Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 1999 Eric Youngdale
4 * Copyright (C) 2014 Christoph Hellwig
5 *
6 * SCSI queueing library.
7 * Initial versions: Eric Youngdale (eric@andante.org).
8 * Based upon conversations with large numbers
9 * of people at Linux Expo.
10 */
11
12#include <linux/bio.h>
13#include <linux/bitops.h>
14#include <linux/blkdev.h>
15#include <linux/completion.h>
16#include <linux/kernel.h>
17#include <linux/export.h>
18#include <linux/init.h>
19#include <linux/pci.h>
20#include <linux/delay.h>
21#include <linux/hardirq.h>
22#include <linux/scatterlist.h>
23#include <linux/blk-mq.h>
24#include <linux/ratelimit.h>
25#include <asm/unaligned.h>
26
27#include <scsi/scsi.h>
28#include <scsi/scsi_cmnd.h>
29#include <scsi/scsi_dbg.h>
30#include <scsi/scsi_device.h>
31#include <scsi/scsi_driver.h>
32#include <scsi/scsi_eh.h>
33#include <scsi/scsi_host.h>
34#include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35#include <scsi/scsi_dh.h>
36
37#include <trace/events/scsi.h>
38
39#include "scsi_debugfs.h"
40#include "scsi_priv.h"
41#include "scsi_logging.h"
42
43/*
44 * Size of integrity metadata is usually small, 1 inline sg should
45 * cover normal cases.
46 */
47#ifdef CONFIG_ARCH_NO_SG_CHAIN
48#define SCSI_INLINE_PROT_SG_CNT 0
49#define SCSI_INLINE_SG_CNT 0
50#else
51#define SCSI_INLINE_PROT_SG_CNT 1
52#define SCSI_INLINE_SG_CNT 2
53#endif
54
55static struct kmem_cache *scsi_sense_cache;
56static struct kmem_cache *scsi_sense_isadma_cache;
57static DEFINE_MUTEX(scsi_sense_cache_mutex);
58
59static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60
61static inline struct kmem_cache *
62scsi_select_sense_cache(bool unchecked_isa_dma)
63{
64 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
65}
66
67static void scsi_free_sense_buffer(bool unchecked_isa_dma,
68 unsigned char *sense_buffer)
69{
70 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
71 sense_buffer);
72}
73
74static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
75 gfp_t gfp_mask, int numa_node)
76{
77 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
78 gfp_mask, numa_node);
79}
80
81int scsi_init_sense_cache(struct Scsi_Host *shost)
82{
83 struct kmem_cache *cache;
84 int ret = 0;
85
86 mutex_lock(&scsi_sense_cache_mutex);
87 cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
88 if (cache)
89 goto exit;
90
91 if (shost->unchecked_isa_dma) {
92 scsi_sense_isadma_cache =
93 kmem_cache_create("scsi_sense_cache(DMA)",
94 SCSI_SENSE_BUFFERSIZE, 0,
95 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
96 if (!scsi_sense_isadma_cache)
97 ret = -ENOMEM;
98 } else {
99 scsi_sense_cache =
100 kmem_cache_create_usercopy("scsi_sense_cache",
101 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
102 0, SCSI_SENSE_BUFFERSIZE, NULL);
103 if (!scsi_sense_cache)
104 ret = -ENOMEM;
105 }
106 exit:
107 mutex_unlock(&scsi_sense_cache_mutex);
108 return ret;
109}
110
111/*
112 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
113 * not change behaviour from the previous unplug mechanism, experimentation
114 * may prove this needs changing.
115 */
116#define SCSI_QUEUE_DELAY 3
117
118static void
119scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
120{
121 struct Scsi_Host *host = cmd->device->host;
122 struct scsi_device *device = cmd->device;
123 struct scsi_target *starget = scsi_target(device);
124
125 /*
126 * Set the appropriate busy bit for the device/host.
127 *
128 * If the host/device isn't busy, assume that something actually
129 * completed, and that we should be able to queue a command now.
130 *
131 * Note that the prior mid-layer assumption that any host could
132 * always queue at least one command is now broken. The mid-layer
133 * will implement a user specifiable stall (see
134 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
135 * if a command is requeued with no other commands outstanding
136 * either for the device or for the host.
137 */
138 switch (reason) {
139 case SCSI_MLQUEUE_HOST_BUSY:
140 atomic_set(&host->host_blocked, host->max_host_blocked);
141 break;
142 case SCSI_MLQUEUE_DEVICE_BUSY:
143 case SCSI_MLQUEUE_EH_RETRY:
144 atomic_set(&device->device_blocked,
145 device->max_device_blocked);
146 break;
147 case SCSI_MLQUEUE_TARGET_BUSY:
148 atomic_set(&starget->target_blocked,
149 starget->max_target_blocked);
150 break;
151 }
152}
153
154static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
155{
156 if (cmd->request->rq_flags & RQF_DONTPREP) {
157 cmd->request->rq_flags &= ~RQF_DONTPREP;
158 scsi_mq_uninit_cmd(cmd);
159 } else {
160 WARN_ON_ONCE(true);
161 }
162 blk_mq_requeue_request(cmd->request, true);
163}
164
165/**
166 * __scsi_queue_insert - private queue insertion
167 * @cmd: The SCSI command being requeued
168 * @reason: The reason for the requeue
169 * @unbusy: Whether the queue should be unbusied
170 *
171 * This is a private queue insertion. The public interface
172 * scsi_queue_insert() always assumes the queue should be unbusied
173 * because it's always called before the completion. This function is
174 * for a requeue after completion, which should only occur in this
175 * file.
176 */
177static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
178{
179 struct scsi_device *device = cmd->device;
180
181 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
182 "Inserting command %p into mlqueue\n", cmd));
183
184 scsi_set_blocked(cmd, reason);
185
186 /*
187 * Decrement the counters, since these commands are no longer
188 * active on the host/device.
189 */
190 if (unbusy)
191 scsi_device_unbusy(device, cmd);
192
193 /*
194 * Requeue this command. It will go before all other commands
195 * that are already in the queue. Schedule requeue work under
196 * lock such that the kblockd_schedule_work() call happens
197 * before blk_cleanup_queue() finishes.
198 */
199 cmd->result = 0;
200
201 blk_mq_requeue_request(cmd->request, true);
202}
203
204/**
205 * scsi_queue_insert - Reinsert a command in the queue.
206 * @cmd: command that we are adding to queue.
207 * @reason: why we are inserting command to queue.
208 *
209 * We do this for one of two cases. Either the host is busy and it cannot accept
210 * any more commands for the time being, or the device returned QUEUE_FULL and
211 * can accept no more commands.
212 *
213 * Context: This could be called either from an interrupt context or a normal
214 * process context.
215 */
216void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
217{
218 __scsi_queue_insert(cmd, reason, true);
219}
220
221
222/**
223 * __scsi_execute - insert request and wait for the result
224 * @sdev: scsi device
225 * @cmd: scsi command
226 * @data_direction: data direction
227 * @buffer: data buffer
228 * @bufflen: len of buffer
229 * @sense: optional sense buffer
230 * @sshdr: optional decoded sense header
231 * @timeout: request timeout in seconds
232 * @retries: number of times to retry request
233 * @flags: flags for ->cmd_flags
234 * @rq_flags: flags for ->rq_flags
235 * @resid: optional residual length
236 *
237 * Returns the scsi_cmnd result field if a command was executed, or a negative
238 * Linux error code if we didn't get that far.
239 */
240int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
241 int data_direction, void *buffer, unsigned bufflen,
242 unsigned char *sense, struct scsi_sense_hdr *sshdr,
243 int timeout, int retries, u64 flags, req_flags_t rq_flags,
244 int *resid)
245{
246 struct request *req;
247 struct scsi_request *rq;
248 int ret = DRIVER_ERROR << 24;
249
250 req = blk_get_request(sdev->request_queue,
251 data_direction == DMA_TO_DEVICE ?
