Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/pipe.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
   6 */
   7
   8#include <linux/mm.h>
   9#include <linux/file.h>
  10#include <linux/poll.h>
  11#include <linux/slab.h>
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/fs.h>
  15#include <linux/log2.h>
  16#include <linux/mount.h>
  17#include <linux/pseudo_fs.h>
  18#include <linux/magic.h>
  19#include <linux/pipe_fs_i.h>
  20#include <linux/uio.h>
  21#include <linux/highmem.h>
  22#include <linux/pagemap.h>
  23#include <linux/audit.h>
  24#include <linux/syscalls.h>
  25#include <linux/fcntl.h>
  26#include <linux/memcontrol.h>
  27#include <linux/watch_queue.h>
  28
  29#include <linux/uaccess.h>
  30#include <asm/ioctls.h>
  31
  32#include "internal.h"
  33
  34/*
  35 * The max size that a non-root user is allowed to grow the pipe. Can
  36 * be set by root in /proc/sys/fs/pipe-max-size
  37 */
  38unsigned int pipe_max_size = 1048576;
  39
  40/* Maximum allocatable pages per user. Hard limit is unset by default, soft
  41 * matches default values.
  42 */
  43unsigned long pipe_user_pages_hard;
  44unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
  45
  46/*
  47 * We use head and tail indices that aren't masked off, except at the point of
  48 * dereference, but rather they're allowed to wrap naturally.  This means there
  49 * isn't a dead spot in the buffer, but the ring has to be a power of two and
  50 * <= 2^31.
  51 * -- David Howells 2019-09-23.
  52 *
  53 * Reads with count = 0 should always return 0.
  54 * -- Julian Bradfield 1999-06-07.
  55 *
  56 * FIFOs and Pipes now generate SIGIO for both readers and writers.
  57 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
  58 *
  59 * pipe_read & write cleanup
  60 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
  61 */
  62
  63static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
  64{
  65	if (pipe->files)
  66		mutex_lock_nested(&pipe->mutex, subclass);
  67}
  68
  69void pipe_lock(struct pipe_inode_info *pipe)
  70{
  71	/*
  72	 * pipe_lock() nests non-pipe inode locks (for writing to a file)
  73	 */
  74	pipe_lock_nested(pipe, I_MUTEX_PARENT);
  75}
  76EXPORT_SYMBOL(pipe_lock);
  77
  78void pipe_unlock(struct pipe_inode_info *pipe)
  79{
  80	if (pipe->files)
  81		mutex_unlock(&pipe->mutex);
  82}
  83EXPORT_SYMBOL(pipe_unlock);
  84
  85static inline void __pipe_lock(struct pipe_inode_info *pipe)
  86{
  87	mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
  88}
  89
  90static inline void __pipe_unlock(struct pipe_inode_info *pipe)
  91{
  92	mutex_unlock(&pipe->mutex);
  93}
  94
  95void pipe_double_lock(struct pipe_inode_info *pipe1,
  96		      struct pipe_inode_info *pipe2)
  97{
  98	BUG_ON(pipe1 == pipe2);
  99
 100	if (pipe1 < pipe2) {
 101		pipe_lock_nested(pipe1, I_MUTEX_PARENT);
 102		pipe_lock_nested(pipe2, I_MUTEX_CHILD);
 103	} else {
 104		pipe_lock_nested(pipe2, I_MUTEX_PARENT);
 105		pipe_lock_nested(pipe1, I_MUTEX_CHILD);
 106	}
 107}
 108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 109static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
 110				  struct pipe_buffer *buf)
 111{
 112	struct page *page = buf->page;
 113
 114	/*
 115	 * If nobody else uses this page, and we don't already have a
 116	 * temporary page, let's keep track of it as a one-deep
 117	 * allocation cache. (Otherwise just release our reference to it)
 118	 */
 119	if (page_count(page) == 1 && !pipe->tmp_page)
 120		pipe->tmp_page = page;
 121	else
 122		put_page(page);
 123}
 124
 125static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
 126		struct pipe_buffer *buf)
 127{
 128	struct page *page = buf->page;
 129
 130	if (page_count(page) != 1)
 131		return false;
 132	memcg_kmem_uncharge_page(page, 0);
 133	__SetPageLocked(page);
 134	return true;
 
 135}
 136
 137/**
 138 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
 139 * @pipe:	the pipe that the buffer belongs to
 140 * @buf:	the buffer to attempt to steal
 141 *
 142 * Description:
 143 *	This function attempts to steal the &struct page attached to
 144 *	@buf. If successful, this function returns 0 and returns with
 145 *	the page locked. The caller may then reuse the page for whatever
 146 *	he wishes; the typical use is insertion into a different file
 147 *	page cache.
 148 */
 149bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
 150		struct pipe_buffer *buf)
 151{
 152	struct page *page = buf->page;
 153
 154	/*
 155	 * A reference of one is golden, that means that the owner of this
 156	 * page is the only one holding a reference to it. lock the page
 157	 * and return OK.
 158	 */
 159	if (page_count(page) == 1) {
 160		lock_page(page);
 161		return true;
 162	}
 163	return false;
 
 164}
 165EXPORT_SYMBOL(generic_pipe_buf_try_steal);
 166
 167/**
 168 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
 169 * @pipe:	the pipe that the buffer belongs to
 170 * @buf:	the buffer to get a reference to
 171 *
 172 * Description:
 173 *	This function grabs an extra reference to @buf. It's used in
 174 *	in the tee() system call, when we duplicate the buffers in one
 175 *	pipe into another.
 176 */
 177bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
 178{
 179	return try_get_page(buf->page);
 180}
 181EXPORT_SYMBOL(generic_pipe_buf_get);
 182
 183/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 184 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
 185 * @pipe:	the pipe that the buffer belongs to
 186 * @buf:	the buffer to put a reference to
 187 *
 188 * Description:
 189 *	This function releases a reference to @buf.
 190 */
 191void generic_pipe_buf_release(struct pipe_inode_info *pipe,
 192			      struct pipe_buffer *buf)
 193{
 194	put_page(buf->page);
 195}
 196EXPORT_SYMBOL(generic_pipe_buf_release);
 197
 
 198static const struct pipe_buf_operations anon_pipe_buf_ops = {
 199	.release	= anon_pipe_buf_release,
 200	.try_steal	= anon_pipe_buf_try_steal,
 201	.get		= generic_pipe_buf_get,
 
 
 
 
 
 
 
 
 202};
 203
 204/* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
 205static inline bool pipe_readable(const struct pipe_inode_info *pipe)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 206{
 207	unsigned int head = READ_ONCE(pipe->head);
 208	unsigned int tail = READ_ONCE(pipe->tail);
 209	unsigned int writers = READ_ONCE(pipe->writers);
 210
 211	return !pipe_empty(head, tail) || !writers;
 
 
 212}
 213
 214static ssize_t
 215pipe_read(struct kiocb *iocb, struct iov_iter *to)
 216{
 217	size_t total_len = iov_iter_count(to);
 218	struct file *filp = iocb->ki_filp;
 219	struct pipe_inode_info *pipe = filp->private_data;
 220	bool was_full, wake_next_reader = false;
 221	ssize_t ret;
 222
 223	/* Null read succeeds. */
 224	if (unlikely(total_len == 0))
 225		return 0;
 226
 
 227	ret = 0;
 228	__pipe_lock(pipe);
 229
 230	/*
 231	 * We only wake up writers if the pipe was full when we started
 232	 * reading in order to avoid unnecessary wakeups.
 233	 *
 234	 * But when we do wake up writers, we do so using a sync wakeup
 235	 * (WF_SYNC), because we want them to get going and generate more
 236	 * data for us.
 237	 */
 238	was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
 239	for (;;) {
 240		unsigned int head = pipe->head;
 241		unsigned int tail = pipe->tail;
 242		unsigned int mask = pipe->ring_size - 1;
 243
 244#ifdef CONFIG_WATCH_QUEUE
 245		if (pipe->note_loss) {
 246			struct watch_notification n;
 247
 248			if (total_len < 8) {
 249				if (ret == 0)
 250					ret = -ENOBUFS;
 251				break;
 252			}
 253
 254			n.type = WATCH_TYPE_META;
 255			n.subtype = WATCH_META_LOSS_NOTIFICATION;
 256			n.info = watch_sizeof(n);
 257			if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
 258				if (ret == 0)
 259					ret = -EFAULT;
 260				break;
 261			}
 262			ret += sizeof(n);
 263			total_len -= sizeof(n);
 264			pipe->note_loss = false;
 265		}
 266#endif
 267
 268		if (!pipe_empty(head, tail)) {
 269			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
 270			size_t chars = buf->len;
 271			size_t written;
 272			int error;
 273
 274			if (chars > total_len) {
 275				if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
 276					if (ret == 0)
 277						ret = -ENOBUFS;
 278					break;
 279				}
 280				chars = total_len;
 281			}
 282
 283			error = pipe_buf_confirm(pipe, buf);
 284			if (error) {
 285				if (!ret)
 286					ret = error;
 287				break;
 288			}
 289
 290			written = copy_page_to_iter(buf->page, buf->offset, chars, to);
 291			if (unlikely(written < chars)) {
 292				if (!ret)
 293					ret = -EFAULT;
 294				break;
 295			}
 296			ret += chars;
 297			buf->offset += chars;
 298			buf->len -= chars;
 299
 300			/* Was it a packet buffer? Clean up and exit */
 301			if (buf->flags & PIPE_BUF_FLAG_PACKET) {
 302				total_len = chars;
 303				buf->len = 0;
 304			}
 305
 306			if (!buf->len) {
 307				pipe_buf_release(pipe, buf);
 308				spin_lock_irq(&pipe->rd_wait.lock);
 309#ifdef CONFIG_WATCH_QUEUE
 310				if (buf->flags & PIPE_BUF_FLAG_LOSS)
 311					pipe->note_loss = true;
 312#endif
 313				tail++;
 314				pipe->tail = tail;
 315				spin_unlock_irq(&pipe->rd_wait.lock);
 316			}
 317			total_len -= chars;
 318			if (!total_len)
 319				break;	/* common path: read succeeded */
 320			if (!pipe_empty(head, tail))	/* More to do? */
 321				continue;
 322		}
 323
 
 324		if (!pipe->writers)
 325			break;
 326		if (ret)
 327			break;
 328		if (filp->f_flags & O_NONBLOCK) {
 329			ret = -EAGAIN;
 
