Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 1999 Eric Youngdale
   4 * Copyright (C) 2014 Christoph Hellwig
   5 *
   6 *  SCSI queueing library.
   7 *      Initial versions: Eric Youngdale (eric@andante.org).
   8 *                        Based upon conversations with large numbers
   9 *                        of people at Linux Expo.
  10 */
  11
  12#include <linux/bio.h>
  13#include <linux/bitops.h>
  14#include <linux/blkdev.h>
  15#include <linux/completion.h>
  16#include <linux/kernel.h>
  17#include <linux/export.h>
  18#include <linux/init.h>
  19#include <linux/pci.h>
  20#include <linux/delay.h>
  21#include <linux/hardirq.h>
  22#include <linux/scatterlist.h>
  23#include <linux/blk-mq.h>
  24#include <linux/ratelimit.h>
  25#include <asm/unaligned.h>
  26
  27#include <scsi/scsi.h>
  28#include <scsi/scsi_cmnd.h>
  29#include <scsi/scsi_dbg.h>
  30#include <scsi/scsi_device.h>
  31#include <scsi/scsi_driver.h>
  32#include <scsi/scsi_eh.h>
  33#include <scsi/scsi_host.h>
  34#include <scsi/scsi_transport.h> /* __scsi_init_queue() */
  35#include <scsi/scsi_dh.h>
  36
  37#include <trace/events/scsi.h>
  38
  39#include "scsi_debugfs.h"
  40#include "scsi_priv.h"
  41#include "scsi_logging.h"
  42
  43/*
  44 * Size of integrity metadata is usually small, 1 inline sg should
  45 * cover normal cases.
  46 */
  47#ifdef CONFIG_ARCH_NO_SG_CHAIN
  48#define  SCSI_INLINE_PROT_SG_CNT  0
  49#define  SCSI_INLINE_SG_CNT  0
  50#else
  51#define  SCSI_INLINE_PROT_SG_CNT  1
  52#define  SCSI_INLINE_SG_CNT  2
  53#endif
  54
 
  55static struct kmem_cache *scsi_sense_cache;
  56static struct kmem_cache *scsi_sense_isadma_cache;
  57static DEFINE_MUTEX(scsi_sense_cache_mutex);
  58
  59static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
  60
  61static inline struct kmem_cache *
  62scsi_select_sense_cache(bool unchecked_isa_dma)
  63{
  64	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
  65}
  66
  67static void scsi_free_sense_buffer(bool unchecked_isa_dma,
  68				   unsigned char *sense_buffer)
  69{
  70	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
  71			sense_buffer);
  72}
  73
  74static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
  75	gfp_t gfp_mask, int numa_node)
  76{
  77	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
  78				     gfp_mask, numa_node);
  79}
  80
  81int scsi_init_sense_cache(struct Scsi_Host *shost)
  82{
  83	struct kmem_cache *cache;
  84	int ret = 0;
  85
  86	mutex_lock(&scsi_sense_cache_mutex);
  87	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
  88	if (cache)
  89		goto exit;
  90
  91	if (shost->unchecked_isa_dma) {
  92		scsi_sense_isadma_cache =
  93			kmem_cache_create("scsi_sense_cache(DMA)",
  94				SCSI_SENSE_BUFFERSIZE, 0,
  95				SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
  96		if (!scsi_sense_isadma_cache)
  97			ret = -ENOMEM;
  98	} else {
  99		scsi_sense_cache =
 100			kmem_cache_create_usercopy("scsi_sense_cache",
 101				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
 102				0, SCSI_SENSE_BUFFERSIZE, NULL);
 103		if (!scsi_sense_cache)
 104			ret = -ENOMEM;
 105	}
 106 exit:
 107	mutex_unlock(&scsi_sense_cache_mutex);
 108	return ret;
 109}
 110
 111/*
 112 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
 113 * not change behaviour from the previous unplug mechanism, experimentation
 114 * may prove this needs changing.
 115 */
 116#define SCSI_QUEUE_DELAY	3
 117
 118static void
 119scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
 120{
 121	struct Scsi_Host *host = cmd->device->host;
 122	struct scsi_device *device = cmd->device;
 123	struct scsi_target *starget = scsi_target(device);
 124
 125	/*
 126	 * Set the appropriate busy bit for the device/host.
 127	 *
 128	 * If the host/device isn't busy, assume that something actually
 129	 * completed, and that we should be able to queue a command now.
 130	 *
 131	 * Note that the prior mid-layer assumption that any host could
 132	 * always queue at least one command is now broken.  The mid-layer
 133	 * will implement a user specifiable stall (see
 134	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
 135	 * if a command is requeued with no other commands outstanding
 136	 * either for the device or for the host.
 137	 */
 138	switch (reason) {
 139	case SCSI_MLQUEUE_HOST_BUSY:
 140		atomic_set(&host->host_blocked, host->max_host_blocked);
 141		break;
 142	case SCSI_MLQUEUE_DEVICE_BUSY:
 143	case SCSI_MLQUEUE_EH_RETRY:
 144		atomic_set(&device->device_blocked,
 145			   device->max_device_blocked);
 146		break;
 147	case SCSI_MLQUEUE_TARGET_BUSY:
 148		atomic_set(&starget->target_blocked,
 149			   starget->max_target_blocked);
 150		break;
 151	}
 152}
 153
 154static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
 155{
 156	if (cmd->request->rq_flags & RQF_DONTPREP) {
 157		cmd->request->rq_flags &= ~RQF_DONTPREP;
 158		scsi_mq_uninit_cmd(cmd);
 159	} else {
 160		WARN_ON_ONCE(true);
 161	}
 162	blk_mq_requeue_request(cmd->request, true);
 163}
 164
 165/**
 166 * __scsi_queue_insert - private queue insertion
 167 * @cmd: The SCSI command being requeued
 168 * @reason:  The reason for the requeue
 169 * @unbusy: Whether the queue should be unbusied
 170 *
 171 * This is a private queue insertion.  The public interface
 172 * scsi_queue_insert() always assumes the queue should be unbusied
 173 * because it's always called before the completion.  This function is
 174 * for a requeue after completion, which should only occur in this
 175 * file.
 176 */
 177static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
 178{
 179	struct scsi_device *device = cmd->device;
 180
 181	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
 182		"Inserting command %p into mlqueue\n", cmd));
 183
 184	scsi_set_blocked(cmd, reason);
 185
 186	/*
 187	 * Decrement the counters, since these commands are no longer
 188	 * active on the host/device.
 189	 */
 190	if (unbusy)
 191		scsi_device_unbusy(device, cmd);
 192
 193	/*
 194	 * Requeue this command.  It will go before all other commands
 195	 * that are already in the queue. Schedule requeue work under
 196	 * lock such that the kblockd_schedule_work() call happens
 197	 * before blk_cleanup_queue() finishes.
 198	 */
 199	cmd->result = 0;
 200
 201	blk_mq_requeue_request(cmd->request, true);
 202}
 203
 204/**
 205 * scsi_queue_insert - Reinsert a command in the queue.
 206 * @cmd:    command that we are adding to queue.
 207 * @reason: why we are inserting command to queue.
 208 *
 209 * We do this for one of two cases. Either the host is busy and it cannot accept
 210 * any more commands for the time being, or the device returned QUEUE_FULL and
 211 * can accept no more commands.
 
 
 
 212 *
 213 * Context: This could be called either from an interrupt context or a normal
 214 * process context.
 
 
 
 
 215 */
 216void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 217{
 218	__scsi_queue_insert(cmd, reason, true);
 219}
 220
 221
 222/**
 223 * __scsi_execute - insert request and wait for the result
 224 * @sdev:	scsi device
 225 * @cmd:	scsi command
 226 * @data_direction: data direction
 227 * @buffer:	data buffer
 228 * @bufflen:	len of buffer
 229 * @sense:	optional sense buffer
 230 * @sshdr:	optional decoded sense header
 231 * @timeout:	request timeout in seconds
 232 * @retries:	number of times to retry request
 233 * @flags:	flags for ->cmd_flags
 234 * @rq_flags:	flags for ->rq_flags
 235 * @resid:	optional residual length
 236 *
 237 * Returns the scsi_cmnd result field if a command was executed, or a negative
 238 * Linux error code if we didn't get that far.
 239 */
 240int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
 241		 int data_direction, void *buffer, unsigned bufflen,
 242		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
 243		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
 244		 int *resid)
 245{
 246	struct request *req;
 247	struct scsi_request *rq;
 248	int ret = DRIVER_ERROR << 24;
 249
 250	req = blk_get_request(sdev->request_queue,
 251			data_direction == DMA_TO_DEVICE ?
 252			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
 253	if (IS_ERR(req))
 254		return ret;
 255	rq = scsi_req(req);
 256
 257	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
 258					buffer, bufflen, GFP_NOIO))
 259		goto out;
 260
 261	rq->cmd_len = COMMAND_SIZE(cmd[0]);
 262	memcpy(rq->cmd, cmd, rq->cmd_len);
 263	rq->retries = retries;
 264	req->timeout = timeout;
 265	req->cmd_flags |= flags;
 266	req->rq_flags |= rq_flags | RQF_QUIET;
 267
 268	/*
 269	 * head injection *required* here otherwise quiesce won't work
 270	 */
 271	blk_execute_rq(req->q, NULL, req, 1);
 272
 273	/*
 274	 * Some devices (USB mass-storage in particular) may transfer
 275	 * garbage data together with a residue indicating that the data
 276	 * is invalid.  Prevent the garbage from being misinterpreted
 277	 * and prevent security leaks by zeroing out the excess data.
 278	 */
 279	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
 280		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
 281
 282	if (resid)
 283		*resid = rq->resid_len;
 284	if (sense && rq->sense_len)
 285		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
 286	if (sshdr)
 287		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
 288	ret = rq->result;
 289 out:
 290	blk_put_request(req);
 291
 292	return ret;
 293}
 294EXPORT_SYMBOL(__scsi_execute);
 295
 296/**
 297 * scsi_init_cmd_errh - Initialize cmd fields related to error handling.
 298 * @cmd:  command that is ready to be queued.
 
 299 *
 300 * This function has the job of initializing a number of fields related to error
 301 * handling. Typically this will be called once for each command, as required.
 
 
 
 302 */
 303static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
 304{
 305	scsi_set_resid(cmd, 0);
 306	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
 307	if (cmd->cmd_len == 0)
 308		cmd->cmd_len = scsi_command_size(cmd->cmnd);
 309}
 310
 311/*
 312 * Wake up the error handler if necessary. Avoid as follows that the error
 313 * handler is not woken up if host in-flight requests number ==
 314 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
 315 * with an RCU read lock in this function to ensure that this function in
 316 * its entirety either finishes before scsi_eh_scmd_add() increases the
 317 * host_failed counter or that it notices the shost state change made by
 318 * scsi_eh_scmd_add().
 319 */
 320static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
 321{
 322	unsigned long flags;
 323
 324	rcu_read_lock();
 325	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
 326	if (unlikely(scsi_host_in_recovery(shost))) {
 327		spin_lock_irqsave(shost->host_lock, flags);
 328		if (shost->host_failed || shost->host_eh_scheduled)
 329			scsi_eh_wakeup(shost);
 330		spin_unlock_irqrestore(shost->host_lock, flags);
 331	}
 332	rcu_read_unlock();
 333}
 334
 335void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
 336{
 337	struct Scsi_Host *shost = sdev->host;
 338	struct scsi_target *starget = scsi_target(sdev);
 339
 340	scsi_dec_host_busy(shost, cmd);
 341
 342	if (starget->can_queue > 0)
 343		atomic_dec(&starget->target_busy);
 344
 345	atomic_dec(&sdev->device_busy);
 346}
 347
 348static void scsi_kick_queue(struct request_queue *q)
 349{
 350	blk_mq_run_hw_queues(q, false);
 351}
 352
 353/*
 354 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 355 * and call blk_run_queue for all the scsi_devices on the target -
 356 * including current_sdev first.
 357 *
 358 * Called with *no* scsi locks held.
 359 */
 360static void scsi_single_lun_run(struct scsi_device *current_sdev)
 361{
 362	struct Scsi_Host *shost = current_sdev->host;
 363	struct scsi_device *sdev, *tmp;
 364	struct scsi_target *starget = scsi_target(current_sdev);
 365	unsigned long flags;
 366
 367	spin_lock_irqsave(shost->host_lock, flags);
 368	starget->starget_sdev_user = NULL;
 369	spin_unlock_irqrestore(shost->host_lock, flags);
 370
 371	/*
 372	 * Call blk_run_queue for all LUNs on the target, starting with
 373	 * current_sdev. We race with others (to set starget_sdev_user),
 374	 * but in most cases, we will be first. Ideally, each LU on the
 375	 * target would get some limited time or requests on the target.
 376	 */
 377	scsi_kick_queue(current_sdev->request_queue);
 378
 379	spin_lock_irqsave(shost->host_lock, flags);
 380	if (starget->starget_sdev_user)
 381		goto out;
 382	list_for_each_entry_safe(sdev, tmp, &starget->devices,
 383			same_target_siblings) {
 384		if (sdev == current_sdev)
 385			continue;
 386		if (scsi_device_get(sdev))
 387			continue;
 388
 389		spin_unlock_irqrestore(shost->host_lock, flags);
 390		scsi_kick_queue(sdev->request_queue);
 391		spin_lock_irqsave(shost->host_lock, flags);
 392
 393		scsi_device_put(sdev);
 394	}
 395 out:
 396	spin_unlock_irqrestore(shost->host_lock, flags);
 397}
 398
 399static inline bool scsi_device_is_busy(struct scsi_device *sdev)
 400{
 401	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
 402		return true;
 403	if (atomic_read(&sdev->device_blocked) > 0)
 404		return true;
 405	return false;
 406}
 407
 408static inline bool scsi_target_is_busy(struct scsi_target *starget)
 409{
 410	if (starget->can_queue > 0) {
 411		if (atomic_read(&starget->target_busy) >= starget->can_queue)
 412			return true;
 413		if (atomic_read(&starget->target_blocked) > 0)
 414			return true;
 415	}
 416	return false;
 417}
 418
 419static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
 420{
 
 
 
 421	if (atomic_read(&shost->host_blocked) > 0)
 422		return true;
 423	if (shost->host_self_blocked)
 424		return true;
 425	return false;
 426}
 427
 428static void scsi_starved_list_run(struct Scsi_Host *shost)
 429{
 430	LIST_HEAD(starved_list);
 431	struct scsi_device *sdev;
 432	unsigned long flags;
 433
 434	spin_lock_irqsave(shost->host_lock, flags);
 435	list_splice_init(&shost->starved_list, &starved_list);
 436
 437	while (!list_empty(&starved_list)) {
 438		struct request_queue *slq;
 439
 440		/*
 441		 * As long as shost is accepting commands and we have
 442		 * starved queues, call blk_run_queue. scsi_request_fn
 443		 * drops the queue_lock and can add us back to the
 444		 * starved_list.
 445		 *
 446		 * host_lock protects the starved_list and starved_entry.
 447		 * scsi_request_fn must get the host_lock before checking
 448		 * or modifying starved_list or starved_entry.
 449		 */
 450		if (scsi_host_is_busy(shost))
 451			break;
 452
 453		sdev = list_entry(starved_list.next,
 454				  struct scsi_device, starved_entry);
 455		list_del_init(&sdev->starved_entry);
 456		if (scsi_target_is_busy(scsi_target(sdev))) {
 457			list_move_tail(&sdev->starved_entry,
 458				       &shost->starved_list);
 459			continue;
 460		}
 461
 462		/*
 463		 * Once we drop the host lock, a racing scsi_remove_device()
 464		 * call may remove the sdev from the starved list and destroy
 465		 * it and the queue.  Mitigate by taking a reference to the
 466		 * queue and never touching the sdev again after we drop the
 467		 * host lock.  Note: if __scsi_remove_device() invokes
 468		 * blk_cleanup_queue() before the queue is run from this
 469		 * function then blk_run_queue() will return immediately since
 470		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
 471		 */
 472		slq = sdev->request_queue;
 473		if (!blk_get_queue(slq))
 474			continue;
 475		spin_unlock_irqrestore(shost->host_lock, flags);
 476
 477		scsi_kick_queue(slq);
 478		blk_put_queue(slq);
 479
 480		spin_lock_irqsave(shost->host_lock, flags);
 481	}
 482	/* put any unprocessed entries back */
 483	list_splice(&starved_list, &shost->starved_list);
 484	spin_unlock_irqrestore(shost->host_lock, flags);
 485}
 486
 487/**
 488 * scsi_run_queue - Select a proper request queue to serve next.
 489 * @q:  last request's queue
 
 490 *
 491 * The previous command was completely finished, start a new one if possible.
 
 
 
 
 
 492 */
 493static void scsi_run_queue(struct request_queue *q)
 494{
 495	struct scsi_device *sdev = q->queuedata;
 496
 497	if (scsi_target(sdev)->single_lun)
 498		scsi_single_lun_run(sdev);
 499	if (!list_empty(&sdev->host->starved_list))
 500		scsi_starved_list_run(sdev->host);
 501
 502	blk_mq_run_hw_queues(q, false);
 503}
 504
 505void scsi_requeue_run_queue(struct work_struct *work)
 506{
 507	struct scsi_device *sdev;
 508	struct request_queue *q;
 509
 510	sdev = container_of(work, struct scsi_device, requeue_work);
 511	q = sdev->request_queue;
 512	scsi_run_queue(q);
 513}
 514
 515void scsi_run_host_queues(struct Scsi_Host *shost)
 516{
 517	struct scsi_device *sdev;
 518
 519	shost_for_each_device(sdev, shost)
 520		scsi_run_queue(sdev->request_queue);
 521}
 522
 523static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
 524{
 525	if (!blk_rq_is_passthrough(cmd->request)) {
 526		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
 527
 528		if (drv->uninit_command)
 529			drv->uninit_command(cmd);
 530	}
 531}
 532
 533static void scsi_free_sgtables(struct scsi_cmnd *cmd)
 534{
 535	if (cmd->sdb.table.nents)
 536		sg_free_table_chained(&cmd->sdb.table,
 537				SCSI_INLINE_SG_CNT);
 538	if (scsi_prot_sg_count(cmd))
 539		sg_free_table_chained(&cmd->prot_sdb->table,
 540				SCSI_INLINE_PROT_SG_CNT);
 541}
 542
 543static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
 544{
 545	scsi_free_sgtables(cmd);
 546	scsi_uninit_cmd(cmd);
 547}
 548
 549static void scsi_run_queue_async(struct scsi_device *sdev)
 550{
 551	if (scsi_target(sdev)->single_lun ||
 552	    !list_empty(&sdev->host->starved_list))
 553		kblockd_schedule_work(&sdev->requeue_work);
 554	else
 555		blk_mq_run_hw_queues(sdev->request_queue, true);
 556}
 557
 558/* Returns false when no more bytes to process, true if there are more */
 559static bool scsi_end_request(struct request *req, blk_status_t error,
 560		unsigned int bytes)
 561{
 562	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
 563	struct scsi_device *sdev = cmd->device;
 564	struct request_queue *q = sdev->request_queue;
 565
 566	if (blk_update_request(req, error, bytes))
 567		return true;
 568
 569	if (blk_queue_add_random(q))
 570		add_disk_randomness(req->rq_disk);
 571
 572	if (!blk_rq_is_scsi(req)) {
 573		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
 574		cmd->flags &= ~SCMD_INITIALIZED;
 575	}
 576
 577	/*
 578	 * Calling rcu_barrier() is not necessary here because the
 579	 * SCSI error handler guarantees that the function called by
 580	 * call_rcu() has been called before scsi_end_request() is
 581	 * called.
 582	 */
 583	destroy_rcu_head(&cmd->rcu);
 584
 585	/*
 586	 * In the MQ case the command gets freed by __blk_mq_end_request,
 587	 * so we have to do all cleanup that depends on it earlier.
 588	 *
 589	 * We also can't kick the queues from irq context, so we
 590	 * will have to defer it to a workqueue.
 591	 */
 592	scsi_mq_uninit_cmd(cmd);
 593
 594	/*
 595	 * queue is still alive, so grab the ref for preventing it
 596	 * from being cleaned up during running queue.
 597	 */
 598	percpu_ref_get(&q->q_usage_counter);
 599
 600	__blk_mq_end_request(req, error);
 601
 602	scsi_run_queue_async(sdev);
 
 
 
