Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/**
3 * eCryptfs: Linux filesystem encryption layer
4 *
5 * Copyright (C) 1997-2004 Erez Zadok
6 * Copyright (C) 2001-2004 Stony Brook University
7 * Copyright (C) 2004-2007 International Business Machines Corp.
8 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
9 * Michael C. Thompson <mcthomps@us.ibm.com>
10 */
11
12#include <crypto/hash.h>
13#include <crypto/skcipher.h>
14#include <linux/fs.h>
15#include <linux/mount.h>
16#include <linux/pagemap.h>
17#include <linux/random.h>
18#include <linux/compiler.h>
19#include <linux/key.h>
20#include <linux/namei.h>
21#include <linux/file.h>
22#include <linux/scatterlist.h>
23#include <linux/slab.h>
24#include <asm/unaligned.h>
25#include <linux/kernel.h>
26#include <linux/xattr.h>
27#include "ecryptfs_kernel.h"
28
29#define DECRYPT 0
30#define ENCRYPT 1
31
32/**
33 * ecryptfs_from_hex
34 * @dst: Buffer to take the bytes from src hex; must be at least of
35 * size (src_size / 2)
36 * @src: Buffer to be converted from a hex string representation to raw value
37 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
38 */
39void ecryptfs_from_hex(char *dst, char *src, int dst_size)
40{
41 int x;
42 char tmp[3] = { 0, };
43
44 for (x = 0; x < dst_size; x++) {
45 tmp[0] = src[x * 2];
46 tmp[1] = src[x * 2 + 1];
47 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
48 }
49}
50
51/**
52 * ecryptfs_calculate_md5 - calculates the md5 of @src
53 * @dst: Pointer to 16 bytes of allocated memory
54 * @crypt_stat: Pointer to crypt_stat struct for the current inode
55 * @src: Data to be md5'd
56 * @len: Length of @src
57 *
58 * Uses the allocated crypto context that crypt_stat references to
59 * generate the MD5 sum of the contents of src.
60 */
61static int ecryptfs_calculate_md5(char *dst,
62 struct ecryptfs_crypt_stat *crypt_stat,
63 char *src, int len)
64{
65 int rc = crypto_shash_tfm_digest(crypt_stat->hash_tfm, src, len, dst);
66
67 if (rc) {
68 printk(KERN_ERR
69 "%s: Error computing crypto hash; rc = [%d]\n",
70 __func__, rc);
71 goto out;
72 }
73out:
74 return rc;
75}
76
77static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
78 char *cipher_name,
79 char *chaining_modifier)
80{
81 int cipher_name_len = strlen(cipher_name);
82 int chaining_modifier_len = strlen(chaining_modifier);
83 int algified_name_len;
84 int rc;
85
86 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
87 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
88 if (!(*algified_name)) {
89 rc = -ENOMEM;
90 goto out;
91 }
92 snprintf((*algified_name), algified_name_len, "%s(%s)",
93 chaining_modifier, cipher_name);
94 rc = 0;
95out:
96 return rc;
97}
98
99/**
100 * ecryptfs_derive_iv
101 * @iv: destination for the derived iv vale
102 * @crypt_stat: Pointer to crypt_stat struct for the current inode
103 * @offset: Offset of the extent whose IV we are to derive
104 *
105 * Generate the initialization vector from the given root IV and page
106 * offset.
107 *
108 * Returns zero on success; non-zero on error.
109 */
110int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
111 loff_t offset)
112{
113 int rc = 0;
114 char dst[MD5_DIGEST_SIZE];
115 char src[ECRYPTFS_MAX_IV_BYTES + 16];
116
117 if (unlikely(ecryptfs_verbosity > 0)) {
118 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
119 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
120 }
121 /* TODO: It is probably secure to just cast the least
122 * significant bits of the root IV into an unsigned long and
123 * add the offset to that rather than go through all this
124 * hashing business. -Halcrow */
125 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
126 memset((src + crypt_stat->iv_bytes), 0, 16);
127 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
128 if (unlikely(ecryptfs_verbosity > 0)) {
129 ecryptfs_printk(KERN_DEBUG, "source:\n");
130 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
131 }
132 rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
133 (crypt_stat->iv_bytes + 16));
134 if (rc) {
135 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
136 "MD5 while generating IV for a page\n");
137 goto out;
138 }
139 memcpy(iv, dst, crypt_stat->iv_bytes);
140 if (unlikely(ecryptfs_verbosity > 0)) {
141 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
142 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
143 }
144out:
145 return rc;
146}
147
148/**
149 * ecryptfs_init_crypt_stat
150 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
151 *
152 * Initialize the crypt_stat structure.
153 */
154int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
155{
156 struct crypto_shash *tfm;
157 int rc;
158
159 tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
160 if (IS_ERR(tfm)) {
161 rc = PTR_ERR(tfm);
162 ecryptfs_printk(KERN_ERR, "Error attempting to "
163 "allocate crypto context; rc = [%d]\n",
164 rc);
165 return rc;
166 }
167
168 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
169 INIT_LIST_HEAD(&crypt_stat->keysig_list);
170 mutex_init(&crypt_stat->keysig_list_mutex);
171 mutex_init(&crypt_stat->cs_mutex);
172 mutex_init(&crypt_stat->cs_tfm_mutex);
173 crypt_stat->hash_tfm = tfm;
174 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
175
176 return 0;
177}
178
179/**
180 * ecryptfs_destroy_crypt_stat
181 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
182 *
183 * Releases all memory associated with a crypt_stat struct.
184 */
185void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
186{
187 struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
188
189 crypto_free_skcipher(crypt_stat->tfm);
190 crypto_free_shash(crypt_stat->hash_tfm);
191 list_for_each_entry_safe(key_sig, key_sig_tmp,
192 &crypt_stat->keysig_list, crypt_stat_list) {
193 list_del(&key_sig->crypt_stat_list);
194 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
195 }
196 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
197}
198
199void ecryptfs_destroy_mount_crypt_stat(
200 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
201{
202 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
203
204 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
205 return;
206 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
207 list_for_each_entry_safe(auth_tok, auth_tok_tmp,
208 &mount_crypt_stat->global_auth_tok_list,
209 mount_crypt_stat_list) {
210 list_del(&auth_tok->mount_crypt_stat_list);
211 if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
212 key_put(auth_tok->global_auth_tok_key);
213 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
214 }
215 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
216 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
217}
218
219/**
220 * virt_to_scatterlist
221 * @addr: Virtual address
222 * @size: Size of data; should be an even multiple of the block size
223 * @sg: Pointer to scatterlist array; set to NULL to obtain only
224 * the number of scatterlist structs required in array
225 * @sg_size: Max array size
226 *
227 * Fills in a scatterlist array with page references for a passed
228 * virtual address.
229 *
230 * Returns the number of scatterlist structs in array used
231 */
232int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
233 int sg_size)
234{
235 int i = 0;
236 struct page *pg;
237 int offset;
238 int remainder_of_page;
239
240 sg_init_table(sg, sg_size);
241
242 while (size > 0 && i < sg_size) {
243 pg = virt_to_page(addr);
244 offset = offset_in_page(addr);
245 sg_set_page(&sg[i], pg, 0, offset);
246 remainder_of_page = PAGE_SIZE - offset;
247 if (size >= remainder_of_page) {
248 sg[i].length = remainder_of_page;
249 addr += remainder_of_page;
250 size -= remainder_of_page;
251 } else {
252 sg[i].length = size;
253 addr += size;
254 size = 0;
255 }
256 i++;
257 }
258 if (size > 0)
259 return -ENOMEM;
260 return i;
261}
262
263struct extent_crypt_result {
264 struct completion completion;
265 int rc;
266};
267
268static void extent_crypt_complete(struct crypto_async_request *req, int rc)
269{
270 struct extent_crypt_result *ecr = req->data;
271
272 if (rc == -EINPROGRESS)
273 return;
274
275 ecr->rc = rc;
276 complete(&ecr->completion);
277}
278
279/**
280 * crypt_scatterlist
281 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
282 * @dst_sg: Destination of the data after performing the crypto operation
283 * @src_sg: Data to be encrypted or decrypted
284 * @size: Length of data
285 * @iv: IV to use
286 * @op: ENCRYPT or DECRYPT to indicate the desired operation
287 *
288 * Returns the number of bytes encrypted or decrypted; negative value on error
289 */
290static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
291 struct scatterlist *dst_sg,
292 struct scatterlist *src_sg, int size,
293 unsigned char *iv, int op)
294{
295 struct skcipher_request *req = NULL;
296 struct extent_crypt_result ecr;
297 int rc = 0;
298
299 if (!crypt_stat || !crypt_stat->tfm
300 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED))
301 return -EINVAL;
302
303 if (unlikely(ecryptfs_verbosity > 0)) {
304 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
305 crypt_stat->key_size);
306 ecryptfs_dump_hex(crypt_stat->key,
307 crypt_stat->key_size);
308 }
309
310 init_completion(&ecr.completion);
311
312 mutex_lock(&crypt_stat->cs_tfm_mutex);
313 req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
314 if (!req) {
315 mutex_unlock(&crypt_stat->cs_tfm_mutex);
316 rc = -ENOMEM;
317 goto out;
318 }
319
320 skcipher_request_set_callback(req,
321 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
322 extent_crypt_complete, &ecr);
323 /* Consider doing this once, when the file is opened */
324 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
325 rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
326 crypt_stat->key_size);
327 if (rc) {
328 ecryptfs_printk(KERN_ERR,
329 "Error setting key; rc = [%d]\n",
330 rc);
331 mutex_unlock(&crypt_stat->cs_tfm_mutex);
332 rc = -EINVAL;
333 goto out;
334 }
335 crypt_stat->flags |= ECRYPTFS_KEY_SET;
336 }
337 mutex_unlock(&crypt_stat->cs_tfm_mutex);
338 skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
339 rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
340 crypto_skcipher_decrypt(req);
341 if (rc == -EINPROGRESS || rc == -EBUSY) {
342 struct extent_crypt_result *ecr = req->base.data;
343
344 wait_for_completion(&ecr->completion);
345 rc = ecr->rc;
346 reinit_completion(&ecr->completion);
347 }
348out:
349 skcipher_request_free(req);
350 return rc;
351}
352
353/**
354 * lower_offset_for_page
355 *
356 * Convert an eCryptfs page index into a lower byte offset
357 */
358static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
359 struct page *page)
360{
361 return ecryptfs_lower_header_size(crypt_stat) +
362 ((loff_t)page->index << PAGE_SHIFT);
363}
364
365/**
366 * crypt_extent
367 * @crypt_stat: crypt_stat containing cryptographic context for the
368 * encryption operation
369 * @dst_page: The page to write the result into
370 * @src_page: The page to read from
371 * @extent_offset: Page extent offset for use in generating IV
372 * @op: ENCRYPT or DECRYPT to indicate the desired operation
373 *
374 * Encrypts or decrypts one extent of data.
375 *
376 * Return zero on success; non-zero otherwise
377 */
378static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
379 struct page *dst_page,
380 struct page *src_page,
381 unsigned long extent_offset, int op)
382{
383 pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
384 loff_t extent_base;
385 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
386 struct scatterlist src_sg, dst_sg;
387 size_t extent_size = crypt_stat->extent_size;
388 int rc;
389
390 extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
391 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
392 (extent_base + extent_offset));
393 if (rc) {
394 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
395 "extent [0x%.16llx]; rc = [%d]\n",
396 (unsigned long long)(extent_base + extent_offset), rc);
397 goto out;
398 }
399
400 sg_init_table(&src_sg, 1);
401 sg_init_table(&dst_sg, 1);
402
403 sg_set_page(&src_sg, src_page, extent_size,
404 extent_offset * extent_size);
405 sg_set_page(&dst_sg, dst_page, extent_size,
406 extent_offset * extent_size);
407
408 rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
409 extent_iv, op);
410 if (rc < 0) {
411 printk(KERN_ERR "%s: Error attempting to crypt page with "
412 "page_index = [%ld], extent_offset = [%ld]; "
413 "rc = [%d]\n", __func__, page_index, extent_offset, rc);
414 goto out;
415 }
416 rc = 0;
417out:
418 return rc;
419}
420
421/**
422 * ecryptfs_encrypt_page
423 * @page: Page mapped from the eCryptfs inode for the file; contains
424 * decrypted content that needs to be encrypted (to a temporary
425 * page; not in place) and written out to the lower file
426 *
427 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
428 * that eCryptfs pages may straddle the lower pages -- for instance,
429 * if the file was created on a machine with an 8K page size
430 * (resulting in an 8K header), and then the file is copied onto a
431 * host with a 32K page size, then when reading page 0 of the eCryptfs
432 * file, 24K of page 0 of the lower file will be read and decrypted,
433 * and then 8K of page 1 of the lower file will be read and decrypted.
434 *
435 * Returns zero on success; negative on error
436 */
437int ecryptfs_encrypt_page(struct page *page)
438{
439 struct inode *ecryptfs_inode;
440 struct ecryptfs_crypt_stat *crypt_stat;
441 char *enc_extent_virt;
442 struct page *enc_extent_page = NULL;
443 loff_t extent_offset;
444 loff_t lower_offset;
445 int rc = 0;
446
447 ecryptfs_inode = page->mapping->host;
448 crypt_stat =
449 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
450 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
451 enc_extent_page = alloc_page(GFP_USER);
452 if (!enc_extent_page) {
453 rc = -ENOMEM;
454 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
455 "encrypted extent\n");
456 goto out;
457 }
458
459 for (extent_offset = 0;
460 extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
461 extent_offset++) {
462 rc = crypt_extent(crypt_stat, enc_extent_page, page,
463 extent_offset, ENCRYPT);
464 if (rc) {
465 printk(KERN_ERR "%s: Error encrypting extent; "
466 "rc = [%d]\n", __func__, rc);
467 goto out;
468 }
469 }
470
471 lower_offset = lower_offset_for_page(crypt_stat, page);
472 enc_extent_virt = kmap(enc_extent_page);
473 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
474 PAGE_SIZE);
475 kunmap(enc_extent_page);
476 if (rc < 0) {
477 ecryptfs_printk(KERN_ERR,
478 "Error attempting to write lower page; rc = [%d]\n",
479 rc);
480 goto out;
481 }
482 rc = 0;
483out:
484 if (enc_extent_page) {
485 __free_page(enc_extent_page);
486 }
487 return rc;
488}
489
490/**
491 * ecryptfs_decrypt_page
492 * @page: Page mapped from the eCryptfs inode for the file; data read
493 * and decrypted from the lower file will be written into this
494 * page
495 *
496 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
497 * that eCryptfs pages may straddle the lower pages -- for instance,
498 * if the file was created on a machine with an 8K page size
499 * (resulting in an 8K header), and then the file is copied onto a
500 * host with a 32K page size, then when reading page 0 of the eCryptfs
501 * file, 24K of page 0 of the lower file will be read and decrypted,
502 * and then 8K of page 1 of the lower file will be read and decrypted.
503 *
504 * Returns zero on success; negative on error
505 */
506int ecryptfs_decrypt_page(struct page *page)
507{
508 struct inode *ecryptfs_inode;
509 struct ecryptfs_crypt_stat *crypt_stat;
510 char *page_virt;
511 unsigned long extent_offset;
512 loff_t lower_offset;
513 int rc = 0;
514
515 ecryptfs_inode = page->mapping->host;
516 crypt_stat =
517 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
518 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
519
520 lower_offset = lower_offset_for_page(crypt_stat, page);
521 page_virt = kmap(page);
522 rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
523 ecryptfs_inode);
524 kunmap(page);
525 if (rc < 0) {
526 ecryptfs_printk(KERN_ERR,
527 "Error attempting to read lower page; rc = [%d]\n",
528 rc);
529 goto out;
530 }
531
532 for (extent_offset = 0;
533 extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
534 extent_offset++) {
535 rc = crypt_extent(crypt_stat, page, page,
536 extent_offset, DECRYPT);
537 if (rc) {
538 printk(KERN_ERR "%s: Error encrypting extent; "
539 "rc = [%d]\n", __func__, rc);
540 goto out;
541 }
542 }
543out:
544 return rc;
545}
546
547#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
548
549/**
550 * ecryptfs_init_crypt_ctx
551 * @crypt_stat: Uninitialized crypt stats structure
552 *
553 * Initialize the crypto context.