 
 
 
 
 
 
 
 
 
 
 
 330			break;
 331		}
 332		__pipe_unlock(pipe);
 333
 334		/*
 335		 * We only get here if we didn't actually read anything.
 336		 *
 337		 * However, we could have seen (and removed) a zero-sized
 338		 * pipe buffer, and might have made space in the buffers
 339		 * that way.
 340		 *
 341		 * You can't make zero-sized pipe buffers by doing an empty
 342		 * write (not even in packet mode), but they can happen if
 343		 * the writer gets an EFAULT when trying to fill a buffer
 344		 * that already got allocated and inserted in the buffer
 345		 * array.
 346		 *
 347		 * So we still need to wake up any pending writers in the
 348		 * _very_ unlikely case that the pipe was full, but we got
 349		 * no data.
 350		 */
 351		if (unlikely(was_full)) {
 352			wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
 353			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 354		}
 355
 356		/*
 357		 * But because we didn't read anything, at this point we can
 358		 * just return directly with -ERESTARTSYS if we're interrupted,
 359		 * since we've done any required wakeups and there's no need
 360		 * to mark anything accessed. And we've dropped the lock.
 361		 */
 362		if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
 363			return -ERESTARTSYS;
 364
 365		__pipe_lock(pipe);
 366		was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
 367		wake_next_reader = true;
 368	}
 369	if (pipe_empty(pipe->head, pipe->tail))
 370		wake_next_reader = false;
 371	__pipe_unlock(pipe);
 372
 373	if (was_full) {
 374		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
 
 375		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 376	}
 377	if (wake_next_reader)
 378		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
 379	if (ret > 0)
 380		file_accessed(filp);
 381	return ret;
 382}
 383
 384static inline int is_packetized(struct file *file)
 385{
 386	return (file->f_flags & O_DIRECT) != 0;
 387}
 388
 389/* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
 390static inline bool pipe_writable(const struct pipe_inode_info *pipe)
 391{
 392	unsigned int head = READ_ONCE(pipe->head);
 393	unsigned int tail = READ_ONCE(pipe->tail);
 394	unsigned int max_usage = READ_ONCE(pipe->max_usage);
 395
 396	return !pipe_full(head, tail, max_usage) ||
 397		!READ_ONCE(pipe->readers);
 398}
 399
 400static ssize_t
 401pipe_write(struct kiocb *iocb, struct iov_iter *from)
 402{
 403	struct file *filp = iocb->ki_filp;
 404	struct pipe_inode_info *pipe = filp->private_data;
 405	unsigned int head;
 406	ssize_t ret = 0;
 
 407	size_t total_len = iov_iter_count(from);
 408	ssize_t chars;
 409	bool was_empty = false;
 410	bool wake_next_writer = false;
 411
 412	/* Null write succeeds. */
 413	if (unlikely(total_len == 0))
 414		return 0;
 415
 416	__pipe_lock(pipe);
 417
 418	if (!pipe->readers) {
 419		send_sig(SIGPIPE, current, 0);
 420		ret = -EPIPE;
 421		goto out;
 422	}
 423
 424#ifdef CONFIG_WATCH_QUEUE
 425	if (pipe->watch_queue) {
 426		ret = -EXDEV;
 427		goto out;
 428	}
 429#endif
 430
 431	/*
 432	 * Only wake up if the pipe started out empty, since
 433	 * otherwise there should be no readers waiting.
 434	 *
 435	 * If it wasn't empty we try to merge new data into
 436	 * the last buffer.
 437	 *
 438	 * That naturally merges small writes, but it also
 439	 * page-aligs the rest of the writes for large writes
 440	 * spanning multiple pages.
 441	 */
 442	head = pipe->head;
 443	was_empty = pipe_empty(head, pipe->tail);
 444	chars = total_len & (PAGE_SIZE-1);
 445	if (chars && !was_empty) {
 446		unsigned int mask = pipe->ring_size - 1;
 447		struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
 448		int offset = buf->offset + buf->len;
 449
 450		if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
 451		    offset + chars <= PAGE_SIZE) {
 452			ret = pipe_buf_confirm(pipe, buf);
 453			if (ret)
 454				goto out;
 455
 456			ret = copy_page_from_iter(buf->page, offset, chars, from);
 457			if (unlikely(ret < chars)) {
 458				ret = -EFAULT;
 459				goto out;
 460			}
 461
 462			buf->len += ret;
 463			if (!iov_iter_count(from))
 464				goto out;
 465		}
 466	}
 467
 468	for (;;) {
 
 
 469		if (!pipe->readers) {
 470			send_sig(SIGPIPE, current, 0);
 471			if (!ret)
 472				ret = -EPIPE;
 473			break;
 474		}
 475
 476		head = pipe->head;
 477		if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
 478			unsigned int mask = pipe->ring_size - 1;
 479			struct pipe_buffer *buf = &pipe->bufs[head & mask];
 480			struct page *page = pipe->tmp_page;
 481			int copied;
 482
 483			if (!page) {
 484				page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
 485				if (unlikely(!page)) {
 486					ret = ret ? : -ENOMEM;
 487					break;
 488				}
 489				pipe->tmp_page = page;
 490			}
 491
 492			/* Allocate a slot in the ring in advance and attach an
 493			 * empty buffer.  If we fault or otherwise fail to use
 494			 * it, either the reader will consume it or it'll still
 495			 * be there for the next write.
 496			 */
 497			spin_lock_irq(&pipe->rd_wait.lock);
 498
 499			head = pipe->head;
 500			if (pipe_full(head, pipe->tail, pipe->max_usage)) {
 501				spin_unlock_irq(&pipe->rd_wait.lock);
 502				continue;
 503			}
 504
 505			pipe->head = head + 1;
 506			spin_unlock_irq(&pipe->rd_wait.lock);
 507
 508			/* Insert it into the buffer array */
 509			buf = &pipe->bufs[head & mask];
 510			buf->page = page;
 511			buf->ops = &anon_pipe_buf_ops;
 512			buf->offset = 0;
 513			buf->len = 0;
 514			if (is_packetized(filp))
 515				buf->flags = PIPE_BUF_FLAG_PACKET;
 516			else
 517				buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
 518			pipe->tmp_page = NULL;
 519
 520			copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
 521			if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
 522				if (!ret)
 523					ret = -EFAULT;
 524				break;
 525			}
 526			ret += copied;
 
 
 
 
 527			buf->offset = 0;
 528			buf->len = copied;
 
 
 
 
 
 
 
 529
 530			if (!iov_iter_count(from))
 531				break;
 532		}
 533
 534		if (!pipe_full(head, pipe->tail, pipe->max_usage))
 535			continue;
 536
 537		/* Wait for buffer space to become available. */
 538		if (filp->f_flags & O_NONBLOCK) {
 539			if (!ret)
 540				ret = -EAGAIN;
 541			break;
 542		}
 543		if (signal_pending(current)) {
 544			if (!ret)
 545				ret = -ERESTARTSYS;
 546			break;
 547		}
 548
 549		/*
 550		 * We're going to release the pipe lock and wait for more
 551		 * space. We wake up any readers if necessary, and then
 552		 * after waiting we need to re-check whether the pipe
 553		 * become empty while we dropped the lock.
 554		 */
 555		__pipe_unlock(pipe);
 556		if (was_empty) {
 557			wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
 558			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 
 559		}
 560		wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
 561		__pipe_lock(pipe);
 562		was_empty = pipe_empty(pipe->head, pipe->tail);
 563		wake_next_writer = true;
 564	}
 565out:
 566	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
 567		wake_next_writer = false;
 568	__pipe_unlock(pipe);
 569
 570	/*
 571	 * If we do do a wakeup event, we do a 'sync' wakeup, because we
 572	 * want the reader to start processing things asap, rather than
 573	 * leave the data pending.
 574	 *
 575	 * This is particularly important for small writes, because of
 576	 * how (for example) the GNU make jobserver uses small writes to
 577	 * wake up pending jobs
 578	 */
 579	if (was_empty) {
 580		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
 581		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 582	}
 583	if (wake_next_writer)
 584		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
 585	if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
 586		int err = file_update_time(filp);
 587		if (err)
 588			ret = err;
 589		sb_end_write(file_inode(filp)->i_sb);
 590	}
 591	return ret;
 592}
 593
 594static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
 595{
 596	struct pipe_inode_info *pipe = filp->private_data;
 597	int count, head, tail, mask;
 598
 599	switch (cmd) {
 600	case FIONREAD:
 601		__pipe_lock(pipe);
 602		count = 0;
 603		head = pipe->head;
 604		tail = pipe->tail;
 605		mask = pipe->ring_size - 1;
 606
 607		while (tail != head) {
 608			count += pipe->bufs[tail & mask].len;
 609			tail++;
 610		}
 611		__pipe_unlock(pipe);
 612
 613		return put_user(count, (int __user *)arg);
 614
 615#ifdef CONFIG_WATCH_QUEUE
 616	case IOC_WATCH_QUEUE_SET_SIZE: {
 617		int ret;
 618		__pipe_lock(pipe);
 619		ret = watch_queue_set_size(pipe, arg);
 620		__pipe_unlock(pipe);
 621		return ret;
 622	}
 623
 624	case IOC_WATCH_QUEUE_SET_FILTER:
 625		return watch_queue_set_filter(
 626			pipe, (struct watch_notification_filter __user *)arg);
 627#endif
 628
 629	default:
 630		return -ENOIOCTLCMD;
 
 631	}
 632}
 633
 634/* No kernel lock held - fine */
 635static __poll_t
 636pipe_poll(struct file *filp, poll_table *wait)
 637{
 638	__poll_t mask;
 639	struct pipe_inode_info *pipe = filp->private_data;
 640	unsigned int head, tail;
 641
 642	/*
 643	 * Reading pipe state only -- no need for acquiring the semaphore.
 644	 *
 645	 * But because this is racy, the code has to add the
 646	 * entry to the poll table _first_ ..
 647	 */
 648	if (filp->f_mode & FMODE_READ)
 649		poll_wait(filp, &pipe->rd_wait, wait);
 650	if (filp->f_mode & FMODE_WRITE)
 651		poll_wait(filp, &pipe->wr_wait, wait);
 652
 653	/*
 654	 * .. and only then can you do the racy tests. That way,
 655	 * if something changes and you got it wrong, the poll
 656	 * table entry will wake you up and fix it.
 657	 */
 658	head = READ_ONCE(pipe->head);
 659	tail = READ_ONCE(pipe->tail);
 660
 
