Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/**
3 * eCryptfs: Linux filesystem encryption layer
4 *
5 * Copyright (C) 1997-2004 Erez Zadok
6 * Copyright (C) 2001-2004 Stony Brook University
7 * Copyright (C) 2004-2007 International Business Machines Corp.
8 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
9 * Michael C. Thompson <mcthomps@us.ibm.com>
10 */
11
12#include <crypto/hash.h>
13#include <crypto/skcipher.h>
14#include <linux/fs.h>
15#include <linux/mount.h>
16#include <linux/pagemap.h>
17#include <linux/random.h>
18#include <linux/compiler.h>
19#include <linux/key.h>
20#include <linux/namei.h>
21#include <linux/file.h>
22#include <linux/scatterlist.h>
23#include <linux/slab.h>
24#include <asm/unaligned.h>
25#include <linux/kernel.h>
26#include <linux/xattr.h>
27#include "ecryptfs_kernel.h"
28
29#define DECRYPT 0
30#define ENCRYPT 1
31
32/**
33 * ecryptfs_from_hex
34 * @dst: Buffer to take the bytes from src hex; must be at least of
35 * size (src_size / 2)
36 * @src: Buffer to be converted from a hex string representation to raw value
37 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
38 */
39void ecryptfs_from_hex(char *dst, char *src, int dst_size)
40{
41 int x;
42 char tmp[3] = { 0, };
43
44 for (x = 0; x < dst_size; x++) {
45 tmp[0] = src[x * 2];
46 tmp[1] = src[x * 2 + 1];
47 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
48 }
49}
50
51/**
52 * ecryptfs_calculate_md5 - calculates the md5 of @src
53 * @dst: Pointer to 16 bytes of allocated memory
54 * @crypt_stat: Pointer to crypt_stat struct for the current inode
55 * @src: Data to be md5'd
56 * @len: Length of @src
57 *
58 * Uses the allocated crypto context that crypt_stat references to
59 * generate the MD5 sum of the contents of src.
60 */
61static int ecryptfs_calculate_md5(char *dst,
62 struct ecryptfs_crypt_stat *crypt_stat,
63 char *src, int len)
64{
65 int rc = crypto_shash_tfm_digest(crypt_stat->hash_tfm, src, len, dst);
66
67 if (rc) {
68 printk(KERN_ERR
69 "%s: Error computing crypto hash; rc = [%d]\n",
70 __func__, rc);
71 goto out;
72 }
73out:
74 return rc;
75}
76
77static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
78 char *cipher_name,
79 char *chaining_modifier)
80{
81 int cipher_name_len = strlen(cipher_name);
82 int chaining_modifier_len = strlen(chaining_modifier);
83 int algified_name_len;
84 int rc;
85
86 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
87 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
88 if (!(*algified_name)) {
89 rc = -ENOMEM;
90 goto out;
91 }
92 snprintf((*algified_name), algified_name_len, "%s(%s)",
93 chaining_modifier, cipher_name);
94 rc = 0;
95out:
96 return rc;
97}
98
99/**
100 * ecryptfs_derive_iv
101 * @iv: destination for the derived iv vale
102 * @crypt_stat: Pointer to crypt_stat struct for the current inode
103 * @offset: Offset of the extent whose IV we are to derive
104 *
105 * Generate the initialization vector from the given root IV and page
106 * offset.
107 *
108 * Returns zero on success; non-zero on error.
109 */
110int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
111 loff_t offset)
112{
113 int rc = 0;
114 char dst[MD5_DIGEST_SIZE];
115 char src[ECRYPTFS_MAX_IV_BYTES + 16];
116
117 if (unlikely(ecryptfs_verbosity > 0)) {
118 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
119 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
120 }
121 /* TODO: It is probably secure to just cast the least
122 * significant bits of the root IV into an unsigned long and
123 * add the offset to that rather than go through all this
124 * hashing business. -Halcrow */
125 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
126 memset((src + crypt_stat->iv_bytes), 0, 16);
127 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
128 if (unlikely(ecryptfs_verbosity > 0)) {
129 ecryptfs_printk(KERN_DEBUG, "source:\n");
130 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
131 }
132 rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
133 (crypt_stat->iv_bytes + 16));
134 if (rc) {
135 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
136 "MD5 while generating IV for a page\n");
137 goto out;
138 }
139 memcpy(iv, dst, crypt_stat->iv_bytes);
140 if (unlikely(ecryptfs_verbosity > 0)) {
141 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
142 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
143 }
144out:
145 return rc;
146}
147
148/**
149 * ecryptfs_init_crypt_stat
150 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
151 *
152 * Initialize the crypt_stat structure.
153 */
154int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
155{
156 struct crypto_shash *tfm;
157 int rc;
158
159 tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
160 if (IS_ERR(tfm)) {
161 rc = PTR_ERR(tfm);
162 ecryptfs_printk(KERN_ERR, "Error attempting to "
163 "allocate crypto context; rc = [%d]\n",
164 rc);
165 return rc;
166 }
167
168 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
169 INIT_LIST_HEAD(&crypt_stat->keysig_list);
170 mutex_init(&crypt_stat->keysig_list_mutex);
171 mutex_init(&crypt_stat->cs_mutex);
172 mutex_init(&crypt_stat->cs_tfm_mutex);
173 crypt_stat->hash_tfm = tfm;
174 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
175
176 return 0;
177}
178
179/**
180 * ecryptfs_destroy_crypt_stat
181 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
182 *
183 * Releases all memory associated with a crypt_stat struct.
184 */
185void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
186{
187 struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
188
189 crypto_free_skcipher(crypt_stat->tfm);
190 crypto_free_shash(crypt_stat->hash_tfm);
191 list_for_each_entry_safe(key_sig, key_sig_tmp,
192 &crypt_stat->keysig_list, crypt_stat_list) {
193 list_del(&key_sig->crypt_stat_list);
194 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
195 }
196 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
197}
198
199void ecryptfs_destroy_mount_crypt_stat(
200 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
201{
202 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
203
204 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
205 return;
206 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
207 list_for_each_entry_safe(auth_tok, auth_tok_tmp,
208 &mount_crypt_stat->global_auth_tok_list,
209 mount_crypt_stat_list) {
210 list_del(&auth_tok->mount_crypt_stat_list);
211 if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
212 key_put(auth_tok->global_auth_tok_key);
213 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
214 }
215 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
216 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
217}
218
219/**
220 * virt_to_scatterlist
221 * @addr: Virtual address
222 * @size: Size of data; should be an even multiple of the block size
223 * @sg: Pointer to scatterlist array; set to NULL to obtain only
224 * the number of scatterlist structs required in array
225 * @sg_size: Max array size
226 *
227 * Fills in a scatterlist array with page references for a passed
228 * virtual address.
229 *
230 * Returns the number of scatterlist structs in array used
231 */
232int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
233 int sg_size)
234{
235 int i = 0;
236 struct page *pg;
237 int offset;
238 int remainder_of_page;
239
240 sg_init_table(sg, sg_size);
241
242 while (size > 0 && i < sg_size) {
243 pg = virt_to_page(addr);
244 offset = offset_in_page(addr);
245 sg_set_page(&sg[i], pg, 0, offset);
246 remainder_of_page = PAGE_SIZE - offset;
247 if (size >= remainder_of_page) {
248 sg[i].length = remainder_of_page;
249 addr += remainder_of_page;
250 size -= remainder_of_page;
251 } else {
252 sg[i].length = size;
253 addr += size;
254 size = 0;
255 }
256 i++;
257 }
258 if (size > 0)
259 return -ENOMEM;
260 return i;
261}
262
263struct extent_crypt_result {
264 struct completion completion;
265 int rc;
266};
267
268static void extent_crypt_complete(struct crypto_async_request *req, int rc)
269{
270 struct extent_crypt_result *ecr = req->data;
271
272 if (rc == -EINPROGRESS)
273 return;
274
275 ecr->rc = rc;
276 complete(&ecr->completion);
277}
278
279/**
280 * crypt_scatterlist
281 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
282 * @dst_sg: Destination of the data after performing the crypto operation
283 * @src_sg: Data to be encrypted or decrypted
284 * @size: Length of data
285 * @iv: IV to use
286 * @op: ENCRYPT or DECRYPT to indicate the desired operation
287 *
288 * Returns the number of bytes encrypted or decrypted; negative value on error
289 */
290static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
291 struct scatterlist *dst_sg,
292 struct scatterlist *src_sg, int size,
293 unsigned char *iv, int op)
294{
295 struct skcipher_request *req = NULL;
296 struct extent_crypt_result ecr;
297 int rc = 0;
298
299 if (!crypt_stat || !crypt_stat->tfm
300 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED))
301 return -EINVAL;
302
303 if (unlikely(ecryptfs_verbosity > 0)) {
304 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
305 crypt_stat->key_size);
306 ecryptfs_dump_hex(crypt_stat->key,
307 crypt_stat->key_size);
308 }
309
310 init_completion(&ecr.completion);
311
312 mutex_lock(&crypt_stat->cs_tfm_mutex);
313 req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
314 if (!req) {
315 mutex_unlock(&crypt_stat->cs_tfm_mutex);
316 rc = -ENOMEM;
317 goto out;
318 }
319
320 skcipher_request_set_callback(req,
321 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
322 extent_crypt_complete, &ecr);
323 /* Consider doing this once, when the file is opened */
324 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
325 rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
326 crypt_stat->key_size);
327 if (rc) {
328 ecryptfs_printk(KERN_ERR,
329 "Error setting key; rc = [%d]\n",
330 rc);
331 mutex_unlock(&crypt_stat->cs_tfm_mutex);
332 rc = -EINVAL;
333 goto out;
334 }
335 crypt_stat->flags |= ECRYPTFS_KEY_SET;
336 }
337 mutex_unlock(&crypt_stat->cs_tfm_mutex);
338 skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
339 rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
340 crypto_skcipher_decrypt(req);
341 if (rc == -EINPROGRESS || rc == -EBUSY) {
342 struct extent_crypt_result *ecr = req->base.data;
343
344 wait_for_completion(&ecr->completion);
345 rc = ecr->rc;
346 reinit_completion(&ecr->completion);
347 }
348out:
349 skcipher_request_free(req);
350 return rc;
351}
352
353/**
354 * lower_offset_for_page
355 *
356 * Convert an eCryptfs page index into a lower byte offset
357 */
358static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
359 struct page *page)
360{
361 return ecryptfs_lower_header_size(crypt_stat) +
362 ((loff_t)page->index << PAGE_SHIFT);
363}
364
365/**
366 * crypt_extent
367 * @crypt_stat: crypt_stat containing cryptographic context for the
368 * encryption operation
369 * @dst_page: The page to write the result into
370 * @src_page: The page to read from
371 * @extent_offset: Page extent offset for use in generating IV
372 * @op: ENCRYPT or DECRYPT to indicate the desired operation
373 *
374 * Encrypts or decrypts one extent of data.
375 *
376 * Return zero on success; non-zero otherwise
377 */
378static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
379 struct page *dst_page,
380 struct page *src_page,
381 unsigned long extent_offset, int op)
382{
383 pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
384 loff_t extent_base;
385 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
386 struct scatterlist src_sg, dst_sg;
387 size_t extent_size = crypt_stat->extent_size;
388 int rc;
389
390 extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
391 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
392 (extent_base + extent_offset));
393 if (rc) {
394 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
395 "extent [0x%.16llx]; rc = [%d]\n",
396 (unsigned long long)(extent_base + extent_offset), rc);
397 goto out;
398 }
399
400 sg_init_table(&src_sg, 1);
401 sg_init_table(&dst_sg, 1);
402
403 sg_set_page(&src_sg, src_page, extent_size,
404 extent_offset * extent_size);
405 sg_set_page(&dst_sg, dst_page, extent_size,
406 extent_offset * extent_size);
407
408 rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
409 extent_iv, op);
410 if (rc < 0) {
411 printk(KERN_ERR "%s: Error attempting to crypt page with "
412 "page_index = [%ld], extent_offset = [%ld]; "
413 "rc = [%d]\n", __func__, page_index, extent_offset, rc);
414 goto out;
415 }
416 rc = 0;
417out:
418 return rc;
419}
420
421/**
422 * ecryptfs_encrypt_page
423 * @page: Page mapped from the eCryptfs inode for the file; contains
424 * decrypted content that needs to be encrypted (to a temporary
425 * page; not in place) and written out to the lower file
426 *
427 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
428 * that eCryptfs pages may straddle the lower pages -- for instance,
429 * if the file was created on a machine with an 8K page size
430 * (resulting in an 8K header), and then the file is copied onto a
431 * host with a 32K page size, then when reading page 0 of the eCryptfs
432 * file, 24K of page 0 of the lower file will be read and decrypted,
433 * and then 8K of page 1 of the lower file will be read and decrypted.
434 *
435 * Returns zero on success; negative on error
436 */
437int ecryptfs_encrypt_page(struct page *page)
438{
439 struct inode *ecryptfs_inode;
440 struct ecryptfs_crypt_stat *crypt_stat;
441 char *enc_extent_virt;
442 struct page *enc_extent_page = NULL;
443 loff_t extent_offset;
444 loff_t lower_offset;
445 int rc = 0;
446
447 ecryptfs_inode = page->mapping->host;
448 crypt_stat =
449 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
450 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
451 enc_extent_page = alloc_page(GFP_USER);
452 if (!enc_extent_page) {
453 rc = -ENOMEM;
454 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
455 "encrypted extent\n");
456 goto out;
457 }
458
459 for (extent_offset = 0;
460 extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
461 extent_offset++) {
462 rc = crypt_extent(crypt_stat, enc_extent_page, page,
463 extent_offset, ENCRYPT);
464 if (rc) {
465 printk(KERN_ERR "%s: Error encrypting extent; "
466 "rc = [%d]\n", __func__, rc);
467 goto out;
468 }
469 }
470
471 lower_offset = lower_offset_for_page(crypt_stat, page);
472 enc_extent_virt = kmap(enc_extent_page);
473 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
474 PAGE_SIZE);
475 kunmap(enc_extent_page);
476 if (rc < 0) {
477 ecryptfs_printk(KERN_ERR,
478 "Error attempting to write lower page; rc = [%d]\n",
479 rc);
480 goto out;
481 }
482 rc = 0;
483out:
484 if (enc_extent_page) {
485 __free_page(enc_extent_page);
486 }
487 return rc;
488}
489
490/**
491 * ecryptfs_decrypt_page
492 * @page: Page mapped from the eCryptfs inode for the file; data read
493 * and decrypted from the lower file will be written into this
494 * page
495 *
496 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
497 * that eCryptfs pages may straddle the lower pages -- for instance,
498 * if the file was created on a machine with an 8K page size
499 * (resulting in an 8K header), and then the file is copied onto a
500 * host with a 32K page size, then when reading page 0 of the eCryptfs
501 * file, 24K of page 0 of the lower file will be read and decrypted,
502 * and then 8K of page 1 of the lower file will be read and decrypted.