 
 603
 604	percpu_ref_put(&q->q_usage_counter);
 605	return false;
 606}
 607
 608/**
 609 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
 610 * @cmd:	SCSI command
 611 * @result:	scsi error code
 612 *
 613 * Translate a SCSI result code into a blk_status_t value. May reset the host
 614 * byte of @cmd->result.
 615 */
 616static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
 617{
 618	switch (host_byte(result)) {
 619	case DID_OK:
 620		/*
 621		 * Also check the other bytes than the status byte in result
 622		 * to handle the case when a SCSI LLD sets result to
 623		 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
 624		 */
 625		if (scsi_status_is_good(result) && (result & ~0xff) == 0)
 626			return BLK_STS_OK;
 627		return BLK_STS_IOERR;
 628	case DID_TRANSPORT_FAILFAST:
 629		return BLK_STS_TRANSPORT;
 630	case DID_TARGET_FAILURE:
 631		set_host_byte(cmd, DID_OK);
 632		return BLK_STS_TARGET;
 633	case DID_NEXUS_FAILURE:
 634		set_host_byte(cmd, DID_OK);
 635		return BLK_STS_NEXUS;
 636	case DID_ALLOC_FAILURE:
 637		set_host_byte(cmd, DID_OK);
 638		return BLK_STS_NOSPC;
 639	case DID_MEDIUM_ERROR:
 640		set_host_byte(cmd, DID_OK);
 641		return BLK_STS_MEDIUM;
 642	default:
 643		return BLK_STS_IOERR;
 644	}
 645}
 646
 647/* Helper for scsi_io_completion() when "reprep" action required. */
 648static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
 649				      struct request_queue *q)
 650{
 651	/* A new command will be prepared and issued. */
 652	scsi_mq_requeue_cmd(cmd);
 653}
 654
 655/* Helper for scsi_io_completion() when special action required. */
 656static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
 657{
 658	struct request_queue *q = cmd->device->request_queue;
 659	struct request *req = cmd->request;
 660	int level = 0;
 661	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
 662	      ACTION_DELAYED_RETRY} action;
 663	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
 664	struct scsi_sense_hdr sshdr;
 665	bool sense_valid;
 666	bool sense_current = true;      /* false implies "deferred sense" */
 667	blk_status_t blk_stat;
 668
 669	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 670	if (sense_valid)
 671		sense_current = !scsi_sense_is_deferred(&sshdr);
 672
 673	blk_stat = scsi_result_to_blk_status(cmd, result);
 674
 675	if (host_byte(result) == DID_RESET) {
 676		/* Third party bus reset or reset for error recovery
 677		 * reasons.  Just retry the command and see what
 678		 * happens.
 679		 */
 680		action = ACTION_RETRY;
 681	} else if (sense_valid && sense_current) {
 682		switch (sshdr.sense_key) {
 683		case UNIT_ATTENTION:
 684			if (cmd->device->removable) {
 685				/* Detected disc change.  Set a bit
 686				 * and quietly refuse further access.
 687				 */
 688				cmd->device->changed = 1;
 689				action = ACTION_FAIL;
 690			} else {
 691				/* Must have been a power glitch, or a
 692				 * bus reset.  Could not have been a
 693				 * media change, so we just retry the
 694				 * command and see what happens.
 695				 */
 696				action = ACTION_RETRY;
 697			}
 698			break;
 699		case ILLEGAL_REQUEST:
 700			/* If we had an ILLEGAL REQUEST returned, then
 701			 * we may have performed an unsupported
 702			 * command.  The only thing this should be
 703			 * would be a ten byte read where only a six
 704			 * byte read was supported.  Also, on a system
 705			 * where READ CAPACITY failed, we may have
 706			 * read past the end of the disk.
 707			 */
 708			if ((cmd->device->use_10_for_rw &&
 709			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 710			    (cmd->cmnd[0] == READ_10 ||
 711			     cmd->cmnd[0] == WRITE_10)) {
 712				/* This will issue a new 6-byte command. */
 713				cmd->device->use_10_for_rw = 0;
 714				action = ACTION_REPREP;
 715			} else if (sshdr.asc == 0x10) /* DIX */ {
 716				action = ACTION_FAIL;
 717				blk_stat = BLK_STS_PROTECTION;
 718			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 719			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
 720				action = ACTION_FAIL;
 721				blk_stat = BLK_STS_TARGET;
 722			} else
 723				action = ACTION_FAIL;
 724			break;
 725		case ABORTED_COMMAND:
 726			action = ACTION_FAIL;
 727			if (sshdr.asc == 0x10) /* DIF */
 728				blk_stat = BLK_STS_PROTECTION;
 729			break;
 730		case NOT_READY:
 731			/* If the device is in the process of becoming
 732			 * ready, or has a temporary blockage, retry.
 733			 */
 734			if (sshdr.asc == 0x04) {
 735				switch (sshdr.ascq) {
 736				case 0x01: /* becoming ready */
 737				case 0x04: /* format in progress */
 738				case 0x05: /* rebuild in progress */
 739				case 0x06: /* recalculation in progress */
 740				case 0x07: /* operation in progress */
 741				case 0x08: /* Long write in progress */
 742				case 0x09: /* self test in progress */
 743				case 0x14: /* space allocation in progress */
 744				case 0x1a: /* start stop unit in progress */
 745				case 0x1b: /* sanitize in progress */
 746				case 0x1d: /* configuration in progress */
 747				case 0x24: /* depopulation in progress */
 748					action = ACTION_DELAYED_RETRY;
 749					break;
 750				default:
 751					action = ACTION_FAIL;
 752					break;
 753				}
 754			} else
 755				action = ACTION_FAIL;
 756			break;
 757		case VOLUME_OVERFLOW:
 758			/* See SSC3rXX or current. */
 759			action = ACTION_FAIL;
 760			break;
 761		default:
 762			action = ACTION_FAIL;
 763			break;
 764		}
 765	} else
 766		action = ACTION_FAIL;
 767
 768	if (action != ACTION_FAIL &&
 769	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
 770		action = ACTION_FAIL;
 771
 772	switch (action) {
 773	case ACTION_FAIL:
 774		/* Give up and fail the remainder of the request */
 775		if (!(req->rq_flags & RQF_QUIET)) {
 776			static DEFINE_RATELIMIT_STATE(_rs,
 777					DEFAULT_RATELIMIT_INTERVAL,
 778					DEFAULT_RATELIMIT_BURST);
 779
 780			if (unlikely(scsi_logging_level))
 781				level =
 782				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
 783						    SCSI_LOG_MLCOMPLETE_BITS);
 784
 785			/*
 786			 * if logging is enabled the failure will be printed
 787			 * in scsi_log_completion(), so avoid duplicate messages
 788			 */
 789			if (!level && __ratelimit(&_rs)) {
 790				scsi_print_result(cmd, NULL, FAILED);
 791				if (driver_byte(result) == DRIVER_SENSE)
 792					scsi_print_sense(cmd);
 793				scsi_print_command(cmd);
 794			}
 795		}
 796		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
 797			return;
 798		fallthrough;
 799	case ACTION_REPREP:
 800		scsi_io_completion_reprep(cmd, q);
 801		break;
 802	case ACTION_RETRY:
 803		/* Retry the same command immediately */
 804		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
 805		break;
 806	case ACTION_DELAYED_RETRY:
 807		/* Retry the same command after a delay */
 808		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
 809		break;
 810	}
 811}
 812
 813/*
 814 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
 815 * new result that may suppress further error checking. Also modifies
 816 * *blk_statp in some cases.
 817 */
 818static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
 819					blk_status_t *blk_statp)
 820{
 821	bool sense_valid;
 822	bool sense_current = true;	/* false implies "deferred sense" */
 823	struct request *req = cmd->request;
 824	struct scsi_sense_hdr sshdr;
 825
 826	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 827	if (sense_valid)
 828		sense_current = !scsi_sense_is_deferred(&sshdr);
 829
 830	if (blk_rq_is_passthrough(req)) {
 831		if (sense_valid) {
 832			/*
 833			 * SG_IO wants current and deferred errors
 834			 */
 835			scsi_req(req)->sense_len =
 836				min(8 + cmd->sense_buffer[7],
 837				    SCSI_SENSE_BUFFERSIZE);
 838		}
 839		if (sense_current)
 840			*blk_statp = scsi_result_to_blk_status(cmd, result);
 841	} else if (blk_rq_bytes(req) == 0 && sense_current) {
 842		/*
 843		 * Flush commands do not transfers any data, and thus cannot use
 844		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
 845		 * This sets *blk_statp explicitly for the problem case.
 846		 */
 847		*blk_statp = scsi_result_to_blk_status(cmd, result);
 848	}
 849	/*
 850	 * Recovered errors need reporting, but they're always treated as
 851	 * success, so fiddle the result code here.  For passthrough requests
 852	 * we already took a copy of the original into sreq->result which
 853	 * is what gets returned to the user
 854	 */
 855	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
 856		bool do_print = true;
 857		/*
 858		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
 859		 * skip print since caller wants ATA registers. Only occurs
 860		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
 861		 */
 862		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
 863			do_print = false;
 864		else if (req->rq_flags & RQF_QUIET)
 865			do_print = false;
 866		if (do_print)
 867			scsi_print_sense(cmd);
 868		result = 0;
 869		/* for passthrough, *blk_statp may be set */
 870		*blk_statp = BLK_STS_OK;
 871	}
 872	/*
 873	 * Another corner case: the SCSI status byte is non-zero but 'good'.
 874	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
 875	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
 876	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
 877	 * intermediate statuses (both obsolete in SAM-4) as good.
 878	 */
 879	if (status_byte(result) && scsi_status_is_good(result)) {
 880		result = 0;
 881		*blk_statp = BLK_STS_OK;
 882	}
 883	return result;
 884}
 885
 886/**
 887 * scsi_io_completion - Completion processing for SCSI commands.
 888 * @cmd:	command that is finished.
 889 * @good_bytes:	number of processed bytes.
 890 *
 891 * We will finish off the specified number of sectors. If we are done, the
 892 * command block will be released and the queue function will be goosed. If we
 893 * are not done then we have to figure out what to do next:
 894 *
 895 *   a) We can call scsi_io_completion_reprep().  The request will be
 896 *	unprepared and put back on the queue.  Then a new command will
 897 *	be created for it.  This should be used if we made forward
 898 *	progress, or if we want to switch from READ(10) to READ(6) for
 899 *	example.
 900 *
 901 *   b) We can call scsi_io_completion_action().  The request will be
 902 *	put back on the queue and retried using the same command as
 903 *	before, possibly after a delay.
 904 *
 905 *   c) We can call scsi_end_request() with blk_stat other than
 906 *	BLK_STS_OK, to fail the remainder of the request.
 
 
 
 
 
 
 
 
 
 
 907 */
 908void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
 909{
 910	int result = cmd->result;
 911	struct request_queue *q = cmd->device->request_queue;
 912	struct request *req = cmd->request;
 913	blk_status_t blk_stat = BLK_STS_OK;
 914
 915	if (unlikely(result))	/* a nz result may or may not be an error */
 916		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
 917
 918	if (unlikely(blk_rq_is_passthrough(req))) {
 919		/*
 920		 * scsi_result_to_blk_status may have reset the host_byte
 921		 */
 922		scsi_req(req)->result = cmd->result;
 923	}
 924
 925	/*
 926	 * Next deal with any sectors which we were able to correctly
 927	 * handle.
 928	 */
 929	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
 930		"%u sectors total, %d bytes done.\n",
 931		blk_rq_sectors(req), good_bytes));
 932
 933	/*
 934	 * Failed, zero length commands always need to drop down
 
 935	 * to retry code. Fast path should return in this block.
 936	 */
 937	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
 938		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
 939			return; /* no bytes remaining */
 940	}
 941
 942	/* Kill remainder if no retries. */
 943	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
 944		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
 945			WARN_ONCE(true,
 946			    "Bytes remaining after failed, no-retry command");
 947		return;
 948	}
 949
 950	/*
 951	 * If there had been no error, but we have leftover bytes in the
 952	 * requeues just queue the command up again.
 953	 */
 954	if (likely(result == 0))
 955		scsi_io_completion_reprep(cmd, q);
 956	else
 957		scsi_io_completion_action(cmd, result);
 958}
 959
 960static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
 961		struct request *rq)
 962{
 963	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
 964	       !op_is_write(req_op(rq)) &&
 965	       sdev->host->hostt->dma_need_drain(rq);
 966}
 967
 968/**
 969 * scsi_init_io - SCSI I/O initialization function.
 970 * @cmd:  command descriptor we wish to initialize
 971 *
 972 * Returns:
 973 * * BLK_STS_OK       - on success
 974 * * BLK_STS_RESOURCE - if the failure is retryable
 975 * * BLK_STS_IOERR    - if the failure is fatal
 976 */
 977blk_status_t scsi_init_io(struct scsi_cmnd *cmd)
 978{
 979	struct scsi_device *sdev = cmd->device;
 980	struct request *rq = cmd->request;
 981	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
 982	struct scatterlist *last_sg = NULL;
 983	blk_status_t ret;
 984	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
 985	int count;
 986
 987	if (WARN_ON_ONCE(!nr_segs))
 988		return BLK_STS_IOERR;
 989
 990	/*
 991	 * Make sure there is space for the drain.  The driver must adjust
 992	 * max_hw_segments to be prepared for this.
 993	 */
 994	if (need_drain)
 995		nr_segs++;
 996
 997	/*
 998	 * If sg table allocation fails, requeue request later.
 999	 */
1000	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1001			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
 
1002		return BLK_STS_RESOURCE;
1003
1004	/*
1005	 * Next, walk the list, and fill in the addresses and sizes of
1006	 * each segment.
1007	 */
1008	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1009
1010	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1011		unsigned int pad_len =
1012			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1013
1014		last_sg->length += pad_len;
1015		cmd->extra_len += pad_len;
1016	}
1017
1018	if (need_drain) {
1019		sg_unmark_end(last_sg);
1020		last_sg = sg_next(last_sg);
1021		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1022		sg_mark_end(last_sg);
 
 
 
 
 
 
 
 
 
 
1023
1024		cmd->extra_len += sdev->dma_drain_len;
1025		count++;
1026	}
1027
1028	BUG_ON(count > cmd->sdb.table.nents);
1029	cmd->sdb.table.nents = count;
1030	cmd->sdb.length = blk_rq_payload_bytes(rq);
1031
1032	if (blk_integrity_rq(rq)) {
1033		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1034		int ivecs;
1035
1036		if (WARN_ON_ONCE(!prot_sdb)) {
1037			/*
1038			 * This can happen if someone (e.g. multipath)
1039			 * queues a command to a device on an adapter
1040			 * that does not support DIX.
1041			 */
1042			ret = BLK_STS_IOERR;
1043			goto out_free_sgtables;
1044		}
1045
1046		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1047
1048		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1049				prot_sdb->table.sgl,
1050				SCSI_INLINE_PROT_SG_CNT)) {
1051			ret = BLK_STS_RESOURCE;
1052			goto out_free_sgtables;
1053		}
1054
1055		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1056						prot_sdb->table.sgl);
1057		BUG_ON(count > ivecs);
1058		BUG_ON(count > queue_max_integrity_segments(rq->q));
1059
1060		cmd->prot_sdb = prot_sdb;
1061		cmd->prot_sdb->table.nents = count;
1062	}
1063
1064	return BLK_STS_OK;
1065out_free_sgtables:
1066	scsi_free_sgtables(cmd);
1067	return ret;
1068}
1069EXPORT_SYMBOL(scsi_init_io);
1070
1071/**
1072 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1073 * @rq: Request associated with the SCSI command to be initialized.
1074 *
1075 * This function initializes the members of struct scsi_cmnd that must be
1076 * initialized before request processing starts and that won't be
1077 * reinitialized if a SCSI command is requeued.
1078 *
1079 * Called from inside blk_get_request() for pass-through requests and from
1080 * inside scsi_init_command() for filesystem requests.
1081 */
1082static void scsi_initialize_rq(struct request *rq)
1083{
1084	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1085
1086	scsi_req_init(&cmd->req);
1087	init_rcu_head(&cmd->rcu);
1088	cmd->jiffies_at_alloc = jiffies;
1089	cmd->retries = 0;
1090}
1091
1092/*
1093 * Only called when the request isn't completed by SCSI, and not freed by
1094 * SCSI
1095 */
1096static void scsi_cleanup_rq(struct request *rq)
1097{
1098	if (rq->rq_flags & RQF_DONTPREP) {
1099		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1100		rq->rq_flags &= ~RQF_DONTPREP;
1101	}
1102}
1103
1104/* Called before a request is prepared. See also scsi_mq_prep_fn(). */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1105void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1106{
1107	void *buf = cmd->sense_buffer;
1108	void *prot = cmd->prot_sdb;
1109	struct request *rq = blk_mq_rq_from_pdu(cmd);
1110	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1111	unsigned long jiffies_at_alloc;
1112	int retries, to_clear;
1113	bool in_flight;
1114
1115	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1116		flags |= SCMD_INITIALIZED;
1117		scsi_initialize_rq(rq);
1118	}
1119
1120	jiffies_at_alloc = cmd->jiffies_at_alloc;
1121	retries = cmd->retries;
1122	in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1123	/*
1124	 * Zero out the cmd, except for the embedded scsi_request. Only clear
1125	 * the driver-private command data if the LLD does not supply a
1126	 * function to initialize that data.
1127	 */
1128	to_clear = sizeof(*cmd) - sizeof(cmd->req);
1129	if (!dev->host->hostt->init_cmd_priv)
1130		to_clear += dev->host->hostt->cmd_size;
1131	memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1132
1133	cmd->device = dev;
1134	cmd->sense_buffer = buf;
1135	cmd->prot_sdb = prot;
1136	cmd->flags = flags;
1137	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1138	cmd->jiffies_at_alloc = jiffies_at_alloc;
1139	cmd->retries = retries;
1140	if (in_flight)
1141		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1142
 
1143}
1144
1145static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1146		struct request *req)
1147{
1148	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1149
1150	/*
1151	 * Passthrough requests may transfer data, in which case they must
1152	 * a bio attached to them.  Or they might contain a SCSI command
1153	 * that does not transfer data, in which case they may optionally
1154	 * submit a request without an attached bio.
1155	 */
1156	if (req->bio) {
1157		blk_status_t ret = scsi_init_io(cmd);
1158		if (unlikely(ret != BLK_STS_OK))
1159			return ret;
1160	} else {
1161		BUG_ON(blk_rq_bytes(req));
1162
1163		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1164	}
1165
1166	cmd->cmd_len = scsi_req(req)->cmd_len;
1167	cmd->cmnd = scsi_req(req)->cmd;
1168	cmd->transfersize = blk_rq_bytes(req);
1169	cmd->allowed = scsi_req(req)->retries;
1170	return BLK_STS_OK;
1171}
1172
1173/*
1174 * Setup a normal block command.  These are simple request from filesystems
1175 * that still need to be translated to SCSI CDBs from the ULD.
1176 */
1177static blk_status_t scsi_setup_fs_cmnd(struct scsi_device *sdev,
1178		struct request *req)
1179{
1180	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1181
1182	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1183		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1184		if (ret != BLK_STS_OK)
1185			return ret;
1186	}
1187
1188	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1189	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1190	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1191}
1192
1193static blk_status_t scsi_setup_cmnd(struct scsi_device *sdev,
1194		struct request *req)
1195{
1196	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1197	blk_status_t ret;
1198
1199	if (!blk_rq_bytes(req))
1200		cmd->sc_data_direction = DMA_NONE;
1201	else if (rq_data_dir(req) == WRITE)
1202		cmd->sc_data_direction = DMA_TO_DEVICE;
1203	else
1204		cmd->sc_data_direction = DMA_FROM_DEVICE;
1205
1206	if (blk_rq_is_scsi(req))
1207		ret = scsi_setup_scsi_cmnd(sdev, req);
1208	else
1209		ret = scsi_setup_fs_cmnd(sdev, req);
1210
1211	if (ret != BLK_STS_OK)
1212		scsi_free_sgtables(cmd);
1213
1214	return ret;
1215}
1216
1217static blk_status_t
1218scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1219{
1220	switch (sdev->sdev_state) {
1221	case SDEV_OFFLINE:
1222	case SDEV_TRANSPORT_OFFLINE:
1223		/*
1224		 * If the device is offline we refuse to process any
1225		 * commands.  The device must be brought online
1226		 * before trying any recovery commands.
1227		 */
1228		if (!sdev->offline_already) {
1229			sdev->offline_already = true;
1230			sdev_printk(KERN_ERR, sdev,
1231				    "rejecting I/O to offline device\n");
1232		}
1233		return BLK_STS_IOERR;
1234	case SDEV_DEL:
1235		/*
1236		 * If the device is fully deleted, we refuse to
1237		 * process any commands as well.
1238		 */
1239		sdev_printk(KERN_ERR, sdev,
1240			    "rejecting I/O to dead device\n");
1241		return BLK_STS_IOERR;
1242	case SDEV_BLOCK:
1243	case SDEV_CREATED_BLOCK:
1244		return BLK_STS_RESOURCE;
1245	case SDEV_QUIESCE:
1246		/*
1247		 * If the devices is blocked we defer normal commands.
1248		 */
1249		if (req && !(req->rq_flags & RQF_PREEMPT))
1250			return BLK_STS_RESOURCE;
1251		return BLK_STS_OK;
1252	default:
1253		/*
1254		 * For any other not fully online state we only allow
1255		 * special commands.  In particular any user initiated
1256		 * command is not allowed.
1257		 */
1258		if (req && !(req->rq_flags & RQF_PREEMPT))
1259			return BLK_STS_IOERR;
1260		return BLK_STS_OK;
1261	}
1262}
1263
1264/*
1265 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1266 * return 0.
1267 *
1268 * Called with the queue_lock held.
1269 */
1270static inline int scsi_dev_queue_ready(struct request_queue *q,
1271				  struct scsi_device *sdev)
1272{
1273	unsigned int busy;
1274
1275	busy = atomic_inc_return(&sdev->device_busy) - 1;
1276	if (atomic_read(&sdev->device_blocked)) {
1277		if (busy)
1278			goto out_dec;
1279
1280		/*
1281		 * unblock after device_blocked iterates to zero
1282		 */
1283		if (atomic_dec_return(&sdev->device_blocked) > 0)
1284			goto out_dec;
1285		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1286				   "unblocking device at zero depth\n"));
1287	}
1288
1289	if (busy >= sdev->queue_depth)
1290		goto out_dec;
1291
1292	return 1;
1293out_dec:
1294	atomic_dec(&sdev->device_busy);
1295	return 0;
1296}
1297
1298/*
1299 * scsi_target_queue_ready: checks if there we can send commands to target
1300 * @sdev: scsi device on starget to check.
1301 */
1302static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1303					   struct scsi_device *sdev)
1304{
1305	struct scsi_target *starget = scsi_target(sdev);
1306	unsigned int busy;
1307
1308	if (starget->single_lun) {
1309		spin_lock_irq(shost->host_lock);
1310		if (starget->starget_sdev_user &&
1311		    starget->starget_sdev_user != sdev) {
1312			spin_unlock_irq(shost->host_lock);
1313			return 0;
1314		}
1315		starget->starget_sdev_user = sdev;
1316		spin_unlock_irq(shost->host_lock);
1317	}
1318
1319	if (starget->can_queue <= 0)
1320		return 1;
1321
1322	busy = atomic_inc_return(&starget->target_busy) - 1;
1323	if (atomic_read(&starget->target_blocked) > 0) {
1324		if (busy)
1325			goto starved;
1326
1327		/*
1328		 * unblock after target_blocked iterates to zero
1329		 */
1330		if (atomic_dec_return(&starget->target_blocked) > 0)
1331			goto out_dec;
1332
1333		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1334				 "unblocking target at zero depth\n"));
1335	}
1336
1337	if (busy >= starget->can_queue)
1338		goto starved;
1339
1340	return 1;
1341
1342starved:
1343	spin_lock_irq(shost->host_lock);
1344	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1345	spin_unlock_irq(shost->host_lock);
1346out_dec:
1347	if (starget->can_queue > 0)
1348		atomic_dec(&starget->target_busy);
1349	return 0;
1350}
1351
1352/*
1353 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1354 * return 0. We must end up running the queue again whenever 0 is
1355 * returned, else IO can hang.
1356 */
1357static inline int scsi_host_queue_ready(struct request_queue *q,
1358				   struct Scsi_Host *shost,
1359				   struct scsi_device *sdev,
1360				   struct scsi_cmnd *cmd)
1361{
 
 
1362	if (scsi_host_in_recovery(shost))
1363		return 0;
1364
 
1365	if (atomic_read(&shost->host_blocked) > 0) {
1366		if (scsi_host_busy(shost) > 0)
1367			goto starved;
1368
1369		/*
1370		 * unblock after host_blocked iterates to zero
1371		 */
1372		if (atomic_dec_return(&shost->host_blocked) > 0)
1373			goto out_dec;
1374
1375		SCSI_LOG_MLQUEUE(3,
1376			shost_printk(KERN_INFO, shost,
1377				     "unblocking host at zero depth\n"));
1378	}
1379
 
 
1380	if (shost->host_self_blocked)
1381		goto starved;
1382
1383	/* We're OK to process the command, so we can't be starved */
1384	if (!list_empty(&sdev->starved_entry)) {
1385		spin_lock_irq(shost->host_lock);
1386		if (!list_empty(&sdev->starved_entry))
1387			list_del_init(&sdev->starved_entry);
1388		spin_unlock_irq(shost->host_lock);
1389	}
1390
1391	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1392
1393	return 1;
1394
1395starved:
1396	spin_lock_irq(shost->host_lock);
1397	if (list_empty(&sdev->starved_entry))
1398		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1399	spin_unlock_irq(shost->host_lock);
1400out_dec:
1401	scsi_dec_host_busy(shost, cmd);
1402	return 0;
1403}
1404
1405/*
1406 * Busy state exporting function for request stacking drivers.
1407 *
1408 * For efficiency, no lock is taken to check the busy state of
1409 * shost/starget/sdev, since the returned value is not guaranteed and
1410 * may be changed after request stacking drivers call the function,
1411 * regardless of taking lock or not.
1412 *
1413 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1414 * needs to return 'not busy'. Otherwise, request stacking drivers
1415 * may hold requests forever.
1416 */
1417static bool scsi_mq_lld_busy(struct request_queue *q)
1418{
1419	struct scsi_device *sdev = q->queuedata;
1420	struct Scsi_Host *shost;
1421
1422	if (blk_queue_dying(q))
1423		return false;
1424
1425	shost = sdev->host;
1426
1427	/*
1428	 * Ignore host/starget busy state.
1429	 * Since block layer does not have a concept of fairness across
1430	 * multiple queues, congestion of host/starget needs to be handled
1431	 * in SCSI layer.
1432	 */
1433	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1434		return true;
1435
1436	return false;
1437}
1438
1439static void scsi_softirq_done(struct request *rq)
1440{
1441	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1442	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1443	int disposition;
1444
1445	INIT_LIST_HEAD(&cmd->eh_entry);
1446
1447	atomic_inc(&cmd->device->iodone_cnt);
1448	if (cmd->result)
1449		atomic_inc(&cmd->device->ioerr_cnt);
1450
1451	disposition = scsi_decide_disposition(cmd);
1452	if (disposition != SUCCESS &&
1453	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1454		scmd_printk(KERN_ERR, cmd,
1455			    "timing out command, waited %lus\n",
1456			    wait_for/HZ);
1457		disposition = SUCCESS;
1458	}
1459
1460	scsi_log_completion(cmd, disposition);
1461
1462	switch (disposition) {
1463	case SUCCESS:
1464		scsi_finish_command(cmd);
1465		break;
1466	case NEEDS_RETRY:
1467		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1468		break;
1469	case ADD_TO_MLQUEUE:
1470		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1471		break;
1472	default:
1473		scsi_eh_scmd_add(cmd);
1474		break;
1475	}
1476}
1477
1478/**
1479 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1480 * @cmd: command block we are dispatching.
1481 *
1482 * Return: nonzero return request was rejected and device's queue needs to be
1483 * plugged.
1484 */
1485static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1486{
1487	struct Scsi_Host *host = cmd->device->host;
1488	int rtn = 0;
1489
1490	atomic_inc(&cmd->device->iorequest_cnt);
1491
1492	/* check if the device is still usable */
1493	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1494		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1495		 * returns an immediate error upwards, and signals
1496		 * that the device is no longer present */
1497		cmd->result = DID_NO_CONNECT << 16;
1498		goto done;
1499	}
1500
1501	/* Check to see if the scsi lld made this device blocked. */
1502	if (unlikely(scsi_device_blocked(cmd->device))) {
1503		/*
1504		 * in blocked state, the command is just put back on
1505		 * the device queue.  The suspend state has already
1506		 * blocked the queue so future requests should not
1507		 * occur until the device transitions out of the
1508		 * suspend state.
1509		 */
1510		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1511			"queuecommand : device blocked\n"));
1512		return SCSI_MLQUEUE_DEVICE_BUSY;
1513	}
1514
1515	/* Store the LUN value in cmnd, if needed. */
1516	if (cmd->device->lun_in_cdb)
1517		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1518			       (cmd->device->lun << 5 & 0xe0);
1519
1520	scsi_log_send(cmd);
1521
1522	/*
1523	 * Before we queue this command, check if the command
1524	 * length exceeds what the host adapter can handle.
1525	 */
1526	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1527		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1528			       "queuecommand : command too long. "
1529			       "cdb_size=%d host->max_cmd_len=%d\n",
1530			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1531		cmd->result = (DID_ABORT << 16);
1532		goto done;
1533	}
1534
1535	if (unlikely(host->shost_state == SHOST_DEL)) {
1536		cmd->result = (DID_NO_CONNECT << 16);
1537		goto done;
1538
1539	}
1540
1541	trace_scsi_dispatch_cmd_start(cmd);
1542	rtn = host->hostt->queuecommand(host, cmd);
1543	if (rtn) {
1544		trace_scsi_dispatch_cmd_error(cmd, rtn);
1545		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1546		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1547			rtn = SCSI_MLQUEUE_HOST_BUSY;
1548
1549		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1550			"queuecommand : request rejected\n"));
1551	}
1552
1553	return rtn;
1554 done:
1555	cmd->scsi_done(cmd);
1556	return 0;
1557}
1558
1559/* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1560static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1561{
1562	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1563		sizeof(struct scatterlist);
1564}
1565
1566static blk_status_t scsi_mq_prep_fn(struct request *req)
1567{
1568	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1569	struct scsi_device *sdev = req->q->queuedata;
1570	struct Scsi_Host *shost = sdev->host;
1571	struct scatterlist *sg;
1572
1573	scsi_init_command(sdev, cmd);
1574
1575	cmd->request = req;
1576	cmd->tag = req->tag;
1577	cmd->prot_op = SCSI_PROT_NORMAL;
1578
1579	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1580	cmd->sdb.table.sgl = sg;
1581
1582	if (scsi_host_get_prot(shost)) {
1583		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1584
1585		cmd->prot_sdb->table.sgl =
1586			(struct scatterlist *)(cmd->prot_sdb + 1);
1587	}
1588
1589	blk_mq_start_request(req);
1590
1591	return scsi_setup_cmnd(sdev, req);
1592}
1593
1594static void scsi_mq_done(struct scsi_cmnd *cmd)
1595{
1596	if (unlikely(blk_should_fake_timeout(cmd->request->q)))
1597		return;
1598	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1599		return;
1600	trace_scsi_dispatch_cmd_done(cmd);
1601	blk_mq_complete_request(cmd->request);
 