 
 661	mask = 0;
 662	if (filp->f_mode & FMODE_READ) {
 663		if (!pipe_empty(head, tail))
 664			mask |= EPOLLIN | EPOLLRDNORM;
 665		if (!pipe->writers && filp->f_version != pipe->w_counter)
 666			mask |= EPOLLHUP;
 667	}
 668
 669	if (filp->f_mode & FMODE_WRITE) {
 670		if (!pipe_full(head, tail, pipe->max_usage))
 671			mask |= EPOLLOUT | EPOLLWRNORM;
 672		/*
 673		 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
 674		 * behave exactly like pipes for poll().
 675		 */
 676		if (!pipe->readers)
 677			mask |= EPOLLERR;
 678	}
 679
 680	return mask;
 681}
 682
 683static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
 684{
 685	int kill = 0;
 686
 687	spin_lock(&inode->i_lock);
 688	if (!--pipe->files) {
 689		inode->i_pipe = NULL;
 690		kill = 1;
 691	}
 692	spin_unlock(&inode->i_lock);
 693
 694	if (kill)
 695		free_pipe_info(pipe);
 696}
 697
 698static int
 699pipe_release(struct inode *inode, struct file *file)
 700{
 701	struct pipe_inode_info *pipe = file->private_data;
 702
 703	__pipe_lock(pipe);
 704	if (file->f_mode & FMODE_READ)
 705		pipe->readers--;
 706	if (file->f_mode & FMODE_WRITE)
 707		pipe->writers--;
 708
 709	/* Was that the last reader or writer, but not the other side? */
 710	if (!pipe->readers != !pipe->writers) {
 711		wake_up_interruptible_all(&pipe->rd_wait);
 712		wake_up_interruptible_all(&pipe->wr_wait);
 713		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 714		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 715	}
 716	__pipe_unlock(pipe);
 717
 718	put_pipe_info(inode, pipe);
 719	return 0;
 720}
 721
 722static int
 723pipe_fasync(int fd, struct file *filp, int on)
 724{
 725	struct pipe_inode_info *pipe = filp->private_data;
 726	int retval = 0;
 727
 728	__pipe_lock(pipe);
 729	if (filp->f_mode & FMODE_READ)
 730		retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
 731	if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
 732		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
 733		if (retval < 0 && (filp->f_mode & FMODE_READ))
 734			/* this can happen only if on == T */
 735			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
 736	}
 737	__pipe_unlock(pipe);
 738	return retval;
 739}
 740
 741unsigned long account_pipe_buffers(struct user_struct *user,
 742				   unsigned long old, unsigned long new)
 743{
 744	return atomic_long_add_return(new - old, &user->pipe_bufs);
 745}
 746
 747bool too_many_pipe_buffers_soft(unsigned long user_bufs)
 748{
 749	unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
 750
 751	return soft_limit && user_bufs > soft_limit;
 752}
 753
 754bool too_many_pipe_buffers_hard(unsigned long user_bufs)
 755{
 756	unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
 757
 758	return hard_limit && user_bufs > hard_limit;
 759}
 760
 761bool pipe_is_unprivileged_user(void)
 762{
 763	return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
 764}
 765
 766struct pipe_inode_info *alloc_pipe_info(void)
 767{
 768	struct pipe_inode_info *pipe;
 769	unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
 770	struct user_struct *user = get_current_user();
 771	unsigned long user_bufs;
 772	unsigned int max_size = READ_ONCE(pipe_max_size);
 773
 774	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
 775	if (pipe == NULL)
 776		goto out_free_uid;
 777
 778	if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
 779		pipe_bufs = max_size >> PAGE_SHIFT;
 780
 781	user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
 782
 783	if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
 784		user_bufs = account_pipe_buffers(user, pipe_bufs, 1);
 785		pipe_bufs = 1;
 786	}
 787
 788	if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
 789		goto out_revert_acct;
 790
 791	pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
 792			     GFP_KERNEL_ACCOUNT);
 793
 794	if (pipe->bufs) {
 795		init_waitqueue_head(&pipe->rd_wait);
 796		init_waitqueue_head(&pipe->wr_wait);
 797		pipe->r_counter = pipe->w_counter = 1;
 798		pipe->max_usage = pipe_bufs;
 799		pipe->ring_size = pipe_bufs;
 800		pipe->nr_accounted = pipe_bufs;
 801		pipe->user = user;
 802		mutex_init(&pipe->mutex);
 803		return pipe;
 804	}
 805
 806out_revert_acct:
 807	(void) account_pipe_buffers(user, pipe_bufs, 0);
 808	kfree(pipe);
 809out_free_uid:
 810	free_uid(user);
 811	return NULL;
 812}
 813
 814void free_pipe_info(struct pipe_inode_info *pipe)
 815{
 816	int i;
 817
 818#ifdef CONFIG_WATCH_QUEUE
 819	if (pipe->watch_queue) {
 820		watch_queue_clear(pipe->watch_queue);
 821		put_watch_queue(pipe->watch_queue);
 822	}
 823#endif
 824
 825	(void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
 826	free_uid(pipe->user);
 827	for (i = 0; i < pipe->ring_size; i++) {
 828		struct pipe_buffer *buf = pipe->bufs + i;
 829		if (buf->ops)
 830			pipe_buf_release(pipe, buf);
 831	}
 832	if (pipe->tmp_page)
 833		__free_page(pipe->tmp_page);
 834	kfree(pipe->bufs);
 835	kfree(pipe);
 836}
 837
 838static struct vfsmount *pipe_mnt __read_mostly;
 839
 840/*
 841 * pipefs_dname() is called from d_path().
 842 */
 843static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
 844{
 845	return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
 846				d_inode(dentry)->i_ino);
 847}
 848
 849static const struct dentry_operations pipefs_dentry_operations = {
 850	.d_dname	= pipefs_dname,
 851};
 852
 853static struct inode * get_pipe_inode(void)
 854{
 855	struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
 856	struct pipe_inode_info *pipe;
 857
 858	if (!inode)
 859		goto fail_inode;
 860
 861	inode->i_ino = get_next_ino();
 862
 863	pipe = alloc_pipe_info();
 864	if (!pipe)
 865		goto fail_iput;
 866
 867	inode->i_pipe = pipe;
 868	pipe->files = 2;
 869	pipe->readers = pipe->writers = 1;
 870	inode->i_fop = &pipefifo_fops;
 871
 872	/*
 873	 * Mark the inode dirty from the very beginning,
 874	 * that way it will never be moved to the dirty
 875	 * list because "mark_inode_dirty()" will think
 876	 * that it already _is_ on the dirty list.
 877	 */
 878	inode->i_state = I_DIRTY;
 879	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
 880	inode->i_uid = current_fsuid();
 881	inode->i_gid = current_fsgid();
 882	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 883
 884	return inode;
 885
 886fail_iput:
 887	iput(inode);
 888
 889fail_inode:
 890	return NULL;
 891}
 892
 893int create_pipe_files(struct file **res, int flags)
 894{
 895	struct inode *inode = get_pipe_inode();
 896	struct file *f;
 897	int error;
 898
 899	if (!inode)
 900		return -ENFILE;
 901
 902	if (flags & O_NOTIFICATION_PIPE) {
 903		error = watch_queue_init(inode->i_pipe);
 904		if (error) {
 905			free_pipe_info(inode->i_pipe);
 906			iput(inode);
 907			return error;
 908		}
 909	}
 910
 911	f = alloc_file_pseudo(inode, pipe_mnt, "",
 912				O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
 913				&pipefifo_fops);
 914	if (IS_ERR(f)) {
 915		free_pipe_info(inode->i_pipe);
 916		iput(inode);
 917		return PTR_ERR(f);
 918	}
 919
 920	f->private_data = inode->i_pipe;
 921
 922	res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
 923				  &pipefifo_fops);
 924	if (IS_ERR(res[0])) {
 925		put_pipe_info(inode, inode->i_pipe);
 926		fput(f);
 927		return PTR_ERR(res[0]);
 928	}
 929	res[0]->private_data = inode->i_pipe;
 930	res[1] = f;
 931	stream_open(inode, res[0]);
 932	stream_open(inode, res[1]);
 933	return 0;
 934}
 935
 936static int __do_pipe_flags(int *fd, struct file **files, int flags)
 937{
 938	int error;
 939	int fdw, fdr;
 940
 941	if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
 942		return -EINVAL;
 943
 944	error = create_pipe_files(files, flags);
 945	if (error)
 946		return error;
 947
 948	error = get_unused_fd_flags(flags);
 949	if (error < 0)
 950		goto err_read_pipe;
 951	fdr = error;
 952
 953	error = get_unused_fd_flags(flags);
 954	if (error < 0)
 955		goto err_fdr;
 956	fdw = error;
 957
 958	audit_fd_pair(fdr, fdw);
 959	fd[0] = fdr;
 960	fd[1] = fdw;
 961	return 0;
 962
 963 err_fdr:
 964	put_unused_fd(fdr);
 965 err_read_pipe:
 966	fput(files[0]);
 967	fput(files[1]);
 968	return error;
 969}
 970
 971int do_pipe_flags(int *fd, int flags)
 972{
 973	struct file *files[2];
 974	int error = __do_pipe_flags(fd, files, flags);
 975	if (!error) {
 976		fd_install(fd[0], files[0]);
 977		fd_install(fd[1], files[1]);
 978	}
 979	return error;
 980}
 981
 982/*
 983 * sys_pipe() is the normal C calling standard for creating
 984 * a pipe. It's not the way Unix traditionally does this, though.
 985 */
 986static int do_pipe2(int __user *fildes, int flags)
 987{
 988	struct file *files[2];
 989	int fd[2];
 990	int error;
 991
 992	error = __do_pipe_flags(fd, files, flags);
 993	if (!error) {
 994		if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
 995			fput(files[0]);
 996			fput(files[1]);
 997			put_unused_fd(fd[0]);
 998			put_unused_fd(fd[1]);
 999			error = -EFAULT;
1000		} else {
1001			fd_install(fd[0], files[0]);
1002			fd_install(fd[1], files[1]);
1003		}
1004	}
1005	return error;
1006}
1007
1008SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1009{
1010	return do_pipe2(fildes, flags);
1011}
1012
1013SYSCALL_DEFINE1(pipe, int __user *, fildes)
1014{
1015	return do_pipe2(fildes, 0);
1016}
1017
1018/*
1019 * This is the stupid "wait for pipe to be readable or writable"
1020 * model.
1021 *
1022 * See pipe_read/write() for the proper kind of exclusive wait,
1023 * but that requires that we wake up any other readers/writers
1024 * if we then do not end up reading everything (ie the whole
1025 * "wake_next_reader/writer" logic in pipe_read/write()).
1026 */
1027void pipe_wait_readable(struct pipe_inode_info *pipe)
1028{
1029	pipe_unlock(pipe);
1030	wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1031	pipe_lock(pipe);
1032}
1033
1034void pipe_wait_writable(struct pipe_inode_info *pipe)
1035{
1036	pipe_unlock(pipe);
1037	wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1038	pipe_lock(pipe);
1039}
1040
1041/*
1042 * This depends on both the wait (here) and the wakeup (wake_up_partner)
1043 * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1044 * race with the count check and waitqueue prep.
1045 *
1046 * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1047 * then check the condition you're waiting for, and only then sleep. But
1048 * because of the pipe lock, we can check the condition before being on
1049 * the wait queue.
1050 *
1051 * We use the 'rd_wait' waitqueue for pipe partner waiting.
1052 */
1053static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1054{
1055	DEFINE_WAIT(rdwait);
1056	int cur = *cnt;
1057
1058	while (cur == *cnt) {
1059		prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1060		pipe_unlock(pipe);
1061		schedule();
1062		finish_wait(&pipe->rd_wait, &rdwait);
1063		pipe_lock(pipe);
1064		if (signal_pending(current))
1065			break;
1066	}
1067	return cur == *cnt ? -ERESTARTSYS : 0;
1068}
1069
1070static void wake_up_partner(struct pipe_inode_info *pipe)
1071{
1072	wake_up_interruptible_all(&pipe->rd_wait);
1073}
1074
1075static int fifo_open(struct inode *inode, struct file *filp)
1076{
1077	struct pipe_inode_info *pipe;
1078	bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1079	int ret;
1080
1081	filp->f_version = 0;
1082
1083	spin_lock(&inode->i_lock);
1084	if (inode->i_pipe) {
1085		pipe = inode->i_pipe;
1086		pipe->files++;
1087		spin_unlock(&inode->i_lock);
1088	} else {
1089		spin_unlock(&inode->i_lock);
1090		pipe = alloc_pipe_info();
1091		if (!pipe)
1092			return -ENOMEM;
1093		pipe->files = 1;
1094		spin_lock(&inode->i_lock);
1095		if (unlikely(inode->i_pipe)) {
1096			inode->i_pipe->files++;
1097			spin_unlock(&inode->i_lock);
1098			free_pipe_info(pipe);
1099			pipe = inode->i_pipe;
1100		} else {
1101			inode->i_pipe = pipe;
1102			spin_unlock(&inode->i_lock);
1103		}
1104	}
1105	filp->private_data = pipe;
1106	/* OK, we have a pipe and it's pinned down */
1107
1108	__pipe_lock(pipe);
1109
1110	/* We can only do regular read/write on fifos */
1111	stream_open(inode, filp);
1112
1113	switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1114	case FMODE_READ:
1115	/*
1116	 *  O_RDONLY
1117	 *  POSIX.1 says that O_NONBLOCK means return with the FIFO
1118	 *  opened, even when there is no process writing the FIFO.
1119	 */
1120		pipe->r_counter++;
1121		if (pipe->readers++ == 0)
1122			wake_up_partner(pipe);
1123
1124		if (!is_pipe && !pipe->writers) {
1125			if ((filp->f_flags & O_NONBLOCK)) {
1126				/* suppress EPOLLHUP until we have
1127				 * seen a writer */
1128				filp->f_version = pipe->w_counter;
1129			} else {
1130				if (wait_for_partner(pipe, &pipe->w_counter))
1131					goto err_rd;
1132			}
1133		}
1134		break;
1135
1136	case FMODE_WRITE:
1137	/*
1138	 *  O_WRONLY
1139	 *  POSIX.1 says that O_NONBLOCK means return -1 with
1140	 *  errno=ENXIO when there is no process reading the FIFO.
1141	 */
1142		ret = -ENXIO;
1143		if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1144			goto err;
1145
1146		pipe->w_counter++;
1147		if (!pipe->writers++)
1148			wake_up_partner(pipe);
1149
1150		if (!is_pipe && !pipe->readers) {
1151			if (wait_for_partner(pipe, &pipe->r_counter))
1152				goto err_wr;
1153		}
1154		break;
1155
1156	case FMODE_READ | FMODE_WRITE:
1157	/*
1158	 *  O_RDWR
1159	 *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1160	 *  This implementation will NEVER block on a O_RDWR open, since
1161	 *  the process can at least talk to itself.
1162	 */
1163
1164		pipe->readers++;
1165		pipe->writers++;
1166		pipe->r_counter++;
1167		pipe->w_counter++;
1168		if (pipe->readers == 1 || pipe->writers == 1)
1169			wake_up_partner(pipe);
1170		break;
1171
1172	default:
1173		ret = -EINVAL;
1174		goto err;
1175	}
1176
1177	/* Ok! */
1178	__pipe_unlock(pipe);
1179	return 0;
1180
1181err_rd:
1182	if (!--pipe->readers)
1183		wake_up_interruptible(&pipe->wr_wait);
1184	ret = -ERESTARTSYS;
1185	goto err;
1186
1187err_wr:
1188	if (!--pipe->writers)
1189		wake_up_interruptible_all(&pipe->rd_wait);
1190	ret = -ERESTARTSYS;
1191	goto err;
1192
1193err:
1194	__pipe_unlock(pipe);
1195
1196	put_pipe_info(inode, pipe);
1197	return ret;
1198}
1199
1200const struct file_operations pipefifo_fops = {
1201	.open		= fifo_open,
1202	.llseek		= no_llseek,
1203	.read_iter	= pipe_read,
1204	.write_iter	= pipe_write,
1205	.poll		= pipe_poll,
1206	.unlocked_ioctl	= pipe_ioctl,
1207	.release	= pipe_release,
1208	.fasync		= pipe_fasync,
1209};
1210
1211/*
1212 * Currently we rely on the pipe array holding a power-of-2 number
1213 * of pages. Returns 0 on error.
1214 */
1215unsigned int round_pipe_size(unsigned long size)
1216{
1217	if (size > (1U << 31))
1218		return 0;
1219
1220	/* Minimum pipe size, as required by POSIX */
1221	if (size < PAGE_SIZE)
1222		return PAGE_SIZE;
1223
1224	return roundup_pow_of_two(size);
1225}
1226
1227/*
1228 * Resize the pipe ring to a number of slots.
1229 */
1230int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1231{
1232	struct pipe_buffer *bufs;
1233	unsigned int head, tail, mask, n;
1234
1235	/*
1236	 * We can shrink the pipe, if arg is greater than the ring occupancy.
1237	 * Since we don't expect a lot of shrink+grow operations, just free and
1238	 * allocate again like we would do for growing.  If the pipe currently
1239	 * contains more buffers than arg, then return busy.
1240	 */
1241	mask = pipe->ring_size - 1;
1242	head = pipe->head;
1243	tail = pipe->tail;
1244	n = pipe_occupancy(pipe->head, pipe->tail);
1245	if (nr_slots < n)
1246		return -EBUSY;
1247
1248	bufs = kcalloc(nr_slots, sizeof(*bufs),
1249		       GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1250	if (unlikely(!bufs))
1251		return -ENOMEM;
1252
1253	/*
1254	 * The pipe array wraps around, so just start the new one at zero
1255	 * and adjust the indices.
1256	 */
1257	if (n > 0) {
1258		unsigned int h = head & mask;
1259		unsigned int t = tail & mask;
1260		if (h > t) {
1261			memcpy(bufs, pipe->bufs + t,
1262			       n * sizeof(struct pipe_buffer));
1263		} else {
1264			unsigned int tsize = pipe->ring_size - t;
1265			if (h > 0)
1266				memcpy(bufs + tsize, pipe->bufs,
1267				       h * sizeof(struct pipe_buffer));
1268			memcpy(bufs, pipe->bufs + t,
1269			       tsize * sizeof(struct pipe_buffer));
1270		}
1271	}
1272
1273	head = n;
1274	tail = 0;
1275
1276	kfree(pipe->bufs);
1277	pipe->bufs = bufs;
1278	pipe->ring_size = nr_slots;
1279	if (pipe->max_usage > nr_slots)
1280		pipe->max_usage = nr_slots;
1281	pipe->tail = tail;
1282	pipe->head = head;
1283
1284	/* This might have made more room for writers */
1285	wake_up_interruptible(&pipe->wr_wait);
1286	return 0;
1287}
1288
1289/*
1290 * Allocate a new array of pipe buffers and copy the info over. Returns the
1291 * pipe size if successful, or return -ERROR on error.
1292 */
1293static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1294{
 
