Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/pipe.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
   6 */
   7
   8#include <linux/mm.h>
   9#include <linux/file.h>
  10#include <linux/poll.h>
  11#include <linux/slab.h>
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/fs.h>
  15#include <linux/log2.h>
  16#include <linux/mount.h>
  17#include <linux/pseudo_fs.h>
  18#include <linux/magic.h>
  19#include <linux/pipe_fs_i.h>
  20#include <linux/uio.h>
  21#include <linux/highmem.h>
  22#include <linux/pagemap.h>
  23#include <linux/audit.h>
  24#include <linux/syscalls.h>
  25#include <linux/fcntl.h>
  26#include <linux/memcontrol.h>
  27#include <linux/watch_queue.h>
  28
  29#include <linux/uaccess.h>
  30#include <asm/ioctls.h>
  31
  32#include "internal.h"
  33
  34/*
  35 * The max size that a non-root user is allowed to grow the pipe. Can
  36 * be set by root in /proc/sys/fs/pipe-max-size
  37 */
  38unsigned int pipe_max_size = 1048576;
  39
  40/* Maximum allocatable pages per user. Hard limit is unset by default, soft
  41 * matches default values.
  42 */
  43unsigned long pipe_user_pages_hard;
  44unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
  45
  46/*
  47 * We use head and tail indices that aren't masked off, except at the point of
  48 * dereference, but rather they're allowed to wrap naturally.  This means there
  49 * isn't a dead spot in the buffer, but the ring has to be a power of two and
  50 * <= 2^31.
  51 * -- David Howells 2019-09-23.
  52 *
  53 * Reads with count = 0 should always return 0.
  54 * -- Julian Bradfield 1999-06-07.
  55 *
  56 * FIFOs and Pipes now generate SIGIO for both readers and writers.
  57 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
  58 *
  59 * pipe_read & write cleanup
  60 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
  61 */
  62
  63static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
  64{
  65	if (pipe->files)
  66		mutex_lock_nested(&pipe->mutex, subclass);
  67}
  68
  69void pipe_lock(struct pipe_inode_info *pipe)
  70{
  71	/*
  72	 * pipe_lock() nests non-pipe inode locks (for writing to a file)
  73	 */
  74	pipe_lock_nested(pipe, I_MUTEX_PARENT);
  75}
  76EXPORT_SYMBOL(pipe_lock);
  77
  78void pipe_unlock(struct pipe_inode_info *pipe)
  79{
  80	if (pipe->files)
  81		mutex_unlock(&pipe->mutex);
  82}
  83EXPORT_SYMBOL(pipe_unlock);
  84
  85static inline void __pipe_lock(struct pipe_inode_info *pipe)
  86{
  87	mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
  88}
  89
  90static inline void __pipe_unlock(struct pipe_inode_info *pipe)
  91{
  92	mutex_unlock(&pipe->mutex);
  93}
  94
  95void pipe_double_lock(struct pipe_inode_info *pipe1,
  96		      struct pipe_inode_info *pipe2)
  97{
  98	BUG_ON(pipe1 == pipe2);
  99
 100	if (pipe1 < pipe2) {
 101		pipe_lock_nested(pipe1, I_MUTEX_PARENT);
 102		pipe_lock_nested(pipe2, I_MUTEX_CHILD);
 103	} else {
 104		pipe_lock_nested(pipe2, I_MUTEX_PARENT);
 105		pipe_lock_nested(pipe1, I_MUTEX_CHILD);
 106	}
 107}
 108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 109static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
 110				  struct pipe_buffer *buf)
 111{
 112	struct page *page = buf->page;
 113
 114	/*
 115	 * If nobody else uses this page, and we don't already have a
 116	 * temporary page, let's keep track of it as a one-deep
 117	 * allocation cache. (Otherwise just release our reference to it)
 118	 */
 119	if (page_count(page) == 1 && !pipe->tmp_page)
 120		pipe->tmp_page = page;
 121	else
 122		put_page(page);
 123}
 124
 125static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
 126		struct pipe_buffer *buf)
 127{
 128	struct page *page = buf->page;
 129
 130	if (page_count(page) != 1)
 131		return false;
 132	memcg_kmem_uncharge_page(page, 0);
 133	__SetPageLocked(page);
 134	return true;
 
 
 135}
 136
 137/**
 138 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
 139 * @pipe:	the pipe that the buffer belongs to
 140 * @buf:	the buffer to attempt to steal
 141 *
 142 * Description:
 143 *	This function attempts to steal the &struct page attached to
 144 *	@buf. If successful, this function returns 0 and returns with
 145 *	the page locked. The caller may then reuse the page for whatever
 146 *	he wishes; the typical use is insertion into a different file
 147 *	page cache.
 148 */
 149bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
 150		struct pipe_buffer *buf)
 151{
 152	struct page *page = buf->page;
 153
 154	/*
 155	 * A reference of one is golden, that means that the owner of this
 156	 * page is the only one holding a reference to it. lock the page
 157	 * and return OK.
 158	 */
 159	if (page_count(page) == 1) {
 160		lock_page(page);
 161		return true;
 162	}
 163	return false;
 
 164}
 165EXPORT_SYMBOL(generic_pipe_buf_try_steal);
 166
 167/**
 168 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
 169 * @pipe:	the pipe that the buffer belongs to
 170 * @buf:	the buffer to get a reference to
 171 *
 172 * Description:
 173 *	This function grabs an extra reference to @buf. It's used in
 174 *	in the tee() system call, when we duplicate the buffers in one
 175 *	pipe into another.
 176 */
 177bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
 178{
 179	return try_get_page(buf->page);
 180}
 181EXPORT_SYMBOL(generic_pipe_buf_get);
 182
 183/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 184 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
 185 * @pipe:	the pipe that the buffer belongs to
 186 * @buf:	the buffer to put a reference to
 187 *
 188 * Description:
 189 *	This function releases a reference to @buf.
 190 */
 191void generic_pipe_buf_release(struct pipe_inode_info *pipe,
 192			      struct pipe_buffer *buf)
 193{
 194	put_page(buf->page);
 195}
 196EXPORT_SYMBOL(generic_pipe_buf_release);
 197
 198static const struct pipe_buf_operations anon_pipe_buf_ops = {
 199	.release	= anon_pipe_buf_release,
 200	.try_steal	= anon_pipe_buf_try_steal,
 201	.get		= generic_pipe_buf_get,
 
 
 202};
 203
 204/* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
 205static inline bool pipe_readable(const struct pipe_inode_info *pipe)
 206{
 207	unsigned int head = READ_ONCE(pipe->head);
 208	unsigned int tail = READ_ONCE(pipe->tail);
 209	unsigned int writers = READ_ONCE(pipe->writers);
 210
 211	return !pipe_empty(head, tail) || !writers;
 212}
 213
 214static ssize_t
 215pipe_read(struct kiocb *iocb, struct iov_iter *to)
 216{
 217	size_t total_len = iov_iter_count(to);
 218	struct file *filp = iocb->ki_filp;
 219	struct pipe_inode_info *pipe = filp->private_data;
 220	bool was_full, wake_next_reader = false;
 221	ssize_t ret;
 222
 223	/* Null read succeeds. */
 224	if (unlikely(total_len == 0))
 225		return 0;
 226
 
 227	ret = 0;
 228	__pipe_lock(pipe);
 229
 230	/*
 231	 * We only wake up writers if the pipe was full when we started
 232	 * reading in order to avoid unnecessary wakeups.
 233	 *
 234	 * But when we do wake up writers, we do so using a sync wakeup
 235	 * (WF_SYNC), because we want them to get going and generate more
 236	 * data for us.
 237	 */
 238	was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
 239	for (;;) {
 240		unsigned int head = pipe->head;
 241		unsigned int tail = pipe->tail;
 242		unsigned int mask = pipe->ring_size - 1;
 243
 244#ifdef CONFIG_WATCH_QUEUE
 245		if (pipe->note_loss) {
 246			struct watch_notification n;
 247
 248			if (total_len < 8) {
 249				if (ret == 0)
 250					ret = -ENOBUFS;
 251				break;
 252			}
 253
 254			n.type = WATCH_TYPE_META;
 255			n.subtype = WATCH_META_LOSS_NOTIFICATION;
 256			n.info = watch_sizeof(n);
 257			if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
 258				if (ret == 0)
 259					ret = -EFAULT;
 260				break;
 261			}
 262			ret += sizeof(n);
 263			total_len -= sizeof(n);
 264			pipe->note_loss = false;
 265		}
 266#endif
 267
 268		if (!pipe_empty(head, tail)) {
 269			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
 270			size_t chars = buf->len;
 271			size_t written;
 272			int error;
 273
 274			if (chars > total_len) {
 275				if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
 276					if (ret == 0)
 277						ret = -ENOBUFS;
 278					break;
 279				}
 280				chars = total_len;
 281			}
 282
 283			error = pipe_buf_confirm(pipe, buf);
 284			if (error) {
 285				if (!ret)
 286					ret = error;
 287				break;
 288			}
 289
 290			written = copy_page_to_iter(buf->page, buf->offset, chars, to);
 291			if (unlikely(written < chars)) {
 292				if (!ret)
 293					ret = -EFAULT;
 294				break;
 295			}
 296			ret += chars;
 297			buf->offset += chars;
 298			buf->len -= chars;
 299
 300			/* Was it a packet buffer? Clean up and exit */
 301			if (buf->flags & PIPE_BUF_FLAG_PACKET) {
 302				total_len = chars;
 303				buf->len = 0;
 304			}
 305
 306			if (!buf->len) {
 307				pipe_buf_release(pipe, buf);
 308				spin_lock_irq(&pipe->rd_wait.lock);
 309#ifdef CONFIG_WATCH_QUEUE
 310				if (buf->flags & PIPE_BUF_FLAG_LOSS)
 311					pipe->note_loss = true;
 312#endif
 313				tail++;
 314				pipe->tail = tail;
 315				spin_unlock_irq(&pipe->rd_wait.lock);
 316			}
 317			total_len -= chars;
 318			if (!total_len)
 319				break;	/* common path: read succeeded */
 320			if (!pipe_empty(head, tail))	/* More to do? */
 321				continue;
 322		}
 323
 
 324		if (!pipe->writers)
 325			break;
 326		if (ret)
 327			break;
 328		if (filp->f_flags & O_NONBLOCK) {
 329			ret = -EAGAIN;
 