 
 
 
 
 
 
 
1602}
1603
1604static void scsi_mq_put_budget(struct request_queue *q)
1605{
 
1606	struct scsi_device *sdev = q->queuedata;
1607
1608	atomic_dec(&sdev->device_busy);
1609}
1610
1611static bool scsi_mq_get_budget(struct request_queue *q)
1612{
 
1613	struct scsi_device *sdev = q->queuedata;
1614
1615	return scsi_dev_queue_ready(q, sdev);
 
 
 
 
 
1616}
1617
1618static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1619			 const struct blk_mq_queue_data *bd)
1620{
1621	struct request *req = bd->rq;
1622	struct request_queue *q = req->q;
1623	struct scsi_device *sdev = q->queuedata;
1624	struct Scsi_Host *shost = sdev->host;
1625	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1626	blk_status_t ret;
1627	int reason;
1628
1629	/*
1630	 * If the device is not in running state we will reject some or all
1631	 * commands.
1632	 */
1633	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1634		ret = scsi_prep_state_check(sdev, req);
1635		if (ret != BLK_STS_OK)
1636			goto out_put_budget;
1637	}
1638
1639	ret = BLK_STS_RESOURCE;
1640	if (!scsi_target_queue_ready(shost, sdev))
1641		goto out_put_budget;
1642	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1643		goto out_dec_target_busy;
1644
1645	if (!(req->rq_flags & RQF_DONTPREP)) {
1646		ret = scsi_mq_prep_fn(req);
1647		if (ret != BLK_STS_OK)
1648			goto out_dec_host_busy;
1649		req->rq_flags |= RQF_DONTPREP;
1650	} else {
1651		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1652		blk_mq_start_request(req);
1653	}
1654
1655	cmd->flags &= SCMD_PRESERVED_FLAGS;
1656	if (sdev->simple_tags)
1657		cmd->flags |= SCMD_TAGGED;
1658	if (bd->last)
1659		cmd->flags |= SCMD_LAST;
1660
1661	scsi_init_cmd_errh(cmd);
1662	cmd->scsi_done = scsi_mq_done;
1663
1664	reason = scsi_dispatch_cmd(cmd);
1665	if (reason) {
1666		scsi_set_blocked(cmd, reason);
1667		ret = BLK_STS_RESOURCE;
1668		goto out_dec_host_busy;
1669	}
1670
1671	return BLK_STS_OK;
1672
1673out_dec_host_busy:
1674	scsi_dec_host_busy(shost, cmd);
1675out_dec_target_busy:
1676	if (scsi_target(sdev)->can_queue > 0)
1677		atomic_dec(&scsi_target(sdev)->target_busy);
1678out_put_budget:
1679	scsi_mq_put_budget(q);
1680	switch (ret) {
1681	case BLK_STS_OK:
1682		break;
1683	case BLK_STS_RESOURCE:
1684	case BLK_STS_ZONE_RESOURCE:
1685		if (atomic_read(&sdev->device_busy) ||
1686		    scsi_device_blocked(sdev))
1687			ret = BLK_STS_DEV_RESOURCE;
1688		break;
1689	default:
1690		if (unlikely(!scsi_device_online(sdev)))
1691			scsi_req(req)->result = DID_NO_CONNECT << 16;
1692		else
1693			scsi_req(req)->result = DID_ERROR << 16;
1694		/*
1695		 * Make sure to release all allocated resources when
1696		 * we hit an error, as we will never see this command
1697		 * again.
1698		 */
1699		if (req->rq_flags & RQF_DONTPREP)
1700			scsi_mq_uninit_cmd(cmd);
1701		scsi_run_queue_async(sdev);
1702		break;
1703	}
1704	return ret;
1705}
1706
1707static enum blk_eh_timer_return scsi_timeout(struct request *req,
1708		bool reserved)
1709{
1710	if (reserved)
1711		return BLK_EH_RESET_TIMER;
1712	return scsi_times_out(req);
1713}
1714
1715static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1716				unsigned int hctx_idx, unsigned int numa_node)
1717{
1718	struct Scsi_Host *shost = set->driver_data;
1719	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
1720	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1721	struct scatterlist *sg;
1722	int ret = 0;
1723
1724	if (unchecked_isa_dma)
1725		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
1726	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
1727						    GFP_KERNEL, numa_node);
1728	if (!cmd->sense_buffer)
1729		return -ENOMEM;
1730	cmd->req.sense = cmd->sense_buffer;
1731
1732	if (scsi_host_get_prot(shost)) {
1733		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1734			shost->hostt->cmd_size;
1735		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1736	}
1737
1738	if (shost->hostt->init_cmd_priv) {
1739		ret = shost->hostt->init_cmd_priv(shost, cmd);
1740		if (ret < 0)
1741			scsi_free_sense_buffer(unchecked_isa_dma,
1742					       cmd->sense_buffer);
1743	}
1744
1745	return ret;
1746}
1747
1748static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1749				 unsigned int hctx_idx)
1750{
1751	struct Scsi_Host *shost = set->driver_data;
1752	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1753
1754	if (shost->hostt->exit_cmd_priv)
1755		shost->hostt->exit_cmd_priv(shost, cmd);
1756	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
1757			       cmd->sense_buffer);
1758}
1759
1760static int scsi_map_queues(struct blk_mq_tag_set *set)
1761{
1762	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1763
1764	if (shost->hostt->map_queues)
1765		return shost->hostt->map_queues(shost);
1766	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1767}
1768
1769void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1770{
1771	struct device *dev = shost->dma_dev;
1772
1773	/*
1774	 * this limit is imposed by hardware restrictions
1775	 */
1776	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1777					SG_MAX_SEGMENTS));
1778
1779	if (scsi_host_prot_dma(shost)) {
1780		shost->sg_prot_tablesize =
1781			min_not_zero(shost->sg_prot_tablesize,
1782				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1783		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1784		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1785	}
1786
1787	if (dev->dma_mask) {
1788		shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1789				dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1790	}
1791	blk_queue_max_hw_sectors(q, shost->max_sectors);
1792	if (shost->unchecked_isa_dma)
1793		blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
1794	blk_queue_segment_boundary(q, shost->dma_boundary);
1795	dma_set_seg_boundary(dev, shost->dma_boundary);
1796
1797	blk_queue_max_segment_size(q, shost->max_segment_size);
1798	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1799	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1800
1801	/*
1802	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1803	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1804	 * which is set by the platform.
1805	 *
1806	 * Devices that require a bigger alignment can increase it later.
1807	 */
1808	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1809}
1810EXPORT_SYMBOL_GPL(__scsi_init_queue);
1811
1812static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1813	.get_budget	= scsi_mq_get_budget,
1814	.put_budget	= scsi_mq_put_budget,
1815	.queue_rq	= scsi_queue_rq,
1816	.complete	= scsi_softirq_done,
1817	.timeout	= scsi_timeout,
1818#ifdef CONFIG_BLK_DEBUG_FS
1819	.show_rq	= scsi_show_rq,
1820#endif
1821	.init_request	= scsi_mq_init_request,
1822	.exit_request	= scsi_mq_exit_request,
1823	.initialize_rq_fn = scsi_initialize_rq,
1824	.cleanup_rq	= scsi_cleanup_rq,
1825	.busy		= scsi_mq_lld_busy,
1826	.map_queues	= scsi_map_queues,
1827};
1828
1829
1830static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1831{
1832	struct request_queue *q = hctx->queue;
1833	struct scsi_device *sdev = q->queuedata;
1834	struct Scsi_Host *shost = sdev->host;
1835
1836	shost->hostt->commit_rqs(shost, hctx->queue_num);
1837}
1838
1839static const struct blk_mq_ops scsi_mq_ops = {
1840	.get_budget	= scsi_mq_get_budget,
1841	.put_budget	= scsi_mq_put_budget,
1842	.queue_rq	= scsi_queue_rq,
1843	.commit_rqs	= scsi_commit_rqs,
1844	.complete	= scsi_softirq_done,
1845	.timeout	= scsi_timeout,
1846#ifdef CONFIG_BLK_DEBUG_FS
1847	.show_rq	= scsi_show_rq,
1848#endif
1849	.init_request	= scsi_mq_init_request,
1850	.exit_request	= scsi_mq_exit_request,
1851	.initialize_rq_fn = scsi_initialize_rq,
1852	.cleanup_rq	= scsi_cleanup_rq,
1853	.busy		= scsi_mq_lld_busy,
1854	.map_queues	= scsi_map_queues,
1855};
1856
1857struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1858{
1859	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1860	if (IS_ERR(sdev->request_queue))
1861		return NULL;
1862
1863	sdev->request_queue->queuedata = sdev;
1864	__scsi_init_queue(sdev->host, sdev->request_queue);
1865	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1866	return sdev->request_queue;
1867}
1868
1869int scsi_mq_setup_tags(struct Scsi_Host *shost)
1870{
1871	unsigned int cmd_size, sgl_size;
1872	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1873
1874	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1875				scsi_mq_inline_sgl_size(shost));
1876	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1877	if (scsi_host_get_prot(shost))
1878		cmd_size += sizeof(struct scsi_data_buffer) +
1879			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1880
1881	memset(tag_set, 0, sizeof(*tag_set));
1882	if (shost->hostt->commit_rqs)
1883		tag_set->ops = &scsi_mq_ops;
1884	else
1885		tag_set->ops = &scsi_mq_ops_no_commit;
1886	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1887	tag_set->queue_depth = shost->can_queue;
1888	tag_set->cmd_size = cmd_size;
1889	tag_set->numa_node = NUMA_NO_NODE;
1890	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1891	tag_set->flags |=
1892		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1893	tag_set->driver_data = shost;
1894
1895	return blk_mq_alloc_tag_set(tag_set);
1896}
1897
1898void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1899{
1900	blk_mq_free_tag_set(&shost->tag_set);
1901}
1902
1903/**
1904 * scsi_device_from_queue - return sdev associated with a request_queue
1905 * @q: The request queue to return the sdev from
1906 *
1907 * Return the sdev associated with a request queue or NULL if the
1908 * request_queue does not reference a SCSI device.
1909 */
1910struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1911{
1912	struct scsi_device *sdev = NULL;
1913
1914	if (q->mq_ops == &scsi_mq_ops_no_commit ||
1915	    q->mq_ops == &scsi_mq_ops)
1916		sdev = q->queuedata;
1917	if (!sdev || !get_device(&sdev->sdev_gendev))
1918		sdev = NULL;
1919
1920	return sdev;
1921}
1922EXPORT_SYMBOL_GPL(scsi_device_from_queue);
1923
1924/**
1925 * scsi_block_requests - Utility function used by low-level drivers to prevent
1926 * further commands from being queued to the device.
1927 * @shost:  host in question
 
 
 
1928 *
1929 * There is no timer nor any other means by which the requests get unblocked
1930 * other than the low-level driver calling scsi_unblock_requests().
 
 
 
 
 
1931 */
1932void scsi_block_requests(struct Scsi_Host *shost)
1933{
1934	shost->host_self_blocked = 1;
1935}
1936EXPORT_SYMBOL(scsi_block_requests);
1937
1938/**
1939 * scsi_unblock_requests - Utility function used by low-level drivers to allow
1940 * further commands to be queued to the device.
1941 * @shost:  host in question
1942 *
1943 * There is no timer nor any other means by which the requests get unblocked
1944 * other than the low-level driver calling scsi_unblock_requests(). This is done
1945 * as an API function so that changes to the internals of the scsi mid-layer
1946 * won't require wholesale changes to drivers that use this feature.
 
 
 
 
 
 
 
 
 
 
1947 */
1948void scsi_unblock_requests(struct Scsi_Host *shost)
1949{
1950	shost->host_self_blocked = 0;
1951	scsi_run_host_queues(shost);
1952}
1953EXPORT_SYMBOL(scsi_unblock_requests);
1954
 
 
 
 
 
 
 
 
 
 
 
 
 
1955void scsi_exit_queue(void)
1956{
1957	kmem_cache_destroy(scsi_sense_cache);
1958	kmem_cache_destroy(scsi_sense_isadma_cache);
 
1959}
1960
1961/**
1962 *	scsi_mode_select - issue a mode select
1963 *	@sdev:	SCSI device to be queried
1964 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1965 *	@sp:	Save page bit (0 == don't save, 1 == save)
1966 *	@modepage: mode page being requested
1967 *	@buffer: request buffer (may not be smaller than eight bytes)
1968 *	@len:	length of request buffer.
1969 *	@timeout: command timeout
1970 *	@retries: number of retries before failing
1971 *	@data: returns a structure abstracting the mode header data
1972 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1973 *		must be SCSI_SENSE_BUFFERSIZE big.
1974 *
1975 *	Returns zero if successful; negative error number or scsi
1976 *	status on error
1977 *
1978 */
1979int
1980scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1981		 unsigned char *buffer, int len, int timeout, int retries,
1982		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1983{
1984	unsigned char cmd[10];
1985	unsigned char *real_buffer;
1986	int ret;
1987
1988	memset(cmd, 0, sizeof(cmd));
1989	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1990
1991	if (sdev->use_10_for_ms) {
1992		if (len > 65535)
1993			return -EINVAL;
1994		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1995		if (!real_buffer)
1996			return -ENOMEM;
1997		memcpy(real_buffer + 8, buffer, len);
1998		len += 8;
1999		real_buffer[0] = 0;
2000		real_buffer[1] = 0;
2001		real_buffer[2] = data->medium_type;
2002		real_buffer[3] = data->device_specific;
2003		real_buffer[4] = data->longlba ? 0x01 : 0;
2004		real_buffer[5] = 0;
2005		real_buffer[6] = data->block_descriptor_length >> 8;
2006		real_buffer[7] = data->block_descriptor_length;
2007
2008		cmd[0] = MODE_SELECT_10;
2009		cmd[7] = len >> 8;
2010		cmd[8] = len;
2011	} else {
2012		if (len > 255 || data->block_descriptor_length > 255 ||
2013		    data->longlba)
2014			return -EINVAL;
2015
2016		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2017		if (!real_buffer)
2018			return -ENOMEM;
2019		memcpy(real_buffer + 4, buffer, len);
2020		len += 4;
2021		real_buffer[0] = 0;
2022		real_buffer[1] = data->medium_type;
2023		real_buffer[2] = data->device_specific;
2024		real_buffer[3] = data->block_descriptor_length;
 