 
1295	unsigned long user_bufs;
1296	unsigned int nr_slots, size;
1297	long ret = 0;
1298
1299#ifdef CONFIG_WATCH_QUEUE
1300	if (pipe->watch_queue)
1301		return -EBUSY;
1302#endif
1303
1304	size = round_pipe_size(arg);
1305	nr_slots = size >> PAGE_SHIFT;
1306
1307	if (!nr_slots)
1308		return -EINVAL;
1309
1310	/*
1311	 * If trying to increase the pipe capacity, check that an
1312	 * unprivileged user is not trying to exceed various limits
1313	 * (soft limit check here, hard limit check just below).
1314	 * Decreasing the pipe capacity is always permitted, even
1315	 * if the user is currently over a limit.
1316	 */
1317	if (nr_slots > pipe->max_usage &&
1318			size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1319		return -EPERM;
1320
1321	user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1322
1323	if (nr_slots > pipe->max_usage &&
1324			(too_many_pipe_buffers_hard(user_bufs) ||
1325			 too_many_pipe_buffers_soft(user_bufs)) &&
1326			pipe_is_unprivileged_user()) {
1327		ret = -EPERM;
1328		goto out_revert_acct;
1329	}
1330
1331	ret = pipe_resize_ring(pipe, nr_slots);
1332	if (ret < 0)
 
 
 
 
 
 
1333		goto out_revert_acct;
 
