocated chunk of VA memory with previous
1346 * and next free blocks. If coalesce is not done a new
1347 * free area is inserted. If VA has been merged, it is
1348 * freed.
1349 *
1350 * Please note, it can return NULL in case of overlap
1351 * ranges, followed by WARN() report. Despite it is a
1352 * buggy behaviour, a system can be alive and keep
1353 * ongoing.
1354 */
1355static __always_inline struct vmap_area *
1356__merge_or_add_vmap_area(struct vmap_area *va,
1357	struct rb_root *root, struct list_head *head, bool augment)
1358{
1359	struct vmap_area *sibling;
1360	struct list_head *next;
1361	struct rb_node **link;
1362	struct rb_node *parent;
1363	bool merged = false;
1364
1365	/*
1366	 * Find a place in the tree where VA potentially will be
1367	 * inserted, unless it is merged with its sibling/siblings.
1368	 */
1369	link = find_va_links(va, root, NULL, &parent);
1370	if (!link)
1371		return NULL;
1372
1373	/*
1374	 * Get next node of VA to check if merging can be done.
1375	 */
1376	next = get_va_next_sibling(parent, link);
1377	if (unlikely(next == NULL))
1378		goto insert;
1379
1380	/*
1381	 * start            end
1382	 * |                |
1383	 * |<------VA------>|<-----Next----->|
1384	 *                  |                |
1385	 *                  start            end
1386	 */
1387	if (next != head) {
1388		sibling = list_entry(next, struct vmap_area, list);
1389		if (sibling->va_start == va->va_end) {
1390			sibling->va_start = va->va_start;
1391
1392			/* Free vmap_area object. */
1393			kmem_cache_free(vmap_area_cachep, va);
1394
1395			/* Point to the new merged area. */
1396			va = sibling;
1397			merged = true;
1398		}
1399	}
1400
1401	/*
1402	 * start            end
1403	 * |                |
1404	 * |<-----Prev----->|<------VA------>|
1405	 *                  |                |
1406	 *                  start            end
1407	 */
1408	if (next->prev != head) {
1409		sibling = list_entry(next->prev, struct vmap_area, list);
1410		if (sibling->va_end == va->va_start) {
1411			/*
1412			 * If both neighbors are coalesced, it is important
1413			 * to unlink the "next" node first, followed by merging
1414			 * with "previous" one. Otherwise the tree might not be
1415			 * fully populated if a sibling's augmented value is
1416			 * "normalized" because of rotation operations.
1417			 */
1418			if (merged)
1419				__unlink_va(va, root, augment);
1420
1421			sibling->va_end = va->va_end;
1422
1423			/* Free vmap_area object. */
1424			kmem_cache_free(vmap_area_cachep, va);
1425
1426			/* Point to the new merged area. */
1427			va = sibling;
1428			merged = true;
1429		}
1430	}
1431
1432insert:
1433	if (!merged)
1434		__link_va(va, root, parent, link, head, augment);
1435
1436	return va;
1437}
1438
1439static __always_inline struct vmap_area *
1440merge_or_add_vmap_area(struct vmap_area *va,
1441	struct rb_root *root, struct list_head *head)
1442{
1443	return __merge_or_add_vmap_area(va, root, head, false);
1444}
1445
1446static __always_inline struct vmap_area *
1447merge_or_add_vmap_area_augment(struct vmap_area *va,
1448	struct rb_root *root, struct list_head *head)
1449{
1450	va = __merge_or_add_vmap_area(va, root, head, true);
1451	if (va)
1452		augment_tree_propagate_from(va);
1453
 
 
 
 
1454	return va;
1455}
1456
1457static __always_inline bool
1458is_within_this_va(struct vmap_area *va, unsigned long size,
1459	unsigned long align, unsigned long vstart)
1460{
1461	unsigned long nva_start_addr;
1462
1463	if (va->va_start > vstart)
1464		nva_start_addr = ALIGN(va->va_start, align);
1465	else
1466		nva_start_addr = ALIGN(vstart, align);
1467
1468	/* Can be overflowed due to big size or alignment. */
1469	if (nva_start_addr + size < nva_start_addr ||
1470			nva_start_addr < vstart)
1471		return false;
1472
1473	return (nva_start_addr + size <= va->va_end);
1474}
1475
1476/*
1477 * Find the first free block(lowest start address) in the tree,
1478 * that will accomplish the request corresponding to passing
1479 * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1480 * a search length is adjusted to account for worst case alignment
1481 * overhead.
1482 */
1483static __always_inline struct vmap_area *
1484find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1485	unsigned long align, unsigned long vstart, bool adjust_search_size)
1486{
1487	struct vmap_area *va;
1488	struct rb_node *node;
1489	unsigned long length;
1490
1491	/* Start from the root. */
1492	node = root->rb_node;
1493
1494	/* Adjust the search size for alignment overhead. */
1495	length = adjust_search_size ? size + align - 1 : size;
1496
1497	while (node) {
1498		va = rb_entry(node, struct vmap_area, rb_node);
1499
1500		if (get_subtree_max_size(node->rb_left) >= length &&
1501				vstart < va->va_start) {
1502			node = node->rb_left;
1503		} else {
1504			if (is_within_this_va(va, size, align, vstart))
1505				return va;
1506
1507			/*
1508			 * Does not make sense to go deeper towards the right
1509			 * sub-tree if it does not have a free block that is
1510			 * equal or bigger to the requested search length.
1511			 */
1512			if (get_subtree_max_size(node->rb_right) >= length) {
1513				node = node->rb_right;
1514				continue;
1515			}
1516
1517			/*
1518			 * OK. We roll back and find the first right sub-tree,
1519			 * that will satisfy the search criteria. It can happen
1520			 * due to "vstart" restriction or an alignment overhead
1521			 * that is bigger then PAGE_SIZE.
1522			 */
1523			while ((node = rb_parent(node))) {
1524				va = rb_entry(node, struct vmap_area, rb_node);
1525				if (is_within_this_va(va, size, align, vstart))
1526					return va;
1527
1528				if (get_subtree_max_size(node->rb_right) >= length &&
1529						vstart <= va->va_start) {
1530					/*
1531					 * Shift the vstart forward. Please note, we update it with
1532					 * parent's start address adding "1" because we do not want
1533					 * to enter same sub-tree after it has already been checked
1534					 * and no suitable free block found there.
1535					 */
1536					vstart = va->va_start + 1;
1537					node = node->rb_right;
1538					break;
1539				}
1540			}
1541		}
1542	}
1543
1544	return NULL;
1545}
1546
1547#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1548#include <linux/random.h>
1549
1550static struct vmap_area *
1551find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
1552	unsigned long align, unsigned long vstart)
1553{
1554	struct vmap_area *va;
1555
1556	list_for_each_entry(va, head, list) {
1557		if (!is_within_this_va(va, size, align, vstart))
1558			continue;
1559
1560		return va;
1561	}
1562
1563	return NULL;
1564}
1565
1566static void
1567find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1568			     unsigned long size, unsigned long align)
1569{
1570	struct vmap_area *va_1, *va_2;
1571	unsigned long vstart;
1572	unsigned int rnd;
1573
1574	get_random_bytes(&rnd, sizeof(rnd));
1575	vstart = VMALLOC_START + rnd;
1576
1577	va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1578	va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
1579
1580	if (va_1 != va_2)
1581		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1582			va_1, va_2, vstart);
1583}
1584#endif
1585
1586enum fit_type {
1587	NOTHING_FIT = 0,
1588	FL_FIT_TYPE = 1,	/* full fit */
1589	LE_FIT_TYPE = 2,	/* left edge fit */
1590	RE_FIT_TYPE = 3,	/* right edge fit */
1591	NE_FIT_TYPE = 4		/* no edge fit */
1592};
1593
1594static __always_inline enum fit_type
1595classify_va_fit_type(struct vmap_area *va,
1596	unsigned long nva_start_addr, unsigned long size)
1597{
1598	enum fit_type type;
1599
1600	/* Check if it is within VA. */
1601	if (nva_start_addr < va->va_start ||
1602			nva_start_addr + size > va->va_end)
1603		return NOTHING_FIT;
1604
1605	/* Now classify. */
1606	if (va->va_start == nva_start_addr) {
1607		if (va->va_end == nva_start_addr + size)
1608			type = FL_FIT_TYPE;
1609		else
1610			type = LE_FIT_TYPE;
1611	} else if (va->va_end == nva_start_addr + size) {
1612		type = RE_FIT_TYPE;
1613	} else {
1614		type = NE_FIT_TYPE;
1615	}
1616
1617	return type;
1618}
1619
1620static __always_inline int
1621va_clip(struct rb_root *root, struct list_head *head,
1622		struct vmap_area *va, unsigned long nva_start_addr,
1623		unsigned long size)
1624{
1625	struct vmap_area *lva = NULL;
1626	enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
1627
1628	if (type == FL_FIT_TYPE) {
1629		/*
1630		 * No need to split VA, it fully fits.
1631		 *
1632		 * |               |
1633		 * V      NVA      V
1634		 * |---------------|
1635		 */
1636		unlink_va_augment(va, root);
1637		kmem_cache_free(vmap_area_cachep, va);
1638	} else if (type == LE_FIT_TYPE) {
1639		/*
1640		 * Split left edge of fit VA.
1641		 *
1642		 * |       |
1643		 * V  NVA  V   R
1644		 * |-------|-------|
1645		 */
1646		va->va_start += size;
1647	} else if (type == RE_FIT_TYPE) {
1648		/*
1649		 * Split right edge of fit VA.
1650		 *
1651		 *         |       |
1652		 *     L   V  NVA  V
1653		 * |-------|-------|
1654		 */
1655		va->va_end = nva_start_addr;
1656	} else if (type == NE_FIT_TYPE) {
1657		/*
1658		 * Split no edge of fit VA.
1659		 *
1660		 *     |       |
1661		 *   L V  NVA  V R
1662		 * |---|-------|---|
1663		 */
1664		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1665		if (unlikely(!lva)) {
1666			/*
1667			 * For percpu allocator we do not do any pre-allocation
1668			 * and leave it as it is. The reason is it most likely
1669			 * never ends up with NE_FIT_TYPE splitting. In case of
1670			 * percpu allocations offsets and sizes are aligned to
1671			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1672			 * are its main fitting cases.
1673			 *
1674			 * There are a few exceptions though, as an example it is
1675			 * a first allocation (early boot up) when we have "one"
1676			 * big free space that has to be split.
1677			 *
1678			 * Also we can hit this path in case of regular "vmap"
1679			 * allocations, if "this" current CPU was not preloaded.
1680			 * See the comment in alloc_vmap_area() why. If so, then
1681			 * GFP_NOWAIT is used instead to get an extra object for
1682			 * split purpose. That is rare and most time does not
1683			 * occur.
1684			 *
1685			 * What happens if an allocation gets failed. Basically,
1686			 * an "overflow" path is triggered to purge lazily freed
1687			 * areas to free some memory, then, the "retry" path is
1688			 * triggered to repeat one more time. See more details
1689			 * in alloc_vmap_area() function.
1690			 */
1691			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1692			if (!lva)
1693				return -1;
1694		}
1695
1696		/*
1697		 * Build the remainder.
1698		 */
1699		lva->va_start = va->va_start;
1700		lva->va_end = nva_start_addr;
1701
1702		/*
1703		 * Shrink this VA to remaining size.
1704		 */
1705		va->va_start = nva_start_addr + size;
1706	} else {
1707		return -1;
1708	}
1709
1710	if (type != FL_FIT_TYPE) {
1711		augment_tree_propagate_from(va);
1712
1713		if (lva)	/* type == NE_FIT_TYPE */
1714			insert_vmap_area_augment(lva, &va->rb_node, root, head);
 
1715	}
1716
1717	return 0;
1718}
1719
1720static unsigned long
1721va_alloc(struct vmap_area *va,
1722		struct rb_root *root, struct list_head *head,
1723		unsigned long size, unsigned long align,
1724		unsigned long vstart, unsigned long vend)
 
 
1725{
1726	unsigned long nva_start_addr;
 
 
1727	int ret;
1728
 
 
 