2025
2026		cmd[0] = MODE_SELECT;
2027		cmd[4] = len;
2028	}
2029
2030	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2031			       sshdr, timeout, retries, NULL);
2032	kfree(real_buffer);
2033	return ret;
2034}
2035EXPORT_SYMBOL_GPL(scsi_mode_select);
2036
2037/**
2038 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2039 *	@sdev:	SCSI device to be queried
2040 *	@dbd:	set if mode sense will allow block descriptors to be returned
2041 *	@modepage: mode page being requested
2042 *	@buffer: request buffer (may not be smaller than eight bytes)
2043 *	@len:	length of request buffer.
2044 *	@timeout: command timeout
2045 *	@retries: number of retries before failing
2046 *	@data: returns a structure abstracting the mode header data
2047 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2048 *		must be SCSI_SENSE_BUFFERSIZE big.
2049 *
2050 *	Returns zero if unsuccessful, or the header offset (either 4
2051 *	or 8 depending on whether a six or ten byte command was
2052 *	issued) if successful.
2053 */
2054int
2055scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2056		  unsigned char *buffer, int len, int timeout, int retries,
2057		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2058{
2059	unsigned char cmd[12];
2060	int use_10_for_ms;
2061	int header_length;
2062	int result, retry_count = retries;
2063	struct scsi_sense_hdr my_sshdr;
2064
2065	memset(data, 0, sizeof(*data));
2066	memset(&cmd[0], 0, 12);
2067
2068	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2069	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2070	cmd[2] = modepage;
2071
2072	/* caller might not be interested in sense, but we need it */
2073	if (!sshdr)
2074		sshdr = &my_sshdr;
2075
2076 retry:
2077	use_10_for_ms = sdev->use_10_for_ms;
2078
2079	if (use_10_for_ms) {
2080		if (len < 8)
2081			len = 8;
2082
2083		cmd[0] = MODE_SENSE_10;
2084		cmd[8] = len;
2085		header_length = 8;
2086	} else {
2087		if (len < 4)
2088			len = 4;
2089
2090		cmd[0] = MODE_SENSE;
2091		cmd[4] = len;
2092		header_length = 4;
2093	}
2094
2095	memset(buffer, 0, len);
2096
2097	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2098				  sshdr, timeout, retries, NULL);
2099
2100	/* This code looks awful: what it's doing is making sure an
2101	 * ILLEGAL REQUEST sense return identifies the actual command
2102	 * byte as the problem.  MODE_SENSE commands can return
2103	 * ILLEGAL REQUEST if the code page isn't supported */
2104
2105	if (use_10_for_ms && !scsi_status_is_good(result) &&
2106	    driver_byte(result) == DRIVER_SENSE) {
2107		if (scsi_sense_valid(sshdr)) {
2108			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2109			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2110				/*
2111				 * Invalid command operation code
2112				 */
2113				sdev->use_10_for_ms = 0;
2114				goto retry;
2115			}
2116		}
2117	}
2118
2119	if (scsi_status_is_good(result)) {
2120		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2121			     (modepage == 6 || modepage == 8))) {
2122			/* Initio breakage? */
2123			header_length = 0;
2124			data->length = 13;
2125			data->medium_type = 0;
2126			data->device_specific = 0;
2127			data->longlba = 0;
2128			data->block_descriptor_length = 0;
2129		} else if (use_10_for_ms) {
2130			data->length = buffer[0]*256 + buffer[1] + 2;
2131			data->medium_type = buffer[2];
2132			data->device_specific = buffer[3];
2133			data->longlba = buffer[4] & 0x01;
2134			data->block_descriptor_length = buffer[6]*256
2135				+ buffer[7];
2136		} else {
2137			data->length = buffer[0] + 1;
2138			data->medium_type = buffer[1];
2139			data->device_specific = buffer[2];
2140			data->block_descriptor_length = buffer[3];
2141		}
2142		data->header_length = header_length;
2143	} else if ((status_byte(result) == CHECK_CONDITION) &&
2144		   scsi_sense_valid(sshdr) &&
2145		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2146		retry_count--;
2147		goto retry;
2148	}
2149
2150	return result;
2151}
2152EXPORT_SYMBOL(scsi_mode_sense);
2153
2154/**
2155 *	scsi_test_unit_ready - test if unit is ready
2156 *	@sdev:	scsi device to change the state of.
2157 *	@timeout: command timeout
2158 *	@retries: number of retries before failing
2159 *	@sshdr: outpout pointer for decoded sense information.
2160 *
2161 *	Returns zero if unsuccessful or an error if TUR failed.  For
2162 *	removable media, UNIT_ATTENTION sets ->changed flag.
2163 **/
2164int
2165scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2166		     struct scsi_sense_hdr *sshdr)
2167{
2168	char cmd[] = {
2169		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2170	};
2171	int result;
2172
2173	/* try to eat the UNIT_ATTENTION if there are enough retries */
2174	do {
2175		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2176					  timeout, 1, NULL);
2177		if (sdev->removable && scsi_sense_valid(sshdr) &&
2178		    sshdr->sense_key == UNIT_ATTENTION)
2179			sdev->changed = 1;
2180	} while (scsi_sense_valid(sshdr) &&
2181		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2182
2183	return result;
2184}
2185EXPORT_SYMBOL(scsi_test_unit_ready);
2186
2187/**
2188 *	scsi_device_set_state - Take the given device through the device state model.
2189 *	@sdev:	scsi device to change the state of.
2190 *	@state:	state to change to.
2191 *
2192 *	Returns zero if successful or an error if the requested
2193 *	transition is illegal.
2194 */
2195int
2196scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2197{
2198	enum scsi_device_state oldstate = sdev->sdev_state;
2199
2200	if (state == oldstate)
2201		return 0;
2202
2203	switch (state) {
2204	case SDEV_CREATED:
2205		switch (oldstate) {
2206		case SDEV_CREATED_BLOCK:
2207			break;
2208		default:
2209			goto illegal;
2210		}
2211		break;
2212
2213	case SDEV_RUNNING:
2214		switch (oldstate) {
2215		case SDEV_CREATED:
2216		case SDEV_OFFLINE:
2217		case SDEV_TRANSPORT_OFFLINE:
2218		case SDEV_QUIESCE:
2219		case SDEV_BLOCK:
2220			break;
2221		default:
2222			goto illegal;
2223		}
2224		break;
2225
2226	case SDEV_QUIESCE:
2227		switch (oldstate) {
2228		case SDEV_RUNNING:
2229		case SDEV_OFFLINE:
2230		case SDEV_TRANSPORT_OFFLINE:
2231			break;
2232		default:
2233			goto illegal;
2234		}
2235		break;
2236
2237	case SDEV_OFFLINE:
2238	case SDEV_TRANSPORT_OFFLINE:
2239		switch (oldstate) {
2240		case SDEV_CREATED:
2241		case SDEV_RUNNING:
2242		case SDEV_QUIESCE:
2243		case SDEV_BLOCK:
2244			break;
2245		default:
2246			goto illegal;
2247		}
2248		break;
2249
2250	case SDEV_BLOCK:
2251		switch (oldstate) {
2252		case SDEV_RUNNING:
2253		case SDEV_CREATED_BLOCK:
2254		case SDEV_QUIESCE:
2255		case SDEV_OFFLINE:
2256			break;
2257		default:
2258			goto illegal;
2259		}
2260		break;
2261
2262	case SDEV_CREATED_BLOCK:
2263		switch (oldstate) {
2264		case SDEV_CREATED:
2265			break;
2266		default:
2267			goto illegal;
2268		}
2269		break;
2270
2271	case SDEV_CANCEL:
2272		switch (oldstate) {
2273		case SDEV_CREATED:
2274		case SDEV_RUNNING:
2275		case SDEV_QUIESCE:
2276		case SDEV_OFFLINE:
2277		case SDEV_TRANSPORT_OFFLINE:
2278			break;
2279		default:
2280			goto illegal;
2281		}
2282		break;
2283
2284	case SDEV_DEL:
2285		switch (oldstate) {
2286		case SDEV_CREATED:
2287		case SDEV_RUNNING:
2288		case SDEV_OFFLINE:
2289		case SDEV_TRANSPORT_OFFLINE:
2290		case SDEV_CANCEL:
2291		case SDEV_BLOCK:
2292		case SDEV_CREATED_BLOCK:
2293			break;
2294		default:
2295			goto illegal;
2296		}
2297		break;
2298
2299	}
2300	sdev->offline_already = false;
2301	sdev->sdev_state = state;
2302	return 0;
2303
2304 illegal:
2305	SCSI_LOG_ERROR_RECOVERY(1,
2306				sdev_printk(KERN_ERR, sdev,
2307					    "Illegal state transition %s->%s",
2308					    scsi_device_state_name(oldstate),
2309					    scsi_device_state_name(state))
2310				);
2311	return -EINVAL;
2312}
2313EXPORT_SYMBOL(scsi_device_set_state);
2314
2315/**
2316 * 	sdev_evt_emit - emit a single SCSI device uevent
2317 *	@sdev: associated SCSI device
2318 *	@evt: event to emit
2319 *
2320 *	Send a single uevent (scsi_event) to the associated scsi_device.
2321 */
2322static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2323{
2324	int idx = 0;
2325	char *envp[3];
2326
2327	switch (evt->evt_type) {
2328	case SDEV_EVT_MEDIA_CHANGE:
2329		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2330		break;
2331	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2332		scsi_rescan_device(&sdev->sdev_gendev);
2333		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2334		break;
2335	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2336		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2337		break;
2338	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2339	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2340		break;
2341	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2342		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2343		break;
2344	case SDEV_EVT_LUN_CHANGE_REPORTED:
2345		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2346		break;
2347	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2348		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2349		break;
2350	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2351		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2352		break;
2353	default:
2354		/* do nothing */
2355		break;
2356	}
2357
2358	envp[idx++] = NULL;
2359
2360	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2361}
2362
2363/**
2364 * 	sdev_evt_thread - send a uevent for each scsi event
2365 *	@work: work struct for scsi_device
2366 *
2367 *	Dispatch queued events to their associated scsi_device kobjects
2368 *	as uevents.
2369 */
2370void scsi_evt_thread(struct work_struct *work)
2371{
2372	struct scsi_device *sdev;
2373	enum scsi_device_event evt_type;
2374	LIST_HEAD(event_list);
2375
2376	sdev = container_of(work, struct scsi_device, event_work);
2377
2378	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2379		if (test_and_clear_bit(evt_type, sdev->pending_events))
2380			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2381
2382	while (1) {
2383		struct scsi_event *evt;
2384		struct list_head *this, *tmp;
2385		unsigned long flags;
2386
2387		spin_lock_irqsave(&sdev->list_lock, flags);
2388		list_splice_init(&sdev->event_list, &event_list);
2389		spin_unlock_irqrestore(&sdev->list_lock, flags);
2390
2391		if (list_empty(&event_list))
2392			break;
2393
2394		list_for_each_safe(this, tmp, &event_list) {
2395			evt = list_entry(this, struct scsi_event, node);
2396			list_del(&evt->node);
2397			scsi_evt_emit(sdev, evt);
2398			kfree(evt);
2399		}
2400	}
2401}
2402
2403/**
2404 * 	sdev_evt_send - send asserted event to uevent thread
2405 *	@sdev: scsi_device event occurred on
2406 *	@evt: event to send
2407 *
2408 *	Assert scsi device event asynchronously.
2409 */
2410void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2411{
2412	unsigned long flags;
2413
2414#if 0
2415	/* FIXME: currently this check eliminates all media change events
2416	 * for polled devices.  Need to update to discriminate between AN
2417	 * and polled events */
2418	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2419		kfree(evt);
2420		return;
2421	}
2422#endif
2423
2424	spin_lock_irqsave(&sdev->list_lock, flags);
2425	list_add_tail(&evt->node, &sdev->event_list);
2426	schedule_work(&sdev->event_work);
2427	spin_unlock_irqrestore(&sdev->list_lock, flags);
2428}
2429EXPORT_SYMBOL_GPL(sdev_evt_send);
2430
2431/**
2432 * 	sdev_evt_alloc - allocate a new scsi event
2433 *	@evt_type: type of event to allocate
2434 *	@gfpflags: GFP flags for allocation
2435 *
2436 *	Allocates and returns a new scsi_event.
2437 */
2438struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2439				  gfp_t gfpflags)
2440{
2441	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2442	if (!evt)
2443		return NULL;
2444
2445	evt->evt_type = evt_type;
2446	INIT_LIST_HEAD(&evt->node);
2447
2448	/* evt_type-specific initialization, if any */
2449	switch (evt_type) {
2450	case SDEV_EVT_MEDIA_CHANGE:
2451	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2452	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2453	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2454	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2455	case SDEV_EVT_LUN_CHANGE_REPORTED:
2456	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2457	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2458	default:
2459		/* do nothing */
2460		break;
2461	}
2462
2463	return evt;
2464}
2465EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2466
2467/**
2468 * 	sdev_evt_send_simple - send asserted event to uevent thread
2469 *	@sdev: scsi_device event occurred on
2470 *	@evt_type: type of event to send
2471 *	@gfpflags: GFP flags for allocation
2472 *
2473 *	Assert scsi device event asynchronously, given an event type.
2474 */
2475void sdev_evt_send_simple(struct scsi_device *sdev,
2476			  enum scsi_device_event evt_type, gfp_t gfpflags)
2477{
2478	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2479	if (!evt) {
2480		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2481			    evt_type);
2482		return;
2483	}
2484
2485	sdev_evt_send(sdev, evt);
2486}
2487EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2488
2489/**
2490 *	scsi_device_quiesce - Block user issued commands.
2491 *	@sdev:	scsi device to quiesce.
2492 *
2493 *	This works by trying to transition to the SDEV_QUIESCE state
2494 *	(which must be a legal transition).  When the device is in this
2495 *	state, only special requests will be accepted, all others will
2496 *	be deferred.  Since special requests may also be requeued requests,
2497 *	a successful return doesn't guarantee the device will be
2498 *	totally quiescent.
2499 *
2500 *	Must be called with user context, may sleep.
2501 *
2502 *	Returns zero if unsuccessful or an error if not.
2503 */
2504int
2505scsi_device_quiesce(struct scsi_device *sdev)
2506{
2507	struct request_queue *q = sdev->request_queue;
2508	int err;
2509
2510	/*
2511	 * It is allowed to call scsi_device_quiesce() multiple times from
2512	 * the same context but concurrent scsi_device_quiesce() calls are
2513	 * not allowed.
2514	 */
2515	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2516
2517	if (sdev->quiesced_by == current)
2518		return 0;
2519
2520	blk_set_pm_only(q);
2521
2522	blk_mq_freeze_queue(q);
2523	/*
2524	 * Ensure that the effect of blk_set_pm_only() will be visible
2525	 * for percpu_ref_tryget() callers that occur after the queue
2526	 * unfreeze even if the queue was already frozen before this function
2527	 * was called. See also https://lwn.net/Articles/573497/.
2528	 */
2529	synchronize_rcu();
2530	blk_mq_unfreeze_queue(q);
2531
2532	mutex_lock(&sdev->state_mutex);
2533	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2534	if (err == 0)
2535		sdev->quiesced_by = current;
2536	else
2537		blk_clear_pm_only(q);
2538	mutex_unlock(&sdev->state_mutex);
2539
2540	return err;
2541}
2542EXPORT_SYMBOL(scsi_device_quiesce);
2543
2544/**
2545 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2546 *	@sdev:	scsi device to resume.
2547 *
2548 *	Moves the device from quiesced back to running and restarts the
2549 *	queues.
2550 *
2551 *	Must be called with user context, may sleep.
2552 */
2553void scsi_device_resume(struct scsi_device *sdev)
2554{
2555	/* check if the device state was mutated prior to resume, and if
2556	 * so assume the state is being managed elsewhere (for example
2557	 * device deleted during suspend)
2558	 */
2559	mutex_lock(&sdev->state_mutex);
2560	if (sdev->quiesced_by) {
2561		sdev->quiesced_by = NULL;
2562		blk_clear_pm_only(sdev->request_queue);
2563	}
2564	if (sdev->sdev_state == SDEV_QUIESCE)
2565		scsi_device_set_state(sdev, SDEV_RUNNING);
2566	mutex_unlock(&sdev->state_mutex);
2567}
2568EXPORT_SYMBOL(scsi_device_resume);
2569
2570static void
2571device_quiesce_fn(struct scsi_device *sdev, void *data)
2572{
2573	scsi_device_quiesce(sdev);
2574}
2575
2576void
2577scsi_target_quiesce(struct scsi_target *starget)
2578{
2579	starget_for_each_device(starget, NULL, device_quiesce_fn);
2580}
2581EXPORT_SYMBOL(scsi_target_quiesce);
2582
2583static void
2584device_resume_fn(struct scsi_device *sdev, void *data)
2585{
2586	scsi_device_resume(sdev);
2587}
2588
2589void
2590scsi_target_resume(struct scsi_target *starget)
2591{
2592	starget_for_each_device(starget, NULL, device_resume_fn);
2593}
2594EXPORT_SYMBOL(scsi_target_resume);
2595
2596/**
2597 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2598 * @sdev: device to block
2599 *
2600 * Pause SCSI command processing on the specified device. Does not sleep.
2601 *
2602 * Returns zero if successful or a negative error code upon failure.
2603 *
2604 * Notes:
2605 * This routine transitions the device to the SDEV_BLOCK state (which must be
2606 * a legal transition). When the device is in this state, command processing
2607 * is paused until the device leaves the SDEV_BLOCK state. See also
2608 * scsi_internal_device_unblock_nowait().
2609 */
2610int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2611{
2612	struct request_queue *q = sdev->request_queue;
2613	int err = 0;
2614
2615	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2616	if (err) {
2617		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2618
2619		if (err)
2620			return err;
2621	}
2622
2623	/*
2624	 * The device has transitioned to SDEV_BLOCK.  Stop the
2625	 * block layer from calling the midlayer with this device's
2626	 * request queue.
2627	 */
2628	blk_mq_quiesce_queue_nowait(q);
2629	return 0;
2630}
2631EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2632
2633/**
2634 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2635 * @sdev: device to block
2636 *
2637 * Pause SCSI command processing on the specified device and wait until all
2638 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2639 *
2640 * Returns zero if successful or a negative error code upon failure.
2641 *
2642 * Note:
2643 * This routine transitions the device to the SDEV_BLOCK state (which must be
2644 * a legal transition). When the device is in this state, command processing
2645 * is paused until the device leaves the SDEV_BLOCK state. See also
2646 * scsi_internal_device_unblock().
2647 */
2648static int scsi_internal_device_block(struct scsi_device *sdev)
2649{
2650	struct request_queue *q = sdev->request_queue;
2651	int err;
2652
2653	mutex_lock(&sdev->state_mutex);
2654	err = scsi_internal_device_block_nowait(sdev);
2655	if (err == 0)
2656		blk_mq_quiesce_queue(q);
2657	mutex_unlock(&sdev->state_mutex);
2658
2659	return err;
2660}
2661
2662void scsi_start_queue(struct scsi_device *sdev)
2663{
2664	struct request_queue *q = sdev->request_queue;
2665
2666	blk_mq_unquiesce_queue(q);
2667}
2668
2669/**
2670 * scsi_internal_device_unblock_nowait - resume a device after a block request
2671 * @sdev:	device to resume
2672 * @new_state:	state to set the device to after unblocking
2673 *
2674 * Restart the device queue for a previously suspended SCSI device. Does not
2675 * sleep.
2676 *
2677 * Returns zero if successful or a negative error code upon failure.
2678 *
2679 * Notes:
2680 * This routine transitions the device to the SDEV_RUNNING state or to one of
2681 * the offline states (which must be a legal transition) allowing the midlayer
2682 * to goose the queue for this device.
2683 */
2684int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2685					enum scsi_device_state new_state)
2686{
2687	switch (new_state) {
2688	case SDEV_RUNNING:
2689	case SDEV_TRANSPORT_OFFLINE:
2690		break;
2691	default:
2692		return -EINVAL;
2693	}
2694
2695	/*
2696	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2697	 * offlined states and goose the device queue if successful.
2698	 */
2699	switch (sdev->sdev_state) {
2700	case SDEV_BLOCK:
2701	case SDEV_TRANSPORT_OFFLINE:
2702		sdev->sdev_state = new_state;
2703		break;
2704	case SDEV_CREATED_BLOCK:
2705		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2706		    new_state == SDEV_OFFLINE)
2707			sdev->sdev_state = new_state;
2708		else
2709			sdev->sdev_state = SDEV_CREATED;
2710		break;
2711	case SDEV_CANCEL:
2712	case SDEV_OFFLINE:
2713		break;
2714	default:
2715		return -EINVAL;
2716	}
2717	scsi_start_queue(sdev);
2718
2719	return 0;
2720}
2721EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2722
2723/**
2724 * scsi_internal_device_unblock - resume a device after a block request
2725 * @sdev:	device to resume
2726 * @new_state:	state to set the device to after unblocking
2727 *
2728 * Restart the device queue for a previously suspended SCSI device. May sleep.
2729 *
2730 * Returns zero if successful or a negative error code upon failure.
2731 *
2732 * Notes:
2733 * This routine transitions the device to the SDEV_RUNNING state or to one of
2734 * the offline states (which must be a legal transition) allowing the midlayer
2735 * to goose the queue for this device.
2736 */
2737static int scsi_internal_device_unblock(struct scsi_device *sdev,
2738					enum scsi_device_state new_state)
2739{
2740	int ret;
2741
2742	mutex_lock(&sdev->state_mutex);
2743	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2744	mutex_unlock(&sdev->state_mutex);
2745
2746	return ret;
2747}
2748
2749static void
2750device_block(struct scsi_device *sdev, void *data)
2751{
2752	int ret;
2753
2754	ret = scsi_internal_device_block(sdev);
2755
2756	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2757		  dev_name(&sdev->sdev_gendev), ret);
2758}
2759
2760static int
2761target_block(struct device *dev, void *data)
2762{
2763	if (scsi_is_target_device(dev))
2764		starget_for_each_device(to_scsi_target(dev), NULL,
2765					device_block);
2766	return 0;
2767}
2768
2769void
2770scsi_target_block(struct device *dev)
2771{
2772	if (scsi_is_target_device(dev))
2773		starget_for_each_device(to_scsi_target(dev), NULL,
2774					device_block);
2775	else
2776		device_for_each_child(dev, NULL, target_block);
2777}
2778EXPORT_SYMBOL_GPL(scsi_target_block);
2779
2780static void
2781device_unblock(struct scsi_device *sdev, void *data)
2782{
2783	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2784}
2785
2786static int
2787target_unblock(struct device *dev, void *data)
2788{
2789	if (scsi_is_target_device(dev))
2790		starget_for_each_device(to_scsi_target(dev), data,
2791					device_unblock);
2792	return 0;
2793}
2794
2795void
2796scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2797{
2798	if (scsi_is_target_device(dev))
2799		starget_for_each_device(to_scsi_target(dev), &new_state,
2800					device_unblock);
2801	else
2802		device_for_each_child(dev, &new_state, target_unblock);
2803}
2804EXPORT_SYMBOL_GPL(scsi_target_unblock);
2805
2806int
2807scsi_host_block(struct Scsi_Host *shost)
2808{
2809	struct scsi_device *sdev;
2810	int ret = 0;
2811
2812	/*
2813	 * Call scsi_internal_device_block_nowait so we can avoid
2814	 * calling synchronize_rcu() for each LUN.
2815	 */
2816	shost_for_each_device(sdev, shost) {
2817		mutex_lock(&sdev->state_mutex);
2818		ret = scsi_internal_device_block_nowait(sdev);
2819		mutex_unlock(&sdev->state_mutex);
2820		if (ret) {
2821			scsi_device_put(sdev);
2822			break;
2823		}
2824	}
2825
2826	/*
2827	 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2828	 * calling synchronize_rcu() once is enough.
2829	 */
2830	WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2831
2832	if (!ret)
2833		synchronize_rcu();
2834
2835	return ret;
2836}
2837EXPORT_SYMBOL_GPL(scsi_host_block);
2838
2839int
2840scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2841{
2842	struct scsi_device *sdev;
2843	int ret = 0;
2844
2845	shost_for_each_device(sdev, shost) {
2846		ret = scsi_internal_device_unblock(sdev, new_state);
2847		if (ret) {
2848			scsi_device_put(sdev);
2849			break;
2850		}
2851	}
2852	return ret;
2853}
2854EXPORT_SYMBOL_GPL(scsi_host_unblock);
2855
2856/**
2857 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2858 * @sgl:	scatter-gather list
2859 * @sg_count:	number of segments in sg
2860 * @offset:	offset in bytes into sg, on return offset into the mapped area
2861 * @len:	bytes to map, on return number of bytes mapped
2862 *
2863 * Returns virtual address of the start of the mapped page
2864 */
2865void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2866			  size_t *offset, size_t *len)
2867{
2868	int i;
2869	size_t sg_len = 0, len_complete = 0;
2870	struct scatterlist *sg;
2871	struct page *page;
2872
2873	WARN_ON(!irqs_disabled());
2874
2875	for_each_sg(sgl, sg, sg_count, i) {
2876		len_complete = sg_len; /* Complete sg-entries */
2877		sg_len += sg->length;
2878		if (sg_len > *offset)
2879			break;
2880	}
2881
2882	if (unlikely(i == sg_count)) {
2883		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2884			"elements %d\n",
2885		       __func__, sg_len, *offset, sg_count);
2886		WARN_ON(1);
2887		return NULL;
2888	}
2889