252 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
253 if (IS_ERR(req))
254 return ret;
255 rq = scsi_req(req);
256
257 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
258 buffer, bufflen, GFP_NOIO))
259 goto out;
260
261 rq->cmd_len = COMMAND_SIZE(cmd[0]);
262 memcpy(rq->cmd, cmd, rq->cmd_len);
263 rq->retries = retries;
264 req->timeout = timeout;
265 req->cmd_flags |= flags;
266 req->rq_flags |= rq_flags | RQF_QUIET;
267
268 /*
269 * head injection *required* here otherwise quiesce won't work
270 */
271 blk_execute_rq(req->q, NULL, req, 1);
272
273 /*
274 * Some devices (USB mass-storage in particular) may transfer
275 * garbage data together with a residue indicating that the data
276 * is invalid. Prevent the garbage from being misinterpreted
277 * and prevent security leaks by zeroing out the excess data.
278 */
279 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
280 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
281
282 if (resid)
283 *resid = rq->resid_len;
284 if (sense && rq->sense_len)
285 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
286 if (sshdr)
287 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
288 ret = rq->result;
289 out:
290 blk_put_request(req);
291
292 return ret;
293}
294EXPORT_SYMBOL(__scsi_execute);
295
296/**
297 * scsi_init_cmd_errh - Initialize cmd fields related to error handling.
298 * @cmd: command that is ready to be queued.
299 *
300 * This function has the job of initializing a number of fields related to error
301 * handling. Typically this will be called once for each command, as required.
302 */
303static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
304{
305 scsi_set_resid(cmd, 0);
306 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
307 if (cmd->cmd_len == 0)
308 cmd->cmd_len = scsi_command_size(cmd->cmnd);
309}
310
311/*
312 * Wake up the error handler if necessary. Avoid as follows that the error
313 * handler is not woken up if host in-flight requests number ==
314 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
315 * with an RCU read lock in this function to ensure that this function in
316 * its entirety either finishes before scsi_eh_scmd_add() increases the
317 * host_failed counter or that it notices the shost state change made by
318 * scsi_eh_scmd_add().
319 */
320static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
321{
322 unsigned long flags;
323
324 rcu_read_lock();
325 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
326 if (unlikely(scsi_host_in_recovery(shost))) {
327 spin_lock_irqsave(shost->host_lock, flags);
328 if (shost->host_failed || shost->host_eh_scheduled)
329 scsi_eh_wakeup(shost);
330 spin_unlock_irqrestore(shost->host_lock, flags);
331 }
332 rcu_read_unlock();
333}
334
335void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
336{
337 struct Scsi_Host *shost = sdev->host;
338 struct scsi_target *starget = scsi_target(sdev);
339
340 scsi_dec_host_busy(shost, cmd);
341
342 if (starget->can_queue > 0)
343 atomic_dec(&starget->target_busy);
344
345 atomic_dec(&sdev->device_busy);
346}
347
348static void scsi_kick_queue(struct request_queue *q)
349{
350 blk_mq_run_hw_queues(q, false);
351}
352
353/*
354 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
355 * and call blk_run_queue for all the scsi_devices on the target -
356 * including current_sdev first.
357 *
358 * Called with *no* scsi locks held.
359 */
360static void scsi_single_lun_run(struct scsi_device *current_sdev)
361{
362 struct Scsi_Host *shost = current_sdev->host;
363 struct scsi_device *sdev, *tmp;
364 struct scsi_target *starget = scsi_target(current_sdev);
365 unsigned long flags;
366
367 spin_lock_irqsave(shost->host_lock, flags);
368 starget->starget_sdev_user = NULL;
369 spin_unlock_irqrestore(shost->host_lock, flags);
370
371 /*
372 * Call blk_run_queue for all LUNs on the target, starting with
373 * current_sdev. We race with others (to set starget_sdev_user),
374 * but in most cases, we will be first. Ideally, each LU on the
375 * target would get some limited time or requests on the target.
376 */
377 scsi_kick_queue(current_sdev->request_queue);
378
379 spin_lock_irqsave(shost->host_lock, flags);
380 if (starget->starget_sdev_user)
381 goto out;
382 list_for_each_entry_safe(sdev, tmp, &starget->devices,
383 same_target_siblings) {
384 if (sdev == current_sdev)
385 continue;
386 if (scsi_device_get(sdev))
387 continue;
388
389 spin_unlock_irqrestore(shost->host_lock, flags);
390 scsi_kick_queue(sdev->request_queue);
391 spin_lock_irqsave(shost->host_lock, flags);
392
393 scsi_device_put(sdev);
394 }
395 out:
396 spin_unlock_irqrestore(shost->host_lock, flags);
397}
398
399static inline bool scsi_device_is_busy(struct scsi_device *sdev)
400{
401 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
402 return true;
403 if (atomic_read(&sdev->device_blocked) > 0)
404 return true;
405 return false;
406}
407
408static inline bool scsi_target_is_busy(struct scsi_target *starget)
409{
410 if (starget->can_queue > 0) {
411 if (atomic_read(&starget->target_busy) >= starget->can_queue)
412 return true;
413 if (atomic_read(&starget->target_blocked) > 0)
414 return true;
415 }
416 return false;
417}
418
419static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
420{
421 if (atomic_read(&shost->host_blocked) > 0)
422 return true;
423 if (shost->host_self_blocked)
424 return true;
425 return false;
426}
427
428static void scsi_starved_list_run(struct Scsi_Host *shost)
429{
430 LIST_HEAD(starved_list);
431 struct scsi_device *sdev;
432 unsigned long flags;
433
434 spin_lock_irqsave(shost->host_lock, flags);
435 list_splice_init(&shost->starved_list, &starved_list);
436
437 while (!list_empty(&starved_list)) {
438 struct request_queue *slq;
439
440 /*
441 * As long as shost is accepting commands and we have
442 * starved queues, call blk_run_queue. scsi_request_fn
443 * drops the queue_lock and can add us back to the
444 * starved_list.
445 *
446 * host_lock protects the starved_list and starved_entry.
447 * scsi_request_fn must get the host_lock before checking
448 * or modifying starved_list or starved_entry.
449 */
450 if (scsi_host_is_busy(shost))
451 break;
452
453 sdev = list_entry(starved_list.next,
454 struct scsi_device, starved_entry);
455 list_del_init(&sdev->starved_entry);
456 if (scsi_target_is_busy(scsi_target(sdev))) {
457 list_move_tail(&sdev->starved_entry,
458 &shost->starved_list);
459 continue;
460 }
461
462 /*
463 * Once we drop the host lock, a racing scsi_remove_device()
464 * call may remove the sdev from the starved list and destroy
465 * it and the queue. Mitigate by taking a reference to the
466 * queue and never touching the sdev again after we drop the
467 * host lock. Note: if __scsi_remove_device() invokes
468 * blk_cleanup_queue() before the queue is run from this
469 * function then blk_run_queue() will return immediately since
470 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
471 */
472 slq = sdev->request_queue;
473 if (!blk_get_queue(slq))
474 continue;
475 spin_unlock_irqrestore(shost->host_lock, flags);
476
477 scsi_kick_queue(slq);
478 blk_put_queue(slq);
479
480 spin_lock_irqsave(shost->host_lock, flags);
481 }
482 /* put any unprocessed entries back */
483 list_splice(&starved_list, &shost->starved_list);
484 spin_unlock_irqrestore(shost->host_lock, flags);
485}
486
487/**
488 * scsi_run_queue - Select a proper request queue to serve next.
489 * @q: last request's queue
490 *
491 * The previous command was completely finished, start a new one if possible.