 
 
 
 
 
 
 
 
 
 
 
 330			break;
 331		}
 332		__pipe_unlock(pipe);
 333
 334		/*
 335		 * We only get here if we didn't actually read anything.
 336		 *
 337		 * However, we could have seen (and removed) a zero-sized
 338		 * pipe buffer, and might have made space in the buffers
 339		 * that way.
 340		 *
 341		 * You can't make zero-sized pipe buffers by doing an empty
 342		 * write (not even in packet mode), but they can happen if
 343		 * the writer gets an EFAULT when trying to fill a buffer
 344		 * that already got allocated and inserted in the buffer
 345		 * array.
 346		 *
 347		 * So we still need to wake up any pending writers in the
 348		 * _very_ unlikely case that the pipe was full, but we got
 349		 * no data.
 350		 */
 351		if (unlikely(was_full)) {
 352			wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
 353			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 354		}
 355
 356		/*
 357		 * But because we didn't read anything, at this point we can
 358		 * just return directly with -ERESTARTSYS if we're interrupted,
 359		 * since we've done any required wakeups and there's no need
 360		 * to mark anything accessed. And we've dropped the lock.
 361		 */
 362		if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
 363			return -ERESTARTSYS;
 364
 365		__pipe_lock(pipe);
 366		was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
 367		wake_next_reader = true;
 368	}
 369	if (pipe_empty(pipe->head, pipe->tail))
 370		wake_next_reader = false;
 371	__pipe_unlock(pipe);
 372
 373	if (was_full) {
 374		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
 
 375		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 376	}
 377	if (wake_next_reader)
 378		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
 379	if (ret > 0)
 380		file_accessed(filp);
 381	return ret;
 382}
 383
 384static inline int is_packetized(struct file *file)
 385{
 386	return (file->f_flags & O_DIRECT) != 0;
 387}
 388
 389/* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
 390static inline bool pipe_writable(const struct pipe_inode_info *pipe)
 391{
 392	unsigned int head = READ_ONCE(pipe->head);
 393	unsigned int tail = READ_ONCE(pipe->tail);
 394	unsigned int max_usage = READ_ONCE(pipe->max_usage);
 395
 396	return !pipe_full(head, tail, max_usage) ||
 397		!READ_ONCE(pipe->readers);
 398}
 399
 400static ssize_t
 401pipe_write(struct kiocb *iocb, struct iov_iter *from)
 402{
 403	struct file *filp = iocb->ki_filp;
 404	struct pipe_inode_info *pipe = filp->private_data;
 405	unsigned int head;
 406	ssize_t ret = 0;
 
 407	size_t total_len = iov_iter_count(from);
 408	ssize_t chars;
 409	bool was_empty = false;
 410	bool wake_next_writer = false;
 411
 412	/* Null write succeeds. */
 413	if (unlikely(total_len == 0))
 414		return 0;
 415
 416	__pipe_lock(pipe);
 417
 418	if (!pipe->readers) {
 419		send_sig(SIGPIPE, current, 0);
 420		ret = -EPIPE;
 421		goto out;
 422	}
 423
 424#ifdef CONFIG_WATCH_QUEUE
 425	if (pipe->watch_queue) {
 426		ret = -EXDEV;
 427		goto out;
 428	}
 429#endif
 430
 431	/*
 432	 * Only wake up if the pipe started out empty, since
 433	 * otherwise there should be no readers waiting.
 434	 *
 435	 * If it wasn't empty we try to merge new data into
 436	 * the last buffer.
 437	 *
 438	 * That naturally merges small writes, but it also
 439	 * page-aligs the rest of the writes for large writes
 440	 * spanning multiple pages.
 441	 */
 442	head = pipe->head;
 443	was_empty = pipe_empty(head, pipe->tail);
 444	chars = total_len & (PAGE_SIZE-1);
 445	if (chars && !was_empty) {
 446		unsigned int mask = pipe->ring_size - 1;
 447		struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
 448		int offset = buf->offset + buf->len;
 449
 450		if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
 451		    offset + chars <= PAGE_SIZE) {
 452			ret = pipe_buf_confirm(pipe, buf);
 453			if (ret)
 454				goto out;
 455
 456			ret = copy_page_from_iter(buf->page, offset, chars, from);
 457			if (unlikely(ret < chars)) {
 458				ret = -EFAULT;
 459				goto out;
 460			}
 461
 462			buf->len += ret;
 463			if (!iov_iter_count(from))
 464				goto out;
 465		}
 466	}
 467
 468	for (;;) {
 
 
 469		if (!pipe->readers) {
 470			send_sig(SIGPIPE, current, 0);
 471			if (!ret)
 472				ret = -EPIPE;
 473			break;
 474		}
 475
 476		head = pipe->head;
 477		if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
 478			unsigned int mask = pipe->ring_size - 1;
 479			struct pipe_buffer *buf = &pipe->bufs[head & mask];
 480			struct page *page = pipe->tmp_page;
 481			int copied;
 482
 483			if (!page) {
 484				page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
 485				if (unlikely(!page)) {
 486					ret = ret ? : -ENOMEM;
 487					break;
 488				}
 489				pipe->tmp_page = page;
 490			}
 491
 492			/* Allocate a slot in the ring in advance and attach an
 493			 * empty buffer.  If we fault or otherwise fail to use
 494			 * it, either the reader will consume it or it'll still
 495			 * be there for the next write.
 496			 */
 497			spin_lock_irq(&pipe->rd_wait.lock);
 498
 499			head = pipe->head;
 500			if (pipe_full(head, pipe->tail, pipe->max_usage)) {
 501				spin_unlock_irq(&pipe->rd_wait.lock);
 502				continue;
 503			}
 504
 505			pipe->head = head + 1;
 506			spin_unlock_irq(&pipe->rd_wait.lock);
 507
 508			/* Insert it into the buffer array */
 509			buf = &pipe->bufs[head & mask];
 510			buf->page = page;
 511			buf->ops = &anon_pipe_buf_ops;
 512			buf->offset = 0;
 513			buf->len = 0;
 514			if (is_packetized(filp))
 515				buf->flags = PIPE_BUF_FLAG_PACKET;
 516			else
 517				buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
 518			pipe->tmp_page = NULL;
 519
 520			copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
 521			if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
 522				if (!ret)
 523					ret = -EFAULT;
 524				break;
 525			}
 526			ret += copied;
 
 
 
 
 527			buf->offset = 0;
 528			buf->len = copied;
 
 
 
 
 
 
 
 529
 530			if (!iov_iter_count(from))
 531				break;
 532		}
 533
 534		if (!pipe_full(head, pipe->tail, pipe->max_usage))
 535			continue;
 536
 537		/* Wait for buffer space to become available. */
 538		if (filp->f_flags & O_NONBLOCK) {
 539			if (!ret)
 540				ret = -EAGAIN;
 541			break;
 542		}
 543		if (signal_pending(current)) {
 544			if (!ret)
 545				ret = -ERESTARTSYS;
 546			break;
 547		}
 548
 549		/*
 550		 * We're going to release the pipe lock and wait for more
 551		 * space. We wake up any readers if necessary, and then
 552		 * after waiting we need to re-check whether the pipe
 553		 * become empty while we dropped the lock.
 554		 */
 555		__pipe_unlock(pipe);
 556		if (was_empty) {
 557			wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
 558			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 
 559		}
 560		wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
 561		__pipe_lock(pipe);
 562		was_empty = pipe_empty(pipe->head, pipe->tail);
 563		wake_next_writer = true;
 564	}
 565out:
 566	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
 567		wake_next_writer = false;
 568	__pipe_unlock(pipe);
 569
 570	/*
 571	 * If we do do a wakeup event, we do a 'sync' wakeup, because we
 572	 * want the reader to start processing things asap, rather than
 573	 * leave the data pending.
 574	 *
 575	 * This is particularly important for small writes, because of
 576	 * how (for example) the GNU make jobserver uses small writes to
 577	 * wake up pending jobs
 578	 */
 579	if (was_empty) {
 580		wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
 581		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 582	}
 583	if (wake_next_writer)
 584		wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
 585	if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
 586		int err = file_update_time(filp);
 587		if (err)
 588			ret = err;
 589		sb_end_write(file_inode(filp)->i_sb);
 590	}
 591	return ret;
 592}
 593
 594static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
 595{
 596	struct pipe_inode_info *pipe = filp->private_data;
 597	int count, head, tail, mask;
 598
 599	switch (cmd) {
 600	case FIONREAD:
 601		__pipe_lock(pipe);
 602		count = 0;
 603		head = pipe->head;
 604		tail = pipe->tail;
 605		mask = pipe->ring_size - 1;
 606
 607		while (tail != head) {
 608			count += pipe->bufs[tail & mask].len;
 609			tail++;
 610		}
 611		__pipe_unlock(pipe);
 612
 613		return put_user(count, (int __user *)arg);
 614
 615#ifdef CONFIG_WATCH_QUEUE
 616	case IOC_WATCH_QUEUE_SET_SIZE: {
 617		int ret;
 618		__pipe_lock(pipe);
 619		ret = watch_queue_set_size(pipe, arg);
 620		__pipe_unlock(pipe);
 621		return ret;
 622	}
 623
 624	case IOC_WATCH_QUEUE_SET_FILTER:
 625		return watch_queue_set_filter(
 626			pipe, (struct watch_notification_filter __user *)arg);
 627#endif
 628
 629	default:
 630		return -ENOIOCTLCMD;
 
 631	}
 632}
 633
 634/* No kernel lock held - fine */
 635static __poll_t
 636pipe_poll(struct file *filp, poll_table *wait)
 637{
 638	__poll_t mask;
 639	struct pipe_inode_info *pipe = filp->private_data;
 640	unsigned int head, tail;
 641
 642	/*
 643	 * Reading pipe state only -- no need for acquiring the semaphore.
 644	 *
 645	 * But because this is racy, the code has to add the
 646	 * entry to the poll table _first_ ..
 647	 */
 648	if (filp->f_mode & FMODE_READ)
 649		poll_wait(filp, &pipe->rd_wait, wait);
 650	if (filp->f_mode & FMODE_WRITE)
 651		poll_wait(filp, &pipe->wr_wait, wait);
 652
 653	/*
 654	 * .. and only then can you do the racy tests. That way,
 655	 * if something changes and you got it wrong, the poll
 656	 * table entry will wake you up and fix it.
 657	 */
 658	head = READ_ONCE(pipe->head);
 659	tail = READ_ONCE(pipe->tail);
 660
 