554 *
555 * TODO: Performance: Keep a cache of initialized cipher contexts;
556 * only init if needed
557 */
558int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
559{
560 char *full_alg_name;
561 int rc = -EINVAL;
562
563 ecryptfs_printk(KERN_DEBUG,
564 "Initializing cipher [%s]; strlen = [%d]; "
565 "key_size_bits = [%zd]\n",
566 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
567 crypt_stat->key_size << 3);
568 mutex_lock(&crypt_stat->cs_tfm_mutex);
569 if (crypt_stat->tfm) {
570 rc = 0;
571 goto out_unlock;
572 }
573 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
574 crypt_stat->cipher, "cbc");
575 if (rc)
576 goto out_unlock;
577 crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
578 if (IS_ERR(crypt_stat->tfm)) {
579 rc = PTR_ERR(crypt_stat->tfm);
580 crypt_stat->tfm = NULL;
581 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
582 "Error initializing cipher [%s]\n",
583 full_alg_name);
584 goto out_free;
585 }
586 crypto_skcipher_set_flags(crypt_stat->tfm,
587 CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
588 rc = 0;
589out_free:
590 kfree(full_alg_name);
591out_unlock:
592 mutex_unlock(&crypt_stat->cs_tfm_mutex);
593 return rc;
594}
595
596static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
597{
598 int extent_size_tmp;
599
600 crypt_stat->extent_mask = 0xFFFFFFFF;
601 crypt_stat->extent_shift = 0;
602 if (crypt_stat->extent_size == 0)
603 return;
604 extent_size_tmp = crypt_stat->extent_size;
605 while ((extent_size_tmp & 0x01) == 0) {
606 extent_size_tmp >>= 1;
607 crypt_stat->extent_mask <<= 1;
608 crypt_stat->extent_shift++;
609 }
610}
611
612void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
613{
614 /* Default values; may be overwritten as we are parsing the
615 * packets. */
616 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
617 set_extent_mask_and_shift(crypt_stat);
618 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
619 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
620 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
621 else {
622 if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
623 crypt_stat->metadata_size =
624 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
625 else
626 crypt_stat->metadata_size = PAGE_SIZE;
627 }
628}
629
630/**
631 * ecryptfs_compute_root_iv
632 * @crypt_stats
633 *
634 * On error, sets the root IV to all 0's.
635 */
636int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
637{
638 int rc = 0;
639 char dst[MD5_DIGEST_SIZE];
640
641 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
642 BUG_ON(crypt_stat->iv_bytes <= 0);
643 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
644 rc = -EINVAL;
645 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
646 "cannot generate root IV\n");
647 goto out;
648 }
649 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
650 crypt_stat->key_size);
651 if (rc) {
652 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
653 "MD5 while generating root IV\n");
654 goto out;
655 }
656 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
657out:
658 if (rc) {
659 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
660 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
661 }
662 return rc;
663}
664
665static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
666{
667 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
668 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
669 ecryptfs_compute_root_iv(crypt_stat);
670 if (unlikely(ecryptfs_verbosity > 0)) {
671 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
672 ecryptfs_dump_hex(crypt_stat->key,
673 crypt_stat->key_size);
674 }
675}
676
677/**
678 * ecryptfs_copy_mount_wide_flags_to_inode_flags
679 * @crypt_stat: The inode's cryptographic context
680 * @mount_crypt_stat: The mount point's cryptographic context
681 *
682 * This function propagates the mount-wide flags to individual inode
683 * flags.
684 */
685static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
686 struct ecryptfs_crypt_stat *crypt_stat,
687 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
688{
689 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
690 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
691 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
692 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
693 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
694 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
695 if (mount_crypt_stat->flags
696 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
697 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
698 else if (mount_crypt_stat->flags
699 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
700 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
701 }
702}
703
704static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
705 struct ecryptfs_crypt_stat *crypt_stat,
706 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
707{
708 struct ecryptfs_global_auth_tok *global_auth_tok;
709 int rc = 0;
710
711 mutex_lock(&crypt_stat->keysig_list_mutex);
712 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
713
714 list_for_each_entry(global_auth_tok,
715 &mount_crypt_stat->global_auth_tok_list,
716 mount_crypt_stat_list) {
717 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
718 continue;
719 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
720 if (rc) {
721 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
722 goto out;
723 }
724 }
725
726out:
727 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
728 mutex_unlock(&crypt_stat->keysig_list_mutex);
729 return rc;
730}
731
732/**
733 * ecryptfs_set_default_crypt_stat_vals
734 * @crypt_stat: The inode's cryptographic context
735 * @mount_crypt_stat: The mount point's cryptographic context
736 *
737 * Default values in the event that policy does not override them.
738 */
739static void ecryptfs_set_default_crypt_stat_vals(
740 struct ecryptfs_crypt_stat *crypt_stat,
741 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
742{
743 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
744 mount_crypt_stat);
745 ecryptfs_set_default_sizes(crypt_stat);
746 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
747 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
748 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
749 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
750 crypt_stat->mount_crypt_stat = mount_crypt_stat;
751}
752
753/**
754 * ecryptfs_new_file_context
755 * @ecryptfs_inode: The eCryptfs inode
756 *
757 * If the crypto context for the file has not yet been established,
758 * this is where we do that. Establishing a new crypto context
759 * involves the following decisions:
760 * - What cipher to use?
761 * - What set of authentication tokens to use?
762 * Here we just worry about getting enough information into the
763 * authentication tokens so that we know that they are available.
764 * We associate the available authentication tokens with the new file
765 * via the set of signatures in the crypt_stat struct. Later, when
766 * the headers are actually written out, we may again defer to
767 * userspace to perform the encryption of the session key; for the
768 * foreseeable future, this will be the case with public key packets.
769 *
770 * Returns zero on success; non-zero otherwise
771 */
772int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
773{
774 struct ecryptfs_crypt_stat *crypt_stat =
775 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
776 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
777 &ecryptfs_superblock_to_private(
778 ecryptfs_inode->i_sb)->mount_crypt_stat;
779 int cipher_name_len;
780 int rc = 0;
781
782 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
783 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
784 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
785 mount_crypt_stat);
786 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
787 mount_crypt_stat);
788 if (rc) {
789 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
790 "to the inode key sigs; rc = [%d]\n", rc);
791 goto out;
792 }
793 cipher_name_len =
794 strlen(mount_crypt_stat->global_default_cipher_name);
795 memcpy(crypt_stat->cipher,
796 mount_crypt_stat->global_default_cipher_name,
797 cipher_name_len);
798 crypt_stat->cipher[cipher_name_len] = '\0';
799 crypt_stat->key_size =
800 mount_crypt_stat->global_default_cipher_key_size;
801 ecryptfs_generate_new_key(crypt_stat);
802 rc = ecryptfs_init_crypt_ctx(crypt_stat);
803 if (rc)
804 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
805 "context for cipher [%s]: rc = [%d]\n",
806 crypt_stat->cipher, rc);
807out:
808 return rc;
809}
810
811/**
812 * ecryptfs_validate_marker - check for the ecryptfs marker
813 * @data: The data block in which to check
814 *
815 * Returns zero if marker found; -EINVAL if not found
816 */
817static int ecryptfs_validate_marker(char *data)
818{
819 u32 m_1, m_2;
820
821 m_1 = get_unaligned_be32(data);
822 m_2 = get_unaligned_be32(data + 4);
823 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
824 return 0;
825 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
826 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
827 MAGIC_ECRYPTFS_MARKER);
828 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
829 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
830 return -EINVAL;
831}
832
833struct ecryptfs_flag_map_elem {
834 u32 file_flag;
835 u32 local_flag;
836};
837
838/* Add support for additional flags by adding elements here. */
839static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
840 {0x00000001, ECRYPTFS_ENABLE_HMAC},
841 {0x00000002, ECRYPTFS_ENCRYPTED},
842 {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
843 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
844};
845
846/**
847 * ecryptfs_process_flags
848 * @crypt_stat: The cryptographic context
849 * @page_virt: Source data to be parsed
850 * @bytes_read: Updated with the number of bytes read
851 */
852static void ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
853 char *page_virt, int *bytes_read)
854{
855 int i;
856 u32 flags;
857
858 flags = get_unaligned_be32(page_virt);
859 for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
860 if (flags & ecryptfs_flag_map[i].file_flag) {
861 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
862 } else
863 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
864 /* Version is in top 8 bits of the 32-bit flag vector */
865 crypt_stat->file_version = ((flags >> 24) & 0xFF);
866 (*bytes_read) = 4;
867}
868
869/**
870 * write_ecryptfs_marker
871 * @page_virt: The pointer to in a page to begin writing the marker
872 * @written: Number of bytes written
873 *
874 * Marker = 0x3c81b7f5
875 */
876static void write_ecryptfs_marker(char *page_virt, size_t *written)
877{
878 u32 m_1, m_2;
879
880 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
881 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
882 put_unaligned_be32(m_1, page_virt);
883 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
884 put_unaligned_be32(m_2, page_virt);
885 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
886}
887
888void ecryptfs_write_crypt_stat_flags(char *page_virt,
889 struct ecryptfs_crypt_stat *crypt_stat,
890 size_t *written)
891{
892 u32 flags = 0;
893 int i;
894
895 for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
896 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
897 flags |= ecryptfs_flag_map[i].file_flag;
898 /* Version is in top 8 bits of the 32-bit flag vector */
899 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
900 put_unaligned_be32(flags, page_virt);
901 (*written) = 4;
902}
903
904struct ecryptfs_cipher_code_str_map_elem {
905 char cipher_str[16];
906 u8 cipher_code;
907};
908
909/* Add support for additional ciphers by adding elements here. The
910 * cipher_code is whatever OpenPGP applications use to identify the
911 * ciphers. List in order of probability. */
912static struct ecryptfs_cipher_code_str_map_elem
913ecryptfs_cipher_code_str_map[] = {
914 {"aes",RFC2440_CIPHER_AES_128 },
915 {"blowfish", RFC2440_CIPHER_BLOWFISH},
916 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
917 {"cast5", RFC2440_CIPHER_CAST_5},
918 {"twofish", RFC2440_CIPHER_TWOFISH},
919 {"cast6", RFC2440_CIPHER_CAST_6},
920 {"aes", RFC2440_CIPHER_AES_192},
921 {"aes", RFC2440_CIPHER_AES_256}
922};
923
924/**
925 * ecryptfs_code_for_cipher_string
926 * @cipher_name: The string alias for the cipher
927 * @key_bytes: Length of key in bytes; used for AES code selection
928 *
929 * Returns zero on no match, or the cipher code on match
930 */
931u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
932{
933 int i;
934 u8 code = 0;
935 struct ecryptfs_cipher_code_str_map_elem *map =
936 ecryptfs_cipher_code_str_map;
937
938 if (strcmp(cipher_name, "aes") == 0) {
939 switch (key_bytes) {
940 case 16:
941 code = RFC2440_CIPHER_AES_128;
942 break;
943 case 24:
944 code = RFC2440_CIPHER_AES_192;
945 break;
946 case 32:
947 code = RFC2440_CIPHER_AES_256;
948 }
949 } else {
950 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
951 if (strcmp(cipher_name, map[i].cipher_str) == 0) {
952 code = map[i].cipher_code;
953 break;
954 }
955 }
956 return code;
957}
958
959/**
960 * ecryptfs_cipher_code_to_string
961 * @str: Destination to write out the cipher name
962 * @cipher_code: The code to convert to cipher name string
963 *
964 * Returns zero on success
965 */
966int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
967{
968 int rc = 0;
969 int i;
970
971 str[0] = '\0';
972 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
973 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
974 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
975 if (str[0] == '\0') {
976 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
977 "[%d]\n", cipher_code);
978 rc = -EINVAL;
979 }
980 return rc;
981}
982
983int ecryptfs_read_and_validate_header_region(struct inode *inode)
984{
985 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
986 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
987 int rc;
988
989 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
990 inode);
991 if (rc < 0)
992 return rc;
993 else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
994 return -EINVAL;
995 rc = ecryptfs_validate_marker(marker);
996 if (!rc)
997 ecryptfs_i_size_init(file_size, inode);
998 return rc;
999}
1000
1001void
1002ecryptfs_write_header_metadata(char *virt,
1003 struct ecryptfs_crypt_stat *crypt_stat,
1004 size_t *written)
1005{
1006 u32 header_extent_size;
1007 u16 num_header_extents_at_front;
1008
1009 header_extent_size = (u32)crypt_stat->extent_size;
1010 num_header_extents_at_front =
1011 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1012 put_unaligned_be32(header_extent_size, virt);
1013 virt += 4;
1014 put_unaligned_be16(num_header_extents_at_front, virt);
1015 (*written) = 6;
1016}
1017
1018struct kmem_cache *ecryptfs_header_cache;
1019
1020/**
1021 * ecryptfs_write_headers_virt
1022 * @page_virt: The virtual address to write the headers to
1023 * @max: The size of memory allocated at page_virt
1024 * @size: Set to the number of bytes written by this function
1025 * @crypt_stat: The cryptographic context
1026 * @ecryptfs_dentry: The eCryptfs dentry
1027 *
1028 * Format version: 1
1029 *
1030 * Header Extent:
1031 * Octets 0-7: Unencrypted file size (big-endian)
1032 * Octets 8-15: eCryptfs special marker
1033 * Octets 16-19: Flags
1034 * Octet 16: File format version number (between 0 and 255)
1035 * Octets 17-18: Reserved
1036 * Octet 19: Bit 1 (lsb): Reserved
1037 * Bit 2: Encrypted?
1038 * Bits 3-8: Reserved
1039 * Octets 20-23: Header extent size (big-endian)
1040 * Octets 24-25: Number of header extents at front of file
1041 * (big-endian)
1042 * Octet 26: Begin RFC 2440 authentication token packet set
1043 * Data Extent 0:
1044 * Lower data (CBC encrypted)
1045 * Data Extent 1:
1046 * Lower data (CBC encrypted)
1047 * ...
1048 *
1049 * Returns zero on success
1050 */
1051static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1052 size_t *size,
1053 struct ecryptfs_crypt_stat *crypt_stat,
1054 struct dentry *ecryptfs_dentry)
1055{
1056 int rc;
1057 size_t written;
1058 size_t offset;
1059
1060 offset = ECRYPTFS_FILE_SIZE_BYTES;
1061 write_ecryptfs_marker((page_virt + offset), &written);
1062 offset += written;
1063 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1064 &written);
1065 offset += written;
1066 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1067 &written);
1068 offset += written;
1069 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1070 ecryptfs_dentry, &written,
1071 max - offset);
1072 if (rc)
1073 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1074 "set; rc = [%d]\n", rc);
1075 if (size) {
1076 offset += written;
1077 *size = offset;
1078 }
1079 return rc;
1080}
1081
1082static int
1083ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1084 char *virt, size_t virt_len)
1085{
1086 int rc;
1087
1088 rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1089 0, virt_len);
1090 if (rc < 0)
1091 printk(KERN_ERR "%s: Error attempting to write header "
1092 "information to lower file; rc = [%d]\n", __func__, rc);
1093 else
1094 rc = 0;
1095 return rc;
1096}
1097
1098static int
1099ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1100 struct inode *ecryptfs_inode,
1101 char *page_virt, size_t size)
1102{
1103 int rc;
1104 struct dentry *lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
1105 struct inode *lower_inode = d_inode(lower_dentry);
1106
1107 if (!(lower_inode->i_opflags & IOP_XATTR)) {
1108 rc = -EOPNOTSUPP;
1109 goto out;
1110 }
1111
1112 inode_lock(lower_inode);
1113 rc = __vfs_setxattr(lower_dentry, lower_inode, ECRYPTFS_XATTR_NAME,
1114 page_virt, size, 0);
1115 if (!rc && ecryptfs_inode)
1116 fsstack_copy_attr_all(ecryptfs_inode, lower_inode);
1117 inode_unlock(lower_inode);
1118out:
1119 return rc;
1120}
1121
1122static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1123 unsigned int order)
1124{
1125 struct page *page;
1126
1127 page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1128 if (page)
1129 return (unsigned long) page_address(page);
1130 return 0;
1131}
1132
1133/**
1134 * ecryptfs_write_metadata
1135 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1136 * @ecryptfs_inode: The newly created eCryptfs inode
1137 *
1138 * Write the file headers out. This will likely involve a userspace
1139 * callout, in which the session key is encrypted with one or more
1140 * public keys and/or the passphrase necessary to do the encryption is
1141 * retrieved via a prompt. Exactly what happens at this point should
1142 * be policy-dependent.