 
1729	if (va->va_start > vstart)
1730		nva_start_addr = ALIGN(va->va_start, align);
1731	else
1732		nva_start_addr = ALIGN(vstart, align);
1733
1734	/* Check the "vend" restriction. */
1735	if (nva_start_addr + size > vend)
1736		return vend;
1737
1738	/* Update the free vmap_area. */
1739	ret = va_clip(root, head, va, nva_start_addr, size);
1740	if (WARN_ON_ONCE(ret))
1741		return vend;
1742
1743	return nva_start_addr;
1744}
1745
1746/*
1747 * Returns a start address of the newly allocated area, if success.
1748 * Otherwise a vend is returned that indicates failure.
1749 */
1750static __always_inline unsigned long
1751__alloc_vmap_area(struct rb_root *root, struct list_head *head,
1752	unsigned long size, unsigned long align,
1753	unsigned long vstart, unsigned long vend)
1754{
1755	bool adjust_search_size = true;
1756	unsigned long nva_start_addr;
1757	struct vmap_area *va;
1758
1759	/*
1760	 * Do not adjust when:
1761	 *   a) align <= PAGE_SIZE, because it does not make any sense.
1762	 *      All blocks(their start addresses) are at least PAGE_SIZE
1763	 *      aligned anyway;
1764	 *   b) a short range where a requested size corresponds to exactly
1765	 *      specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1766	 *      With adjusted search length an allocation would not succeed.
1767	 */
1768	if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1769		adjust_search_size = false;
1770
1771	va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
1772	if (unlikely(!va))
1773		return vend;
1774
1775	nva_start_addr = va_alloc(va, root, head, size, align, vstart, vend);
1776	if (nva_start_addr == vend)
1777		return vend;
1778
1779#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1780	find_vmap_lowest_match_check(root, head, size, align);
1781#endif
1782
1783	return nva_start_addr;
1784}
1785
1786/*
1787 * Free a region of KVA allocated by alloc_vmap_area
1788 */
1789static void free_vmap_area(struct vmap_area *va)
1790{
1791	struct vmap_node *vn = addr_to_node(va->va_start);
1792
1793	/*
1794	 * Remove from the busy tree/list.
1795	 */
1796	spin_lock(&vn->busy.lock);
1797	unlink_va(va, &vn->busy.root);
1798	spin_unlock(&vn->busy.lock);
1799
1800	/*
1801	 * Insert/Merge it back to the free tree/list.
1802	 */
1803	spin_lock(&free_vmap_area_lock);
1804	merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1805	spin_unlock(&free_vmap_area_lock);
1806}
1807
1808static inline void
1809preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1810{
1811	struct vmap_area *va = NULL;
1812
1813	/*
1814	 * Preload this CPU with one extra vmap_area object. It is used
1815	 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1816	 * a CPU that does an allocation is preloaded.
1817	 *
1818	 * We do it in non-atomic context, thus it allows us to use more
1819	 * permissive allocation masks to be more stable under low memory
1820	 * condition and high memory pressure.
1821	 */
1822	if (!this_cpu_read(ne_fit_preload_node))
1823		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1824
1825	spin_lock(lock);
1826
1827	if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1828		kmem_cache_free(vmap_area_cachep, va);
1829}
1830
1831static struct vmap_pool *
1832size_to_va_pool(struct vmap_node *vn, unsigned long size)
1833{
1834	unsigned int idx = (size - 1) / PAGE_SIZE;
1835
1836	if (idx < MAX_VA_SIZE_PAGES)
1837		return &vn->pool[idx];
1838
1839	return NULL;
1840}
1841
1842static bool
1843node_pool_add_va(struct vmap_node *n, struct vmap_area *va)
1844{
1845	struct vmap_pool *vp;
1846
1847	vp = size_to_va_pool(n, va_size(va));
1848	if (!vp)
1849		return false;
1850
1851	spin_lock(&n->pool_lock);
1852	list_add(&va->list, &vp->head);
1853	WRITE_ONCE(vp->len, vp->len + 1);
1854	spin_unlock(&n->pool_lock);
1855
1856	return true;
1857}
1858
1859static struct vmap_area *
1860node_pool_del_va(struct vmap_node *vn, unsigned long size,
1861		unsigned long align, unsigned long vstart,
1862		unsigned long vend)
1863{
1864	struct vmap_area *va = NULL;
1865	struct vmap_pool *vp;
1866	int err = 0;
1867
1868	vp = size_to_va_pool(vn, size);
1869	if (!vp || list_empty(&vp->head))
1870		return NULL;
1871
1872	spin_lock(&vn->pool_lock);
1873	if (!list_empty(&vp->head)) {
1874		va = list_first_entry(&vp->head, struct vmap_area, list);
1875
1876		if (IS_ALIGNED(va->va_start, align)) {
1877			/*
1878			 * Do some sanity check and emit a warning
1879			 * if one of below checks detects an error.
1880			 */
1881			err |= (va_size(va) != size);
1882			err |= (va->va_start < vstart);
1883			err |= (va->va_end > vend);
1884
1885			if (!WARN_ON_ONCE(err)) {
1886				list_del_init(&va->list);
1887				WRITE_ONCE(vp->len, vp->len - 1);
1888			} else {
1889				va = NULL;
1890			}
1891		} else {
1892			list_move_tail(&va->list, &vp->head);
1893			va = NULL;
1894		}
1895	}
1896	spin_unlock(&vn->pool_lock);
1897
1898	return va;
1899}
1900
1901static struct vmap_area *
1902node_alloc(unsigned long size, unsigned long align,
1903		unsigned long vstart, unsigned long vend,
1904		unsigned long *addr, unsigned int *vn_id)
1905{
1906	struct vmap_area *va;
1907
1908	*vn_id = 0;
1909	*addr = vend;
1910
1911	/*
1912	 * Fallback to a global heap if not vmalloc or there
1913	 * is only one node.
1914	 */
1915	if (vstart != VMALLOC_START || vend != VMALLOC_END ||
1916			nr_vmap_nodes == 1)
1917		return NULL;
1918
1919	*vn_id = raw_smp_processor_id() % nr_vmap_nodes;
1920	va = node_pool_del_va(id_to_node(*vn_id), size, align, vstart, vend);
1921	*vn_id = encode_vn_id(*vn_id);
1922
1923	if (va)
1924		*addr = va->va_start;
1925
1926	return va;
1927}
1928
1929/*
1930 * Allocate a region of KVA of the specified size and alignment, within the
1931 * vstart and vend.
1932 */
1933static struct vmap_area *alloc_vmap_area(unsigned long size,
1934				unsigned long align,
1935				unsigned long vstart, unsigned long vend,
1936				int node, gfp_t gfp_mask,
1937				unsigned long va_flags)
1938{
1939	struct vmap_node *vn;
1940	struct vmap_area *va;
1941	unsigned long freed;
1942	unsigned long addr;
1943	unsigned int vn_id;
1944	int purged = 0;
1945	int ret;
1946
1947	if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align)))
1948		return ERR_PTR(-EINVAL);
 
1949
1950	if (unlikely(!vmap_initialized))
1951		return ERR_PTR(-EBUSY);
1952
1953	might_sleep();
 
 
 
 
 
 
 
 
 
 
 
1954
 
1955	/*
1956	 * If a VA is obtained from a global heap(if it fails here)
1957	 * it is anyway marked with this "vn_id" so it is returned
1958	 * to this pool's node later. Such way gives a possibility
1959	 * to populate pools based on users demand.
 
 
1960	 *
1961	 * On success a ready to go VA is returned.
 
 
 
 
 
1962	 */
1963	va = node_alloc(size, align, vstart, vend, &addr, &vn_id);
1964	if (!va) {
1965		gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1966
1967		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1968		if (unlikely(!va))
1969			return ERR_PTR(-ENOMEM);
1970
 
1971		/*
1972		 * Only scan the relevant parts containing pointers to other objects
1973		 * to avoid false negatives.
 
1974		 */
1975		kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1976	}
1977
1978retry:
1979	if (addr == vend) {
1980		preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1981		addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
1982			size, align, vstart, vend);
1983		spin_unlock(&free_vmap_area_lock);
1984	}
1985
1986	trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
 
1987
1988	/*
1989	 * If an allocation fails, the "vend" address is
1990	 * returned. Therefore trigger the overflow path.
1991	 */
 
 
 
1992	if (unlikely(addr == vend))
1993		goto overflow;
1994
1995	va->va_start = addr;
1996	va->va_end = addr + size;
1997	va->vm = NULL;
1998	va->flags = (va_flags | vn_id);
1999
2000	vn = addr_to_node(va->va_start);
2001
2002	spin_lock(&vn->busy.lock);
2003	insert_vmap_area(va, &vn->busy.root, &vn->busy.head);
2004	spin_unlock(&vn->busy.lock);
2005
2006	BUG_ON(!IS_ALIGNED(va->va_start, align));
2007	BUG_ON(va->va_start < vstart);
2008	BUG_ON(va->va_end > vend);
2009
2010	ret = kasan_populate_vmalloc(addr, size);
2011	if (ret) {
2012		free_vmap_area(va);
2013		return ERR_PTR(ret);
2014	}
2015
2016	return va;
2017
2018overflow:
2019	if (!purged) {
2020		reclaim_and_purge_vmap_areas();
2021		purged = 1;
2022		goto retry;
2023	}
2024
2025	freed = 0;
2026	blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
2027
2028	if (freed > 0) {
2029		purged = 0;
2030		goto retry;
 
2031	}
2032
2033	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
2034		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
2035			size);
2036
2037	kmem_cache_free(vmap_area_cachep, va);
2038	return ERR_PTR(-EBUSY);
2039}
2040
2041int register_vmap_purge_notifier(struct notifier_block *nb)
2042{
2043	return blocking_notifier_chain_register(&vmap_notify_list, nb);
2044}
2045EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
2046
2047int unregister_vmap_purge_notifier(struct notifier_block *nb)
2048{
2049	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
2050}
2051EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
2052
2053/*
2054 * lazy_max_pages is the maximum amount of virtual address space we gather up
2055 * before attempting to purge with a TLB flush.
2056 *
2057 * There is a tradeoff here: a larger number will cover more kernel page tables
2058 * and take slightly longer to purge, but it will linearly reduce the number of
2059 * global TLB flushes that must be performed. It would seem natural to scale
2060 * this number up linearly with the number of CPUs (because vmapping activity
2061 * could also scale linearly with the number of CPUs), however it is likely
2062 * that in practice, workloads might be constrained in other ways that mean
2063 * vmap activity will not scale linearly with CPUs. Also, I want to be
2064 * conservative and not introduce a big latency on huge systems, so go with
2065 * a less aggressive log scale. It will still be an improvement over the old
2066 * code, and it will be simple to change the scale factor if we find that it
2067 * becomes a problem on bigger systems.
2068 */
2069static unsigned long lazy_max_pages(void)
2070{
2071	unsigned int log;
2072
2073	log = fls(num_online_cpus());
2074
2075	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
2076}
2077
2078static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
2079
2080/*
2081 * Serialize vmap purging.  There is no actual critical section protected
2082 * by this lock, but we want to avoid concurrent calls for performance
2083 * reasons and to make the pcpu_get_vm_areas more deterministic.
2084 */
2085static DEFINE_MUTEX(vmap_purge_lock);
2086
2087/* for per-CPU blocks */
2088static void purge_fragmented_blocks_allcpus(void);
2089static cpumask_t purge_nodes;
2090
2091static void
2092reclaim_list_global(struct list_head *head)
 
 
 
2093{
2094	struct vmap_area *va, *n;
2095
2096	if (list_empty(head))
2097		return;
2098
2099	spin_lock(&free_vmap_area_lock);
2100	list_for_each_entry_safe(va, n, head, list)
2101		merge_or_add_vmap_area_augment(va,
2102			&free_vmap_area_root, &free_vmap_area_list);
2103	spin_unlock(&free_vmap_area_lock);
2104}
2105
2106static void
2107decay_va_pool_node(struct vmap_node *vn, bool full_decay)
 
 
2108{
2109	struct vmap_area *va, *nva;
2110	struct list_head decay_list;
2111	struct rb_root decay_root;
2112	unsigned long n_decay;
2113	int i;
2114
2115	decay_root = RB_ROOT;
2116	INIT_LIST_HEAD(&decay_list);
2117
2118	for (i = 0; i < MAX_VA_SIZE_PAGES; i++) {
2119		struct list_head tmp_list;
 
2120
2121		if (list_empty(&vn->pool[i].head))
2122			continue;
2123
2124		INIT_LIST_HEAD(&tmp_list);
2125
2126		/* Detach the pool, so no-one can access it. */
2127		spin_lock(&vn->pool_lock);
2128		list_replace_init(&vn->pool[i].head, &tmp_list);
2129		spin_unlock(&vn->pool_lock);
2130
2131		if (full_decay)
2132			WRITE_ONCE(vn->pool[i].len, 0);
2133
2134		/* Decay a pool by ~25% out of left objects. */
2135		n_decay = vn->pool[i].len >> 2;
2136
2137		list_for_each_entry_safe(va, nva, &tmp_list, list) {
2138			list_del_init(&va->list);
2139			merge_or_add_vmap_area(va, &decay_root, &decay_list);
2140
2141			if (!full_decay) {
2142				WRITE_ONCE(vn->pool[i].len, vn->pool[i].len - 1);
2143
2144				if (!--n_decay)
2145					break;
2146			}
2147		}
2148
2149		/*
2150		 * Attach the pool back if it has been partly decayed.
2151		 * Please note, it is supposed that nobody(other contexts)
2152		 * can populate the pool therefore a simple list replace
2153		 * operation takes place here.
2154		 */
2155		if (!full_decay && !list_empty(&tmp_list)) {
2156			spin_lock(&vn->pool_lock);
2157			list_replace_init(&tmp_list, &vn->pool[i].head);
2158			spin_unlock(&vn->pool_lock);
2159		}
2160	}
2161
2162	reclaim_list_global(&decay_list);
2163}
2164
2165static void purge_vmap_node(struct work_struct *work)
2166{
2167	struct vmap_node *vn = container_of(work,
2168		struct vmap_node, purge_work);
2169	struct vmap_area *va, *n_va;
2170	LIST_HEAD(local_list);
2171
2172	vn->nr_purged = 0;
2173
2174	list_for_each_entry_safe(va, n_va, &vn->purge_list, list) {
2175		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
2176		unsigned long orig_start = va->va_start;
2177		unsigned long orig_end = va->va_end;
2178		unsigned int vn_id = decode_vn_id(va->flags);
2179
2180		list_del_init(&va->list);
 
 
 
 
 
 
 
 
 
2181
2182		if (is_vmalloc_or_module_addr((void *)orig_start))
2183			kasan_release_vmalloc(orig_start, orig_end,
2184					      va->va_start, va->va_end);
2185
2186		atomic_long_sub(nr, &vmap_lazy_nr);
2187		vn->nr_purged++;
2188
2189		if (is_vn_id_valid(vn_id) && !vn->skip_populate)
2190			if (node_pool_add_va(vn, va))
2191				continue;
2192
2193		/* Go back to global. */
2194		list_add(&va->list, &local_list);
2195	}
2196
2197	reclaim_list_global(&local_list);
2198}
2199
2200/*
2201 * Purges all lazily-freed vmap areas.
 
2202 */
2203static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end,
2204		bool full_pool_decay)
2205{
2206	unsigned long nr_purged_areas = 0;
2207	unsigned int nr_purge_helpers;
2208	unsigned int nr_purge_nodes;
2209	struct vmap_node *vn;
2210	int i;
2211
2212	lockdep_assert_held(&vmap_purge_lock);
2213
2214	/*
2215	 * Use cpumask to mark which node has to be processed.
2216	 */
2217	purge_nodes = CPU_MASK_NONE;
2218
2219	for (i = 0; i < nr_vmap_nodes; i++) {
2220		vn = &vmap_nodes[i];
2221
2222		INIT_LIST_HEAD(&vn->purge_list);
2223		vn->skip_populate = full_pool_decay;
2224		decay_va_pool_node(vn, full_pool_decay);
2225
2226		if (RB_EMPTY_ROOT(&vn->lazy.root))
2227			continue;
2228
2229		spin_lock(&vn->lazy.lock);
2230		WRITE_ONCE(vn->lazy.root.rb_node, NULL);
2231		list_replace_init(&vn->lazy.head, &vn->purge_list);
2232		spin_unlock(&vn->lazy.lock);
2233
2234		start = min(start, list_first_entry(&vn->purge_list,
2235			struct vmap_area, list)->va_start);
2236
2237		end = max(end, list_last_entry(&vn->purge_list,
2238			struct vmap_area, list)->va_end);
2239
2240		cpumask_set_cpu(i, &purge_nodes);
2241	}
2242
2243	nr_purge_nodes = cpumask_weight(&purge_nodes);
2244	if (nr_purge_nodes > 0) {
2245		flush_tlb_kernel_range(start, end);
2246
2247		/* One extra worker is per a lazy_max_pages() full set minus one. */
2248		nr_purge_helpers = atomic_long_read(&vmap_lazy_nr) / lazy_max_pages();
2249		nr_purge_helpers = clamp(nr_purge_helpers, 1U, nr_purge_nodes) - 1;
2250
2251		for_each_cpu(i, &purge_nodes) {
2252			vn = &vmap_nodes[i];
2253
2254			if (nr_purge_helpers > 0) {
2255				INIT_WORK(&vn->purge_work, purge_vmap_node);
2256
2257				if (cpumask_test_cpu(i, cpu_online_mask))
2258					schedule_work_on(i, &vn->purge_work);
2259				else
2260					schedule_work(&vn->purge_work);
2261
2262				nr_purge_helpers--;
2263			} else {
2264				vn->purge_work.func = NULL;
2265				purge_vmap_node(&vn->purge_work);
2266				nr_purged_areas += vn->nr_purged;
2267			}
2268		}
2269
2270		for_each_cpu(i, &purge_nodes) {
2271			vn = &vmap_nodes[i];
2272
2273			if (vn->purge_work.func) {
2274				flush_work(&vn->purge_work);
2275				nr_purged_areas += vn->nr_purged;
2276			}
2277		}
2278	}
2279
2280	trace_purge_vmap_area_lazy(start, end, nr_purged_areas);
2281	return nr_purged_areas > 0;
2282}
2283
2284/*
2285 * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list.
2286 */
2287static void reclaim_and_purge_vmap_areas(void)
2288
2289{
2290	mutex_lock(&vmap_purge_lock);
2291	purge_fragmented_blocks_allcpus();
2292	__purge_vmap_area_lazy(ULONG_MAX, 0, true);
2293	mutex_unlock(&vmap_purge_lock);
2294}
2295
2296static void drain_vmap_area_work(struct work_struct *work)
2297{
2298	mutex_lock(&vmap_purge_lock);
2299	__purge_vmap_area_lazy(ULONG_MAX, 0, false);
2300	mutex_unlock(&vmap_purge_lock);
2301}
2302
2303/*
2304 * Free a vmap area, caller ensuring that the area has been unmapped,
2305 * unlinked and flush_cache_vunmap had been called for the correct
2306 * range previously.
2307 */
2308static void free_vmap_area_noflush(struct vmap_area *va)
2309{
2310	unsigned long nr_lazy_max = lazy_max_pages();
2311	unsigned long va_start = va->va_start;
2312	unsigned int vn_id = decode_vn_id(va->flags);
2313	struct vmap_node *vn;
2314	unsigned long nr_lazy;
2315
2316	if (WARN_ON_ONCE(!list_empty(&va->list)))
2317		return;
 