 
 661	mask = 0;
 662	if (filp->f_mode & FMODE_READ) {
 663		if (!pipe_empty(head, tail))
 664			mask |= EPOLLIN | EPOLLRDNORM;
 665		if (!pipe->writers && filp->f_version != pipe->w_counter)
 666			mask |= EPOLLHUP;
 667	}
 668
 669	if (filp->f_mode & FMODE_WRITE) {
 670		if (!pipe_full(head, tail, pipe->max_usage))
 671			mask |= EPOLLOUT | EPOLLWRNORM;
 672		/*
 673		 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
 674		 * behave exactly like pipes for poll().
 675		 */
 676		if (!pipe->readers)
 677			mask |= EPOLLERR;
 678	}
 679
 680	return mask;
 681}
 682
 683static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
 684{
 685	int kill = 0;
 686
 687	spin_lock(&inode->i_lock);
 688	if (!--pipe->files) {
 689		inode->i_pipe = NULL;
 690		kill = 1;
 691	}
 692	spin_unlock(&inode->i_lock);
 693
 694	if (kill)
 695		free_pipe_info(pipe);
 696}
 697
 698static int
 699pipe_release(struct inode *inode, struct file *file)
 700{
 701	struct pipe_inode_info *pipe = file->private_data;
 702
 703	__pipe_lock(pipe);
 704	if (file->f_mode & FMODE_READ)
 705		pipe->readers--;
 706	if (file->f_mode & FMODE_WRITE)
 707		pipe->writers--;
 708
 709	/* Was that the last reader or writer, but not the other side? */
 710	if (!pipe->readers != !pipe->writers) {
 711		wake_up_interruptible_all(&pipe->rd_wait);
 712		wake_up_interruptible_all(&pipe->wr_wait);
 713		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 714		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 715	}
 716	__pipe_unlock(pipe);
 717
 718	put_pipe_info(inode, pipe);
 719	return 0;
 720}
 721
 722static int
 723pipe_fasync(int fd, struct file *filp, int on)
 724{
 725	struct pipe_inode_info *pipe = filp->private_data;
 726	int retval = 0;
 727
 728	__pipe_lock(pipe);
 729	if (filp->f_mode & FMODE_READ)
 730		retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
 731	if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
 732		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
 733		if (retval < 0 && (filp->f_mode & FMODE_READ))
 734			/* this can happen only if on == T */
 735			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
 736	}
 737	__pipe_unlock(pipe);
 738	return retval;
 739}
 740
 741unsigned long account_pipe_buffers(struct user_struct *user,
 742				   unsigned long old, unsigned long new)
 743{
 744	return atomic_long_add_return(new - old, &user->pipe_bufs);
 745}
 746
 747bool too_many_pipe_buffers_soft(unsigned long user_bufs)
 748{
 749	unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
 750
 751	return soft_limit && user_bufs > soft_limit;
 752}
 753
 754bool too_many_pipe_buffers_hard(unsigned long user_bufs)
 755{
 756	unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
 757
 758	return hard_limit && user_bufs > hard_limit;
 759}
 760
 761bool pipe_is_unprivileged_user(void)
 762{
 763	return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
 764}
 765
 766struct pipe_inode_info *alloc_pipe_info(void)
 767{
 768	struct pipe_inode_info *pipe;
 769	unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
 770	struct user_struct *user = get_current_user();
 771	unsigned long user_bufs;
 772	unsigned int max_size = READ_ONCE(pipe_max_size);
 773
 774	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
 775	if (pipe == NULL)
 776		goto out_free_uid;
 777
 778	if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
 779		pipe_bufs = max_size >> PAGE_SHIFT;
 780
 781	user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
 782
 783	if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
 784		user_bufs = account_pipe_buffers(user, pipe_bufs, 1);
 785		pipe_bufs = 1;
 786	}
 787
 788	if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
 789		goto out_revert_acct;
 790
 791	pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
 792			     GFP_KERNEL_ACCOUNT);
 793
 794	if (pipe->bufs) {
 795		init_waitqueue_head(&pipe->rd_wait);
 796		init_waitqueue_head(&pipe->wr_wait);
 797		pipe->r_counter = pipe->w_counter = 1;
 798		pipe->max_usage = pipe_bufs;
 799		pipe->ring_size = pipe_bufs;
 800		pipe->nr_accounted = pipe_bufs;
 801		pipe->user = user;
 802		mutex_init(&pipe->mutex);
 803		return pipe;
 804	}
 805
 806out_revert_acct:
 807	(void) account_pipe_buffers(user, pipe_bufs, 0);
 808	kfree(pipe);
 809out_free_uid:
 810	free_uid(user);
 811	return NULL;
 812}
 813
 814void free_pipe_info(struct pipe_inode_info *pipe)
 815{
 816	int i;
 817
 818#ifdef CONFIG_WATCH_QUEUE
 819	if (pipe->watch_queue) {
 820		watch_queue_clear(pipe->watch_queue);
 821		put_watch_queue(pipe->watch_queue);
 822	}
 823#endif
 824
 825	(void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
 826	free_uid(pipe->user);
 827	for (i = 0; i < pipe->ring_size; i++) {
 828		struct pipe_buffer *buf = pipe->bufs + i;
 829		if (buf->ops)
 830			pipe_buf_release(pipe, buf);
 831	}
 832	if (pipe->tmp_page)
 833		__free_page(pipe->tmp_page);
 834	kfree(pipe->bufs);
 835	kfree(pipe);
 836}
 837
 838static struct vfsmount *pipe_mnt __read_mostly;
 839
 840/*
 841 * pipefs_dname() is called from d_path().
 842 */
 843static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
 844{
 845	return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
 846				d_inode(dentry)->i_ino);
 847}
 848
 849static const struct dentry_operations pipefs_dentry_operations = {
 850	.d_dname	= pipefs_dname,
 851};
 852
 853static struct inode * get_pipe_inode(void)
 854{
 855	struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
 856	struct pipe_inode_info *pipe;
 857
 858	if (!inode)
 859		goto fail_inode;
 860
 861	inode->i_ino = get_next_ino();
 862
 863	pipe = alloc_pipe_info();
 864	if (!pipe)
 865		goto fail_iput;
 866
 867	inode->i_pipe = pipe;
 868	pipe->files = 2;
 869	pipe->readers = pipe->writers = 1;
 870	inode->i_fop = &pipefifo_fops;
 871
 872	/*
 873	 * Mark the inode dirty from the very beginning,
 874	 * that way it will never be moved to the dirty
 875	 * list because "mark_inode_dirty()" will think
 876	 * that it already _is_ on the dirty list.
 877	 */
 878	inode->i_state = I_DIRTY;
 879	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
 880	inode->i_uid = current_fsuid();
 881	inode->i_gid = current_fsgid();
 882	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 883
 884	return inode;
 885
 886fail_iput:
 887	iput(inode);
 888
 889fail_inode:
 890	return NULL;
 891}
 892
 893int create_pipe_files(struct file **res, int flags)
 894{
 
 895	struct inode *inode = get_pipe_inode();
 896	struct file *f;
 897	int error;
 898
 899	if (!inode)
 900		return -ENFILE;
 901
 902	if (flags & O_NOTIFICATION_PIPE) {
 903		error = watch_queue_init(inode->i_pipe);
 904		if (error) {
 905			free_pipe_info(inode->i_pipe);
 906			iput(inode);
 907			return error;
 908		}
 909	}
 910
 911	f = alloc_file_pseudo(inode, pipe_mnt, "",
 912				O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
 913				&pipefifo_fops);
 914	if (IS_ERR(f)) {
 915		free_pipe_info(inode->i_pipe);
 916		iput(inode);
 917		return PTR_ERR(f);
 918	}
 919
 
 920	f->private_data = inode->i_pipe;
 921
 922	res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
 923				  &pipefifo_fops);
 924	if (IS_ERR(res[0])) {
 925		put_pipe_info(inode, inode->i_pipe);
 926		fput(f);
 927		return PTR_ERR(res[0]);
 928	}
 
 
 929	res[0]->private_data = inode->i_pipe;
 