1143 *
1144 * Returns zero on success; non-zero on error
1145 */
1146int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1147 struct inode *ecryptfs_inode)
1148{
1149 struct ecryptfs_crypt_stat *crypt_stat =
1150 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1151 unsigned int order;
1152 char *virt;
1153 size_t virt_len;
1154 size_t size = 0;
1155 int rc = 0;
1156
1157 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1158 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1159 printk(KERN_ERR "Key is invalid; bailing out\n");
1160 rc = -EINVAL;
1161 goto out;
1162 }
1163 } else {
1164 printk(KERN_WARNING "%s: Encrypted flag not set\n",
1165 __func__);
1166 rc = -EINVAL;
1167 goto out;
1168 }
1169 virt_len = crypt_stat->metadata_size;
1170 order = get_order(virt_len);
1171 /* Released in this function */
1172 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1173 if (!virt) {
1174 printk(KERN_ERR "%s: Out of memory\n", __func__);
1175 rc = -ENOMEM;
1176 goto out;
1177 }
1178 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1179 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1180 ecryptfs_dentry);
1181 if (unlikely(rc)) {
1182 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1183 __func__, rc);
1184 goto out_free;
1185 }
1186 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1187 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1188 virt, size);
1189 else
1190 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1191 virt_len);
1192 if (rc) {
1193 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1194 "rc = [%d]\n", __func__, rc);
1195 goto out_free;
1196 }
1197out_free:
1198 free_pages((unsigned long)virt, order);
1199out:
1200 return rc;
1201}
1202
1203#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1204#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1205static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1206 char *virt, int *bytes_read,
1207 int validate_header_size)
1208{
1209 int rc = 0;
1210 u32 header_extent_size;
1211 u16 num_header_extents_at_front;
1212
1213 header_extent_size = get_unaligned_be32(virt);
1214 virt += sizeof(__be32);
1215 num_header_extents_at_front = get_unaligned_be16(virt);
1216 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1217 * (size_t)header_extent_size));
1218 (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1219 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1220 && (crypt_stat->metadata_size
1221 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1222 rc = -EINVAL;
1223 printk(KERN_WARNING "Invalid header size: [%zd]\n",
1224 crypt_stat->metadata_size);
1225 }
1226 return rc;
1227}
1228
1229/**
1230 * set_default_header_data
1231 * @crypt_stat: The cryptographic context
1232 *
1233 * For version 0 file format; this function is only for backwards
1234 * compatibility for files created with the prior versions of
1235 * eCryptfs.
1236 */
1237static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1238{
1239 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1240}
1241
1242void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1243{
1244 struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1245 struct ecryptfs_crypt_stat *crypt_stat;
1246 u64 file_size;
1247
1248 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1249 mount_crypt_stat =
1250 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1251 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1252 file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1253 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1254 file_size += crypt_stat->metadata_size;
1255 } else
1256 file_size = get_unaligned_be64(page_virt);
1257 i_size_write(inode, (loff_t)file_size);
1258 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1259}
1260
1261/**
1262 * ecryptfs_read_headers_virt
1263 * @page_virt: The virtual address into which to read the headers
1264 * @crypt_stat: The cryptographic context
1265 * @ecryptfs_dentry: The eCryptfs dentry
1266 * @validate_header_size: Whether to validate the header size while reading
1267 *
1268 * Read/parse the header data. The header format is detailed in the
1269 * comment block for the ecryptfs_write_headers_virt() function.
1270 *
1271 * Returns zero on success
1272 */
1273static int ecryptfs_read_headers_virt(char *page_virt,
1274 struct ecryptfs_crypt_stat *crypt_stat,
1275 struct dentry *ecryptfs_dentry,
1276 int validate_header_size)
1277{
1278 int rc = 0;
1279 int offset;
1280 int bytes_read;
1281
1282 ecryptfs_set_default_sizes(crypt_stat);
1283 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1284 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1285 offset = ECRYPTFS_FILE_SIZE_BYTES;
1286 rc = ecryptfs_validate_marker(page_virt + offset);
1287 if (rc)
1288 goto out;
1289 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1290 ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1291 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1292 ecryptfs_process_flags(crypt_stat, (page_virt + offset), &bytes_read);
1293 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1294 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1295 "file version [%d] is supported by this "
1296 "version of eCryptfs\n",
1297 crypt_stat->file_version,
1298 ECRYPTFS_SUPPORTED_FILE_VERSION);
1299 rc = -EINVAL;
1300 goto out;
1301 }
1302 offset += bytes_read;
1303 if (crypt_stat->file_version >= 1) {
1304 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1305 &bytes_read, validate_header_size);
1306 if (rc) {
1307 ecryptfs_printk(KERN_WARNING, "Error reading header "
1308 "metadata; rc = [%d]\n", rc);
1309 }
1310 offset += bytes_read;
1311 } else
1312 set_default_header_data(crypt_stat);
1313 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1314 ecryptfs_dentry);
1315out:
1316 return rc;
1317}
1318
1319/**
1320 * ecryptfs_read_xattr_region
1321 * @page_virt: The vitual address into which to read the xattr data
1322 * @ecryptfs_inode: The eCryptfs inode
1323 *
1324 * Attempts to read the crypto metadata from the extended attribute
1325 * region of the lower file.
1326 *
1327 * Returns zero on success; non-zero on error
1328 */
1329int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1330{
1331 struct dentry *lower_dentry =
1332 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1333 ssize_t size;
1334 int rc = 0;
1335
1336 size = ecryptfs_getxattr_lower(lower_dentry,
1337 ecryptfs_inode_to_lower(ecryptfs_inode),
1338 ECRYPTFS_XATTR_NAME,
1339 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1340 if (size < 0) {
1341 if (unlikely(ecryptfs_verbosity > 0))
1342 printk(KERN_INFO "Error attempting to read the [%s] "
1343 "xattr from the lower file; return value = "
1344 "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1345 rc = -EINVAL;
1346 goto out;
1347 }
1348out:
1349 return rc;
1350}
1351
1352int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1353 struct inode *inode)
1354{
1355 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1356 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1357 int rc;
1358
1359 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1360 ecryptfs_inode_to_lower(inode),
1361 ECRYPTFS_XATTR_NAME, file_size,
1362 ECRYPTFS_SIZE_AND_MARKER_BYTES);
1363 if (rc < 0)
1364 return rc;
1365 else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1366 return -EINVAL;
1367 rc = ecryptfs_validate_marker(marker);
1368 if (!rc)
1369 ecryptfs_i_size_init(file_size, inode);
1370 return rc;
1371}
1372
1373/**
1374 * ecryptfs_read_metadata
1375 *
1376 * Common entry point for reading file metadata. From here, we could
1377 * retrieve the header information from the header region of the file,
1378 * the xattr region of the file, or some other repository that is
1379 * stored separately from the file itself. The current implementation
1380 * supports retrieving the metadata information from the file contents
1381 * and from the xattr region.
1382 *
1383 * Returns zero if valid headers found and parsed; non-zero otherwise
1384 */
1385int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1386{
1387 int rc;
1388 char *page_virt;
1389 struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1390 struct ecryptfs_crypt_stat *crypt_stat =
1391 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1392 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1393 &ecryptfs_superblock_to_private(
1394 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1395
1396 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1397 mount_crypt_stat);
1398 /* Read the first page from the underlying file */
1399 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1400 if (!page_virt) {
1401 rc = -ENOMEM;
1402 goto out;
1403 }
1404 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1405 ecryptfs_inode);
1406 if (rc >= 0)
1407 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1408 ecryptfs_dentry,
1409 ECRYPTFS_VALIDATE_HEADER_SIZE);
1410 if (rc) {
1411 /* metadata is not in the file header, so try xattrs */
1412 memset(page_virt, 0, PAGE_SIZE);
1413 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1414 if (rc) {
1415 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1416 "file header region or xattr region, inode %lu\n",
1417 ecryptfs_inode->i_ino);
1418 rc = -EINVAL;
1419 goto out;
1420 }
1421 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1422 ecryptfs_dentry,
1423 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1424 if (rc) {
1425 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1426 "file xattr region either, inode %lu\n",
1427 ecryptfs_inode->i_ino);
1428 rc = -EINVAL;
1429 }
1430 if (crypt_stat->mount_crypt_stat->flags
1431 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1432 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1433 } else {
1434 printk(KERN_WARNING "Attempt to access file with "
1435 "crypto metadata only in the extended attribute "
1436 "region, but eCryptfs was mounted without "
1437 "xattr support enabled. eCryptfs will not treat "
1438 "this like an encrypted file, inode %lu\n",
1439 ecryptfs_inode->i_ino);
1440 rc = -EINVAL;
1441 }
1442 }
1443out:
1444 if (page_virt) {
1445 memset(page_virt, 0, PAGE_SIZE);
1446 kmem_cache_free(ecryptfs_header_cache, page_virt);
1447 }
1448 return rc;
1449}
1450
1451/**
1452 * ecryptfs_encrypt_filename - encrypt filename
1453 *
1454 * CBC-encrypts the filename. We do not want to encrypt the same
1455 * filename with the same key and IV, which may happen with hard
1456 * links, so we prepend random bits to each filename.
1457 *
1458 * Returns zero on success; non-zero otherwise
1459 */
1460static int
1461ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1462 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1463{
1464 int rc = 0;
1465
1466 filename->encrypted_filename = NULL;
1467 filename->encrypted_filename_size = 0;
1468 if (mount_crypt_stat && (mount_crypt_stat->flags
1469 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1470 size_t packet_size;
1471 size_t remaining_bytes;
1472
1473 rc = ecryptfs_write_tag_70_packet(
1474 NULL, NULL,
1475 &filename->encrypted_filename_size,
1476 mount_crypt_stat, NULL,
1477 filename->filename_size);
1478 if (rc) {
1479 printk(KERN_ERR "%s: Error attempting to get packet "
1480 "size for tag 72; rc = [%d]\n", __func__,
1481 rc);
1482 filename->encrypted_filename_size = 0;
1483 goto out;
1484 }
1485 filename->encrypted_filename =
1486 kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1487 if (!filename->encrypted_filename) {
1488 rc = -ENOMEM;
1489 goto out;
1490 }
1491 remaining_bytes = filename->encrypted_filename_size;
1492 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1493 &remaining_bytes,
1494 &packet_size,
1495 mount_crypt_stat,
1496 filename->filename,
1497 filename->filename_size);
1498 if (rc) {
1499 printk(KERN_ERR "%s: Error attempting to generate "
1500 "tag 70 packet; rc = [%d]\n", __func__,
1501 rc);
1502 kfree(filename->encrypted_filename);
1503 filename->encrypted_filename = NULL;
1504 filename->encrypted_filename_size = 0;
1505 goto out;
1506 }
1507 filename->encrypted_filename_size = packet_size;
1508 } else {
1509 printk(KERN_ERR "%s: No support for requested filename "
1510 "encryption method in this release\n", __func__);
1511 rc = -EOPNOTSUPP;
1512 goto out;
1513 }
1514out:
1515 return rc;
1516}
1517
1518static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1519 const char *name, size_t name_size)
1520{
1521 int rc = 0;
1522
1523 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1524 if (!(*copied_name)) {
1525 rc = -ENOMEM;
1526 goto out;
1527 }
1528 memcpy((void *)(*copied_name), (void *)name, name_size);
1529 (*copied_name)[(name_size)] = '\0'; /* Only for convenience
1530 * in printing out the
1531 * string in debug
1532 * messages */
1533 (*copied_name_size) = name_size;
1534out:
1535 return rc;
1536}
1537
1538/**
1539 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1540 * @key_tfm: Crypto context for key material, set by this function
1541 * @cipher_name: Name of the cipher
1542 * @key_size: Size of the key in bytes
1543 *
1544 * Returns zero on success. Any crypto_tfm structs allocated here
1545 * should be released by other functions, such as on a superblock put
1546 * event, regardless of whether this function succeeds for fails.
1547 */
1548static int
1549ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
1550 char *cipher_name, size_t *key_size)
1551{
1552 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1553 char *full_alg_name = NULL;
1554 int rc;
1555
1556 *key_tfm = NULL;
1557 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1558 rc = -EINVAL;
1559 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1560 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1561 goto out;
1562 }
1563 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1564 "ecb");
1565 if (rc)
1566 goto out;
1567 *key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1568 if (IS_ERR(*key_tfm)) {
1569 rc = PTR_ERR(*key_tfm);
1570 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1571 "[%s]; rc = [%d]\n", full_alg_name, rc);
1572 goto out;
1573 }
1574 crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
1575 if (*key_size == 0)
1576 *key_size = crypto_skcipher_max_keysize(*key_tfm);
1577 get_random_bytes(dummy_key, *key_size);
1578 rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
1579 if (rc) {
1580 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1581 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1582 rc);
1583 rc = -EINVAL;
1584 goto out;
1585 }
1586out:
1587 kfree(full_alg_name);
1588 return rc;
1589}
1590
1591struct kmem_cache *ecryptfs_key_tfm_cache;
1592static struct list_head key_tfm_list;
1593struct mutex key_tfm_list_mutex;
1594
1595int __init ecryptfs_init_crypto(void)
1596{
1597 mutex_init(&key_tfm_list_mutex);
1598 INIT_LIST_HEAD(&key_tfm_list);
1599 return 0;
1600}
1601
1602/**
1603 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1604 *
1605 * Called only at module unload time
1606 */
1607int ecryptfs_destroy_crypto(void)
1608{
1609 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1610
1611 mutex_lock(&key_tfm_list_mutex);
1612 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1613 key_tfm_list) {
1614 list_del(&key_tfm->key_tfm_list);
1615 crypto_free_skcipher(key_tfm->key_tfm);
1616 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1617 }
1618 mutex_unlock(&key_tfm_list_mutex);
1619 return 0;
1620}
1621
1622int
1623ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1624 size_t key_size)
1625{
1626 struct ecryptfs_key_tfm *tmp_tfm;
1627 int rc = 0;
1628
1629 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1630
1631 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1632 if (key_tfm)
1633 (*key_tfm) = tmp_tfm;
1634 if (!tmp_tfm) {
1635 rc = -ENOMEM;
1636 goto out;
1637 }
1638 mutex_init(&tmp_tfm->key_tfm_mutex);
1639 strncpy(tmp_tfm->cipher_name, cipher_name,
1640 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1641 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1642 tmp_tfm->key_size = key_size;
1643 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1644 tmp_tfm->cipher_name,
1645 &tmp_tfm->key_size);
1646 if (rc) {
1647 printk(KERN_ERR "Error attempting to initialize key TFM "
1648 "cipher with name = [%s]; rc = [%d]\n",
1649 tmp_tfm->cipher_name, rc);
1650 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1651 if (key_tfm)
1652 (*key_tfm) = NULL;
1653 goto out;
1654 }
1655 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1656out:
1657 return rc;
1658}
1659
1660/**
1661 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1662 * @cipher_name: the name of the cipher to search for
1663 * @key_tfm: set to corresponding tfm if found
1664 *
1665 * Searches for cached key_tfm matching @cipher_name
1666 * Must be called with &key_tfm_list_mutex held
1667 * Returns 1 if found, with @key_tfm set
1668 * Returns 0 if not found, with @key_tfm set to NULL
1669 */
1670int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1671{
1672 struct ecryptfs_key_tfm *tmp_key_tfm;
1673
1674 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1675
1676 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1677 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1678 if (key_tfm)
1679 (*key_tfm) = tmp_key_tfm;
1680 return 1;
1681 }
1682 }
1683 if (key_tfm)
1684 (*key_tfm) = NULL;
1685 return 0;
1686}
1687
1688/**
1689 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1690 *
1691 * @tfm: set to cached tfm found, or new tfm created
1692 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1693 * @cipher_name: the name of the cipher to search for and/or add
1694 *
1695 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1696 * Searches for cached item first, and creates new if not found.