503 *
504 * Returns zero on success; negative on error
505 */
506int ecryptfs_decrypt_page(struct page *page)
507{
508 struct inode *ecryptfs_inode;
509 struct ecryptfs_crypt_stat *crypt_stat;
510 char *page_virt;
511 unsigned long extent_offset;
512 loff_t lower_offset;
513 int rc = 0;
514
515 ecryptfs_inode = page->mapping->host;
516 crypt_stat =
517 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
518 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
519
520 lower_offset = lower_offset_for_page(crypt_stat, page);
521 page_virt = kmap(page);
522 rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
523 ecryptfs_inode);
524 kunmap(page);
525 if (rc < 0) {
526 ecryptfs_printk(KERN_ERR,
527 "Error attempting to read lower page; rc = [%d]\n",
528 rc);
529 goto out;
530 }
531
532 for (extent_offset = 0;
533 extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
534 extent_offset++) {
535 rc = crypt_extent(crypt_stat, page, page,
536 extent_offset, DECRYPT);
537 if (rc) {
538 printk(KERN_ERR "%s: Error encrypting extent; "
539 "rc = [%d]\n", __func__, rc);
540 goto out;
541 }
542 }
543out:
544 return rc;
545}
546
547#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
548
549/**
550 * ecryptfs_init_crypt_ctx
551 * @crypt_stat: Uninitialized crypt stats structure
552 *
553 * Initialize the crypto context.
554 *
555 * TODO: Performance: Keep a cache of initialized cipher contexts;
556 * only init if needed
557 */
558int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
559{
560 char *full_alg_name;
561 int rc = -EINVAL;
562
563 ecryptfs_printk(KERN_DEBUG,
564 "Initializing cipher [%s]; strlen = [%d]; "
565 "key_size_bits = [%zd]\n",
566 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
567 crypt_stat->key_size << 3);
568 mutex_lock(&crypt_stat->cs_tfm_mutex);
569 if (crypt_stat->tfm) {
570 rc = 0;
571 goto out_unlock;
572 }
573 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
574 crypt_stat->cipher, "cbc");
575 if (rc)
576 goto out_unlock;
577 crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
578 if (IS_ERR(crypt_stat->tfm)) {
579 rc = PTR_ERR(crypt_stat->tfm);
580 crypt_stat->tfm = NULL;
581 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
582 "Error initializing cipher [%s]\n",
583 full_alg_name);
584 goto out_free;
585 }
586 crypto_skcipher_set_flags(crypt_stat->tfm,
587 CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
588 rc = 0;
589out_free:
590 kfree(full_alg_name);
591out_unlock:
592 mutex_unlock(&crypt_stat->cs_tfm_mutex);
593 return rc;
594}
595
596static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
597{
598 int extent_size_tmp;
599
600 crypt_stat->extent_mask = 0xFFFFFFFF;
601 crypt_stat->extent_shift = 0;
602 if (crypt_stat->extent_size == 0)
603 return;
604 extent_size_tmp = crypt_stat->extent_size;
605 while ((extent_size_tmp & 0x01) == 0) {
606 extent_size_tmp >>= 1;
607 crypt_stat->extent_mask <<= 1;
608 crypt_stat->extent_shift++;
609 }
610}
611
612void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
613{
614 /* Default values; may be overwritten as we are parsing the
615 * packets. */
616 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
617 set_extent_mask_and_shift(crypt_stat);
618 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
619 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
620 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
621 else {
622 if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
623 crypt_stat->metadata_size =
624 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
625 else
626 crypt_stat->metadata_size = PAGE_SIZE;
627 }
628}
629
630/**
631 * ecryptfs_compute_root_iv
632 * @crypt_stats
633 *
634 * On error, sets the root IV to all 0's.
635 */
636int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
637{
638 int rc = 0;
639 char dst[MD5_DIGEST_SIZE];
640
641 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
642 BUG_ON(crypt_stat->iv_bytes <= 0);
643 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
644 rc = -EINVAL;
645 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
646 "cannot generate root IV\n");
647 goto out;
648 }
649 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
650 crypt_stat->key_size);
651 if (rc) {
652 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
653 "MD5 while generating root IV\n");
654 goto out;
655 }
656 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
657out:
658 if (rc) {
659 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
660 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
661 }
662 return rc;
663}
664
665static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
666{
667 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
668 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
669 ecryptfs_compute_root_iv(crypt_stat);
670 if (unlikely(ecryptfs_verbosity > 0)) {
671 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
672 ecryptfs_dump_hex(crypt_stat->key,
673 crypt_stat->key_size);
674 }
675}
676
677/**
678 * ecryptfs_copy_mount_wide_flags_to_inode_flags
679 * @crypt_stat: The inode's cryptographic context
680 * @mount_crypt_stat: The mount point's cryptographic context
681 *
682 * This function propagates the mount-wide flags to individual inode
683 * flags.
684 */
685static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
686 struct ecryptfs_crypt_stat *crypt_stat,
687 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
688{
689 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
690 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
691 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
692 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
693 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
694 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
695 if (mount_crypt_stat->flags
696 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
697 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
698 else if (mount_crypt_stat->flags
699 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
700 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
701 }
702}
703
704static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
705 struct ecryptfs_crypt_stat *crypt_stat,
706 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
707{
708 struct ecryptfs_global_auth_tok *global_auth_tok;
709 int rc = 0;
710
711 mutex_lock(&crypt_stat->keysig_list_mutex);
712 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
713
714 list_for_each_entry(global_auth_tok,
715 &mount_crypt_stat->global_auth_tok_list,
716 mount_crypt_stat_list) {
717 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
718 continue;
719 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
720 if (rc) {
721 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
722 goto out;
723 }
724 }
725
726out:
727 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
728 mutex_unlock(&crypt_stat->keysig_list_mutex);
729 return rc;
730}
731
732/**
733 * ecryptfs_set_default_crypt_stat_vals
734 * @crypt_stat: The inode's cryptographic context
735 * @mount_crypt_stat: The mount point's cryptographic context
736 *
737 * Default values in the event that policy does not override them.
738 */
739static void ecryptfs_set_default_crypt_stat_vals(
740 struct ecryptfs_crypt_stat *crypt_stat,
741 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
742{
743 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
744 mount_crypt_stat);
745 ecryptfs_set_default_sizes(crypt_stat);
746 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
747 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
748 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
749 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
750 crypt_stat->mount_crypt_stat = mount_crypt_stat;
751}
752
753/**
754 * ecryptfs_new_file_context
755 * @ecryptfs_inode: The eCryptfs inode
756 *
757 * If the crypto context for the file has not yet been established,
758 * this is where we do that. Establishing a new crypto context
759 * involves the following decisions:
760 * - What cipher to use?
761 * - What set of authentication tokens to use?
762 * Here we just worry about getting enough information into the
763 * authentication tokens so that we know that they are available.
764 * We associate the available authentication tokens with the new file
765 * via the set of signatures in the crypt_stat struct. Later, when
766 * the headers are actually written out, we may again defer to
767 * userspace to perform the encryption of the session key; for the
768 * foreseeable future, this will be the case with public key packets.
769 *
770 * Returns zero on success; non-zero otherwise
771 */
772int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
773{
774 struct ecryptfs_crypt_stat *crypt_stat =
775 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
776 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
777 &ecryptfs_superblock_to_private(
778 ecryptfs_inode->i_sb)->mount_crypt_stat;
779 int cipher_name_len;
780 int rc = 0;
781
782 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
783 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
784 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
785 mount_crypt_stat);
786 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
787 mount_crypt_stat);
788 if (rc) {
789 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
790 "to the inode key sigs; rc = [%d]\n", rc);
791 goto out;
792 }
793 cipher_name_len =
794 strlen(mount_crypt_stat->global_default_cipher_name);
795 memcpy(crypt_stat->cipher,
796 mount_crypt_stat->global_default_cipher_name,
797 cipher_name_len);
798 crypt_stat->cipher[cipher_name_len] = '\0';
799 crypt_stat->key_size =
800 mount_crypt_stat->global_default_cipher_key_size;
801 ecryptfs_generate_new_key(crypt_stat);
802 rc = ecryptfs_init_crypt_ctx(crypt_stat);
803 if (rc)
804 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
805 "context for cipher [%s]: rc = [%d]\n",
806 crypt_stat->cipher, rc);
807out:
808 return rc;
809}
810
811/**
812 * ecryptfs_validate_marker - check for the ecryptfs marker
813 * @data: The data block in which to check
814 *
815 * Returns zero if marker found; -EINVAL if not found
816 */
817static int ecryptfs_validate_marker(char *data)
818{
819 u32 m_1, m_2;
820
821 m_1 = get_unaligned_be32(data);
822 m_2 = get_unaligned_be32(data + 4);
823 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
824 return 0;
825 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
826 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
827 MAGIC_ECRYPTFS_MARKER);
828 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
829 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
830 return -EINVAL;
831}
832
833struct ecryptfs_flag_map_elem {
834 u32 file_flag;
835 u32 local_flag;
836};
837
838/* Add support for additional flags by adding elements here. */
839static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
840 {0x00000001, ECRYPTFS_ENABLE_HMAC},
841 {0x00000002, ECRYPTFS_ENCRYPTED},
842 {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
843 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
844};
845
846/**
847 * ecryptfs_process_flags
848 * @crypt_stat: The cryptographic context
849 * @page_virt: Source data to be parsed
850 * @bytes_read: Updated with the number of bytes read
851 */
852static void ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
853 char *page_virt, int *bytes_read)
854{
855 int i;
856 u32 flags;
857
858 flags = get_unaligned_be32(page_virt);
859 for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
860 if (flags & ecryptfs_flag_map[i].file_flag) {
861 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
862 } else
863 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
864 /* Version is in top 8 bits of the 32-bit flag vector */
865 crypt_stat->file_version = ((flags >> 24) & 0xFF);
866 (*bytes_read) = 4;
867}
868
869/**
870 * write_ecryptfs_marker
871 * @page_virt: The pointer to in a page to begin writing the marker
872 * @written: Number of bytes written
873 *
874 * Marker = 0x3c81b7f5
875 */
876static void write_ecryptfs_marker(char *page_virt, size_t *written)
877{
878 u32 m_1, m_2;
879
880 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
881 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
882 put_unaligned_be32(m_1, page_virt);
883 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
884 put_unaligned_be32(m_2, page_virt);
885 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
886}
887
888void ecryptfs_write_crypt_stat_flags(char *page_virt,
889 struct ecryptfs_crypt_stat *crypt_stat,
890 size_t *written)
891{
892 u32 flags = 0;
893 int i;
894
895 for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
896 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
897 flags |= ecryptfs_flag_map[i].file_flag;
898 /* Version is in top 8 bits of the 32-bit flag vector */
899 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
900 put_unaligned_be32(flags, page_virt);
901 (*written) = 4;
902}
903
904struct ecryptfs_cipher_code_str_map_elem {
905 char cipher_str[16];
906 u8 cipher_code;
907};
908
909/* Add support for additional ciphers by adding elements here. The
910 * cipher_code is whatever OpenPGP applications use to identify the
911 * ciphers. List in order of probability. */
912static struct ecryptfs_cipher_code_str_map_elem
913ecryptfs_cipher_code_str_map[] = {
914 {"aes",RFC2440_CIPHER_AES_128 },
915 {"blowfish", RFC2440_CIPHER_BLOWFISH},
916 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
917 {"cast5", RFC2440_CIPHER_CAST_5},
918 {"twofish", RFC2440_CIPHER_TWOFISH},
919 {"cast6", RFC2440_CIPHER_CAST_6},
920 {"aes", RFC2440_CIPHER_AES_192},
921 {"aes", RFC2440_CIPHER_AES_256}
922};
923
924/**
925 * ecryptfs_code_for_cipher_string
926 * @cipher_name: The string alias for the cipher
927 * @key_bytes: Length of key in bytes; used for AES code selection
928 *
929 * Returns zero on no match, or the cipher code on match
930 */
931u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
932{
933 int i;
934 u8 code = 0;
935 struct ecryptfs_cipher_code_str_map_elem *map =
936 ecryptfs_cipher_code_str_map;
937
938 if (strcmp(cipher_name, "aes") == 0) {
939 switch (key_bytes) {
940 case 16:
941 code = RFC2440_CIPHER_AES_128;
942 break;
943 case 24:
944 code = RFC2440_CIPHER_AES_192;
945 break;
946 case 32:
947 code = RFC2440_CIPHER_AES_256;
948 }
949 } else {
950 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
951 if (strcmp(cipher_name, map[i].cipher_str) == 0) {
952 code = map[i].cipher_code;
953 break;
954 }
955 }
956 return code;
957}
958
959/**
960 * ecryptfs_cipher_code_to_string
961 * @str: Destination to write out the cipher name
962 * @cipher_code: The code to convert to cipher name string
963 *
964 * Returns zero on success
965 */
966int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
967{
968 int rc = 0;
969 int i;
970
971 str[0] = '\0';
972 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
973 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
974 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
975 if (str[0] == '\0') {
976 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
977 "[%d]\n", cipher_code);
978 rc = -EINVAL;
979 }
980 return rc;
981}
982
983int ecryptfs_read_and_validate_header_region(struct inode *inode)
984{
985 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
986 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
987 int rc;
988
989 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
990 inode);
991 if (rc < 0)
992 return rc;
993 else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
994 return -EINVAL;
995 rc = ecryptfs_validate_marker(marker);
996 if (!rc)
997 ecryptfs_i_size_init(file_size, inode);
998 return rc;
999}
1000
1001void
1002ecryptfs_write_header_metadata(char *virt,
1003 struct ecryptfs_crypt_stat *crypt_stat,
1004 size_t *written)
1005{
1006 u32 header_extent_size;
1007 u16 num_header_extents_at_front;
1008
1009 header_extent_size = (u32)crypt_stat->extent_size;
1010 num_header_extents_at_front =
1011 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1012 put_unaligned_be32(header_extent_size, virt);
1013 virt += 4;
1014 put_unaligned_be16(num_header_extents_at_front, virt);
1015 (*written) = 6;
1016}
1017
1018struct kmem_cache *ecryptfs_header_cache;
1019
1020/**
1021 * ecryptfs_write_headers_virt
1022 * @page_virt: The virtual address to write the headers to
1023 * @max: The size of memory allocated at page_virt
1024 * @size: Set to the number of bytes written by this function
1025 * @crypt_stat: The cryptographic context
1026 * @ecryptfs_dentry: The eCryptfs dentry
1027 *
1028 * Format version: 1
1029 *
1030 * Header Extent:
1031 * Octets 0-7: Unencrypted file size (big-endian)
1032 * Octets 8-15: eCryptfs special marker
1033 * Octets 16-19: Flags
1034 * Octet 16: File format version number (between 0 and 255)
1035 * Octets 17-18: Reserved
1036 * Octet 19: Bit 1 (lsb): Reserved
1037 * Bit 2: Encrypted?
1038 * Bits 3-8: Reserved
1039 * Octets 20-23: Header extent size (big-endian)
1040 * Octets 24-25: Number of header extents at front of file
1041 * (big-endian)
1042 * Octet 26: Begin RFC 2440 authentication token packet set
1043 * Data Extent 0:
1044 * Lower data (CBC encrypted)
1045 * Data Extent 1:
1046 * Lower data (CBC encrypted)
1047 * ...