 930	res[1] = f;
 931	stream_open(inode, res[0]);
 932	stream_open(inode, res[1]);
 933	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 934}
 935
 936static int __do_pipe_flags(int *fd, struct file **files, int flags)
 937{
 938	int error;
 939	int fdw, fdr;
 940
 941	if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
 942		return -EINVAL;
 943
 944	error = create_pipe_files(files, flags);
 945	if (error)
 946		return error;
 947
 948	error = get_unused_fd_flags(flags);
 949	if (error < 0)
 950		goto err_read_pipe;
 951	fdr = error;
 952
 953	error = get_unused_fd_flags(flags);
 954	if (error < 0)
 955		goto err_fdr;
 956	fdw = error;
 957
 958	audit_fd_pair(fdr, fdw);
 959	fd[0] = fdr;
 960	fd[1] = fdw;
 961	return 0;
 962
 963 err_fdr:
 964	put_unused_fd(fdr);
 965 err_read_pipe:
 966	fput(files[0]);
 967	fput(files[1]);
 968	return error;
 969}
 970
 971int do_pipe_flags(int *fd, int flags)
 972{
 973	struct file *files[2];
 974	int error = __do_pipe_flags(fd, files, flags);
 975	if (!error) {
 976		fd_install(fd[0], files[0]);
 977		fd_install(fd[1], files[1]);
 978	}
 979	return error;
 980}
 981
 982/*
 983 * sys_pipe() is the normal C calling standard for creating
 984 * a pipe. It's not the way Unix traditionally does this, though.
 985 */
 986static int do_pipe2(int __user *fildes, int flags)
 987{
 988	struct file *files[2];
 989	int fd[2];
 990	int error;
 991
 992	error = __do_pipe_flags(fd, files, flags);
 993	if (!error) {
 994		if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
 995			fput(files[0]);
 996			fput(files[1]);
 997			put_unused_fd(fd[0]);
 998			put_unused_fd(fd[1]);
 999			error = -EFAULT;
1000		} else {
1001			fd_install(fd[0], files[0]);
1002			fd_install(fd[1], files[1]);
1003		}
1004	}
1005	return error;
1006}
1007
1008SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1009{
1010	return do_pipe2(fildes, flags);
1011}
1012
1013SYSCALL_DEFINE1(pipe, int __user *, fildes)
1014{
1015	return do_pipe2(fildes, 0);
1016}
1017
1018/*
1019 * This is the stupid "wait for pipe to be readable or writable"
1020 * model.
1021 *
1022 * See pipe_read/write() for the proper kind of exclusive wait,
1023 * but that requires that we wake up any other readers/writers
1024 * if we then do not end up reading everything (ie the whole
1025 * "wake_next_reader/writer" logic in pipe_read/write()).
1026 */
1027void pipe_wait_readable(struct pipe_inode_info *pipe)
1028{
1029	pipe_unlock(pipe);
1030	wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1031	pipe_lock(pipe);
1032}
1033
1034void pipe_wait_writable(struct pipe_inode_info *pipe)
1035{
1036	pipe_unlock(pipe);
1037	wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1038	pipe_lock(pipe);
1039}
1040
1041/*
1042 * This depends on both the wait (here) and the wakeup (wake_up_partner)
1043 * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1044 * race with the count check and waitqueue prep.
1045 *
1046 * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1047 * then check the condition you're waiting for, and only then sleep. But
1048 * because of the pipe lock, we can check the condition before being on
1049 * the wait queue.
1050 *
1051 * We use the 'rd_wait' waitqueue for pipe partner waiting.
1052 */
1053static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1054{
1055	DEFINE_WAIT(rdwait);
1056	int cur = *cnt;
1057
1058	while (cur == *cnt) {
1059		prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1060		pipe_unlock(pipe);
1061		schedule();
1062		finish_wait(&pipe->rd_wait, &rdwait);
1063		pipe_lock(pipe);
1064		if (signal_pending(current))
1065			break;
1066	}
1067	return cur == *cnt ? -ERESTARTSYS : 0;
1068}
1069
1070static void wake_up_partner(struct pipe_inode_info *pipe)
1071{
1072	wake_up_interruptible_all(&pipe->rd_wait);
1073}
1074
1075static int fifo_open(struct inode *inode, struct file *filp)
1076{
1077	struct pipe_inode_info *pipe;
1078	bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1079	int ret;
1080
1081	filp->f_version = 0;
1082
1083	spin_lock(&inode->i_lock);
1084	if (inode->i_pipe) {
1085		pipe = inode->i_pipe;
1086		pipe->files++;
1087		spin_unlock(&inode->i_lock);
1088	} else {
1089		spin_unlock(&inode->i_lock);
1090		pipe = alloc_pipe_info();
1091		if (!pipe)
1092			return -ENOMEM;
1093		pipe->files = 1;
1094		spin_lock(&inode->i_lock);
1095		if (unlikely(inode->i_pipe)) {
1096			inode->i_pipe->files++;
1097			spin_unlock(&inode->i_lock);
1098			free_pipe_info(pipe);
1099			pipe = inode->i_pipe;
1100		} else {
1101			inode->i_pipe = pipe;
1102			spin_unlock(&inode->i_lock);
1103		}
1104	}
1105	filp->private_data = pipe;
1106	/* OK, we have a pipe and it's pinned down */
1107
1108	__pipe_lock(pipe);
1109
1110	/* We can only do regular read/write on fifos */
1111	stream_open(inode, filp);
1112
1113	switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1114	case FMODE_READ:
1115	/*
1116	 *  O_RDONLY
1117	 *  POSIX.1 says that O_NONBLOCK means return with the FIFO
1118	 *  opened, even when there is no process writing the FIFO.
1119	 */
1120		pipe->r_counter++;
1121		if (pipe->readers++ == 0)
1122			wake_up_partner(pipe);
1123
1124		if (!is_pipe && !pipe->writers) {
1125			if ((filp->f_flags & O_NONBLOCK)) {
1126				/* suppress EPOLLHUP until we have
1127				 * seen a writer */
1128				filp->f_version = pipe->w_counter;
1129			} else {
1130				if (wait_for_partner(pipe, &pipe->w_counter))
1131					goto err_rd;
1132			}
1133		}
1134		break;
1135
1136	case FMODE_WRITE:
1137	/*
1138	 *  O_WRONLY
1139	 *  POSIX.1 says that O_NONBLOCK means return -1 with
1140	 *  errno=ENXIO when there is no process reading the FIFO.
1141	 */
1142		ret = -ENXIO;
1143		if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1144			goto err;
1145
1146		pipe->w_counter++;
1147		if (!pipe->writers++)
1148			wake_up_partner(pipe);
1149
1150		if (!is_pipe && !pipe->readers) {
1151			if (wait_for_partner(pipe, &pipe->r_counter))
1152				goto err_wr;
1153		}
1154		break;
1155
1156	case FMODE_READ | FMODE_WRITE:
1157	/*
1158	 *  O_RDWR
1159	 *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1160	 *  This implementation will NEVER block on a O_RDWR open, since
1161	 *  the process can at least talk to itself.
1162	 */
1163
1164		pipe->readers++;
1165		pipe->writers++;
1166		pipe->r_counter++;
1167		pipe->w_counter++;
1168		if (pipe->readers == 1 || pipe->writers == 1)
1169			wake_up_partner(pipe);
1170		break;
1171
1172	default:
1173		ret = -EINVAL;
1174		goto err;
1175	}
1176
1177	/* Ok! */
1178	__pipe_unlock(pipe);
1179	return 0;
1180
1181err_rd:
1182	if (!--pipe->readers)
1183		wake_up_interruptible(&pipe->wr_wait);
1184	ret = -ERESTARTSYS;
1185	goto err;
1186
1187err_wr:
1188	if (!--pipe->writers)
1189		wake_up_interruptible_all(&pipe->rd_wait);
1190	ret = -ERESTARTSYS;
1191	goto err;
1192
1193err:
1194	__pipe_unlock(pipe);
1195
1196	put_pipe_info(inode, pipe);
1197	return ret;
1198}
1199
1200const struct file_operations pipefifo_fops = {
1201	.open		= fifo_open,
1202	.llseek		= no_llseek,
1203	.read_iter	= pipe_read,
1204	.write_iter	= pipe_write,
1205	.poll		= pipe_poll,
1206	.unlocked_ioctl	= pipe_ioctl,
1207	.release	= pipe_release,
1208	.fasync		= pipe_fasync,
1209};
1210
1211/*
1212 * Currently we rely on the pipe array holding a power-of-2 number
1213 * of pages. Returns 0 on error.
1214 */
1215unsigned int round_pipe_size(unsigned long size)
1216{
1217	if (size > (1U << 31))
1218		return 0;
1219
1220	/* Minimum pipe size, as required by POSIX */
1221	if (size < PAGE_SIZE)
1222		return PAGE_SIZE;
1223
1224	return roundup_pow_of_two(size);
1225}
1226
1227/*
1228 * Resize the pipe ring to a number of slots.
1229 */
1230int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1231{
1232	struct pipe_buffer *bufs;
1233	unsigned int head, tail, mask, n;
1234
1235	/*
1236	 * We can shrink the pipe, if arg is greater than the ring occupancy.
1237	 * Since we don't expect a lot of shrink+grow operations, just free and
1238	 * allocate again like we would do for growing.  If the pipe currently
1239	 * contains more buffers than arg, then return busy.
1240	 */
1241	mask = pipe->ring_size - 1;
1242	head = pipe->head;
1243	tail = pipe->tail;
1244	n = pipe_occupancy(pipe->head, pipe->tail);
1245	if (nr_slots < n)
1246		return -EBUSY;
1247
1248	bufs = kcalloc(nr_slots, sizeof(*bufs),
1249		       GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1250	if (unlikely(!bufs))
1251		return -ENOMEM;
1252
1253	/*
1254	 * The pipe array wraps around, so just start the new one at zero
1255	 * and adjust the indices.
1256	 */
1257	if (n > 0) {
1258		unsigned int h = head & mask;
1259		unsigned int t = tail & mask;
1260		if (h > t) {
1261			memcpy(bufs, pipe->bufs + t,
1262			       n * sizeof(struct pipe_buffer));
1263		} else {
1264			unsigned int tsize = pipe->ring_size - t;
1265			if (h > 0)
1266				memcpy(bufs + tsize, pipe->bufs,
1267				       h * sizeof(struct pipe_buffer));
1268			memcpy(bufs, pipe->bufs + t,
1269			       tsize * sizeof(struct pipe_buffer));
1270		}
1271	}
1272
1273	head = n;
1274	tail = 0;
1275
1276	kfree(pipe->bufs);
1277	pipe->bufs = bufs;
1278	pipe->ring_size = nr_slots;
1279	if (pipe->max_usage > nr_slots)
1280		pipe->max_usage = nr_slots;
1281	pipe->tail = tail;
1282	pipe->head = head;
1283
1284	/* This might have made more room for writers */
1285	wake_up_interruptible(&pipe->wr_wait);
1286	return 0;
1287}
1288
1289/*
1290 * Allocate a new array of pipe buffers and copy the info over. Returns the
1291 * pipe size if successful, or return -ERROR on error.
1292 */
1293static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1294{
 
 
1295	unsigned long user_bufs;
1296	unsigned int nr_slots, size;
1297	long ret = 0;
1298
1299#ifdef CONFIG_WATCH_QUEUE
1300	if (pipe->watch_queue)
1301		return -EBUSY;
1302#endif
1303
1304	size = round_pipe_size(arg);
1305	nr_slots = size >> PAGE_SHIFT;
1306
1307	if (!nr_slots)
1308		return -EINVAL;
1309
1310	/*
1311	 * If trying to increase the pipe capacity, check that an
1312	 * unprivileged user is not trying to exceed various limits
1313	 * (soft limit check here, hard limit check just below).
1314	 * Decreasing the pipe capacity is always permitted, even
1315	 * if the user is currently over a limit.
1316	 */
1317	if (nr_slots > pipe->max_usage &&
1318			size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1319		return -EPERM;
1320
1321	user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1322
1323	if (nr_slots > pipe->max_usage &&
1324			(too_many_pipe_buffers_hard(user_bufs) ||
1325			 too_many_pipe_buffers_soft(user_bufs)) &&
1326			pipe_is_unprivileged_user()) {
1327		ret = -EPERM;
1328		goto out_revert_acct;
1329	}
1330
1331	ret = pipe_resize_ring(pipe, nr_slots);
1332	if (ret < 0)
 