1697 * Returns 0 on success, non-zero if adding new cipher failed
1698 */
1699int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
1700 struct mutex **tfm_mutex,
1701 char *cipher_name)
1702{
1703 struct ecryptfs_key_tfm *key_tfm;
1704 int rc = 0;
1705
1706 (*tfm) = NULL;
1707 (*tfm_mutex) = NULL;
1708
1709 mutex_lock(&key_tfm_list_mutex);
1710 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1711 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1712 if (rc) {
1713 printk(KERN_ERR "Error adding new key_tfm to list; "
1714 "rc = [%d]\n", rc);
1715 goto out;
1716 }
1717 }
1718 (*tfm) = key_tfm->key_tfm;
1719 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1720out:
1721 mutex_unlock(&key_tfm_list_mutex);
1722 return rc;
1723}
1724
1725/* 64 characters forming a 6-bit target field */
1726static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1727 "EFGHIJKLMNOPQRST"
1728 "UVWXYZabcdefghij"
1729 "klmnopqrstuvwxyz");
1730
1731/* We could either offset on every reverse map or just pad some 0x00's
1732 * at the front here */
1733static const unsigned char filename_rev_map[256] = {
1734 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1735 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1736 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1737 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1738 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1739 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1740 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1741 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1742 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1743 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1744 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1745 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1746 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1747 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1748 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1749 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1750};
1751
1752/**
1753 * ecryptfs_encode_for_filename
1754 * @dst: Destination location for encoded filename
1755 * @dst_size: Size of the encoded filename in bytes
1756 * @src: Source location for the filename to encode
1757 * @src_size: Size of the source in bytes
1758 */
1759static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1760 unsigned char *src, size_t src_size)
1761{
1762 size_t num_blocks;
1763 size_t block_num = 0;
1764 size_t dst_offset = 0;
1765 unsigned char last_block[3];
1766
1767 if (src_size == 0) {
1768 (*dst_size) = 0;
1769 goto out;
1770 }
1771 num_blocks = (src_size / 3);
1772 if ((src_size % 3) == 0) {
1773 memcpy(last_block, (&src[src_size - 3]), 3);
1774 } else {
1775 num_blocks++;
1776 last_block[2] = 0x00;
1777 switch (src_size % 3) {
1778 case 1:
1779 last_block[0] = src[src_size - 1];
1780 last_block[1] = 0x00;
1781 break;
1782 case 2:
1783 last_block[0] = src[src_size - 2];
1784 last_block[1] = src[src_size - 1];
1785 }
1786 }
1787 (*dst_size) = (num_blocks * 4);
1788 if (!dst)
1789 goto out;
1790 while (block_num < num_blocks) {
1791 unsigned char *src_block;
1792 unsigned char dst_block[4];
1793
1794 if (block_num == (num_blocks - 1))
1795 src_block = last_block;
1796 else
1797 src_block = &src[block_num * 3];
1798 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1799 dst_block[1] = (((src_block[0] << 4) & 0x30)
1800 | ((src_block[1] >> 4) & 0x0F));
1801 dst_block[2] = (((src_block[1] << 2) & 0x3C)
1802 | ((src_block[2] >> 6) & 0x03));
1803 dst_block[3] = (src_block[2] & 0x3F);
1804 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1805 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1806 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1807 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1808 block_num++;
1809 }
1810out:
1811 return;
1812}
1813
1814static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1815{
1816 /* Not exact; conservatively long. Every block of 4
1817 * encoded characters decodes into a block of 3
1818 * decoded characters. This segment of code provides
1819 * the caller with the maximum amount of allocated
1820 * space that @dst will need to point to in a
1821 * subsequent call. */
1822 return ((encoded_size + 1) * 3) / 4;
1823}
1824
1825/**
1826 * ecryptfs_decode_from_filename
1827 * @dst: If NULL, this function only sets @dst_size and returns. If
1828 * non-NULL, this function decodes the encoded octets in @src
1829 * into the memory that @dst points to.
1830 * @dst_size: Set to the size of the decoded string.
1831 * @src: The encoded set of octets to decode.
1832 * @src_size: The size of the encoded set of octets to decode.
1833 */
1834static void
1835ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1836 const unsigned char *src, size_t src_size)
1837{
1838 u8 current_bit_offset = 0;
1839 size_t src_byte_offset = 0;
1840 size_t dst_byte_offset = 0;
1841
1842 if (!dst) {
1843 (*dst_size) = ecryptfs_max_decoded_size(src_size);
1844 goto out;
1845 }
1846 while (src_byte_offset < src_size) {
1847 unsigned char src_byte =
1848 filename_rev_map[(int)src[src_byte_offset]];
1849
1850 switch (current_bit_offset) {
1851 case 0:
1852 dst[dst_byte_offset] = (src_byte << 2);
1853 current_bit_offset = 6;
1854 break;
1855 case 6:
1856 dst[dst_byte_offset++] |= (src_byte >> 4);
1857 dst[dst_byte_offset] = ((src_byte & 0xF)
1858 << 4);
1859 current_bit_offset = 4;
1860 break;
1861 case 4:
1862 dst[dst_byte_offset++] |= (src_byte >> 2);
1863 dst[dst_byte_offset] = (src_byte << 6);
1864 current_bit_offset = 2;
1865 break;
1866 case 2:
1867 dst[dst_byte_offset++] |= (src_byte);
1868 current_bit_offset = 0;
1869 break;
1870 }
1871 src_byte_offset++;
1872 }
1873 (*dst_size) = dst_byte_offset;
1874out:
1875 return;
1876}
1877
1878/**
1879 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1880 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1881 * @name: The plaintext name
1882 * @length: The length of the plaintext
1883 * @encoded_name: The encypted name
1884 *
1885 * Encrypts and encodes a filename into something that constitutes a
1886 * valid filename for a filesystem, with printable characters.
1887 *
1888 * We assume that we have a properly initialized crypto context,
1889 * pointed to by crypt_stat->tfm.
1890 *
1891 * Returns zero on success; non-zero on otherwise
1892 */
1893int ecryptfs_encrypt_and_encode_filename(
1894 char **encoded_name,
1895 size_t *encoded_name_size,
1896 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1897 const char *name, size_t name_size)
1898{
1899 size_t encoded_name_no_prefix_size;
1900 int rc = 0;
1901
1902 (*encoded_name) = NULL;
1903 (*encoded_name_size) = 0;
1904 if (mount_crypt_stat && (mount_crypt_stat->flags
1905 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
1906 struct ecryptfs_filename *filename;
1907
1908 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1909 if (!filename) {
1910 rc = -ENOMEM;
1911 goto out;
1912 }
1913 filename->filename = (char *)name;
1914 filename->filename_size = name_size;
1915 rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
1916 if (rc) {
1917 printk(KERN_ERR "%s: Error attempting to encrypt "
1918 "filename; rc = [%d]\n", __func__, rc);
1919 kfree(filename);
1920 goto out;
1921 }
1922 ecryptfs_encode_for_filename(
1923 NULL, &encoded_name_no_prefix_size,
1924 filename->encrypted_filename,
1925 filename->encrypted_filename_size);
1926 if (mount_crypt_stat
1927 && (mount_crypt_stat->flags
1928 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
1929 (*encoded_name_size) =
1930 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1931 + encoded_name_no_prefix_size);
1932 else
1933 (*encoded_name_size) =
1934 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1935 + encoded_name_no_prefix_size);
1936 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1937 if (!(*encoded_name)) {
1938 rc = -ENOMEM;
1939 kfree(filename->encrypted_filename);
1940 kfree(filename);
1941 goto out;
1942 }
1943 if (mount_crypt_stat
1944 && (mount_crypt_stat->flags
1945 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1946 memcpy((*encoded_name),
1947 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1948 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1949 ecryptfs_encode_for_filename(
1950 ((*encoded_name)
1951 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
1952 &encoded_name_no_prefix_size,
1953 filename->encrypted_filename,
1954 filename->encrypted_filename_size);
1955 (*encoded_name_size) =
1956 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1957 + encoded_name_no_prefix_size);
1958 (*encoded_name)[(*encoded_name_size)] = '\0';
1959 } else {
1960 rc = -EOPNOTSUPP;
1961 }
1962 if (rc) {
1963 printk(KERN_ERR "%s: Error attempting to encode "
1964 "encrypted filename; rc = [%d]\n", __func__,
1965 rc);
1966 kfree((*encoded_name));
1967 (*encoded_name) = NULL;
1968 (*encoded_name_size) = 0;
1969 }
1970 kfree(filename->encrypted_filename);
1971 kfree(filename);
1972 } else {
1973 rc = ecryptfs_copy_filename(encoded_name,
1974 encoded_name_size,
1975 name, name_size);
1976 }
1977out:
1978 return rc;
1979}
1980
1981static bool is_dot_dotdot(const char *name, size_t name_size)
1982{
1983 if (name_size == 1 && name[0] == '.')
1984 return true;
1985 else if (name_size == 2 && name[0] == '.' && name[1] == '.')
1986 return true;
1987
1988 return false;
1989}
1990
1991/**
1992 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
1993 * @plaintext_name: The plaintext name
1994 * @plaintext_name_size: The plaintext name size
1995 * @ecryptfs_dir_dentry: eCryptfs directory dentry
1996 * @name: The filename in cipher text
1997 * @name_size: The cipher text name size
1998 *
1999 * Decrypts and decodes the filename.
2000 *
2001 * Returns zero on error; non-zero otherwise
2002 */
2003int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2004 size_t *plaintext_name_size,
2005 struct super_block *sb,
2006 const char *name, size_t name_size)
2007{
2008 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2009 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2010 char *decoded_name;
2011 size_t decoded_name_size;
2012 size_t packet_size;
2013 int rc = 0;
2014
2015 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) &&
2016 !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) {
2017 if (is_dot_dotdot(name, name_size)) {
2018 rc = ecryptfs_copy_filename(plaintext_name,
2019 plaintext_name_size,
2020 name, name_size);
2021 goto out;
2022 }
2023
2024 if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE ||
2025 strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2026 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) {
2027 rc = -EINVAL;
2028 goto out;
2029 }
2030
2031 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2032 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2033 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2034 name, name_size);
2035 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2036 if (!decoded_name) {
2037 rc = -ENOMEM;
2038 goto out;
2039 }
2040 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2041 name, name_size);
2042 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2043 plaintext_name_size,
2044 &packet_size,
2045 mount_crypt_stat,
2046 decoded_name,
2047 decoded_name_size);
2048 if (rc) {
2049 ecryptfs_printk(KERN_DEBUG,
2050 "%s: Could not parse tag 70 packet from filename\n",
2051 __func__);
2052 goto out_free;
2053 }
2054 } else {
2055 rc = ecryptfs_copy_filename(plaintext_name,
2056 plaintext_name_size,
2057 name, name_size);
2058 goto out;
2059 }
2060out_free:
2061 kfree(decoded_name);
2062out:
2063 return rc;
2064}
2065
2066#define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143
2067
2068int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2069 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2070{
2071 struct crypto_skcipher *tfm;
2072 struct mutex *tfm_mutex;
2073 size_t cipher_blocksize;
2074 int rc;
2075
2076 if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2077 (*namelen) = lower_namelen;
2078 return 0;
2079 }
2080
2081 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2082 mount_crypt_stat->global_default_fn_cipher_name);
2083 if (unlikely(rc)) {
2084 (*namelen) = 0;
2085 return rc;
2086 }
2087
2088 mutex_lock(tfm_mutex);
2089 cipher_blocksize = crypto_skcipher_blocksize(tfm);
2090 mutex_unlock(tfm_mutex);
2091
2092 /* Return an exact amount for the common cases */
2093 if (lower_namelen == NAME_MAX
2094 && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2095 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2096 return 0;
2097 }
2098
2099 /* Return a safe estimate for the uncommon cases */
2100 (*namelen) = lower_namelen;
2101 (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2102 /* Since this is the max decoded size, subtract 1 "decoded block" len */
2103 (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2104 (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2105 (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2106 /* Worst case is that the filename is padded nearly a full block size */
2107 (*namelen) -= cipher_blocksize - 1;
2108
2109 if ((*namelen) < 0)
2110 (*namelen) = 0;
2111
2112 return 0;
2113}
1/**
2 * eCryptfs: Linux filesystem encryption layer
3 *
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 * 02111-1307, USA.
24 */
25
26#include <linux/fs.h>
27#include <linux/mount.h>
28#include <linux/pagemap.h>
29#include <linux/random.h>
30#include <linux/compiler.h>
31#include <linux/key.h>
32#include <linux/namei.h>
33#include <linux/crypto.h>
34#include <linux/file.h>
35#include <linux/scatterlist.h>
36#include <linux/slab.h>
37#include <asm/unaligned.h>
38#include "ecryptfs_kernel.h"
39
40static int
41ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
42 struct page *dst_page, int dst_offset,
43 struct page *src_page, int src_offset, int size,
44 unsigned char *iv);
45static int
46ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
47 struct page *dst_page, int dst_offset,
48 struct page *src_page, int src_offset, int size,
49 unsigned char *iv);
50
51/**
52 * ecryptfs_to_hex
53 * @dst: Buffer to take hex character representation of contents of
54 * src; must be at least of size (src_size * 2)
55 * @src: Buffer to be converted to a hex string respresentation
56 * @src_size: number of bytes to convert
57 */
58void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
59{
60 int x;
61
62 for (x = 0; x < src_size; x++)
63 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
64}
65
66/**
67 * ecryptfs_from_hex
68 * @dst: Buffer to take the bytes from src hex; must be at least of
69 * size (src_size / 2)
70 * @src: Buffer to be converted from a hex string respresentation to raw value
71 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
72 */
73void ecryptfs_from_hex(char *dst, char *src, int dst_size)
74{
75 int x;
76 char tmp[3] = { 0, };
77
78 for (x = 0; x < dst_size; x++) {
79 tmp[0] = src[x * 2];
80 tmp[1] = src[x * 2 + 1];
81 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
82 }
83}
84
85/**
86 * ecryptfs_calculate_md5 - calculates the md5 of @src
87 * @dst: Pointer to 16 bytes of allocated memory
88 * @crypt_stat: Pointer to crypt_stat struct for the current inode
89 * @src: Data to be md5'd
90 * @len: Length of @src
91 *
92 * Uses the allocated crypto context that crypt_stat references to
93 * generate the MD5 sum of the contents of src.