1334
1335	pipe->max_usage = nr_slots;
1336	pipe->nr_accounted = nr_slots;
1337	return pipe->max_usage * PAGE_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1338
1339out_revert_acct:
1340	(void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1341	return ret;
1342}
1343
1344/*
1345 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1346 * location, so checking ->i_pipe is not enough to verify that this is a
1347 * pipe.
1348 */
1349struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1350{
1351	struct pipe_inode_info *pipe = file->private_data;
1352
1353	if (file->f_op != &pipefifo_fops || !pipe)
1354		return NULL;
1355#ifdef CONFIG_WATCH_QUEUE
1356	if (for_splice && pipe->watch_queue)
1357		return NULL;
1358#endif
1359	return pipe;
1360}
1361
1362long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1363{
1364	struct pipe_inode_info *pipe;
1365	long ret;
1366
1367	pipe = get_pipe_info(file, false);
1368	if (!pipe)
1369		return -EBADF;
1370
1371	__pipe_lock(pipe);
1372
1373	switch (cmd) {
1374	case F_SETPIPE_SZ:
1375		ret = pipe_set_size(pipe, arg);
1376		break;
1377	case F_GETPIPE_SZ:
1378		ret = pipe->max_usage * PAGE_SIZE;
1379		break;
1380	default:
1381		ret = -EINVAL;
1382		break;
1383	}
1384
1385	__pipe_unlock(pipe);
1386	return ret;
1387}
1388
1389static const struct super_operations pipefs_ops = {
1390	.destroy_inode = free_inode_nonrcu,
1391	.statfs = simple_statfs,
1392};
1393
1394/*
1395 * pipefs should _never_ be mounted by userland - too much of security hassle,
1396 * no real gain from having the whole whorehouse mounted. So we don't need
1397 * any operations on the root directory. However, we need a non-trivial
1398 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1399 */
1400
1401static int pipefs_init_fs_context(struct fs_context *fc)
1402{
1403	struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1404	if (!ctx)
1405		return -ENOMEM;
1406	ctx->ops = &pipefs_ops;
1407	ctx->dops = &pipefs_dentry_operations;
1408	return 0;
1409}
1410
1411static struct file_system_type pipe_fs_type = {
1412	.name		= "pipefs",
1413	.init_fs_context = pipefs_init_fs_context,
1414	.kill_sb	= kill_anon_super,
1415};
1416
1417static int __init init_pipe_fs(void)
1418{
1419	int err = register_filesystem(&pipe_fs_type);
1420
1421	if (!err) {
1422		pipe_mnt = kern_mount(&pipe_fs_type);
1423		if (IS_ERR(pipe_mnt)) {
1424			err = PTR_ERR(pipe_mnt);
1425			unregister_filesystem(&pipe_fs_type);
1426		}
1427	}
1428	return err;
1429}
1430
1431fs_initcall(init_pipe_fs);
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/pipe.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
   6 */
   7
   8#include <linux/mm.h>
   9#include <linux/file.h>
  10#include <linux/poll.h>
  11#include <linux/slab.h>
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/fs.h>
  15#include <linux/log2.h>
  16#include <linux/mount.h>
  17#include <linux/pseudo_fs.h>
  18#include <linux/magic.h>
  19#include <linux/pipe_fs_i.h>
  20#include <linux/uio.h>
  21#include <linux/highmem.h>
  22#include <linux/pagemap.h>
  23#include <linux/audit.h>
  24#include <linux/syscalls.h>
  25#include <linux/fcntl.h>
  26#include <linux/memcontrol.h>
 
  27
  28#include <linux/uaccess.h>
  29#include <asm/ioctls.h>
  30
  31#include "internal.h"
  32
  33/*
  34 * The max size that a non-root user is allowed to grow the pipe. Can
  35 * be set by root in /proc/sys/fs/pipe-max-size
  36 */
  37unsigned int pipe_max_size = 1048576;
  38
  39/* Maximum allocatable pages per user. Hard limit is unset by default, soft
  40 * matches default values.
  41 */
  42unsigned long pipe_user_pages_hard;
  43unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
  44
  45/*
  46 * We use a start+len construction, which provides full use of the 
  47 * allocated memory.
  48 * -- Florian Coosmann (FGC)
  49 * 
 
 
  50 * Reads with count = 0 should always return 0.
  51 * -- Julian Bradfield 1999-06-07.
  52 *
  53 * FIFOs and Pipes now generate SIGIO for both readers and writers.
  54 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
  55 *
  56 * pipe_read & write cleanup
  57 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
  58 */
  59
  60static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
  61{
  62	if (pipe->files)
  63		mutex_lock_nested(&pipe->mutex, subclass);
  64}
  65
  66void pipe_lock(struct pipe_inode_info *pipe)
  67{
  68	/*
  69	 * pipe_lock() nests non-pipe inode locks (for writing to a file)
  70	 */
  71	pipe_lock_nested(pipe, I_MUTEX_PARENT);
  72}
  73EXPORT_SYMBOL(pipe_lock);
  74
  75void pipe_unlock(struct pipe_inode_info *pipe)
  76{
  77	if (pipe->files)
  78		mutex_unlock(&pipe->mutex);
  79}
  80EXPORT_SYMBOL(pipe_unlock);
  81
  82static inline void __pipe_lock(struct pipe_inode_info *pipe)
  83{
  84	mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
  85}
  86
  87static inline void __pipe_unlock(struct pipe_inode_info *pipe)
  88{
  89	mutex_unlock(&pipe->mutex);
  90}
  91
  92void pipe_double_lock(struct pipe_inode_info *pipe1,
  93		      struct pipe_inode_info *pipe2)
  94{
  95	BUG_ON(pipe1 == pipe2);
  96
  97	if (pipe1 < pipe2) {
  98		pipe_lock_nested(pipe1, I_MUTEX_PARENT);
  99		pipe_lock_nested(pipe2, I_MUTEX_CHILD);
 100	} else {
 101		pipe_lock_nested(pipe2, I_MUTEX_PARENT);
 102		pipe_lock_nested(pipe1, I_MUTEX_CHILD);
 103	}
 104}
 105
 106/* Drop the inode semaphore and wait for a pipe event, atomically */
 107void pipe_wait(struct pipe_inode_info *pipe)
 108{
 109	DEFINE_WAIT(wait);
 110
 111	/*
 112	 * Pipes are system-local resources, so sleeping on them
 113	 * is considered a noninteractive wait:
 114	 */
 115	prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
 116	pipe_unlock(pipe);
 117	schedule();
 118	finish_wait(&pipe->wait, &wait);
 119	pipe_lock(pipe);
 120}
 121
 122static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
 123				  struct pipe_buffer *buf)
 124{
 125	struct page *page = buf->page;
 126
 127	/*
 128	 * If nobody else uses this page, and we don't already have a
 129	 * temporary page, let's keep track of it as a one-deep
 130	 * allocation cache. (Otherwise just release our reference to it)
 131	 */
 132	if (page_count(page) == 1 && !pipe->tmp_page)
 133		pipe->tmp_page = page;
 134	else
 135		put_page(page);
 136}
 137
 138static int anon_pipe_buf_steal(struct pipe_inode_info *pipe,
 139			       struct pipe_buffer *buf)
 140{
 141	struct page *page = buf->page;
 142
 143	if (page_count(page) == 1) {
 144		memcg_kmem_uncharge(page, 0);
 145		__SetPageLocked(page);
 146		return 0;
 147	}
 148	return 1;
 149}
 150
 151/**
 152 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
 153 * @pipe:	the pipe that the buffer belongs to
 154 * @buf:	the buffer to attempt to steal
 155 *
 156 * Description:
 157 *	This function attempts to steal the &struct page attached to
 158 *	@buf. If successful, this function returns 0 and returns with
 159 *	the page locked. The caller may then reuse the page for whatever
 160 *	he wishes; the typical use is insertion into a different file
 161 *	page cache.
 162 */
 163int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
 164			   struct pipe_buffer *buf)
 165{
 166	struct page *page = buf->page;
 167
 168	/*
 169	 * A reference of one is golden, that means that the owner of this
 170	 * page is the only one holding a reference to it. lock the page
 171	 * and return OK.
 172	 */
 173	if (page_count(page) == 1) {
 174		lock_page(page);
 175		return 0;
 176	}
 177
 178	return 1;
 179}
 180EXPORT_SYMBOL(generic_pipe_buf_steal);
 181
 182/**
 183 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
 184 * @pipe:	the pipe that the buffer belongs to
 185 * @buf:	the buffer to get a reference to
 186 *
 187 * Description:
 188 *	This function grabs an extra reference to @buf. It's used in
 189 *	in the tee() system call, when we duplicate the buffers in one
 190 *	pipe into another.
 191 */
 192bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
 193{
 194	return try_get_page(buf->page);
 195}
 196EXPORT_SYMBOL(generic_pipe_buf_get);
 197
 198/**
 199 * generic_pipe_buf_confirm - verify contents of the pipe buffer
 200 * @info:	the pipe that the buffer belongs to
 201 * @buf:	the buffer to confirm
 202 *
 203 * Description:
 204 *	This function does nothing, because the generic pipe code uses
 205 *	pages that are always good when inserted into the pipe.
 206 */
 207int generic_pipe_buf_confirm(struct pipe_inode_info *info,
 208			     struct pipe_buffer *buf)
 209{
 210	return 0;
 211}
 212EXPORT_SYMBOL(generic_pipe_buf_confirm);
 213
 214/**
 215 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
 216 * @pipe:	the pipe that the buffer belongs to
 217 * @buf:	the buffer to put a reference to
 218 *
 219 * Description:
 220 *	This function releases a reference to @buf.
 221 */
 222void generic_pipe_buf_release(struct pipe_inode_info *pipe,
 223			      struct pipe_buffer *buf)
 224{
 225	put_page(buf->page);
 226}
 227EXPORT_SYMBOL(generic_pipe_buf_release);
 228
 229/* New data written to a pipe may be appended to a buffer with this type. */
 230static const struct pipe_buf_operations anon_pipe_buf_ops = {
 231	.confirm = generic_pipe_buf_confirm,
 232	.release = anon_pipe_buf_release,
 233	.steal = anon_pipe_buf_steal,
 234	.get = generic_pipe_buf_get,
 235};
 236
 237static const struct pipe_buf_operations anon_pipe_buf_nomerge_ops = {
 238	.confirm = generic_pipe_buf_confirm,
 239	.release = anon_pipe_buf_release,
 240	.steal = anon_pipe_buf_steal,
 241	.get = generic_pipe_buf_get,
 242};
 243
 244static const struct pipe_buf_operations packet_pipe_buf_ops = {
 245	.confirm = generic_pipe_buf_confirm,
 246	.release = anon_pipe_buf_release,
 247	.steal = anon_pipe_buf_steal,
 248	.get = generic_pipe_buf_get,
 249};
 250
 251/**
 252 * pipe_buf_mark_unmergeable - mark a &struct pipe_buffer as unmergeable
 253 * @buf:	the buffer to mark
 254 *
 255 * Description:
 256 *	This function ensures that no future writes will be merged into the
 257 *	given &struct pipe_buffer. This is necessary when multiple pipe buffers
 258 *	share the same backing page.
 259 */
 260void pipe_buf_mark_unmergeable(struct pipe_buffer *buf)
 261{
 262	if (buf->ops == &anon_pipe_buf_ops)
 263		buf->ops = &anon_pipe_buf_nomerge_ops;
 264}
 265
 266static bool pipe_buf_can_merge(struct pipe_buffer *buf)
 267{
 268	return buf->ops == &anon_pipe_buf_ops;
 269}
 270
 271static ssize_t
 272pipe_read(struct kiocb *iocb, struct iov_iter *to)
 273{
 274	size_t total_len = iov_iter_count(to);
 275	struct file *filp = iocb->ki_filp;
 276	struct pipe_inode_info *pipe = filp->private_data;
 277	int do_wakeup;
 278	ssize_t ret;
 279
 280	/* Null read succeeds. */
 281	if (unlikely(total_len == 0))
 282		return 0;
 283
 284	do_wakeup = 0;
 285	ret = 0;
 286	__pipe_lock(pipe);
 