 
 
 
 
 
1333		goto out_revert_acct;
 
1334
1335	pipe->max_usage = nr_slots;
1336	pipe->nr_accounted = nr_slots;
1337	return pipe->max_usage * PAGE_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1338
1339out_revert_acct:
1340	(void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1341	return ret;
1342}
1343
1344/*
1345 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1346 * location, so checking ->i_pipe is not enough to verify that this is a
1347 * pipe.
1348 */
1349struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1350{
1351	struct pipe_inode_info *pipe = file->private_data;
1352
1353	if (file->f_op != &pipefifo_fops || !pipe)
1354		return NULL;
1355#ifdef CONFIG_WATCH_QUEUE
1356	if (for_splice && pipe->watch_queue)
1357		return NULL;
1358#endif
1359	return pipe;
1360}
1361
1362long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1363{
1364	struct pipe_inode_info *pipe;
1365	long ret;
1366
1367	pipe = get_pipe_info(file, false);
1368	if (!pipe)
1369		return -EBADF;
1370
1371	__pipe_lock(pipe);
1372
1373	switch (cmd) {
1374	case F_SETPIPE_SZ:
1375		ret = pipe_set_size(pipe, arg);
1376		break;
1377	case F_GETPIPE_SZ:
1378		ret = pipe->max_usage * PAGE_SIZE;
1379		break;
1380	default:
1381		ret = -EINVAL;
1382		break;
1383	}
1384
1385	__pipe_unlock(pipe);
1386	return ret;
1387}
1388
1389static const struct super_operations pipefs_ops = {
1390	.destroy_inode = free_inode_nonrcu,
1391	.statfs = simple_statfs,
1392};
1393
1394/*
1395 * pipefs should _never_ be mounted by userland - too much of security hassle,
1396 * no real gain from having the whole whorehouse mounted. So we don't need
1397 * any operations on the root directory. However, we need a non-trivial
1398 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1399 */
1400
1401static int pipefs_init_fs_context(struct fs_context *fc)
1402{
1403	struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1404	if (!ctx)
1405		return -ENOMEM;
1406	ctx->ops = &pipefs_ops;
1407	ctx->dops = &pipefs_dentry_operations;
1408	return 0;
1409}
1410
1411static struct file_system_type pipe_fs_type = {
1412	.name		= "pipefs",
1413	.init_fs_context = pipefs_init_fs_context,
1414	.kill_sb	= kill_anon_super,
1415};
1416
1417static int __init init_pipe_fs(void)
1418{
1419	int err = register_filesystem(&pipe_fs_type);
1420
1421	if (!err) {
1422		pipe_mnt = kern_mount(&pipe_fs_type);
1423		if (IS_ERR(pipe_mnt)) {
1424			err = PTR_ERR(pipe_mnt);
1425			unregister_filesystem(&pipe_fs_type);
1426		}
1427	}
1428	return err;
1429}
1430
1431fs_initcall(init_pipe_fs);
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/pipe.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
   6 */
   7
   8#include <linux/mm.h>
   9#include <linux/file.h>
  10#include <linux/poll.h>
  11#include <linux/slab.h>
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/fs.h>
  15#include <linux/log2.h>
  16#include <linux/mount.h>
 
  17#include <linux/magic.h>
  18#include <linux/pipe_fs_i.h>
  19#include <linux/uio.h>
  20#include <linux/highmem.h>
  21#include <linux/pagemap.h>
  22#include <linux/audit.h>
  23#include <linux/syscalls.h>
  24#include <linux/fcntl.h>
  25#include <linux/memcontrol.h>
 
  26
  27#include <linux/uaccess.h>
  28#include <asm/ioctls.h>
  29
  30#include "internal.h"
  31
  32/*
  33 * The max size that a non-root user is allowed to grow the pipe. Can
  34 * be set by root in /proc/sys/fs/pipe-max-size
  35 */
  36unsigned int pipe_max_size = 1048576;
  37
  38/* Maximum allocatable pages per user. Hard limit is unset by default, soft
  39 * matches default values.
  40 */
  41unsigned long pipe_user_pages_hard;
  42unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
  43
  44/*
  45 * We use a start+len construction, which provides full use of the 
  46 * allocated memory.
  47 * -- Florian Coosmann (FGC)
  48 * 
 
 
  49 * Reads with count = 0 should always return 0.
  50 * -- Julian Bradfield 1999-06-07.
  51 *
  52 * FIFOs and Pipes now generate SIGIO for both readers and writers.
  53 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
  54 *
  55 * pipe_read & write cleanup
  56 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
  57 */
  58
  59static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
  60{
  61	if (pipe->files)
  62		mutex_lock_nested(&pipe->mutex, subclass);
  63}
  64
  65void pipe_lock(struct pipe_inode_info *pipe)
  66{
  67	/*
  68	 * pipe_lock() nests non-pipe inode locks (for writing to a file)
  69	 */
  70	pipe_lock_nested(pipe, I_MUTEX_PARENT);
  71}
  72EXPORT_SYMBOL(pipe_lock);
  73
  74void pipe_unlock(struct pipe_inode_info *pipe)
  75{
  76	if (pipe->files)
  77		mutex_unlock(&pipe->mutex);
  78}
  79EXPORT_SYMBOL(pipe_unlock);
  80
  81static inline void __pipe_lock(struct pipe_inode_info *pipe)
  82{
  83	mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
  84}
  85
  86static inline void __pipe_unlock(struct pipe_inode_info *pipe)
  87{
  88	mutex_unlock(&pipe->mutex);
  89}
  90
  91void pipe_double_lock(struct pipe_inode_info *pipe1,
  92		      struct pipe_inode_info *pipe2)
  93{
  94	BUG_ON(pipe1 == pipe2);
  95
  96	if (pipe1 < pipe2) {
  97		pipe_lock_nested(pipe1, I_MUTEX_PARENT);
  98		pipe_lock_nested(pipe2, I_MUTEX_CHILD);
  99	} else {
 100		pipe_lock_nested(pipe2, I_MUTEX_PARENT);
 101		pipe_lock_nested(pipe1, I_MUTEX_CHILD);
 102	}
 103}
 104
 105/* Drop the inode semaphore and wait for a pipe event, atomically */
 106void pipe_wait(struct pipe_inode_info *pipe)
 107{
 108	DEFINE_WAIT(wait);
 109
 110	/*
 111	 * Pipes are system-local resources, so sleeping on them
 112	 * is considered a noninteractive wait:
 113	 */
 114	prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
 115	pipe_unlock(pipe);
 116	schedule();
 117	finish_wait(&pipe->wait, &wait);
 118	pipe_lock(pipe);
 119}
 120
 121static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
 122				  struct pipe_buffer *buf)
 123{
 124	struct page *page = buf->page;
 125
 126	/*
 127	 * If nobody else uses this page, and we don't already have a
 128	 * temporary page, let's keep track of it as a one-deep
 129	 * allocation cache. (Otherwise just release our reference to it)
 130	 */
 131	if (page_count(page) == 1 && !pipe->tmp_page)
 132		pipe->tmp_page = page;
 133	else
 134		put_page(page);
 135}
 136
 137static int anon_pipe_buf_steal(struct pipe_inode_info *pipe,
 138			       struct pipe_buffer *buf)
 139{
 140	struct page *page = buf->page;
 141
 142	if (page_count(page) == 1) {
 143		if (memcg_kmem_enabled())
 144			memcg_kmem_uncharge(page, 0);
 145		__SetPageLocked(page);
 146		return 0;
 147	}
 148	return 1;
 149}
 150
 151/**
 152 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
 153 * @pipe:	the pipe that the buffer belongs to
 154 * @buf:	the buffer to attempt to steal
 155 *
 156 * Description:
 157 *	This function attempts to steal the &struct page attached to
 158 *	@buf. If successful, this function returns 0 and returns with
 159 *	the page locked. The caller may then reuse the page for whatever
 160 *	he wishes; the typical use is insertion into a different file
 161 *	page cache.
 162 */
 163int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
 164			   struct pipe_buffer *buf)
 165{
 166	struct page *page = buf->page;
 167
 168	/*
 169	 * A reference of one is golden, that means that the owner of this
 170	 * page is the only one holding a reference to it. lock the page
 171	 * and return OK.
 172	 */
 173	if (page_count(page) == 1) {
 174		lock_page(page);
 175		return 0;
 176	}
 177
 178	return 1;
 179}
 180EXPORT_SYMBOL(generic_pipe_buf_steal);
 181
 182/**
 183 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
 184 * @pipe:	the pipe that the buffer belongs to
 185 * @buf:	the buffer to get a reference to
 186 *
 187 * Description:
 188 *	This function grabs an extra reference to @buf. It's used in
 189 *	in the tee() system call, when we duplicate the buffers in one
 190 *	pipe into another.
 191 */
 192void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
 193{
 194	get_page(buf->page);
 195}
 196EXPORT_SYMBOL(generic_pipe_buf_get);
 197
 198/**
 199 * generic_pipe_buf_confirm - verify contents of the pipe buffer
 200 * @info:	the pipe that the buffer belongs to
 201 * @buf:	the buffer to confirm
 202 *
 203 * Description:
 204 *	This function does nothing, because the generic pipe code uses
 205 *	pages that are always good when inserted into the pipe.
 206 */
 207int generic_pipe_buf_confirm(struct pipe_inode_info *info,
 208			     struct pipe_buffer *buf)
 209{
 210	return 0;
 211}
 212EXPORT_SYMBOL(generic_pipe_buf_confirm);
 213
 214/**
 215 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
 216 * @pipe:	the pipe that the buffer belongs to
 217 * @buf:	the buffer to put a reference to
 218 *
 219 * Description:
 220 *	This function releases a reference to @buf.
 221 */
 222void generic_pipe_buf_release(struct pipe_inode_info *pipe,
 223			      struct pipe_buffer *buf)
 224{
 225	put_page(buf->page);
 226}
 227EXPORT_SYMBOL(generic_pipe_buf_release);
 228
 229static const struct pipe_buf_operations anon_pipe_buf_ops = {
 230	.can_merge = 1,
 231	.confirm = generic_pipe_buf_confirm,
 232	.release = anon_pipe_buf_release,
 233	.steal = anon_pipe_buf_steal,
 234	.get = generic_pipe_buf_get,
 235};
 236
 237static const struct pipe_buf_operations packet_pipe_buf_ops = {
 238	.can_merge = 0,
 239	.confirm = generic_pipe_buf_confirm,
 240	.release = anon_pipe_buf_release,
 241	.steal = anon_pipe_buf_steal,
 242	.get = generic_pipe_buf_get,
 243};
 