94 */
95static int ecryptfs_calculate_md5(char *dst,
96 struct ecryptfs_crypt_stat *crypt_stat,
97 char *src, int len)
98{
99 struct scatterlist sg;
100 struct hash_desc desc = {
101 .tfm = crypt_stat->hash_tfm,
102 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
103 };
104 int rc = 0;
105
106 mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
107 sg_init_one(&sg, (u8 *)src, len);
108 if (!desc.tfm) {
109 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
110 CRYPTO_ALG_ASYNC);
111 if (IS_ERR(desc.tfm)) {
112 rc = PTR_ERR(desc.tfm);
113 ecryptfs_printk(KERN_ERR, "Error attempting to "
114 "allocate crypto context; rc = [%d]\n",
115 rc);
116 goto out;
117 }
118 crypt_stat->hash_tfm = desc.tfm;
119 }
120 rc = crypto_hash_init(&desc);
121 if (rc) {
122 printk(KERN_ERR
123 "%s: Error initializing crypto hash; rc = [%d]\n",
124 __func__, rc);
125 goto out;
126 }
127 rc = crypto_hash_update(&desc, &sg, len);
128 if (rc) {
129 printk(KERN_ERR
130 "%s: Error updating crypto hash; rc = [%d]\n",
131 __func__, rc);
132 goto out;
133 }
134 rc = crypto_hash_final(&desc, dst);
135 if (rc) {
136 printk(KERN_ERR
137 "%s: Error finalizing crypto hash; rc = [%d]\n",
138 __func__, rc);
139 goto out;
140 }
141out:
142 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
143 return rc;
144}
145
146static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
147 char *cipher_name,
148 char *chaining_modifier)
149{
150 int cipher_name_len = strlen(cipher_name);
151 int chaining_modifier_len = strlen(chaining_modifier);
152 int algified_name_len;
153 int rc;
154
155 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
156 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
157 if (!(*algified_name)) {
158 rc = -ENOMEM;
159 goto out;
160 }
161 snprintf((*algified_name), algified_name_len, "%s(%s)",
162 chaining_modifier, cipher_name);
163 rc = 0;
164out:
165 return rc;
166}
167
168/**
169 * ecryptfs_derive_iv
170 * @iv: destination for the derived iv vale
171 * @crypt_stat: Pointer to crypt_stat struct for the current inode
172 * @offset: Offset of the extent whose IV we are to derive
173 *
174 * Generate the initialization vector from the given root IV and page
175 * offset.
176 *
177 * Returns zero on success; non-zero on error.
178 */
179int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
180 loff_t offset)
181{
182 int rc = 0;
183 char dst[MD5_DIGEST_SIZE];
184 char src[ECRYPTFS_MAX_IV_BYTES + 16];
185
186 if (unlikely(ecryptfs_verbosity > 0)) {
187 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
188 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
189 }
190 /* TODO: It is probably secure to just cast the least
191 * significant bits of the root IV into an unsigned long and
192 * add the offset to that rather than go through all this
193 * hashing business. -Halcrow */
194 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
195 memset((src + crypt_stat->iv_bytes), 0, 16);
196 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
197 if (unlikely(ecryptfs_verbosity > 0)) {
198 ecryptfs_printk(KERN_DEBUG, "source:\n");
199 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
200 }
201 rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
202 (crypt_stat->iv_bytes + 16));
203 if (rc) {
204 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
205 "MD5 while generating IV for a page\n");
206 goto out;
207 }
208 memcpy(iv, dst, crypt_stat->iv_bytes);
209 if (unlikely(ecryptfs_verbosity > 0)) {
210 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
211 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
212 }
213out:
214 return rc;
215}
216
217/**
218 * ecryptfs_init_crypt_stat
219 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
220 *
221 * Initialize the crypt_stat structure.
222 */
223void
224ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
225{
226 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
227 INIT_LIST_HEAD(&crypt_stat->keysig_list);
228 mutex_init(&crypt_stat->keysig_list_mutex);
229 mutex_init(&crypt_stat->cs_mutex);
230 mutex_init(&crypt_stat->cs_tfm_mutex);
231 mutex_init(&crypt_stat->cs_hash_tfm_mutex);
232 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
233}
234
235/**
236 * ecryptfs_destroy_crypt_stat
237 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
238 *
239 * Releases all memory associated with a crypt_stat struct.
240 */
241void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
242{
243 struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
244
245 if (crypt_stat->tfm)
246 crypto_free_blkcipher(crypt_stat->tfm);
247 if (crypt_stat->hash_tfm)
248 crypto_free_hash(crypt_stat->hash_tfm);
249 list_for_each_entry_safe(key_sig, key_sig_tmp,
250 &crypt_stat->keysig_list, crypt_stat_list) {
251 list_del(&key_sig->crypt_stat_list);
252 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
253 }
254 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
255}
256
257void ecryptfs_destroy_mount_crypt_stat(
258 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
259{
260 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
261
262 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
263 return;
264 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
265 list_for_each_entry_safe(auth_tok, auth_tok_tmp,
266 &mount_crypt_stat->global_auth_tok_list,
267 mount_crypt_stat_list) {
268 list_del(&auth_tok->mount_crypt_stat_list);
269 if (auth_tok->global_auth_tok_key
270 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
271 key_put(auth_tok->global_auth_tok_key);
272 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
273 }
274 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
275 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
276}
277
278/**
279 * virt_to_scatterlist
280 * @addr: Virtual address
281 * @size: Size of data; should be an even multiple of the block size
282 * @sg: Pointer to scatterlist array; set to NULL to obtain only
283 * the number of scatterlist structs required in array
284 * @sg_size: Max array size
285 *
286 * Fills in a scatterlist array with page references for a passed
287 * virtual address.
288 *
289 * Returns the number of scatterlist structs in array used
290 */
291int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
292 int sg_size)
293{
294 int i = 0;
295 struct page *pg;
296 int offset;
297 int remainder_of_page;
298
299 sg_init_table(sg, sg_size);
300
301 while (size > 0 && i < sg_size) {
302 pg = virt_to_page(addr);
303 offset = offset_in_page(addr);
304 if (sg)
305 sg_set_page(&sg[i], pg, 0, offset);
306 remainder_of_page = PAGE_CACHE_SIZE - offset;
307 if (size >= remainder_of_page) {
308 if (sg)
309 sg[i].length = remainder_of_page;
310 addr += remainder_of_page;
311 size -= remainder_of_page;
312 } else {
313 if (sg)
314 sg[i].length = size;
315 addr += size;
316 size = 0;
317 }
318 i++;
319 }
320 if (size > 0)
321 return -ENOMEM;
322 return i;
323}
324
325/**
326 * encrypt_scatterlist
327 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
328 * @dest_sg: Destination of encrypted data
329 * @src_sg: Data to be encrypted
330 * @size: Length of data to be encrypted
331 * @iv: iv to use during encryption
332 *
333 * Returns the number of bytes encrypted; negative value on error
334 */
335static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
336 struct scatterlist *dest_sg,
337 struct scatterlist *src_sg, int size,
338 unsigned char *iv)
339{
340 struct blkcipher_desc desc = {
341 .tfm = crypt_stat->tfm,
342 .info = iv,
343 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
344 };
345 int rc = 0;
346
347 BUG_ON(!crypt_stat || !crypt_stat->tfm
348 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
349 if (unlikely(ecryptfs_verbosity > 0)) {
350 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
351 crypt_stat->key_size);
352 ecryptfs_dump_hex(crypt_stat->key,
353 crypt_stat->key_size);
354 }
355 /* Consider doing this once, when the file is opened */
356 mutex_lock(&crypt_stat->cs_tfm_mutex);
357 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
358 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
359 crypt_stat->key_size);
360 crypt_stat->flags |= ECRYPTFS_KEY_SET;
361 }
362 if (rc) {
363 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
364 rc);
365 mutex_unlock(&crypt_stat->cs_tfm_mutex);
366 rc = -EINVAL;
367 goto out;
368 }
369 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
370 crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
371 mutex_unlock(&crypt_stat->cs_tfm_mutex);
372out:
373 return rc;
374}
375
376/**
377 * ecryptfs_lower_offset_for_extent
378 *
379 * Convert an eCryptfs page index into a lower byte offset
380 */
381static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
382 struct ecryptfs_crypt_stat *crypt_stat)
383{
384 (*offset) = ecryptfs_lower_header_size(crypt_stat)
385 + (crypt_stat->extent_size * extent_num);
386}
387
388/**
389 * ecryptfs_encrypt_extent
390 * @enc_extent_page: Allocated page into which to encrypt the data in
391 * @page
392 * @crypt_stat: crypt_stat containing cryptographic context for the
393 * encryption operation
394 * @page: Page containing plaintext data extent to encrypt
395 * @extent_offset: Page extent offset for use in generating IV
396 *
397 * Encrypts one extent of data.
398 *
399 * Return zero on success; non-zero otherwise
400 */
401static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
402 struct ecryptfs_crypt_stat *crypt_stat,
403 struct page *page,
404 unsigned long extent_offset)
405{
406 loff_t extent_base;
407 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
408 int rc;
409
410 extent_base = (((loff_t)page->index)
411 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
412 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
413 (extent_base + extent_offset));
414 if (rc) {
415 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
416 "extent [0x%.16llx]; rc = [%d]\n",
417 (unsigned long long)(extent_base + extent_offset), rc);
418 goto out;
419 }
420 rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
421 page, (extent_offset
422 * crypt_stat->extent_size),
423 crypt_stat->extent_size, extent_iv);
424 if (rc < 0) {
425 printk(KERN_ERR "%s: Error attempting to encrypt page with "
426 "page->index = [%ld], extent_offset = [%ld]; "
427 "rc = [%d]\n", __func__, page->index, extent_offset,
428 rc);
429 goto out;
430 }
431 rc = 0;
432out:
433 return rc;
434}
435
436/**
437 * ecryptfs_encrypt_page
438 * @page: Page mapped from the eCryptfs inode for the file; contains
439 * decrypted content that needs to be encrypted (to a temporary
440 * page; not in place) and written out to the lower file
441 *
442 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
443 * that eCryptfs pages may straddle the lower pages -- for instance,
444 * if the file was created on a machine with an 8K page size
445 * (resulting in an 8K header), and then the file is copied onto a
446 * host with a 32K page size, then when reading page 0 of the eCryptfs
447 * file, 24K of page 0 of the lower file will be read and decrypted,
448 * and then 8K of page 1 of the lower file will be read and decrypted.
449 *
450 * Returns zero on success; negative on error
451 */
452int ecryptfs_encrypt_page(struct page *page)
453{
454 struct inode *ecryptfs_inode;
455 struct ecryptfs_crypt_stat *crypt_stat;
456 char *enc_extent_virt;
457 struct page *enc_extent_page = NULL;
458 loff_t extent_offset;
459 int rc = 0;
460
461 ecryptfs_inode = page->mapping->host;
462 crypt_stat =
463 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
464 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
465 enc_extent_page = alloc_page(GFP_USER);
466 if (!enc_extent_page) {
467 rc = -ENOMEM;
468 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
469 "encrypted extent\n");
470 goto out;
471 }
472 enc_extent_virt = kmap(enc_extent_page);
473 for (extent_offset = 0;
474 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
475 extent_offset++) {
476 loff_t offset;
477
478 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
479 extent_offset);
480 if (rc) {
481 printk(KERN_ERR "%s: Error encrypting extent; "
482 "rc = [%d]\n", __func__, rc);
483 goto out;
484 }
485 ecryptfs_lower_offset_for_extent(
486 &offset, ((((loff_t)page->index)
487 * (PAGE_CACHE_SIZE
488 / crypt_stat->extent_size))
489 + extent_offset), crypt_stat);
490 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
491 offset, crypt_stat->extent_size);
492 if (rc < 0) {
493 ecryptfs_printk(KERN_ERR, "Error attempting "
494 "to write lower page; rc = [%d]"
495 "\n", rc);
496 goto out;
497 }
498 }
499 rc = 0;
500out:
501 if (enc_extent_page) {
502 kunmap(enc_extent_page);
503 __free_page(enc_extent_page);
504 }
505 return rc;
506}
507
508static int ecryptfs_decrypt_extent(struct page *page,
509 struct ecryptfs_crypt_stat *crypt_stat,
510 struct page *enc_extent_page,
511 unsigned long extent_offset)
512{
513 loff_t extent_base;
514 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
515 int rc;
516
517 extent_base = (((loff_t)page->index)
518 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
519 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
520 (extent_base + extent_offset));
521 if (rc) {
522 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
523 "extent [0x%.16llx]; rc = [%d]\n",
524 (unsigned long long)(extent_base + extent_offset), rc);
525 goto out;
526 }
527 rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
528 (extent_offset
529 * crypt_stat->extent_size),
530 enc_extent_page, 0,
531 crypt_stat->extent_size, extent_iv);
532 if (rc < 0) {
533 printk(KERN_ERR "%s: Error attempting to decrypt to page with "
534 "page->index = [%ld], extent_offset = [%ld]; "
535 "rc = [%d]\n", __func__, page->index, extent_offset,
536 rc);
537 goto out;
538 }
539 rc = 0;
540out:
541 return rc;
542}
543
544/**
545 * ecryptfs_decrypt_page
546 * @page: Page mapped from the eCryptfs inode for the file; data read
547 * and decrypted from the lower file will be written into this
548 * page
549 *
550 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
551 * that eCryptfs pages may straddle the lower pages -- for instance,
552 * if the file was created on a machine with an 8K page size
553 * (resulting in an 8K header), and then the file is copied onto a
554 * host with a 32K page size, then when reading page 0 of the eCryptfs
555 * file, 24K of page 0 of the lower file will be read and decrypted,
556 * and then 8K of page 1 of the lower file will be read and decrypted.
557 *
558 * Returns zero on success; negative on error
559 */
560int ecryptfs_decrypt_page(struct page *page)
561{
562 struct inode *ecryptfs_inode;
563 struct ecryptfs_crypt_stat *crypt_stat;
564 char *enc_extent_virt;
565 struct page *enc_extent_page = NULL;
566 unsigned long extent_offset;
567 int rc = 0;
568
569 ecryptfs_inode = page->mapping->host;
570 crypt_stat =
571 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
572 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
573 enc_extent_page = alloc_page(GFP_USER);
574 if (!enc_extent_page) {
575 rc = -ENOMEM;
576 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
577 "encrypted extent\n");
578 goto out;
579 }
580 enc_extent_virt = kmap(enc_extent_page);
581 for (extent_offset = 0;
582 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
583 extent_offset++) {
584 loff_t offset;
585
586 ecryptfs_lower_offset_for_extent(
587 &offset, ((page->index * (PAGE_CACHE_SIZE
588 / crypt_stat->extent_size))
589 + extent_offset), crypt_stat);
590 rc = ecryptfs_read_lower(enc_extent_virt, offset,
591 crypt_stat->extent_size,
592 ecryptfs_inode);
593 if (rc < 0) {
594 ecryptfs_printk(KERN_ERR, "Error attempting "
595 "to read lower page; rc = [%d]"
596 "\n", rc);
597 goto out;
598 }
599 rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
600 extent_offset);
601 if (rc) {
602 printk(KERN_ERR "%s: Error encrypting extent; "
603 "rc = [%d]\n", __func__, rc);
604 goto out;
605 }
606 }
607out:
608 if (enc_extent_page) {
609 kunmap(enc_extent_page);
610 __free_page(enc_extent_page);
611 }
612 return rc;
613}
614
615/**
616 * decrypt_scatterlist
617 * @crypt_stat: Cryptographic context
618 * @dest_sg: The destination scatterlist to decrypt into
619 * @src_sg: The source scatterlist to decrypt from
620 * @size: The number of bytes to decrypt
621 * @iv: The initialization vector to use for the decryption
622 *
623 * Returns the number of bytes decrypted; negative value on error
624 */
625static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
626 struct scatterlist *dest_sg,
627 struct scatterlist *src_sg, int size,
628 unsigned char *iv)
629{
630 struct blkcipher_desc desc = {
631 .tfm = crypt_stat->tfm,
632 .info = iv,
633 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
634 };
635 int rc = 0;
636
637 /* Consider doing this once, when the file is opened */
638 mutex_lock(&crypt_stat->cs_tfm_mutex);
639 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
640 crypt_stat->key_size);
641 if (rc) {
642 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
643 rc);
644 mutex_unlock(&crypt_stat->cs_tfm_mutex);
645 rc = -EINVAL;
646 goto out;
647 }
648 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
649 rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
650 mutex_unlock(&crypt_stat->cs_tfm_mutex);
651 if (rc) {
652 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
653 rc);
654 goto out;
655 }
656 rc = size;
657out:
658 return rc;
659}
660
661/**
662 * ecryptfs_encrypt_page_offset
663 * @crypt_stat: The cryptographic context
664 * @dst_page: The page to encrypt into
665 * @dst_offset: The offset in the page to encrypt into
666 * @src_page: The page to encrypt from
667 * @src_offset: The offset in the page to encrypt from
668 * @size: The number of bytes to encrypt
669 * @iv: The initialization vector to use for the encryption
670 *
671 * Returns the number of bytes encrypted
672 */
673static int
674ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
675 struct page *dst_page, int dst_offset,
676 struct page *src_page, int src_offset, int size,
677 unsigned char *iv)
678{
679 struct scatterlist src_sg, dst_sg;
680
681 sg_init_table(&src_sg, 1);
682 sg_init_table(&dst_sg, 1);
683
684 sg_set_page(&src_sg, src_page, size, src_offset);
685 sg_set_page(&dst_sg, dst_page, size, dst_offset);
686 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
687}
688
689/**
690 * ecryptfs_decrypt_page_offset
691 * @crypt_stat: The cryptographic context
692 * @dst_page: The page to decrypt into
693 * @dst_offset: The offset in the page to decrypt into
694 * @src_page: The page to decrypt from
695 * @src_offset: The offset in the page to decrypt from
696 * @size: The number of bytes to decrypt
697 * @iv: The initialization vector to use for the decryption
698 *
699 * Returns the number of bytes decrypted
700 */
701static int
702ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
703 struct page *dst_page, int dst_offset,
704 struct page *src_page, int src_offset, int size,
705 unsigned char *iv)
706{
707 struct scatterlist src_sg, dst_sg;
708
709 sg_init_table(&src_sg, 1);
710 sg_set_page(&src_sg, src_page, size, src_offset);
711
712 sg_init_table(&dst_sg, 1);
713 sg_set_page(&dst_sg, dst_page, size, dst_offset);
714
715 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
716}
717
718#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
719
720/**
721 * ecryptfs_init_crypt_ctx
722 * @crypt_stat: Uninitialized crypt stats structure
723 *
724 * Initialize the crypto context.