2890	/* Offset starting from the beginning of first page in this sg-entry */
2891	*offset = *offset - len_complete + sg->offset;
2892
2893	/* Assumption: contiguous pages can be accessed as "page + i" */
2894	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2895	*offset &= ~PAGE_MASK;
2896
2897	/* Bytes in this sg-entry from *offset to the end of the page */
2898	sg_len = PAGE_SIZE - *offset;
2899	if (*len > sg_len)
2900		*len = sg_len;
2901
2902	return kmap_atomic(page);
2903}
2904EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2905
2906/**
2907 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2908 * @virt:	virtual address to be unmapped
2909 */
2910void scsi_kunmap_atomic_sg(void *virt)
2911{
2912	kunmap_atomic(virt);
2913}
2914EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2915
2916void sdev_disable_disk_events(struct scsi_device *sdev)
2917{
2918	atomic_inc(&sdev->disk_events_disable_depth);
2919}
2920EXPORT_SYMBOL(sdev_disable_disk_events);
2921
2922void sdev_enable_disk_events(struct scsi_device *sdev)
2923{
2924	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2925		return;
2926	atomic_dec(&sdev->disk_events_disable_depth);
2927}
2928EXPORT_SYMBOL(sdev_enable_disk_events);
2929
2930/**
2931 * scsi_vpd_lun_id - return a unique device identification
2932 * @sdev: SCSI device
2933 * @id:   buffer for the identification
2934 * @id_len:  length of the buffer
2935 *
2936 * Copies a unique device identification into @id based
2937 * on the information in the VPD page 0x83 of the device.
2938 * The string will be formatted as a SCSI name string.
2939 *
2940 * Returns the length of the identification or error on failure.
2941 * If the identifier is longer than the supplied buffer the actual
2942 * identifier length is returned and the buffer is not zero-padded.
2943 */
2944int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
2945{
2946	u8 cur_id_type = 0xff;
2947	u8 cur_id_size = 0;
2948	const unsigned char *d, *cur_id_str;
2949	const struct scsi_vpd *vpd_pg83;
2950	int id_size = -EINVAL;
2951
2952	rcu_read_lock();
2953	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
2954	if (!vpd_pg83) {
2955		rcu_read_unlock();
2956		return -ENXIO;
2957	}
2958
2959	/*
2960	 * Look for the correct descriptor.
2961	 * Order of preference for lun descriptor:
2962	 * - SCSI name string
2963	 * - NAA IEEE Registered Extended
2964	 * - EUI-64 based 16-byte
2965	 * - EUI-64 based 12-byte
2966	 * - NAA IEEE Registered
2967	 * - NAA IEEE Extended
2968	 * - T10 Vendor ID
2969	 * as longer descriptors reduce the likelyhood
2970	 * of identification clashes.
2971	 */
2972
2973	/* The id string must be at least 20 bytes + terminating NULL byte */
2974	if (id_len < 21) {
2975		rcu_read_unlock();
2976		return -EINVAL;
2977	}
2978
2979	memset(id, 0, id_len);
2980	d = vpd_pg83->data + 4;
2981	while (d < vpd_pg83->data + vpd_pg83->len) {
2982		/* Skip designators not referring to the LUN */
2983		if ((d[1] & 0x30) != 0x00)
2984			goto next_desig;
2985
2986		switch (d[1] & 0xf) {
2987		case 0x1:
2988			/* T10 Vendor ID */
2989			if (cur_id_size > d[3])
2990				break;
2991			/* Prefer anything */
2992			if (cur_id_type > 0x01 && cur_id_type != 0xff)
2993				break;
2994			cur_id_size = d[3];
2995			if (cur_id_size + 4 > id_len)
2996				cur_id_size = id_len - 4;
2997			cur_id_str = d + 4;
2998			cur_id_type = d[1] & 0xf;
2999			id_size = snprintf(id, id_len, "t10.%*pE",
3000					   cur_id_size, cur_id_str);
3001			break;
3002		case 0x2:
3003			/* EUI-64 */
3004			if (cur_id_size > d[3])
3005				break;
3006			/* Prefer NAA IEEE Registered Extended */
3007			if (cur_id_type == 0x3 &&
3008			    cur_id_size == d[3])
3009				break;
3010			cur_id_size = d[3];
3011			cur_id_str = d + 4;
3012			cur_id_type = d[1] & 0xf;
3013			switch (cur_id_size) {
3014			case 8:
3015				id_size = snprintf(id, id_len,
3016						   "eui.%8phN",
3017						   cur_id_str);
3018				break;
3019			case 12:
3020				id_size = snprintf(id, id_len,
3021						   "eui.%12phN",
3022						   cur_id_str);
3023				break;
3024			case 16:
3025				id_size = snprintf(id, id_len,
3026						   "eui.%16phN",
3027						   cur_id_str);
3028				break;
3029			default:
3030				cur_id_size = 0;
3031				break;
3032			}
3033			break;
3034		case 0x3:
3035			/* NAA */
3036			if (cur_id_size > d[3])
3037				break;
3038			cur_id_size = d[3];
3039			cur_id_str = d + 4;
3040			cur_id_type = d[1] & 0xf;
3041			switch (cur_id_size) {
3042			case 8:
3043				id_size = snprintf(id, id_len,
3044						   "naa.%8phN",
3045						   cur_id_str);
3046				break;
3047			case 16:
3048				id_size = snprintf(id, id_len,
3049						   "naa.%16phN",
3050						   cur_id_str);
3051				break;
3052			default:
3053				cur_id_size = 0;
3054				break;
3055			}
3056			break;
3057		case 0x8:
3058			/* SCSI name string */
3059			if (cur_id_size + 4 > d[3])
3060				break;
3061			/* Prefer others for truncated descriptor */
3062			if (cur_id_size && d[3] > id_len)
3063				break;
3064			cur_id_size = id_size = d[3];
3065			cur_id_str = d + 4;
3066			cur_id_type = d[1] & 0xf;
3067			if (cur_id_size >= id_len)
3068				cur_id_size = id_len - 1;
3069			memcpy(id, cur_id_str, cur_id_size);
3070			/* Decrease priority for truncated descriptor */
3071			if (cur_id_size != id_size)
3072				cur_id_size = 6;
3073			break;
3074		default:
3075			break;
3076		}
3077next_desig:
3078		d += d[3] + 4;
3079	}
3080	rcu_read_unlock();
3081
3082	return id_size;
3083}
3084EXPORT_SYMBOL(scsi_vpd_lun_id);
3085
3086/*
3087 * scsi_vpd_tpg_id - return a target port group identifier
3088 * @sdev: SCSI device
3089 *
3090 * Returns the Target Port Group identifier from the information
3091 * froom VPD page 0x83 of the device.
3092 *
3093 * Returns the identifier or error on failure.
3094 */
3095int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3096{
3097	const unsigned char *d;
3098	const struct scsi_vpd *vpd_pg83;
3099	int group_id = -EAGAIN, rel_port = -1;
3100
3101	rcu_read_lock();
3102	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3103	if (!vpd_pg83) {
3104		rcu_read_unlock();
3105		return -ENXIO;
3106	}
3107
3108	d = vpd_pg83->data + 4;
3109	while (d < vpd_pg83->data + vpd_pg83->len) {
3110		switch (d[1] & 0xf) {
3111		case 0x4:
3112			/* Relative target port */
3113			rel_port = get_unaligned_be16(&d[6]);
3114			break;
3115		case 0x5:
3116			/* Target port group */
3117			group_id = get_unaligned_be16(&d[6]);
3118			break;
3119		default:
3120			break;
3121		}
3122		d += d[3] + 4;
3123	}
3124	rcu_read_unlock();
3125
3126	if (group_id >= 0 && rel_id && rel_port != -1)
3127		*rel_id = rel_port;
3128
3129	return group_id;
3130}
3131EXPORT_SYMBOL(scsi_vpd_tpg_id);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 1999 Eric Youngdale
   4 * Copyright (C) 2014 Christoph Hellwig
   5 *
   6 *  SCSI queueing library.
   7 *      Initial versions: Eric Youngdale (eric@andante.org).
   8 *                        Based upon conversations with large numbers
   9 *                        of people at Linux Expo.
  10 */
  11
  12#include <linux/bio.h>
  13#include <linux/bitops.h>
  14#include <linux/blkdev.h>
  15#include <linux/completion.h>
  16#include <linux/kernel.h>
  17#include <linux/export.h>
  18#include <linux/init.h>
  19#include <linux/pci.h>
  20#include <linux/delay.h>
  21#include <linux/hardirq.h>
  22#include <linux/scatterlist.h>
  23#include <linux/blk-mq.h>
  24#include <linux/ratelimit.h>
  25#include <asm/unaligned.h>
  26
  27#include <scsi/scsi.h>
  28#include <scsi/scsi_cmnd.h>
  29#include <scsi/scsi_dbg.h>
  30#include <scsi/scsi_device.h>
  31#include <scsi/scsi_driver.h>
  32#include <scsi/scsi_eh.h>
  33#include <scsi/scsi_host.h>
  34#include <scsi/scsi_transport.h> /* __scsi_init_queue() */
  35#include <scsi/scsi_dh.h>
  36
  37#include <trace/events/scsi.h>
  38
  39#include "scsi_debugfs.h"
  40#include "scsi_priv.h"
  41#include "scsi_logging.h"
  42
  43/*
  44 * Size of integrity metadata is usually small, 1 inline sg should
  45 * cover normal cases.
  46 */
  47#ifdef CONFIG_ARCH_NO_SG_CHAIN
  48#define  SCSI_INLINE_PROT_SG_CNT  0
  49#define  SCSI_INLINE_SG_CNT  0
  50#else
  51#define  SCSI_INLINE_PROT_SG_CNT  1
  52#define  SCSI_INLINE_SG_CNT  2
  53#endif
  54
  55static struct kmem_cache *scsi_sdb_cache;
  56static struct kmem_cache *scsi_sense_cache;
  57static struct kmem_cache *scsi_sense_isadma_cache;
  58static DEFINE_MUTEX(scsi_sense_cache_mutex);
  59
  60static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
  61
  62static inline struct kmem_cache *
  63scsi_select_sense_cache(bool unchecked_isa_dma)
  64{
  65	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
  66}
  67
  68static void scsi_free_sense_buffer(bool unchecked_isa_dma,
  69				   unsigned char *sense_buffer)
  70{
  71	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
  72			sense_buffer);
  73}
  74
  75static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
  76	gfp_t gfp_mask, int numa_node)
  77{
  78	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
  79				     gfp_mask, numa_node);
  80}
  81
  82int scsi_init_sense_cache(struct Scsi_Host *shost)
  83{
  84	struct kmem_cache *cache;
  85	int ret = 0;
  86
  87	mutex_lock(&scsi_sense_cache_mutex);
  88	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
  89	if (cache)
  90		goto exit;
  91
  92	if (shost->unchecked_isa_dma) {
  93		scsi_sense_isadma_cache =
  94			kmem_cache_create("scsi_sense_cache(DMA)",
  95				SCSI_SENSE_BUFFERSIZE, 0,
  96				SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
  97		if (!scsi_sense_isadma_cache)
  98			ret = -ENOMEM;
  99	} else {
 100		scsi_sense_cache =
 101			kmem_cache_create_usercopy("scsi_sense_cache",
 102				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
 103				0, SCSI_SENSE_BUFFERSIZE, NULL);
 104		if (!scsi_sense_cache)
 105			ret = -ENOMEM;
 106	}
 107 exit:
 108	mutex_unlock(&scsi_sense_cache_mutex);
 109	return ret;
 110}
 111
 112/*
 113 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
 114 * not change behaviour from the previous unplug mechanism, experimentation
 115 * may prove this needs changing.
 116 */
 117#define SCSI_QUEUE_DELAY	3
 118
 119static void
 120scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
 121{
 122	struct Scsi_Host *host = cmd->device->host;
 123	struct scsi_device *device = cmd->device;
 124	struct scsi_target *starget = scsi_target(device);
 125
 126	/*
 127	 * Set the appropriate busy bit for the device/host.
 128	 *
 129	 * If the host/device isn't busy, assume that something actually
 130	 * completed, and that we should be able to queue a command now.
 131	 *
 132	 * Note that the prior mid-layer assumption that any host could
 133	 * always queue at least one command is now broken.  The mid-layer
 134	 * will implement a user specifiable stall (see
 135	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
 136	 * if a command is requeued with no other commands outstanding
 137	 * either for the device or for the host.
 138	 */
 139	switch (reason) {
 140	case SCSI_MLQUEUE_HOST_BUSY:
 141		atomic_set(&host->host_blocked, host->max_host_blocked);
 142		break;
 143	case SCSI_MLQUEUE_DEVICE_BUSY:
 144	case SCSI_MLQUEUE_EH_RETRY:
 145		atomic_set(&device->device_blocked,
 146			   device->max_device_blocked);
 147		break;
 148	case SCSI_MLQUEUE_TARGET_BUSY:
 149		atomic_set(&starget->target_blocked,
 150			   starget->max_target_blocked);
 151		break;
 152	}
 153}
 154
 155static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
 156{
 157	if (cmd->request->rq_flags & RQF_DONTPREP) {
 158		cmd->request->rq_flags &= ~RQF_DONTPREP;
 159		scsi_mq_uninit_cmd(cmd);
 160	} else {
 161		WARN_ON_ONCE(true);
 162	}
 163	blk_mq_requeue_request(cmd->request, true);
 164}
 165
 166/**
 167 * __scsi_queue_insert - private queue insertion
 168 * @cmd: The SCSI command being requeued
 169 * @reason:  The reason for the requeue
 170 * @unbusy: Whether the queue should be unbusied
 171 *
 172 * This is a private queue insertion.  The public interface
 173 * scsi_queue_insert() always assumes the queue should be unbusied
 174 * because it's always called before the completion.  This function is
 175 * for a requeue after completion, which should only occur in this
 176 * file.
 177 */
 178static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
 179{
 180	struct scsi_device *device = cmd->device;
 181
 182	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
 183		"Inserting command %p into mlqueue\n", cmd));
 184
 185	scsi_set_blocked(cmd, reason);
 186
 187	/*
 188	 * Decrement the counters, since these commands are no longer
 189	 * active on the host/device.
 190	 */
 191	if (unbusy)
 192		scsi_device_unbusy(device);
 193
 194	/*
 195	 * Requeue this command.  It will go before all other commands
 196	 * that are already in the queue. Schedule requeue work under
 197	 * lock such that the kblockd_schedule_work() call happens
 198	 * before blk_cleanup_queue() finishes.
 199	 */
 200	cmd->result = 0;
 201
 202	blk_mq_requeue_request(cmd->request, true);
 203}
 204
 205/*
 206 * Function:    scsi_queue_insert()
 207 *
 208 * Purpose:     Insert a command in the midlevel queue.
 209 *
 210 * Arguments:   cmd    - command that we are adding to queue.
 211 *              reason - why we are inserting command to queue.
 212 *
 213 * Lock status: Assumed that lock is not held upon entry.
 214 *
 215 * Returns:     Nothing.
 216 *
 217 * Notes:       We do this for one of two cases.  Either the host is busy
 218 *              and it cannot accept any more commands for the time being,
 219 *              or the device returned QUEUE_FULL and can accept no more
 220 *              commands.
 221 * Notes:       This could be called either from an interrupt context or a
 222 *              normal process context.
 223 */
 224void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 225{
 226	__scsi_queue_insert(cmd, reason, true);
 227}
 228
 229
 230/**
 231 * __scsi_execute - insert request and wait for the result
 232 * @sdev:	scsi device
 233 * @cmd:	scsi command
 234 * @data_direction: data direction
 235 * @buffer:	data buffer
 236 * @bufflen:	len of buffer
 237 * @sense:	optional sense buffer
 238 * @sshdr:	optional decoded sense header
 239 * @timeout:	request timeout in seconds
 240 * @retries:	number of times to retry request
 241 * @flags:	flags for ->cmd_flags
 242 * @rq_flags:	flags for ->rq_flags
 243 * @resid:	optional residual length
 244 *
 245 * Returns the scsi_cmnd result field if a command was executed, or a negative
 246 * Linux error code if we didn't get that far.
 247 */
 248int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
 249		 int data_direction, void *buffer, unsigned bufflen,
 250		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
 251		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
 252		 int *resid)
 253{
 254	struct request *req;
 255	struct scsi_request *rq;
 256	int ret = DRIVER_ERROR << 24;
 257
 258	req = blk_get_request(sdev->request_queue,
 259			data_direction == DMA_TO_DEVICE ?
 260			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
 261	if (IS_ERR(req))
 262		return ret;
 263	rq = scsi_req(req);
 264
 265	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
 266					buffer, bufflen, GFP_NOIO))
 267		goto out;
 268
 269	rq->cmd_len = COMMAND_SIZE(cmd[0]);
 270	memcpy(rq->cmd, cmd, rq->cmd_len);
 271	rq->retries = retries;
 272	req->timeout = timeout;
 273	req->cmd_flags |= flags;
 274	req->rq_flags |= rq_flags | RQF_QUIET;
 275
 276	/*
 277	 * head injection *required* here otherwise quiesce won't work
 278	 */
 279	blk_execute_rq(req->q, NULL, req, 1);
 280
 281	/*
 282	 * Some devices (USB mass-storage in particular) may transfer
 283	 * garbage data together with a residue indicating that the data
 284	 * is invalid.  Prevent the garbage from being misinterpreted
 285	 * and prevent security leaks by zeroing out the excess data.
 286	 */
 287	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
 288		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
 289
 290	if (resid)
 291		*resid = rq->resid_len;
 292	if (sense && rq->sense_len)
 293		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
 294	if (sshdr)
 295		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
 296	ret = rq->result;
 297 out:
 298	blk_put_request(req);
 299
 300	return ret;
 301}
 302EXPORT_SYMBOL(__scsi_execute);
 303
 304/*
 305 * Function:    scsi_init_cmd_errh()
 306 *
 307 * Purpose:     Initialize cmd fields related to error handling.
 308 *
 309 * Arguments:   cmd	- command that is ready to be queued.
 310 *
 311 * Notes:       This function has the job of initializing a number of
 312 *              fields related to error handling.   Typically this will
 313 *              be called once for each command, as required.
 314 */
 315static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
 316{
 317	scsi_set_resid(cmd, 0);
 318	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
 319	if (cmd->cmd_len == 0)
 320		cmd->cmd_len = scsi_command_size(cmd->cmnd);
 321}
 322
 323/*
 324 * Decrement the host_busy counter and wake up the error handler if necessary.
 325 * Avoid as follows that the error handler is not woken up if shost->host_busy
 326 * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
 327 * with an RCU read lock in this function to ensure that this function in its
 328 * entirety either finishes before scsi_eh_scmd_add() increases the
 329 * host_failed counter or that it notices the shost state change made by
 330 * scsi_eh_scmd_add().
 331 */
 332static void scsi_dec_host_busy(struct Scsi_Host *shost)
 333{
 334	unsigned long flags;
 335
 336	rcu_read_lock();
 337	atomic_dec(&shost->host_busy);
 338	if (unlikely(scsi_host_in_recovery(shost))) {
 339		spin_lock_irqsave(shost->host_lock, flags);
 340		if (shost->host_failed || shost->host_eh_scheduled)
 341			scsi_eh_wakeup(shost);
 342		spin_unlock_irqrestore(shost->host_lock, flags);
 343	}
 344	rcu_read_unlock();
 345}
 346
 347void scsi_device_unbusy(struct scsi_device *sdev)
 348{
 349	struct Scsi_Host *shost = sdev->host;
 350	struct scsi_target *starget = scsi_target(sdev);
 351
 352	scsi_dec_host_busy(shost);
 353
 354	if (starget->can_queue > 0)
 355		atomic_dec(&starget->target_busy);
 356
 357	atomic_dec(&sdev->device_busy);
 358}
 359
 360static void scsi_kick_queue(struct request_queue *q)
 361{
 362	blk_mq_run_hw_queues(q, false);
 363}
 364
 365/*
 366 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 367 * and call blk_run_queue for all the scsi_devices on the target -
 368 * including current_sdev first.
 369 *
 370 * Called with *no* scsi locks held.
 371 */
 372static void scsi_single_lun_run(struct scsi_device *current_sdev)
 373{
 374	struct Scsi_Host *shost = current_sdev->host;
 375	struct scsi_device *sdev, *tmp;
 376	struct scsi_target *starget = scsi_target(current_sdev);
 377	unsigned long flags;
 378
 379	spin_lock_irqsave(shost->host_lock, flags);
 380	starget->starget_sdev_user = NULL;
 381	spin_unlock_irqrestore(shost->host_lock, flags);
 382
 383	/*
 384	 * Call blk_run_queue for all LUNs on the target, starting with
 385	 * current_sdev. We race with others (to set starget_sdev_user),
 386	 * but in most cases, we will be first. Ideally, each LU on the
 387	 * target would get some limited time or requests on the target.
 388	 */
 389	scsi_kick_queue(current_sdev->request_queue);
 390
 391	spin_lock_irqsave(shost->host_lock, flags);
 392	if (starget->starget_sdev_user)
 393		goto out;
 394	list_for_each_entry_safe(sdev, tmp, &starget->devices,
 395			same_target_siblings) {
 396		if (sdev == current_sdev)
 397			continue;
 398		if (scsi_device_get(sdev))
 399			continue;
 400
 401		spin_unlock_irqrestore(shost->host_lock, flags);
 402		scsi_kick_queue(sdev->request_queue);
 403		spin_lock_irqsave(shost->host_lock, flags);
 404	
 405		scsi_device_put(sdev);
 406	}
 407 out:
 408	spin_unlock_irqrestore(shost->host_lock, flags);
 409}
 410
 411static inline bool scsi_device_is_busy(struct scsi_device *sdev)
 412{
 413	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
 414		return true;
 415	if (atomic_read(&sdev->device_blocked) > 0)
 416		return true;
 417	return false;
 418}
 419
 420static inline bool scsi_target_is_busy(struct scsi_target *starget)
 421{
 422	if (starget->can_queue > 0) {
 423		if (atomic_read(&starget->target_busy) >= starget->can_queue)
 424			return true;
 425		if (atomic_read(&starget->target_blocked) > 0)
 426			return true;
 427	}
 428	return false;
 429}
 430
 431static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
 432{
 433	if (shost->can_queue > 0 &&
 434	    atomic_read(&shost->host_busy) >= shost->can_queue)
 435		return true;
 436	if (atomic_read(&shost->host_blocked) > 0)
 437		return true;
 438	if (shost->host_self_blocked)
 439		return true;
 440	return false;
 441}
 442
 443static void scsi_starved_list_run(struct Scsi_Host *shost)
 444{
 445	LIST_HEAD(starved_list);
 446	struct scsi_device *sdev;
 447	unsigned long flags;
 448
 449	spin_lock_irqsave(shost->host_lock, flags);
 450	list_splice_init(&shost->starved_list, &starved_list);
 451
 452	while (!list_empty(&starved_list)) {
 453		struct request_queue *slq;
 454
 455		/*
 456		 * As long as shost is accepting commands and we have
 457		 * starved queues, call blk_run_queue. scsi_request_fn
 458		 * drops the queue_lock and can add us back to the
 459		 * starved_list.
 460		 *
 461		 * host_lock protects the starved_list and starved_entry.
 462		 * scsi_request_fn must get the host_lock before checking
 463		 * or modifying starved_list or starved_entry.
 464		 */
 465		if (scsi_host_is_busy(shost))
 466			break;
 467
 468		sdev = list_entry(starved_list.next,
 469				  struct scsi_device, starved_entry);
 470		list_del_init(&sdev->starved_entry);
 471		if (scsi_target_is_busy(scsi_target(sdev))) {
 472			list_move_tail(&sdev->starved_entry,
 473				       &shost->starved_list);
 474			continue;
 475		}
 476
 477		/*
 478		 * Once we drop the host lock, a racing scsi_remove_device()
 479		 * call may remove the sdev from the starved list and destroy
 480		 * it and the queue.  Mitigate by taking a reference to the
 481		 * queue and never touching the sdev again after we drop the
 482		 * host lock.  Note: if __scsi_remove_device() invokes
 483		 * blk_cleanup_queue() before the queue is run from this
 484		 * function then blk_run_queue() will return immediately since
 485		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
 486		 */
 487		slq = sdev->request_queue;
 488		if (!blk_get_queue(slq))
 489			continue;
 490		spin_unlock_irqrestore(shost->host_lock, flags);
 491
 492		scsi_kick_queue(slq);
 493		blk_put_queue(slq);
 494
 495		spin_lock_irqsave(shost->host_lock, flags);
 496	}
 497	/* put any unprocessed entries back */
 498	list_splice(&starved_list, &shost->starved_list);
 499	spin_unlock_irqrestore(shost->host_lock, flags);
 500}
 501
 502/*
 503 * Function:   scsi_run_queue()
 504 *
 505 * Purpose:    Select a proper request queue to serve next
 506 *
 507 * Arguments:  q       - last request's queue
 508 *
 509 * Returns:     Nothing
 510 *
 511 * Notes:      The previous command was completely finished, start
 512 *             a new one if possible.
 513 */
 514static void scsi_run_queue(struct request_queue *q)
 515{
 516	struct scsi_device *sdev = q->queuedata;
 517
 518	if (scsi_target(sdev)->single_lun)
 519		scsi_single_lun_run(sdev);
 520	if (!list_empty(&sdev->host->starved_list))
 521		scsi_starved_list_run(sdev->host);
 522
 523	blk_mq_run_hw_queues(q, false);
 524}
 525
 526void scsi_requeue_run_queue(struct work_struct *work)
 527{
 528	struct scsi_device *sdev;
 529	struct request_queue *q;
 530
 531	sdev = container_of(work, struct scsi_device, requeue_work);
 532	q = sdev->request_queue;
 533	scsi_run_queue(q);
 534}
 535
 536void scsi_run_host_queues(struct Scsi_Host *shost)
 537{
 538	struct scsi_device *sdev;
 539
 540	shost_for_each_device(sdev, shost)
 541		scsi_run_queue(sdev->request_queue);
 542}
 543
 544static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
 545{
 546	if (!blk_rq_is_passthrough(cmd->request)) {
 547		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
 548
 549		if (drv->uninit_command)
 550			drv->uninit_command(cmd);
 551	}
 552}
 553
 554static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
 555{
 556	if (cmd->sdb.table.nents)
 557		sg_free_table_chained(&cmd->sdb.table,
 558				SCSI_INLINE_SG_CNT);
 559	if (scsi_prot_sg_count(cmd))
 560		sg_free_table_chained(&cmd->prot_sdb->table,
 561				SCSI_INLINE_PROT_SG_CNT);
 562}
 563
 564static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
 565{
 566	scsi_mq_free_sgtables(cmd);
 567	scsi_uninit_cmd(cmd);
 568	scsi_del_cmd_from_list(cmd);
 