 
 244
 245static ssize_t
 246pipe_read(struct kiocb *iocb, struct iov_iter *to)
 247{
 248	size_t total_len = iov_iter_count(to);
 249	struct file *filp = iocb->ki_filp;
 250	struct pipe_inode_info *pipe = filp->private_data;
 251	int do_wakeup;
 252	ssize_t ret;
 253
 254	/* Null read succeeds. */
 255	if (unlikely(total_len == 0))
 256		return 0;
 257
 258	do_wakeup = 0;
 259	ret = 0;
 260	__pipe_lock(pipe);
 
 
 
 
 
 
 
 
 
 
 261	for (;;) {
 262		int bufs = pipe->nrbufs;
 263		if (bufs) {
 264			int curbuf = pipe->curbuf;
 265			struct pipe_buffer *buf = pipe->bufs + curbuf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 266			size_t chars = buf->len;
 267			size_t written;
 268			int error;
 269
 270			if (chars > total_len)
 
 
 
 
 
 271				chars = total_len;
 
 272
 273			error = pipe_buf_confirm(pipe, buf);
 274			if (error) {
 275				if (!ret)
 276					ret = error;
 277				break;
 278			}
 279
 280			written = copy_page_to_iter(buf->page, buf->offset, chars, to);
 281			if (unlikely(written < chars)) {
 282				if (!ret)
 283					ret = -EFAULT;
 284				break;
 285			}
 286			ret += chars;
 287			buf->offset += chars;
 288			buf->len -= chars;
 289
 290			/* Was it a packet buffer? Clean up and exit */
 291			if (buf->flags & PIPE_BUF_FLAG_PACKET) {
 292				total_len = chars;
 293				buf->len = 0;
 294			}
 295
 296			if (!buf->len) {
 297				pipe_buf_release(pipe, buf);
 298				curbuf = (curbuf + 1) & (pipe->buffers - 1);
 299				pipe->curbuf = curbuf;
 300				pipe->nrbufs = --bufs;
 301				do_wakeup = 1;
 
 
 
 
 302			}
 303			total_len -= chars;
 304			if (!total_len)
 305				break;	/* common path: read succeeded */
 
 
 306		}
 307		if (bufs)	/* More to do? */
 308			continue;
 309		if (!pipe->writers)
 310			break;
 311		if (!pipe->waiting_writers) {
 312			/* syscall merging: Usually we must not sleep
 313			 * if O_NONBLOCK is set, or if we got some data.
 314			 * But if a writer sleeps in kernel space, then
 315			 * we can wait for that data without violating POSIX.
 316			 */
 317			if (ret)
 318				break;
 319			if (filp->f_flags & O_NONBLOCK) {
 320				ret = -EAGAIN;
 321				break;
 322			}
 323		}
 324		if (signal_pending(current)) {
 325			if (!ret)
 326				ret = -ERESTARTSYS;
 327			break;
 328		}
 329		if (do_wakeup) {
 330			wake_up_interruptible_sync_poll(&pipe->wait, EPOLLOUT | EPOLLWRNORM);
 331 			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 332		}
 333		pipe_wait(pipe);
 
 
 
 
 
 
 
 
 
 
 
 
 334	}
 
 
 335	__pipe_unlock(pipe);
 336
 337	/* Signal writers asynchronously that there is more room. */
 338	if (do_wakeup) {
 339		wake_up_interruptible_sync_poll(&pipe->wait, EPOLLOUT | EPOLLWRNORM);
 340		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 341	}
 
 
 342	if (ret > 0)
 343		file_accessed(filp);
 344	return ret;
 345}
 346
 347static inline int is_packetized(struct file *file)
 348{
 349	return (file->f_flags & O_DIRECT) != 0;
 350}
 351
 
 
 
 
 
 
 
 
 
 
 
 352static ssize_t
 353pipe_write(struct kiocb *iocb, struct iov_iter *from)
 354{
 355	struct file *filp = iocb->ki_filp;
 356	struct pipe_inode_info *pipe = filp->private_data;
 
 357	ssize_t ret = 0;
 358	int do_wakeup = 0;
 359	size_t total_len = iov_iter_count(from);
 360	ssize_t chars;
 
 
 361
 362	/* Null write succeeds. */
 363	if (unlikely(total_len == 0))
 364		return 0;
 365
 366	__pipe_lock(pipe);
 367
 368	if (!pipe->readers) {
 369		send_sig(SIGPIPE, current, 0);
 370		ret = -EPIPE;
 371		goto out;
 372	}
 373
 374	/* We try to merge small writes */
 375	chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
 376	if (pipe->nrbufs && chars != 0) {
 377		int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
 378							(pipe->buffers - 1);
 379		struct pipe_buffer *buf = pipe->bufs + lastbuf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 380		int offset = buf->offset + buf->len;
 381
 382		if (buf->ops->can_merge && offset + chars <= PAGE_SIZE) {
 
 383			ret = pipe_buf_confirm(pipe, buf);
 384			if (ret)
 385				goto out;
 386
 387			ret = copy_page_from_iter(buf->page, offset, chars, from);
 388			if (unlikely(ret < chars)) {
 389				ret = -EFAULT;
 390				goto out;
 391			}
 392			do_wakeup = 1;
 393			buf->len += ret;
 394			if (!iov_iter_count(from))
 395				goto out;
 396		}
 397	}
 398
 399	for (;;) {
 400		int bufs;
 401
 402		if (!pipe->readers) {
 403			send_sig(SIGPIPE, current, 0);
 404			if (!ret)
 405				ret = -EPIPE;
 406			break;
 407		}
 408		bufs = pipe->nrbufs;
 409		if (bufs < pipe->buffers) {
 410			int newbuf = (pipe->curbuf + bufs) & (pipe->buffers-1);
 411			struct pipe_buffer *buf = pipe->bufs + newbuf;
 
 412			struct page *page = pipe->tmp_page;
 413			int copied;
 414
 415			if (!page) {
 416				page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
 417				if (unlikely(!page)) {
 418					ret = ret ? : -ENOMEM;
 419					break;
 420				}
 421				pipe->tmp_page = page;
 422			}
 423			/* Always wake up, even if the copy fails. Otherwise
 424			 * we lock up (O_NONBLOCK-)readers that sleep due to
 425			 * syscall merging.
 426			 * FIXME! Is this really true?
 
 427			 */
 428			do_wakeup = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 429			copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
 430			if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
 431				if (!ret)
 432					ret = -EFAULT;
 433				break;
 434			}
 435			ret += copied;
 436
 437			/* Insert it into the buffer array */
 438			buf->page = page;
 439			buf->ops = &anon_pipe_buf_ops;
 440			buf->offset = 0;
 441			buf->len = copied;
 442			buf->flags = 0;
 443			if (is_packetized(filp)) {
 444				buf->ops = &packet_pipe_buf_ops;
 445				buf->flags = PIPE_BUF_FLAG_PACKET;
 446			}
 447			pipe->nrbufs = ++bufs;
 448			pipe->tmp_page = NULL;
 449
 450			if (!iov_iter_count(from))
 451				break;
 452		}
 453		if (bufs < pipe->buffers)
 
 454			continue;
 
 
 455		if (filp->f_flags & O_NONBLOCK) {
 456			if (!ret)
 457				ret = -EAGAIN;
 458			break;
 459		}
 460		if (signal_pending(current)) {
 461			if (!ret)
 462				ret = -ERESTARTSYS;
 463			break;
 464		}
 465		if (do_wakeup) {
 466			wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLRDNORM);
 
 
 
 
 
 
 
 
 467			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 468			do_wakeup = 0;
 469		}
 470		pipe->waiting_writers++;
 471		pipe_wait(pipe);
 472		pipe->waiting_writers--;
 
 473	}
 474out:
 
 
 475	__pipe_unlock(pipe);
 476	if (do_wakeup) {
 477		wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLRDNORM);
 
 
 
 
 
 
 
 
 
 
 478		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 479	}
 
 
 480	if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
 481		int err = file_update_time(filp);
 482		if (err)
 483			ret = err;
 484		sb_end_write(file_inode(filp)->i_sb);
 485	}
 486	return ret;
 487}
 488
 489static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
 490{
 491	struct pipe_inode_info *pipe = filp->private_data;
 492	int count, buf, nrbufs;
 493
 494	switch (cmd) {
 495		case FIONREAD:
 496			__pipe_lock(pipe);
 497			count = 0;
 498			buf = pipe->curbuf;
 499			nrbufs = pipe->nrbufs;
 500			while (--nrbufs >= 0) {
 501				count += pipe->bufs[buf].len;
 502				buf = (buf+1) & (pipe->buffers - 1);
 503			}
 504			__pipe_unlock(pipe);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 505
 506			return put_user(count, (int __user *)arg);
 507		default:
 508			return -ENOIOCTLCMD;
 509	}
 510}
 511
 512/* No kernel lock held - fine */
 513static __poll_t
 514pipe_poll(struct file *filp, poll_table *wait)
 515{
 516	__poll_t mask;
 517	struct pipe_inode_info *pipe = filp->private_data;
 518	int nrbufs;
 519
 520	poll_wait(filp, &pipe->wait, wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 521
 522	/* Reading only -- no need for acquiring the semaphore.  */
 523	nrbufs = pipe->nrbufs;
 524	mask = 0;
 525	if (filp->f_mode & FMODE_READ) {
 526		mask = (nrbufs > 0) ? EPOLLIN | EPOLLRDNORM : 0;
 
 527		if (!pipe->writers && filp->f_version != pipe->w_counter)
 528			mask |= EPOLLHUP;
 529	}
 530
 531	if (filp->f_mode & FMODE_WRITE) {
 532		mask |= (nrbufs < pipe->buffers) ? EPOLLOUT | EPOLLWRNORM : 0;
 