725 *
726 * TODO: Performance: Keep a cache of initialized cipher contexts;
727 * only init if needed
728 */
729int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
730{
731 char *full_alg_name;
732 int rc = -EINVAL;
733
734 if (!crypt_stat->cipher) {
735 ecryptfs_printk(KERN_ERR, "No cipher specified\n");
736 goto out;
737 }
738 ecryptfs_printk(KERN_DEBUG,
739 "Initializing cipher [%s]; strlen = [%d]; "
740 "key_size_bits = [%zd]\n",
741 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
742 crypt_stat->key_size << 3);
743 if (crypt_stat->tfm) {
744 rc = 0;
745 goto out;
746 }
747 mutex_lock(&crypt_stat->cs_tfm_mutex);
748 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
749 crypt_stat->cipher, "cbc");
750 if (rc)
751 goto out_unlock;
752 crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
753 CRYPTO_ALG_ASYNC);
754 kfree(full_alg_name);
755 if (IS_ERR(crypt_stat->tfm)) {
756 rc = PTR_ERR(crypt_stat->tfm);
757 crypt_stat->tfm = NULL;
758 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
759 "Error initializing cipher [%s]\n",
760 crypt_stat->cipher);
761 goto out_unlock;
762 }
763 crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
764 rc = 0;
765out_unlock:
766 mutex_unlock(&crypt_stat->cs_tfm_mutex);
767out:
768 return rc;
769}
770
771static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
772{
773 int extent_size_tmp;
774
775 crypt_stat->extent_mask = 0xFFFFFFFF;
776 crypt_stat->extent_shift = 0;
777 if (crypt_stat->extent_size == 0)
778 return;
779 extent_size_tmp = crypt_stat->extent_size;
780 while ((extent_size_tmp & 0x01) == 0) {
781 extent_size_tmp >>= 1;
782 crypt_stat->extent_mask <<= 1;
783 crypt_stat->extent_shift++;
784 }
785}
786
787void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
788{
789 /* Default values; may be overwritten as we are parsing the
790 * packets. */
791 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
792 set_extent_mask_and_shift(crypt_stat);
793 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
794 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
795 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
796 else {
797 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
798 crypt_stat->metadata_size =
799 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
800 else
801 crypt_stat->metadata_size = PAGE_CACHE_SIZE;
802 }
803}
804
805/**
806 * ecryptfs_compute_root_iv
807 * @crypt_stats
808 *
809 * On error, sets the root IV to all 0's.
810 */
811int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
812{
813 int rc = 0;
814 char dst[MD5_DIGEST_SIZE];
815
816 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
817 BUG_ON(crypt_stat->iv_bytes <= 0);
818 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
819 rc = -EINVAL;
820 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
821 "cannot generate root IV\n");
822 goto out;
823 }
824 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
825 crypt_stat->key_size);
826 if (rc) {
827 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
828 "MD5 while generating root IV\n");
829 goto out;
830 }
831 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
832out:
833 if (rc) {
834 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
835 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
836 }
837 return rc;
838}
839
840static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
841{
842 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
843 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
844 ecryptfs_compute_root_iv(crypt_stat);
845 if (unlikely(ecryptfs_verbosity > 0)) {
846 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
847 ecryptfs_dump_hex(crypt_stat->key,
848 crypt_stat->key_size);
849 }
850}
851
852/**
853 * ecryptfs_copy_mount_wide_flags_to_inode_flags
854 * @crypt_stat: The inode's cryptographic context
855 * @mount_crypt_stat: The mount point's cryptographic context
856 *
857 * This function propagates the mount-wide flags to individual inode
858 * flags.
859 */
860static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
861 struct ecryptfs_crypt_stat *crypt_stat,
862 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
863{
864 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
865 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
866 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
867 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
868 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
869 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
870 if (mount_crypt_stat->flags
871 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
872 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
873 else if (mount_crypt_stat->flags
874 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
875 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
876 }
877}
878
879static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
880 struct ecryptfs_crypt_stat *crypt_stat,
881 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
882{
883 struct ecryptfs_global_auth_tok *global_auth_tok;
884 int rc = 0;
885
886 mutex_lock(&crypt_stat->keysig_list_mutex);
887 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
888
889 list_for_each_entry(global_auth_tok,
890 &mount_crypt_stat->global_auth_tok_list,
891 mount_crypt_stat_list) {
892 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
893 continue;
894 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
895 if (rc) {
896 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
897 goto out;
898 }
899 }
900
901out:
902 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
903 mutex_unlock(&crypt_stat->keysig_list_mutex);
904 return rc;
905}
906
907/**
908 * ecryptfs_set_default_crypt_stat_vals
909 * @crypt_stat: The inode's cryptographic context
910 * @mount_crypt_stat: The mount point's cryptographic context
911 *
912 * Default values in the event that policy does not override them.
913 */
914static void ecryptfs_set_default_crypt_stat_vals(
915 struct ecryptfs_crypt_stat *crypt_stat,
916 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
917{
918 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
919 mount_crypt_stat);
920 ecryptfs_set_default_sizes(crypt_stat);
921 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
922 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
923 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
924 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
925 crypt_stat->mount_crypt_stat = mount_crypt_stat;
926}
927
928/**
929 * ecryptfs_new_file_context
930 * @ecryptfs_inode: The eCryptfs inode
931 *
932 * If the crypto context for the file has not yet been established,
933 * this is where we do that. Establishing a new crypto context
934 * involves the following decisions:
935 * - What cipher to use?
936 * - What set of authentication tokens to use?
937 * Here we just worry about getting enough information into the
938 * authentication tokens so that we know that they are available.
939 * We associate the available authentication tokens with the new file
940 * via the set of signatures in the crypt_stat struct. Later, when
941 * the headers are actually written out, we may again defer to
942 * userspace to perform the encryption of the session key; for the
943 * foreseeable future, this will be the case with public key packets.
944 *
945 * Returns zero on success; non-zero otherwise
946 */
947int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
948{
949 struct ecryptfs_crypt_stat *crypt_stat =
950 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
951 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
952 &ecryptfs_superblock_to_private(
953 ecryptfs_inode->i_sb)->mount_crypt_stat;
954 int cipher_name_len;
955 int rc = 0;
956
957 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
958 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
959 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
960 mount_crypt_stat);
961 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
962 mount_crypt_stat);
963 if (rc) {
964 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
965 "to the inode key sigs; rc = [%d]\n", rc);
966 goto out;
967 }
968 cipher_name_len =
969 strlen(mount_crypt_stat->global_default_cipher_name);
970 memcpy(crypt_stat->cipher,
971 mount_crypt_stat->global_default_cipher_name,
972 cipher_name_len);
973 crypt_stat->cipher[cipher_name_len] = '\0';
974 crypt_stat->key_size =
975 mount_crypt_stat->global_default_cipher_key_size;
976 ecryptfs_generate_new_key(crypt_stat);
977 rc = ecryptfs_init_crypt_ctx(crypt_stat);
978 if (rc)
979 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
980 "context for cipher [%s]: rc = [%d]\n",
981 crypt_stat->cipher, rc);
982out:
983 return rc;
984}
985
986/**
987 * ecryptfs_validate_marker - check for the ecryptfs marker
988 * @data: The data block in which to check
989 *
990 * Returns zero if marker found; -EINVAL if not found
991 */
992static int ecryptfs_validate_marker(char *data)
993{
994 u32 m_1, m_2;
995
996 m_1 = get_unaligned_be32(data);
997 m_2 = get_unaligned_be32(data + 4);
998 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
999 return 0;
1000 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1001 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1002 MAGIC_ECRYPTFS_MARKER);
1003 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1004 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1005 return -EINVAL;
1006}
1007
1008struct ecryptfs_flag_map_elem {
1009 u32 file_flag;
1010 u32 local_flag;
1011};
1012
1013/* Add support for additional flags by adding elements here. */
1014static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1015 {0x00000001, ECRYPTFS_ENABLE_HMAC},
1016 {0x00000002, ECRYPTFS_ENCRYPTED},
1017 {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
1018 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
1019};
1020
1021/**
1022 * ecryptfs_process_flags
1023 * @crypt_stat: The cryptographic context
1024 * @page_virt: Source data to be parsed
1025 * @bytes_read: Updated with the number of bytes read
1026 *
1027 * Returns zero on success; non-zero if the flag set is invalid
1028 */
1029static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1030 char *page_virt, int *bytes_read)
1031{
1032 int rc = 0;
1033 int i;
1034 u32 flags;
1035
1036 flags = get_unaligned_be32(page_virt);
1037 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1038 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1039 if (flags & ecryptfs_flag_map[i].file_flag) {
1040 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1041 } else
1042 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1043 /* Version is in top 8 bits of the 32-bit flag vector */
1044 crypt_stat->file_version = ((flags >> 24) & 0xFF);
1045 (*bytes_read) = 4;
1046 return rc;
1047}
1048
1049/**
1050 * write_ecryptfs_marker
1051 * @page_virt: The pointer to in a page to begin writing the marker
1052 * @written: Number of bytes written
1053 *
1054 * Marker = 0x3c81b7f5
1055 */
1056static void write_ecryptfs_marker(char *page_virt, size_t *written)
1057{
1058 u32 m_1, m_2;
1059
1060 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1061 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1062 put_unaligned_be32(m_1, page_virt);
1063 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1064 put_unaligned_be32(m_2, page_virt);
1065 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1066}
1067
1068void ecryptfs_write_crypt_stat_flags(char *page_virt,
1069 struct ecryptfs_crypt_stat *crypt_stat,
1070 size_t *written)
1071{
1072 u32 flags = 0;
1073 int i;
1074
1075 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1076 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1077 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1078 flags |= ecryptfs_flag_map[i].file_flag;
1079 /* Version is in top 8 bits of the 32-bit flag vector */
1080 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1081 put_unaligned_be32(flags, page_virt);
1082 (*written) = 4;
1083}
1084
1085struct ecryptfs_cipher_code_str_map_elem {
1086 char cipher_str[16];
1087 u8 cipher_code;
1088};
1089
1090/* Add support for additional ciphers by adding elements here. The
1091 * cipher_code is whatever OpenPGP applicatoins use to identify the
1092 * ciphers. List in order of probability. */
1093static struct ecryptfs_cipher_code_str_map_elem
1094ecryptfs_cipher_code_str_map[] = {
1095 {"aes",RFC2440_CIPHER_AES_128 },
1096 {"blowfish", RFC2440_CIPHER_BLOWFISH},
1097 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
1098 {"cast5", RFC2440_CIPHER_CAST_5},
1099 {"twofish", RFC2440_CIPHER_TWOFISH},
1100 {"cast6", RFC2440_CIPHER_CAST_6},
1101 {"aes", RFC2440_CIPHER_AES_192},
1102 {"aes", RFC2440_CIPHER_AES_256}
1103};
1104
1105/**
1106 * ecryptfs_code_for_cipher_string
1107 * @cipher_name: The string alias for the cipher
1108 * @key_bytes: Length of key in bytes; used for AES code selection
1109 *
1110 * Returns zero on no match, or the cipher code on match
1111 */
1112u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
1113{
1114 int i;
1115 u8 code = 0;
1116 struct ecryptfs_cipher_code_str_map_elem *map =
1117 ecryptfs_cipher_code_str_map;
1118
1119 if (strcmp(cipher_name, "aes") == 0) {
1120 switch (key_bytes) {
1121 case 16:
1122 code = RFC2440_CIPHER_AES_128;
1123 break;
1124 case 24:
1125 code = RFC2440_CIPHER_AES_192;
1126 break;
1127 case 32:
1128 code = RFC2440_CIPHER_AES_256;
1129 }
1130 } else {
1131 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1132 if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1133 code = map[i].cipher_code;
1134 break;
1135 }
1136 }
1137 return code;
1138}
1139
1140/**
1141 * ecryptfs_cipher_code_to_string
1142 * @str: Destination to write out the cipher name
1143 * @cipher_code: The code to convert to cipher name string
1144 *
1145 * Returns zero on success
1146 */
1147int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1148{
1149 int rc = 0;
1150 int i;
1151
1152 str[0] = '\0';
1153 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1154 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1155 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1156 if (str[0] == '\0') {
1157 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1158 "[%d]\n", cipher_code);
1159 rc = -EINVAL;
1160 }
1161 return rc;
1162}
1163
1164int ecryptfs_read_and_validate_header_region(struct inode *inode)
1165{
1166 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1167 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1168 int rc;
1169
1170 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1171 inode);
1172 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1173 return rc >= 0 ? -EINVAL : rc;
1174 rc = ecryptfs_validate_marker(marker);
1175 if (!rc)
1176 ecryptfs_i_size_init(file_size, inode);
1177 return rc;
1178}
1179
1180void
1181ecryptfs_write_header_metadata(char *virt,
1182 struct ecryptfs_crypt_stat *crypt_stat,
1183 size_t *written)
1184{
1185 u32 header_extent_size;
1186 u16 num_header_extents_at_front;
1187
1188 header_extent_size = (u32)crypt_stat->extent_size;
1189 num_header_extents_at_front =
1190 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1191 put_unaligned_be32(header_extent_size, virt);
1192 virt += 4;
1193 put_unaligned_be16(num_header_extents_at_front, virt);
1194 (*written) = 6;
1195}
1196
1197struct kmem_cache *ecryptfs_header_cache;
1198
1199/**
1200 * ecryptfs_write_headers_virt
1201 * @page_virt: The virtual address to write the headers to
1202 * @max: The size of memory allocated at page_virt
1203 * @size: Set to the number of bytes written by this function
1204 * @crypt_stat: The cryptographic context
1205 * @ecryptfs_dentry: The eCryptfs dentry
1206 *
1207 * Format version: 1
1208 *
1209 * Header Extent:
1210 * Octets 0-7: Unencrypted file size (big-endian)
1211 * Octets 8-15: eCryptfs special marker
1212 * Octets 16-19: Flags
1213 * Octet 16: File format version number (between 0 and 255)
1214 * Octets 17-18: Reserved
1215 * Octet 19: Bit 1 (lsb): Reserved
1216 * Bit 2: Encrypted?