 
 
 
 
 
 
 
 569}
 570
 571/* Returns false when no more bytes to process, true if there are more */
 572static bool scsi_end_request(struct request *req, blk_status_t error,
 573		unsigned int bytes)
 574{
 575	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
 576	struct scsi_device *sdev = cmd->device;
 577	struct request_queue *q = sdev->request_queue;
 578
 579	if (blk_update_request(req, error, bytes))
 580		return true;
 581
 582	if (blk_queue_add_random(q))
 583		add_disk_randomness(req->rq_disk);
 584
 585	if (!blk_rq_is_scsi(req)) {
 586		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
 587		cmd->flags &= ~SCMD_INITIALIZED;
 588	}
 589
 590	/*
 591	 * Calling rcu_barrier() is not necessary here because the
 592	 * SCSI error handler guarantees that the function called by
 593	 * call_rcu() has been called before scsi_end_request() is
 594	 * called.
 595	 */
 596	destroy_rcu_head(&cmd->rcu);
 597
 598	/*
 599	 * In the MQ case the command gets freed by __blk_mq_end_request,
 600	 * so we have to do all cleanup that depends on it earlier.
 601	 *
 602	 * We also can't kick the queues from irq context, so we
 603	 * will have to defer it to a workqueue.
 604	 */
 605	scsi_mq_uninit_cmd(cmd);
 606
 607	/*
 608	 * queue is still alive, so grab the ref for preventing it
 609	 * from being cleaned up during running queue.
 610	 */
 611	percpu_ref_get(&q->q_usage_counter);
 612
 613	__blk_mq_end_request(req, error);
 614
 615	if (scsi_target(sdev)->single_lun ||
 616	    !list_empty(&sdev->host->starved_list))
 617		kblockd_schedule_work(&sdev->requeue_work);
 618	else
 619		blk_mq_run_hw_queues(q, true);
 620
 621	percpu_ref_put(&q->q_usage_counter);
 622	return false;
 623}
 624
 625/**
 626 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
 627 * @cmd:	SCSI command
 628 * @result:	scsi error code
 629 *
 630 * Translate a SCSI result code into a blk_status_t value. May reset the host
 631 * byte of @cmd->result.
 632 */
 633static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
 634{
 635	switch (host_byte(result)) {
 636	case DID_OK:
 637		/*
 638		 * Also check the other bytes than the status byte in result
 639		 * to handle the case when a SCSI LLD sets result to
 640		 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
 641		 */
 642		if (scsi_status_is_good(result) && (result & ~0xff) == 0)
 643			return BLK_STS_OK;
 644		return BLK_STS_IOERR;
 645	case DID_TRANSPORT_FAILFAST:
 646		return BLK_STS_TRANSPORT;
 647	case DID_TARGET_FAILURE:
 648		set_host_byte(cmd, DID_OK);
 649		return BLK_STS_TARGET;
 650	case DID_NEXUS_FAILURE:
 651		set_host_byte(cmd, DID_OK);
 652		return BLK_STS_NEXUS;
 653	case DID_ALLOC_FAILURE:
 654		set_host_byte(cmd, DID_OK);
 655		return BLK_STS_NOSPC;
 656	case DID_MEDIUM_ERROR:
 657		set_host_byte(cmd, DID_OK);
 658		return BLK_STS_MEDIUM;
 659	default:
 660		return BLK_STS_IOERR;
 661	}
 662}
 663
 664/* Helper for scsi_io_completion() when "reprep" action required. */
 665static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
 666				      struct request_queue *q)
 667{
 668	/* A new command will be prepared and issued. */
 669	scsi_mq_requeue_cmd(cmd);
 670}
 671
 672/* Helper for scsi_io_completion() when special action required. */
 673static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
 674{
 675	struct request_queue *q = cmd->device->request_queue;
 676	struct request *req = cmd->request;
 677	int level = 0;
 678	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
 679	      ACTION_DELAYED_RETRY} action;
 680	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
 681	struct scsi_sense_hdr sshdr;
 682	bool sense_valid;
 683	bool sense_current = true;      /* false implies "deferred sense" */
 684	blk_status_t blk_stat;
 685
 686	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 687	if (sense_valid)
 688		sense_current = !scsi_sense_is_deferred(&sshdr);
 689
 690	blk_stat = scsi_result_to_blk_status(cmd, result);
 691
 692	if (host_byte(result) == DID_RESET) {
 693		/* Third party bus reset or reset for error recovery
 694		 * reasons.  Just retry the command and see what
 695		 * happens.
 696		 */
 697		action = ACTION_RETRY;
 698	} else if (sense_valid && sense_current) {
 699		switch (sshdr.sense_key) {
 700		case UNIT_ATTENTION:
 701			if (cmd->device->removable) {
 702				/* Detected disc change.  Set a bit
 703				 * and quietly refuse further access.
 704				 */
 705				cmd->device->changed = 1;
 706				action = ACTION_FAIL;
 707			} else {
 708				/* Must have been a power glitch, or a
 709				 * bus reset.  Could not have been a
 710				 * media change, so we just retry the
 711				 * command and see what happens.
 712				 */
 713				action = ACTION_RETRY;
 714			}
 715			break;
 716		case ILLEGAL_REQUEST:
 717			/* If we had an ILLEGAL REQUEST returned, then
 718			 * we may have performed an unsupported
 719			 * command.  The only thing this should be
 720			 * would be a ten byte read where only a six
 721			 * byte read was supported.  Also, on a system
 722			 * where READ CAPACITY failed, we may have
 723			 * read past the end of the disk.
 724			 */
 725			if ((cmd->device->use_10_for_rw &&
 726			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 727			    (cmd->cmnd[0] == READ_10 ||
 728			     cmd->cmnd[0] == WRITE_10)) {
 729				/* This will issue a new 6-byte command. */
 730				cmd->device->use_10_for_rw = 0;
 731				action = ACTION_REPREP;
 732			} else if (sshdr.asc == 0x10) /* DIX */ {
 733				action = ACTION_FAIL;
 734				blk_stat = BLK_STS_PROTECTION;
 735			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 736			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
 737				action = ACTION_FAIL;
 738				blk_stat = BLK_STS_TARGET;
 739			} else
 740				action = ACTION_FAIL;
 741			break;
 742		case ABORTED_COMMAND:
 743			action = ACTION_FAIL;
 744			if (sshdr.asc == 0x10) /* DIF */
 745				blk_stat = BLK_STS_PROTECTION;
 746			break;
 747		case NOT_READY:
 748			/* If the device is in the process of becoming
 749			 * ready, or has a temporary blockage, retry.
 750			 */
 751			if (sshdr.asc == 0x04) {
 752				switch (sshdr.ascq) {
 753				case 0x01: /* becoming ready */
 754				case 0x04: /* format in progress */
 755				case 0x05: /* rebuild in progress */
 756				case 0x06: /* recalculation in progress */
 757				case 0x07: /* operation in progress */
 758				case 0x08: /* Long write in progress */
 759				case 0x09: /* self test in progress */
 760				case 0x14: /* space allocation in progress */
 761				case 0x1a: /* start stop unit in progress */
 762				case 0x1b: /* sanitize in progress */
 763				case 0x1d: /* configuration in progress */
 764				case 0x24: /* depopulation in progress */
 765					action = ACTION_DELAYED_RETRY;
 766					break;
 767				default:
 768					action = ACTION_FAIL;
 769					break;
 770				}
 771			} else
 772				action = ACTION_FAIL;
 773			break;
 774		case VOLUME_OVERFLOW:
 775			/* See SSC3rXX or current. */
 776			action = ACTION_FAIL;
 777			break;
 778		default:
 779			action = ACTION_FAIL;
 780			break;
 781		}
 782	} else
 783		action = ACTION_FAIL;
 784
 785	if (action != ACTION_FAIL &&
 786	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
 787		action = ACTION_FAIL;
 788
 789	switch (action) {
 790	case ACTION_FAIL:
 791		/* Give up and fail the remainder of the request */
 792		if (!(req->rq_flags & RQF_QUIET)) {
 793			static DEFINE_RATELIMIT_STATE(_rs,
 794					DEFAULT_RATELIMIT_INTERVAL,
 795					DEFAULT_RATELIMIT_BURST);
 796
 797			if (unlikely(scsi_logging_level))
 798				level =
 799				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
 800						    SCSI_LOG_MLCOMPLETE_BITS);
 801
 802			/*
 803			 * if logging is enabled the failure will be printed
 804			 * in scsi_log_completion(), so avoid duplicate messages
 805			 */
 806			if (!level && __ratelimit(&_rs)) {
 807				scsi_print_result(cmd, NULL, FAILED);
 808				if (driver_byte(result) == DRIVER_SENSE)
 809					scsi_print_sense(cmd);
 810				scsi_print_command(cmd);
 811			}
 812		}
 813		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
 814			return;
 815		/*FALLTHRU*/
 816	case ACTION_REPREP:
 817		scsi_io_completion_reprep(cmd, q);
 818		break;
 819	case ACTION_RETRY:
 820		/* Retry the same command immediately */
 821		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
 822		break;
 823	case ACTION_DELAYED_RETRY:
 824		/* Retry the same command after a delay */
 825		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
 826		break;
 827	}
 828}
 829
 830/*
 831 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
 832 * new result that may suppress further error checking. Also modifies
 833 * *blk_statp in some cases.
 834 */
 835static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
 836					blk_status_t *blk_statp)
 837{
 838	bool sense_valid;
 839	bool sense_current = true;	/* false implies "deferred sense" */
 840	struct request *req = cmd->request;
 841	struct scsi_sense_hdr sshdr;
 842
 843	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 844	if (sense_valid)
 845		sense_current = !scsi_sense_is_deferred(&sshdr);
 846
 847	if (blk_rq_is_passthrough(req)) {
 848		if (sense_valid) {
 849			/*
 850			 * SG_IO wants current and deferred errors
 851			 */
 852			scsi_req(req)->sense_len =
 853				min(8 + cmd->sense_buffer[7],
 854				    SCSI_SENSE_BUFFERSIZE);
 855		}
 856		if (sense_current)
 857			*blk_statp = scsi_result_to_blk_status(cmd, result);
 858	} else if (blk_rq_bytes(req) == 0 && sense_current) {
 859		/*
 860		 * Flush commands do not transfers any data, and thus cannot use
 861		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
 862		 * This sets *blk_statp explicitly for the problem case.
 863		 */
 864		*blk_statp = scsi_result_to_blk_status(cmd, result);
 865	}
 866	/*
 867	 * Recovered errors need reporting, but they're always treated as
 868	 * success, so fiddle the result code here.  For passthrough requests
 869	 * we already took a copy of the original into sreq->result which
 870	 * is what gets returned to the user
 871	 */
 872	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
 873		bool do_print = true;
 874		/*
 875		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
 876		 * skip print since caller wants ATA registers. Only occurs
 877		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
 878		 */
 879		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
 880			do_print = false;
 881		else if (req->rq_flags & RQF_QUIET)
 882			do_print = false;
 883		if (do_print)
 884			scsi_print_sense(cmd);
 885		result = 0;
 886		/* for passthrough, *blk_statp may be set */
 887		*blk_statp = BLK_STS_OK;
 888	}
 889	/*
 890	 * Another corner case: the SCSI status byte is non-zero but 'good'.
 891	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
 892	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
 893	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
 894	 * intermediate statuses (both obsolete in SAM-4) as good.
 895	 */
 896	if (status_byte(result) && scsi_status_is_good(result)) {
 897		result = 0;
 898		*blk_statp = BLK_STS_OK;
 899	}
 900	return result;
 901}
 902
 903/*
 904 * Function:    scsi_io_completion()
 905 *
 906 * Purpose:     Completion processing for block device I/O requests.
 907 *
 908 * Arguments:   cmd   - command that is finished.
 909 *
 910 * Lock status: Assumed that no lock is held upon entry.
 911 *
 912 * Returns:     Nothing
 913 *
 914 * Notes:       We will finish off the specified number of sectors.  If we
 915 *		are done, the command block will be released and the queue
 916 *		function will be goosed.  If we are not done then we have to
 917 *		figure out what to do next:
 
 
 
 918 *
 919 *		a) We can call scsi_requeue_command().  The request
 920 *		   will be unprepared and put back on the queue.  Then
 921 *		   a new command will be created for it.  This should
 922 *		   be used if we made forward progress, or if we want
 923 *		   to switch from READ(10) to READ(6) for example.
 924 *
 925 *		b) We can call __scsi_queue_insert().  The request will
 926 *		   be put back on the queue and retried using the same
 927 *		   command as before, possibly after a delay.
 928 *
 929 *		c) We can call scsi_end_request() with blk_stat other than
 930 *		   BLK_STS_OK, to fail the remainder of the request.
 931 */
 932void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
 933{
 934	int result = cmd->result;
 935	struct request_queue *q = cmd->device->request_queue;
 936	struct request *req = cmd->request;
 937	blk_status_t blk_stat = BLK_STS_OK;
 938
 939	if (unlikely(result))	/* a nz result may or may not be an error */
 940		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
 941
 942	if (unlikely(blk_rq_is_passthrough(req))) {
 943		/*
 944		 * scsi_result_to_blk_status may have reset the host_byte
 945		 */
 946		scsi_req(req)->result = cmd->result;
 947	}
 948
 949	/*
 950	 * Next deal with any sectors which we were able to correctly
 951	 * handle.
 952	 */
 953	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
 954		"%u sectors total, %d bytes done.\n",
 955		blk_rq_sectors(req), good_bytes));
 956
 957	/*
 958	 * Next deal with any sectors which we were able to correctly
 959	 * handle. Failed, zero length commands always need to drop down
 960	 * to retry code. Fast path should return in this block.
 961	 */
 962	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
 963		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
 964			return; /* no bytes remaining */
 965	}
 966
 967	/* Kill remainder if no retries. */
 968	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
 969		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
 970			WARN_ONCE(true,
 971			    "Bytes remaining after failed, no-retry command");
 972		return;
 973	}
 974
 975	/*
 976	 * If there had been no error, but we have leftover bytes in the
 977	 * requeues just queue the command up again.
 978	 */
 979	if (likely(result == 0))
 980		scsi_io_completion_reprep(cmd, q);
 981	else
 982		scsi_io_completion_action(cmd, result);
 983}
 984
 985static blk_status_t scsi_init_sgtable(struct request *req,
 986		struct scsi_data_buffer *sdb)
 987{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 988	int count;
 989
 
 
 
 
 
 
 
 
 
 
 990	/*
 991	 * If sg table allocation fails, requeue request later.
 992	 */
 993	if (unlikely(sg_alloc_table_chained(&sdb->table,
 994			blk_rq_nr_phys_segments(req), sdb->table.sgl,
 995			SCSI_INLINE_SG_CNT)))
 996		return BLK_STS_RESOURCE;
 997
 998	/* 
 999	 * Next, walk the list, and fill in the addresses and sizes of
1000	 * each segment.
1001	 */
1002	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1003	BUG_ON(count > sdb->table.nents);
1004	sdb->table.nents = count;
1005	sdb->length = blk_rq_payload_bytes(req);
1006	return BLK_STS_OK;
1007}
 
 
 
1008
1009/*
1010 * Function:    scsi_init_io()
1011 *
1012 * Purpose:     SCSI I/O initialize function.
1013 *
1014 * Arguments:   cmd   - Command descriptor we wish to initialize
1015 *
1016 * Returns:     BLK_STS_OK on success
1017 *		BLK_STS_RESOURCE if the failure is retryable
1018 *		BLK_STS_IOERR if the failure is fatal
1019 */
1020blk_status_t scsi_init_io(struct scsi_cmnd *cmd)
1021{
1022	struct request *rq = cmd->request;
1023	blk_status_t ret;
1024
1025	if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1026		return BLK_STS_IOERR;
 
1027
1028	ret = scsi_init_sgtable(rq, &cmd->sdb);
1029	if (ret)
1030		return ret;
1031
1032	if (blk_integrity_rq(rq)) {
1033		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1034		int ivecs, count;
1035
1036		if (WARN_ON_ONCE(!prot_sdb)) {
1037			/*
1038			 * This can happen if someone (e.g. multipath)
1039			 * queues a command to a device on an adapter
1040			 * that does not support DIX.
1041			 */
1042			ret = BLK_STS_IOERR;
1043			goto out_free_sgtables;
1044		}
1045
1046		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1047
1048		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1049				prot_sdb->table.sgl,
1050				SCSI_INLINE_PROT_SG_CNT)) {
1051			ret = BLK_STS_RESOURCE;
1052			goto out_free_sgtables;
1053		}
1054
1055		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1056						prot_sdb->table.sgl);
1057		BUG_ON(count > ivecs);
1058		BUG_ON(count > queue_max_integrity_segments(rq->q));
1059
1060		cmd->prot_sdb = prot_sdb;
1061		cmd->prot_sdb->table.nents = count;
1062	}
1063
1064	return BLK_STS_OK;
1065out_free_sgtables:
1066	scsi_mq_free_sgtables(cmd);
1067	return ret;
1068}
1069EXPORT_SYMBOL(scsi_init_io);
1070
1071/**
1072 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1073 * @rq: Request associated with the SCSI command to be initialized.
1074 *
1075 * This function initializes the members of struct scsi_cmnd that must be
1076 * initialized before request processing starts and that won't be
1077 * reinitialized if a SCSI command is requeued.
1078 *
1079 * Called from inside blk_get_request() for pass-through requests and from
1080 * inside scsi_init_command() for filesystem requests.
1081 */
1082static void scsi_initialize_rq(struct request *rq)
1083{
1084	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1085
1086	scsi_req_init(&cmd->req);
1087	init_rcu_head(&cmd->rcu);
1088	cmd->jiffies_at_alloc = jiffies;
1089	cmd->retries = 0;
1090}
1091
1092/*
1093 * Only called when the request isn't completed by SCSI, and not freed by
1094 * SCSI
1095 */
1096static void scsi_cleanup_rq(struct request *rq)
1097{
1098	if (rq->rq_flags & RQF_DONTPREP) {
1099		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1100		rq->rq_flags &= ~RQF_DONTPREP;
1101	}
1102}
1103
1104/* Add a command to the list used by the aacraid and dpt_i2o drivers */
1105void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1106{
1107	struct scsi_device *sdev = cmd->device;
1108	struct Scsi_Host *shost = sdev->host;
1109	unsigned long flags;
1110
1111	if (shost->use_cmd_list) {
1112		spin_lock_irqsave(&sdev->list_lock, flags);
1113		list_add_tail(&cmd->list, &sdev->cmd_list);
1114		spin_unlock_irqrestore(&sdev->list_lock, flags);
1115	}
1116}
1117
1118/* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1119void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1120{
1121	struct scsi_device *sdev = cmd->device;
1122	struct Scsi_Host *shost = sdev->host;
1123	unsigned long flags;
1124
1125	if (shost->use_cmd_list) {
1126		spin_lock_irqsave(&sdev->list_lock, flags);
1127		BUG_ON(list_empty(&cmd->list));
1128		list_del_init(&cmd->list);
1129		spin_unlock_irqrestore(&sdev->list_lock, flags);
1130	}
1131}
1132
1133/* Called after a request has been started. */
1134void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1135{
1136	void *buf = cmd->sense_buffer;
1137	void *prot = cmd->prot_sdb;
1138	struct request *rq = blk_mq_rq_from_pdu(cmd);
1139	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1140	unsigned long jiffies_at_alloc;
1141	int retries;
 
1142
1143	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1144		flags |= SCMD_INITIALIZED;
1145		scsi_initialize_rq(rq);
1146	}
1147
1148	jiffies_at_alloc = cmd->jiffies_at_alloc;
1149	retries = cmd->retries;
1150	/* zero out the cmd, except for the embedded scsi_request */
1151	memset((char *)cmd + sizeof(cmd->req), 0,
1152		sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
 
 
 
 
 
 
 
1153
1154	cmd->device = dev;
1155	cmd->sense_buffer = buf;
1156	cmd->prot_sdb = prot;
1157	cmd->flags = flags;
1158	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1159	cmd->jiffies_at_alloc = jiffies_at_alloc;
1160	cmd->retries = retries;
 
 
1161
1162	scsi_add_cmd_to_list(cmd);
1163}
1164
1165static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1166		struct request *req)
1167{
1168	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1169
1170	/*
1171	 * Passthrough requests may transfer data, in which case they must
1172	 * a bio attached to them.  Or they might contain a SCSI command
1173	 * that does not transfer data, in which case they may optionally
1174	 * submit a request without an attached bio.
1175	 */
1176	if (req->bio) {
1177		blk_status_t ret = scsi_init_io(cmd);
1178		if (unlikely(ret != BLK_STS_OK))
1179			return ret;
1180	} else {
1181		BUG_ON(blk_rq_bytes(req));
1182
1183		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1184	}
1185
1186	cmd->cmd_len = scsi_req(req)->cmd_len;
1187	cmd->cmnd = scsi_req(req)->cmd;
1188	cmd->transfersize = blk_rq_bytes(req);
1189	cmd->allowed = scsi_req(req)->retries;
1190	return BLK_STS_OK;
1191}
1192
1193/*
1194 * Setup a normal block command.  These are simple request from filesystems
1195 * that still need to be translated to SCSI CDBs from the ULD.
1196 */
1197static blk_status_t scsi_setup_fs_cmnd(struct scsi_device *sdev,
1198		struct request *req)
1199{
1200	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1201
1202	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1203		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1204		if (ret != BLK_STS_OK)
1205			return ret;
1206	}
1207
1208	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1209	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1210	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1211}
1212
1213static blk_status_t scsi_setup_cmnd(struct scsi_device *sdev,
1214		struct request *req)
1215{
1216	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
 
1217
1218	if (!blk_rq_bytes(req))
1219		cmd->sc_data_direction = DMA_NONE;
1220	else if (rq_data_dir(req) == WRITE)
1221		cmd->sc_data_direction = DMA_TO_DEVICE;
1222	else
1223		cmd->sc_data_direction = DMA_FROM_DEVICE;
1224
1225	if (blk_rq_is_scsi(req))
1226		return scsi_setup_scsi_cmnd(sdev, req);
1227	else
1228		return scsi_setup_fs_cmnd(sdev, req);
 
 
 
 
 
1229}
1230
1231static blk_status_t
1232scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1233{
1234	switch (sdev->sdev_state) {
1235	case SDEV_OFFLINE:
1236	case SDEV_TRANSPORT_OFFLINE:
1237		/*
1238		 * If the device is offline we refuse to process any
1239		 * commands.  The device must be brought online
1240		 * before trying any recovery commands.
1241		 */
1242		sdev_printk(KERN_ERR, sdev,
1243			    "rejecting I/O to offline device\n");
 
 
 
1244		return BLK_STS_IOERR;
1245	case SDEV_DEL:
1246		/*
1247		 * If the device is fully deleted, we refuse to
1248		 * process any commands as well.
1249		 */
1250		sdev_printk(KERN_ERR, sdev,
1251			    "rejecting I/O to dead device\n");
1252		return BLK_STS_IOERR;
1253	case SDEV_BLOCK:
1254	case SDEV_CREATED_BLOCK:
1255		return BLK_STS_RESOURCE;
1256	case SDEV_QUIESCE:
1257		/*
1258		 * If the devices is blocked we defer normal commands.
1259		 */
1260		if (req && !(req->rq_flags & RQF_PREEMPT))
1261			return BLK_STS_RESOURCE;
1262		return BLK_STS_OK;
1263	default:
1264		/*
1265		 * For any other not fully online state we only allow
1266		 * special commands.  In particular any user initiated
1267		 * command is not allowed.
1268		 */
1269		if (req && !(req->rq_flags & RQF_PREEMPT))
1270			return BLK_STS_IOERR;
1271		return BLK_STS_OK;
1272	}
1273}
1274
1275/*
1276 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1277 * return 0.
1278 *
1279 * Called with the queue_lock held.
1280 */
1281static inline int scsi_dev_queue_ready(struct request_queue *q,
1282				  struct scsi_device *sdev)
1283{
1284	unsigned int busy;
1285
1286	busy = atomic_inc_return(&sdev->device_busy) - 1;
1287	if (atomic_read(&sdev->device_blocked)) {
1288		if (busy)
1289			goto out_dec;
1290
1291		/*
1292		 * unblock after device_blocked iterates to zero
1293		 */
1294		if (atomic_dec_return(&sdev->device_blocked) > 0)
1295			goto out_dec;
1296		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1297				   "unblocking device at zero depth\n"));
1298	}
1299
1300	if (busy >= sdev->queue_depth)
1301		goto out_dec;
1302
1303	return 1;
1304out_dec:
1305	atomic_dec(&sdev->device_busy);
1306	return 0;
1307}
1308
1309/*
1310 * scsi_target_queue_ready: checks if there we can send commands to target
1311 * @sdev: scsi device on starget to check.
1312 */
1313static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1314					   struct scsi_device *sdev)
1315{
1316	struct scsi_target *starget = scsi_target(sdev);
1317	unsigned int busy;
1318
1319	if (starget->single_lun) {
1320		spin_lock_irq(shost->host_lock);
1321		if (starget->starget_sdev_user &&
1322		    starget->starget_sdev_user != sdev) {
1323			spin_unlock_irq(shost->host_lock);
1324			return 0;
1325		}
1326		starget->starget_sdev_user = sdev;
1327		spin_unlock_irq(shost->host_lock);
1328	}
1329
1330	if (starget->can_queue <= 0)
1331		return 1;
1332
1333	busy = atomic_inc_return(&starget->target_busy) - 1;
1334	if (atomic_read(&starget->target_blocked) > 0) {
1335		if (busy)
1336			goto starved;
1337
1338		/*
1339		 * unblock after target_blocked iterates to zero
1340		 */
1341		if (atomic_dec_return(&starget->target_blocked) > 0)
1342			goto out_dec;
1343
1344		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1345				 "unblocking target at zero depth\n"));
1346	}
1347
1348	if (busy >= starget->can_queue)
1349		goto starved;
1350
1351	return 1;
1352
1353starved:
1354	spin_lock_irq(shost->host_lock);
1355	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1356	spin_unlock_irq(shost->host_lock);
1357out_dec:
1358	if (starget->can_queue > 0)
1359		atomic_dec(&starget->target_busy);
1360	return 0;
1361}
1362
1363/*
1364 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1365 * return 0. We must end up running the queue again whenever 0 is
1366 * returned, else IO can hang.
1367 */
1368static inline int scsi_host_queue_ready(struct request_queue *q,
1369				   struct Scsi_Host *shost,
1370				   struct scsi_device *sdev)
 
1371{
1372	unsigned int busy;
1373
1374	if (scsi_host_in_recovery(shost))
1375		return 0;
1376
1377	busy = atomic_inc_return(&shost->host_busy) - 1;
1378	if (atomic_read(&shost->host_blocked) > 0) {
1379		if (busy)
1380			goto starved;
1381
1382		/*
1383		 * unblock after host_blocked iterates to zero
1384		 */
1385		if (atomic_dec_return(&shost->host_blocked) > 0)
1386			goto out_dec;
1387
1388		SCSI_LOG_MLQUEUE(3,
1389			shost_printk(KERN_INFO, shost,
1390				     "unblocking host at zero depth\n"));
1391	}
1392
1393	if (shost->can_queue > 0 && busy >= shost->can_queue)
1394		goto starved;
1395	if (shost->host_self_blocked)
1396		goto starved;
1397
1398	/* We're OK to process the command, so we can't be starved */
1399	if (!list_empty(&sdev->starved_entry)) {
1400		spin_lock_irq(shost->host_lock);
1401		if (!list_empty(&sdev->starved_entry))
1402			list_del_init(&sdev->starved_entry);
1403		spin_unlock_irq(shost->host_lock);
1404	}
1405
 