 533		/*
 534		 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
 535		 * behave exactly like pipes for poll().
 536		 */
 537		if (!pipe->readers)
 538			mask |= EPOLLERR;
 539	}
 540
 541	return mask;
 542}
 543
 544static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
 545{
 546	int kill = 0;
 547
 548	spin_lock(&inode->i_lock);
 549	if (!--pipe->files) {
 550		inode->i_pipe = NULL;
 551		kill = 1;
 552	}
 553	spin_unlock(&inode->i_lock);
 554
 555	if (kill)
 556		free_pipe_info(pipe);
 557}
 558
 559static int
 560pipe_release(struct inode *inode, struct file *file)
 561{
 562	struct pipe_inode_info *pipe = file->private_data;
 563
 564	__pipe_lock(pipe);
 565	if (file->f_mode & FMODE_READ)
 566		pipe->readers--;
 567	if (file->f_mode & FMODE_WRITE)
 568		pipe->writers--;
 569
 570	if (pipe->readers || pipe->writers) {
 571		wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLOUT | EPOLLRDNORM | EPOLLWRNORM | EPOLLERR | EPOLLHUP);
 
 
 572		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 573		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 574	}
 575	__pipe_unlock(pipe);
 576
 577	put_pipe_info(inode, pipe);
 578	return 0;
 579}
 580
 581static int
 582pipe_fasync(int fd, struct file *filp, int on)
 583{
 584	struct pipe_inode_info *pipe = filp->private_data;
 585	int retval = 0;
 586
 587	__pipe_lock(pipe);
 588	if (filp->f_mode & FMODE_READ)
 589		retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
 590	if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
 591		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
 592		if (retval < 0 && (filp->f_mode & FMODE_READ))
 593			/* this can happen only if on == T */
 594			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
 595	}
 596	__pipe_unlock(pipe);
 597	return retval;
 598}
 599
 600static unsigned long account_pipe_buffers(struct user_struct *user,
 601                                 unsigned long old, unsigned long new)
 602{
 603	return atomic_long_add_return(new - old, &user->pipe_bufs);
 604}
 605
 606static bool too_many_pipe_buffers_soft(unsigned long user_bufs)
 607{
 608	unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
 609
 610	return soft_limit && user_bufs > soft_limit;
 611}
 612
 613static bool too_many_pipe_buffers_hard(unsigned long user_bufs)
 614{
 615	unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
 616
 617	return hard_limit && user_bufs > hard_limit;
 618}
 619
 620static bool is_unprivileged_user(void)
 621{
 622	return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
 623}
 624
 625struct pipe_inode_info *alloc_pipe_info(void)
 626{
 627	struct pipe_inode_info *pipe;
 628	unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
 629	struct user_struct *user = get_current_user();
 630	unsigned long user_bufs;
 631	unsigned int max_size = READ_ONCE(pipe_max_size);
 632
 633	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
 634	if (pipe == NULL)
 635		goto out_free_uid;
 636
 637	if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
 638		pipe_bufs = max_size >> PAGE_SHIFT;
 639
 640	user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
 641
 642	if (too_many_pipe_buffers_soft(user_bufs) && is_unprivileged_user()) {
 643		user_bufs = account_pipe_buffers(user, pipe_bufs, 1);
 644		pipe_bufs = 1;
 645	}
 646
 647	if (too_many_pipe_buffers_hard(user_bufs) && is_unprivileged_user())
 648		goto out_revert_acct;
 649
 650	pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
 651			     GFP_KERNEL_ACCOUNT);
 652
 653	if (pipe->bufs) {
 654		init_waitqueue_head(&pipe->wait);
 
 655		pipe->r_counter = pipe->w_counter = 1;
 656		pipe->buffers = pipe_bufs;
 
 
 657		pipe->user = user;
 658		mutex_init(&pipe->mutex);
 659		return pipe;
 660	}
 661
 662out_revert_acct:
 663	(void) account_pipe_buffers(user, pipe_bufs, 0);
 664	kfree(pipe);
 665out_free_uid:
 666	free_uid(user);
 667	return NULL;
 668}
 669
 670void free_pipe_info(struct pipe_inode_info *pipe)
 671{
 672	int i;
 673
 674	(void) account_pipe_buffers(pipe->user, pipe->buffers, 0);
 
 
 
 
 
 
 
 675	free_uid(pipe->user);
 676	for (i = 0; i < pipe->buffers; i++) {
 677		struct pipe_buffer *buf = pipe->bufs + i;
 678		if (buf->ops)
 679			pipe_buf_release(pipe, buf);
 680	}
 681	if (pipe->tmp_page)
 682		__free_page(pipe->tmp_page);
 683	kfree(pipe->bufs);
 684	kfree(pipe);
 685}
 686
 687static struct vfsmount *pipe_mnt __read_mostly;
 688
 689/*
 690 * pipefs_dname() is called from d_path().
 691 */
 692static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
 693{
 694	return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
 695				d_inode(dentry)->i_ino);
 696}
 697
 698static const struct dentry_operations pipefs_dentry_operations = {
 699	.d_dname	= pipefs_dname,
 700};
 701
 702static struct inode * get_pipe_inode(void)
 703{
 704	struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
 705	struct pipe_inode_info *pipe;
 706
 707	if (!inode)
 708		goto fail_inode;
 709
 710	inode->i_ino = get_next_ino();
 711
 712	pipe = alloc_pipe_info();
 713	if (!pipe)
 714		goto fail_iput;
 715
 716	inode->i_pipe = pipe;
 717	pipe->files = 2;
 718	pipe->readers = pipe->writers = 1;
 719	inode->i_fop = &pipefifo_fops;
 720
 721	/*
 722	 * Mark the inode dirty from the very beginning,
 723	 * that way it will never be moved to the dirty
 724	 * list because "mark_inode_dirty()" will think
 725	 * that it already _is_ on the dirty list.
 726	 */
 727	inode->i_state = I_DIRTY;
 728	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
 729	inode->i_uid = current_fsuid();
 730	inode->i_gid = current_fsgid();
 731	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 732
 733	return inode;
 734
 735fail_iput:
 736	iput(inode);
 737
 738fail_inode:
 739	return NULL;
 740}
 741
 742int create_pipe_files(struct file **res, int flags)
 743{
 744	int err;
 745	struct inode *inode = get_pipe_inode();
 746	struct file *f;
 747	struct path path;
 748
 749	if (!inode)
 750		return -ENFILE;
 751
 752	err = -ENOMEM;
 753	path.dentry = d_alloc_pseudo(pipe_mnt->mnt_sb, &empty_name);
 754	if (!path.dentry)
 755		goto err_inode;
 756	path.mnt = mntget(pipe_mnt);
 757
 758	d_instantiate(path.dentry, inode);
 
 759
 760	f = alloc_file(&path, FMODE_WRITE, &pipefifo_fops);
 
 
 761	if (IS_ERR(f)) {
 762		err = PTR_ERR(f);
 763		goto err_dentry;
 
 764	}
 765
 766	f->f_flags = O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT));
 767	f->private_data = inode->i_pipe;
 768
 769	res[0] = alloc_file(&path, FMODE_READ, &pipefifo_fops);
 
 770	if (IS_ERR(res[0])) {
 771		err = PTR_ERR(res[0]);
 772		goto err_file;
 
 773	}
 774
 775	path_get(&path);
 776	res[0]->private_data = inode->i_pipe;
 777	res[0]->f_flags = O_RDONLY | (flags & O_NONBLOCK);
 778	res[1] = f;
 
 
 779	return 0;
 780
 781err_file:
 782	put_filp(f);
 783err_dentry:
 784	free_pipe_info(inode->i_pipe);
 785	path_put(&path);
 786	return err;
 787
 788err_inode:
 789	free_pipe_info(inode->i_pipe);
 790	iput(inode);
 791	return err;
 792}
 793
 794static int __do_pipe_flags(int *fd, struct file **files, int flags)
 795{
 796	int error;
 797	int fdw, fdr;
 798
 799	if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT))
 800		return -EINVAL;
 801
 802	error = create_pipe_files(files, flags);
 803	if (error)
 804		return error;
 805
 806	error = get_unused_fd_flags(flags);
 807	if (error < 0)
 808		goto err_read_pipe;
 809	fdr = error;
 810
 811	error = get_unused_fd_flags(flags);
 812	if (error < 0)
 813		goto err_fdr;
 814	fdw = error;
 815
 816	audit_fd_pair(fdr, fdw);
 817	fd[0] = fdr;
 818	fd[1] = fdw;
 819	return 0;
 820
 821 err_fdr:
 822	put_unused_fd(fdr);
 823 err_read_pipe:
 824	fput(files[0]);
 825	fput(files[1]);
 826	return error;
 827}
 828
 829int do_pipe_flags(int *fd, int flags)
 830{
 831	struct file *files[2];
 832	int error = __do_pipe_flags(fd, files, flags);
 833	if (!error) {
 834		fd_install(fd[0], files[0]);
 835		fd_install(fd[1], files[1]);
 836	}
 837	return error;
 838}
 839
 840/*
 841 * sys_pipe() is the normal C calling standard for creating
 842 * a pipe. It's not the way Unix traditionally does this, though.
 843 */
 844static int do_pipe2(int __user *fildes, int flags)
 845{
 846	struct file *files[2];
 847	int fd[2];
 848	int error;
 849
 850	error = __do_pipe_flags(fd, files, flags);
 851	if (!error) {
 852		if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
 853			fput(files[0]);
 854			fput(files[1]);
 855			put_unused_fd(fd[0]);
 856			put_unused_fd(fd[1]);
 857			error = -EFAULT;
 858		} else {
 859			fd_install(fd[0], files[0]);
 860			fd_install(fd[1], files[1]);
 861		}
 862	}
 863	return error;
 864}
 865
 866SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
 867{
 868	return do_pipe2(fildes, flags);
 869}
 870
 871SYSCALL_DEFINE1(pipe, int __user *, fildes)
 872{
 873	return do_pipe2(fildes, 0);
 874}
 875
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 876static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
 877{
 878	int cur = *cnt;	
 
 879
 880	while (cur == *cnt) {
 881		pipe_wait(pipe);
 
 
 