1048 *
1049 * Returns zero on success
1050 */
1051static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1052 size_t *size,
1053 struct ecryptfs_crypt_stat *crypt_stat,
1054 struct dentry *ecryptfs_dentry)
1055{
1056 int rc;
1057 size_t written;
1058 size_t offset;
1059
1060 offset = ECRYPTFS_FILE_SIZE_BYTES;
1061 write_ecryptfs_marker((page_virt + offset), &written);
1062 offset += written;
1063 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1064 &written);
1065 offset += written;
1066 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1067 &written);
1068 offset += written;
1069 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1070 ecryptfs_dentry, &written,
1071 max - offset);
1072 if (rc)
1073 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1074 "set; rc = [%d]\n", rc);
1075 if (size) {
1076 offset += written;
1077 *size = offset;
1078 }
1079 return rc;
1080}
1081
1082static int
1083ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1084 char *virt, size_t virt_len)
1085{
1086 int rc;
1087
1088 rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1089 0, virt_len);
1090 if (rc < 0)
1091 printk(KERN_ERR "%s: Error attempting to write header "
1092 "information to lower file; rc = [%d]\n", __func__, rc);
1093 else
1094 rc = 0;
1095 return rc;
1096}
1097
1098static int
1099ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1100 struct inode *ecryptfs_inode,
1101 char *page_virt, size_t size)
1102{
1103 int rc;
1104 struct dentry *lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
1105 struct inode *lower_inode = d_inode(lower_dentry);
1106
1107 if (!(lower_inode->i_opflags & IOP_XATTR)) {
1108 rc = -EOPNOTSUPP;
1109 goto out;
1110 }
1111
1112 inode_lock(lower_inode);
1113 rc = __vfs_setxattr(lower_dentry, lower_inode, ECRYPTFS_XATTR_NAME,
1114 page_virt, size, 0);
1115 if (!rc && ecryptfs_inode)
1116 fsstack_copy_attr_all(ecryptfs_inode, lower_inode);
1117 inode_unlock(lower_inode);
1118out:
1119 return rc;
1120}
1121
1122static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1123 unsigned int order)
1124{
1125 struct page *page;
1126
1127 page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1128 if (page)
1129 return (unsigned long) page_address(page);
1130 return 0;
1131}
1132
1133/**
1134 * ecryptfs_write_metadata
1135 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1136 * @ecryptfs_inode: The newly created eCryptfs inode
1137 *
1138 * Write the file headers out. This will likely involve a userspace
1139 * callout, in which the session key is encrypted with one or more
1140 * public keys and/or the passphrase necessary to do the encryption is
1141 * retrieved via a prompt. Exactly what happens at this point should
1142 * be policy-dependent.
1143 *
1144 * Returns zero on success; non-zero on error
1145 */
1146int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1147 struct inode *ecryptfs_inode)
1148{
1149 struct ecryptfs_crypt_stat *crypt_stat =
1150 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1151 unsigned int order;
1152 char *virt;
1153 size_t virt_len;
1154 size_t size = 0;
1155 int rc = 0;
1156
1157 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1158 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1159 printk(KERN_ERR "Key is invalid; bailing out\n");
1160 rc = -EINVAL;
1161 goto out;
1162 }
1163 } else {
1164 printk(KERN_WARNING "%s: Encrypted flag not set\n",
1165 __func__);
1166 rc = -EINVAL;
1167 goto out;
1168 }
1169 virt_len = crypt_stat->metadata_size;
1170 order = get_order(virt_len);
1171 /* Released in this function */
1172 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1173 if (!virt) {
1174 printk(KERN_ERR "%s: Out of memory\n", __func__);
1175 rc = -ENOMEM;
1176 goto out;
1177 }
1178 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1179 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1180 ecryptfs_dentry);
1181 if (unlikely(rc)) {
1182 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1183 __func__, rc);
1184 goto out_free;
1185 }
1186 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1187 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1188 virt, size);
1189 else
1190 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1191 virt_len);
1192 if (rc) {
1193 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1194 "rc = [%d]\n", __func__, rc);
1195 goto out_free;
1196 }
1197out_free:
1198 free_pages((unsigned long)virt, order);
1199out:
1200 return rc;
1201}
1202
1203#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1204#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1205static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1206 char *virt, int *bytes_read,
1207 int validate_header_size)
1208{
1209 int rc = 0;
1210 u32 header_extent_size;
1211 u16 num_header_extents_at_front;
1212
1213 header_extent_size = get_unaligned_be32(virt);
1214 virt += sizeof(__be32);
1215 num_header_extents_at_front = get_unaligned_be16(virt);
1216 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1217 * (size_t)header_extent_size));
1218 (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1219 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1220 && (crypt_stat->metadata_size
1221 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1222 rc = -EINVAL;
1223 printk(KERN_WARNING "Invalid header size: [%zd]\n",
1224 crypt_stat->metadata_size);
1225 }
1226 return rc;
1227}
1228
1229/**
1230 * set_default_header_data
1231 * @crypt_stat: The cryptographic context
1232 *
1233 * For version 0 file format; this function is only for backwards
1234 * compatibility for files created with the prior versions of
1235 * eCryptfs.
1236 */
1237static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1238{
1239 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1240}
1241
1242void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1243{
1244 struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1245 struct ecryptfs_crypt_stat *crypt_stat;
1246 u64 file_size;
1247
1248 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1249 mount_crypt_stat =
1250 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1251 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1252 file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1253 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1254 file_size += crypt_stat->metadata_size;
1255 } else
1256 file_size = get_unaligned_be64(page_virt);
1257 i_size_write(inode, (loff_t)file_size);
1258 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1259}
1260
1261/**
1262 * ecryptfs_read_headers_virt
1263 * @page_virt: The virtual address into which to read the headers
1264 * @crypt_stat: The cryptographic context
1265 * @ecryptfs_dentry: The eCryptfs dentry
1266 * @validate_header_size: Whether to validate the header size while reading
1267 *
1268 * Read/parse the header data. The header format is detailed in the
1269 * comment block for the ecryptfs_write_headers_virt() function.
1270 *
1271 * Returns zero on success
1272 */
1273static int ecryptfs_read_headers_virt(char *page_virt,
1274 struct ecryptfs_crypt_stat *crypt_stat,
1275 struct dentry *ecryptfs_dentry,
1276 int validate_header_size)
1277{
1278 int rc = 0;
1279 int offset;
1280 int bytes_read;
1281
1282 ecryptfs_set_default_sizes(crypt_stat);
1283 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1284 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1285 offset = ECRYPTFS_FILE_SIZE_BYTES;
1286 rc = ecryptfs_validate_marker(page_virt + offset);
1287 if (rc)
1288 goto out;
1289 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1290 ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1291 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1292 ecryptfs_process_flags(crypt_stat, (page_virt + offset), &bytes_read);
1293 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1294 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1295 "file version [%d] is supported by this "
1296 "version of eCryptfs\n",
1297 crypt_stat->file_version,
1298 ECRYPTFS_SUPPORTED_FILE_VERSION);
1299 rc = -EINVAL;
1300 goto out;
1301 }
1302 offset += bytes_read;
1303 if (crypt_stat->file_version >= 1) {
1304 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1305 &bytes_read, validate_header_size);
1306 if (rc) {
1307 ecryptfs_printk(KERN_WARNING, "Error reading header "
1308 "metadata; rc = [%d]\n", rc);
1309 }
1310 offset += bytes_read;
1311 } else
1312 set_default_header_data(crypt_stat);
1313 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1314 ecryptfs_dentry);
1315out:
1316 return rc;
1317}
1318
1319/**
1320 * ecryptfs_read_xattr_region
1321 * @page_virt: The vitual address into which to read the xattr data
1322 * @ecryptfs_inode: The eCryptfs inode
1323 *
1324 * Attempts to read the crypto metadata from the extended attribute
1325 * region of the lower file.
1326 *
1327 * Returns zero on success; non-zero on error
1328 */
1329int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1330{
1331 struct dentry *lower_dentry =
1332 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1333 ssize_t size;
1334 int rc = 0;
1335
1336 size = ecryptfs_getxattr_lower(lower_dentry,
1337 ecryptfs_inode_to_lower(ecryptfs_inode),
1338 ECRYPTFS_XATTR_NAME,
1339 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1340 if (size < 0) {
1341 if (unlikely(ecryptfs_verbosity > 0))
1342 printk(KERN_INFO "Error attempting to read the [%s] "
1343 "xattr from the lower file; return value = "
1344 "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1345 rc = -EINVAL;
1346 goto out;
1347 }
1348out:
1349 return rc;
1350}
1351
1352int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1353 struct inode *inode)
1354{
1355 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1356 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1357 int rc;
1358
1359 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1360 ecryptfs_inode_to_lower(inode),
1361 ECRYPTFS_XATTR_NAME, file_size,
1362 ECRYPTFS_SIZE_AND_MARKER_BYTES);
1363 if (rc < 0)
1364 return rc;
1365 else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1366 return -EINVAL;
1367 rc = ecryptfs_validate_marker(marker);
1368 if (!rc)
1369 ecryptfs_i_size_init(file_size, inode);
1370 return rc;
1371}
1372
1373/**
1374 * ecryptfs_read_metadata
1375 *
1376 * Common entry point for reading file metadata. From here, we could
1377 * retrieve the header information from the header region of the file,
1378 * the xattr region of the file, or some other repository that is
1379 * stored separately from the file itself. The current implementation
1380 * supports retrieving the metadata information from the file contents
1381 * and from the xattr region.
1382 *
1383 * Returns zero if valid headers found and parsed; non-zero otherwise
1384 */
1385int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1386{
1387 int rc;
1388 char *page_virt;
1389 struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1390 struct ecryptfs_crypt_stat *crypt_stat =
1391 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1392 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1393 &ecryptfs_superblock_to_private(
1394 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1395
1396 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1397 mount_crypt_stat);
1398 /* Read the first page from the underlying file */
1399 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1400 if (!page_virt) {
1401 rc = -ENOMEM;
1402 goto out;
1403 }
1404 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1405 ecryptfs_inode);
1406 if (rc >= 0)
1407 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1408 ecryptfs_dentry,
1409 ECRYPTFS_VALIDATE_HEADER_SIZE);
1410 if (rc) {
1411 /* metadata is not in the file header, so try xattrs */
1412 memset(page_virt, 0, PAGE_SIZE);
1413 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1414 if (rc) {
1415 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1416 "file header region or xattr region, inode %lu\n",
1417 ecryptfs_inode->i_ino);
1418 rc = -EINVAL;
1419 goto out;
1420 }
1421 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1422 ecryptfs_dentry,
1423 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1424 if (rc) {
1425 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1426 "file xattr region either, inode %lu\n",
1427 ecryptfs_inode->i_ino);
1428 rc = -EINVAL;
1429 }
1430 if (crypt_stat->mount_crypt_stat->flags
1431 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1432 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1433 } else {
1434 printk(KERN_WARNING "Attempt to access file with "
1435 "crypto metadata only in the extended attribute "
1436 "region, but eCryptfs was mounted without "
1437 "xattr support enabled. eCryptfs will not treat "
1438 "this like an encrypted file, inode %lu\n",
1439 ecryptfs_inode->i_ino);
1440 rc = -EINVAL;
1441 }
1442 }
1443out:
1444 if (page_virt) {
1445 memset(page_virt, 0, PAGE_SIZE);
1446 kmem_cache_free(ecryptfs_header_cache, page_virt);
1447 }
1448 return rc;
1449}
1450
1451/**
1452 * ecryptfs_encrypt_filename - encrypt filename
1453 *
1454 * CBC-encrypts the filename. We do not want to encrypt the same
1455 * filename with the same key and IV, which may happen with hard
1456 * links, so we prepend random bits to each filename.
1457 *
1458 * Returns zero on success; non-zero otherwise
1459 */
1460static int
1461ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1462 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1463{
1464 int rc = 0;
1465
1466 filename->encrypted_filename = NULL;
1467 filename->encrypted_filename_size = 0;
1468 if (mount_crypt_stat && (mount_crypt_stat->flags
1469 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1470 size_t packet_size;
1471 size_t remaining_bytes;
1472
1473 rc = ecryptfs_write_tag_70_packet(
1474 NULL, NULL,
1475 &filename->encrypted_filename_size,
1476 mount_crypt_stat, NULL,
1477 filename->filename_size);
1478 if (rc) {
1479 printk(KERN_ERR "%s: Error attempting to get packet "
1480 "size for tag 72; rc = [%d]\n", __func__,
1481 rc);
1482 filename->encrypted_filename_size = 0;
1483 goto out;
1484 }
1485 filename->encrypted_filename =
1486 kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1487 if (!filename->encrypted_filename) {
1488 rc = -ENOMEM;
1489 goto out;
1490 }
1491 remaining_bytes = filename->encrypted_filename_size;
1492 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1493 &remaining_bytes,
1494 &packet_size,
1495 mount_crypt_stat,
1496 filename->filename,
1497 filename->filename_size);
1498 if (rc) {
1499 printk(KERN_ERR "%s: Error attempting to generate "
1500 "tag 70 packet; rc = [%d]\n", __func__,
1501 rc);
1502 kfree(filename->encrypted_filename);
1503 filename->encrypted_filename = NULL;
1504 filename->encrypted_filename_size = 0;
1505 goto out;
1506 }
1507 filename->encrypted_filename_size = packet_size;
1508 } else {
1509 printk(KERN_ERR "%s: No support for requested filename "
1510 "encryption method in this release\n", __func__);
1511 rc = -EOPNOTSUPP;
1512 goto out;
1513 }
1514out:
1515 return rc;
1516}
1517
1518static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1519 const char *name, size_t name_size)
1520{
1521 int rc = 0;
1522
1523 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1524 if (!(*copied_name)) {
1525 rc = -ENOMEM;
1526 goto out;
1527 }
1528 memcpy((void *)(*copied_name), (void *)name, name_size);
1529 (*copied_name)[(name_size)] = '\0'; /* Only for convenience
1530 * in printing out the
1531 * string in debug
1532 * messages */
1533 (*copied_name_size) = name_size;
1534out:
1535 return rc;
1536}
1537
1538/**
1539 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1540 * @key_tfm: Crypto context for key material, set by this function
1541 * @cipher_name: Name of the cipher
1542 * @key_size: Size of the key in bytes
1543 *
1544 * Returns zero on success. Any crypto_tfm structs allocated here
1545 * should be released by other functions, such as on a superblock put
1546 * event, regardless of whether this function succeeds for fails.