 
1406	return 1;
1407
1408starved:
1409	spin_lock_irq(shost->host_lock);
1410	if (list_empty(&sdev->starved_entry))
1411		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1412	spin_unlock_irq(shost->host_lock);
1413out_dec:
1414	scsi_dec_host_busy(shost);
1415	return 0;
1416}
1417
1418/*
1419 * Busy state exporting function for request stacking drivers.
1420 *
1421 * For efficiency, no lock is taken to check the busy state of
1422 * shost/starget/sdev, since the returned value is not guaranteed and
1423 * may be changed after request stacking drivers call the function,
1424 * regardless of taking lock or not.
1425 *
1426 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1427 * needs to return 'not busy'. Otherwise, request stacking drivers
1428 * may hold requests forever.
1429 */
1430static bool scsi_mq_lld_busy(struct request_queue *q)
1431{
1432	struct scsi_device *sdev = q->queuedata;
1433	struct Scsi_Host *shost;
1434
1435	if (blk_queue_dying(q))
1436		return false;
1437
1438	shost = sdev->host;
1439
1440	/*
1441	 * Ignore host/starget busy state.
1442	 * Since block layer does not have a concept of fairness across
1443	 * multiple queues, congestion of host/starget needs to be handled
1444	 * in SCSI layer.
1445	 */
1446	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1447		return true;
1448
1449	return false;
1450}
1451
1452static void scsi_softirq_done(struct request *rq)
1453{
1454	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1455	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1456	int disposition;
1457
1458	INIT_LIST_HEAD(&cmd->eh_entry);
1459
1460	atomic_inc(&cmd->device->iodone_cnt);
1461	if (cmd->result)
1462		atomic_inc(&cmd->device->ioerr_cnt);
1463
1464	disposition = scsi_decide_disposition(cmd);
1465	if (disposition != SUCCESS &&
1466	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1467		scmd_printk(KERN_ERR, cmd,
1468			    "timing out command, waited %lus\n",
1469			    wait_for/HZ);
1470		disposition = SUCCESS;
1471	}
1472
1473	scsi_log_completion(cmd, disposition);
1474
1475	switch (disposition) {
1476		case SUCCESS:
1477			scsi_finish_command(cmd);
1478			break;
1479		case NEEDS_RETRY:
1480			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1481			break;
1482		case ADD_TO_MLQUEUE:
1483			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1484			break;
1485		default:
1486			scsi_eh_scmd_add(cmd);
1487			break;
1488	}
1489}
1490
1491/**
1492 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1493 * @cmd: command block we are dispatching.
1494 *
1495 * Return: nonzero return request was rejected and device's queue needs to be
1496 * plugged.
1497 */
1498static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1499{
1500	struct Scsi_Host *host = cmd->device->host;
1501	int rtn = 0;
1502
1503	atomic_inc(&cmd->device->iorequest_cnt);
1504
1505	/* check if the device is still usable */
1506	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1507		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1508		 * returns an immediate error upwards, and signals
1509		 * that the device is no longer present */
1510		cmd->result = DID_NO_CONNECT << 16;
1511		goto done;
1512	}
1513
1514	/* Check to see if the scsi lld made this device blocked. */
1515	if (unlikely(scsi_device_blocked(cmd->device))) {
1516		/*
1517		 * in blocked state, the command is just put back on
1518		 * the device queue.  The suspend state has already
1519		 * blocked the queue so future requests should not
1520		 * occur until the device transitions out of the
1521		 * suspend state.
1522		 */
1523		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1524			"queuecommand : device blocked\n"));
1525		return SCSI_MLQUEUE_DEVICE_BUSY;
1526	}
1527
1528	/* Store the LUN value in cmnd, if needed. */
1529	if (cmd->device->lun_in_cdb)
1530		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1531			       (cmd->device->lun << 5 & 0xe0);
1532
1533	scsi_log_send(cmd);
1534
1535	/*
1536	 * Before we queue this command, check if the command
1537	 * length exceeds what the host adapter can handle.
1538	 */
1539	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1540		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1541			       "queuecommand : command too long. "
1542			       "cdb_size=%d host->max_cmd_len=%d\n",
1543			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1544		cmd->result = (DID_ABORT << 16);
1545		goto done;
1546	}
1547
1548	if (unlikely(host->shost_state == SHOST_DEL)) {
1549		cmd->result = (DID_NO_CONNECT << 16);
1550		goto done;
1551
1552	}
1553
1554	trace_scsi_dispatch_cmd_start(cmd);
1555	rtn = host->hostt->queuecommand(host, cmd);
1556	if (rtn) {
1557		trace_scsi_dispatch_cmd_error(cmd, rtn);
1558		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1559		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1560			rtn = SCSI_MLQUEUE_HOST_BUSY;
1561
1562		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1563			"queuecommand : request rejected\n"));
1564	}
1565
1566	return rtn;
1567 done:
1568	cmd->scsi_done(cmd);
1569	return 0;
1570}
1571
1572/* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1573static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1574{
1575	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1576		sizeof(struct scatterlist);
1577}
1578
1579static blk_status_t scsi_mq_prep_fn(struct request *req)
1580{
1581	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1582	struct scsi_device *sdev = req->q->queuedata;
1583	struct Scsi_Host *shost = sdev->host;
1584	struct scatterlist *sg;
1585
1586	scsi_init_command(sdev, cmd);
1587
1588	cmd->request = req;
1589	cmd->tag = req->tag;
1590	cmd->prot_op = SCSI_PROT_NORMAL;
1591
1592	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1593	cmd->sdb.table.sgl = sg;
1594
1595	if (scsi_host_get_prot(shost)) {
1596		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1597
1598		cmd->prot_sdb->table.sgl =
1599			(struct scatterlist *)(cmd->prot_sdb + 1);
1600	}
1601
1602	blk_mq_start_request(req);
1603
1604	return scsi_setup_cmnd(sdev, req);
1605}
1606
1607static void scsi_mq_done(struct scsi_cmnd *cmd)
1608{
 
 
1609	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1610		return;
1611	trace_scsi_dispatch_cmd_done(cmd);
1612
1613	/*
1614	 * If the block layer didn't complete the request due to a timeout
1615	 * injection, scsi must clear its internal completed state so that the
1616	 * timeout handler will see it needs to escalate its own error
1617	 * recovery.
1618	 */
1619	if (unlikely(!blk_mq_complete_request(cmd->request)))
1620		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1621}
1622
1623static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
1624{
1625	struct request_queue *q = hctx->queue;
1626	struct scsi_device *sdev = q->queuedata;
1627
1628	atomic_dec(&sdev->device_busy);
1629}
1630
1631static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
1632{
1633	struct request_queue *q = hctx->queue;
1634	struct scsi_device *sdev = q->queuedata;
1635
1636	if (scsi_dev_queue_ready(q, sdev))
1637		return true;
1638
1639	if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
1640		blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
1641	return false;
1642}
1643
1644static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1645			 const struct blk_mq_queue_data *bd)
1646{
1647	struct request *req = bd->rq;
1648	struct request_queue *q = req->q;
1649	struct scsi_device *sdev = q->queuedata;
1650	struct Scsi_Host *shost = sdev->host;
1651	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1652	blk_status_t ret;
1653	int reason;
1654
1655	/*
1656	 * If the device is not in running state we will reject some or all
1657	 * commands.
1658	 */
1659	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1660		ret = scsi_prep_state_check(sdev, req);
1661		if (ret != BLK_STS_OK)
1662			goto out_put_budget;
1663	}
1664
1665	ret = BLK_STS_RESOURCE;
1666	if (!scsi_target_queue_ready(shost, sdev))
1667		goto out_put_budget;
1668	if (!scsi_host_queue_ready(q, shost, sdev))
1669		goto out_dec_target_busy;
1670
1671	if (!(req->rq_flags & RQF_DONTPREP)) {
1672		ret = scsi_mq_prep_fn(req);
1673		if (ret != BLK_STS_OK)
1674			goto out_dec_host_busy;
1675		req->rq_flags |= RQF_DONTPREP;
1676	} else {
1677		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1678		blk_mq_start_request(req);
1679	}
1680
1681	cmd->flags &= SCMD_PRESERVED_FLAGS;
1682	if (sdev->simple_tags)
1683		cmd->flags |= SCMD_TAGGED;
1684	if (bd->last)
1685		cmd->flags |= SCMD_LAST;
1686
1687	scsi_init_cmd_errh(cmd);
1688	cmd->scsi_done = scsi_mq_done;
1689
1690	reason = scsi_dispatch_cmd(cmd);
1691	if (reason) {
1692		scsi_set_blocked(cmd, reason);
1693		ret = BLK_STS_RESOURCE;
1694		goto out_dec_host_busy;
1695	}
1696
1697	return BLK_STS_OK;
1698
1699out_dec_host_busy:
1700	scsi_dec_host_busy(shost);
1701out_dec_target_busy:
1702	if (scsi_target(sdev)->can_queue > 0)
1703		atomic_dec(&scsi_target(sdev)->target_busy);
1704out_put_budget:
1705	scsi_mq_put_budget(hctx);
1706	switch (ret) {
1707	case BLK_STS_OK:
1708		break;
1709	case BLK_STS_RESOURCE:
 
1710		if (atomic_read(&sdev->device_busy) ||
1711		    scsi_device_blocked(sdev))
1712			ret = BLK_STS_DEV_RESOURCE;
1713		break;
1714	default:
1715		if (unlikely(!scsi_device_online(sdev)))
1716			scsi_req(req)->result = DID_NO_CONNECT << 16;
1717		else
1718			scsi_req(req)->result = DID_ERROR << 16;
1719		/*
1720		 * Make sure to release all allocated resources when
1721		 * we hit an error, as we will never see this command
1722		 * again.
1723		 */
1724		if (req->rq_flags & RQF_DONTPREP)
1725			scsi_mq_uninit_cmd(cmd);
 
1726		break;
1727	}
1728	return ret;
1729}
1730
1731static enum blk_eh_timer_return scsi_timeout(struct request *req,
1732		bool reserved)
1733{
1734	if (reserved)
1735		return BLK_EH_RESET_TIMER;
1736	return scsi_times_out(req);
1737}
1738
1739static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1740				unsigned int hctx_idx, unsigned int numa_node)
1741{
1742	struct Scsi_Host *shost = set->driver_data;
1743	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
1744	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1745	struct scatterlist *sg;
 
1746
1747	if (unchecked_isa_dma)
1748		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
1749	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
1750						    GFP_KERNEL, numa_node);
1751	if (!cmd->sense_buffer)
1752		return -ENOMEM;
1753	cmd->req.sense = cmd->sense_buffer;
1754
1755	if (scsi_host_get_prot(shost)) {
1756		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1757			shost->hostt->cmd_size;
1758		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1759	}
1760
1761	return 0;
 
 
 
 
 
 
 
1762}
1763
1764static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1765				 unsigned int hctx_idx)
1766{
 
1767	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1768
 
 
1769	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
1770			       cmd->sense_buffer);
1771}
1772
1773static int scsi_map_queues(struct blk_mq_tag_set *set)
1774{
1775	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1776
1777	if (shost->hostt->map_queues)
1778		return shost->hostt->map_queues(shost);
1779	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1780}
1781
1782void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1783{
1784	struct device *dev = shost->dma_dev;
1785
1786	/*
1787	 * this limit is imposed by hardware restrictions
1788	 */
1789	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1790					SG_MAX_SEGMENTS));
1791
1792	if (scsi_host_prot_dma(shost)) {
1793		shost->sg_prot_tablesize =
1794			min_not_zero(shost->sg_prot_tablesize,
1795				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1796		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1797		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1798	}
1799
1800	if (dev->dma_mask) {
1801		shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1802				dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1803	}
1804	blk_queue_max_hw_sectors(q, shost->max_sectors);
1805	if (shost->unchecked_isa_dma)
1806		blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
1807	blk_queue_segment_boundary(q, shost->dma_boundary);
1808	dma_set_seg_boundary(dev, shost->dma_boundary);
1809
1810	blk_queue_max_segment_size(q, shost->max_segment_size);
1811	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1812	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1813
1814	/*
1815	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1816	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1817	 * which is set by the platform.
1818	 *
1819	 * Devices that require a bigger alignment can increase it later.
1820	 */
1821	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1822}
1823EXPORT_SYMBOL_GPL(__scsi_init_queue);
1824
1825static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1826	.get_budget	= scsi_mq_get_budget,
1827	.put_budget	= scsi_mq_put_budget,
1828	.queue_rq	= scsi_queue_rq,
1829	.complete	= scsi_softirq_done,
1830	.timeout	= scsi_timeout,
1831#ifdef CONFIG_BLK_DEBUG_FS
1832	.show_rq	= scsi_show_rq,
1833#endif
1834	.init_request	= scsi_mq_init_request,
1835	.exit_request	= scsi_mq_exit_request,
1836	.initialize_rq_fn = scsi_initialize_rq,
1837	.cleanup_rq	= scsi_cleanup_rq,
1838	.busy		= scsi_mq_lld_busy,
1839	.map_queues	= scsi_map_queues,
1840};
1841
1842
1843static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1844{
1845	struct request_queue *q = hctx->queue;
1846	struct scsi_device *sdev = q->queuedata;
1847	struct Scsi_Host *shost = sdev->host;
1848
1849	shost->hostt->commit_rqs(shost, hctx->queue_num);
1850}
1851
1852static const struct blk_mq_ops scsi_mq_ops = {
1853	.get_budget	= scsi_mq_get_budget,
1854	.put_budget	= scsi_mq_put_budget,
1855	.queue_rq	= scsi_queue_rq,
1856	.commit_rqs	= scsi_commit_rqs,
1857	.complete	= scsi_softirq_done,
1858	.timeout	= scsi_timeout,
1859#ifdef CONFIG_BLK_DEBUG_FS
1860	.show_rq	= scsi_show_rq,
1861#endif
1862	.init_request	= scsi_mq_init_request,
1863	.exit_request	= scsi_mq_exit_request,
1864	.initialize_rq_fn = scsi_initialize_rq,
1865	.cleanup_rq	= scsi_cleanup_rq,
1866	.busy		= scsi_mq_lld_busy,
1867	.map_queues	= scsi_map_queues,
1868};
1869
1870struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1871{
1872	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1873	if (IS_ERR(sdev->request_queue))
1874		return NULL;
1875
1876	sdev->request_queue->queuedata = sdev;
1877	__scsi_init_queue(sdev->host, sdev->request_queue);
1878	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1879	return sdev->request_queue;
1880}
1881
1882int scsi_mq_setup_tags(struct Scsi_Host *shost)
1883{
1884	unsigned int cmd_size, sgl_size;
 
1885
1886	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1887				scsi_mq_inline_sgl_size(shost));
1888	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1889	if (scsi_host_get_prot(shost))
1890		cmd_size += sizeof(struct scsi_data_buffer) +
1891			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1892
1893	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
1894	if (shost->hostt->commit_rqs)
1895		shost->tag_set.ops = &scsi_mq_ops;
1896	else
1897		shost->tag_set.ops = &scsi_mq_ops_no_commit;
1898	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
1899	shost->tag_set.queue_depth = shost->can_queue;
1900	shost->tag_set.cmd_size = cmd_size;
1901	shost->tag_set.numa_node = NUMA_NO_NODE;
1902	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1903	shost->tag_set.flags |=
1904		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1905	shost->tag_set.driver_data = shost;
1906
1907	return blk_mq_alloc_tag_set(&shost->tag_set);
1908}
1909
1910void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1911{
1912	blk_mq_free_tag_set(&shost->tag_set);
1913}
1914
1915/**
1916 * scsi_device_from_queue - return sdev associated with a request_queue
1917 * @q: The request queue to return the sdev from
1918 *
1919 * Return the sdev associated with a request queue or NULL if the
1920 * request_queue does not reference a SCSI device.
1921 */
1922struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1923{
1924	struct scsi_device *sdev = NULL;
1925
1926	if (q->mq_ops == &scsi_mq_ops_no_commit ||
1927	    q->mq_ops == &scsi_mq_ops)
1928		sdev = q->queuedata;
1929	if (!sdev || !get_device(&sdev->sdev_gendev))
1930		sdev = NULL;
1931
1932	return sdev;
1933}
1934EXPORT_SYMBOL_GPL(scsi_device_from_queue);
1935
1936/*
1937 * Function:    scsi_block_requests()
1938 *
1939 * Purpose:     Utility function used by low-level drivers to prevent further
1940 *		commands from being queued to the device.
1941 *
1942 * Arguments:   shost       - Host in question
1943 *
1944 * Returns:     Nothing
1945 *
1946 * Lock status: No locks are assumed held.
1947 *
1948 * Notes:       There is no timer nor any other means by which the requests
1949 *		get unblocked other than the low-level driver calling
1950 *		scsi_unblock_requests().
1951 */
1952void scsi_block_requests(struct Scsi_Host *shost)
1953{
1954	shost->host_self_blocked = 1;
1955}
1956EXPORT_SYMBOL(scsi_block_requests);
1957
1958/*
1959 * Function:    scsi_unblock_requests()
1960 *
1961 * Purpose:     Utility function used by low-level drivers to allow further
1962 *		commands from being queued to the device.
1963 *
1964 * Arguments:   shost       - Host in question
1965 *
1966 * Returns:     Nothing
1967 *
1968 * Lock status: No locks are assumed held.
1969 *
1970 * Notes:       There is no timer nor any other means by which the requests
1971 *		get unblocked other than the low-level driver calling
1972 *		scsi_unblock_requests().
1973 *
1974 *		This is done as an API function so that changes to the
1975 *		internals of the scsi mid-layer won't require wholesale
1976 *		changes to drivers that use this feature.
1977 */
1978void scsi_unblock_requests(struct Scsi_Host *shost)
1979{
1980	shost->host_self_blocked = 0;
1981	scsi_run_host_queues(shost);
1982}
1983EXPORT_SYMBOL(scsi_unblock_requests);
1984
1985int __init scsi_init_queue(void)
1986{
1987	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1988					   sizeof(struct scsi_data_buffer),
1989					   0, 0, NULL);
1990	if (!scsi_sdb_cache) {
1991		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1992		return -ENOMEM;
1993	}
1994
1995	return 0;
1996}
1997
1998void scsi_exit_queue(void)
1999{
2000	kmem_cache_destroy(scsi_sense_cache);
2001	kmem_cache_destroy(scsi_sense_isadma_cache);
2002	kmem_cache_destroy(scsi_sdb_cache);
2003}
2004
2005/**
2006 *	scsi_mode_select - issue a mode select
2007 *	@sdev:	SCSI device to be queried
2008 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2009 *	@sp:	Save page bit (0 == don't save, 1 == save)
2010 *	@modepage: mode page being requested
2011 *	@buffer: request buffer (may not be smaller than eight bytes)
2012 *	@len:	length of request buffer.
2013 *	@timeout: command timeout
2014 *	@retries: number of retries before failing
2015 *	@data: returns a structure abstracting the mode header data
2016 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2017 *		must be SCSI_SENSE_BUFFERSIZE big.
2018 *
2019 *	Returns zero if successful; negative error number or scsi
2020 *	status on error
2021 *
2022 */
2023int
2024scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2025		 unsigned char *buffer, int len, int timeout, int retries,
2026		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2027{
2028	unsigned char cmd[10];
2029	unsigned char *real_buffer;
2030	int ret;
2031
2032	memset(cmd, 0, sizeof(cmd));
2033	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2034
2035	if (sdev->use_10_for_ms) {
2036		if (len > 65535)
2037			return -EINVAL;
2038		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2039		if (!real_buffer)
2040			return -ENOMEM;
2041		memcpy(real_buffer + 8, buffer, len);
2042		len += 8;
2043		real_buffer[0] = 0;
2044		real_buffer[1] = 0;
2045		real_buffer[2] = data->medium_type;
2046		real_buffer[3] = data->device_specific;
2047		real_buffer[4] = data->longlba ? 0x01 : 0;
2048		real_buffer[5] = 0;
2049		real_buffer[6] = data->block_descriptor_length >> 8;
2050		real_buffer[7] = data->block_descriptor_length;
2051
2052		cmd[0] = MODE_SELECT_10;
2053		cmd[7] = len >> 8;
2054		cmd[8] = len;
2055	} else {
2056		if (len > 255 || data->block_descriptor_length > 255 ||
2057		    data->longlba)
2058			return -EINVAL;
2059
2060		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2061		if (!real_buffer)
2062			return -ENOMEM;
2063		memcpy(real_buffer + 4, buffer, len);
2064		len += 4;
2065		real_buffer[0] = 0;
2066		real_buffer[1] = data->medium_type;
2067		real_buffer[2] = data->device_specific;
2068		real_buffer[3] = data->block_descriptor_length;
2069		
2070
2071		cmd[0] = MODE_SELECT;
2072		cmd[4] = len;
2073	}
2074
2075	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2076			       sshdr, timeout, retries, NULL);
2077	kfree(real_buffer);
2078	return ret;
2079}
2080EXPORT_SYMBOL_GPL(scsi_mode_select);
2081
2082/**
2083 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2084 *	@sdev:	SCSI device to be queried
2085 *	@dbd:	set if mode sense will allow block descriptors to be returned
2086 *	@modepage: mode page being requested
2087 *	@buffer: request buffer (may not be smaller than eight bytes)
2088 *	@len:	length of request buffer.
2089 *	@timeout: command timeout
2090 *	@retries: number of retries before failing
2091 *	@data: returns a structure abstracting the mode header data
2092 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2093 *		must be SCSI_SENSE_BUFFERSIZE big.
2094 *
2095 *	Returns zero if unsuccessful, or the header offset (either 4
2096 *	or 8 depending on whether a six or ten byte command was
2097 *	issued) if successful.
2098 */
2099int
2100scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2101		  unsigned char *buffer, int len, int timeout, int retries,
2102		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2103{
2104	unsigned char cmd[12];
2105	int use_10_for_ms;
2106	int header_length;
2107	int result, retry_count = retries;
2108	struct scsi_sense_hdr my_sshdr;
2109
2110	memset(data, 0, sizeof(*data));
2111	memset(&cmd[0], 0, 12);
 
 
2112	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2113	cmd[2] = modepage;
2114
2115	/* caller might not be interested in sense, but we need it */
2116	if (!sshdr)
2117		sshdr = &my_sshdr;
2118
2119 retry:
2120	use_10_for_ms = sdev->use_10_for_ms;
2121
2122	if (use_10_for_ms) {
2123		if (len < 8)
2124			len = 8;
2125
2126		cmd[0] = MODE_SENSE_10;
2127		cmd[8] = len;
2128		header_length = 8;
2129	} else {
2130		if (len < 4)
2131			len = 4;
2132
2133		cmd[0] = MODE_SENSE;
2134		cmd[4] = len;
2135		header_length = 4;
2136	}
2137
2138	memset(buffer, 0, len);
2139
2140	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2141				  sshdr, timeout, retries, NULL);
2142
2143	/* This code looks awful: what it's doing is making sure an
2144	 * ILLEGAL REQUEST sense return identifies the actual command
2145	 * byte as the problem.  MODE_SENSE commands can return
2146	 * ILLEGAL REQUEST if the code page isn't supported */
2147
2148	if (use_10_for_ms && !scsi_status_is_good(result) &&
2149	    driver_byte(result) == DRIVER_SENSE) {
2150		if (scsi_sense_valid(sshdr)) {
2151			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2152			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2153				/* 
2154				 * Invalid command operation code
2155				 */
2156				sdev->use_10_for_ms = 0;
2157				goto retry;
2158			}
2159		}
2160	}
2161
2162	if(scsi_status_is_good(result)) {
2163		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2164			     (modepage == 6 || modepage == 8))) {
2165			/* Initio breakage? */
2166			header_length = 0;
2167			data->length = 13;
2168			data->medium_type = 0;
2169			data->device_specific = 0;
2170			data->longlba = 0;
2171			data->block_descriptor_length = 0;
2172		} else if(use_10_for_ms) {
2173			data->length = buffer[0]*256 + buffer[1] + 2;
2174			data->medium_type = buffer[2];
2175			data->device_specific = buffer[3];
2176			data->longlba = buffer[4] & 0x01;
2177			data->block_descriptor_length = buffer[6]*256
2178				+ buffer[7];
2179		} else {
2180			data->length = buffer[0] + 1;
2181			data->medium_type = buffer[1];
2182			data->device_specific = buffer[2];
2183			data->block_descriptor_length = buffer[3];
2184		}
2185		data->header_length = header_length;
2186	} else if ((status_byte(result) == CHECK_CONDITION) &&
2187		   scsi_sense_valid(sshdr) &&
2188		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2189		retry_count--;
2190		goto retry;
2191	}
2192
2193	return result;
2194}
2195EXPORT_SYMBOL(scsi_mode_sense);
2196
2197/**
2198 *	scsi_test_unit_ready - test if unit is ready
2199 *	@sdev:	scsi device to change the state of.
2200 *	@timeout: command timeout
2201 *	@retries: number of retries before failing
2202 *	@sshdr: outpout pointer for decoded sense information.
2203 *
2204 *	Returns zero if unsuccessful or an error if TUR failed.  For
2205 *	removable media, UNIT_ATTENTION sets ->changed flag.
2206 **/
2207int
2208scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2209		     struct scsi_sense_hdr *sshdr)
2210{
2211	char cmd[] = {
2212		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2213	};
2214	int result;
2215
2216	/* try to eat the UNIT_ATTENTION if there are enough retries */
2217	do {
2218		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2219					  timeout, 1, NULL);
2220		if (sdev->removable && scsi_sense_valid(sshdr) &&
2221		    sshdr->sense_key == UNIT_ATTENTION)
2222			sdev->changed = 1;
2223	} while (scsi_sense_valid(sshdr) &&
2224		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2225
2226	return result;
2227}
2228EXPORT_SYMBOL(scsi_test_unit_ready);
2229
2230/**
2231 *	scsi_device_set_state - Take the given device through the device state model.
2232 *	@sdev:	scsi device to change the state of.
2233 *	@state:	state to change to.
2234 *
2235 *	Returns zero if successful or an error if the requested
2236 *	transition is illegal.
2237 */
2238int
2239scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2240{
2241	enum scsi_device_state oldstate = sdev->sdev_state;
2242
2243	if (state == oldstate)
2244		return 0;
2245
2246	switch (state) {
2247	case SDEV_CREATED:
2248		switch (oldstate) {
2249		case SDEV_CREATED_BLOCK:
2250			break;
2251		default:
2252			goto illegal;
2253		}
2254		break;
2255			
2256	case SDEV_RUNNING:
2257		switch (oldstate) {
2258		case SDEV_CREATED:
2259		case SDEV_OFFLINE:
2260		case SDEV_TRANSPORT_OFFLINE:
2261		case SDEV_QUIESCE:
2262		case SDEV_BLOCK:
2263			break;
2264		default:
2265			goto illegal;
2266		}
2267		break;
2268
2269	case SDEV_QUIESCE:
2270		switch (oldstate) {
2271		case SDEV_RUNNING:
2272		case SDEV_OFFLINE:
2273		case SDEV_TRANSPORT_OFFLINE:
2274			break;
2275		default:
2276			goto illegal;
2277		}
2278		break;
2279
2280	case SDEV_OFFLINE:
2281	case SDEV_TRANSPORT_OFFLINE:
2282		switch (oldstate) {
2283		case SDEV_CREATED:
2284		case SDEV_RUNNING:
2285		case SDEV_QUIESCE:
2286		case SDEV_BLOCK:
2287			break;
2288		default:
2289			goto illegal;
2290		}
2291		break;
2292
2293	case SDEV_BLOCK:
2294		switch (oldstate) {
2295		case SDEV_RUNNING:
2296		case SDEV_CREATED_BLOCK:
 