 
 882		if (signal_pending(current))
 883			break;
 884	}
 885	return cur == *cnt ? -ERESTARTSYS : 0;
 886}
 887
 888static void wake_up_partner(struct pipe_inode_info *pipe)
 889{
 890	wake_up_interruptible(&pipe->wait);
 891}
 892
 893static int fifo_open(struct inode *inode, struct file *filp)
 894{
 895	struct pipe_inode_info *pipe;
 896	bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
 897	int ret;
 898
 899	filp->f_version = 0;
 900
 901	spin_lock(&inode->i_lock);
 902	if (inode->i_pipe) {
 903		pipe = inode->i_pipe;
 904		pipe->files++;
 905		spin_unlock(&inode->i_lock);
 906	} else {
 907		spin_unlock(&inode->i_lock);
 908		pipe = alloc_pipe_info();
 909		if (!pipe)
 910			return -ENOMEM;
 911		pipe->files = 1;
 912		spin_lock(&inode->i_lock);
 913		if (unlikely(inode->i_pipe)) {
 914			inode->i_pipe->files++;
 915			spin_unlock(&inode->i_lock);
 916			free_pipe_info(pipe);
 917			pipe = inode->i_pipe;
 918		} else {
 919			inode->i_pipe = pipe;
 920			spin_unlock(&inode->i_lock);
 921		}
 922	}
 923	filp->private_data = pipe;
 924	/* OK, we have a pipe and it's pinned down */
 925
 926	__pipe_lock(pipe);
 927
 928	/* We can only do regular read/write on fifos */
 929	filp->f_mode &= (FMODE_READ | FMODE_WRITE);
 930
 931	switch (filp->f_mode) {
 932	case FMODE_READ:
 933	/*
 934	 *  O_RDONLY
 935	 *  POSIX.1 says that O_NONBLOCK means return with the FIFO
 936	 *  opened, even when there is no process writing the FIFO.
 937	 */
 938		pipe->r_counter++;
 939		if (pipe->readers++ == 0)
 940			wake_up_partner(pipe);
 941
 942		if (!is_pipe && !pipe->writers) {
 943			if ((filp->f_flags & O_NONBLOCK)) {
 944				/* suppress EPOLLHUP until we have
 945				 * seen a writer */
 946				filp->f_version = pipe->w_counter;
 947			} else {
 948				if (wait_for_partner(pipe, &pipe->w_counter))
 949					goto err_rd;
 950			}
 951		}
 952		break;
 953	
 954	case FMODE_WRITE:
 955	/*
 956	 *  O_WRONLY
 957	 *  POSIX.1 says that O_NONBLOCK means return -1 with
 958	 *  errno=ENXIO when there is no process reading the FIFO.
 959	 */
 960		ret = -ENXIO;
 961		if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
 962			goto err;
 963
 964		pipe->w_counter++;
 965		if (!pipe->writers++)
 966			wake_up_partner(pipe);
 967
 968		if (!is_pipe && !pipe->readers) {
 969			if (wait_for_partner(pipe, &pipe->r_counter))
 970				goto err_wr;
 971		}
 972		break;
 973	
 974	case FMODE_READ | FMODE_WRITE:
 975	/*
 976	 *  O_RDWR
 977	 *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
 978	 *  This implementation will NEVER block on a O_RDWR open, since
 979	 *  the process can at least talk to itself.
 980	 */
 981
 982		pipe->readers++;
 983		pipe->writers++;
 984		pipe->r_counter++;
 985		pipe->w_counter++;
 986		if (pipe->readers == 1 || pipe->writers == 1)
 987			wake_up_partner(pipe);
 988		break;
 989
 990	default:
 991		ret = -EINVAL;
 992		goto err;
 993	}
 994
 995	/* Ok! */
 996	__pipe_unlock(pipe);
 997	return 0;
 998
 999err_rd:
1000	if (!--pipe->readers)
1001		wake_up_interruptible(&pipe->wait);
1002	ret = -ERESTARTSYS;
1003	goto err;
1004
1005err_wr:
1006	if (!--pipe->writers)
1007		wake_up_interruptible(&pipe->wait);
1008	ret = -ERESTARTSYS;
1009	goto err;
1010
1011err:
1012	__pipe_unlock(pipe);
1013
1014	put_pipe_info(inode, pipe);
1015	return ret;
1016}
1017
1018const struct file_operations pipefifo_fops = {
1019	.open		= fifo_open,
1020	.llseek		= no_llseek,
1021	.read_iter	= pipe_read,
1022	.write_iter	= pipe_write,
1023	.poll		= pipe_poll,
1024	.unlocked_ioctl	= pipe_ioctl,
1025	.release	= pipe_release,
1026	.fasync		= pipe_fasync,
1027};
1028
1029/*
1030 * Currently we rely on the pipe array holding a power-of-2 number
1031 * of pages. Returns 0 on error.
1032 */
1033unsigned int round_pipe_size(unsigned long size)
1034{
1035	if (size > (1U << 31))
1036		return 0;
1037
1038	/* Minimum pipe size, as required by POSIX */
1039	if (size < PAGE_SIZE)
1040		return PAGE_SIZE;
1041
1042	return roundup_pow_of_two(size);
1043}
1044
1045/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1046 * Allocate a new array of pipe buffers and copy the info over. Returns the
1047 * pipe size if successful, or return -ERROR on error.
1048 */
1049static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1050{
1051	struct pipe_buffer *bufs;
1052	unsigned int size, nr_pages;
1053	unsigned long user_bufs;
 
1054	long ret = 0;
1055
 
 
 
 
 
1056	size = round_pipe_size(arg);
1057	nr_pages = size >> PAGE_SHIFT;
1058
1059	if (!nr_pages)
1060		return -EINVAL;
1061
1062	/*
1063	 * If trying to increase the pipe capacity, check that an
1064	 * unprivileged user is not trying to exceed various limits
1065	 * (soft limit check here, hard limit check just below).
1066	 * Decreasing the pipe capacity is always permitted, even
1067	 * if the user is currently over a limit.
1068	 */
1069	if (nr_pages > pipe->buffers &&
1070			size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1071		return -EPERM;
1072
1073	user_bufs = account_pipe_buffers(pipe->user, pipe->buffers, nr_pages);
1074
1075	if (nr_pages > pipe->buffers &&
1076			(too_many_pipe_buffers_hard(user_bufs) ||
1077			 too_many_pipe_buffers_soft(user_bufs)) &&
1078			is_unprivileged_user()) {
1079		ret = -EPERM;
1080		goto out_revert_acct;
1081	}
1082
1083	/*
1084	 * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
1085	 * expect a lot of shrink+grow operations, just free and allocate
1086	 * again like we would do for growing. If the pipe currently
1087	 * contains more buffers than arg, then return busy.
1088	 */
1089	if (nr_pages < pipe->nrbufs) {
1090		ret = -EBUSY;
1091		goto out_revert_acct;
1092	}
1093
1094	bufs = kcalloc(nr_pages, sizeof(*bufs),
1095		       GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1096	if (unlikely(!bufs)) {
1097		ret = -ENOMEM;
1098		goto out_revert_acct;
1099	}
1100
1101	/*
1102	 * The pipe array wraps around, so just start the new one at zero
1103	 * and adjust the indexes.
1104	 */
1105	if (pipe->nrbufs) {
1106		unsigned int tail;
1107		unsigned int head;
1108
1109		tail = pipe->curbuf + pipe->nrbufs;
1110		if (tail < pipe->buffers)
1111			tail = 0;
1112		else
1113			tail &= (pipe->buffers - 1);
1114
1115		head = pipe->nrbufs - tail;
1116		if (head)
1117			memcpy(bufs, pipe->bufs + pipe->curbuf, head * sizeof(struct pipe_buffer));
1118		if (tail)
1119			memcpy(bufs + head, pipe->bufs, tail * sizeof(struct pipe_buffer));
1120	}
1121
1122	pipe->curbuf = 0;
1123	kfree(pipe->bufs);
1124	pipe->bufs = bufs;
1125	pipe->buffers = nr_pages;
1126	return nr_pages * PAGE_SIZE;
1127
1128out_revert_acct:
1129	(void) account_pipe_buffers(pipe->user, nr_pages, pipe->buffers);
1130	return ret;
1131}
1132
1133/*
1134 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1135 * location, so checking ->i_pipe is not enough to verify that this is a
1136 * pipe.
1137 */
1138struct pipe_inode_info *get_pipe_info(struct file *file)
1139{
1140	return file->f_op == &pipefifo_fops ? file->private_data : NULL;
 
 
 
 
 
 
 
 
1141}
1142
1143long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1144{
1145	struct pipe_inode_info *pipe;
1146	long ret;
1147
1148	pipe = get_pipe_info(file);
1149	if (!pipe)
1150		return -EBADF;
1151
1152	__pipe_lock(pipe);
1153
1154	switch (cmd) {
1155	case F_SETPIPE_SZ:
1156		ret = pipe_set_size(pipe, arg);
1157		break;
1158	case F_GETPIPE_SZ:
1159		ret = pipe->buffers * PAGE_SIZE;
1160		break;
1161	default:
1162		ret = -EINVAL;
1163		break;
1164	}
1165
1166	__pipe_unlock(pipe);
1167	return ret;
1168}
1169
1170static const struct super_operations pipefs_ops = {
1171	.destroy_inode = free_inode_nonrcu,
1172	.statfs = simple_statfs,
1173};
1174
1175/*
1176 * pipefs should _never_ be mounted by userland - too much of security hassle,
1177 * no real gain from having the whole whorehouse mounted. So we don't need
1178 * any operations on the root directory. However, we need a non-trivial
1179 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1180 */
1181static struct dentry *pipefs_mount(struct file_system_type *fs_type,
1182			 int flags, const char *dev_name, void *data)
1183{
1184	return mount_pseudo(fs_type, "pipe:", &pipefs_ops,
1185			&pipefs_dentry_operations, PIPEFS_MAGIC);
 
 
 
 
1186}
1187
1188static struct file_system_type pipe_fs_type = {
1189	.name		= "pipefs",
1190	.mount		= pipefs_mount,
1191	.kill_sb	= kill_anon_super,
1192};
1193
1194static int __init init_pipe_fs(void)
1195{
1196	int err = register_filesystem(&pipe_fs_type);
1197
1198	if (!err) {
1199		pipe_mnt = kern_mount(&pipe_fs_type);
1200		if (IS_ERR(pipe_mnt)) {
1201			err = PTR_ERR(pipe_mnt);
1202			unregister_filesystem(&pipe_fs_type);
1203		}
1204	}
1205	return err;
1206}
1207
1208fs_initcall(init_pipe_fs);