1217 * Bits 3-8: Reserved
1218 * Octets 20-23: Header extent size (big-endian)
1219 * Octets 24-25: Number of header extents at front of file
1220 * (big-endian)
1221 * Octet 26: Begin RFC 2440 authentication token packet set
1222 * Data Extent 0:
1223 * Lower data (CBC encrypted)
1224 * Data Extent 1:
1225 * Lower data (CBC encrypted)
1226 * ...
1227 *
1228 * Returns zero on success
1229 */
1230static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1231 size_t *size,
1232 struct ecryptfs_crypt_stat *crypt_stat,
1233 struct dentry *ecryptfs_dentry)
1234{
1235 int rc;
1236 size_t written;
1237 size_t offset;
1238
1239 offset = ECRYPTFS_FILE_SIZE_BYTES;
1240 write_ecryptfs_marker((page_virt + offset), &written);
1241 offset += written;
1242 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1243 &written);
1244 offset += written;
1245 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1246 &written);
1247 offset += written;
1248 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1249 ecryptfs_dentry, &written,
1250 max - offset);
1251 if (rc)
1252 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1253 "set; rc = [%d]\n", rc);
1254 if (size) {
1255 offset += written;
1256 *size = offset;
1257 }
1258 return rc;
1259}
1260
1261static int
1262ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1263 char *virt, size_t virt_len)
1264{
1265 int rc;
1266
1267 rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1268 0, virt_len);
1269 if (rc < 0)
1270 printk(KERN_ERR "%s: Error attempting to write header "
1271 "information to lower file; rc = [%d]\n", __func__, rc);
1272 else
1273 rc = 0;
1274 return rc;
1275}
1276
1277static int
1278ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1279 char *page_virt, size_t size)
1280{
1281 int rc;
1282
1283 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1284 size, 0);
1285 return rc;
1286}
1287
1288static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1289 unsigned int order)
1290{
1291 struct page *page;
1292
1293 page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1294 if (page)
1295 return (unsigned long) page_address(page);
1296 return 0;
1297}
1298
1299/**
1300 * ecryptfs_write_metadata
1301 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1302 * @ecryptfs_inode: The newly created eCryptfs inode
1303 *
1304 * Write the file headers out. This will likely involve a userspace
1305 * callout, in which the session key is encrypted with one or more
1306 * public keys and/or the passphrase necessary to do the encryption is
1307 * retrieved via a prompt. Exactly what happens at this point should
1308 * be policy-dependent.
1309 *
1310 * Returns zero on success; non-zero on error
1311 */
1312int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1313 struct inode *ecryptfs_inode)
1314{
1315 struct ecryptfs_crypt_stat *crypt_stat =
1316 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1317 unsigned int order;
1318 char *virt;
1319 size_t virt_len;
1320 size_t size = 0;
1321 int rc = 0;
1322
1323 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1324 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1325 printk(KERN_ERR "Key is invalid; bailing out\n");
1326 rc = -EINVAL;
1327 goto out;
1328 }
1329 } else {
1330 printk(KERN_WARNING "%s: Encrypted flag not set\n",
1331 __func__);
1332 rc = -EINVAL;
1333 goto out;
1334 }
1335 virt_len = crypt_stat->metadata_size;
1336 order = get_order(virt_len);
1337 /* Released in this function */
1338 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1339 if (!virt) {
1340 printk(KERN_ERR "%s: Out of memory\n", __func__);
1341 rc = -ENOMEM;
1342 goto out;
1343 }
1344 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1345 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1346 ecryptfs_dentry);
1347 if (unlikely(rc)) {
1348 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1349 __func__, rc);
1350 goto out_free;
1351 }
1352 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1353 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1354 size);
1355 else
1356 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1357 virt_len);
1358 if (rc) {
1359 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1360 "rc = [%d]\n", __func__, rc);
1361 goto out_free;
1362 }
1363out_free:
1364 free_pages((unsigned long)virt, order);
1365out:
1366 return rc;
1367}
1368
1369#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1370#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1371static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1372 char *virt, int *bytes_read,
1373 int validate_header_size)
1374{
1375 int rc = 0;
1376 u32 header_extent_size;
1377 u16 num_header_extents_at_front;
1378
1379 header_extent_size = get_unaligned_be32(virt);
1380 virt += sizeof(__be32);
1381 num_header_extents_at_front = get_unaligned_be16(virt);
1382 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1383 * (size_t)header_extent_size));
1384 (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1385 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1386 && (crypt_stat->metadata_size
1387 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1388 rc = -EINVAL;
1389 printk(KERN_WARNING "Invalid header size: [%zd]\n",
1390 crypt_stat->metadata_size);
1391 }
1392 return rc;
1393}
1394
1395/**
1396 * set_default_header_data
1397 * @crypt_stat: The cryptographic context
1398 *
1399 * For version 0 file format; this function is only for backwards
1400 * compatibility for files created with the prior versions of
1401 * eCryptfs.
1402 */
1403static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1404{
1405 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1406}
1407
1408void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1409{
1410 struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1411 struct ecryptfs_crypt_stat *crypt_stat;
1412 u64 file_size;
1413
1414 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1415 mount_crypt_stat =
1416 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1417 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1418 file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1419 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1420 file_size += crypt_stat->metadata_size;
1421 } else
1422 file_size = get_unaligned_be64(page_virt);
1423 i_size_write(inode, (loff_t)file_size);
1424 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1425}
1426
1427/**
1428 * ecryptfs_read_headers_virt
1429 * @page_virt: The virtual address into which to read the headers
1430 * @crypt_stat: The cryptographic context
1431 * @ecryptfs_dentry: The eCryptfs dentry
1432 * @validate_header_size: Whether to validate the header size while reading
1433 *
1434 * Read/parse the header data. The header format is detailed in the
1435 * comment block for the ecryptfs_write_headers_virt() function.
1436 *
1437 * Returns zero on success
1438 */
1439static int ecryptfs_read_headers_virt(char *page_virt,
1440 struct ecryptfs_crypt_stat *crypt_stat,
1441 struct dentry *ecryptfs_dentry,
1442 int validate_header_size)
1443{
1444 int rc = 0;
1445 int offset;
1446 int bytes_read;
1447
1448 ecryptfs_set_default_sizes(crypt_stat);
1449 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1450 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1451 offset = ECRYPTFS_FILE_SIZE_BYTES;
1452 rc = ecryptfs_validate_marker(page_virt + offset);
1453 if (rc)
1454 goto out;
1455 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1456 ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode);
1457 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1458 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1459 &bytes_read);
1460 if (rc) {
1461 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1462 goto out;
1463 }
1464 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1465 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1466 "file version [%d] is supported by this "
1467 "version of eCryptfs\n",
1468 crypt_stat->file_version,
1469 ECRYPTFS_SUPPORTED_FILE_VERSION);
1470 rc = -EINVAL;
1471 goto out;
1472 }
1473 offset += bytes_read;
1474 if (crypt_stat->file_version >= 1) {
1475 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1476 &bytes_read, validate_header_size);
1477 if (rc) {
1478 ecryptfs_printk(KERN_WARNING, "Error reading header "
1479 "metadata; rc = [%d]\n", rc);
1480 }
1481 offset += bytes_read;
1482 } else
1483 set_default_header_data(crypt_stat);
1484 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1485 ecryptfs_dentry);
1486out:
1487 return rc;
1488}
1489
1490/**
1491 * ecryptfs_read_xattr_region
1492 * @page_virt: The vitual address into which to read the xattr data
1493 * @ecryptfs_inode: The eCryptfs inode
1494 *
1495 * Attempts to read the crypto metadata from the extended attribute
1496 * region of the lower file.
1497 *
1498 * Returns zero on success; non-zero on error
1499 */
1500int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1501{
1502 struct dentry *lower_dentry =
1503 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1504 ssize_t size;
1505 int rc = 0;
1506
1507 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1508 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1509 if (size < 0) {
1510 if (unlikely(ecryptfs_verbosity > 0))
1511 printk(KERN_INFO "Error attempting to read the [%s] "
1512 "xattr from the lower file; return value = "
1513 "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1514 rc = -EINVAL;
1515 goto out;
1516 }
1517out:
1518 return rc;
1519}
1520
1521int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1522 struct inode *inode)
1523{
1524 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1525 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1526 int rc;
1527
1528 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1529 ECRYPTFS_XATTR_NAME, file_size,
1530 ECRYPTFS_SIZE_AND_MARKER_BYTES);
1531 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1532 return rc >= 0 ? -EINVAL : rc;
1533 rc = ecryptfs_validate_marker(marker);
1534 if (!rc)
1535 ecryptfs_i_size_init(file_size, inode);
1536 return rc;
1537}
1538
1539/**
1540 * ecryptfs_read_metadata
1541 *
1542 * Common entry point for reading file metadata. From here, we could
1543 * retrieve the header information from the header region of the file,
1544 * the xattr region of the file, or some other repostory that is
1545 * stored separately from the file itself. The current implementation
1546 * supports retrieving the metadata information from the file contents
1547 * and from the xattr region.
1548 *
1549 * Returns zero if valid headers found and parsed; non-zero otherwise
1550 */
1551int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1552{
1553 int rc;
1554 char *page_virt;
1555 struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1556 struct ecryptfs_crypt_stat *crypt_stat =
1557 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1558 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1559 &ecryptfs_superblock_to_private(
1560 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1561
1562 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1563 mount_crypt_stat);
1564 /* Read the first page from the underlying file */
1565 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1566 if (!page_virt) {
1567 rc = -ENOMEM;
1568 printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1569 __func__);
1570 goto out;
1571 }
1572 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1573 ecryptfs_inode);
1574 if (rc >= 0)
1575 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1576 ecryptfs_dentry,
1577 ECRYPTFS_VALIDATE_HEADER_SIZE);
1578 if (rc) {
1579 /* metadata is not in the file header, so try xattrs */
1580 memset(page_virt, 0, PAGE_CACHE_SIZE);
1581 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1582 if (rc) {
1583 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1584 "file header region or xattr region, inode %lu\n",
1585 ecryptfs_inode->i_ino);
1586 rc = -EINVAL;
1587 goto out;
1588 }
1589 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1590 ecryptfs_dentry,
1591 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1592 if (rc) {
1593 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1594 "file xattr region either, inode %lu\n",
1595 ecryptfs_inode->i_ino);
1596 rc = -EINVAL;
1597 }
1598 if (crypt_stat->mount_crypt_stat->flags
1599 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1600 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1601 } else {
1602 printk(KERN_WARNING "Attempt to access file with "
1603 "crypto metadata only in the extended attribute "
1604 "region, but eCryptfs was mounted without "
1605 "xattr support enabled. eCryptfs will not treat "
1606 "this like an encrypted file, inode %lu\n",
1607 ecryptfs_inode->i_ino);
1608 rc = -EINVAL;
1609 }
1610 }
1611out:
1612 if (page_virt) {
1613 memset(page_virt, 0, PAGE_CACHE_SIZE);
1614 kmem_cache_free(ecryptfs_header_cache, page_virt);
1615 }
1616 return rc;
1617}
1618
1619/**
1620 * ecryptfs_encrypt_filename - encrypt filename
1621 *
1622 * CBC-encrypts the filename. We do not want to encrypt the same
1623 * filename with the same key and IV, which may happen with hard
1624 * links, so we prepend random bits to each filename.
1625 *
1626 * Returns zero on success; non-zero otherwise
1627 */
1628static int
1629ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1630 struct ecryptfs_crypt_stat *crypt_stat,
1631 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1632{
1633 int rc = 0;
1634
1635 filename->encrypted_filename = NULL;
1636 filename->encrypted_filename_size = 0;
1637 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1638 || (mount_crypt_stat && (mount_crypt_stat->flags
1639 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1640 size_t packet_size;
1641 size_t remaining_bytes;
1642
1643 rc = ecryptfs_write_tag_70_packet(
1644 NULL, NULL,
1645 &filename->encrypted_filename_size,
1646 mount_crypt_stat, NULL,
1647 filename->filename_size);
1648 if (rc) {
1649 printk(KERN_ERR "%s: Error attempting to get packet "
1650 "size for tag 72; rc = [%d]\n", __func__,
1651 rc);
1652 filename->encrypted_filename_size = 0;
1653 goto out;
1654 }
1655 filename->encrypted_filename =
1656 kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1657 if (!filename->encrypted_filename) {
1658 printk(KERN_ERR "%s: Out of memory whilst attempting "
1659 "to kmalloc [%zd] bytes\n", __func__,
1660 filename->encrypted_filename_size);
1661 rc = -ENOMEM;
1662 goto out;
1663 }
1664 remaining_bytes = filename->encrypted_filename_size;
1665 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1666 &remaining_bytes,
1667 &packet_size,
1668 mount_crypt_stat,
1669 filename->filename,
1670 filename->filename_size);
1671 if (rc) {
1672 printk(KERN_ERR "%s: Error attempting to generate "
1673 "tag 70 packet; rc = [%d]\n", __func__,
1674 rc);
1675 kfree(filename->encrypted_filename);
1676 filename->encrypted_filename = NULL;
1677 filename->encrypted_filename_size = 0;
1678 goto out;
1679 }
1680 filename->encrypted_filename_size = packet_size;
1681 } else {
1682 printk(KERN_ERR "%s: No support for requested filename "
1683 "encryption method in this release\n", __func__);
1684 rc = -EOPNOTSUPP;
1685 goto out;
1686 }
1687out:
1688 return rc;
1689}
1690
1691static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1692 const char *name, size_t name_size)
1693{
1694 int rc = 0;
1695
1696 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1697 if (!(*copied_name)) {
1698 rc = -ENOMEM;
1699 goto out;
1700 }
1701 memcpy((void *)(*copied_name), (void *)name, name_size);
1702 (*copied_name)[(name_size)] = '\0'; /* Only for convenience
1703 * in printing out the
1704 * string in debug
1705 * messages */
1706 (*copied_name_size) = name_size;
1707out:
1708 return rc;
1709}
1710
1711/**
1712 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1713 * @key_tfm: Crypto context for key material, set by this function
1714 * @cipher_name: Name of the cipher
1715 * @key_size: Size of the key in bytes
1716 *
1717 * Returns zero on success. Any crypto_tfm structs allocated here
1718 * should be released by other functions, such as on a superblock put
1719 * event, regardless of whether this function succeeds for fails.