1547 */
1548static int
1549ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
1550 char *cipher_name, size_t *key_size)
1551{
1552 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1553 char *full_alg_name = NULL;
1554 int rc;
1555
1556 *key_tfm = NULL;
1557 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1558 rc = -EINVAL;
1559 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1560 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1561 goto out;
1562 }
1563 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1564 "ecb");
1565 if (rc)
1566 goto out;
1567 *key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1568 if (IS_ERR(*key_tfm)) {
1569 rc = PTR_ERR(*key_tfm);
1570 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1571 "[%s]; rc = [%d]\n", full_alg_name, rc);
1572 goto out;
1573 }
1574 crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
1575 if (*key_size == 0)
1576 *key_size = crypto_skcipher_max_keysize(*key_tfm);
1577 get_random_bytes(dummy_key, *key_size);
1578 rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
1579 if (rc) {
1580 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1581 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1582 rc);
1583 rc = -EINVAL;
1584 goto out;
1585 }
1586out:
1587 kfree(full_alg_name);
1588 return rc;
1589}
1590
1591struct kmem_cache *ecryptfs_key_tfm_cache;
1592static struct list_head key_tfm_list;
1593struct mutex key_tfm_list_mutex;
1594
1595int __init ecryptfs_init_crypto(void)
1596{
1597 mutex_init(&key_tfm_list_mutex);
1598 INIT_LIST_HEAD(&key_tfm_list);
1599 return 0;
1600}
1601
1602/**
1603 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1604 *
1605 * Called only at module unload time
1606 */
1607int ecryptfs_destroy_crypto(void)
1608{
1609 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1610
1611 mutex_lock(&key_tfm_list_mutex);
1612 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1613 key_tfm_list) {
1614 list_del(&key_tfm->key_tfm_list);
1615 crypto_free_skcipher(key_tfm->key_tfm);
1616 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1617 }
1618 mutex_unlock(&key_tfm_list_mutex);
1619 return 0;
1620}
1621
1622int
1623ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1624 size_t key_size)
1625{
1626 struct ecryptfs_key_tfm *tmp_tfm;
1627 int rc = 0;
1628
1629 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1630
1631 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1632 if (key_tfm)
1633 (*key_tfm) = tmp_tfm;
1634 if (!tmp_tfm) {
1635 rc = -ENOMEM;
1636 goto out;
1637 }
1638 mutex_init(&tmp_tfm->key_tfm_mutex);
1639 strncpy(tmp_tfm->cipher_name, cipher_name,
1640 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1641 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1642 tmp_tfm->key_size = key_size;
1643 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1644 tmp_tfm->cipher_name,
1645 &tmp_tfm->key_size);
1646 if (rc) {
1647 printk(KERN_ERR "Error attempting to initialize key TFM "
1648 "cipher with name = [%s]; rc = [%d]\n",
1649 tmp_tfm->cipher_name, rc);
1650 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1651 if (key_tfm)
1652 (*key_tfm) = NULL;
1653 goto out;
1654 }
1655 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1656out:
1657 return rc;
1658}
1659
1660/**
1661 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1662 * @cipher_name: the name of the cipher to search for
1663 * @key_tfm: set to corresponding tfm if found
1664 *
1665 * Searches for cached key_tfm matching @cipher_name
1666 * Must be called with &key_tfm_list_mutex held
1667 * Returns 1 if found, with @key_tfm set
1668 * Returns 0 if not found, with @key_tfm set to NULL
1669 */
1670int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1671{
1672 struct ecryptfs_key_tfm *tmp_key_tfm;
1673
1674 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1675
1676 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1677 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1678 if (key_tfm)
1679 (*key_tfm) = tmp_key_tfm;
1680 return 1;
1681 }
1682 }
1683 if (key_tfm)
1684 (*key_tfm) = NULL;
1685 return 0;
1686}
1687
1688/**
1689 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1690 *
1691 * @tfm: set to cached tfm found, or new tfm created
1692 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1693 * @cipher_name: the name of the cipher to search for and/or add
1694 *
1695 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1696 * Searches for cached item first, and creates new if not found.
1697 * Returns 0 on success, non-zero if adding new cipher failed
1698 */
1699int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
1700 struct mutex **tfm_mutex,
1701 char *cipher_name)
1702{
1703 struct ecryptfs_key_tfm *key_tfm;
1704 int rc = 0;
1705
1706 (*tfm) = NULL;
1707 (*tfm_mutex) = NULL;
1708
1709 mutex_lock(&key_tfm_list_mutex);
1710 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1711 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1712 if (rc) {
1713 printk(KERN_ERR "Error adding new key_tfm to list; "
1714 "rc = [%d]\n", rc);
1715 goto out;
1716 }
1717 }
1718 (*tfm) = key_tfm->key_tfm;
1719 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1720out:
1721 mutex_unlock(&key_tfm_list_mutex);
1722 return rc;
1723}
1724
1725/* 64 characters forming a 6-bit target field */
1726static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1727 "EFGHIJKLMNOPQRST"
1728 "UVWXYZabcdefghij"
1729 "klmnopqrstuvwxyz");
1730
1731/* We could either offset on every reverse map or just pad some 0x00's
1732 * at the front here */
1733static const unsigned char filename_rev_map[256] = {
1734 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1735 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1736 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1737 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1738 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1739 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1740 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1741 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1742 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1743 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1744 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1745 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1746 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1747 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1748 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1749 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1750};
1751
1752/**
1753 * ecryptfs_encode_for_filename
1754 * @dst: Destination location for encoded filename
1755 * @dst_size: Size of the encoded filename in bytes
1756 * @src: Source location for the filename to encode
1757 * @src_size: Size of the source in bytes
1758 */
1759static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1760 unsigned char *src, size_t src_size)
1761{
1762 size_t num_blocks;
1763 size_t block_num = 0;
1764 size_t dst_offset = 0;
1765 unsigned char last_block[3];
1766
1767 if (src_size == 0) {
1768 (*dst_size) = 0;
1769 goto out;
1770 }
1771 num_blocks = (src_size / 3);
1772 if ((src_size % 3) == 0) {
1773 memcpy(last_block, (&src[src_size - 3]), 3);
1774 } else {
1775 num_blocks++;
1776 last_block[2] = 0x00;
1777 switch (src_size % 3) {
1778 case 1:
1779 last_block[0] = src[src_size - 1];
1780 last_block[1] = 0x00;
1781 break;
1782 case 2:
1783 last_block[0] = src[src_size - 2];
1784 last_block[1] = src[src_size - 1];
1785 }
1786 }
1787 (*dst_size) = (num_blocks * 4);
1788 if (!dst)
1789 goto out;
1790 while (block_num < num_blocks) {
1791 unsigned char *src_block;
1792 unsigned char dst_block[4];
1793
1794 if (block_num == (num_blocks - 1))
1795 src_block = last_block;
1796 else
1797 src_block = &src[block_num * 3];
1798 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1799 dst_block[1] = (((src_block[0] << 4) & 0x30)
1800 | ((src_block[1] >> 4) & 0x0F));
1801 dst_block[2] = (((src_block[1] << 2) & 0x3C)
1802 | ((src_block[2] >> 6) & 0x03));
1803 dst_block[3] = (src_block[2] & 0x3F);
1804 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1805 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1806 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1807 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1808 block_num++;
1809 }
1810out:
1811 return;
1812}
1813
1814static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1815{
1816 /* Not exact; conservatively long. Every block of 4
1817 * encoded characters decodes into a block of 3
1818 * decoded characters. This segment of code provides
1819 * the caller with the maximum amount of allocated
1820 * space that @dst will need to point to in a
1821 * subsequent call. */
1822 return ((encoded_size + 1) * 3) / 4;
1823}
1824
1825/**
1826 * ecryptfs_decode_from_filename
1827 * @dst: If NULL, this function only sets @dst_size and returns. If
1828 * non-NULL, this function decodes the encoded octets in @src
1829 * into the memory that @dst points to.
1830 * @dst_size: Set to the size of the decoded string.
1831 * @src: The encoded set of octets to decode.
1832 * @src_size: The size of the encoded set of octets to decode.
1833 */
1834static void
1835ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1836 const unsigned char *src, size_t src_size)
1837{
1838 u8 current_bit_offset = 0;
1839 size_t src_byte_offset = 0;
1840 size_t dst_byte_offset = 0;
1841
1842 if (!dst) {
1843 (*dst_size) = ecryptfs_max_decoded_size(src_size);
1844 goto out;
1845 }
1846 while (src_byte_offset < src_size) {
1847 unsigned char src_byte =
1848 filename_rev_map[(int)src[src_byte_offset]];
1849
1850 switch (current_bit_offset) {
1851 case 0:
1852 dst[dst_byte_offset] = (src_byte << 2);
1853 current_bit_offset = 6;
1854 break;
1855 case 6:
1856 dst[dst_byte_offset++] |= (src_byte >> 4);
1857 dst[dst_byte_offset] = ((src_byte & 0xF)
1858 << 4);
1859 current_bit_offset = 4;
1860 break;
1861 case 4:
1862 dst[dst_byte_offset++] |= (src_byte >> 2);
1863 dst[dst_byte_offset] = (src_byte << 6);
1864 current_bit_offset = 2;
1865 break;
1866 case 2:
1867 dst[dst_byte_offset++] |= (src_byte);
1868 current_bit_offset = 0;
1869 break;
1870 }
1871 src_byte_offset++;
1872 }
1873 (*dst_size) = dst_byte_offset;
1874out:
1875 return;
1876}
1877
1878/**
1879 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1880 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1881 * @name: The plaintext name
1882 * @length: The length of the plaintext
1883 * @encoded_name: The encypted name
1884 *
1885 * Encrypts and encodes a filename into something that constitutes a
1886 * valid filename for a filesystem, with printable characters.
1887 *
1888 * We assume that we have a properly initialized crypto context,
1889 * pointed to by crypt_stat->tfm.
1890 *
1891 * Returns zero on success; non-zero on otherwise
1892 */
1893int ecryptfs_encrypt_and_encode_filename(
1894 char **encoded_name,
1895 size_t *encoded_name_size,
1896 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1897 const char *name, size_t name_size)
1898{
1899 size_t encoded_name_no_prefix_size;
1900 int rc = 0;
1901
1902 (*encoded_name) = NULL;
1903 (*encoded_name_size) = 0;
1904 if (mount_crypt_stat && (mount_crypt_stat->flags
1905 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
1906 struct ecryptfs_filename *filename;
1907
1908 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1909 if (!filename) {
1910 rc = -ENOMEM;
1911 goto out;
1912 }
1913 filename->filename = (char *)name;
1914 filename->filename_size = name_size;
1915 rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
1916 if (rc) {
1917 printk(KERN_ERR "%s: Error attempting to encrypt "
1918 "filename; rc = [%d]\n", __func__, rc);
1919 kfree(filename);
1920 goto out;
1921 }
1922 ecryptfs_encode_for_filename(
1923 NULL, &encoded_name_no_prefix_size,
1924 filename->encrypted_filename,
1925 filename->encrypted_filename_size);
1926 if (mount_crypt_stat
1927 && (mount_crypt_stat->flags
1928 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
1929 (*encoded_name_size) =
1930 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1931 + encoded_name_no_prefix_size);
1932 else
1933 (*encoded_name_size) =
1934 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1935 + encoded_name_no_prefix_size);
1936 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1937 if (!(*encoded_name)) {
1938 rc = -ENOMEM;
1939 kfree(filename->encrypted_filename);
1940 kfree(filename);
1941 goto out;
1942 }
1943 if (mount_crypt_stat
1944 && (mount_crypt_stat->flags
1945 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1946 memcpy((*encoded_name),
1947 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1948 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1949 ecryptfs_encode_for_filename(
1950 ((*encoded_name)
1951 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
1952 &encoded_name_no_prefix_size,
1953 filename->encrypted_filename,
1954 filename->encrypted_filename_size);
1955 (*encoded_name_size) =
1956 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1957 + encoded_name_no_prefix_size);
1958 (*encoded_name)[(*encoded_name_size)] = '\0';
1959 } else {
1960 rc = -EOPNOTSUPP;
1961 }
1962 if (rc) {
1963 printk(KERN_ERR "%s: Error attempting to encode "
1964 "encrypted filename; rc = [%d]\n", __func__,
1965 rc);
1966 kfree((*encoded_name));
1967 (*encoded_name) = NULL;
1968 (*encoded_name_size) = 0;
1969 }
1970 kfree(filename->encrypted_filename);
1971 kfree(filename);
1972 } else {
1973 rc = ecryptfs_copy_filename(encoded_name,
1974 encoded_name_size,
1975 name, name_size);
1976 }
1977out:
1978 return rc;
1979}
1980
1981static bool is_dot_dotdot(const char *name, size_t name_size)
1982{
1983 if (name_size == 1 && name[0] == '.')
1984 return true;
1985 else if (name_size == 2 && name[0] == '.' && name[1] == '.')
1986 return true;
1987
1988 return false;
1989}
1990
1991/**
1992 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
1993 * @plaintext_name: The plaintext name
1994 * @plaintext_name_size: The plaintext name size
1995 * @ecryptfs_dir_dentry: eCryptfs directory dentry
1996 * @name: The filename in cipher text
1997 * @name_size: The cipher text name size
1998 *
1999 * Decrypts and decodes the filename.
2000 *
2001 * Returns zero on error; non-zero otherwise
2002 */
2003int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2004 size_t *plaintext_name_size,
2005 struct super_block *sb,
2006 const char *name, size_t name_size)
2007{
2008 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2009 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2010 char *decoded_name;
2011 size_t decoded_name_size;
2012 size_t packet_size;
2013 int rc = 0;
2014
2015 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) &&
2016 !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) {
2017 if (is_dot_dotdot(name, name_size)) {
2018 rc = ecryptfs_copy_filename(plaintext_name,
2019 plaintext_name_size,
2020 name, name_size);
2021 goto out;
2022 }
2023
2024 if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE ||
2025 strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2026 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) {
2027 rc = -EINVAL;
2028 goto out;
2029 }
2030
2031 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2032 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2033 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2034 name, name_size);
2035 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2036 if (!decoded_name) {
2037 rc = -ENOMEM;
2038 goto out;
2039 }
2040 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2041 name, name_size);
2042 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2043 plaintext_name_size,
2044 &packet_size,
2045 mount_crypt_stat,
2046 decoded_name,
2047 decoded_name_size);
2048 if (rc) {
2049 ecryptfs_printk(KERN_DEBUG,
2050 "%s: Could not parse tag 70 packet from filename\n",
2051 __func__);
2052 goto out_free;
2053 }
2054 } else {
2055 rc = ecryptfs_copy_filename(plaintext_name,
2056 plaintext_name_size,
2057 name, name_size);
2058 goto out;
2059 }
2060out_free:
2061 kfree(decoded_name);
2062out:
2063 return rc;
2064}
2065
2066#define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143
2067
2068int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2069 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2070{
2071 struct crypto_skcipher *tfm;
2072 struct mutex *tfm_mutex;
2073 size_t cipher_blocksize;
2074 int rc;
2075
2076 if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2077 (*namelen) = lower_namelen;
2078 return 0;
2079 }
2080
2081 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2082 mount_crypt_stat->global_default_fn_cipher_name);
2083 if (unlikely(rc)) {
2084 (*namelen) = 0;
2085 return rc;
2086 }
2087
2088 mutex_lock(tfm_mutex);
2089 cipher_blocksize = crypto_skcipher_blocksize(tfm);
2090 mutex_unlock(tfm_mutex);
2091
2092 /* Return an exact amount for the common cases */
2093 if (lower_namelen == NAME_MAX
2094 && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2095 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2096 return 0;
2097 }
2098
2099 /* Return a safe estimate for the uncommon cases */
2100 (*namelen) = lower_namelen;
2101 (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2102 /* Since this is the max decoded size, subtract 1 "decoded block" len */
2103 (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2104 (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2105 (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2106 /* Worst case is that the filename is padded nearly a full block size */
2107 (*namelen) -= cipher_blocksize - 1;
2108
2109 if ((*namelen) < 0)
2110 (*namelen) = 0;
2111
2112 return 0;
2113}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/**
3 * eCryptfs: Linux filesystem encryption layer
4 *
5 * Copyright (C) 1997-2004 Erez Zadok
6 * Copyright (C) 2001-2004 Stony Brook University
7 * Copyright (C) 2004-2007 International Business Machines Corp.