492 */
493static void scsi_run_queue(struct request_queue *q)
494{
495 struct scsi_device *sdev = q->queuedata;
496
497 if (scsi_target(sdev)->single_lun)
498 scsi_single_lun_run(sdev);
499 if (!list_empty(&sdev->host->starved_list))
500 scsi_starved_list_run(sdev->host);
501
502 blk_mq_run_hw_queues(q, false);
503}
504
505void scsi_requeue_run_queue(struct work_struct *work)
506{
507 struct scsi_device *sdev;
508 struct request_queue *q;
509
510 sdev = container_of(work, struct scsi_device, requeue_work);
511 q = sdev->request_queue;
512 scsi_run_queue(q);
513}
514
515void scsi_run_host_queues(struct Scsi_Host *shost)
516{
517 struct scsi_device *sdev;
518
519 shost_for_each_device(sdev, shost)
520 scsi_run_queue(sdev->request_queue);
521}
522
523static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
524{
525 if (!blk_rq_is_passthrough(cmd->request)) {
526 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
527
528 if (drv->uninit_command)
529 drv->uninit_command(cmd);
530 }
531}
532
533static void scsi_free_sgtables(struct scsi_cmnd *cmd)
534{
535 if (cmd->sdb.table.nents)
536 sg_free_table_chained(&cmd->sdb.table,
537 SCSI_INLINE_SG_CNT);
538 if (scsi_prot_sg_count(cmd))
539 sg_free_table_chained(&cmd->prot_sdb->table,
540 SCSI_INLINE_PROT_SG_CNT);
541}
542
543static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
544{
545 scsi_free_sgtables(cmd);
546 scsi_uninit_cmd(cmd);
547}
548
549static void scsi_run_queue_async(struct scsi_device *sdev)
550{
551 if (scsi_target(sdev)->single_lun ||
552 !list_empty(&sdev->host->starved_list))
553 kblockd_schedule_work(&sdev->requeue_work);
554 else
555 blk_mq_run_hw_queues(sdev->request_queue, true);
556}
557
558/* Returns false when no more bytes to process, true if there are more */
559static bool scsi_end_request(struct request *req, blk_status_t error,
560 unsigned int bytes)
561{
562 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
563 struct scsi_device *sdev = cmd->device;
564 struct request_queue *q = sdev->request_queue;
565
566 if (blk_update_request(req, error, bytes))
567 return true;
568
569 if (blk_queue_add_random(q))
570 add_disk_randomness(req->rq_disk);
571
572 if (!blk_rq_is_scsi(req)) {
573 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
574 cmd->flags &= ~SCMD_INITIALIZED;
575 }
576
577 /*
578 * Calling rcu_barrier() is not necessary here because the
579 * SCSI error handler guarantees that the function called by
580 * call_rcu() has been called before scsi_end_request() is
581 * called.
582 */
583 destroy_rcu_head(&cmd->rcu);
584
585 /*
586 * In the MQ case the command gets freed by __blk_mq_end_request,
587 * so we have to do all cleanup that depends on it earlier.
588 *
589 * We also can't kick the queues from irq context, so we
590 * will have to defer it to a workqueue.
591 */
592 scsi_mq_uninit_cmd(cmd);
593
594 /*
595 * queue is still alive, so grab the ref for preventing it
596 * from being cleaned up during running queue.
597 */
598 percpu_ref_get(&q->q_usage_counter);
599
600 __blk_mq_end_request(req, error);
601
602 scsi_run_queue_async(sdev);
603
604 percpu_ref_put(&q->q_usage_counter);
605 return false;
606}
607
608/**
609 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
610 * @cmd: SCSI command
611 * @result: scsi error code
612 *
613 * Translate a SCSI result code into a blk_status_t value. May reset the host
614 * byte of @cmd->result.
615 */
616static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
617{
618 switch (host_byte(result)) {
619 case DID_OK:
620 /*
621 * Also check the other bytes than the status byte in result
622 * to handle the case when a SCSI LLD sets result to
623 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
624 */
625 if (scsi_status_is_good(result) && (result & ~0xff) == 0)
626 return BLK_STS_OK;
627 return BLK_STS_IOERR;
628 case DID_TRANSPORT_FAILFAST:
629 return BLK_STS_TRANSPORT;
630 case DID_TARGET_FAILURE:
631 set_host_byte(cmd, DID_OK);
632 return BLK_STS_TARGET;
633 case DID_NEXUS_FAILURE:
634 set_host_byte(cmd, DID_OK);
635 return BLK_STS_NEXUS;
636 case DID_ALLOC_FAILURE:
637 set_host_byte(cmd, DID_OK);
638 return BLK_STS_NOSPC;
639 case DID_MEDIUM_ERROR:
640 set_host_byte(cmd, DID_OK);
641 return BLK_STS_MEDIUM;
642 default:
643 return BLK_STS_IOERR;
644 }
645}
646
647/* Helper for scsi_io_completion() when "reprep" action required. */
648static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
649 struct request_queue *q)
650{
651 /* A new command will be prepared and issued. */
652 scsi_mq_requeue_cmd(cmd);
653}
654
655/* Helper for scsi_io_completion() when special action required. */
656static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
657{
658 struct request_queue *q = cmd->device->request_queue;
659 struct request *req = cmd->request;
660 int level = 0;
661 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
662 ACTION_DELAYED_RETRY} action;
663 unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
664 struct scsi_sense_hdr sshdr;
665 bool sense_valid;
666 bool sense_current = true; /* false implies "deferred sense" */
667 blk_status_t blk_stat;
668
669 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
670 if (sense_valid)
671 sense_current = !scsi_sense_is_deferred(&sshdr);
672
673 blk_stat = scsi_result_to_blk_status(cmd, result);
674
675 if (host_byte(result) == DID_RESET) {
676 /* Third party bus reset or reset for error recovery
677 * reasons. Just retry the command and see what
678 * happens.
679 */
680 action = ACTION_RETRY;
681 } else if (sense_valid && sense_current) {
682 switch (sshdr.sense_key) {
683 case UNIT_ATTENTION:
684 if (cmd->device->removable) {
685 /* Detected disc change. Set a bit
686 * and quietly refuse further access.
687 */
688 cmd->device->changed = 1;
689 action = ACTION_FAIL;
690 } else {
691 /* Must have been a power glitch, or a
692 * bus reset. Could not have been a
693 * media change, so we just retry the
694 * command and see what happens.
695 */
696 action = ACTION_RETRY;
697 }
698 break;
699 case ILLEGAL_REQUEST:
700 /* If we had an ILLEGAL REQUEST returned, then
701 * we may have performed an unsupported
702 * command. The only thing this should be
703 * would be a ten byte read where only a six
704 * byte read was supported. Also, on a system
705 * where READ CAPACITY failed, we may have
706 * read past the end of the disk.
707 */
708 if ((cmd->device->use_10_for_rw &&
709 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
710 (cmd->cmnd[0] == READ_10 ||
711 cmd->cmnd[0] == WRITE_10)) {
712 /* This will issue a new 6-byte command. */
713 cmd->device->use_10_for_rw = 0;
714 action = ACTION_REPREP;
715 } else if (sshdr.asc == 0x10) /* DIX */ {
716 action = ACTION_FAIL;
717 blk_stat = BLK_STS_PROTECTION;
718 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
719 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
720 action = ACTION_FAIL;
721 blk_stat = BLK_STS_TARGET;
722 } else
723 action = ACTION_FAIL;
724 break;
725 case ABORTED_COMMAND:
726 action = ACTION_FAIL;
727 if (sshdr.asc == 0x10) /* DIF */
728 blk_stat = BLK_STS_PROTECTION;
729 break;
730 case NOT_READY:
731 /* If the device is in the process of becoming
732 * ready, or has a temporary blockage, retry.