2318
2319	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
2320				PAGE_SHIFT, &vmap_lazy_nr);
2321
2322	/*
2323	 * If it was request by a certain node we would like to
2324	 * return it to that node, i.e. its pool for later reuse.
2325	 */
2326	vn = is_vn_id_valid(vn_id) ?
2327		id_to_node(vn_id):addr_to_node(va->va_start);
2328
2329	spin_lock(&vn->lazy.lock);
2330	insert_vmap_area(va, &vn->lazy.root, &vn->lazy.head);
2331	spin_unlock(&vn->lazy.lock);
2332
2333	trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
2334
2335	/* After this point, we may free va at any time */
2336	if (unlikely(nr_lazy > nr_lazy_max))
2337		schedule_work(&drain_vmap_work);
2338}
2339
2340/*
2341 * Free and unmap a vmap area
2342 */
2343static void free_unmap_vmap_area(struct vmap_area *va)
2344{
2345	flush_cache_vunmap(va->va_start, va->va_end);
2346	vunmap_range_noflush(va->va_start, va->va_end);
2347	if (debug_pagealloc_enabled_static())
2348		flush_tlb_kernel_range(va->va_start, va->va_end);
2349
2350	free_vmap_area_noflush(va);
2351}
2352
2353struct vmap_area *find_vmap_area(unsigned long addr)
2354{
2355	struct vmap_node *vn;
2356	struct vmap_area *va;
2357	int i, j;
2358
2359	if (unlikely(!vmap_initialized))
2360		return NULL;
 
2361
2362	/*
2363	 * An addr_to_node_id(addr) converts an address to a node index
2364	 * where a VA is located. If VA spans several zones and passed
2365	 * addr is not the same as va->va_start, what is not common, we
2366	 * may need to scan extra nodes. See an example:
2367	 *
2368	 *      <----va---->
2369	 * -|-----|-----|-----|-----|-
2370	 *     1     2     0     1
2371	 *
2372	 * VA resides in node 1 whereas it spans 1, 2 an 0. If passed
2373	 * addr is within 2 or 0 nodes we should do extra work.
2374	 */
2375	i = j = addr_to_node_id(addr);
2376	do {
2377		vn = &vmap_nodes[i];
2378
2379		spin_lock(&vn->busy.lock);
2380		va = __find_vmap_area(addr, &vn->busy.root);
2381		spin_unlock(&vn->busy.lock);
2382
2383		if (va)
2384			return va;
2385	} while ((i = (i + 1) % nr_vmap_nodes) != j);
2386
2387	return NULL;
2388}
2389
2390static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
2391{
2392	struct vmap_node *vn;
2393	struct vmap_area *va;
2394	int i, j;
2395
2396	/*
2397	 * Check the comment in the find_vmap_area() about the loop.
2398	 */
2399	i = j = addr_to_node_id(addr);
2400	do {
2401		vn = &vmap_nodes[i];
2402
2403		spin_lock(&vn->busy.lock);
2404		va = __find_vmap_area(addr, &vn->busy.root);
2405		if (va)
2406			unlink_va(va, &vn->busy.root);
2407		spin_unlock(&vn->busy.lock);
2408
2409		if (va)
2410			return va;
2411	} while ((i = (i + 1) % nr_vmap_nodes) != j);
2412
2413	return NULL;
2414}
2415
2416/*** Per cpu kva allocator ***/
2417
2418/*
2419 * vmap space is limited especially on 32 bit architectures. Ensure there is
2420 * room for at least 16 percpu vmap blocks per CPU.
2421 */
2422/*
2423 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
2424 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
2425 * instead (we just need a rough idea)
2426 */
2427#if BITS_PER_LONG == 32
2428#define VMALLOC_SPACE		(128UL*1024*1024)
2429#else
2430#define VMALLOC_SPACE		(128UL*1024*1024*1024)
2431#endif
2432
2433#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
2434#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
2435#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
2436#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
2437#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
2438#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
2439#define VMAP_BBMAP_BITS		\
2440		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
2441		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
2442			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
2443
2444#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
2445
2446/*
2447 * Purge threshold to prevent overeager purging of fragmented blocks for
2448 * regular operations: Purge if vb->free is less than 1/4 of the capacity.
2449 */
2450#define VMAP_PURGE_THRESHOLD	(VMAP_BBMAP_BITS / 4)
2451
2452#define VMAP_RAM		0x1 /* indicates vm_map_ram area*/
2453#define VMAP_BLOCK		0x2 /* mark out the vmap_block sub-type*/
2454#define VMAP_FLAGS_MASK		0x3
2455
2456struct vmap_block_queue {
2457	spinlock_t lock;
2458	struct list_head free;
2459
2460	/*
2461	 * An xarray requires an extra memory dynamically to
2462	 * be allocated. If it is an issue, we can use rb-tree
2463	 * instead.
2464	 */
2465	struct xarray vmap_blocks;
2466};
2467
2468struct vmap_block {
2469	spinlock_t lock;
2470	struct vmap_area *va;
2471	unsigned long free, dirty;
2472	DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS);
2473	unsigned long dirty_min, dirty_max; /*< dirty range */
2474	struct list_head free_list;
2475	struct rcu_head rcu_head;
2476	struct list_head purge;
2477};
2478
2479/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
2480static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
2481
2482/*
2483 * In order to fast access to any "vmap_block" associated with a
2484 * specific address, we use a hash.
2485 *
2486 * A per-cpu vmap_block_queue is used in both ways, to serialize
2487 * an access to free block chains among CPUs(alloc path) and it
2488 * also acts as a vmap_block hash(alloc/free paths). It means we
2489 * overload it, since we already have the per-cpu array which is
2490 * used as a hash table. When used as a hash a 'cpu' passed to
2491 * per_cpu() is not actually a CPU but rather a hash index.
2492 *
2493 * A hash function is addr_to_vb_xa() which hashes any address
2494 * to a specific index(in a hash) it belongs to. This then uses a
2495 * per_cpu() macro to access an array with generated index.
2496 *
2497 * An example:
2498 *
2499 *  CPU_1  CPU_2  CPU_0
2500 *    |      |      |
2501 *    V      V      V
2502 * 0     10     20     30     40     50     60
2503 * |------|------|------|------|------|------|...<vmap address space>
2504 *   CPU0   CPU1   CPU2   CPU0   CPU1   CPU2
2505 *
2506 * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus
2507 *   it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock;
2508 *
2509 * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus
2510 *   it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock;
2511 *
2512 * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus
2513 *   it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock.
2514 *
2515 * This technique almost always avoids lock contention on insert/remove,
2516 * however xarray spinlocks protect against any contention that remains.
2517 */
2518static struct xarray *
2519addr_to_vb_xa(unsigned long addr)
2520{
2521	int index = (addr / VMAP_BLOCK_SIZE) % num_possible_cpus();
2522
2523	return &per_cpu(vmap_block_queue, index).vmap_blocks;
2524}
2525
2526/*
2527 * We should probably have a fallback mechanism to allocate virtual memory
2528 * out of partially filled vmap blocks. However vmap block sizing should be
2529 * fairly reasonable according to the vmalloc size, so it shouldn't be a
2530 * big problem.
2531 */
2532
2533static unsigned long addr_to_vb_idx(unsigned long addr)
2534{
2535	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
2536	addr /= VMAP_BLOCK_SIZE;
2537	return addr;
2538}
2539
2540static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
2541{
2542	unsigned long addr;
2543
2544	addr = va_start + (pages_off << PAGE_SHIFT);
2545	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
2546	return (void *)addr;
2547}
2548
2549/**
2550 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
2551 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
2552 * @order:    how many 2^order pages should be occupied in newly allocated block
2553 * @gfp_mask: flags for the page level allocator
2554 *
2555 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
2556 */
2557static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
2558{
2559	struct vmap_block_queue *vbq;
2560	struct vmap_block *vb;
2561	struct vmap_area *va;
2562	struct xarray *xa;
2563	unsigned long vb_idx;
2564	int node, err;
2565	void *vaddr;
2566
2567	node = numa_node_id();
2568
2569	vb = kmalloc_node(sizeof(struct vmap_block),
2570			gfp_mask & GFP_RECLAIM_MASK, node);
2571	if (unlikely(!vb))
2572		return ERR_PTR(-ENOMEM);
2573
2574	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
2575					VMALLOC_START, VMALLOC_END,
2576					node, gfp_mask,
2577					VMAP_RAM|VMAP_BLOCK);
2578	if (IS_ERR(va)) {
2579		kfree(vb);
2580		return ERR_CAST(va);
2581	}
2582
2583	vaddr = vmap_block_vaddr(va->va_start, 0);
2584	spin_lock_init(&vb->lock);
2585	vb->va = va;
2586	/* At least something should be left free */
2587	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
2588	bitmap_zero(vb->used_map, VMAP_BBMAP_BITS);
2589	vb->free = VMAP_BBMAP_BITS - (1UL << order);
2590	vb->dirty = 0;
2591	vb->dirty_min = VMAP_BBMAP_BITS;
2592	vb->dirty_max = 0;
2593	bitmap_set(vb->used_map, 0, (1UL << order));
2594	INIT_LIST_HEAD(&vb->free_list);
2595
2596	xa = addr_to_vb_xa(va->va_start);
2597	vb_idx = addr_to_vb_idx(va->va_start);
2598	err = xa_insert(xa, vb_idx, vb, gfp_mask);
2599	if (err) {
2600		kfree(vb);
2601		free_vmap_area(va);
2602		return ERR_PTR(err);
2603	}
2604
2605	vbq = raw_cpu_ptr(&vmap_block_queue);
2606	spin_lock(&vbq->lock);
2607	list_add_tail_rcu(&vb->free_list, &vbq->free);
2608	spin_unlock(&vbq->lock);
 
2609
2610	return vaddr;
2611}
2612
2613static void free_vmap_block(struct vmap_block *vb)
2614{
2615	struct vmap_node *vn;
2616	struct vmap_block *tmp;
2617	struct xarray *xa;
2618
2619	xa = addr_to_vb_xa(vb->va->va_start);
2620	tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start));
2621	BUG_ON(tmp != vb);
2622
2623	vn = addr_to_node(vb->va->va_start);
2624	spin_lock(&vn->busy.lock);
2625	unlink_va(vb->va, &vn->busy.root);
2626	spin_unlock(&vn->busy.lock);
2627
2628	free_vmap_area_noflush(vb->va);
2629	kfree_rcu(vb, rcu_head);
2630}
2631
2632static bool purge_fragmented_block(struct vmap_block *vb,
2633		struct vmap_block_queue *vbq, struct list_head *purge_list,
2634		bool force_purge)
2635{
2636	if (vb->free + vb->dirty != VMAP_BBMAP_BITS ||
2637	    vb->dirty == VMAP_BBMAP_BITS)
2638		return false;
2639
2640	/* Don't overeagerly purge usable blocks unless requested */
2641	if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD))
2642		return false;
2643
2644	/* prevent further allocs after releasing lock */
2645	WRITE_ONCE(vb->free, 0);
2646	/* prevent purging it again */
2647	WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS);
2648	vb->dirty_min = 0;
2649	vb->dirty_max = VMAP_BBMAP_BITS;
2650	spin_lock(&vbq->lock);
2651	list_del_rcu(&vb->free_list);
2652	spin_unlock(&vbq->lock);
2653	list_add_tail(&vb->purge, purge_list);
2654	return true;
2655}
2656
2657static void free_purged_blocks(struct list_head *purge_list)
2658{
2659	struct vmap_block *vb, *n_vb;
2660
2661	list_for_each_entry_safe(vb, n_vb, purge_list, purge) {
2662		list_del(&vb->purge);
2663		free_vmap_block(vb);
2664	}
2665}
2666
2667static void purge_fragmented_blocks(int cpu)
2668{
2669	LIST_HEAD(purge);
2670	struct vmap_block *vb;
 
2671	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2672
2673	rcu_read_lock();
2674	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2675		unsigned long free = READ_ONCE(vb->free);
2676		unsigned long dirty = READ_ONCE(vb->dirty);
2677
2678		if (free + dirty != VMAP_BBMAP_BITS ||
2679		    dirty == VMAP_BBMAP_BITS)
2680			continue;
2681
2682		spin_lock(&vb->lock);
2683		purge_fragmented_block(vb, vbq, &purge, true);
2684		spin_unlock(&vb->lock);
 
 
 
 
 
 
 
 
 
 
2685	}
2686	rcu_read_unlock();
2687	free_purged_blocks(&purge);
 
 
 
 
2688}
2689
2690static void purge_fragmented_blocks_allcpus(void)
2691{
2692	int cpu;
2693
2694	for_each_possible_cpu(cpu)
2695		purge_fragmented_blocks(cpu);
2696}
2697
2698static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2699{
2700	struct vmap_block_queue *vbq;
2701	struct vmap_block *vb;
2702	void *vaddr = NULL;
2703	unsigned int order;
2704
2705	BUG_ON(offset_in_page(size));
2706	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2707	if (WARN_ON(size == 0)) {
2708		/*
2709		 * Allocating 0 bytes isn't what caller wants since
2710		 * get_order(0) returns funny result. Just warn and terminate
2711		 * early.
2712		 */
2713		return ERR_PTR(-EINVAL);
2714	}
2715	order = get_order(size);
2716
2717	rcu_read_lock();
2718	vbq = raw_cpu_ptr(&vmap_block_queue);
2719	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2720		unsigned long pages_off;
2721
2722		if (READ_ONCE(vb->free) < (1UL << order))
2723			continue;
2724
2725		spin_lock(&vb->lock);
2726		if (vb->free < (1UL << order)) {
2727			spin_unlock(&vb->lock);
2728			continue;
2729		}
2730
2731		pages_off = VMAP_BBMAP_BITS - vb->free;
2732		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2733		WRITE_ONCE(vb->free, vb->free - (1UL << order));
2734		bitmap_set(vb->used_map, pages_off, (1UL << order));
2735		if (vb->free == 0) {
2736			spin_lock(&vbq->lock);
2737			list_del_rcu(&vb->free_list);
2738			spin_unlock(&vbq->lock);
2739		}
2740
2741		spin_unlock(&vb->lock);
2742		break;
2743	}
2744
 