8 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
9 * Michael C. Thompson <mcthomps@us.ibm.com>
10 */
11
12#include <crypto/hash.h>
13#include <crypto/skcipher.h>
14#include <linux/fs.h>
15#include <linux/mount.h>
16#include <linux/pagemap.h>
17#include <linux/random.h>
18#include <linux/compiler.h>
19#include <linux/key.h>
20#include <linux/namei.h>
21#include <linux/file.h>
22#include <linux/scatterlist.h>
23#include <linux/slab.h>
24#include <asm/unaligned.h>
25#include <linux/kernel.h>
26#include <linux/xattr.h>
27#include "ecryptfs_kernel.h"
28
29#define DECRYPT 0
30#define ENCRYPT 1
31
32/**
33 * ecryptfs_from_hex
34 * @dst: Buffer to take the bytes from src hex; must be at least of
35 * size (src_size / 2)
36 * @src: Buffer to be converted from a hex string representation to raw value
37 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
38 */
39void ecryptfs_from_hex(char *dst, char *src, int dst_size)
40{
41 int x;
42 char tmp[3] = { 0, };
43
44 for (x = 0; x < dst_size; x++) {
45 tmp[0] = src[x * 2];
46 tmp[1] = src[x * 2 + 1];
47 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
48 }
49}
50
51static int ecryptfs_hash_digest(struct crypto_shash *tfm,
52 char *src, int len, char *dst)
53{
54 SHASH_DESC_ON_STACK(desc, tfm);
55 int err;
56
57 desc->tfm = tfm;
58 err = crypto_shash_digest(desc, src, len, dst);
59 shash_desc_zero(desc);
60 return err;
61}
62
63/**
64 * ecryptfs_calculate_md5 - calculates the md5 of @src
65 * @dst: Pointer to 16 bytes of allocated memory
66 * @crypt_stat: Pointer to crypt_stat struct for the current inode
67 * @src: Data to be md5'd
68 * @len: Length of @src
69 *
70 * Uses the allocated crypto context that crypt_stat references to
71 * generate the MD5 sum of the contents of src.
72 */
73static int ecryptfs_calculate_md5(char *dst,
74 struct ecryptfs_crypt_stat *crypt_stat,
75 char *src, int len)
76{
77 struct crypto_shash *tfm;
78 int rc = 0;
79
80 tfm = crypt_stat->hash_tfm;
81 rc = ecryptfs_hash_digest(tfm, src, len, dst);
82 if (rc) {
83 printk(KERN_ERR
84 "%s: Error computing crypto hash; rc = [%d]\n",
85 __func__, rc);
86 goto out;
87 }
88out:
89 return rc;
90}
91
92static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
93 char *cipher_name,
94 char *chaining_modifier)
95{
96 int cipher_name_len = strlen(cipher_name);
97 int chaining_modifier_len = strlen(chaining_modifier);
98 int algified_name_len;
99 int rc;
100
101 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
102 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
103 if (!(*algified_name)) {
104 rc = -ENOMEM;
105 goto out;
106 }
107 snprintf((*algified_name), algified_name_len, "%s(%s)",
108 chaining_modifier, cipher_name);
109 rc = 0;
110out:
111 return rc;
112}
113
114/**
115 * ecryptfs_derive_iv
116 * @iv: destination for the derived iv vale
117 * @crypt_stat: Pointer to crypt_stat struct for the current inode
118 * @offset: Offset of the extent whose IV we are to derive
119 *
120 * Generate the initialization vector from the given root IV and page
121 * offset.
122 *
123 * Returns zero on success; non-zero on error.
124 */
125int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
126 loff_t offset)
127{
128 int rc = 0;
129 char dst[MD5_DIGEST_SIZE];
130 char src[ECRYPTFS_MAX_IV_BYTES + 16];
131
132 if (unlikely(ecryptfs_verbosity > 0)) {
133 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
134 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
135 }
136 /* TODO: It is probably secure to just cast the least
137 * significant bits of the root IV into an unsigned long and
138 * add the offset to that rather than go through all this
139 * hashing business. -Halcrow */
140 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
141 memset((src + crypt_stat->iv_bytes), 0, 16);
142 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
143 if (unlikely(ecryptfs_verbosity > 0)) {
144 ecryptfs_printk(KERN_DEBUG, "source:\n");
145 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
146 }
147 rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
148 (crypt_stat->iv_bytes + 16));
149 if (rc) {
150 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
151 "MD5 while generating IV for a page\n");
152 goto out;
153 }
154 memcpy(iv, dst, crypt_stat->iv_bytes);
155 if (unlikely(ecryptfs_verbosity > 0)) {
156 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
157 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
158 }
159out:
160 return rc;
161}
162
163/**
164 * ecryptfs_init_crypt_stat
165 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
166 *
167 * Initialize the crypt_stat structure.
168 */
169int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
170{
171 struct crypto_shash *tfm;
172 int rc;
173
174 tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
175 if (IS_ERR(tfm)) {
176 rc = PTR_ERR(tfm);
177 ecryptfs_printk(KERN_ERR, "Error attempting to "
178 "allocate crypto context; rc = [%d]\n",
179 rc);
180 return rc;
181 }
182
183 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
184 INIT_LIST_HEAD(&crypt_stat->keysig_list);
185 mutex_init(&crypt_stat->keysig_list_mutex);
186 mutex_init(&crypt_stat->cs_mutex);
187 mutex_init(&crypt_stat->cs_tfm_mutex);
188 crypt_stat->hash_tfm = tfm;
189 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
190
191 return 0;
192}
193
194/**
195 * ecryptfs_destroy_crypt_stat
196 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
197 *
198 * Releases all memory associated with a crypt_stat struct.
199 */
200void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
201{
202 struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
203
204 crypto_free_skcipher(crypt_stat->tfm);
205 crypto_free_shash(crypt_stat->hash_tfm);
206 list_for_each_entry_safe(key_sig, key_sig_tmp,
207 &crypt_stat->keysig_list, crypt_stat_list) {
208 list_del(&key_sig->crypt_stat_list);
209 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
210 }
211 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
212}
213
214void ecryptfs_destroy_mount_crypt_stat(
215 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
216{
217 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
218
219 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
220 return;
221 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
222 list_for_each_entry_safe(auth_tok, auth_tok_tmp,
223 &mount_crypt_stat->global_auth_tok_list,
224 mount_crypt_stat_list) {
225 list_del(&auth_tok->mount_crypt_stat_list);
226 if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
227 key_put(auth_tok->global_auth_tok_key);
228 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
229 }
230 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
231 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
232}
233
234/**
235 * virt_to_scatterlist
236 * @addr: Virtual address
237 * @size: Size of data; should be an even multiple of the block size
238 * @sg: Pointer to scatterlist array; set to NULL to obtain only
239 * the number of scatterlist structs required in array
240 * @sg_size: Max array size
241 *
242 * Fills in a scatterlist array with page references for a passed
243 * virtual address.
244 *
245 * Returns the number of scatterlist structs in array used
246 */
247int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
248 int sg_size)
249{
250 int i = 0;
251 struct page *pg;
252 int offset;
253 int remainder_of_page;
254
255 sg_init_table(sg, sg_size);
256
257 while (size > 0 && i < sg_size) {
258 pg = virt_to_page(addr);
259 offset = offset_in_page(addr);
260 sg_set_page(&sg[i], pg, 0, offset);
261 remainder_of_page = PAGE_SIZE - offset;
262 if (size >= remainder_of_page) {
263 sg[i].length = remainder_of_page;
264 addr += remainder_of_page;
265 size -= remainder_of_page;
266 } else {
267 sg[i].length = size;
268 addr += size;
269 size = 0;
270 }
271 i++;
272 }
273 if (size > 0)
274 return -ENOMEM;
275 return i;
276}
277
278struct extent_crypt_result {
279 struct completion completion;
280 int rc;
281};
282
283static void extent_crypt_complete(struct crypto_async_request *req, int rc)
284{
285 struct extent_crypt_result *ecr = req->data;
286
287 if (rc == -EINPROGRESS)
288 return;
289
290 ecr->rc = rc;
291 complete(&ecr->completion);
292}
293
294/**
295 * crypt_scatterlist
296 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
297 * @dst_sg: Destination of the data after performing the crypto operation
298 * @src_sg: Data to be encrypted or decrypted
299 * @size: Length of data
300 * @iv: IV to use
301 * @op: ENCRYPT or DECRYPT to indicate the desired operation
302 *
303 * Returns the number of bytes encrypted or decrypted; negative value on error
304 */
305static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
306 struct scatterlist *dst_sg,
307 struct scatterlist *src_sg, int size,
308 unsigned char *iv, int op)
309{
310 struct skcipher_request *req = NULL;
311 struct extent_crypt_result ecr;
312 int rc = 0;
313
314 BUG_ON(!crypt_stat || !crypt_stat->tfm
315 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
316 if (unlikely(ecryptfs_verbosity > 0)) {
317 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
318 crypt_stat->key_size);
319 ecryptfs_dump_hex(crypt_stat->key,
320 crypt_stat->key_size);
321 }
322
323 init_completion(&ecr.completion);
324
325 mutex_lock(&crypt_stat->cs_tfm_mutex);
326 req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
327 if (!req) {
328 mutex_unlock(&crypt_stat->cs_tfm_mutex);
329 rc = -ENOMEM;
330 goto out;
331 }
332
333 skcipher_request_set_callback(req,
334 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
335 extent_crypt_complete, &ecr);
336 /* Consider doing this once, when the file is opened */
337 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
338 rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
339 crypt_stat->key_size);
340 if (rc) {
341 ecryptfs_printk(KERN_ERR,
342 "Error setting key; rc = [%d]\n",
343 rc);
344 mutex_unlock(&crypt_stat->cs_tfm_mutex);
345 rc = -EINVAL;
346 goto out;
347 }
348 crypt_stat->flags |= ECRYPTFS_KEY_SET;
349 }
350 mutex_unlock(&crypt_stat->cs_tfm_mutex);
351 skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
352 rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
353 crypto_skcipher_decrypt(req);
354 if (rc == -EINPROGRESS || rc == -EBUSY) {
355 struct extent_crypt_result *ecr = req->base.data;
356
357 wait_for_completion(&ecr->completion);
358 rc = ecr->rc;
359 reinit_completion(&ecr->completion);
360 }
361out:
362 skcipher_request_free(req);
363 return rc;
364}
365
366/**
367 * lower_offset_for_page
368 *
369 * Convert an eCryptfs page index into a lower byte offset
370 */
371static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
372 struct page *page)
373{
374 return ecryptfs_lower_header_size(crypt_stat) +
375 ((loff_t)page->index << PAGE_SHIFT);
376}
377
378/**
379 * crypt_extent
380 * @crypt_stat: crypt_stat containing cryptographic context for the
381 * encryption operation
382 * @dst_page: The page to write the result into
383 * @src_page: The page to read from
384 * @extent_offset: Page extent offset for use in generating IV
385 * @op: ENCRYPT or DECRYPT to indicate the desired operation
386 *
387 * Encrypts or decrypts one extent of data.
388 *
389 * Return zero on success; non-zero otherwise
390 */
391static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
392 struct page *dst_page,
393 struct page *src_page,
394 unsigned long extent_offset, int op)
395{
396 pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
397 loff_t extent_base;
398 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
399 struct scatterlist src_sg, dst_sg;
400 size_t extent_size = crypt_stat->extent_size;
401 int rc;
402
403 extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
404 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
405 (extent_base + extent_offset));
406 if (rc) {
407 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
408 "extent [0x%.16llx]; rc = [%d]\n",
409 (unsigned long long)(extent_base + extent_offset), rc);
410 goto out;
411 }
412
413 sg_init_table(&src_sg, 1);
414 sg_init_table(&dst_sg, 1);
415
416 sg_set_page(&src_sg, src_page, extent_size,
417 extent_offset * extent_size);
418 sg_set_page(&dst_sg, dst_page, extent_size,
419 extent_offset * extent_size);
420
421 rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
422 extent_iv, op);
423 if (rc < 0) {
424 printk(KERN_ERR "%s: Error attempting to crypt page with "
425 "page_index = [%ld], extent_offset = [%ld]; "
426 "rc = [%d]\n", __func__, page_index, extent_offset, rc);
427 goto out;
428 }
429 rc = 0;
430out:
431 return rc;
432}
433
434/**
435 * ecryptfs_encrypt_page
436 * @page: Page mapped from the eCryptfs inode for the file; contains
437 * decrypted content that needs to be encrypted (to a temporary
438 * page; not in place) and written out to the lower file
439 *
440 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
441 * that eCryptfs pages may straddle the lower pages -- for instance,
442 * if the file was created on a machine with an 8K page size
443 * (resulting in an 8K header), and then the file is copied onto a
444 * host with a 32K page size, then when reading page 0 of the eCryptfs
445 * file, 24K of page 0 of the lower file will be read and decrypted,
446 * and then 8K of page 1 of the lower file will be read and decrypted.
447 *
448 * Returns zero on success; negative on error
449 */
450int ecryptfs_encrypt_page(struct page *page)
451{
452 struct inode *ecryptfs_inode;
453 struct ecryptfs_crypt_stat *crypt_stat;
454 char *enc_extent_virt;
455 struct page *enc_extent_page = NULL;
456 loff_t extent_offset;
457 loff_t lower_offset;
458 int rc = 0;
459
460 ecryptfs_inode = page->mapping->host;
461 crypt_stat =
462 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
463 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
464 enc_extent_page = alloc_page(GFP_USER);
465 if (!enc_extent_page) {
466 rc = -ENOMEM;
467 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
468 "encrypted extent\n");
469 goto out;
470 }
471
472 for (extent_offset = 0;
473 extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
474 extent_offset++) {
475 rc = crypt_extent(crypt_stat, enc_extent_page, page,
476 extent_offset, ENCRYPT);
477 if (rc) {
478 printk(KERN_ERR "%s: Error encrypting extent; "
479 "rc = [%d]\n", __func__, rc);
480 goto out;
481 }
482 }
483
484 lower_offset = lower_offset_for_page(crypt_stat, page);
485 enc_extent_virt = kmap(enc_extent_page);
486 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
487 PAGE_SIZE);
488 kunmap(enc_extent_page);
489 if (rc < 0) {
490 ecryptfs_printk(KERN_ERR,
491 "Error attempting to write lower page; rc = [%d]\n",
492 rc);
493 goto out;
494 }
495 rc = 0;
496out:
497 if (enc_extent_page) {
498 __free_page(enc_extent_page);
499 }
500 return rc;
501}
502
503/**
504 * ecryptfs_decrypt_page
505 * @page: Page mapped from the eCryptfs inode for the file; data read
506 * and decrypted from the lower file will be written into this
507 * page
508 *
509 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
510 * that eCryptfs pages may straddle the lower pages -- for instance,
511 * if the file was created on a machine with an 8K page size
512 * (resulting in an 8K header), and then the file is copied onto a
513 * host with a 32K page size, then when reading page 0 of the eCryptfs
514 * file, 24K of page 0 of the lower file will be read and decrypted,
515 * and then 8K of page 1 of the lower file will be read and decrypted.