733 */
734 if (sshdr.asc == 0x04) {
735 switch (sshdr.ascq) {
736 case 0x01: /* becoming ready */
737 case 0x04: /* format in progress */
738 case 0x05: /* rebuild in progress */
739 case 0x06: /* recalculation in progress */
740 case 0x07: /* operation in progress */
741 case 0x08: /* Long write in progress */
742 case 0x09: /* self test in progress */
743 case 0x14: /* space allocation in progress */
744 case 0x1a: /* start stop unit in progress */
745 case 0x1b: /* sanitize in progress */
746 case 0x1d: /* configuration in progress */
747 case 0x24: /* depopulation in progress */
748 action = ACTION_DELAYED_RETRY;
749 break;
750 default:
751 action = ACTION_FAIL;
752 break;
753 }
754 } else
755 action = ACTION_FAIL;
756 break;
757 case VOLUME_OVERFLOW:
758 /* See SSC3rXX or current. */
759 action = ACTION_FAIL;
760 break;
761 default:
762 action = ACTION_FAIL;
763 break;
764 }
765 } else
766 action = ACTION_FAIL;
767
768 if (action != ACTION_FAIL &&
769 time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
770 action = ACTION_FAIL;
771
772 switch (action) {
773 case ACTION_FAIL:
774 /* Give up and fail the remainder of the request */
775 if (!(req->rq_flags & RQF_QUIET)) {
776 static DEFINE_RATELIMIT_STATE(_rs,
777 DEFAULT_RATELIMIT_INTERVAL,
778 DEFAULT_RATELIMIT_BURST);
779
780 if (unlikely(scsi_logging_level))
781 level =
782 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
783 SCSI_LOG_MLCOMPLETE_BITS);
784
785 /*
786 * if logging is enabled the failure will be printed
787 * in scsi_log_completion(), so avoid duplicate messages
788 */
789 if (!level && __ratelimit(&_rs)) {
790 scsi_print_result(cmd, NULL, FAILED);
791 if (driver_byte(result) == DRIVER_SENSE)
792 scsi_print_sense(cmd);
793 scsi_print_command(cmd);
794 }
795 }
796 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
797 return;
798 fallthrough;
799 case ACTION_REPREP:
800 scsi_io_completion_reprep(cmd, q);
801 break;
802 case ACTION_RETRY:
803 /* Retry the same command immediately */
804 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
805 break;
806 case ACTION_DELAYED_RETRY:
807 /* Retry the same command after a delay */
808 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
809 break;
810 }
811}
812
813/*
814 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
815 * new result that may suppress further error checking. Also modifies
816 * *blk_statp in some cases.
817 */
818static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
819 blk_status_t *blk_statp)
820{
821 bool sense_valid;
822 bool sense_current = true; /* false implies "deferred sense" */
823 struct request *req = cmd->request;
824 struct scsi_sense_hdr sshdr;
825
826 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
827 if (sense_valid)
828 sense_current = !scsi_sense_is_deferred(&sshdr);
829
830 if (blk_rq_is_passthrough(req)) {
831 if (sense_valid) {
832 /*
833 * SG_IO wants current and deferred errors
834 */
835 scsi_req(req)->sense_len =
836 min(8 + cmd->sense_buffer[7],
837 SCSI_SENSE_BUFFERSIZE);
838 }
839 if (sense_current)
840 *blk_statp = scsi_result_to_blk_status(cmd, result);
841 } else if (blk_rq_bytes(req) == 0 && sense_current) {
842 /*
843 * Flush commands do not transfers any data, and thus cannot use
844 * good_bytes != blk_rq_bytes(req) as the signal for an error.
845 * This sets *blk_statp explicitly for the problem case.
846 */
847 *blk_statp = scsi_result_to_blk_status(cmd, result);
848 }
849 /*
850 * Recovered errors need reporting, but they're always treated as
851 * success, so fiddle the result code here. For passthrough requests
852 * we already took a copy of the original into sreq->result which
853 * is what gets returned to the user
854 */
855 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
856 bool do_print = true;
857 /*
858 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
859 * skip print since caller wants ATA registers. Only occurs
860 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
861 */
862 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
863 do_print = false;
864 else if (req->rq_flags & RQF_QUIET)
865 do_print = false;
866 if (do_print)
867 scsi_print_sense(cmd);
868 result = 0;
869 /* for passthrough, *blk_statp may be set */
870 *blk_statp = BLK_STS_OK;
871 }
872 /*
873 * Another corner case: the SCSI status byte is non-zero but 'good'.
874 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
875 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
876 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
877 * intermediate statuses (both obsolete in SAM-4) as good.
878 */
879 if (status_byte(result) && scsi_status_is_good(result)) {
880 result = 0;
881 *blk_statp = BLK_STS_OK;
882 }
883 return result;
884}
885
886/**
887 * scsi_io_completion - Completion processing for SCSI commands.
888 * @cmd: command that is finished.
889 * @good_bytes: number of processed bytes.
890 *
891 * We will finish off the specified number of sectors. If we are done, the
892 * command block will be released and the queue function will be goosed. If we
893 * are not done then we have to figure out what to do next:
894 *
895 * a) We can call scsi_io_completion_reprep(). The request will be
896 * unprepared and put back on the queue. Then a new command will
897 * be created for it. This should be used if we made forward
898 * progress, or if we want to switch from READ(10) to READ(6) for
899 * example.
900 *
901 * b) We can call scsi_io_completion_action(). The request will be
902 * put back on the queue and retried using the same command as
903 * before, possibly after a delay.
904 *
905 * c) We can call scsi_end_request() with blk_stat other than
906 * BLK_STS_OK, to fail the remainder of the request.
907 */
908void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
909{
910 int result = cmd->result;
911 struct request_queue *q = cmd->device->request_queue;
912 struct request *req = cmd->request;
913 blk_status_t blk_stat = BLK_STS_OK;
914
915 if (unlikely(result)) /* a nz result may or may not be an error */
916 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
917
918 if (unlikely(blk_rq_is_passthrough(req))) {
919 /*
920 * scsi_result_to_blk_status may have reset the host_byte
921 */
922 scsi_req(req)->result = cmd->result;
923 }
924
925 /*
926 * Next deal with any sectors which we were able to correctly
927 * handle.
928 */
929 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
930 "%u sectors total, %d bytes done.\n",
931 blk_rq_sectors(req), good_bytes));
932
933 /*
934 * Failed, zero length commands always need to drop down
935 * to retry code. Fast path should return in this block.
936 */
937 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
938 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
939 return; /* no bytes remaining */
940 }
941
942 /* Kill remainder if no retries. */
943 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
944 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
945 WARN_ONCE(true,
946 "Bytes remaining after failed, no-retry command");
947 return;
948 }
949
950 /*
951 * If there had been no error, but we have leftover bytes in the
952 * requeues just queue the command up again.
953 */
954 if (likely(result == 0))
955 scsi_io_completion_reprep(cmd, q);
956 else
957 scsi_io_completion_action(cmd, result);
958}
959
960static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
961 struct request *rq)
962{
963 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
964 !op_is_write(req_op(rq)) &&
965 sdev->host->hostt->dma_need_drain(rq);
966}
967
968/**
969 * scsi_init_io - SCSI I/O initialization function.
970 * @cmd: command descriptor we wish to initialize
971 *
972 * Returns:
973 * * BLK_STS_OK - on success
974 * * BLK_STS_RESOURCE - if the failure is retryable
975 * * BLK_STS_IOERR - if the failure is fatal
976 */
977blk_status_t scsi_init_io(struct scsi_cmnd *cmd)
978{
979 struct scsi_device *sdev = cmd->device;
980 struct request *rq = cmd->request;
981 unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
982 struct scatterlist *last_sg = NULL;
983 blk_status_t ret;
984 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
985 int count;
986
987 if (WARN_ON_ONCE(!nr_segs))
988 return BLK_STS_IOERR;
989
990 /*
991 * Make sure there is space for the drain. The driver must adjust
992 * max_hw_segments to be prepared for this.