1720 */
1721static int
1722ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1723 char *cipher_name, size_t *key_size)
1724{
1725 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1726 char *full_alg_name = NULL;
1727 int rc;
1728
1729 *key_tfm = NULL;
1730 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1731 rc = -EINVAL;
1732 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1733 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1734 goto out;
1735 }
1736 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1737 "ecb");
1738 if (rc)
1739 goto out;
1740 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1741 if (IS_ERR(*key_tfm)) {
1742 rc = PTR_ERR(*key_tfm);
1743 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1744 "[%s]; rc = [%d]\n", full_alg_name, rc);
1745 goto out;
1746 }
1747 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1748 if (*key_size == 0) {
1749 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1750
1751 *key_size = alg->max_keysize;
1752 }
1753 get_random_bytes(dummy_key, *key_size);
1754 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1755 if (rc) {
1756 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1757 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1758 rc);
1759 rc = -EINVAL;
1760 goto out;
1761 }
1762out:
1763 kfree(full_alg_name);
1764 return rc;
1765}
1766
1767struct kmem_cache *ecryptfs_key_tfm_cache;
1768static struct list_head key_tfm_list;
1769struct mutex key_tfm_list_mutex;
1770
1771int __init ecryptfs_init_crypto(void)
1772{
1773 mutex_init(&key_tfm_list_mutex);
1774 INIT_LIST_HEAD(&key_tfm_list);
1775 return 0;
1776}
1777
1778/**
1779 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1780 *
1781 * Called only at module unload time
1782 */
1783int ecryptfs_destroy_crypto(void)
1784{
1785 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1786
1787 mutex_lock(&key_tfm_list_mutex);
1788 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1789 key_tfm_list) {
1790 list_del(&key_tfm->key_tfm_list);
1791 if (key_tfm->key_tfm)
1792 crypto_free_blkcipher(key_tfm->key_tfm);
1793 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1794 }
1795 mutex_unlock(&key_tfm_list_mutex);
1796 return 0;
1797}
1798
1799int
1800ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1801 size_t key_size)
1802{
1803 struct ecryptfs_key_tfm *tmp_tfm;
1804 int rc = 0;
1805
1806 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1807
1808 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1809 if (key_tfm != NULL)
1810 (*key_tfm) = tmp_tfm;
1811 if (!tmp_tfm) {
1812 rc = -ENOMEM;
1813 printk(KERN_ERR "Error attempting to allocate from "
1814 "ecryptfs_key_tfm_cache\n");
1815 goto out;
1816 }
1817 mutex_init(&tmp_tfm->key_tfm_mutex);
1818 strncpy(tmp_tfm->cipher_name, cipher_name,
1819 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1820 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1821 tmp_tfm->key_size = key_size;
1822 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1823 tmp_tfm->cipher_name,
1824 &tmp_tfm->key_size);
1825 if (rc) {
1826 printk(KERN_ERR "Error attempting to initialize key TFM "
1827 "cipher with name = [%s]; rc = [%d]\n",
1828 tmp_tfm->cipher_name, rc);
1829 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1830 if (key_tfm != NULL)
1831 (*key_tfm) = NULL;
1832 goto out;
1833 }
1834 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1835out:
1836 return rc;
1837}
1838
1839/**
1840 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1841 * @cipher_name: the name of the cipher to search for
1842 * @key_tfm: set to corresponding tfm if found
1843 *
1844 * Searches for cached key_tfm matching @cipher_name
1845 * Must be called with &key_tfm_list_mutex held
1846 * Returns 1 if found, with @key_tfm set
1847 * Returns 0 if not found, with @key_tfm set to NULL
1848 */
1849int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1850{
1851 struct ecryptfs_key_tfm *tmp_key_tfm;
1852
1853 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1854
1855 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1856 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1857 if (key_tfm)
1858 (*key_tfm) = tmp_key_tfm;
1859 return 1;
1860 }
1861 }
1862 if (key_tfm)
1863 (*key_tfm) = NULL;
1864 return 0;
1865}
1866
1867/**
1868 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1869 *
1870 * @tfm: set to cached tfm found, or new tfm created
1871 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1872 * @cipher_name: the name of the cipher to search for and/or add
1873 *
1874 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1875 * Searches for cached item first, and creates new if not found.
1876 * Returns 0 on success, non-zero if adding new cipher failed
1877 */
1878int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1879 struct mutex **tfm_mutex,
1880 char *cipher_name)
1881{
1882 struct ecryptfs_key_tfm *key_tfm;
1883 int rc = 0;
1884
1885 (*tfm) = NULL;
1886 (*tfm_mutex) = NULL;
1887
1888 mutex_lock(&key_tfm_list_mutex);
1889 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1890 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1891 if (rc) {
1892 printk(KERN_ERR "Error adding new key_tfm to list; "
1893 "rc = [%d]\n", rc);
1894 goto out;
1895 }
1896 }
1897 (*tfm) = key_tfm->key_tfm;
1898 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1899out:
1900 mutex_unlock(&key_tfm_list_mutex);
1901 return rc;
1902}
1903
1904/* 64 characters forming a 6-bit target field */
1905static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1906 "EFGHIJKLMNOPQRST"
1907 "UVWXYZabcdefghij"
1908 "klmnopqrstuvwxyz");
1909
1910/* We could either offset on every reverse map or just pad some 0x00's
1911 * at the front here */
1912static const unsigned char filename_rev_map[256] = {
1913 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1914 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1915 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1916 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1917 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1918 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1919 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1920 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1921 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1922 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1923 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1924 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1925 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1926 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1927 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1928 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1929};
1930
1931/**
1932 * ecryptfs_encode_for_filename
1933 * @dst: Destination location for encoded filename
1934 * @dst_size: Size of the encoded filename in bytes
1935 * @src: Source location for the filename to encode
1936 * @src_size: Size of the source in bytes
1937 */
1938void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1939 unsigned char *src, size_t src_size)
1940{
1941 size_t num_blocks;
1942 size_t block_num = 0;
1943 size_t dst_offset = 0;
1944 unsigned char last_block[3];
1945
1946 if (src_size == 0) {
1947 (*dst_size) = 0;
1948 goto out;
1949 }
1950 num_blocks = (src_size / 3);
1951 if ((src_size % 3) == 0) {
1952 memcpy(last_block, (&src[src_size - 3]), 3);
1953 } else {
1954 num_blocks++;
1955 last_block[2] = 0x00;
1956 switch (src_size % 3) {
1957 case 1:
1958 last_block[0] = src[src_size - 1];
1959 last_block[1] = 0x00;
1960 break;
1961 case 2:
1962 last_block[0] = src[src_size - 2];
1963 last_block[1] = src[src_size - 1];
1964 }
1965 }
1966 (*dst_size) = (num_blocks * 4);
1967 if (!dst)
1968 goto out;
1969 while (block_num < num_blocks) {
1970 unsigned char *src_block;
1971 unsigned char dst_block[4];
1972
1973 if (block_num == (num_blocks - 1))
1974 src_block = last_block;
1975 else
1976 src_block = &src[block_num * 3];
1977 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1978 dst_block[1] = (((src_block[0] << 4) & 0x30)
1979 | ((src_block[1] >> 4) & 0x0F));
1980 dst_block[2] = (((src_block[1] << 2) & 0x3C)
1981 | ((src_block[2] >> 6) & 0x03));
1982 dst_block[3] = (src_block[2] & 0x3F);
1983 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1984 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1985 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1986 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1987 block_num++;
1988 }
1989out:
1990 return;
1991}
1992
1993static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1994{
1995 /* Not exact; conservatively long. Every block of 4
1996 * encoded characters decodes into a block of 3
1997 * decoded characters. This segment of code provides
1998 * the caller with the maximum amount of allocated
1999 * space that @dst will need to point to in a
2000 * subsequent call. */
2001 return ((encoded_size + 1) * 3) / 4;
2002}
2003
2004/**
2005 * ecryptfs_decode_from_filename
2006 * @dst: If NULL, this function only sets @dst_size and returns. If
2007 * non-NULL, this function decodes the encoded octets in @src
2008 * into the memory that @dst points to.
2009 * @dst_size: Set to the size of the decoded string.
2010 * @src: The encoded set of octets to decode.
2011 * @src_size: The size of the encoded set of octets to decode.
2012 */
2013static void
2014ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
2015 const unsigned char *src, size_t src_size)
2016{
2017 u8 current_bit_offset = 0;
2018 size_t src_byte_offset = 0;
2019 size_t dst_byte_offset = 0;
2020
2021 if (dst == NULL) {
2022 (*dst_size) = ecryptfs_max_decoded_size(src_size);
2023 goto out;
2024 }
2025 while (src_byte_offset < src_size) {
2026 unsigned char src_byte =
2027 filename_rev_map[(int)src[src_byte_offset]];
2028
2029 switch (current_bit_offset) {
2030 case 0:
2031 dst[dst_byte_offset] = (src_byte << 2);
2032 current_bit_offset = 6;
2033 break;
2034 case 6:
2035 dst[dst_byte_offset++] |= (src_byte >> 4);
2036 dst[dst_byte_offset] = ((src_byte & 0xF)
2037 << 4);
2038 current_bit_offset = 4;
2039 break;
2040 case 4:
2041 dst[dst_byte_offset++] |= (src_byte >> 2);
2042 dst[dst_byte_offset] = (src_byte << 6);
2043 current_bit_offset = 2;
2044 break;
2045 case 2:
2046 dst[dst_byte_offset++] |= (src_byte);
2047 dst[dst_byte_offset] = 0;
2048 current_bit_offset = 0;
2049 break;
2050 }
2051 src_byte_offset++;
2052 }
2053 (*dst_size) = dst_byte_offset;
2054out:
2055 return;
2056}
2057
2058/**
2059 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2060 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2061 * @name: The plaintext name
2062 * @length: The length of the plaintext
2063 * @encoded_name: The encypted name
2064 *
2065 * Encrypts and encodes a filename into something that constitutes a
2066 * valid filename for a filesystem, with printable characters.
2067 *
2068 * We assume that we have a properly initialized crypto context,
2069 * pointed to by crypt_stat->tfm.
2070 *
2071 * Returns zero on success; non-zero on otherwise
2072 */
2073int ecryptfs_encrypt_and_encode_filename(
2074 char **encoded_name,
2075 size_t *encoded_name_size,
2076 struct ecryptfs_crypt_stat *crypt_stat,
2077 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2078 const char *name, size_t name_size)
2079{
2080 size_t encoded_name_no_prefix_size;
2081 int rc = 0;
2082
2083 (*encoded_name) = NULL;
2084 (*encoded_name_size) = 0;
2085 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
2086 || (mount_crypt_stat && (mount_crypt_stat->flags
2087 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
2088 struct ecryptfs_filename *filename;
2089
2090 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
2091 if (!filename) {
2092 printk(KERN_ERR "%s: Out of memory whilst attempting "
2093 "to kzalloc [%zd] bytes\n", __func__,
2094 sizeof(*filename));
2095 rc = -ENOMEM;
2096 goto out;
2097 }
2098 filename->filename = (char *)name;
2099 filename->filename_size = name_size;
2100 rc = ecryptfs_encrypt_filename(filename, crypt_stat,
2101 mount_crypt_stat);
2102 if (rc) {
2103 printk(KERN_ERR "%s: Error attempting to encrypt "
2104 "filename; rc = [%d]\n", __func__, rc);
2105 kfree(filename);
2106 goto out;
2107 }
2108 ecryptfs_encode_for_filename(
2109 NULL, &encoded_name_no_prefix_size,
2110 filename->encrypted_filename,
2111 filename->encrypted_filename_size);
2112 if ((crypt_stat && (crypt_stat->flags
2113 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2114 || (mount_crypt_stat
2115 && (mount_crypt_stat->flags
2116 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
2117 (*encoded_name_size) =
2118 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2119 + encoded_name_no_prefix_size);
2120 else
2121 (*encoded_name_size) =
2122 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2123 + encoded_name_no_prefix_size);
2124 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2125 if (!(*encoded_name)) {
2126 printk(KERN_ERR "%s: Out of memory whilst attempting "
2127 "to kzalloc [%zd] bytes\n", __func__,
2128 (*encoded_name_size));
2129 rc = -ENOMEM;
2130 kfree(filename->encrypted_filename);
2131 kfree(filename);
2132 goto out;
2133 }
2134 if ((crypt_stat && (crypt_stat->flags
2135 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2136 || (mount_crypt_stat
2137 && (mount_crypt_stat->flags
2138 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2139 memcpy((*encoded_name),
2140 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2141 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2142 ecryptfs_encode_for_filename(
2143 ((*encoded_name)
2144 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2145 &encoded_name_no_prefix_size,
2146 filename->encrypted_filename,
2147 filename->encrypted_filename_size);
2148 (*encoded_name_size) =
2149 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2150 + encoded_name_no_prefix_size);
2151 (*encoded_name)[(*encoded_name_size)] = '\0';
2152 } else {
2153 rc = -EOPNOTSUPP;
2154 }
2155 if (rc) {
2156 printk(KERN_ERR "%s: Error attempting to encode "
2157 "encrypted filename; rc = [%d]\n", __func__,
2158 rc);
2159 kfree((*encoded_name));
2160 (*encoded_name) = NULL;
2161 (*encoded_name_size) = 0;
2162 }
2163 kfree(filename->encrypted_filename);
2164 kfree(filename);
2165 } else {
2166 rc = ecryptfs_copy_filename(encoded_name,
2167 encoded_name_size,
2168 name, name_size);
2169 }
2170out:
2171 return rc;
2172}
2173
2174/**
2175 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2176 * @plaintext_name: The plaintext name
2177 * @plaintext_name_size: The plaintext name size
2178 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2179 * @name: The filename in cipher text
2180 * @name_size: The cipher text name size
2181 *
2182 * Decrypts and decodes the filename.
2183 *
2184 * Returns zero on error; non-zero otherwise
2185 */
2186int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2187 size_t *plaintext_name_size,
2188 struct dentry *ecryptfs_dir_dentry,
2189 const char *name, size_t name_size)
2190{
2191 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2192 &ecryptfs_superblock_to_private(
2193 ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
2194 char *decoded_name;
2195 size_t decoded_name_size;
2196 size_t packet_size;
2197 int rc = 0;
2198
2199 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2200 && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2201 && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2202 && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2203 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2204 const char *orig_name = name;
2205 size_t orig_name_size = name_size;
2206
2207 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2208 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2209 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2210 name, name_size);
2211 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2212 if (!decoded_name) {
2213 printk(KERN_ERR "%s: Out of memory whilst attempting "
2214 "to kmalloc [%zd] bytes\n", __func__,
2215 decoded_name_size);
2216 rc = -ENOMEM;
2217 goto out;
2218 }
2219 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2220 name, name_size);
2221 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2222 plaintext_name_size,
2223 &packet_size,
2224 mount_crypt_stat,
2225 decoded_name,
2226 decoded_name_size);
2227 if (rc) {
2228 printk(KERN_INFO "%s: Could not parse tag 70 packet "
2229 "from filename; copying through filename "
2230 "as-is\n", __func__);
2231 rc = ecryptfs_copy_filename(plaintext_name,
2232 plaintext_name_size,
2233 orig_name, orig_name_size);
2234 goto out_free;
2235 }
2236 } else {
2237 rc = ecryptfs_copy_filename(plaintext_name,
2238 plaintext_name_size,
2239 name, name_size);
2240 goto out;
2241 }
2242out_free:
2243 kfree(decoded_name);
2244out:
2245 return rc;
2246}
2247
2248#define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143
2249
2250int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2251 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2252{
2253 struct blkcipher_desc desc;
2254 struct mutex *tfm_mutex;
2255 size_t cipher_blocksize;
2256 int rc;
2257
2258 if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2259 (*namelen) = lower_namelen;
2260 return 0;
2261 }
2262
2263 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2264 mount_crypt_stat->global_default_fn_cipher_name);
2265 if (unlikely(rc)) {
2266 (*namelen) = 0;
2267 return rc;
2268 }
2269
2270 mutex_lock(tfm_mutex);
2271 cipher_blocksize = crypto_blkcipher_blocksize(desc.tfm);
2272 mutex_unlock(tfm_mutex);
2273
2274 /* Return an exact amount for the common cases */
2275 if (lower_namelen == NAME_MAX
2276 && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2277 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2278 return 0;
2279 }
2280
2281 /* Return a safe estimate for the uncommon cases */
2282 (*namelen) = lower_namelen;
2283 (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2284 /* Since this is the max decoded size, subtract 1 "decoded block" len */
2285 (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2286 (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2287 (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2288 /* Worst case is that the filename is padded nearly a full block size */
2289 (*namelen) -= cipher_blocksize - 1;
2290
2291 if ((*namelen) < 0)
2292 (*namelen) = 0;
2293
2294 return 0;
2295}