516 *
517 * Returns zero on success; negative on error
518 */
519int ecryptfs_decrypt_page(struct page *page)
520{
521 struct inode *ecryptfs_inode;
522 struct ecryptfs_crypt_stat *crypt_stat;
523 char *page_virt;
524 unsigned long extent_offset;
525 loff_t lower_offset;
526 int rc = 0;
527
528 ecryptfs_inode = page->mapping->host;
529 crypt_stat =
530 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
531 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
532
533 lower_offset = lower_offset_for_page(crypt_stat, page);
534 page_virt = kmap(page);
535 rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
536 ecryptfs_inode);
537 kunmap(page);
538 if (rc < 0) {
539 ecryptfs_printk(KERN_ERR,
540 "Error attempting to read lower page; rc = [%d]\n",
541 rc);
542 goto out;
543 }
544
545 for (extent_offset = 0;
546 extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
547 extent_offset++) {
548 rc = crypt_extent(crypt_stat, page, page,
549 extent_offset, DECRYPT);
550 if (rc) {
551 printk(KERN_ERR "%s: Error encrypting extent; "
552 "rc = [%d]\n", __func__, rc);
553 goto out;
554 }
555 }
556out:
557 return rc;
558}
559
560#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
561
562/**
563 * ecryptfs_init_crypt_ctx
564 * @crypt_stat: Uninitialized crypt stats structure
565 *
566 * Initialize the crypto context.
567 *
568 * TODO: Performance: Keep a cache of initialized cipher contexts;
569 * only init if needed
570 */
571int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
572{
573 char *full_alg_name;
574 int rc = -EINVAL;
575
576 ecryptfs_printk(KERN_DEBUG,
577 "Initializing cipher [%s]; strlen = [%d]; "
578 "key_size_bits = [%zd]\n",
579 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
580 crypt_stat->key_size << 3);
581 mutex_lock(&crypt_stat->cs_tfm_mutex);
582 if (crypt_stat->tfm) {
583 rc = 0;
584 goto out_unlock;
585 }
586 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
587 crypt_stat->cipher, "cbc");
588 if (rc)
589 goto out_unlock;
590 crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
591 if (IS_ERR(crypt_stat->tfm)) {
592 rc = PTR_ERR(crypt_stat->tfm);
593 crypt_stat->tfm = NULL;
594 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
595 "Error initializing cipher [%s]\n",
596 full_alg_name);
597 goto out_free;
598 }
599 crypto_skcipher_set_flags(crypt_stat->tfm,
600 CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
601 rc = 0;
602out_free:
603 kfree(full_alg_name);
604out_unlock:
605 mutex_unlock(&crypt_stat->cs_tfm_mutex);
606 return rc;
607}
608
609static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
610{
611 int extent_size_tmp;
612
613 crypt_stat->extent_mask = 0xFFFFFFFF;
614 crypt_stat->extent_shift = 0;
615 if (crypt_stat->extent_size == 0)
616 return;
617 extent_size_tmp = crypt_stat->extent_size;
618 while ((extent_size_tmp & 0x01) == 0) {
619 extent_size_tmp >>= 1;
620 crypt_stat->extent_mask <<= 1;
621 crypt_stat->extent_shift++;
622 }
623}
624
625void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
626{
627 /* Default values; may be overwritten as we are parsing the
628 * packets. */
629 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
630 set_extent_mask_and_shift(crypt_stat);
631 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
632 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
633 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
634 else {
635 if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
636 crypt_stat->metadata_size =
637 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
638 else
639 crypt_stat->metadata_size = PAGE_SIZE;
640 }
641}
642
643/**
644 * ecryptfs_compute_root_iv
645 * @crypt_stats
646 *
647 * On error, sets the root IV to all 0's.
648 */
649int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
650{
651 int rc = 0;
652 char dst[MD5_DIGEST_SIZE];
653
654 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
655 BUG_ON(crypt_stat->iv_bytes <= 0);
656 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
657 rc = -EINVAL;
658 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
659 "cannot generate root IV\n");
660 goto out;
661 }
662 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
663 crypt_stat->key_size);
664 if (rc) {
665 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
666 "MD5 while generating root IV\n");
667 goto out;
668 }
669 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
670out:
671 if (rc) {
672 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
673 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
674 }
675 return rc;
676}
677
678static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
679{
680 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
681 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
682 ecryptfs_compute_root_iv(crypt_stat);
683 if (unlikely(ecryptfs_verbosity > 0)) {
684 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
685 ecryptfs_dump_hex(crypt_stat->key,
686 crypt_stat->key_size);
687 }
688}
689
690/**
691 * ecryptfs_copy_mount_wide_flags_to_inode_flags
692 * @crypt_stat: The inode's cryptographic context
693 * @mount_crypt_stat: The mount point's cryptographic context
694 *
695 * This function propagates the mount-wide flags to individual inode
696 * flags.
697 */
698static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
699 struct ecryptfs_crypt_stat *crypt_stat,
700 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
701{
702 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
703 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
704 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
705 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
706 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
707 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
708 if (mount_crypt_stat->flags
709 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
710 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
711 else if (mount_crypt_stat->flags
712 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
713 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
714 }
715}
716
717static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
718 struct ecryptfs_crypt_stat *crypt_stat,
719 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
720{
721 struct ecryptfs_global_auth_tok *global_auth_tok;
722 int rc = 0;
723
724 mutex_lock(&crypt_stat->keysig_list_mutex);
725 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
726
727 list_for_each_entry(global_auth_tok,
728 &mount_crypt_stat->global_auth_tok_list,
729 mount_crypt_stat_list) {
730 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
731 continue;
732 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
733 if (rc) {
734 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
735 goto out;
736 }
737 }
738
739out:
740 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
741 mutex_unlock(&crypt_stat->keysig_list_mutex);
742 return rc;
743}
744
745/**
746 * ecryptfs_set_default_crypt_stat_vals
747 * @crypt_stat: The inode's cryptographic context
748 * @mount_crypt_stat: The mount point's cryptographic context
749 *
750 * Default values in the event that policy does not override them.
751 */
752static void ecryptfs_set_default_crypt_stat_vals(
753 struct ecryptfs_crypt_stat *crypt_stat,
754 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
755{
756 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
757 mount_crypt_stat);
758 ecryptfs_set_default_sizes(crypt_stat);
759 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
760 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
761 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
762 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
763 crypt_stat->mount_crypt_stat = mount_crypt_stat;
764}
765
766/**
767 * ecryptfs_new_file_context
768 * @ecryptfs_inode: The eCryptfs inode
769 *
770 * If the crypto context for the file has not yet been established,
771 * this is where we do that. Establishing a new crypto context
772 * involves the following decisions:
773 * - What cipher to use?
774 * - What set of authentication tokens to use?
775 * Here we just worry about getting enough information into the
776 * authentication tokens so that we know that they are available.
777 * We associate the available authentication tokens with the new file
778 * via the set of signatures in the crypt_stat struct. Later, when
779 * the headers are actually written out, we may again defer to
780 * userspace to perform the encryption of the session key; for the
781 * foreseeable future, this will be the case with public key packets.
782 *
783 * Returns zero on success; non-zero otherwise
784 */
785int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
786{
787 struct ecryptfs_crypt_stat *crypt_stat =
788 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
789 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
790 &ecryptfs_superblock_to_private(
791 ecryptfs_inode->i_sb)->mount_crypt_stat;
792 int cipher_name_len;
793 int rc = 0;
794
795 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
796 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
797 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
798 mount_crypt_stat);
799 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
800 mount_crypt_stat);
801 if (rc) {
802 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
803 "to the inode key sigs; rc = [%d]\n", rc);
804 goto out;
805 }
806 cipher_name_len =
807 strlen(mount_crypt_stat->global_default_cipher_name);
808 memcpy(crypt_stat->cipher,
809 mount_crypt_stat->global_default_cipher_name,
810 cipher_name_len);
811 crypt_stat->cipher[cipher_name_len] = '\0';
812 crypt_stat->key_size =
813 mount_crypt_stat->global_default_cipher_key_size;
814 ecryptfs_generate_new_key(crypt_stat);
815 rc = ecryptfs_init_crypt_ctx(crypt_stat);
816 if (rc)
817 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
818 "context for cipher [%s]: rc = [%d]\n",
819 crypt_stat->cipher, rc);
820out:
821 return rc;
822}
823
824/**
825 * ecryptfs_validate_marker - check for the ecryptfs marker
826 * @data: The data block in which to check
827 *
828 * Returns zero if marker found; -EINVAL if not found
829 */
830static int ecryptfs_validate_marker(char *data)
831{
832 u32 m_1, m_2;
833
834 m_1 = get_unaligned_be32(data);
835 m_2 = get_unaligned_be32(data + 4);
836 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
837 return 0;
838 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
839 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
840 MAGIC_ECRYPTFS_MARKER);
841 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
842 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
843 return -EINVAL;
844}
845
846struct ecryptfs_flag_map_elem {
847 u32 file_flag;
848 u32 local_flag;
849};
850
851/* Add support for additional flags by adding elements here. */
852static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
853 {0x00000001, ECRYPTFS_ENABLE_HMAC},
854 {0x00000002, ECRYPTFS_ENCRYPTED},
855 {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
856 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
857};
858
859/**
860 * ecryptfs_process_flags
861 * @crypt_stat: The cryptographic context
862 * @page_virt: Source data to be parsed
863 * @bytes_read: Updated with the number of bytes read
864 */
865static void ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
866 char *page_virt, int *bytes_read)
867{
868 int i;
869 u32 flags;
870
871 flags = get_unaligned_be32(page_virt);
872 for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
873 if (flags & ecryptfs_flag_map[i].file_flag) {
874 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
875 } else
876 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
877 /* Version is in top 8 bits of the 32-bit flag vector */
878 crypt_stat->file_version = ((flags >> 24) & 0xFF);
879 (*bytes_read) = 4;
880}
881
882/**
883 * write_ecryptfs_marker
884 * @page_virt: The pointer to in a page to begin writing the marker
885 * @written: Number of bytes written
886 *
887 * Marker = 0x3c81b7f5
888 */
889static void write_ecryptfs_marker(char *page_virt, size_t *written)
890{
891 u32 m_1, m_2;
892
893 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
894 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
895 put_unaligned_be32(m_1, page_virt);
896 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
897 put_unaligned_be32(m_2, page_virt);
898 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
899}
900
901void ecryptfs_write_crypt_stat_flags(char *page_virt,
902 struct ecryptfs_crypt_stat *crypt_stat,
903 size_t *written)
904{
905 u32 flags = 0;
906 int i;
907
908 for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
909 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
910 flags |= ecryptfs_flag_map[i].file_flag;
911 /* Version is in top 8 bits of the 32-bit flag vector */
912 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
913 put_unaligned_be32(flags, page_virt);
914 (*written) = 4;
915}
916
917struct ecryptfs_cipher_code_str_map_elem {
918 char cipher_str[16];
919 u8 cipher_code;
920};
921
922/* Add support for additional ciphers by adding elements here. The
923 * cipher_code is whatever OpenPGP applications use to identify the
924 * ciphers. List in order of probability. */
925static struct ecryptfs_cipher_code_str_map_elem
926ecryptfs_cipher_code_str_map[] = {
927 {"aes",RFC2440_CIPHER_AES_128 },
928 {"blowfish", RFC2440_CIPHER_BLOWFISH},
929 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
930 {"cast5", RFC2440_CIPHER_CAST_5},
931 {"twofish", RFC2440_CIPHER_TWOFISH},
932 {"cast6", RFC2440_CIPHER_CAST_6},
933 {"aes", RFC2440_CIPHER_AES_192},
934 {"aes", RFC2440_CIPHER_AES_256}
935};
936
937/**
938 * ecryptfs_code_for_cipher_string
939 * @cipher_name: The string alias for the cipher
940 * @key_bytes: Length of key in bytes; used for AES code selection
941 *
942 * Returns zero on no match, or the cipher code on match
943 */
944u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
945{
946 int i;
947 u8 code = 0;
948 struct ecryptfs_cipher_code_str_map_elem *map =
949 ecryptfs_cipher_code_str_map;
950
951 if (strcmp(cipher_name, "aes") == 0) {
952 switch (key_bytes) {
953 case 16:
954 code = RFC2440_CIPHER_AES_128;
955 break;
956 case 24:
957 code = RFC2440_CIPHER_AES_192;
958 break;
959 case 32:
960 code = RFC2440_CIPHER_AES_256;
961 }
962 } else {
963 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
964 if (strcmp(cipher_name, map[i].cipher_str) == 0) {
965 code = map[i].cipher_code;
966 break;
967 }
968 }
969 return code;
970}
971
972/**
973 * ecryptfs_cipher_code_to_string
974 * @str: Destination to write out the cipher name
975 * @cipher_code: The code to convert to cipher name string
976 *
977 * Returns zero on success
978 */
979int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
980{
981 int rc = 0;
982 int i;
983
984 str[0] = '\0';
985 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
986 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
987 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
988 if (str[0] == '\0') {
989 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
990 "[%d]\n", cipher_code);
991 rc = -EINVAL;
992 }
993 return rc;
994}
995
996int ecryptfs_read_and_validate_header_region(struct inode *inode)
997{
998 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
999 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1000 int rc;
1001
1002 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1003 inode);
1004 if (rc < 0)
1005 return rc;
1006 else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1007 return -EINVAL;
1008 rc = ecryptfs_validate_marker(marker);
1009 if (!rc)
1010 ecryptfs_i_size_init(file_size, inode);
1011 return rc;
1012}
1013
1014void
1015ecryptfs_write_header_metadata(char *virt,
1016 struct ecryptfs_crypt_stat *crypt_stat,
1017 size_t *written)
1018{
1019 u32 header_extent_size;
1020 u16 num_header_extents_at_front;
1021
1022 header_extent_size = (u32)crypt_stat->extent_size;
1023 num_header_extents_at_front =
1024 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1025 put_unaligned_be32(header_extent_size, virt);
1026 virt += 4;
1027 put_unaligned_be16(num_header_extents_at_front, virt);
1028 (*written) = 6;
1029}
1030
1031struct kmem_cache *ecryptfs_header_cache;
1032
1033/**
1034 * ecryptfs_write_headers_virt
1035 * @page_virt: The virtual address to write the headers to
1036 * @max: The size of memory allocated at page_virt
1037 * @size: Set to the number of bytes written by this function
1038 * @crypt_stat: The cryptographic context
1039 * @ecryptfs_dentry: The eCryptfs dentry
1040 *
1041 * Format version: 1
1042 *
1043 * Header Extent:
1044 * Octets 0-7: Unencrypted file size (big-endian)
1045 * Octets 8-15: eCryptfs special marker
1046 * Octets 16-19: Flags
1047 * Octet 16: File format version number (between 0 and 255)
1048 * Octets 17-18: Reserved
1049 * Octet 19: Bit 1 (lsb): Reserved
1050 * Bit 2: Encrypted?
1051 * Bits 3-8: Reserved
1052 * Octets 20-23: Header extent size (big-endian)
1053 * Octets 24-25: Number of header extents at front of file
1054 * (big-endian)
1055 * Octet 26: Begin RFC 2440 authentication token packet set
1056 * Data Extent 0:
1057 * Lower data (CBC encrypted)
1058 * Data Extent 1:
1059 * Lower data (CBC encrypted)
1060 * ...