993 */
994 if (need_drain)
995 nr_segs++;
996
997 /*
998 * If sg table allocation fails, requeue request later.
999 */
1000 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1001 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1002 return BLK_STS_RESOURCE;
1003
1004 /*
1005 * Next, walk the list, and fill in the addresses and sizes of
1006 * each segment.
1007 */
1008 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1009
1010 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1011 unsigned int pad_len =
1012 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1013
1014 last_sg->length += pad_len;
1015 cmd->extra_len += pad_len;
1016 }
1017
1018 if (need_drain) {
1019 sg_unmark_end(last_sg);
1020 last_sg = sg_next(last_sg);
1021 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1022 sg_mark_end(last_sg);
1023
1024 cmd->extra_len += sdev->dma_drain_len;
1025 count++;
1026 }
1027
1028 BUG_ON(count > cmd->sdb.table.nents);
1029 cmd->sdb.table.nents = count;
1030 cmd->sdb.length = blk_rq_payload_bytes(rq);
1031
1032 if (blk_integrity_rq(rq)) {
1033 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1034 int ivecs;
1035
1036 if (WARN_ON_ONCE(!prot_sdb)) {
1037 /*
1038 * This can happen if someone (e.g. multipath)
1039 * queues a command to a device on an adapter
1040 * that does not support DIX.
1041 */
1042 ret = BLK_STS_IOERR;
1043 goto out_free_sgtables;
1044 }
1045
1046 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1047
1048 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1049 prot_sdb->table.sgl,
1050 SCSI_INLINE_PROT_SG_CNT)) {
1051 ret = BLK_STS_RESOURCE;
1052 goto out_free_sgtables;
1053 }
1054
1055 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1056 prot_sdb->table.sgl);
1057 BUG_ON(count > ivecs);
1058 BUG_ON(count > queue_max_integrity_segments(rq->q));
1059
1060 cmd->prot_sdb = prot_sdb;
1061 cmd->prot_sdb->table.nents = count;
1062 }
1063
1064 return BLK_STS_OK;
1065out_free_sgtables:
1066 scsi_free_sgtables(cmd);
1067 return ret;
1068}
1069EXPORT_SYMBOL(scsi_init_io);
1070
1071/**
1072 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1073 * @rq: Request associated with the SCSI command to be initialized.
1074 *
1075 * This function initializes the members of struct scsi_cmnd that must be
1076 * initialized before request processing starts and that won't be
1077 * reinitialized if a SCSI command is requeued.
1078 *
1079 * Called from inside blk_get_request() for pass-through requests and from
1080 * inside scsi_init_command() for filesystem requests.
1081 */
1082static void scsi_initialize_rq(struct request *rq)
1083{
1084 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1085
1086 scsi_req_init(&cmd->req);
1087 init_rcu_head(&cmd->rcu);
1088 cmd->jiffies_at_alloc = jiffies;
1089 cmd->retries = 0;
1090}
1091
1092/*
1093 * Only called when the request isn't completed by SCSI, and not freed by
1094 * SCSI
1095 */
1096static void scsi_cleanup_rq(struct request *rq)
1097{
1098 if (rq->rq_flags & RQF_DONTPREP) {
1099 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1100 rq->rq_flags &= ~RQF_DONTPREP;
1101 }
1102}
1103
1104/* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1105void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1106{
1107 void *buf = cmd->sense_buffer;
1108 void *prot = cmd->prot_sdb;
1109 struct request *rq = blk_mq_rq_from_pdu(cmd);
1110 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1111 unsigned long jiffies_at_alloc;
1112 int retries, to_clear;
1113 bool in_flight;
1114
1115 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1116 flags |= SCMD_INITIALIZED;
1117 scsi_initialize_rq(rq);
1118 }
1119
1120 jiffies_at_alloc = cmd->jiffies_at_alloc;
1121 retries = cmd->retries;
1122 in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1123 /*
1124 * Zero out the cmd, except for the embedded scsi_request. Only clear
1125 * the driver-private command data if the LLD does not supply a
1126 * function to initialize that data.
1127 */
1128 to_clear = sizeof(*cmd) - sizeof(cmd->req);
1129 if (!dev->host->hostt->init_cmd_priv)
1130 to_clear += dev->host->hostt->cmd_size;
1131 memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1132
1133 cmd->device = dev;
1134 cmd->sense_buffer = buf;
1135 cmd->prot_sdb = prot;
1136 cmd->flags = flags;
1137 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1138 cmd->jiffies_at_alloc = jiffies_at_alloc;
1139 cmd->retries = retries;
1140 if (in_flight)
1141 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1142
1143}
1144
1145static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1146 struct request *req)
1147{
1148 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1149
1150 /*
1151 * Passthrough requests may transfer data, in which case they must
1152 * a bio attached to them. Or they might contain a SCSI command
1153 * that does not transfer data, in which case they may optionally
1154 * submit a request without an attached bio.
1155 */
1156 if (req->bio) {
1157 blk_status_t ret = scsi_init_io(cmd);
1158 if (unlikely(ret != BLK_STS_OK))
1159 return ret;
1160 } else {
1161 BUG_ON(blk_rq_bytes(req));
1162
1163 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1164 }
1165
1166 cmd->cmd_len = scsi_req(req)->cmd_len;
1167 cmd->cmnd = scsi_req(req)->cmd;
1168 cmd->transfersize = blk_rq_bytes(req);
1169 cmd->allowed = scsi_req(req)->retries;
1170 return BLK_STS_OK;
1171}
1172
1173/*
1174 * Setup a normal block command. These are simple request from filesystems
1175 * that still need to be translated to SCSI CDBs from the ULD.
1176 */
1177static blk_status_t scsi_setup_fs_cmnd(struct scsi_device *sdev,
1178 struct request *req)
1179{
1180 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1181
1182 if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1183 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1184 if (ret != BLK_STS_OK)
1185 return ret;
1186 }
1187
1188 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1189 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1190 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1191}
1192
1193static blk_status_t scsi_setup_cmnd(struct scsi_device *sdev,
1194 struct request *req)
1195{
1196 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1197 blk_status_t ret;
1198
1199 if (!blk_rq_bytes(req))
1200 cmd->sc_data_direction = DMA_NONE;
1201 else if (rq_data_dir(req) == WRITE)
1202 cmd->sc_data_direction = DMA_TO_DEVICE;
1203 else
1204 cmd->sc_data_direction = DMA_FROM_DEVICE;
1205
1206 if (blk_rq_is_scsi(req))
1207 ret = scsi_setup_scsi_cmnd(sdev, req);
1208 else
1209 ret = scsi_setup_fs_cmnd(sdev, req);
1210
1211 if (ret != BLK_STS_OK)
1212 scsi_free_sgtables(cmd);
1213
1214 return ret;
1215}
1216
1217static blk_status_t
1218scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1219{
1220 switch (sdev->sdev_state) {
1221 case SDEV_OFFLINE:
1222 case SDEV_TRANSPORT_OFFLINE:
1223 /*
1224 * If the device is offline we refuse to process any
1225 * commands. The device must be brought online
1226 * before trying any recovery commands.
1227 */
1228 if (!sdev->offline_already) {
1229 sdev->offline_already = true;
1230 sdev_printk(KERN_ERR, sdev,
1231 "rejecting I/O to offline device\n");
1232 }
1233 return BLK_STS_IOERR;
1234 case SDEV_DEL:
1235 /*
1236 * If the device is fully deleted, we refuse to
1237 * process any commands as well.