2745	rcu_read_unlock();
2746
2747	/* Allocate new block if nothing was found */
2748	if (!vaddr)
2749		vaddr = new_vmap_block(order, gfp_mask);
2750
2751	return vaddr;
2752}
2753
2754static void vb_free(unsigned long addr, unsigned long size)
2755{
2756	unsigned long offset;
2757	unsigned int order;
2758	struct vmap_block *vb;
2759	struct xarray *xa;
2760
2761	BUG_ON(offset_in_page(size));
2762	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2763
2764	flush_cache_vunmap(addr, addr + size);
2765
2766	order = get_order(size);
2767	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
 
2768
2769	xa = addr_to_vb_xa(addr);
2770	vb = xa_load(xa, addr_to_vb_idx(addr));
2771
2772	spin_lock(&vb->lock);
2773	bitmap_clear(vb->used_map, offset, (1UL << order));
2774	spin_unlock(&vb->lock);
2775
2776	vunmap_range_noflush(addr, addr + size);
2777
2778	if (debug_pagealloc_enabled_static())
2779		flush_tlb_kernel_range(addr, addr + size);
2780
2781	spin_lock(&vb->lock);
2782
2783	/* Expand the not yet TLB flushed dirty range */
2784	vb->dirty_min = min(vb->dirty_min, offset);
2785	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2786
2787	WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order));
2788	if (vb->dirty == VMAP_BBMAP_BITS) {
2789		BUG_ON(vb->free);
2790		spin_unlock(&vb->lock);
2791		free_vmap_block(vb);
2792	} else
2793		spin_unlock(&vb->lock);
2794}
2795
2796static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2797{
2798	LIST_HEAD(purge_list);
2799	int cpu;
2800
2801	if (unlikely(!vmap_initialized))
2802		return;
2803
2804	mutex_lock(&vmap_purge_lock);
2805
2806	for_each_possible_cpu(cpu) {
2807		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2808		struct vmap_block *vb;
2809		unsigned long idx;
2810
2811		rcu_read_lock();
2812		xa_for_each(&vbq->vmap_blocks, idx, vb) {
2813			spin_lock(&vb->lock);
2814
2815			/*
2816			 * Try to purge a fragmented block first. If it's
2817			 * not purgeable, check whether there is dirty
2818			 * space to be flushed.
2819			 */
2820			if (!purge_fragmented_block(vb, vbq, &purge_list, false) &&
2821			    vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) {
2822				unsigned long va_start = vb->va->va_start;
2823				unsigned long s, e;
2824
2825				s = va_start + (vb->dirty_min << PAGE_SHIFT);
2826				e = va_start + (vb->dirty_max << PAGE_SHIFT);
2827
2828				start = min(s, start);
2829				end   = max(e, end);
2830
2831				/* Prevent that this is flushed again */
2832				vb->dirty_min = VMAP_BBMAP_BITS;
2833				vb->dirty_max = 0;
2834
2835				flush = 1;
2836			}
2837			spin_unlock(&vb->lock);
2838		}
2839		rcu_read_unlock();
2840	}
2841	free_purged_blocks(&purge_list);
2842
2843	if (!__purge_vmap_area_lazy(start, end, false) && flush)
 
 
2844		flush_tlb_kernel_range(start, end);
2845	mutex_unlock(&vmap_purge_lock);
2846}
2847
2848/**
2849 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2850 *
2851 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2852 * to amortize TLB flushing overheads. What this means is that any page you
2853 * have now, may, in a former life, have been mapped into kernel virtual
2854 * address by the vmap layer and so there might be some CPUs with TLB entries
2855 * still referencing that page (additional to the regular 1:1 kernel mapping).
2856 *
2857 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2858 * be sure that none of the pages we have control over will have any aliases
2859 * from the vmap layer.
2860 */
2861void vm_unmap_aliases(void)
2862{
2863	unsigned long start = ULONG_MAX, end = 0;
2864	int flush = 0;
2865
2866	_vm_unmap_aliases(start, end, flush);
2867}
2868EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2869
2870/**
2871 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2872 * @mem: the pointer returned by vm_map_ram
2873 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2874 */
2875void vm_unmap_ram(const void *mem, unsigned int count)
2876{
2877	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2878	unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2879	struct vmap_area *va;
2880
2881	might_sleep();
2882	BUG_ON(!addr);
2883	BUG_ON(addr < VMALLOC_START);
2884	BUG_ON(addr > VMALLOC_END);
2885	BUG_ON(!PAGE_ALIGNED(addr));
2886
2887	kasan_poison_vmalloc(mem, size);
2888
2889	if (likely(count <= VMAP_MAX_ALLOC)) {
2890		debug_check_no_locks_freed(mem, size);
2891		vb_free(addr, size);
2892		return;
2893	}
2894
2895	va = find_unlink_vmap_area(addr);
2896	if (WARN_ON_ONCE(!va))
2897		return;
2898
2899	debug_check_no_locks_freed((void *)va->va_start,
2900				    (va->va_end - va->va_start));
2901	free_unmap_vmap_area(va);
2902}
2903EXPORT_SYMBOL(vm_unmap_ram);
2904
2905/**
2906 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2907 * @pages: an array of pointers to the pages to be mapped
2908 * @count: number of pages
2909 * @node: prefer to allocate data structures on this node
2910 *
2911 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2912 * faster than vmap so it's good.  But if you mix long-life and short-life
2913 * objects with vm_map_ram(), it could consume lots of address space through
2914 * fragmentation (especially on a 32bit machine).  You could see failures in
2915 * the end.  Please use this function for short-lived objects.
2916 *
2917 * Returns: a pointer to the address that has been mapped, or %NULL on failure
2918 */
2919void *vm_map_ram(struct page **pages, unsigned int count, int node)
2920{
2921	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2922	unsigned long addr;
2923	void *mem;
2924
2925	if (likely(count <= VMAP_MAX_ALLOC)) {
2926		mem = vb_alloc(size, GFP_KERNEL);
2927		if (IS_ERR(mem))
2928			return NULL;
2929		addr = (unsigned long)mem;
2930	} else {
2931		struct vmap_area *va;
2932		va = alloc_vmap_area(size, PAGE_SIZE,
2933				VMALLOC_START, VMALLOC_END,
2934				node, GFP_KERNEL, VMAP_RAM);
2935		if (IS_ERR(va))
2936			return NULL;
2937
2938		addr = va->va_start;
2939		mem = (void *)addr;
2940	}
2941
2942	if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2943				pages, PAGE_SHIFT) < 0) {
 
2944		vm_unmap_ram(mem, count);
2945		return NULL;
2946	}
2947
2948	/*
2949	 * Mark the pages as accessible, now that they are mapped.
2950	 * With hardware tag-based KASAN, marking is skipped for
2951	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2952	 */
2953	mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
2954
2955	return mem;
2956}
2957EXPORT_SYMBOL(vm_map_ram);
2958
2959static struct vm_struct *vmlist __initdata;
2960
2961static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2962{
2963#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2964	return vm->page_order;
2965#else
2966	return 0;
2967#endif
2968}
2969
2970static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2971{
2972#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2973	vm->page_order = order;
2974#else
2975	BUG_ON(order != 0);
2976#endif
2977}
2978
2979/**
2980 * vm_area_add_early - add vmap area early during boot
2981 * @vm: vm_struct to add
2982 *
2983 * This function is used to add fixed kernel vm area to vmlist before
2984 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
2985 * should contain proper values and the other fields should be zero.
2986 *
2987 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2988 */
2989void __init vm_area_add_early(struct vm_struct *vm)
2990{
2991	struct vm_struct *tmp, **p;
2992
2993	BUG_ON(vmap_initialized);
2994	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2995		if (tmp->addr >= vm->addr) {
2996			BUG_ON(tmp->addr < vm->addr + vm->size);
2997			break;
2998		} else
2999			BUG_ON(tmp->addr + tmp->size > vm->addr);
3000	}
3001	vm->next = *p;
3002	*p = vm;
3003}
3004
3005/**
3006 * vm_area_register_early - register vmap area early during boot
3007 * @vm: vm_struct to register
3008 * @align: requested alignment
3009 *
3010 * This function is used to register kernel vm area before
3011 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
3012 * proper values on entry and other fields should be zero.  On return,
3013 * vm->addr contains the allocated address.
3014 *
3015 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
3016 */
3017void __init vm_area_register_early(struct vm_struct *vm, size_t align)
3018{
3019	unsigned long addr = ALIGN(VMALLOC_START, align);
3020	struct vm_struct *cur, **p;
3021
3022	BUG_ON(vmap_initialized);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3023
3024	for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
3025		if ((unsigned long)cur->addr - addr >= vm->size)
3026			break;
3027		addr = ALIGN((unsigned long)cur->addr + cur->size, align);
3028	}
3029
3030	BUG_ON(addr > VMALLOC_END - vm->size);
3031	vm->addr = (void *)addr;
3032	vm->next = *p;
3033	*p = vm;
3034	kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3035}
3036
3037static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
3038	struct vmap_area *va, unsigned long flags, const void *caller)
3039{
3040	vm->flags = flags;
3041	vm->addr = (void *)va->va_start;
3042	vm->size = va->va_end - va->va_start;
3043	vm->caller = caller;
3044	va->vm = vm;
3045}
3046
3047static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
3048			      unsigned long flags, const void *caller)
3049{
3050	struct vmap_node *vn = addr_to_node(va->va_start);
3051
3052	spin_lock(&vn->busy.lock);
3053	setup_vmalloc_vm_locked(vm, va, flags, caller);
3054	spin_unlock(&vn->busy.lock);
3055}
3056
3057static void clear_vm_uninitialized_flag(struct vm_struct *vm)
3058{
3059	/*
3060	 * Before removing VM_UNINITIALIZED,
3061	 * we should make sure that vm has proper values.
3062	 * Pair with smp_rmb() in show_numa_info().
3063	 */
3064	smp_wmb();
3065	vm->flags &= ~VM_UNINITIALIZED;
3066}
3067
3068static struct vm_struct *__get_vm_area_node(unsigned long size,
3069		unsigned long align, unsigned long shift, unsigned long flags,
3070		unsigned long start, unsigned long end, int node,
3071		gfp_t gfp_mask, const void *caller)
3072{
3073	struct vmap_area *va;
3074	struct vm_struct *area;
3075	unsigned long requested_size = size;
3076
3077	BUG_ON(in_interrupt());
3078	size = ALIGN(size, 1ul << shift);
3079	if (unlikely(!size))
3080		return NULL;
3081
3082	if (flags & VM_IOREMAP)
3083		align = 1ul << clamp_t(int, get_count_order_long(size),
3084				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
3085
3086	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
3087	if (unlikely(!area))
3088		return NULL;
3089
3090	if (!(flags & VM_NO_GUARD))
3091		size += PAGE_SIZE;
3092
3093	va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0);
3094	if (IS_ERR(va)) {
3095		kfree(area);
3096		return NULL;
3097	}
3098
 
 
3099	setup_vmalloc_vm(area, va, flags, caller);
3100
3101	/*
3102	 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
3103	 * best-effort approach, as they can be mapped outside of vmalloc code.
3104	 * For VM_ALLOC mappings, the pages are marked as accessible after
3105	 * getting mapped in __vmalloc_node_range().
3106	 * With hardware tag-based KASAN, marking is skipped for
3107	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3108	 */
3109	if (!(flags & VM_ALLOC))
3110		area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
3111						    KASAN_VMALLOC_PROT_NORMAL);
3112
3113	return area;
3114}
3115
3116struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
3117				       unsigned long start, unsigned long end,
3118				       const void *caller)
3119{
3120	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
3121				  NUMA_NO_NODE, GFP_KERNEL, caller);
3122}
3123
3124/**
3125 * get_vm_area - reserve a contiguous kernel virtual area
3126 * @size:	 size of the area
3127 * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
3128 *
3129 * Search an area of @size in the kernel virtual mapping area,
3130 * and reserved it for out purposes.  Returns the area descriptor
3131 * on success or %NULL on failure.
3132 *
3133 * Return: the area descriptor on success or %NULL on failure.
3134 */
3135struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
3136{
3137	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
3138				  VMALLOC_START, VMALLOC_END,
3139				  NUMA_NO_NODE, GFP_KERNEL,
3140				  __builtin_return_address(0));
3141}
3142
3143struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
3144				const void *caller)
3145{
3146	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
3147				  VMALLOC_START, VMALLOC_END,
3148				  NUMA_NO_NODE, GFP_KERNEL, caller);
3149}
3150
3151/**
3152 * find_vm_area - find a continuous kernel virtual area
3153 * @addr:	  base address
3154 *
3155 * Search for the kernel VM area starting at @addr, and return it.
3156 * It is up to the caller to do all required locking to keep the returned
3157 * pointer valid.
3158 *
3159 * Return: the area descriptor on success or %NULL on failure.
3160 */
3161struct vm_struct *find_vm_area(const void *addr)
3162{
3163	struct vmap_area *va;
3164
3165	va = find_vmap_area((unsigned long)addr);
3166	if (!va)
3167		return NULL;
3168
3169	return va->vm;
3170}
3171
3172/**
3173 * remove_vm_area - find and remove a continuous kernel virtual area
3174 * @addr:	    base address
3175 *
3176 * Search for the kernel VM area starting at @addr, and remove it.
3177 * This function returns the found VM area, but using it is NOT safe
3178 * on SMP machines, except for its size or flags.
3179 *
3180 * Return: the area descriptor on success or %NULL on failure.
3181 */
3182struct vm_struct *remove_vm_area(const void *addr)
3183{
3184	struct vmap_area *va;
3185	struct vm_struct *vm;
3186
3187	might_sleep();
3188
3189	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
3190			addr))
3191		return NULL;
 
 
 
 
3192
3193	va = find_unlink_vmap_area((unsigned long)addr);
3194	if (!va || !va->vm)
3195		return NULL;
3196	vm = va->vm;
3197
3198	debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm));
3199	debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm));
3200	kasan_free_module_shadow(vm);
3201	kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm));
3202
3203	free_unmap_vmap_area(va);
3204	return vm;
3205}
3206
3207static inline void set_area_direct_map(const struct vm_struct *area,
3208				       int (*set_direct_map)(struct page *page))
3209{
3210	int i;
3211
3212	/* HUGE_VMALLOC passes small pages to set_direct_map */
3213	for (i = 0; i < area->nr_pages; i++)
3214		if (page_address(area->pages[i]))
3215			set_direct_map(area->pages[i]);
3216}
3217
3218/*
3219 * Flush the vm mapping and reset the direct map.
3220 */
3221static void vm_reset_perms(struct vm_struct *area)
3222{
3223	unsigned long start = ULONG_MAX, end = 0;
3224	unsigned int page_order = vm_area_page_order(area);
3225	int flush_dmap = 0;
3226	int i;
3227
 