 
 
 
 
 
 
 
 
 
 287	for (;;) {
 288		int bufs = pipe->nrbufs;
 289		if (bufs) {
 290			int curbuf = pipe->curbuf;
 291			struct pipe_buffer *buf = pipe->bufs + curbuf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 292			size_t chars = buf->len;
 293			size_t written;
 294			int error;
 295
 296			if (chars > total_len)
 
 
 
 
 
 297				chars = total_len;
 
 298
 299			error = pipe_buf_confirm(pipe, buf);
 300			if (error) {
 301				if (!ret)
 302					ret = error;
 303				break;
 304			}
 305
 306			written = copy_page_to_iter(buf->page, buf->offset, chars, to);
 307			if (unlikely(written < chars)) {
 308				if (!ret)
 309					ret = -EFAULT;
 310				break;
 311			}
 312			ret += chars;
 313			buf->offset += chars;
 314			buf->len -= chars;
 315
 316			/* Was it a packet buffer? Clean up and exit */
 317			if (buf->flags & PIPE_BUF_FLAG_PACKET) {
 318				total_len = chars;
 319				buf->len = 0;
 320			}
 321
 322			if (!buf->len) {
 323				pipe_buf_release(pipe, buf);
 324				curbuf = (curbuf + 1) & (pipe->buffers - 1);
 325				pipe->curbuf = curbuf;
 326				pipe->nrbufs = --bufs;
 327				do_wakeup = 1;
 
 
 
 
 328			}
 329			total_len -= chars;
 330			if (!total_len)
 331				break;	/* common path: read succeeded */
 
 
 332		}
 333		if (bufs)	/* More to do? */
 334			continue;
 335		if (!pipe->writers)
 336			break;
 337		if (!pipe->waiting_writers) {
 338			/* syscall merging: Usually we must not sleep
 339			 * if O_NONBLOCK is set, or if we got some data.
 340			 * But if a writer sleeps in kernel space, then
 341			 * we can wait for that data without violating POSIX.
 342			 */
 343			if (ret)
 344				break;
 345			if (filp->f_flags & O_NONBLOCK) {
 346				ret = -EAGAIN;
 347				break;
 348			}
 349		}
 350		if (signal_pending(current)) {
 351			if (!ret)
 352				ret = -ERESTARTSYS;
 353			break;
 354		}
 355		if (do_wakeup) {
 356			wake_up_interruptible_sync_poll(&pipe->wait, EPOLLOUT | EPOLLWRNORM);
 357 			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 358		}
 359		pipe_wait(pipe);
 
 
 
 
 
 
 
 
 
 
 
 
 360	}
 
 
 361	__pipe_unlock(pipe);
 362
 363	/* Signal writers asynchronously that there is more room. */
 364	if (do_wakeup) {
 365		wake_up_interruptible_sync_poll(&pipe->wait, EPOLLOUT | EPOLLWRNORM);
 366		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 367	}
 
 
 368	if (ret > 0)
 369		file_accessed(filp);
 370	return ret;
 371}
 372
 373static inline int is_packetized(struct file *file)
 374{
 375	return (file->f_flags & O_DIRECT) != 0;
 376}
 377
 
 
 
 
 
 
 
 
 
 
 
 378static ssize_t
 379pipe_write(struct kiocb *iocb, struct iov_iter *from)
 380{
 381	struct file *filp = iocb->ki_filp;
 382	struct pipe_inode_info *pipe = filp->private_data;
 
 383	ssize_t ret = 0;
 384	int do_wakeup = 0;
 385	size_t total_len = iov_iter_count(from);
 386	ssize_t chars;
 
 
 387
 388	/* Null write succeeds. */
 389	if (unlikely(total_len == 0))
 390		return 0;
 391
 392	__pipe_lock(pipe);
 393
 394	if (!pipe->readers) {
 395		send_sig(SIGPIPE, current, 0);
 396		ret = -EPIPE;
 397		goto out;
 398	}
 399
 400	/* We try to merge small writes */
 401	chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
 402	if (pipe->nrbufs && chars != 0) {
 403		int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
 404							(pipe->buffers - 1);
 405		struct pipe_buffer *buf = pipe->bufs + lastbuf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 406		int offset = buf->offset + buf->len;
 407
 408		if (pipe_buf_can_merge(buf) && offset + chars <= PAGE_SIZE) {
 
 409			ret = pipe_buf_confirm(pipe, buf);
 410			if (ret)
 411				goto out;
 412
 413			ret = copy_page_from_iter(buf->page, offset, chars, from);
 414			if (unlikely(ret < chars)) {
 415				ret = -EFAULT;
 416				goto out;
 417			}
 418			do_wakeup = 1;
 419			buf->len += ret;
 420			if (!iov_iter_count(from))
 421				goto out;
 422		}
 423	}
 424
 425	for (;;) {
 426		int bufs;
 427
 428		if (!pipe->readers) {
 429			send_sig(SIGPIPE, current, 0);
 430			if (!ret)
 431				ret = -EPIPE;
 432			break;
 433		}
 434		bufs = pipe->nrbufs;
 435		if (bufs < pipe->buffers) {
 436			int newbuf = (pipe->curbuf + bufs) & (pipe->buffers-1);
 437			struct pipe_buffer *buf = pipe->bufs + newbuf;
 
 438			struct page *page = pipe->tmp_page;
 439			int copied;
 440
 441			if (!page) {
 442				page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
 443				if (unlikely(!page)) {
 444					ret = ret ? : -ENOMEM;
 445					break;
 446				}
 447				pipe->tmp_page = page;
 448			}
 449			/* Always wake up, even if the copy fails. Otherwise
 450			 * we lock up (O_NONBLOCK-)readers that sleep due to
 451			 * syscall merging.
 452			 * FIXME! Is this really true?
 
 453			 */
 454			do_wakeup = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 455			copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
 456			if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
 457				if (!ret)
 458					ret = -EFAULT;
 459				break;
 460			}
 461			ret += copied;
 462
 463			/* Insert it into the buffer array */
 464			buf->page = page;
 465			buf->ops = &anon_pipe_buf_ops;
 466			buf->offset = 0;
 467			buf->len = copied;
 468			buf->flags = 0;
 469			if (is_packetized(filp)) {
 470				buf->ops = &packet_pipe_buf_ops;
 471				buf->flags = PIPE_BUF_FLAG_PACKET;
 472			}
 473			pipe->nrbufs = ++bufs;
 474			pipe->tmp_page = NULL;
 475
 476			if (!iov_iter_count(from))
 477				break;
 478		}
 479		if (bufs < pipe->buffers)
 
 480			continue;
 
 
 481		if (filp->f_flags & O_NONBLOCK) {
 482			if (!ret)
 483				ret = -EAGAIN;
 484			break;
 485		}
 486		if (signal_pending(current)) {
 487			if (!ret)
 488				ret = -ERESTARTSYS;
 489			break;
 490		}
 491		if (do_wakeup) {
 492			wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLRDNORM);
 
 
 
 
 
 
 
 
 493			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 494			do_wakeup = 0;
 495		}
 496		pipe->waiting_writers++;
 497		pipe_wait(pipe);
 498		pipe->waiting_writers--;
 
 499	}
 500out:
 
 
 501	__pipe_unlock(pipe);
 502	if (do_wakeup) {
 503		wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLRDNORM);
 
 
 
 
 
 
 
 
 
 
 504		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 505	}
 
 
 506	if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
 507		int err = file_update_time(filp);
 508		if (err)
 509			ret = err;
 510		sb_end_write(file_inode(filp)->i_sb);
 511	}
 512	return ret;
 513}
 514
 515static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
 516{
 517	struct pipe_inode_info *pipe = filp->private_data;
 518	int count, buf, nrbufs;
 519
 520	switch (cmd) {
 521		case FIONREAD:
 522			__pipe_lock(pipe);
 523			count = 0;
 524			buf = pipe->curbuf;
 525			nrbufs = pipe->nrbufs;
 526			while (--nrbufs >= 0) {
 527				count += pipe->bufs[buf].len;
 528				buf = (buf+1) & (pipe->buffers - 1);
 529			}
 530			__pipe_unlock(pipe);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 531
 532			return put_user(count, (int __user *)arg);
 533		default:
 534			return -ENOIOCTLCMD;
 535	}
 536}
 537
 538/* No kernel lock held - fine */
 539static __poll_t
 540pipe_poll(struct file *filp, poll_table *wait)
 541{
 542	__poll_t mask;
 543	struct pipe_inode_info *pipe = filp->private_data;
 544	int nrbufs;
 545
 546	poll_wait(filp, &pipe->wait, wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 547
 548	/* Reading only -- no need for acquiring the semaphore.  */
 549	nrbufs = pipe->nrbufs;
 550	mask = 0;
 551	if (filp->f_mode & FMODE_READ) {
 552		mask = (nrbufs > 0) ? EPOLLIN | EPOLLRDNORM : 0;
 