1238 */
1239 sdev_printk(KERN_ERR, sdev,
1240 "rejecting I/O to dead device\n");
1241 return BLK_STS_IOERR;
1242 case SDEV_BLOCK:
1243 case SDEV_CREATED_BLOCK:
1244 return BLK_STS_RESOURCE;
1245 case SDEV_QUIESCE:
1246 /*
1247 * If the devices is blocked we defer normal commands.
1248 */
1249 if (req && !(req->rq_flags & RQF_PREEMPT))
1250 return BLK_STS_RESOURCE;
1251 return BLK_STS_OK;
1252 default:
1253 /*
1254 * For any other not fully online state we only allow
1255 * special commands. In particular any user initiated
1256 * command is not allowed.
1257 */
1258 if (req && !(req->rq_flags & RQF_PREEMPT))
1259 return BLK_STS_IOERR;
1260 return BLK_STS_OK;
1261 }
1262}
1263
1264/*
1265 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1266 * return 0.
1267 *
1268 * Called with the queue_lock held.
1269 */
1270static inline int scsi_dev_queue_ready(struct request_queue *q,
1271 struct scsi_device *sdev)
1272{
1273 unsigned int busy;
1274
1275 busy = atomic_inc_return(&sdev->device_busy) - 1;
1276 if (atomic_read(&sdev->device_blocked)) {
1277 if (busy)
1278 goto out_dec;
1279
1280 /*
1281 * unblock after device_blocked iterates to zero
1282 */
1283 if (atomic_dec_return(&sdev->device_blocked) > 0)
1284 goto out_dec;
1285 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1286 "unblocking device at zero depth\n"));
1287 }
1288
1289 if (busy >= sdev->queue_depth)
1290 goto out_dec;
1291
1292 return 1;
1293out_dec:
1294 atomic_dec(&sdev->device_busy);
1295 return 0;
1296}
1297
1298/*
1299 * scsi_target_queue_ready: checks if there we can send commands to target
1300 * @sdev: scsi device on starget to check.
1301 */
1302static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1303 struct scsi_device *sdev)
1304{
1305 struct scsi_target *starget = scsi_target(sdev);
1306 unsigned int busy;
1307
1308 if (starget->single_lun) {
1309 spin_lock_irq(shost->host_lock);
1310 if (starget->starget_sdev_user &&
1311 starget->starget_sdev_user != sdev) {
1312 spin_unlock_irq(shost->host_lock);
1313 return 0;
1314 }
1315 starget->starget_sdev_user = sdev;
1316 spin_unlock_irq(shost->host_lock);
1317 }
1318
1319 if (starget->can_queue <= 0)
1320 return 1;
1321
1322 busy = atomic_inc_return(&starget->target_busy) - 1;
1323 if (atomic_read(&starget->target_blocked) > 0) {
1324 if (busy)
1325 goto starved;
1326
1327 /*
1328 * unblock after target_blocked iterates to zero
1329 */
1330 if (atomic_dec_return(&starget->target_blocked) > 0)
1331 goto out_dec;
1332
1333 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1334 "unblocking target at zero depth\n"));
1335 }
1336
1337 if (busy >= starget->can_queue)
1338 goto starved;
1339
1340 return 1;
1341
1342starved:
1343 spin_lock_irq(shost->host_lock);
1344 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1345 spin_unlock_irq(shost->host_lock);
1346out_dec:
1347 if (starget->can_queue > 0)
1348 atomic_dec(&starget->target_busy);
1349 return 0;
1350}
1351
1352/*
1353 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1354 * return 0. We must end up running the queue again whenever 0 is
1355 * returned, else IO can hang.
1356 */
1357static inline int scsi_host_queue_ready(struct request_queue *q,
1358 struct Scsi_Host *shost,
1359 struct scsi_device *sdev,
1360 struct scsi_cmnd *cmd)
1361{
1362 if (scsi_host_in_recovery(shost))
1363 return 0;
1364
1365 if (atomic_read(&shost->host_blocked) > 0) {
1366 if (scsi_host_busy(shost) > 0)
1367 goto starved;
1368
1369 /*
1370 * unblock after host_blocked iterates to zero
1371 */
1372 if (atomic_dec_return(&shost->host_blocked) > 0)
1373 goto out_dec;
1374
1375 SCSI_LOG_MLQUEUE(3,
1376 shost_printk(KERN_INFO, shost,
1377 "unblocking host at zero depth\n"));
1378 }
1379
1380 if (shost->host_self_blocked)
1381 goto starved;
1382
1383 /* We're OK to process the command, so we can't be starved */
1384 if (!list_empty(&sdev->starved_entry)) {
1385 spin_lock_irq(shost->host_lock);
1386 if (!list_empty(&sdev->starved_entry))
1387 list_del_init(&sdev->starved_entry);
1388 spin_unlock_irq(shost->host_lock);
1389 }
1390
1391 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1392
1393 return 1;
1394
1395starved:
1396 spin_lock_irq(shost->host_lock);
1397 if (list_empty(&sdev->starved_entry))
1398 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1399 spin_unlock_irq(shost->host_lock);
1400out_dec:
1401 scsi_dec_host_busy(shost, cmd);
1402 return 0;
1403}
1404
1405/*
1406 * Busy state exporting function for request stacking drivers.
1407 *
1408 * For efficiency, no lock is taken to check the busy state of
1409 * shost/starget/sdev, since the returned value is not guaranteed and
1410 * may be changed after request stacking drivers call the function,
1411 * regardless of taking lock or not.
1412 *
1413 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1414 * needs to return 'not busy'. Otherwise, request stacking drivers
1415 * may hold requests forever.
1416 */
1417static bool scsi_mq_lld_busy(struct request_queue *q)
1418{
1419 struct scsi_device *sdev = q->queuedata;
1420 struct Scsi_Host *shost;
1421
1422 if (blk_queue_dying(q))
1423 return false;
1424
1425 shost = sdev->host;
1426
1427 /*
1428 * Ignore host/starget busy state.
1429 * Since block layer does not have a concept of fairness across
1430 * multiple queues, congestion of host/starget needs to be handled
1431 * in SCSI layer.
1432 */
1433 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1434 return true;
1435
1436 return false;
1437}
1438
1439static void scsi_softirq_done(struct request *rq)
1440{
1441 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1442 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1443 int disposition;
1444
1445 INIT_LIST_HEAD(&cmd->eh_entry);
1446
1447 atomic_inc(&cmd->device->iodone_cnt);
1448 if (cmd->result)
1449 atomic_inc(&cmd->device->ioerr_cnt);
1450
1451 disposition = scsi_decide_disposition(cmd);
1452 if (disposition != SUCCESS &&
1453 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1454 scmd_printk(KERN_ERR, cmd,
1455 "timing out command, waited %lus\n",
1456 wait_for/HZ);
1457 disposition = SUCCESS;
1458 }
1459
1460 scsi_log_completion(cmd, disposition);
1461
1462 switch (disposition) {
1463 case SUCCESS:
1464 scsi_finish_command(cmd);
1465 break;
1466 case NEEDS_RETRY:
1467 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1468 break;
1469 case ADD_TO_MLQUEUE:
1470 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1471 break;
1472 default:
1473 scsi_eh_scmd_add(cmd);
1474 break;
1475 }
1476}
1477
1478/**
1479 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1480 * @cmd: command block we are dispatching.
1481 *
1482 * Return: nonzero return request was rejected and device's queue needs to be
1483 * plugged.