 
 
 
 
 
3228	/*
3229	 * Find the start and end range of the direct mappings to make sure that
 
 
 
 
 
 
 
 
 
 
3230	 * the vm_unmap_aliases() flush includes the direct map.
3231	 */
3232	for (i = 0; i < area->nr_pages; i += 1U << page_order) {
3233		unsigned long addr = (unsigned long)page_address(area->pages[i]);
3234
3235		if (addr) {
3236			unsigned long page_size;
3237
3238			page_size = PAGE_SIZE << page_order;
3239			start = min(addr, start);
3240			end = max(addr + page_size, end);
3241			flush_dmap = 1;
3242		}
3243	}
3244
3245	/*
3246	 * Set direct map to something invalid so that it won't be cached if
3247	 * there are any accesses after the TLB flush, then flush the TLB and
3248	 * reset the direct map permissions to the default.
3249	 */
3250	set_area_direct_map(area, set_direct_map_invalid_noflush);
3251	_vm_unmap_aliases(start, end, flush_dmap);
3252	set_area_direct_map(area, set_direct_map_default_noflush);
3253}
3254
3255static void delayed_vfree_work(struct work_struct *w)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3256{
3257	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
3258	struct llist_node *t, *llnode;
 
 
 
 
 
3259
3260	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
3261		vfree(llnode);
3262}
3263
3264/**
3265 * vfree_atomic - release memory allocated by vmalloc()
3266 * @addr:	  memory base address
3267 *
3268 * This one is just like vfree() but can be called in any atomic context
3269 * except NMIs.
3270 */
3271void vfree_atomic(const void *addr)
3272{
3273	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
3274
3275	BUG_ON(in_nmi());
3276	kmemleak_free(addr);
3277
3278	/*
3279	 * Use raw_cpu_ptr() because this can be called from preemptible
3280	 * context. Preemption is absolutely fine here, because the llist_add()
3281	 * implementation is lockless, so it works even if we are adding to
3282	 * another cpu's list. schedule_work() should be fine with this too.
3283	 */
3284	if (addr && llist_add((struct llist_node *)addr, &p->list))
3285		schedule_work(&p->wq);
 
 
 
3286}
3287
3288/**
3289 * vfree - Release memory allocated by vmalloc()
3290 * @addr:  Memory base address
3291 *
3292 * Free the virtually continuous memory area starting at @addr, as obtained
3293 * from one of the vmalloc() family of APIs.  This will usually also free the
3294 * physical memory underlying the virtual allocation, but that memory is
3295 * reference counted, so it will not be freed until the last user goes away.
3296 *
3297 * If @addr is NULL, no operation is performed.
 
 
3298 *
3299 * Context:
3300 * May sleep if called *not* from interrupt context.
3301 * Must not be called in NMI context (strictly speaking, it could be
3302 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
3303 * conventions for vfree() arch-dependent would be a really bad idea).
3304 */
3305void vfree(const void *addr)
3306{
3307	struct vm_struct *vm;
3308	int i;
3309
3310	if (unlikely(in_interrupt())) {
3311		vfree_atomic(addr);
3312		return;
3313	}
3314
3315	BUG_ON(in_nmi());
3316	kmemleak_free(addr);
3317	might_sleep();
3318
3319	if (!addr)
3320		return;
3321
3322	vm = remove_vm_area(addr);
3323	if (unlikely(!vm)) {
3324		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
3325				addr);
3326		return;
3327	}
3328
3329	if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS))
3330		vm_reset_perms(vm);
3331	for (i = 0; i < vm->nr_pages; i++) {
3332		struct page *page = vm->pages[i];
3333
3334		BUG_ON(!page);
3335		mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
3336		/*
3337		 * High-order allocs for huge vmallocs are split, so
3338		 * can be freed as an array of order-0 allocations
3339		 */
3340		__free_page(page);
3341		cond_resched();
3342	}
3343	atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages);
3344	kvfree(vm->pages);
3345	kfree(vm);
3346}
3347EXPORT_SYMBOL(vfree);
3348
3349/**
3350 * vunmap - release virtual mapping obtained by vmap()
3351 * @addr:   memory base address
3352 *
3353 * Free the virtually contiguous memory area starting at @addr,
3354 * which was created from the page array passed to vmap().
3355 *
3356 * Must not be called in interrupt context.
3357 */
3358void vunmap(const void *addr)
3359{
3360	struct vm_struct *vm;
3361
3362	BUG_ON(in_interrupt());
3363	might_sleep();
3364
3365	if (!addr)
3366		return;
3367	vm = remove_vm_area(addr);
3368	if (unlikely(!vm)) {
3369		WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n",
3370				addr);
3371		return;
3372	}
3373	kfree(vm);
3374}
3375EXPORT_SYMBOL(vunmap);
3376
3377/**
3378 * vmap - map an array of pages into virtually contiguous space
3379 * @pages: array of page pointers
3380 * @count: number of pages to map
3381 * @flags: vm_area->flags
3382 * @prot: page protection for the mapping
3383 *
3384 * Maps @count pages from @pages into contiguous kernel virtual space.
3385 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
3386 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
3387 * are transferred from the caller to vmap(), and will be freed / dropped when
3388 * vfree() is called on the return value.
3389 *
3390 * Return: the address of the area or %NULL on failure
3391 */
3392void *vmap(struct page **pages, unsigned int count,
3393	   unsigned long flags, pgprot_t prot)
3394{
3395	struct vm_struct *area;
3396	unsigned long addr;
3397	unsigned long size;		/* In bytes */
3398
3399	might_sleep();
3400
3401	if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
3402		return NULL;
3403
3404	/*
3405	 * Your top guard is someone else's bottom guard. Not having a top
3406	 * guard compromises someone else's mappings too.
3407	 */
3408	if (WARN_ON_ONCE(flags & VM_NO_GUARD))
3409		flags &= ~VM_NO_GUARD;
3410
3411	if (count > totalram_pages())
3412		return NULL;
3413
3414	size = (unsigned long)count << PAGE_SHIFT;
3415	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
3416	if (!area)
3417		return NULL;
3418
3419	addr = (unsigned long)area->addr;
3420	if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
3421				pages, PAGE_SHIFT) < 0) {
3422		vunmap(area->addr);
3423		return NULL;
3424	}
3425
3426	if (flags & VM_MAP_PUT_PAGES) {
3427		area->pages = pages;
3428		area->nr_pages = count;
3429	}
3430	return area->addr;
3431}
3432EXPORT_SYMBOL(vmap);
3433
3434#ifdef CONFIG_VMAP_PFN
3435struct vmap_pfn_data {
3436	unsigned long	*pfns;
3437	pgprot_t	prot;
3438	unsigned int	idx;
3439};
3440
3441static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
3442{
3443	struct vmap_pfn_data *data = private;
3444	unsigned long pfn = data->pfns[data->idx];
3445	pte_t ptent;
3446
3447	if (WARN_ON_ONCE(pfn_valid(pfn)))
3448		return -EINVAL;
3449
3450	ptent = pte_mkspecial(pfn_pte(pfn, data->prot));
3451	set_pte_at(&init_mm, addr, pte, ptent);
3452
3453	data->idx++;
3454	return 0;
3455}
3456
3457/**
3458 * vmap_pfn - map an array of PFNs into virtually contiguous space
3459 * @pfns: array of PFNs
3460 * @count: number of pages to map
3461 * @prot: page protection for the mapping
3462 *
3463 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
3464 * the start address of the mapping.
3465 */
3466void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
3467{
3468	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
3469	struct vm_struct *area;
3470
3471	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
3472			__builtin_return_address(0));
3473	if (!area)
3474		return NULL;
3475	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3476			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
3477		free_vm_area(area);
3478		return NULL;
3479	}
3480
3481	flush_cache_vmap((unsigned long)area->addr,
3482			 (unsigned long)area->addr + count * PAGE_SIZE);
3483
3484	return area->addr;
3485}
3486EXPORT_SYMBOL_GPL(vmap_pfn);
3487#endif /* CONFIG_VMAP_PFN */
3488
3489static inline unsigned int
3490vm_area_alloc_pages(gfp_t gfp, int nid,
3491		unsigned int order, unsigned int nr_pages, struct page **pages)
3492{
3493	unsigned int nr_allocated = 0;
3494	gfp_t alloc_gfp = gfp;
3495	bool nofail = false;
3496	struct page *page;
3497	int i;
3498
3499	/*
3500	 * For order-0 pages we make use of bulk allocator, if
3501	 * the page array is partly or not at all populated due
3502	 * to fails, fallback to a single page allocator that is
3503	 * more permissive.
3504	 */
3505	if (!order) {
3506		/* bulk allocator doesn't support nofail req. officially */
3507		gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
3508
3509		while (nr_allocated < nr_pages) {
3510			unsigned int nr, nr_pages_request;
3511
3512			/*
3513			 * A maximum allowed request is hard-coded and is 100
3514			 * pages per call. That is done in order to prevent a
3515			 * long preemption off scenario in the bulk-allocator
3516			 * so the range is [1:100].
3517			 */
3518			nr_pages_request = min(100U, nr_pages - nr_allocated);
3519
3520			/* memory allocation should consider mempolicy, we can't
3521			 * wrongly use nearest node when nid == NUMA_NO_NODE,
3522			 * otherwise memory may be allocated in only one node,
3523			 * but mempolicy wants to alloc memory by interleaving.
3524			 */
3525			if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
3526				nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
3527							nr_pages_request,
3528							pages + nr_allocated);
3529
3530			else
3531				nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
3532							nr_pages_request,
3533							pages + nr_allocated);
3534
3535			nr_allocated += nr;
3536			cond_resched();
3537
3538			/*
3539			 * If zero or pages were obtained partly,
3540			 * fallback to a single page allocator.
3541			 */
3542			if (nr != nr_pages_request)
3543				break;
3544		}
3545	} else if (gfp & __GFP_NOFAIL) {
3546		/*
3547		 * Higher order nofail allocations are really expensive and
3548		 * potentially dangerous (pre-mature OOM, disruptive reclaim
3549		 * and compaction etc.
3550		 */
3551		alloc_gfp &= ~__GFP_NOFAIL;
3552		nofail = true;
3553	}
3554
3555	/* High-order pages or fallback path if "bulk" fails. */
3556	while (nr_allocated < nr_pages) {
3557		if (fatal_signal_pending(current))
3558			break;
3559
3560		if (nid == NUMA_NO_NODE)
3561			page = alloc_pages(alloc_gfp, order);
3562		else
3563			page = alloc_pages_node(nid, alloc_gfp, order);
3564		if (unlikely(!page)) {
3565			if (!nofail)
3566				break;
3567
3568			/* fall back to the zero order allocations */
3569			alloc_gfp |= __GFP_NOFAIL;
3570			order = 0;
3571			continue;
3572		}
3573
3574		/*
3575		 * Higher order allocations must be able to be treated as
3576		 * indepdenent small pages by callers (as they can with
3577		 * small-page vmallocs). Some drivers do their own refcounting
3578		 * on vmalloc_to_page() pages, some use page->mapping,
3579		 * page->lru, etc.
3580		 */
3581		if (order)
3582			split_page(page, order);
3583
3584		/*
3585		 * Careful, we allocate and map page-order pages, but
3586		 * tracking is done per PAGE_SIZE page so as to keep the
3587		 * vm_struct APIs independent of the physical/mapped size.
3588		 */
3589		for (i = 0; i < (1U << order); i++)
3590			pages[nr_allocated + i] = page + i;
3591
3592		cond_resched();
3593		nr_allocated += 1U << order;
3594	}
3595
3596	return nr_allocated;
3597}
3598
3599static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3600				 pgprot_t prot, unsigned int page_shift,
3601				 int node)
3602{
 
 
3603	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
3604	bool nofail = gfp_mask & __GFP_NOFAIL;
3605	unsigned long addr = (unsigned long)area->addr;
3606	unsigned long size = get_vm_area_size(area);
3607	unsigned long array_size;
3608	unsigned int nr_small_pages = size >> PAGE_SHIFT;
3609	unsigned int page_order;
3610	unsigned int flags;
3611	int ret;
3612
3613	array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
3614
3615	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3616		gfp_mask |= __GFP_HIGHMEM;
3617
3618	/* Please note that the recursion is strictly bounded. */
3619	if (array_size > PAGE_SIZE) {
3620		area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
3621					area->caller);
3622	} else {
3623		area->pages = kmalloc_node(array_size, nested_gfp, node);
3624	}
3625
3626	if (!area->pages) {
3627		warn_alloc(gfp_mask, NULL,
3628			"vmalloc error: size %lu, failed to allocated page array size %lu",
3629			nr_small_pages * PAGE_SIZE, array_size);
3630		free_vm_area(area);
3631		return NULL;
3632	}
3633
3634	set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
3635	page_order = vm_area_page_order(area);
3636
3637	area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
3638		node, page_order, nr_small_pages, area->pages);
3639
3640	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3641	if (gfp_mask & __GFP_ACCOUNT) {
3642		int i;
 
3643
3644		for (i = 0; i < area->nr_pages; i++)
3645			mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
3646	}
3647
3648	/*
3649	 * If not enough pages were obtained to accomplish an
3650	 * allocation request, free them via vfree() if any.
3651	 */
3652	if (area->nr_pages != nr_small_pages) {
3653		/*
3654		 * vm_area_alloc_pages() can fail due to insufficient memory but
3655		 * also:-
3656		 *
3657		 * - a pending fatal signal
3658		 * - insufficient huge page-order pages
3659		 *
3660		 * Since we always retry allocations at order-0 in the huge page
3661		 * case a warning for either is spurious.
3662		 */
3663		if (!fatal_signal_pending(current) && page_order == 0)
3664			warn_alloc(gfp_mask, NULL,
3665				"vmalloc error: size %lu, failed to allocate pages",
3666				area->nr_pages * PAGE_SIZE);
3667		goto fail;
3668	}
 
3669
3670	/*
3671	 * page tables allocations ignore external gfp mask, enforce it
3672	 * by the scope API
3673	 */
3674	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3675		flags = memalloc_nofs_save();
3676	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3677		flags = memalloc_noio_save();
3678
3679	do {
3680		ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3681			page_shift);
3682		if (nofail && (ret < 0))
3683			schedule_timeout_uninterruptible(1);
3684	} while (nofail && (ret < 0));
3685
3686	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3687		memalloc_nofs_restore(flags);
3688	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3689		memalloc_noio_restore(flags);
3690
3691	if (ret < 0) {
3692		warn_alloc(gfp_mask, NULL,
3693			"vmalloc error: size %lu, failed to map pages",
3694			area->nr_pages * PAGE_SIZE);
3695		goto fail;
3696	}
3697
3698	return area->addr;
3699
3700fail:
3701	vfree(area->addr);
 
 
 