1061 *
1062 * Returns zero on success
1063 */
1064static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1065 size_t *size,
1066 struct ecryptfs_crypt_stat *crypt_stat,
1067 struct dentry *ecryptfs_dentry)
1068{
1069 int rc;
1070 size_t written;
1071 size_t offset;
1072
1073 offset = ECRYPTFS_FILE_SIZE_BYTES;
1074 write_ecryptfs_marker((page_virt + offset), &written);
1075 offset += written;
1076 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1077 &written);
1078 offset += written;
1079 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1080 &written);
1081 offset += written;
1082 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1083 ecryptfs_dentry, &written,
1084 max - offset);
1085 if (rc)
1086 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1087 "set; rc = [%d]\n", rc);
1088 if (size) {
1089 offset += written;
1090 *size = offset;
1091 }
1092 return rc;
1093}
1094
1095static int
1096ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1097 char *virt, size_t virt_len)
1098{
1099 int rc;
1100
1101 rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1102 0, virt_len);
1103 if (rc < 0)
1104 printk(KERN_ERR "%s: Error attempting to write header "
1105 "information to lower file; rc = [%d]\n", __func__, rc);
1106 else
1107 rc = 0;
1108 return rc;
1109}
1110
1111static int
1112ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1113 struct inode *ecryptfs_inode,
1114 char *page_virt, size_t size)
1115{
1116 int rc;
1117 struct dentry *lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
1118 struct inode *lower_inode = d_inode(lower_dentry);
1119
1120 if (!(lower_inode->i_opflags & IOP_XATTR)) {
1121 rc = -EOPNOTSUPP;
1122 goto out;
1123 }
1124
1125 inode_lock(lower_inode);
1126 rc = __vfs_setxattr(lower_dentry, lower_inode, ECRYPTFS_XATTR_NAME,
1127 page_virt, size, 0);
1128 if (!rc && ecryptfs_inode)
1129 fsstack_copy_attr_all(ecryptfs_inode, lower_inode);
1130 inode_unlock(lower_inode);
1131out:
1132 return rc;
1133}
1134
1135static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1136 unsigned int order)
1137{
1138 struct page *page;
1139
1140 page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1141 if (page)
1142 return (unsigned long) page_address(page);
1143 return 0;
1144}
1145
1146/**
1147 * ecryptfs_write_metadata
1148 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1149 * @ecryptfs_inode: The newly created eCryptfs inode
1150 *
1151 * Write the file headers out. This will likely involve a userspace
1152 * callout, in which the session key is encrypted with one or more
1153 * public keys and/or the passphrase necessary to do the encryption is
1154 * retrieved via a prompt. Exactly what happens at this point should
1155 * be policy-dependent.
1156 *
1157 * Returns zero on success; non-zero on error
1158 */
1159int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1160 struct inode *ecryptfs_inode)
1161{
1162 struct ecryptfs_crypt_stat *crypt_stat =
1163 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1164 unsigned int order;
1165 char *virt;
1166 size_t virt_len;
1167 size_t size = 0;
1168 int rc = 0;
1169
1170 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1171 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1172 printk(KERN_ERR "Key is invalid; bailing out\n");
1173 rc = -EINVAL;
1174 goto out;
1175 }
1176 } else {
1177 printk(KERN_WARNING "%s: Encrypted flag not set\n",
1178 __func__);
1179 rc = -EINVAL;
1180 goto out;
1181 }
1182 virt_len = crypt_stat->metadata_size;
1183 order = get_order(virt_len);
1184 /* Released in this function */
1185 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1186 if (!virt) {
1187 printk(KERN_ERR "%s: Out of memory\n", __func__);
1188 rc = -ENOMEM;
1189 goto out;
1190 }
1191 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1192 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1193 ecryptfs_dentry);
1194 if (unlikely(rc)) {
1195 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1196 __func__, rc);
1197 goto out_free;
1198 }
1199 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1200 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1201 virt, size);
1202 else
1203 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1204 virt_len);
1205 if (rc) {
1206 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1207 "rc = [%d]\n", __func__, rc);
1208 goto out_free;
1209 }
1210out_free:
1211 free_pages((unsigned long)virt, order);
1212out:
1213 return rc;
1214}
1215
1216#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1217#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1218static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1219 char *virt, int *bytes_read,
1220 int validate_header_size)
1221{
1222 int rc = 0;
1223 u32 header_extent_size;
1224 u16 num_header_extents_at_front;
1225
1226 header_extent_size = get_unaligned_be32(virt);
1227 virt += sizeof(__be32);
1228 num_header_extents_at_front = get_unaligned_be16(virt);
1229 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1230 * (size_t)header_extent_size));
1231 (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1232 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1233 && (crypt_stat->metadata_size
1234 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1235 rc = -EINVAL;
1236 printk(KERN_WARNING "Invalid header size: [%zd]\n",
1237 crypt_stat->metadata_size);
1238 }
1239 return rc;
1240}
1241
1242/**
1243 * set_default_header_data
1244 * @crypt_stat: The cryptographic context
1245 *
1246 * For version 0 file format; this function is only for backwards
1247 * compatibility for files created with the prior versions of
1248 * eCryptfs.
1249 */
1250static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1251{
1252 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1253}
1254
1255void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1256{
1257 struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1258 struct ecryptfs_crypt_stat *crypt_stat;
1259 u64 file_size;
1260
1261 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1262 mount_crypt_stat =
1263 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1264 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1265 file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1266 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1267 file_size += crypt_stat->metadata_size;
1268 } else
1269 file_size = get_unaligned_be64(page_virt);
1270 i_size_write(inode, (loff_t)file_size);
1271 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1272}
1273
1274/**
1275 * ecryptfs_read_headers_virt
1276 * @page_virt: The virtual address into which to read the headers
1277 * @crypt_stat: The cryptographic context
1278 * @ecryptfs_dentry: The eCryptfs dentry
1279 * @validate_header_size: Whether to validate the header size while reading
1280 *
1281 * Read/parse the header data. The header format is detailed in the
1282 * comment block for the ecryptfs_write_headers_virt() function.
1283 *
1284 * Returns zero on success
1285 */
1286static int ecryptfs_read_headers_virt(char *page_virt,
1287 struct ecryptfs_crypt_stat *crypt_stat,
1288 struct dentry *ecryptfs_dentry,
1289 int validate_header_size)
1290{
1291 int rc = 0;
1292 int offset;
1293 int bytes_read;
1294
1295 ecryptfs_set_default_sizes(crypt_stat);
1296 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1297 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1298 offset = ECRYPTFS_FILE_SIZE_BYTES;
1299 rc = ecryptfs_validate_marker(page_virt + offset);
1300 if (rc)
1301 goto out;
1302 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1303 ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1304 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1305 ecryptfs_process_flags(crypt_stat, (page_virt + offset), &bytes_read);
1306 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1307 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1308 "file version [%d] is supported by this "
1309 "version of eCryptfs\n",
1310 crypt_stat->file_version,
1311 ECRYPTFS_SUPPORTED_FILE_VERSION);
1312 rc = -EINVAL;
1313 goto out;
1314 }
1315 offset += bytes_read;
1316 if (crypt_stat->file_version >= 1) {
1317 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1318 &bytes_read, validate_header_size);
1319 if (rc) {
1320 ecryptfs_printk(KERN_WARNING, "Error reading header "
1321 "metadata; rc = [%d]\n", rc);
1322 }
1323 offset += bytes_read;
1324 } else
1325 set_default_header_data(crypt_stat);
1326 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1327 ecryptfs_dentry);
1328out:
1329 return rc;
1330}
1331
1332/**
1333 * ecryptfs_read_xattr_region
1334 * @page_virt: The vitual address into which to read the xattr data
1335 * @ecryptfs_inode: The eCryptfs inode
1336 *
1337 * Attempts to read the crypto metadata from the extended attribute
1338 * region of the lower file.
1339 *
1340 * Returns zero on success; non-zero on error
1341 */
1342int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1343{
1344 struct dentry *lower_dentry =
1345 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1346 ssize_t size;
1347 int rc = 0;
1348
1349 size = ecryptfs_getxattr_lower(lower_dentry,
1350 ecryptfs_inode_to_lower(ecryptfs_inode),
1351 ECRYPTFS_XATTR_NAME,
1352 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1353 if (size < 0) {
1354 if (unlikely(ecryptfs_verbosity > 0))
1355 printk(KERN_INFO "Error attempting to read the [%s] "
1356 "xattr from the lower file; return value = "
1357 "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1358 rc = -EINVAL;
1359 goto out;
1360 }
1361out:
1362 return rc;
1363}
1364
1365int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1366 struct inode *inode)
1367{
1368 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1369 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1370 int rc;
1371
1372 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1373 ecryptfs_inode_to_lower(inode),
1374 ECRYPTFS_XATTR_NAME, file_size,
1375 ECRYPTFS_SIZE_AND_MARKER_BYTES);
1376 if (rc < 0)
1377 return rc;
1378 else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1379 return -EINVAL;
1380 rc = ecryptfs_validate_marker(marker);
1381 if (!rc)
1382 ecryptfs_i_size_init(file_size, inode);
1383 return rc;
1384}
1385
1386/**
1387 * ecryptfs_read_metadata
1388 *
1389 * Common entry point for reading file metadata. From here, we could
1390 * retrieve the header information from the header region of the file,
1391 * the xattr region of the file, or some other repository that is
1392 * stored separately from the file itself. The current implementation
1393 * supports retrieving the metadata information from the file contents
1394 * and from the xattr region.
1395 *
1396 * Returns zero if valid headers found and parsed; non-zero otherwise
1397 */
1398int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1399{
1400 int rc;
1401 char *page_virt;
1402 struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1403 struct ecryptfs_crypt_stat *crypt_stat =
1404 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1405 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1406 &ecryptfs_superblock_to_private(
1407 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1408
1409 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1410 mount_crypt_stat);
1411 /* Read the first page from the underlying file */
1412 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1413 if (!page_virt) {
1414 rc = -ENOMEM;
1415 goto out;
1416 }
1417 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1418 ecryptfs_inode);
1419 if (rc >= 0)
1420 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1421 ecryptfs_dentry,
1422 ECRYPTFS_VALIDATE_HEADER_SIZE);
1423 if (rc) {
1424 /* metadata is not in the file header, so try xattrs */
1425 memset(page_virt, 0, PAGE_SIZE);
1426 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1427 if (rc) {
1428 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1429 "file header region or xattr region, inode %lu\n",
1430 ecryptfs_inode->i_ino);
1431 rc = -EINVAL;
1432 goto out;
1433 }
1434 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1435 ecryptfs_dentry,
1436 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1437 if (rc) {
1438 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1439 "file xattr region either, inode %lu\n",
1440 ecryptfs_inode->i_ino);
1441 rc = -EINVAL;
1442 }
1443 if (crypt_stat->mount_crypt_stat->flags
1444 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1445 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1446 } else {
1447 printk(KERN_WARNING "Attempt to access file with "
1448 "crypto metadata only in the extended attribute "
1449 "region, but eCryptfs was mounted without "
1450 "xattr support enabled. eCryptfs will not treat "
1451 "this like an encrypted file, inode %lu\n",
1452 ecryptfs_inode->i_ino);
1453 rc = -EINVAL;
1454 }
1455 }
1456out:
1457 if (page_virt) {
1458 memset(page_virt, 0, PAGE_SIZE);
1459 kmem_cache_free(ecryptfs_header_cache, page_virt);
1460 }
1461 return rc;
1462}
1463
1464/**
1465 * ecryptfs_encrypt_filename - encrypt filename
1466 *
1467 * CBC-encrypts the filename. We do not want to encrypt the same
1468 * filename with the same key and IV, which may happen with hard
1469 * links, so we prepend random bits to each filename.
1470 *
1471 * Returns zero on success; non-zero otherwise
1472 */
1473static int
1474ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1475 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1476{
1477 int rc = 0;
1478
1479 filename->encrypted_filename = NULL;
1480 filename->encrypted_filename_size = 0;
1481 if (mount_crypt_stat && (mount_crypt_stat->flags
1482 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1483 size_t packet_size;
1484 size_t remaining_bytes;
1485
1486 rc = ecryptfs_write_tag_70_packet(
1487 NULL, NULL,
1488 &filename->encrypted_filename_size,
1489 mount_crypt_stat, NULL,
1490 filename->filename_size);
1491 if (rc) {
1492 printk(KERN_ERR "%s: Error attempting to get packet "
1493 "size for tag 72; rc = [%d]\n", __func__,
1494 rc);
1495 filename->encrypted_filename_size = 0;
1496 goto out;
1497 }
1498 filename->encrypted_filename =
1499 kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1500 if (!filename->encrypted_filename) {
1501 rc = -ENOMEM;
1502 goto out;
1503 }
1504 remaining_bytes = filename->encrypted_filename_size;
1505 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1506 &remaining_bytes,
1507 &packet_size,
1508 mount_crypt_stat,
1509 filename->filename,
1510 filename->filename_size);
1511 if (rc) {
1512 printk(KERN_ERR "%s: Error attempting to generate "
1513 "tag 70 packet; rc = [%d]\n", __func__,
1514 rc);
1515 kfree(filename->encrypted_filename);
1516 filename->encrypted_filename = NULL;
1517 filename->encrypted_filename_size = 0;
1518 goto out;
1519 }
1520 filename->encrypted_filename_size = packet_size;
1521 } else {
1522 printk(KERN_ERR "%s: No support for requested filename "
1523 "encryption method in this release\n", __func__);
1524 rc = -EOPNOTSUPP;
1525 goto out;
1526 }
1527out:
1528 return rc;
1529}
1530
1531static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1532 const char *name, size_t name_size)
1533{
1534 int rc = 0;
1535
1536 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1537 if (!(*copied_name)) {
1538 rc = -ENOMEM;
1539 goto out;
1540 }
1541 memcpy((void *)(*copied_name), (void *)name, name_size);
1542 (*copied_name)[(name_size)] = '\0'; /* Only for convenience
1543 * in printing out the
1544 * string in debug
1545 * messages */
1546 (*copied_name_size) = name_size;
1547out:
1548 return rc;
1549}
1550
1551/**
1552 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1553 * @key_tfm: Crypto context for key material, set by this function
1554 * @cipher_name: Name of the cipher
1555 * @key_size: Size of the key in bytes
1556 *
1557 * Returns zero on success. Any crypto_tfm structs allocated here
1558 * should be released by other functions, such as on a superblock put
1559 * event, regardless of whether this function succeeds for fails.