1484 */
1485static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1486{
1487 struct Scsi_Host *host = cmd->device->host;
1488 int rtn = 0;
1489
1490 atomic_inc(&cmd->device->iorequest_cnt);
1491
1492 /* check if the device is still usable */
1493 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1494 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1495 * returns an immediate error upwards, and signals
1496 * that the device is no longer present */
1497 cmd->result = DID_NO_CONNECT << 16;
1498 goto done;
1499 }
1500
1501 /* Check to see if the scsi lld made this device blocked. */
1502 if (unlikely(scsi_device_blocked(cmd->device))) {
1503 /*
1504 * in blocked state, the command is just put back on
1505 * the device queue. The suspend state has already
1506 * blocked the queue so future requests should not
1507 * occur until the device transitions out of the
1508 * suspend state.
1509 */
1510 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1511 "queuecommand : device blocked\n"));
1512 return SCSI_MLQUEUE_DEVICE_BUSY;
1513 }
1514
1515 /* Store the LUN value in cmnd, if needed. */
1516 if (cmd->device->lun_in_cdb)
1517 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1518 (cmd->device->lun << 5 & 0xe0);
1519
1520 scsi_log_send(cmd);
1521
1522 /*
1523 * Before we queue this command, check if the command
1524 * length exceeds what the host adapter can handle.
1525 */
1526 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1527 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1528 "queuecommand : command too long. "
1529 "cdb_size=%d host->max_cmd_len=%d\n",
1530 cmd->cmd_len, cmd->device->host->max_cmd_len));
1531 cmd->result = (DID_ABORT << 16);
1532 goto done;
1533 }
1534
1535 if (unlikely(host->shost_state == SHOST_DEL)) {
1536 cmd->result = (DID_NO_CONNECT << 16);
1537 goto done;
1538
1539 }
1540
1541 trace_scsi_dispatch_cmd_start(cmd);
1542 rtn = host->hostt->queuecommand(host, cmd);
1543 if (rtn) {
1544 trace_scsi_dispatch_cmd_error(cmd, rtn);
1545 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1546 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1547 rtn = SCSI_MLQUEUE_HOST_BUSY;
1548
1549 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1550 "queuecommand : request rejected\n"));
1551 }
1552
1553 return rtn;
1554 done:
1555 cmd->scsi_done(cmd);
1556 return 0;
1557}
1558
1559/* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1560static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1561{
1562 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1563 sizeof(struct scatterlist);
1564}
1565
1566static blk_status_t scsi_mq_prep_fn(struct request *req)
1567{
1568 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1569 struct scsi_device *sdev = req->q->queuedata;
1570 struct Scsi_Host *shost = sdev->host;
1571 struct scatterlist *sg;
1572
1573 scsi_init_command(sdev, cmd);
1574
1575 cmd->request = req;
1576 cmd->tag = req->tag;
1577 cmd->prot_op = SCSI_PROT_NORMAL;
1578
1579 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1580 cmd->sdb.table.sgl = sg;
1581
1582 if (scsi_host_get_prot(shost)) {
1583 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1584
1585 cmd->prot_sdb->table.sgl =
1586 (struct scatterlist *)(cmd->prot_sdb + 1);
1587 }
1588
1589 blk_mq_start_request(req);
1590
1591 return scsi_setup_cmnd(sdev, req);
1592}
1593
1594static void scsi_mq_done(struct scsi_cmnd *cmd)
1595{
1596 if (unlikely(blk_should_fake_timeout(cmd->request->q)))
1597 return;
1598 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1599 return;
1600 trace_scsi_dispatch_cmd_done(cmd);
1601 blk_mq_complete_request(cmd->request);
1602}
1603
1604static void scsi_mq_put_budget(struct request_queue *q)
1605{
1606 struct scsi_device *sdev = q->queuedata;
1607
1608 atomic_dec(&sdev->device_busy);
1609}
1610
1611static bool scsi_mq_get_budget(struct request_queue *q)
1612{
1613 struct scsi_device *sdev = q->queuedata;
1614
1615 return scsi_dev_queue_ready(q, sdev);
1616}
1617
1618static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1619 const struct blk_mq_queue_data *bd)
1620{
1621 struct request *req = bd->rq;
1622 struct request_queue *q = req->q;
1623 struct scsi_device *sdev = q->queuedata;
1624 struct Scsi_Host *shost = sdev->host;
1625 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1626 blk_status_t ret;
1627 int reason;
1628
1629 /*
1630 * If the device is not in running state we will reject some or all
1631 * commands.
1632 */
1633 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1634 ret = scsi_prep_state_check(sdev, req);
1635 if (ret != BLK_STS_OK)
1636 goto out_put_budget;
1637 }
1638
1639 ret = BLK_STS_RESOURCE;
1640 if (!scsi_target_queue_ready(shost, sdev))
1641 goto out_put_budget;
1642 if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1643 goto out_dec_target_busy;
1644
1645 if (!(req->rq_flags & RQF_DONTPREP)) {
1646 ret = scsi_mq_prep_fn(req);
1647 if (ret != BLK_STS_OK)
1648 goto out_dec_host_busy;
1649 req->rq_flags |= RQF_DONTPREP;
1650 } else {
1651 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1652 blk_mq_start_request(req);
1653 }
1654
1655 cmd->flags &= SCMD_PRESERVED_FLAGS;
1656 if (sdev->simple_tags)
1657 cmd->flags |= SCMD_TAGGED;
1658 if (bd->last)
1659 cmd->flags |= SCMD_LAST;
1660
1661 scsi_init_cmd_errh(cmd);
1662 cmd->scsi_done = scsi_mq_done;
1663
1664 reason = scsi_dispatch_cmd(cmd);
1665 if (reason) {
1666 scsi_set_blocked(cmd, reason);
1667 ret = BLK_STS_RESOURCE;
1668 goto out_dec_host_busy;
1669 }
1670
1671 return BLK_STS_OK;
1672
1673out_dec_host_busy:
1674 scsi_dec_host_busy(shost, cmd);
1675out_dec_target_busy:
1676 if (scsi_target(sdev)->can_queue > 0)
1677 atomic_dec(&scsi_target(sdev)->target_busy);
1678out_put_budget:
1679 scsi_mq_put_budget(q);
1680 switch (ret) {
1681 case BLK_STS_OK:
1682 break;
1683 case BLK_STS_RESOURCE:
1684 case BLK_STS_ZONE_RESOURCE:
1685 if (atomic_read(&sdev->device_busy) ||
1686 scsi_device_blocked(sdev))
1687 ret = BLK_STS_DEV_RESOURCE;
1688 break;
1689 default:
1690 if (unlikely(!scsi_device_online(sdev)))
1691 scsi_req(req)->result = DID_NO_CONNECT << 16;
1692 else
1693 scsi_req(req)->result = DID_ERROR << 16;
1694 /*
1695 * Make sure to release all allocated resources when
1696 * we hit an error, as we will never see this command
1697 * again.