 553		if (!pipe->writers && filp->f_version != pipe->w_counter)
 554			mask |= EPOLLHUP;
 555	}
 556
 557	if (filp->f_mode & FMODE_WRITE) {
 558		mask |= (nrbufs < pipe->buffers) ? EPOLLOUT | EPOLLWRNORM : 0;
 
 559		/*
 560		 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
 561		 * behave exactly like pipes for poll().
 562		 */
 563		if (!pipe->readers)
 564			mask |= EPOLLERR;
 565	}
 566
 567	return mask;
 568}
 569
 570static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
 571{
 572	int kill = 0;
 573
 574	spin_lock(&inode->i_lock);
 575	if (!--pipe->files) {
 576		inode->i_pipe = NULL;
 577		kill = 1;
 578	}
 579	spin_unlock(&inode->i_lock);
 580
 581	if (kill)
 582		free_pipe_info(pipe);
 583}
 584
 585static int
 586pipe_release(struct inode *inode, struct file *file)
 587{
 588	struct pipe_inode_info *pipe = file->private_data;
 589
 590	__pipe_lock(pipe);
 591	if (file->f_mode & FMODE_READ)
 592		pipe->readers--;
 593	if (file->f_mode & FMODE_WRITE)
 594		pipe->writers--;
 595
 596	if (pipe->readers || pipe->writers) {
 597		wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLOUT | EPOLLRDNORM | EPOLLWRNORM | EPOLLERR | EPOLLHUP);
 
 
 598		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 599		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 600	}
 601	__pipe_unlock(pipe);
 602
 603	put_pipe_info(inode, pipe);
 604	return 0;
 605}
 606
 607static int
 608pipe_fasync(int fd, struct file *filp, int on)
 609{
 610	struct pipe_inode_info *pipe = filp->private_data;
 611	int retval = 0;
 612
 613	__pipe_lock(pipe);
 614	if (filp->f_mode & FMODE_READ)
 615		retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
 616	if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
 617		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
 618		if (retval < 0 && (filp->f_mode & FMODE_READ))
 619			/* this can happen only if on == T */
 620			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
 621	}
 622	__pipe_unlock(pipe);
 623	return retval;
 624}
 625
 626static unsigned long account_pipe_buffers(struct user_struct *user,
 627                                 unsigned long old, unsigned long new)
 628{
 629	return atomic_long_add_return(new - old, &user->pipe_bufs);
 630}
 631
 632static bool too_many_pipe_buffers_soft(unsigned long user_bufs)
 633{
 634	unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
 635
 636	return soft_limit && user_bufs > soft_limit;
 637}
 638
 639static bool too_many_pipe_buffers_hard(unsigned long user_bufs)
 640{
 641	unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
 642
 643	return hard_limit && user_bufs > hard_limit;
 644}
 645
 646static bool is_unprivileged_user(void)
 647{
 648	return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
 649}
 650
 651struct pipe_inode_info *alloc_pipe_info(void)
 652{
 653	struct pipe_inode_info *pipe;
 654	unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
 655	struct user_struct *user = get_current_user();
 656	unsigned long user_bufs;
 657	unsigned int max_size = READ_ONCE(pipe_max_size);
 658
 659	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
 660	if (pipe == NULL)
 661		goto out_free_uid;
 662
 663	if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
 664		pipe_bufs = max_size >> PAGE_SHIFT;
 665
 666	user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
 667
 668	if (too_many_pipe_buffers_soft(user_bufs) && is_unprivileged_user()) {
 669		user_bufs = account_pipe_buffers(user, pipe_bufs, 1);
 670		pipe_bufs = 1;
 671	}
 672
 673	if (too_many_pipe_buffers_hard(user_bufs) && is_unprivileged_user())
 674		goto out_revert_acct;
 675
 676	pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
 677			     GFP_KERNEL_ACCOUNT);
 678
 679	if (pipe->bufs) {
 680		init_waitqueue_head(&pipe->wait);
 
 681		pipe->r_counter = pipe->w_counter = 1;
 682		pipe->buffers = pipe_bufs;
 
 
 683		pipe->user = user;
 684		mutex_init(&pipe->mutex);
 685		return pipe;
 686	}
 687
 688out_revert_acct:
 689	(void) account_pipe_buffers(user, pipe_bufs, 0);
 690	kfree(pipe);
 691out_free_uid:
 692	free_uid(user);
 693	return NULL;
 694}
 695
 696void free_pipe_info(struct pipe_inode_info *pipe)
 697{
 698	int i;
 699
 700	(void) account_pipe_buffers(pipe->user, pipe->buffers, 0);
 
 
 
 
 
 
 
 701	free_uid(pipe->user);
 702	for (i = 0; i < pipe->buffers; i++) {
 703		struct pipe_buffer *buf = pipe->bufs + i;
 704		if (buf->ops)
 705			pipe_buf_release(pipe, buf);
 706	}
 707	if (pipe->tmp_page)
 708		__free_page(pipe->tmp_page);
 709	kfree(pipe->bufs);
 710	kfree(pipe);
 711}
 712
 713static struct vfsmount *pipe_mnt __read_mostly;
 714
 715/*
 716 * pipefs_dname() is called from d_path().
 717 */
 718static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
 719{
 720	return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
 721				d_inode(dentry)->i_ino);
 722}
 723
 724static const struct dentry_operations pipefs_dentry_operations = {
 725	.d_dname	= pipefs_dname,
 726};
 727
 728static struct inode * get_pipe_inode(void)
 729{
 730	struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
 731	struct pipe_inode_info *pipe;
 732
 733	if (!inode)
 734		goto fail_inode;
 735
 736	inode->i_ino = get_next_ino();
 737
 738	pipe = alloc_pipe_info();
 739	if (!pipe)
 740		goto fail_iput;
 741
 742	inode->i_pipe = pipe;
 743	pipe->files = 2;
 744	pipe->readers = pipe->writers = 1;
 745	inode->i_fop = &pipefifo_fops;
 746
 747	/*
 748	 * Mark the inode dirty from the very beginning,
 749	 * that way it will never be moved to the dirty
 750	 * list because "mark_inode_dirty()" will think
 751	 * that it already _is_ on the dirty list.
 752	 */
 753	inode->i_state = I_DIRTY;
 754	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
 755	inode->i_uid = current_fsuid();
 756	inode->i_gid = current_fsgid();
 757	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 758
 759	return inode;
 760
 761fail_iput:
 762	iput(inode);
 763
 764fail_inode:
 765	return NULL;
 766}
 767
 768int create_pipe_files(struct file **res, int flags)
 769{
 770	struct inode *inode = get_pipe_inode();
 771	struct file *f;
 
 772
 773	if (!inode)
 774		return -ENFILE;
 775
 
 
 
 
 
 
 
 
 
 776	f = alloc_file_pseudo(inode, pipe_mnt, "",
 777				O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
 778				&pipefifo_fops);
 779	if (IS_ERR(f)) {
 780		free_pipe_info(inode->i_pipe);
 781		iput(inode);
 782		return PTR_ERR(f);
 783	}
 784
 785	f->private_data = inode->i_pipe;
 786
 787	res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
 788				  &pipefifo_fops);
 789	if (IS_ERR(res[0])) {
 790		put_pipe_info(inode, inode->i_pipe);
 791		fput(f);
 792		return PTR_ERR(res[0]);
 793	}
 794	res[0]->private_data = inode->i_pipe;
 795	res[1] = f;
 
 
 796	return 0;
 797}
 798
 799static int __do_pipe_flags(int *fd, struct file **files, int flags)
 800{
 801	int error;
 802	int fdw, fdr;
 803
 804	if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT))
 805		return -EINVAL;
 806
 807	error = create_pipe_files(files, flags);
 808	if (error)
 809		return error;
 810
 811	error = get_unused_fd_flags(flags);
 812	if (error < 0)
 813		goto err_read_pipe;
 814	fdr = error;
 815
 816	error = get_unused_fd_flags(flags);
 817	if (error < 0)
 818		goto err_fdr;
 819	fdw = error;
 820
 821	audit_fd_pair(fdr, fdw);
 822	fd[0] = fdr;
 823	fd[1] = fdw;
 824	return 0;
 825
 826 err_fdr:
 827	put_unused_fd(fdr);
 828 err_read_pipe:
 829	fput(files[0]);
 830	fput(files[1]);
 831	return error;
 832}
 833
 834int do_pipe_flags(int *fd, int flags)
 835{
 836	struct file *files[2];
 837	int error = __do_pipe_flags(fd, files, flags);
 838	if (!error) {
 839		fd_install(fd[0], files[0]);
 840		fd_install(fd[1], files[1]);
 841	}
 842	return error;
 843}
 844
 845/*
 846 * sys_pipe() is the normal C calling standard for creating
 847 * a pipe. It's not the way Unix traditionally does this, though.
 848 */
 849static int do_pipe2(int __user *fildes, int flags)
 850{
 851	struct file *files[2];
 852	int fd[2];
 853	int error;
 854
 855	error = __do_pipe_flags(fd, files, flags);
 856	if (!error) {
 857		if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
 858			fput(files[0]);
 859			fput(files[1]);
 860			put_unused_fd(fd[0]);
 861			put_unused_fd(fd[1]);
 862			error = -EFAULT;
 863		} else {
 864			fd_install(fd[0], files[0]);
 865			fd_install(fd[1], files[1]);
 866		}
 867	}
 868	return error;
 869}
 870
 871SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
 872{
 873	return do_pipe2(fildes, flags);
 874}
 875
 876SYSCALL_DEFINE1(pipe, int __user *, fildes)
 877{
 878	return do_pipe2(fildes, 0);
 879}
 880
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 881static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
 882{
 883	int cur = *cnt;	
 
 884
 885	while (cur == *cnt) {
 886		pipe_wait(pipe);
 
 
 