3702	return NULL;
3703}
3704
3705/**
3706 * __vmalloc_node_range - allocate virtually contiguous memory
3707 * @size:		  allocation size
3708 * @align:		  desired alignment
3709 * @start:		  vm area range start
3710 * @end:		  vm area range end
3711 * @gfp_mask:		  flags for the page level allocator
3712 * @prot:		  protection mask for the allocated pages
3713 * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
3714 * @node:		  node to use for allocation or NUMA_NO_NODE
3715 * @caller:		  caller's return address
3716 *
3717 * Allocate enough pages to cover @size from the page level
3718 * allocator with @gfp_mask flags. Please note that the full set of gfp
3719 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3720 * supported.
3721 * Zone modifiers are not supported. From the reclaim modifiers
3722 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3723 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3724 * __GFP_RETRY_MAYFAIL are not supported).
3725 *
3726 * __GFP_NOWARN can be used to suppress failures messages.
3727 *
3728 * Map them into contiguous kernel virtual space, using a pagetable
3729 * protection of @prot.
3730 *
3731 * Return: the address of the area or %NULL on failure
3732 */
3733void *__vmalloc_node_range(unsigned long size, unsigned long align,
3734			unsigned long start, unsigned long end, gfp_t gfp_mask,
3735			pgprot_t prot, unsigned long vm_flags, int node,
3736			const void *caller)
3737{
3738	struct vm_struct *area;
3739	void *ret;
3740	kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3741	unsigned long real_size = size;
3742	unsigned long real_align = align;
3743	unsigned int shift = PAGE_SHIFT;
3744
3745	if (WARN_ON_ONCE(!size))
3746		return NULL;
3747
3748	if ((size >> PAGE_SHIFT) > totalram_pages()) {
3749		warn_alloc(gfp_mask, NULL,
3750			"vmalloc error: size %lu, exceeds total pages",
3751			real_size);
3752		return NULL;
3753	}
3754
3755	if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3756		unsigned long size_per_node;
3757
3758		/*
3759		 * Try huge pages. Only try for PAGE_KERNEL allocations,
3760		 * others like modules don't yet expect huge pages in
3761		 * their allocations due to apply_to_page_range not
3762		 * supporting them.
3763		 */
3764
3765		size_per_node = size;
3766		if (node == NUMA_NO_NODE)
3767			size_per_node /= num_online_nodes();
3768		if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3769			shift = PMD_SHIFT;
3770		else
3771			shift = arch_vmap_pte_supported_shift(size_per_node);
3772
3773		align = max(real_align, 1UL << shift);
3774		size = ALIGN(real_size, 1UL << shift);
3775	}
3776
3777again:
3778	area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3779				  VM_UNINITIALIZED | vm_flags, start, end, node,
3780				  gfp_mask, caller);
3781	if (!area) {
3782		bool nofail = gfp_mask & __GFP_NOFAIL;
3783		warn_alloc(gfp_mask, NULL,
3784			"vmalloc error: size %lu, vm_struct allocation failed%s",
3785			real_size, (nofail) ? ". Retrying." : "");
3786		if (nofail) {
3787			schedule_timeout_uninterruptible(1);
3788			goto again;
3789		}
3790		goto fail;
3791	}
3792
3793	/*
3794	 * Prepare arguments for __vmalloc_area_node() and
3795	 * kasan_unpoison_vmalloc().
3796	 */
3797	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3798		if (kasan_hw_tags_enabled()) {
3799			/*
3800			 * Modify protection bits to allow tagging.
3801			 * This must be done before mapping.
3802			 */
3803			prot = arch_vmap_pgprot_tagged(prot);
3804
3805			/*
3806			 * Skip page_alloc poisoning and zeroing for physical
3807			 * pages backing VM_ALLOC mapping. Memory is instead
3808			 * poisoned and zeroed by kasan_unpoison_vmalloc().
3809			 */
3810			gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO;
3811		}
3812
3813		/* Take note that the mapping is PAGE_KERNEL. */
3814		kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3815	}
3816
3817	/* Allocate physical pages and map them into vmalloc space. */
3818	ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3819	if (!ret)
3820		goto fail;
3821
3822	/*
3823	 * Mark the pages as accessible, now that they are mapped.
3824	 * The condition for setting KASAN_VMALLOC_INIT should complement the
3825	 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3826	 * to make sure that memory is initialized under the same conditions.
3827	 * Tag-based KASAN modes only assign tags to normal non-executable
3828	 * allocations, see __kasan_unpoison_vmalloc().
3829	 */
3830	kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3831	if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3832	    (gfp_mask & __GFP_SKIP_ZERO))
3833		kasan_flags |= KASAN_VMALLOC_INIT;
3834	/* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3835	area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
3836
3837	/*
3838	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3839	 * flag. It means that vm_struct is not fully initialized.
3840	 * Now, it is fully initialized, so remove this flag here.
3841	 */
3842	clear_vm_uninitialized_flag(area);
3843
3844	size = PAGE_ALIGN(size);
3845	if (!(vm_flags & VM_DEFER_KMEMLEAK))
3846		kmemleak_vmalloc(area, size, gfp_mask);
3847
3848	return area->addr;
3849
3850fail:
3851	if (shift > PAGE_SHIFT) {
3852		shift = PAGE_SHIFT;
3853		align = real_align;
3854		size = real_size;
3855		goto again;
3856	}
3857
3858	return NULL;
3859}
3860
3861/**
3862 * __vmalloc_node - allocate virtually contiguous memory
3863 * @size:	    allocation size
3864 * @align:	    desired alignment
3865 * @gfp_mask:	    flags for the page level allocator
3866 * @node:	    node to use for allocation or NUMA_NO_NODE
3867 * @caller:	    caller's return address
3868 *
3869 * Allocate enough pages to cover @size from the page level allocator with
3870 * @gfp_mask flags.  Map them into contiguous kernel virtual space.
3871 *
3872 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3873 * and __GFP_NOFAIL are not supported
3874 *
3875 * Any use of gfp flags outside of GFP_KERNEL should be consulted
3876 * with mm people.
3877 *
3878 * Return: pointer to the allocated memory or %NULL on error
3879 */
3880void *__vmalloc_node(unsigned long size, unsigned long align,
3881			    gfp_t gfp_mask, int node, const void *caller)
3882{
3883	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3884				gfp_mask, PAGE_KERNEL, 0, node, caller);
3885}
3886/*
3887 * This is only for performance analysis of vmalloc and stress purpose.
3888 * It is required by vmalloc test module, therefore do not use it other
3889 * than that.
3890 */
3891#ifdef CONFIG_TEST_VMALLOC_MODULE
3892EXPORT_SYMBOL_GPL(__vmalloc_node);
3893#endif
3894
3895void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3896{
3897	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3898				__builtin_return_address(0));
3899}
3900EXPORT_SYMBOL(__vmalloc);
3901
3902/**
3903 * vmalloc - allocate virtually contiguous memory
3904 * @size:    allocation size
3905 *
3906 * Allocate enough pages to cover @size from the page level
3907 * allocator and map them into contiguous kernel virtual space.
3908 *
3909 * For tight control over page level allocator and protection flags
3910 * use __vmalloc() instead.
3911 *
3912 * Return: pointer to the allocated memory or %NULL on error
3913 */
3914void *vmalloc(unsigned long size)
3915{
3916	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3917				__builtin_return_address(0));
3918}
3919EXPORT_SYMBOL(vmalloc);
3920
3921/**
3922 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3923 * @size:      allocation size
3924 * @gfp_mask:  flags for the page level allocator
3925 *
3926 * Allocate enough pages to cover @size from the page level
3927 * allocator and map them into contiguous kernel virtual space.
3928 * If @size is greater than or equal to PMD_SIZE, allow using
3929 * huge pages for the memory
3930 *
3931 * Return: pointer to the allocated memory or %NULL on error
3932 */
3933void *vmalloc_huge(unsigned long size, gfp_t gfp_mask)
3934{
3935	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3936				    gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
3937				    NUMA_NO_NODE, __builtin_return_address(0));
3938}
3939EXPORT_SYMBOL_GPL(vmalloc_huge);
3940
3941/**
3942 * vzalloc - allocate virtually contiguous memory with zero fill
3943 * @size:    allocation size
3944 *
3945 * Allocate enough pages to cover @size from the page level
3946 * allocator and map them into contiguous kernel virtual space.
3947 * The memory allocated is set to zero.
3948 *
3949 * For tight control over page level allocator and protection flags
3950 * use __vmalloc() instead.
3951 *
3952 * Return: pointer to the allocated memory or %NULL on error
3953 */
3954void *vzalloc(unsigned long size)
3955{
3956	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3957				__builtin_return_address(0));
3958}
3959EXPORT_SYMBOL(vzalloc);
3960
3961/**
3962 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3963 * @size: allocation size
3964 *
3965 * The resulting memory area is zeroed so it can be mapped to userspace
3966 * without leaking data.
3967 *
3968 * Return: pointer to the allocated memory or %NULL on error
3969 */
3970void *vmalloc_user(unsigned long size)
3971{
3972	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3973				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3974				    VM_USERMAP, NUMA_NO_NODE,
3975				    __builtin_return_address(0));
3976}
3977EXPORT_SYMBOL(vmalloc_user);
3978
3979/**
3980 * vmalloc_node - allocate memory on a specific node
3981 * @size:	  allocation size
3982 * @node:	  numa node
3983 *
3984 * Allocate enough pages to cover @size from the page level
3985 * allocator and map them into contiguous kernel virtual space.
3986 *
3987 * For tight control over page level allocator and protection flags
3988 * use __vmalloc() instead.
3989 *
3990 * Return: pointer to the allocated memory or %NULL on error
3991 */
3992void *vmalloc_node(unsigned long size, int node)
3993{
3994	return __vmalloc_node(size, 1, GFP_KERNEL, node,
3995			__builtin_return_address(0));
3996}
3997EXPORT_SYMBOL(vmalloc_node);
3998
3999/**
4000 * vzalloc_node - allocate memory on a specific node with zero fill
4001 * @size:	allocation size
4002 * @node:	numa node
4003 *
4004 * Allocate enough pages to cover @size from the page level
4005 * allocator and map them into contiguous kernel virtual space.
4006 * The memory allocated is set to zero.
4007 *
4008 * Return: pointer to the allocated memory or %NULL on error
4009 */
4010void *vzalloc_node(unsigned long size, int node)
4011{
4012	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
4013				__builtin_return_address(0));
4014}
4015EXPORT_SYMBOL(vzalloc_node);
4016
4017#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
4018#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
4019#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
4020#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
4021#else
4022/*
4023 * 64b systems should always have either DMA or DMA32 zones. For others
4024 * GFP_DMA32 should do the right thing and use the normal zone.
4025 */
4026#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
4027#endif
4028
4029/**
4030 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
4031 * @size:	allocation size
4032 *
4033 * Allocate enough 32bit PA addressable pages to cover @size from the
4034 * page level allocator and map them into contiguous kernel virtual space.
4035 *
4036 * Return: pointer to the allocated memory or %NULL on error
4037 */
4038void *vmalloc_32(unsigned long size)
4039{
4040	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
4041			__builtin_return_address(0));
4042}
4043EXPORT_SYMBOL(vmalloc_32);
4044
4045/**
4046 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
4047 * @size:	     allocation size
4048 *
4049 * The resulting memory area is 32bit addressable and zeroed so it can be
4050 * mapped to userspace without leaking data.
4051 *
4052 * Return: pointer to the allocated memory or %NULL on error
4053 */
4054void *vmalloc_32_user(unsigned long size)
4055{
4056	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
4057				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
4058				    VM_USERMAP, NUMA_NO_NODE,
4059				    __builtin_return_address(0));
4060}
4061EXPORT_SYMBOL(vmalloc_32_user);
4062
4063/*
4064 * Atomically zero bytes in the iterator.
4065 *
4066 * Returns the number of zeroed bytes.
4067 */
4068static size_t zero_iter(struct iov_iter *iter, size_t count)
4069{
4070	size_t remains = count;
4071
4072	while (remains > 0) {
4073		size_t num, copied;
4074
4075		num = min_t(size_t, remains, PAGE_SIZE);
4076		copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter);
4077		remains -= copied;
4078
4079		if (copied < num)
4080			break;
4081	}
4082
4083	return count - remains;
4084}
4085
4086/*
4087 * small helper routine, copy contents to iter from addr.
4088 * If the page is not present, fill zero.
4089 *
4090 * Returns the number of copied bytes.
4091 */
4092static size_t aligned_vread_iter(struct iov_iter *iter,
4093				 const char *addr, size_t count)
4094{
4095	size_t remains = count;
4096	struct page *page;
4097
4098	while (remains > 0) {
4099		unsigned long offset, length;
4100		size_t copied = 0;
4101
4102		offset = offset_in_page(addr);
4103		length = PAGE_SIZE - offset;
4104		if (length > remains)
4105			length = remains;
4106		page = vmalloc_to_page(addr);
4107		/*
4108		 * To do safe access to this _mapped_ area, we need lock. But
4109		 * adding lock here means that we need to add overhead of
4110		 * vmalloc()/vfree() calls for this _debug_ interface, rarely
4111		 * used. Instead of that, we'll use an local mapping via
4112		 * copy_page_to_iter_nofault() and accept a small overhead in
4113		 * this access function.
4114		 */
4115		if (page)
4116			copied = copy_page_to_iter_nofault(page, offset,
4117							   length, iter);
4118		else
4119			copied = zero_iter(iter, length);
4120
4121		addr += copied;
4122		remains -= copied;
 
 
4123
4124		if (copied != length)
4125			break;
 