1560 */
1561static int
1562ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
1563 char *cipher_name, size_t *key_size)
1564{
1565 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1566 char *full_alg_name = NULL;
1567 int rc;
1568
1569 *key_tfm = NULL;
1570 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1571 rc = -EINVAL;
1572 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1573 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1574 goto out;
1575 }
1576 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1577 "ecb");
1578 if (rc)
1579 goto out;
1580 *key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1581 if (IS_ERR(*key_tfm)) {
1582 rc = PTR_ERR(*key_tfm);
1583 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1584 "[%s]; rc = [%d]\n", full_alg_name, rc);
1585 goto out;
1586 }
1587 crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
1588 if (*key_size == 0)
1589 *key_size = crypto_skcipher_default_keysize(*key_tfm);
1590 get_random_bytes(dummy_key, *key_size);
1591 rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
1592 if (rc) {
1593 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1594 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1595 rc);
1596 rc = -EINVAL;
1597 goto out;
1598 }
1599out:
1600 kfree(full_alg_name);
1601 return rc;
1602}
1603
1604struct kmem_cache *ecryptfs_key_tfm_cache;
1605static struct list_head key_tfm_list;
1606struct mutex key_tfm_list_mutex;
1607
1608int __init ecryptfs_init_crypto(void)
1609{
1610 mutex_init(&key_tfm_list_mutex);
1611 INIT_LIST_HEAD(&key_tfm_list);
1612 return 0;
1613}
1614
1615/**
1616 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1617 *
1618 * Called only at module unload time
1619 */
1620int ecryptfs_destroy_crypto(void)
1621{
1622 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1623
1624 mutex_lock(&key_tfm_list_mutex);
1625 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1626 key_tfm_list) {
1627 list_del(&key_tfm->key_tfm_list);
1628 crypto_free_skcipher(key_tfm->key_tfm);
1629 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1630 }
1631 mutex_unlock(&key_tfm_list_mutex);
1632 return 0;
1633}
1634
1635int
1636ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1637 size_t key_size)
1638{
1639 struct ecryptfs_key_tfm *tmp_tfm;
1640 int rc = 0;
1641
1642 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1643
1644 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1645 if (key_tfm)
1646 (*key_tfm) = tmp_tfm;
1647 if (!tmp_tfm) {
1648 rc = -ENOMEM;
1649 goto out;
1650 }
1651 mutex_init(&tmp_tfm->key_tfm_mutex);
1652 strncpy(tmp_tfm->cipher_name, cipher_name,
1653 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1654 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1655 tmp_tfm->key_size = key_size;
1656 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1657 tmp_tfm->cipher_name,
1658 &tmp_tfm->key_size);
1659 if (rc) {
1660 printk(KERN_ERR "Error attempting to initialize key TFM "
1661 "cipher with name = [%s]; rc = [%d]\n",
1662 tmp_tfm->cipher_name, rc);
1663 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1664 if (key_tfm)
1665 (*key_tfm) = NULL;
1666 goto out;
1667 }
1668 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1669out:
1670 return rc;
1671}
1672
1673/**
1674 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1675 * @cipher_name: the name of the cipher to search for
1676 * @key_tfm: set to corresponding tfm if found
1677 *
1678 * Searches for cached key_tfm matching @cipher_name
1679 * Must be called with &key_tfm_list_mutex held
1680 * Returns 1 if found, with @key_tfm set
1681 * Returns 0 if not found, with @key_tfm set to NULL
1682 */
1683int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1684{
1685 struct ecryptfs_key_tfm *tmp_key_tfm;
1686
1687 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1688
1689 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1690 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1691 if (key_tfm)
1692 (*key_tfm) = tmp_key_tfm;
1693 return 1;
1694 }
1695 }
1696 if (key_tfm)
1697 (*key_tfm) = NULL;
1698 return 0;
1699}
1700
1701/**
1702 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1703 *
1704 * @tfm: set to cached tfm found, or new tfm created
1705 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1706 * @cipher_name: the name of the cipher to search for and/or add
1707 *
1708 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1709 * Searches for cached item first, and creates new if not found.
1710 * Returns 0 on success, non-zero if adding new cipher failed
1711 */
1712int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
1713 struct mutex **tfm_mutex,
1714 char *cipher_name)
1715{
1716 struct ecryptfs_key_tfm *key_tfm;
1717 int rc = 0;
1718
1719 (*tfm) = NULL;
1720 (*tfm_mutex) = NULL;
1721
1722 mutex_lock(&key_tfm_list_mutex);
1723 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1724 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1725 if (rc) {
1726 printk(KERN_ERR "Error adding new key_tfm to list; "
1727 "rc = [%d]\n", rc);
1728 goto out;
1729 }
1730 }
1731 (*tfm) = key_tfm->key_tfm;
1732 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1733out:
1734 mutex_unlock(&key_tfm_list_mutex);
1735 return rc;
1736}
1737
1738/* 64 characters forming a 6-bit target field */
1739static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1740 "EFGHIJKLMNOPQRST"
1741 "UVWXYZabcdefghij"
1742 "klmnopqrstuvwxyz");
1743
1744/* We could either offset on every reverse map or just pad some 0x00's
1745 * at the front here */
1746static const unsigned char filename_rev_map[256] = {
1747 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1748 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1749 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1750 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1751 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1752 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1753 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1754 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1755 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1756 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1757 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1758 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1759 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1760 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1761 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1762 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1763};
1764
1765/**
1766 * ecryptfs_encode_for_filename
1767 * @dst: Destination location for encoded filename
1768 * @dst_size: Size of the encoded filename in bytes
1769 * @src: Source location for the filename to encode
1770 * @src_size: Size of the source in bytes
1771 */
1772static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1773 unsigned char *src, size_t src_size)
1774{
1775 size_t num_blocks;
1776 size_t block_num = 0;
1777 size_t dst_offset = 0;
1778 unsigned char last_block[3];
1779
1780 if (src_size == 0) {
1781 (*dst_size) = 0;
1782 goto out;
1783 }
1784 num_blocks = (src_size / 3);
1785 if ((src_size % 3) == 0) {
1786 memcpy(last_block, (&src[src_size - 3]), 3);
1787 } else {
1788 num_blocks++;
1789 last_block[2] = 0x00;
1790 switch (src_size % 3) {
1791 case 1:
1792 last_block[0] = src[src_size - 1];
1793 last_block[1] = 0x00;
1794 break;
1795 case 2:
1796 last_block[0] = src[src_size - 2];
1797 last_block[1] = src[src_size - 1];
1798 }
1799 }
1800 (*dst_size) = (num_blocks * 4);
1801 if (!dst)
1802 goto out;
1803 while (block_num < num_blocks) {
1804 unsigned char *src_block;
1805 unsigned char dst_block[4];
1806
1807 if (block_num == (num_blocks - 1))
1808 src_block = last_block;
1809 else
1810 src_block = &src[block_num * 3];
1811 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1812 dst_block[1] = (((src_block[0] << 4) & 0x30)
1813 | ((src_block[1] >> 4) & 0x0F));
1814 dst_block[2] = (((src_block[1] << 2) & 0x3C)
1815 | ((src_block[2] >> 6) & 0x03));
1816 dst_block[3] = (src_block[2] & 0x3F);
1817 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1818 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1819 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1820 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1821 block_num++;
1822 }
1823out:
1824 return;
1825}
1826
1827static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1828{
1829 /* Not exact; conservatively long. Every block of 4
1830 * encoded characters decodes into a block of 3
1831 * decoded characters. This segment of code provides
1832 * the caller with the maximum amount of allocated
1833 * space that @dst will need to point to in a
1834 * subsequent call. */
1835 return ((encoded_size + 1) * 3) / 4;
1836}
1837
1838/**
1839 * ecryptfs_decode_from_filename
1840 * @dst: If NULL, this function only sets @dst_size and returns. If
1841 * non-NULL, this function decodes the encoded octets in @src
1842 * into the memory that @dst points to.
1843 * @dst_size: Set to the size of the decoded string.
1844 * @src: The encoded set of octets to decode.
1845 * @src_size: The size of the encoded set of octets to decode.
1846 */
1847static void
1848ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1849 const unsigned char *src, size_t src_size)
1850{
1851 u8 current_bit_offset = 0;
1852 size_t src_byte_offset = 0;
1853 size_t dst_byte_offset = 0;
1854
1855 if (!dst) {
1856 (*dst_size) = ecryptfs_max_decoded_size(src_size);
1857 goto out;
1858 }
1859 while (src_byte_offset < src_size) {
1860 unsigned char src_byte =
1861 filename_rev_map[(int)src[src_byte_offset]];
1862
1863 switch (current_bit_offset) {
1864 case 0:
1865 dst[dst_byte_offset] = (src_byte << 2);
1866 current_bit_offset = 6;
1867 break;
1868 case 6:
1869 dst[dst_byte_offset++] |= (src_byte >> 4);
1870 dst[dst_byte_offset] = ((src_byte & 0xF)
1871 << 4);
1872 current_bit_offset = 4;
1873 break;
1874 case 4:
1875 dst[dst_byte_offset++] |= (src_byte >> 2);
1876 dst[dst_byte_offset] = (src_byte << 6);
1877 current_bit_offset = 2;
1878 break;
1879 case 2:
1880 dst[dst_byte_offset++] |= (src_byte);
1881 current_bit_offset = 0;
1882 break;
1883 }
1884 src_byte_offset++;
1885 }
1886 (*dst_size) = dst_byte_offset;
1887out:
1888 return;
1889}
1890
1891/**
1892 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1893 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1894 * @name: The plaintext name
1895 * @length: The length of the plaintext
1896 * @encoded_name: The encypted name
1897 *
1898 * Encrypts and encodes a filename into something that constitutes a
1899 * valid filename for a filesystem, with printable characters.
1900 *
1901 * We assume that we have a properly initialized crypto context,
1902 * pointed to by crypt_stat->tfm.
1903 *
1904 * Returns zero on success; non-zero on otherwise
1905 */
1906int ecryptfs_encrypt_and_encode_filename(
1907 char **encoded_name,
1908 size_t *encoded_name_size,
1909 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1910 const char *name, size_t name_size)
1911{
1912 size_t encoded_name_no_prefix_size;
1913 int rc = 0;
1914
1915 (*encoded_name) = NULL;
1916 (*encoded_name_size) = 0;
1917 if (mount_crypt_stat && (mount_crypt_stat->flags
1918 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
1919 struct ecryptfs_filename *filename;
1920
1921 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1922 if (!filename) {
1923 rc = -ENOMEM;
1924 goto out;
1925 }
1926 filename->filename = (char *)name;
1927 filename->filename_size = name_size;
1928 rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
1929 if (rc) {
1930 printk(KERN_ERR "%s: Error attempting to encrypt "
1931 "filename; rc = [%d]\n", __func__, rc);
1932 kfree(filename);
1933 goto out;
1934 }
1935 ecryptfs_encode_for_filename(
1936 NULL, &encoded_name_no_prefix_size,
1937 filename->encrypted_filename,
1938 filename->encrypted_filename_size);
1939 if (mount_crypt_stat
1940 && (mount_crypt_stat->flags
1941 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
1942 (*encoded_name_size) =
1943 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1944 + encoded_name_no_prefix_size);
1945 else
1946 (*encoded_name_size) =
1947 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1948 + encoded_name_no_prefix_size);
1949 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1950 if (!(*encoded_name)) {
1951 rc = -ENOMEM;
1952 kfree(filename->encrypted_filename);
1953 kfree(filename);
1954 goto out;
1955 }
1956 if (mount_crypt_stat
1957 && (mount_crypt_stat->flags
1958 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1959 memcpy((*encoded_name),
1960 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1961 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1962 ecryptfs_encode_for_filename(
1963 ((*encoded_name)
1964 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
1965 &encoded_name_no_prefix_size,
1966 filename->encrypted_filename,
1967 filename->encrypted_filename_size);
1968 (*encoded_name_size) =
1969 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1970 + encoded_name_no_prefix_size);
1971 (*encoded_name)[(*encoded_name_size)] = '\0';
1972 } else {
1973 rc = -EOPNOTSUPP;
1974 }
1975 if (rc) {
1976 printk(KERN_ERR "%s: Error attempting to encode "
1977 "encrypted filename; rc = [%d]\n", __func__,
1978 rc);
1979 kfree((*encoded_name));
1980 (*encoded_name) = NULL;
1981 (*encoded_name_size) = 0;
1982 }
1983 kfree(filename->encrypted_filename);
1984 kfree(filename);
1985 } else {
1986 rc = ecryptfs_copy_filename(encoded_name,
1987 encoded_name_size,
1988 name, name_size);
1989 }
1990out:
1991 return rc;
1992}
1993
1994static bool is_dot_dotdot(const char *name, size_t name_size)
1995{
1996 if (name_size == 1 && name[0] == '.')
1997 return true;
1998 else if (name_size == 2 && name[0] == '.' && name[1] == '.')
1999 return true;
2000
2001 return false;
2002}
2003
2004/**
2005 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2006 * @plaintext_name: The plaintext name
2007 * @plaintext_name_size: The plaintext name size
2008 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2009 * @name: The filename in cipher text
2010 * @name_size: The cipher text name size
2011 *
2012 * Decrypts and decodes the filename.
2013 *
2014 * Returns zero on error; non-zero otherwise
2015 */
2016int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2017 size_t *plaintext_name_size,
2018 struct super_block *sb,
2019 const char *name, size_t name_size)
2020{
2021 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2022 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2023 char *decoded_name;
2024 size_t decoded_name_size;
2025 size_t packet_size;
2026 int rc = 0;
2027
2028 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) &&
2029 !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) {
2030 if (is_dot_dotdot(name, name_size)) {
2031 rc = ecryptfs_copy_filename(plaintext_name,
2032 plaintext_name_size,
2033 name, name_size);
2034 goto out;
2035 }
2036
2037 if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE ||
2038 strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2039 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) {
2040 rc = -EINVAL;
2041 goto out;
2042 }
2043
2044 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2045 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2046 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2047 name, name_size);
2048 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2049 if (!decoded_name) {
2050 rc = -ENOMEM;
2051 goto out;
2052 }
2053 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2054 name, name_size);
2055 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2056 plaintext_name_size,
2057 &packet_size,
2058 mount_crypt_stat,
2059 decoded_name,
2060 decoded_name_size);
2061 if (rc) {
2062 ecryptfs_printk(KERN_DEBUG,
2063 "%s: Could not parse tag 70 packet from filename\n",
2064 __func__);
2065 goto out_free;
2066 }
2067 } else {
2068 rc = ecryptfs_copy_filename(plaintext_name,
2069 plaintext_name_size,
2070 name, name_size);
2071 goto out;
2072 }
2073out_free:
2074 kfree(decoded_name);
2075out:
2076 return rc;
2077}
2078
2079#define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143
2080
2081int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2082 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2083{
2084 struct crypto_skcipher *tfm;
2085 struct mutex *tfm_mutex;
2086 size_t cipher_blocksize;
2087 int rc;
2088
2089 if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2090 (*namelen) = lower_namelen;
2091 return 0;
2092 }
2093
2094 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2095 mount_crypt_stat->global_default_fn_cipher_name);
2096 if (unlikely(rc)) {
2097 (*namelen) = 0;
2098 return rc;
2099 }
2100
2101 mutex_lock(tfm_mutex);
2102 cipher_blocksize = crypto_skcipher_blocksize(tfm);
2103 mutex_unlock(tfm_mutex);
2104
2105 /* Return an exact amount for the common cases */
2106 if (lower_namelen == NAME_MAX
2107 && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2108 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2109 return 0;
2110 }
2111
2112 /* Return a safe estimate for the uncommon cases */
2113 (*namelen) = lower_namelen;
2114 (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2115 /* Since this is the max decoded size, subtract 1 "decoded block" len */
2116 (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2117 (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2118 (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2119 /* Worst case is that the filename is padded nearly a full block size */
2120 (*namelen) -= cipher_blocksize - 1;
2121
2122 if ((*namelen) < 0)
2123 (*namelen) = 0;
2124
2125 return 0;
2126}