2297		case SDEV_OFFLINE:
2298			break;
2299		default:
2300			goto illegal;
2301		}
2302		break;
2303
2304	case SDEV_CREATED_BLOCK:
2305		switch (oldstate) {
2306		case SDEV_CREATED:
2307			break;
2308		default:
2309			goto illegal;
2310		}
2311		break;
2312
2313	case SDEV_CANCEL:
2314		switch (oldstate) {
2315		case SDEV_CREATED:
2316		case SDEV_RUNNING:
2317		case SDEV_QUIESCE:
2318		case SDEV_OFFLINE:
2319		case SDEV_TRANSPORT_OFFLINE:
2320			break;
2321		default:
2322			goto illegal;
2323		}
2324		break;
2325
2326	case SDEV_DEL:
2327		switch (oldstate) {
2328		case SDEV_CREATED:
2329		case SDEV_RUNNING:
2330		case SDEV_OFFLINE:
2331		case SDEV_TRANSPORT_OFFLINE:
2332		case SDEV_CANCEL:
2333		case SDEV_BLOCK:
2334		case SDEV_CREATED_BLOCK:
2335			break;
2336		default:
2337			goto illegal;
2338		}
2339		break;
2340
2341	}
 
2342	sdev->sdev_state = state;
2343	return 0;
2344
2345 illegal:
2346	SCSI_LOG_ERROR_RECOVERY(1,
2347				sdev_printk(KERN_ERR, sdev,
2348					    "Illegal state transition %s->%s",
2349					    scsi_device_state_name(oldstate),
2350					    scsi_device_state_name(state))
2351				);
2352	return -EINVAL;
2353}
2354EXPORT_SYMBOL(scsi_device_set_state);
2355
2356/**
2357 * 	sdev_evt_emit - emit a single SCSI device uevent
2358 *	@sdev: associated SCSI device
2359 *	@evt: event to emit
2360 *
2361 *	Send a single uevent (scsi_event) to the associated scsi_device.
2362 */
2363static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2364{
2365	int idx = 0;
2366	char *envp[3];
2367
2368	switch (evt->evt_type) {
2369	case SDEV_EVT_MEDIA_CHANGE:
2370		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2371		break;
2372	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2373		scsi_rescan_device(&sdev->sdev_gendev);
2374		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2375		break;
2376	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2377		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2378		break;
2379	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2380	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2381		break;
2382	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2383		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2384		break;
2385	case SDEV_EVT_LUN_CHANGE_REPORTED:
2386		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2387		break;
2388	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2389		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2390		break;
2391	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2392		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2393		break;
2394	default:
2395		/* do nothing */
2396		break;
2397	}
2398
2399	envp[idx++] = NULL;
2400
2401	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2402}
2403
2404/**
2405 * 	sdev_evt_thread - send a uevent for each scsi event
2406 *	@work: work struct for scsi_device
2407 *
2408 *	Dispatch queued events to their associated scsi_device kobjects
2409 *	as uevents.
2410 */
2411void scsi_evt_thread(struct work_struct *work)
2412{
2413	struct scsi_device *sdev;
2414	enum scsi_device_event evt_type;
2415	LIST_HEAD(event_list);
2416
2417	sdev = container_of(work, struct scsi_device, event_work);
2418
2419	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2420		if (test_and_clear_bit(evt_type, sdev->pending_events))
2421			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2422
2423	while (1) {
2424		struct scsi_event *evt;
2425		struct list_head *this, *tmp;
2426		unsigned long flags;
2427
2428		spin_lock_irqsave(&sdev->list_lock, flags);
2429		list_splice_init(&sdev->event_list, &event_list);
2430		spin_unlock_irqrestore(&sdev->list_lock, flags);
2431
2432		if (list_empty(&event_list))
2433			break;
2434
2435		list_for_each_safe(this, tmp, &event_list) {
2436			evt = list_entry(this, struct scsi_event, node);
2437			list_del(&evt->node);
2438			scsi_evt_emit(sdev, evt);
2439			kfree(evt);
2440		}
2441	}
2442}
2443
2444/**
2445 * 	sdev_evt_send - send asserted event to uevent thread
2446 *	@sdev: scsi_device event occurred on
2447 *	@evt: event to send
2448 *
2449 *	Assert scsi device event asynchronously.
2450 */
2451void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2452{
2453	unsigned long flags;
2454
2455#if 0
2456	/* FIXME: currently this check eliminates all media change events
2457	 * for polled devices.  Need to update to discriminate between AN
2458	 * and polled events */
2459	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2460		kfree(evt);
2461		return;
2462	}
2463#endif
2464
2465	spin_lock_irqsave(&sdev->list_lock, flags);
2466	list_add_tail(&evt->node, &sdev->event_list);
2467	schedule_work(&sdev->event_work);
2468	spin_unlock_irqrestore(&sdev->list_lock, flags);
2469}
2470EXPORT_SYMBOL_GPL(sdev_evt_send);
2471
2472/**
2473 * 	sdev_evt_alloc - allocate a new scsi event
2474 *	@evt_type: type of event to allocate
2475 *	@gfpflags: GFP flags for allocation
2476 *
2477 *	Allocates and returns a new scsi_event.
2478 */
2479struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2480				  gfp_t gfpflags)
2481{
2482	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2483	if (!evt)
2484		return NULL;
2485
2486	evt->evt_type = evt_type;
2487	INIT_LIST_HEAD(&evt->node);
2488
2489	/* evt_type-specific initialization, if any */
2490	switch (evt_type) {
2491	case SDEV_EVT_MEDIA_CHANGE:
2492	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2493	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2494	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2495	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2496	case SDEV_EVT_LUN_CHANGE_REPORTED:
2497	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2498	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2499	default:
2500		/* do nothing */
2501		break;
2502	}
2503
2504	return evt;
2505}
2506EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2507
2508/**
2509 * 	sdev_evt_send_simple - send asserted event to uevent thread
2510 *	@sdev: scsi_device event occurred on
2511 *	@evt_type: type of event to send
2512 *	@gfpflags: GFP flags for allocation
2513 *
2514 *	Assert scsi device event asynchronously, given an event type.
2515 */
2516void sdev_evt_send_simple(struct scsi_device *sdev,
2517			  enum scsi_device_event evt_type, gfp_t gfpflags)
2518{
2519	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2520	if (!evt) {
2521		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2522			    evt_type);
2523		return;
2524	}
2525
2526	sdev_evt_send(sdev, evt);
2527}
2528EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2529
2530/**
2531 *	scsi_device_quiesce - Block user issued commands.
2532 *	@sdev:	scsi device to quiesce.
2533 *
2534 *	This works by trying to transition to the SDEV_QUIESCE state
2535 *	(which must be a legal transition).  When the device is in this
2536 *	state, only special requests will be accepted, all others will
2537 *	be deferred.  Since special requests may also be requeued requests,
2538 *	a successful return doesn't guarantee the device will be 
2539 *	totally quiescent.
2540 *
2541 *	Must be called with user context, may sleep.
2542 *
2543 *	Returns zero if unsuccessful or an error if not.
2544 */
2545int
2546scsi_device_quiesce(struct scsi_device *sdev)
2547{
2548	struct request_queue *q = sdev->request_queue;
2549	int err;
2550
2551	/*
2552	 * It is allowed to call scsi_device_quiesce() multiple times from
2553	 * the same context but concurrent scsi_device_quiesce() calls are
2554	 * not allowed.
2555	 */
2556	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2557
2558	if (sdev->quiesced_by == current)
2559		return 0;
2560
2561	blk_set_pm_only(q);
2562
2563	blk_mq_freeze_queue(q);
2564	/*
2565	 * Ensure that the effect of blk_set_pm_only() will be visible
2566	 * for percpu_ref_tryget() callers that occur after the queue
2567	 * unfreeze even if the queue was already frozen before this function
2568	 * was called. See also https://lwn.net/Articles/573497/.
2569	 */
2570	synchronize_rcu();
2571	blk_mq_unfreeze_queue(q);
2572
2573	mutex_lock(&sdev->state_mutex);
2574	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2575	if (err == 0)
2576		sdev->quiesced_by = current;
2577	else
2578		blk_clear_pm_only(q);
2579	mutex_unlock(&sdev->state_mutex);
2580
2581	return err;
2582}
2583EXPORT_SYMBOL(scsi_device_quiesce);
2584
2585/**
2586 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2587 *	@sdev:	scsi device to resume.
2588 *
2589 *	Moves the device from quiesced back to running and restarts the
2590 *	queues.
2591 *
2592 *	Must be called with user context, may sleep.
2593 */
2594void scsi_device_resume(struct scsi_device *sdev)
2595{
2596	/* check if the device state was mutated prior to resume, and if
2597	 * so assume the state is being managed elsewhere (for example
2598	 * device deleted during suspend)
2599	 */
2600	mutex_lock(&sdev->state_mutex);
2601	if (sdev->quiesced_by) {
2602		sdev->quiesced_by = NULL;
2603		blk_clear_pm_only(sdev->request_queue);
2604	}
2605	if (sdev->sdev_state == SDEV_QUIESCE)
2606		scsi_device_set_state(sdev, SDEV_RUNNING);
2607	mutex_unlock(&sdev->state_mutex);
2608}
2609EXPORT_SYMBOL(scsi_device_resume);
2610
2611static void
2612device_quiesce_fn(struct scsi_device *sdev, void *data)
2613{
2614	scsi_device_quiesce(sdev);
2615}
2616
2617void
2618scsi_target_quiesce(struct scsi_target *starget)
2619{
2620	starget_for_each_device(starget, NULL, device_quiesce_fn);
2621}
2622EXPORT_SYMBOL(scsi_target_quiesce);
2623
2624static void
2625device_resume_fn(struct scsi_device *sdev, void *data)
2626{
2627	scsi_device_resume(sdev);
2628}
2629
2630void
2631scsi_target_resume(struct scsi_target *starget)
2632{
2633	starget_for_each_device(starget, NULL, device_resume_fn);
2634}
2635EXPORT_SYMBOL(scsi_target_resume);
2636
2637/**
2638 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2639 * @sdev: device to block
2640 *
2641 * Pause SCSI command processing on the specified device. Does not sleep.
2642 *
2643 * Returns zero if successful or a negative error code upon failure.
2644 *
2645 * Notes:
2646 * This routine transitions the device to the SDEV_BLOCK state (which must be
2647 * a legal transition). When the device is in this state, command processing
2648 * is paused until the device leaves the SDEV_BLOCK state. See also
2649 * scsi_internal_device_unblock_nowait().
2650 */
2651int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2652{
2653	struct request_queue *q = sdev->request_queue;
2654	int err = 0;
2655
2656	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2657	if (err) {
2658		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2659
2660		if (err)
2661			return err;
2662	}
2663
2664	/* 
2665	 * The device has transitioned to SDEV_BLOCK.  Stop the
2666	 * block layer from calling the midlayer with this device's
2667	 * request queue. 
2668	 */
2669	blk_mq_quiesce_queue_nowait(q);
2670	return 0;
2671}
2672EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2673
2674/**
2675 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2676 * @sdev: device to block
2677 *
2678 * Pause SCSI command processing on the specified device and wait until all
2679 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2680 *
2681 * Returns zero if successful or a negative error code upon failure.
2682 *
2683 * Note:
2684 * This routine transitions the device to the SDEV_BLOCK state (which must be
2685 * a legal transition). When the device is in this state, command processing
2686 * is paused until the device leaves the SDEV_BLOCK state. See also
2687 * scsi_internal_device_unblock().
2688 */
2689static int scsi_internal_device_block(struct scsi_device *sdev)
2690{
2691	struct request_queue *q = sdev->request_queue;
2692	int err;
2693
2694	mutex_lock(&sdev->state_mutex);
2695	err = scsi_internal_device_block_nowait(sdev);
2696	if (err == 0)
2697		blk_mq_quiesce_queue(q);
2698	mutex_unlock(&sdev->state_mutex);
2699
2700	return err;
2701}
2702 
2703void scsi_start_queue(struct scsi_device *sdev)
2704{
2705	struct request_queue *q = sdev->request_queue;
2706
2707	blk_mq_unquiesce_queue(q);
2708}
2709
2710/**
2711 * scsi_internal_device_unblock_nowait - resume a device after a block request
2712 * @sdev:	device to resume
2713 * @new_state:	state to set the device to after unblocking
2714 *
2715 * Restart the device queue for a previously suspended SCSI device. Does not
2716 * sleep.
2717 *
2718 * Returns zero if successful or a negative error code upon failure.
2719 *
2720 * Notes:
2721 * This routine transitions the device to the SDEV_RUNNING state or to one of
2722 * the offline states (which must be a legal transition) allowing the midlayer
2723 * to goose the queue for this device.
2724 */
2725int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2726					enum scsi_device_state new_state)
2727{
2728	switch (new_state) {
2729	case SDEV_RUNNING:
2730	case SDEV_TRANSPORT_OFFLINE:
2731		break;
2732	default:
2733		return -EINVAL;
2734	}
2735
2736	/*
2737	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2738	 * offlined states and goose the device queue if successful.
2739	 */
2740	switch (sdev->sdev_state) {
2741	case SDEV_BLOCK:
2742	case SDEV_TRANSPORT_OFFLINE:
2743		sdev->sdev_state = new_state;
2744		break;
2745	case SDEV_CREATED_BLOCK:
2746		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2747		    new_state == SDEV_OFFLINE)
2748			sdev->sdev_state = new_state;
2749		else
2750			sdev->sdev_state = SDEV_CREATED;
2751		break;
2752	case SDEV_CANCEL:
2753	case SDEV_OFFLINE:
2754		break;
2755	default:
2756		return -EINVAL;
2757	}
2758	scsi_start_queue(sdev);
2759
2760	return 0;
2761}
2762EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2763
2764/**
2765 * scsi_internal_device_unblock - resume a device after a block request
2766 * @sdev:	device to resume
2767 * @new_state:	state to set the device to after unblocking
2768 *
2769 * Restart the device queue for a previously suspended SCSI device. May sleep.
2770 *
2771 * Returns zero if successful or a negative error code upon failure.
2772 *
2773 * Notes:
2774 * This routine transitions the device to the SDEV_RUNNING state or to one of
2775 * the offline states (which must be a legal transition) allowing the midlayer
2776 * to goose the queue for this device.
2777 */
2778static int scsi_internal_device_unblock(struct scsi_device *sdev,
2779					enum scsi_device_state new_state)
2780{
2781	int ret;
2782
2783	mutex_lock(&sdev->state_mutex);
2784	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2785	mutex_unlock(&sdev->state_mutex);
2786
2787	return ret;
2788}
2789
2790static void
2791device_block(struct scsi_device *sdev, void *data)
2792{
2793	int ret;
2794
2795	ret = scsi_internal_device_block(sdev);
2796
2797	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2798		  dev_name(&sdev->sdev_gendev), ret);
2799}
2800
2801static int
2802target_block(struct device *dev, void *data)
2803{
2804	if (scsi_is_target_device(dev))
2805		starget_for_each_device(to_scsi_target(dev), NULL,
2806					device_block);
2807	return 0;
2808}
2809
2810void
2811scsi_target_block(struct device *dev)
2812{
2813	if (scsi_is_target_device(dev))
2814		starget_for_each_device(to_scsi_target(dev), NULL,
2815					device_block);
2816	else
2817		device_for_each_child(dev, NULL, target_block);
2818}
2819EXPORT_SYMBOL_GPL(scsi_target_block);
2820
2821static void
2822device_unblock(struct scsi_device *sdev, void *data)
2823{
2824	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2825}
2826
2827static int
2828target_unblock(struct device *dev, void *data)
2829{
2830	if (scsi_is_target_device(dev))
2831		starget_for_each_device(to_scsi_target(dev), data,
2832					device_unblock);
2833	return 0;
2834}
2835
2836void
2837scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2838{
2839	if (scsi_is_target_device(dev))
2840		starget_for_each_device(to_scsi_target(dev), &new_state,
2841					device_unblock);
2842	else
2843		device_for_each_child(dev, &new_state, target_unblock);
2844}
2845EXPORT_SYMBOL_GPL(scsi_target_unblock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2846
2847/**
2848 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2849 * @sgl:	scatter-gather list
2850 * @sg_count:	number of segments in sg
2851 * @offset:	offset in bytes into sg, on return offset into the mapped area
2852 * @len:	bytes to map, on return number of bytes mapped
2853 *
2854 * Returns virtual address of the start of the mapped page
2855 */
2856void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2857			  size_t *offset, size_t *len)
2858{
2859	int i;
2860	size_t sg_len = 0, len_complete = 0;
2861	struct scatterlist *sg;
2862	struct page *page;
2863
2864	WARN_ON(!irqs_disabled());
2865
2866	for_each_sg(sgl, sg, sg_count, i) {
2867		len_complete = sg_len; /* Complete sg-entries */
2868		sg_len += sg->length;
2869		if (sg_len > *offset)
2870			break;
2871	}
2872
2873	if (unlikely(i == sg_count)) {
2874		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2875			"elements %d\n",
2876		       __func__, sg_len, *offset, sg_count);
2877		WARN_ON(1);
2878		return NULL;
2879	}
2880
2881	/* Offset starting from the beginning of first page in this sg-entry */
2882	*offset = *offset - len_complete + sg->offset;
2883
2884	/* Assumption: contiguous pages can be accessed as "page + i" */
2885	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2886	*offset &= ~PAGE_MASK;
2887
2888	/* Bytes in this sg-entry from *offset to the end of the page */
2889	sg_len = PAGE_SIZE - *offset;
2890	if (*len > sg_len)
2891		*len = sg_len;
2892
2893	return kmap_atomic(page);
2894}
2895EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2896
2897/**
2898 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2899 * @virt:	virtual address to be unmapped
2900 */
2901void scsi_kunmap_atomic_sg(void *virt)
2902{
2903	kunmap_atomic(virt);
2904}
2905EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2906
2907void sdev_disable_disk_events(struct scsi_device *sdev)
2908{
2909	atomic_inc(&sdev->disk_events_disable_depth);
2910}
2911EXPORT_SYMBOL(sdev_disable_disk_events);
2912
2913void sdev_enable_disk_events(struct scsi_device *sdev)
2914{
2915	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2916		return;
2917	atomic_dec(&sdev->disk_events_disable_depth);
2918}
2919EXPORT_SYMBOL(sdev_enable_disk_events);
2920
2921/**
2922 * scsi_vpd_lun_id - return a unique device identification
2923 * @sdev: SCSI device
2924 * @id:   buffer for the identification
2925 * @id_len:  length of the buffer
2926 *
2927 * Copies a unique device identification into @id based
2928 * on the information in the VPD page 0x83 of the device.
2929 * The string will be formatted as a SCSI name string.
2930 *
2931 * Returns the length of the identification or error on failure.
2932 * If the identifier is longer than the supplied buffer the actual
2933 * identifier length is returned and the buffer is not zero-padded.
2934 */
2935int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
2936{
2937	u8 cur_id_type = 0xff;
2938	u8 cur_id_size = 0;
2939	const unsigned char *d, *cur_id_str;
2940	const struct scsi_vpd *vpd_pg83;
2941	int id_size = -EINVAL;
2942
2943	rcu_read_lock();
2944	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
2945	if (!vpd_pg83) {
2946		rcu_read_unlock();
2947		return -ENXIO;
2948	}
2949
2950	/*
2951	 * Look for the correct descriptor.
2952	 * Order of preference for lun descriptor:
2953	 * - SCSI name string
2954	 * - NAA IEEE Registered Extended
2955	 * - EUI-64 based 16-byte
2956	 * - EUI-64 based 12-byte
2957	 * - NAA IEEE Registered
2958	 * - NAA IEEE Extended
2959	 * - T10 Vendor ID
2960	 * as longer descriptors reduce the likelyhood
2961	 * of identification clashes.
2962	 */
2963
2964	/* The id string must be at least 20 bytes + terminating NULL byte */
2965	if (id_len < 21) {
2966		rcu_read_unlock();
2967		return -EINVAL;
2968	}
2969
2970	memset(id, 0, id_len);
2971	d = vpd_pg83->data + 4;
2972	while (d < vpd_pg83->data + vpd_pg83->len) {
2973		/* Skip designators not referring to the LUN */
2974		if ((d[1] & 0x30) != 0x00)
2975			goto next_desig;
2976
2977		switch (d[1] & 0xf) {
2978		case 0x1:
2979			/* T10 Vendor ID */
2980			if (cur_id_size > d[3])
2981				break;
2982			/* Prefer anything */
2983			if (cur_id_type > 0x01 && cur_id_type != 0xff)
2984				break;
2985			cur_id_size = d[3];
2986			if (cur_id_size + 4 > id_len)
2987				cur_id_size = id_len - 4;
2988			cur_id_str = d + 4;
2989			cur_id_type = d[1] & 0xf;
2990			id_size = snprintf(id, id_len, "t10.%*pE",
2991					   cur_id_size, cur_id_str);
2992			break;
2993		case 0x2:
2994			/* EUI-64 */
2995			if (cur_id_size > d[3])
2996				break;
2997			/* Prefer NAA IEEE Registered Extended */
2998			if (cur_id_type == 0x3 &&
2999			    cur_id_size == d[3])
3000				break;
3001			cur_id_size = d[3];
3002			cur_id_str = d + 4;
3003			cur_id_type = d[1] & 0xf;
3004			switch (cur_id_size) {
3005			case 8:
3006				id_size = snprintf(id, id_len,
3007						   "eui.%8phN",
3008						   cur_id_str);
3009				break;
3010			case 12:
3011				id_size = snprintf(id, id_len,
3012						   "eui.%12phN",
3013						   cur_id_str);
3014				break;
3015			case 16:
3016				id_size = snprintf(id, id_len,
3017						   "eui.%16phN",
3018						   cur_id_str);
3019				break;
3020			default:
3021				cur_id_size = 0;
3022				break;
3023			}
3024			break;
3025		case 0x3:
3026			/* NAA */
3027			if (cur_id_size > d[3])
3028				break;
3029			cur_id_size = d[3];
3030			cur_id_str = d + 4;
3031			cur_id_type = d[1] & 0xf;
3032			switch (cur_id_size) {
3033			case 8:
3034				id_size = snprintf(id, id_len,
3035						   "naa.%8phN",
3036						   cur_id_str);
3037				break;
3038			case 16:
3039				id_size = snprintf(id, id_len,
3040						   "naa.%16phN",
3041						   cur_id_str);
3042				break;
3043			default:
3044				cur_id_size = 0;
3045				break;
3046			}
3047			break;
3048		case 0x8:
3049			/* SCSI name string */
3050			if (cur_id_size + 4 > d[3])
3051				break;
3052			/* Prefer others for truncated descriptor */
3053			if (cur_id_size && d[3] > id_len)
3054				break;
3055			cur_id_size = id_size = d[3];
3056			cur_id_str = d + 4;
3057			cur_id_type = d[1] & 0xf;
3058			if (cur_id_size >= id_len)
3059				cur_id_size = id_len - 1;
3060			memcpy(id, cur_id_str, cur_id_size);
3061			/* Decrease priority for truncated descriptor */
3062			if (cur_id_size != id_size)
3063				cur_id_size = 6;
3064			break;
3065		default:
3066			break;
3067		}
3068next_desig:
3069		d += d[3] + 4;
3070	}
3071	rcu_read_unlock();
3072
3073	return id_size;
3074}
3075EXPORT_SYMBOL(scsi_vpd_lun_id);
3076
3077/*
3078 * scsi_vpd_tpg_id - return a target port group identifier
3079 * @sdev: SCSI device
3080 *
3081 * Returns the Target Port Group identifier from the information
3082 * froom VPD page 0x83 of the device.
3083 *
3084 * Returns the identifier or error on failure.
3085 */
3086int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3087{
3088	const unsigned char *d;
3089	const struct scsi_vpd *vpd_pg83;
3090	int group_id = -EAGAIN, rel_port = -1;
3091
3092	rcu_read_lock();
3093	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3094	if (!vpd_pg83) {
3095		rcu_read_unlock();
3096		return -ENXIO;
3097	}
3098
3099	d = vpd_pg83->data + 4;
3100	while (d < vpd_pg83->data + vpd_pg83->len) {
3101		switch (d[1] & 0xf) {
3102		case 0x4:
3103			/* Relative target port */
3104			rel_port = get_unaligned_be16(&d[6]);
3105			break;
3106		case 0x5:
3107			/* Target port group */
3108			group_id = get_unaligned_be16(&d[6]);
3109			break;
3110		default:
3111			break;
3112		}
3113		d += d[3] + 4;
3114	}
3115	rcu_read_unlock();
3116
3117	if (group_id >= 0 && rel_id && rel_port != -1)
3118		*rel_id = rel_port;
3119
3120	return group_id;
3121}
3122EXPORT_SYMBOL(scsi_vpd_tpg_id);