 
4126	}
4127
4128	return count - remains;
4129}
4130
4131/*
4132 * Read from a vm_map_ram region of memory.
4133 *
4134 * Returns the number of copied bytes.
4135 */
4136static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr,
4137				  size_t count, unsigned long flags)
4138{
4139	char *start;
4140	struct vmap_block *vb;
4141	struct xarray *xa;
4142	unsigned long offset;
4143	unsigned int rs, re;
4144	size_t remains, n;
4145
4146	/*
4147	 * If it's area created by vm_map_ram() interface directly, but
4148	 * not further subdividing and delegating management to vmap_block,
4149	 * handle it here.
4150	 */
4151	if (!(flags & VMAP_BLOCK))
4152		return aligned_vread_iter(iter, addr, count);
4153
4154	remains = count;
4155
4156	/*
4157	 * Area is split into regions and tracked with vmap_block, read out
4158	 * each region and zero fill the hole between regions.
4159	 */
4160	xa = addr_to_vb_xa((unsigned long) addr);
4161	vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr));
4162	if (!vb)
4163		goto finished_zero;
4164
4165	spin_lock(&vb->lock);
4166	if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
4167		spin_unlock(&vb->lock);
4168		goto finished_zero;
4169	}
4170
4171	for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
4172		size_t copied;
4173
4174		if (remains == 0)
4175			goto finished;
4176
4177		start = vmap_block_vaddr(vb->va->va_start, rs);
4178
4179		if (addr < start) {
4180			size_t to_zero = min_t(size_t, start - addr, remains);
4181			size_t zeroed = zero_iter(iter, to_zero);
4182
4183			addr += zeroed;
4184			remains -= zeroed;
4185
4186			if (remains == 0 || zeroed != to_zero)
4187				goto finished;
4188		}
4189
4190		/*it could start reading from the middle of used region*/
4191		offset = offset_in_page(addr);
4192		n = ((re - rs + 1) << PAGE_SHIFT) - offset;
4193		if (n > remains)
4194			n = remains;
4195
4196		copied = aligned_vread_iter(iter, start + offset, n);
4197
4198		addr += copied;
4199		remains -= copied;
4200
4201		if (copied != n)
4202			goto finished;
4203	}
4204
4205	spin_unlock(&vb->lock);
4206
4207finished_zero:
4208	/* zero-fill the left dirty or free regions */
4209	return count - remains + zero_iter(iter, remains);
4210finished:
4211	/* We couldn't copy/zero everything */
4212	spin_unlock(&vb->lock);
4213	return count - remains;
4214}
4215
4216/**
4217 * vread_iter() - read vmalloc area in a safe way to an iterator.
4218 * @iter:         the iterator to which data should be written.
4219 * @addr:         vm address.
4220 * @count:        number of bytes to be read.
4221 *
4222 * This function checks that addr is a valid vmalloc'ed area, and
4223 * copy data from that area to a given buffer. If the given memory range
4224 * of [addr...addr+count) includes some valid address, data is copied to
4225 * proper area of @buf. If there are memory holes, they'll be zero-filled.
4226 * IOREMAP area is treated as memory hole and no copy is done.
4227 *
4228 * If [addr...addr+count) doesn't includes any intersects with alive
4229 * vm_struct area, returns 0. @buf should be kernel's buffer.
4230 *
4231 * Note: In usual ops, vread() is never necessary because the caller
4232 * should know vmalloc() area is valid and can use memcpy().
4233 * This is for routines which have to access vmalloc area without
4234 * any information, as /proc/kcore.
4235 *
4236 * Return: number of bytes for which addr and buf should be increased
4237 * (same number as @count) or %0 if [addr...addr+count) doesn't
4238 * include any intersection with valid vmalloc area
4239 */
4240long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
4241{
4242	struct vmap_node *vn;
4243	struct vmap_area *va;
4244	struct vm_struct *vm;
4245	char *vaddr;
4246	size_t n, size, flags, remains;
4247	unsigned long next;
4248
4249	addr = kasan_reset_tag(addr);
4250
4251	/* Don't allow overflow */
4252	if ((unsigned long) addr + count < count)
4253		count = -(unsigned long) addr;
4254
4255	remains = count;
 
 
 
4256
4257	vn = find_vmap_area_exceed_addr_lock((unsigned long) addr, &va);
4258	if (!vn)
4259		goto finished_zero;
4260
4261	/* no intersects with alive vmap_area */
4262	if ((unsigned long)addr + remains <= va->va_start)
4263		goto finished_zero;
4264
4265	do {
4266		size_t copied;
4267
4268		if (remains == 0)
4269			goto finished;
4270
4271		vm = va->vm;
4272		flags = va->flags & VMAP_FLAGS_MASK;
4273		/*
4274		 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
4275		 * be set together with VMAP_RAM.
4276		 */
4277		WARN_ON(flags == VMAP_BLOCK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4278
4279		if (!vm && !flags)
4280			goto next_va;
 
 
 
4281
4282		if (vm && (vm->flags & VM_UNINITIALIZED))
4283			goto next_va;
4284
4285		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4286		smp_rmb();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4287
4288		vaddr = (char *) va->va_start;
4289		size = vm ? get_vm_area_size(vm) : va_size(va);
 
 
4290
4291		if (addr >= vaddr + size)
4292			goto next_va;
 
 
4293
4294		if (addr < vaddr) {
4295			size_t to_zero = min_t(size_t, vaddr - addr, remains);
4296			size_t zeroed = zero_iter(iter, to_zero);
4297
4298			addr += zeroed;
4299			remains -= zeroed;
4300
4301			if (remains == 0 || zeroed != to_zero)
 
 
4302				goto finished;
4303		}
4304
4305		n = vaddr + size - addr;
4306		if (n > remains)
4307			n = remains;
4308
4309		if (flags & VMAP_RAM)
4310			copied = vmap_ram_vread_iter(iter, addr, n, flags);
4311		else if (!(vm && (vm->flags & (VM_IOREMAP | VM_SPARSE))))
4312			copied = aligned_vread_iter(iter, addr, n);
4313		else /* IOREMAP | SPARSE area is treated as memory hole */
4314			copied = zero_iter(iter, n);
4315
4316		addr += copied;
4317		remains -= copied;
4318
4319		if (copied != n)
4320			goto finished;
4321
4322	next_va:
4323		next = va->va_end;
4324		spin_unlock(&vn->busy.lock);
4325	} while ((vn = find_vmap_area_exceed_addr_lock(next, &va)));
4326
4327finished_zero:
4328	if (vn)
4329		spin_unlock(&vn->busy.lock);
4330
4331	/* zero-fill memory holes */
4332	return count - remains + zero_iter(iter, remains);
4333finished:
4334	/* Nothing remains, or We couldn't copy/zero everything. */
4335	if (vn)
4336		spin_unlock(&vn->busy.lock);
4337
4338	return count - remains;
4339}
4340
4341/**
4342 * remap_vmalloc_range_partial - map vmalloc pages to userspace
4343 * @vma:		vma to cover
4344 * @uaddr:		target user address to start at
4345 * @kaddr:		virtual address of vmalloc kernel memory
4346 * @pgoff:		offset from @kaddr to start at
4347 * @size:		size of map area
4348 *
4349 * Returns:	0 for success, -Exxx on failure
4350 *
4351 * This function checks that @kaddr is a valid vmalloc'ed area,
4352 * and that it is big enough to cover the range starting at
4353 * @uaddr in @vma. Will return failure if that criteria isn't
4354 * met.
4355 *
4356 * Similar to remap_pfn_range() (see mm/memory.c)
4357 */
4358int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
4359				void *kaddr, unsigned long pgoff,
4360				unsigned long size)
4361{
4362	struct vm_struct *area;
4363	unsigned long off;
4364	unsigned long end_index;
4365
4366	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
4367		return -EINVAL;
4368
4369	size = PAGE_ALIGN(size);
4370
4371	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
4372		return -EINVAL;
4373
4374	area = find_vm_area(kaddr);
4375	if (!area)
4376		return -EINVAL;
4377
4378	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
4379		return -EINVAL;
4380
4381	if (check_add_overflow(size, off, &end_index) ||
4382	    end_index > get_vm_area_size(area))
4383		return -EINVAL;
4384	kaddr += off;
4385
4386	do {
4387		struct page *page = vmalloc_to_page(kaddr);
4388		int ret;
4389
4390		ret = vm_insert_page(vma, uaddr, page);
4391		if (ret)
4392			return ret;
4393
4394		uaddr += PAGE_SIZE;
4395		kaddr += PAGE_SIZE;
4396		size -= PAGE_SIZE;
4397	} while (size > 0);
4398
4399	vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
4400
4401	return 0;
4402}
 
4403
4404/**
4405 * remap_vmalloc_range - map vmalloc pages to userspace
4406 * @vma:		vma to cover (map full range of vma)
4407 * @addr:		vmalloc memory
4408 * @pgoff:		number of pages into addr before first page to map
4409 *
4410 * Returns:	0 for success, -Exxx on failure
4411 *
4412 * This function checks that addr is a valid vmalloc'ed area, and
4413 * that it is big enough to cover the vma. Will return failure if
4414 * that criteria isn't met.
4415 *
4416 * Similar to remap_pfn_range() (see mm/memory.c)
4417 */
4418int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
4419						unsigned long pgoff)
4420{
4421	return remap_vmalloc_range_partial(vma, vma->vm_start,
4422					   addr, pgoff,
4423					   vma->vm_end - vma->vm_start);
4424}
4425EXPORT_SYMBOL(remap_vmalloc_range);
4426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4427void free_vm_area(struct vm_struct *area)
4428{
4429	struct vm_struct *ret;
4430	ret = remove_vm_area(area->addr);
4431	BUG_ON(ret != area);
4432	kfree(area);
4433}
4434EXPORT_SYMBOL_GPL(free_vm_area);
4435
4436#ifdef CONFIG_SMP
4437static struct vmap_area *node_to_va(struct rb_node *n)
4438{
4439	return rb_entry_safe(n, struct vmap_area, rb_node);
4440}
4441
4442/**
4443 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
4444 * @addr: target address
4445 *
4446 * Returns: vmap_area if it is found. If there is no such area
4447 *   the first highest(reverse order) vmap_area is returned
4448 *   i.e. va->va_start < addr && va->va_end < addr or NULL
4449 *   if there are no any areas before @addr.
4450 */
4451static struct vmap_area *
4452pvm_find_va_enclose_addr(unsigned long addr)
4453{
4454	struct vmap_area *va, *tmp;
4455	struct rb_node *n;
4456
4457	n = free_vmap_area_root.rb_node;
4458	va = NULL;
4459
4460	while (n) {
4461		tmp = rb_entry(n, struct vmap_area, rb_node);
4462		if (tmp->va_start <= addr) {
4463			va = tmp;
4464			if (tmp->va_end >= addr)
4465				break;
4466
4467			n = n->rb_right;
4468		} else {
4469			n = n->rb_left;
4470		}
4471	}
4472
4473	return va;
4474}
4475
4476/**
4477 * pvm_determine_end_from_reverse - find the highest aligned address
4478 * of free block below VMALLOC_END
4479 * @va:
4480 *   in - the VA we start the search(reverse order);
4481 *   out - the VA with the highest aligned end address.
4482 * @align: alignment for required highest address
4483 *
4484 * Returns: determined end address within vmap_area
4485 */
4486static unsigned long
4487pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
4488{
4489	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4490	unsigned long addr;
4491
4492	if (likely(*va)) {
4493		list_for_each_entry_from_reverse((*va),
4494				&free_vmap_area_list, list) {
4495			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
4496			if ((*va)->va_start < addr)
4497				return addr;
4498		}
4499	}
4500
4501	return 0;
4502}
4503
4504/**
4505 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
4506 * @offsets: array containing offset of each area
4507 * @sizes: array containing size of each area
4508 * @nr_vms: the number of areas to allocate
4509 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
4510 *
4511 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
4512 *	    vm_structs on success, %NULL on failure
4513 *
4514 * Percpu allocator wants to use congruent vm areas so that it can
4515 * maintain the offsets among percpu areas.  This function allocates
4516 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
4517 * be scattered pretty far, distance between two areas easily going up
4518 * to gigabytes.  To avoid interacting with regular vmallocs, these
4519 * areas are allocated from top.
4520 *
4521 * Despite its complicated look, this allocator is rather simple. It
4522 * does everything top-down and scans free blocks from the end looking
4523 * for matching base. While scanning, if any of the areas do not fit the
4524 * base address is pulled down to fit the area. Scanning is repeated till
4525 * all the areas fit and then all necessary data structures are inserted
4526 * and the result is returned.
4527 */
4528struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
4529				     const size_t *sizes, int nr_vms,
4530				     size_t align)
4531{
4532	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
4533	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4534	struct vmap_area **vas, *va;
4535	struct vm_struct **vms;
4536	int area, area2, last_area, term_area;
4537	unsigned long base, start, size, end, last_end, orig_start, orig_end;
4538	bool purged = false;
 
4539
4540	/* verify parameters and allocate data structures */
4541	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
4542	for (last_area = 0, area = 0; area < nr_vms; area++) {
4543		start = offsets[area];
4544		end = start + sizes[area];
4545
4546		/* is everything aligned properly? */
4547		BUG_ON(!IS_ALIGNED(offsets[area], align));
4548		BUG_ON(!IS_ALIGNED(sizes[area], align));
4549
4550		/* detect the area with the highest address */
4551		if (start > offsets[last_area])
4552			last_area = area;
4553
4554		for (area2 = area + 1; area2 < nr_vms; area2++) {
4555			unsigned long start2 = offsets[area2];
4556			unsigned long end2 = start2 + sizes[area2];
4557
4558			BUG_ON(start2 < end && start < end2);
4559		}
4560	}
4561	last_end = offsets[last_area] + sizes[last_area];
4562
4563	if (vmalloc_end - vmalloc_start < last_end) {
4564		WARN_ON(true);
4565		return NULL;
4566	}
4567
4568	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
4569	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
4570	if (!vas || !vms)
4571		goto err_free2;
4572
4573	for (area = 0; area < nr_vms; area++) {
4574		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
4575		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
4576		if (!vas[area] || !vms[area])
4577			goto err_free;
4578	}
4579retry:
4580	spin_lock(&free_vmap_area_lock);
4581
4582	/* start scanning - we scan from the top, begin with the last area */
4583	area = term_area = last_area;
4584	start = offsets[area];
4585	end = start + sizes[area];
4586
4587	va = pvm_find_va_enclose_addr(vmalloc_end);
4588	base = pvm_determine_end_from_reverse(&va, align) - end;
4589
4590	while (true) {
4591		/*
4592		 * base might have underflowed, add last_end before
4593		 * comparing.
4594		 */
4595		if (base + last_end < vmalloc_start + last_end)
4596			goto overflow;
4597
4598		/*
4599		 * Fitting base has not been found.
4600		 */
4601		if (va == NULL)
4602			goto overflow;
4603
4604		/*
4605		 * If required width exceeds current VA block, move
4606		 * base downwards and then recheck.
4607		 */
4608		if (base + end > va->va_end) {
4609			base = pvm_determine_end_from_reverse(&va, align) - end;
4610			term_area = area;
4611			continue;
4612		}
4613
4614		/*
4615		 * If this VA does not fit, move base downwards and recheck.
4616		 */
4617		if (base + start < va->va_start) {
4618			va = node_to_va(rb_prev(&va->rb_node));
4619			base = pvm_determine_end_from_reverse(&va, align) - end;
4620			term_area = area;
4621			continue;
4622		}
4623
4624		/*
4625		 * This area fits, move on to the previous one.  If
4626		 * the previous one is the terminal one, we're done.
4627		 */
4628		area = (area + nr_vms - 1) % nr_vms;
4629		if (area == term_area)
4630			break;
4631
4632		start = offsets[area];
4633		end = start + sizes[area];
4634		va = pvm_find_va_enclose_addr(base + end);
4635	}
4636
4637	/* we've found a fitting base, insert all va's */
4638	for (area = 0; area < nr_vms; area++) {
4639		int ret;
4640
4641		start = base + offsets[area];
4642		size = sizes[area];
4643
4644		va = pvm_find_va_enclose_addr(start);
4645		if (WARN_ON_ONCE(va == NULL))
4646			/* It is a BUG(), but trigger recovery instead. */
4647			goto recovery;
4648
4649		ret = va_clip(&free_vmap_area_root,
4650			&free_vmap_area_list, va, start, size);
4651		if (WARN_ON_ONCE(unlikely(ret)))
4652			/* It is a BUG(), but trigger recovery instead. */
4653			goto recovery;
4654
 
 
 
 
4655		/* Allocated area. */
4656		va = vas[area];
4657		va->va_start = start;
4658		va->va_end = start + size;
4659	}
4660
4661	spin_unlock(&free_vmap_area_lock);
4662
4663	/* populate the kasan shadow space */
4664	for (area = 0; area < nr_vms; area++) {
4665		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
4666			goto err_free_shadow;
 