 
 887		if (signal_pending(current))
 888			break;
 889	}
 890	return cur == *cnt ? -ERESTARTSYS : 0;
 891}
 892
 893static void wake_up_partner(struct pipe_inode_info *pipe)
 894{
 895	wake_up_interruptible(&pipe->wait);
 896}
 897
 898static int fifo_open(struct inode *inode, struct file *filp)
 899{
 900	struct pipe_inode_info *pipe;
 901	bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
 902	int ret;
 903
 904	filp->f_version = 0;
 905
 906	spin_lock(&inode->i_lock);
 907	if (inode->i_pipe) {
 908		pipe = inode->i_pipe;
 909		pipe->files++;
 910		spin_unlock(&inode->i_lock);
 911	} else {
 912		spin_unlock(&inode->i_lock);
 913		pipe = alloc_pipe_info();
 914		if (!pipe)
 915			return -ENOMEM;
 916		pipe->files = 1;
 917		spin_lock(&inode->i_lock);
 918		if (unlikely(inode->i_pipe)) {
 919			inode->i_pipe->files++;
 920			spin_unlock(&inode->i_lock);
 921			free_pipe_info(pipe);
 922			pipe = inode->i_pipe;
 923		} else {
 924			inode->i_pipe = pipe;
 925			spin_unlock(&inode->i_lock);
 926		}
 927	}
 928	filp->private_data = pipe;
 929	/* OK, we have a pipe and it's pinned down */
 930
 931	__pipe_lock(pipe);
 932
 933	/* We can only do regular read/write on fifos */
 934	filp->f_mode &= (FMODE_READ | FMODE_WRITE);
 935
 936	switch (filp->f_mode) {
 937	case FMODE_READ:
 938	/*
 939	 *  O_RDONLY
 940	 *  POSIX.1 says that O_NONBLOCK means return with the FIFO
 941	 *  opened, even when there is no process writing the FIFO.
 942	 */
 943		pipe->r_counter++;
 944		if (pipe->readers++ == 0)
 945			wake_up_partner(pipe);
 946
 947		if (!is_pipe && !pipe->writers) {
 948			if ((filp->f_flags & O_NONBLOCK)) {
 949				/* suppress EPOLLHUP until we have
 950				 * seen a writer */
 951				filp->f_version = pipe->w_counter;
 952			} else {
 953				if (wait_for_partner(pipe, &pipe->w_counter))
 954					goto err_rd;
 955			}
 956		}
 957		break;
 958	
 959	case FMODE_WRITE:
 960	/*
 961	 *  O_WRONLY
 962	 *  POSIX.1 says that O_NONBLOCK means return -1 with
 963	 *  errno=ENXIO when there is no process reading the FIFO.
 964	 */
 965		ret = -ENXIO;
 966		if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
 967			goto err;
 968
 969		pipe->w_counter++;
 970		if (!pipe->writers++)
 971			wake_up_partner(pipe);
 972
 973		if (!is_pipe && !pipe->readers) {
 974			if (wait_for_partner(pipe, &pipe->r_counter))
 975				goto err_wr;
 976		}
 977		break;
 978	
 979	case FMODE_READ | FMODE_WRITE:
 980	/*
 981	 *  O_RDWR
 982	 *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
 983	 *  This implementation will NEVER block on a O_RDWR open, since
 984	 *  the process can at least talk to itself.
 985	 */
 986
 987		pipe->readers++;
 988		pipe->writers++;
 989		pipe->r_counter++;
 990		pipe->w_counter++;
 991		if (pipe->readers == 1 || pipe->writers == 1)
 992			wake_up_partner(pipe);
 993		break;
 994
 995	default:
 996		ret = -EINVAL;
 997		goto err;
 998	}
 999
1000	/* Ok! */
1001	__pipe_unlock(pipe);
1002	return 0;
1003
1004err_rd:
1005	if (!--pipe->readers)
1006		wake_up_interruptible(&pipe->wait);
1007	ret = -ERESTARTSYS;
1008	goto err;
1009
1010err_wr:
1011	if (!--pipe->writers)
1012		wake_up_interruptible(&pipe->wait);
1013	ret = -ERESTARTSYS;
1014	goto err;
1015
1016err:
1017	__pipe_unlock(pipe);
1018
1019	put_pipe_info(inode, pipe);
1020	return ret;
1021}
1022
1023const struct file_operations pipefifo_fops = {
1024	.open		= fifo_open,
1025	.llseek		= no_llseek,
1026	.read_iter	= pipe_read,
1027	.write_iter	= pipe_write,
1028	.poll		= pipe_poll,
1029	.unlocked_ioctl	= pipe_ioctl,
1030	.release	= pipe_release,
1031	.fasync		= pipe_fasync,
1032};
1033
1034/*
1035 * Currently we rely on the pipe array holding a power-of-2 number
1036 * of pages. Returns 0 on error.
1037 */
1038unsigned int round_pipe_size(unsigned long size)
1039{
1040	if (size > (1U << 31))
1041		return 0;
1042
1043	/* Minimum pipe size, as required by POSIX */
1044	if (size < PAGE_SIZE)
1045		return PAGE_SIZE;
1046
1047	return roundup_pow_of_two(size);
1048}
1049
1050/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1051 * Allocate a new array of pipe buffers and copy the info over. Returns the
1052 * pipe size if successful, or return -ERROR on error.
1053 */
1054static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1055{
1056	struct pipe_buffer *bufs;
1057	unsigned int size, nr_pages;
1058	unsigned long user_bufs;
 
1059	long ret = 0;
1060
 
 
 
 
 
1061	size = round_pipe_size(arg);
1062	nr_pages = size >> PAGE_SHIFT;
1063
1064	if (!nr_pages)
1065		return -EINVAL;
1066
1067	/*
1068	 * If trying to increase the pipe capacity, check that an
1069	 * unprivileged user is not trying to exceed various limits
1070	 * (soft limit check here, hard limit check just below).
1071	 * Decreasing the pipe capacity is always permitted, even
1072	 * if the user is currently over a limit.
1073	 */
1074	if (nr_pages > pipe->buffers &&
1075			size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1076		return -EPERM;
1077
1078	user_bufs = account_pipe_buffers(pipe->user, pipe->buffers, nr_pages);
1079
1080	if (nr_pages > pipe->buffers &&
1081			(too_many_pipe_buffers_hard(user_bufs) ||
1082			 too_many_pipe_buffers_soft(user_bufs)) &&
1083			is_unprivileged_user()) {
1084		ret = -EPERM;
1085		goto out_revert_acct;
1086	}
1087
1088	/*
1089	 * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
1090	 * expect a lot of shrink+grow operations, just free and allocate
1091	 * again like we would do for growing. If the pipe currently
1092	 * contains more buffers than arg, then return busy.
1093	 */
1094	if (nr_pages < pipe->nrbufs) {
1095		ret = -EBUSY;
1096		goto out_revert_acct;
1097	}
1098
1099	bufs = kcalloc(nr_pages, sizeof(*bufs),
1100		       GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1101	if (unlikely(!bufs)) {
1102		ret = -ENOMEM;
1103		goto out_revert_acct;
1104	}
1105
1106	/*
1107	 * The pipe array wraps around, so just start the new one at zero
1108	 * and adjust the indexes.
1109	 */
1110	if (pipe->nrbufs) {
1111		unsigned int tail;
1112		unsigned int head;
1113
1114		tail = pipe->curbuf + pipe->nrbufs;
1115		if (tail < pipe->buffers)
1116			tail = 0;
1117		else
1118			tail &= (pipe->buffers - 1);
1119
1120		head = pipe->nrbufs - tail;
1121		if (head)
1122			memcpy(bufs, pipe->bufs + pipe->curbuf, head * sizeof(struct pipe_buffer));
1123		if (tail)
1124			memcpy(bufs + head, pipe->bufs, tail * sizeof(struct pipe_buffer));
1125	}
1126
1127	pipe->curbuf = 0;
1128	kfree(pipe->bufs);
1129	pipe->bufs = bufs;
1130	pipe->buffers = nr_pages;
1131	return nr_pages * PAGE_SIZE;
1132
1133out_revert_acct:
1134	(void) account_pipe_buffers(pipe->user, nr_pages, pipe->buffers);
1135	return ret;
1136}
1137
1138/*
1139 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1140 * location, so checking ->i_pipe is not enough to verify that this is a
1141 * pipe.
1142 */
1143struct pipe_inode_info *get_pipe_info(struct file *file)
1144{
1145	return file->f_op == &pipefifo_fops ? file->private_data : NULL;
 
 
 
 
 
 
 
 
1146}
1147
1148long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1149{
1150	struct pipe_inode_info *pipe;
1151	long ret;
1152
1153	pipe = get_pipe_info(file);
1154	if (!pipe)
1155		return -EBADF;
1156
1157	__pipe_lock(pipe);
1158
1159	switch (cmd) {
1160	case F_SETPIPE_SZ:
1161		ret = pipe_set_size(pipe, arg);
1162		break;
1163	case F_GETPIPE_SZ:
1164		ret = pipe->buffers * PAGE_SIZE;
1165		break;
1166	default:
1167		ret = -EINVAL;
1168		break;
1169	}
1170
1171	__pipe_unlock(pipe);
1172	return ret;
1173}
1174
1175static const struct super_operations pipefs_ops = {
1176	.destroy_inode = free_inode_nonrcu,
1177	.statfs = simple_statfs,
1178};
1179
1180/*
1181 * pipefs should _never_ be mounted by userland - too much of security hassle,
1182 * no real gain from having the whole whorehouse mounted. So we don't need
1183 * any operations on the root directory. However, we need a non-trivial
1184 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1185 */
1186
1187static int pipefs_init_fs_context(struct fs_context *fc)
1188{
1189	struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1190	if (!ctx)
1191		return -ENOMEM;
1192	ctx->ops = &pipefs_ops;
1193	ctx->dops = &pipefs_dentry_operations;
1194	return 0;
1195}
1196
1197static struct file_system_type pipe_fs_type = {
1198	.name		= "pipefs",
1199	.init_fs_context = pipefs_init_fs_context,
1200	.kill_sb	= kill_anon_super,
1201};
1202
1203static int __init init_pipe_fs(void)
1204{
1205	int err = register_filesystem(&pipe_fs_type);
1206
1207	if (!err) {
1208		pipe_mnt = kern_mount(&pipe_fs_type);
1209		if (IS_ERR(pipe_mnt)) {
1210			err = PTR_ERR(pipe_mnt);
1211			unregister_filesystem(&pipe_fs_type);
1212		}
1213	}
1214	return err;
1215}
1216
1217fs_initcall(init_pipe_fs);