 
 
4667	}
4668
4669	/* insert all vm's */
 
4670	for (area = 0; area < nr_vms; area++) {
4671		struct vmap_node *vn = addr_to_node(vas[area]->va_start);
4672
4673		spin_lock(&vn->busy.lock);
4674		insert_vmap_area(vas[area], &vn->busy.root, &vn->busy.head);
4675		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
4676				 pcpu_get_vm_areas);
4677		spin_unlock(&vn->busy.lock);
4678	}
4679
4680	/*
4681	 * Mark allocated areas as accessible. Do it now as a best-effort
4682	 * approach, as they can be mapped outside of vmalloc code.
4683	 * With hardware tag-based KASAN, marking is skipped for
4684	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
4685	 */
4686	for (area = 0; area < nr_vms; area++)
4687		vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
4688				vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
4689
4690	kfree(vas);
4691	return vms;
4692
4693recovery:
4694	/*
4695	 * Remove previously allocated areas. There is no
4696	 * need in removing these areas from the busy tree,
4697	 * because they are inserted only on the final step
4698	 * and when pcpu_get_vm_areas() is success.
4699	 */
4700	while (area--) {
4701		orig_start = vas[area]->va_start;
4702		orig_end = vas[area]->va_end;
4703		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4704				&free_vmap_area_list);
4705		if (va)
4706			kasan_release_vmalloc(orig_start, orig_end,
4707				va->va_start, va->va_end);
4708		vas[area] = NULL;
4709	}
4710
4711overflow:
4712	spin_unlock(&free_vmap_area_lock);
4713	if (!purged) {
4714		reclaim_and_purge_vmap_areas();
4715		purged = true;
4716
4717		/* Before "retry", check if we recover. */
4718		for (area = 0; area < nr_vms; area++) {
4719			if (vas[area])
4720				continue;
4721
4722			vas[area] = kmem_cache_zalloc(
4723				vmap_area_cachep, GFP_KERNEL);
4724			if (!vas[area])
4725				goto err_free;
4726		}
4727
4728		goto retry;
4729	}
4730
4731err_free:
4732	for (area = 0; area < nr_vms; area++) {
4733		if (vas[area])
4734			kmem_cache_free(vmap_area_cachep, vas[area]);
4735
4736		kfree(vms[area]);
4737	}
4738err_free2:
4739	kfree(vas);
4740	kfree(vms);
4741	return NULL;
4742
4743err_free_shadow:
4744	spin_lock(&free_vmap_area_lock);
4745	/*
4746	 * We release all the vmalloc shadows, even the ones for regions that
4747	 * hadn't been successfully added. This relies on kasan_release_vmalloc
4748	 * being able to tolerate this case.
4749	 */
4750	for (area = 0; area < nr_vms; area++) {
4751		orig_start = vas[area]->va_start;
4752		orig_end = vas[area]->va_end;
4753		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4754				&free_vmap_area_list);
4755		if (va)
4756			kasan_release_vmalloc(orig_start, orig_end,
4757				va->va_start, va->va_end);
4758		vas[area] = NULL;
4759		kfree(vms[area]);
4760	}
4761	spin_unlock(&free_vmap_area_lock);
4762	kfree(vas);
4763	kfree(vms);
4764	return NULL;
4765}
4766
4767/**
4768 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4769 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4770 * @nr_vms: the number of allocated areas
4771 *
4772 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4773 */
4774void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4775{
4776	int i;
4777
4778	for (i = 0; i < nr_vms; i++)
4779		free_vm_area(vms[i]);
4780	kfree(vms);
4781}
4782#endif	/* CONFIG_SMP */
4783
4784#ifdef CONFIG_PRINTK
4785bool vmalloc_dump_obj(void *object)
 
 
4786{
4787	const void *caller;
4788	struct vm_struct *vm;
4789	struct vmap_area *va;
4790	struct vmap_node *vn;
4791	unsigned long addr;
4792	unsigned int nr_pages;
4793
4794	addr = PAGE_ALIGN((unsigned long) object);
4795	vn = addr_to_node(addr);
4796
4797	if (!spin_trylock(&vn->busy.lock))
4798		return false;
 
 
4799
4800	va = __find_vmap_area(addr, &vn->busy.root);
4801	if (!va || !va->vm) {
4802		spin_unlock(&vn->busy.lock);
4803		return false;
4804	}
4805
4806	vm = va->vm;
4807	addr = (unsigned long) vm->addr;
4808	caller = vm->caller;
4809	nr_pages = vm->nr_pages;
4810	spin_unlock(&vn->busy.lock);
4811
4812	pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4813		nr_pages, addr, caller);
4814
4815	return true;
4816}
4817#endif
4818
4819#ifdef CONFIG_PROC_FS
4820static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4821{
4822	if (IS_ENABLED(CONFIG_NUMA)) {
4823		unsigned int nr, *counters = m->private;
4824		unsigned int step = 1U << vm_area_page_order(v);
4825
4826		if (!counters)
4827			return;
4828
4829		if (v->flags & VM_UNINITIALIZED)
4830			return;
4831		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4832		smp_rmb();
4833
4834		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4835
4836		for (nr = 0; nr < v->nr_pages; nr += step)
4837			counters[page_to_nid(v->pages[nr])] += step;
 
4838		for_each_node_state(nr, N_HIGH_MEMORY)
4839			if (counters[nr])
4840				seq_printf(m, " N%u=%u", nr, counters[nr]);
4841	}
4842}
4843
4844static void show_purge_info(struct seq_file *m)
4845{
4846	struct vmap_node *vn;
4847	struct vmap_area *va;
4848	int i;
4849
4850	for (i = 0; i < nr_vmap_nodes; i++) {
4851		vn = &vmap_nodes[i];
 
4852
4853		spin_lock(&vn->lazy.lock);
4854		list_for_each_entry(va, &vn->lazy.head, list) {
4855			seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4856				(void *)va->va_start, (void *)va->va_end,
4857				va->va_end - va->va_start);
4858		}
4859		spin_unlock(&vn->lazy.lock);
4860	}
4861}
4862
4863static int vmalloc_info_show(struct seq_file *m, void *p)
4864{
4865	struct vmap_node *vn;
4866	struct vmap_area *va;
4867	struct vm_struct *v;
4868	int i;
4869
4870	for (i = 0; i < nr_vmap_nodes; i++) {
4871		vn = &vmap_nodes[i];
4872
4873		spin_lock(&vn->busy.lock);
4874		list_for_each_entry(va, &vn->busy.head, list) {
4875			if (!va->vm) {
4876				if (va->flags & VMAP_RAM)
4877					seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4878						(void *)va->va_start, (void *)va->va_end,
4879						va->va_end - va->va_start);
 
4880
4881				continue;
4882			}
4883
4884			v = va->vm;
4885
4886			seq_printf(m, "0x%pK-0x%pK %7ld",
4887				v->addr, v->addr + v->size, v->size);
4888
4889			if (v->caller)
4890				seq_printf(m, " %pS", v->caller);
4891
4892			if (v->nr_pages)
4893				seq_printf(m, " pages=%d", v->nr_pages);
4894
4895			if (v->phys_addr)
4896				seq_printf(m, " phys=%pa", &v->phys_addr);
4897
4898			if (v->flags & VM_IOREMAP)
4899				seq_puts(m, " ioremap");
4900
4901			if (v->flags & VM_SPARSE)
4902				seq_puts(m, " sparse");
4903
4904			if (v->flags & VM_ALLOC)
4905				seq_puts(m, " vmalloc");
4906
4907			if (v->flags & VM_MAP)
4908				seq_puts(m, " vmap");
4909
4910			if (v->flags & VM_USERMAP)
4911				seq_puts(m, " user");
4912
4913			if (v->flags & VM_DMA_COHERENT)
4914				seq_puts(m, " dma-coherent");
4915
4916			if (is_vmalloc_addr(v->pages))
4917				seq_puts(m, " vpages");
4918
4919			show_numa_info(m, v);
4920			seq_putc(m, '\n');
4921		}
4922		spin_unlock(&vn->busy.lock);
4923	}
4924
4925	/*
4926	 * As a final step, dump "unpurged" areas.
 
 
 
4927	 */
4928	show_purge_info(m);
 
 
4929	return 0;
4930}
4931
 
 
 
 
 
 
 
4932static int __init proc_vmalloc_init(void)
4933{
4934	void *priv_data = NULL;
4935
4936	if (IS_ENABLED(CONFIG_NUMA))
4937		priv_data = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
4938
4939	proc_create_single_data("vmallocinfo",
4940		0400, NULL, vmalloc_info_show, priv_data);
4941
4942	return 0;
4943}
4944module_init(proc_vmalloc_init);
4945
4946#endif
4947
4948static void __init vmap_init_free_space(void)
4949{
4950	unsigned long vmap_start = 1;
4951	const unsigned long vmap_end = ULONG_MAX;
4952	struct vmap_area *free;
4953	struct vm_struct *busy;
4954
4955	/*
4956	 *     B     F     B     B     B     F
4957	 * -|-----|.....|-----|-----|-----|.....|-
4958	 *  |           The KVA space           |
4959	 *  |<--------------------------------->|
4960	 */
4961	for (busy = vmlist; busy; busy = busy->next) {
4962		if ((unsigned long) busy->addr - vmap_start > 0) {
4963			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
4964			if (!WARN_ON_ONCE(!free)) {
4965				free->va_start = vmap_start;
4966				free->va_end = (unsigned long) busy->addr;
4967
4968				insert_vmap_area_augment(free, NULL,
4969					&free_vmap_area_root,
4970						&free_vmap_area_list);
4971			}
4972		}
4973
4974		vmap_start = (unsigned long) busy->addr + busy->size;
4975	}
4976
4977	if (vmap_end - vmap_start > 0) {
4978		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
4979		if (!WARN_ON_ONCE(!free)) {
4980			free->va_start = vmap_start;
4981			free->va_end = vmap_end;
4982
4983			insert_vmap_area_augment(free, NULL,
4984				&free_vmap_area_root,
4985					&free_vmap_area_list);
4986		}
4987	}
4988}
4989
4990static void vmap_init_nodes(void)
4991{
4992	struct vmap_node *vn;
4993	int i, n;
4994
4995#if BITS_PER_LONG == 64
4996	/*
4997	 * A high threshold of max nodes is fixed and bound to 128,
4998	 * thus a scale factor is 1 for systems where number of cores
4999	 * are less or equal to specified threshold.
5000	 *
5001	 * As for NUMA-aware notes. For bigger systems, for example
5002	 * NUMA with multi-sockets, where we can end-up with thousands
5003	 * of cores in total, a "sub-numa-clustering" should be added.
5004	 *
5005	 * In this case a NUMA domain is considered as a single entity
5006	 * with dedicated sub-nodes in it which describe one group or
5007	 * set of cores. Therefore a per-domain purging is supposed to
5008	 * be added as well as a per-domain balancing.
5009	 */
5010	n = clamp_t(unsigned int, num_possible_cpus(), 1, 128);
5011
5012	if (n > 1) {
5013		vn = kmalloc_array(n, sizeof(*vn), GFP_NOWAIT | __GFP_NOWARN);
5014		if (vn) {
5015			/* Node partition is 16 pages. */
5016			vmap_zone_size = (1 << 4) * PAGE_SIZE;
5017			nr_vmap_nodes = n;
5018			vmap_nodes = vn;
5019		} else {
5020			pr_err("Failed to allocate an array. Disable a node layer\n");
5021		}
5022	}
5023#endif
5024
5025	for (n = 0; n < nr_vmap_nodes; n++) {
5026		vn = &vmap_nodes[n];
5027		vn->busy.root = RB_ROOT;
5028		INIT_LIST_HEAD(&vn->busy.head);
5029		spin_lock_init(&vn->busy.lock);
5030
5031		vn->lazy.root = RB_ROOT;
5032		INIT_LIST_HEAD(&vn->lazy.head);
5033		spin_lock_init(&vn->lazy.lock);
5034
5035		for (i = 0; i < MAX_VA_SIZE_PAGES; i++) {
5036			INIT_LIST_HEAD(&vn->pool[i].head);
5037			WRITE_ONCE(vn->pool[i].len, 0);
5038		}
5039
5040		spin_lock_init(&vn->pool_lock);
5041	}
5042}
5043
5044static unsigned long
5045vmap_node_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5046{
5047	unsigned long count;
5048	struct vmap_node *vn;
5049	int i, j;
5050
5051	for (count = 0, i = 0; i < nr_vmap_nodes; i++) {
5052		vn = &vmap_nodes[i];
5053
5054		for (j = 0; j < MAX_VA_SIZE_PAGES; j++)
5055			count += READ_ONCE(vn->pool[j].len);
5056	}
5057
5058	return count ? count : SHRINK_EMPTY;
5059}
5060
5061static unsigned long
5062vmap_node_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5063{
5064	int i;
5065
5066	for (i = 0; i < nr_vmap_nodes; i++)
5067		decay_va_pool_node(&vmap_nodes[i], true);
5068
5069	return SHRINK_STOP;
5070}
5071
5072void __init vmalloc_init(void)
5073{
5074	struct shrinker *vmap_node_shrinker;
5075	struct vmap_area *va;
5076	struct vmap_node *vn;
5077	struct vm_struct *tmp;
5078	int i;
5079
5080	/*
5081	 * Create the cache for vmap_area objects.
5082	 */
5083	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
5084
5085	for_each_possible_cpu(i) {
5086		struct vmap_block_queue *vbq;
5087		struct vfree_deferred *p;
5088
5089		vbq = &per_cpu(vmap_block_queue, i);
5090		spin_lock_init(&vbq->lock);
5091		INIT_LIST_HEAD(&vbq->free);
5092		p = &per_cpu(vfree_deferred, i);
5093		init_llist_head(&p->list);
5094		INIT_WORK(&p->wq, delayed_vfree_work);
5095		xa_init(&vbq->vmap_blocks);
5096	}
5097
5098	/*
5099	 * Setup nodes before importing vmlist.
5100	 */
5101	vmap_init_nodes();
5102
5103	/* Import existing vmlist entries. */
5104	for (tmp = vmlist; tmp; tmp = tmp->next) {
5105		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5106		if (WARN_ON_ONCE(!va))
5107			continue;
5108
5109		va->va_start = (unsigned long)tmp->addr;
5110		va->va_end = va->va_start + tmp->size;
5111		va->vm = tmp;
5112
5113		vn = addr_to_node(va->va_start);
5114		insert_vmap_area(va, &vn->busy.root, &vn->busy.head);
5115	}
5116
5117	/*
5118	 * Now we can initialize a free vmap space.
5119	 */
5120	vmap_init_free_space();
5121	vmap_initialized = true;
5122
5123	vmap_node_shrinker = shrinker_alloc(0, "vmap-node");
5124	if (!vmap_node_shrinker) {
5125		pr_err("Failed to allocate vmap-node shrinker!\n");
5126		return;
5127	}
5128
5129	vmap_node_shrinker->count_objects = vmap_node_shrink_count;
5130	vmap_node_shrinker->scan_objects = vmap_node_shrink_scan;
5131	shrinker_register(vmap_node_shrinker);
5132}