1698 */
1699 if (req->rq_flags & RQF_DONTPREP)
1700 scsi_mq_uninit_cmd(cmd);
1701 scsi_run_queue_async(sdev);
1702 break;
1703 }
1704 return ret;
1705}
1706
1707static enum blk_eh_timer_return scsi_timeout(struct request *req,
1708 bool reserved)
1709{
1710 if (reserved)
1711 return BLK_EH_RESET_TIMER;
1712 return scsi_times_out(req);
1713}
1714
1715static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1716 unsigned int hctx_idx, unsigned int numa_node)
1717{
1718 struct Scsi_Host *shost = set->driver_data;
1719 const bool unchecked_isa_dma = shost->unchecked_isa_dma;
1720 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1721 struct scatterlist *sg;
1722 int ret = 0;
1723
1724 if (unchecked_isa_dma)
1725 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
1726 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
1727 GFP_KERNEL, numa_node);
1728 if (!cmd->sense_buffer)
1729 return -ENOMEM;
1730 cmd->req.sense = cmd->sense_buffer;
1731
1732 if (scsi_host_get_prot(shost)) {
1733 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1734 shost->hostt->cmd_size;
1735 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1736 }
1737
1738 if (shost->hostt->init_cmd_priv) {
1739 ret = shost->hostt->init_cmd_priv(shost, cmd);
1740 if (ret < 0)
1741 scsi_free_sense_buffer(unchecked_isa_dma,
1742 cmd->sense_buffer);
1743 }
1744
1745 return ret;
1746}
1747
1748static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1749 unsigned int hctx_idx)
1750{
1751 struct Scsi_Host *shost = set->driver_data;
1752 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1753
1754 if (shost->hostt->exit_cmd_priv)
1755 shost->hostt->exit_cmd_priv(shost, cmd);
1756 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
1757 cmd->sense_buffer);
1758}
1759
1760static int scsi_map_queues(struct blk_mq_tag_set *set)
1761{
1762 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1763
1764 if (shost->hostt->map_queues)
1765 return shost->hostt->map_queues(shost);
1766 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1767}
1768
1769void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1770{
1771 struct device *dev = shost->dma_dev;
1772
1773 /*
1774 * this limit is imposed by hardware restrictions
1775 */
1776 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1777 SG_MAX_SEGMENTS));
1778
1779 if (scsi_host_prot_dma(shost)) {
1780 shost->sg_prot_tablesize =
1781 min_not_zero(shost->sg_prot_tablesize,
1782 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1783 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1784 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1785 }
1786
1787 if (dev->dma_mask) {
1788 shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1789 dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1790 }
1791 blk_queue_max_hw_sectors(q, shost->max_sectors);
1792 if (shost->unchecked_isa_dma)
1793 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
1794 blk_queue_segment_boundary(q, shost->dma_boundary);
1795 dma_set_seg_boundary(dev, shost->dma_boundary);
1796
1797 blk_queue_max_segment_size(q, shost->max_segment_size);
1798 blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1799 dma_set_max_seg_size(dev, queue_max_segment_size(q));
1800
1801 /*
1802 * Set a reasonable default alignment: The larger of 32-byte (dword),
1803 * which is a common minimum for HBAs, and the minimum DMA alignment,
1804 * which is set by the platform.
1805 *
1806 * Devices that require a bigger alignment can increase it later.
1807 */
1808 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1809}
1810EXPORT_SYMBOL_GPL(__scsi_init_queue);
1811
1812static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1813 .get_budget = scsi_mq_get_budget,
1814 .put_budget = scsi_mq_put_budget,
1815 .queue_rq = scsi_queue_rq,
1816 .complete = scsi_softirq_done,
1817 .timeout = scsi_timeout,
1818#ifdef CONFIG_BLK_DEBUG_FS
1819 .show_rq = scsi_show_rq,
1820#endif
1821 .init_request = scsi_mq_init_request,
1822 .exit_request = scsi_mq_exit_request,
1823 .initialize_rq_fn = scsi_initialize_rq,
1824 .cleanup_rq = scsi_cleanup_rq,
1825 .busy = scsi_mq_lld_busy,
1826 .map_queues = scsi_map_queues,
1827};
1828
1829
1830static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1831{
1832 struct request_queue *q = hctx->queue;
1833 struct scsi_device *sdev = q->queuedata;
1834 struct Scsi_Host *shost = sdev->host;
1835
1836 shost->hostt->commit_rqs(shost, hctx->queue_num);
1837}
1838
1839static const struct blk_mq_ops scsi_mq_ops = {
1840 .get_budget = scsi_mq_get_budget,
1841 .put_budget = scsi_mq_put_budget,
1842 .queue_rq = scsi_queue_rq,
1843 .commit_rqs = scsi_commit_rqs,
1844 .complete = scsi_softirq_done,
1845 .timeout = scsi_timeout,
1846#ifdef CONFIG_BLK_DEBUG_FS
1847 .show_rq = scsi_show_rq,
1848#endif
1849 .init_request = scsi_mq_init_request,
1850 .exit_request = scsi_mq_exit_request,
1851 .initialize_rq_fn = scsi_initialize_rq,
1852 .cleanup_rq = scsi_cleanup_rq,
1853 .busy = scsi_mq_lld_busy,
1854 .map_queues = scsi_map_queues,
1855};
1856
1857struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1858{
1859 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1860 if (IS_ERR(sdev->request_queue))
1861 return NULL;
1862
1863 sdev->request_queue->queuedata = sdev;
1864 __scsi_init_queue(sdev->host, sdev->request_queue);
1865 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1866 return sdev->request_queue;
1867}
1868
1869int scsi_mq_setup_tags(struct Scsi_Host *shost)
1870{
1871 unsigned int cmd_size, sgl_size;
1872 struct blk_mq_tag_set *tag_set = &shost->tag_set;
1873
1874 sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1875 scsi_mq_inline_sgl_size(shost));
1876 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1877 if (scsi_host_get_prot(shost))
1878 cmd_size += sizeof(struct scsi_data_buffer) +
1879 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1880
1881 memset(tag_set, 0, sizeof(*tag_set));
1882 if (shost->hostt->commit_rqs)
1883 tag_set->ops = &scsi_mq_ops;
1884 else
1885 tag_set->ops = &scsi_mq_ops_no_commit;
1886 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1887 tag_set->queue_depth = shost->can_queue;
1888 tag_set->cmd_size = cmd_size;
1889 tag_set->numa_node = NUMA_NO_NODE;
1890 tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1891 tag_set->flags |=
1892 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1893 tag_set->driver_data = shost;
1894
1895 return blk_mq_alloc_tag_set(tag_set);
1896}
1897
1898void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1899{
1900 blk_mq_free_tag_set(&shost->tag_set);
1901}
1902
1903/**
1904 * scsi_device_from_queue - return sdev associated with a request_queue
1905 * @q: The request queue to return the sdev from
1906 *
1907 * Return the sdev associated with a request queue or NULL if the
1908 * request_queue does not reference a SCSI device.
1909 */
1910struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1911{
1912 struct scsi_device *sdev = NULL;
1913
1914 if (q->mq_ops == &scsi_mq_ops_no_commit ||
1915 q->mq_ops == &scsi_mq_ops)
1916 sdev = q->queuedata;
1917 if (!sdev || !get_device(&sdev->sdev_gendev))
1918 sdev = NULL;
1919
1920 return sdev;
1921}
1922EXPORT_SYMBOL_GPL(scsi_device_from_queue);
1923
1924/**
1925 * scsi_block_requests - Utility function used by low-level drivers to prevent
1926 * further commands from being queued to the device.
1927 * @shost: host in question
1928 *
1929 * There is no timer nor any other means by which the requests get unblocked
1930 * other than the low-level driver calling scsi_unblock_requests().
1931 */
1932void scsi_block_requests(struct Scsi_Host *shost)
1933{
1934 shost->host_self_blocked = 1;
1935}
1936EXPORT_SYMBOL(scsi_block_requests);
1937
1938/**
1939 * scsi_unblock_requests - Utility function used by low-level drivers to allow
1940 * further commands to be queued to the device.
1941 * @shost: host in question
1942 *
1943 * There is no timer nor any other means by which the requests get unblocked
1944 * other than the low-level driver calling scsi_unblock_requests(). This is done
1945 * as an API function so that changes to the internals of the scsi mid-layer
1946 * won't require wholesale changes to drivers that use this feature.
1947 */
1948void scsi_unblock_requests(struct Scsi_Host *shost)
1949{
1950 shost->host_self_blocked = 0;
1951 scsi_run_host_queues(shost);
1952}
1953EXPORT_SYMBOL(scsi_unblock_requests);
1954
1955void scsi_exit_queue(void)
1956{
1957 kmem_cache_destroy(scsi_sense_cache);
1958 kmem_cache_destroy(scsi_sense_isadma_cache);
1959}
1960
1961/**
1962 * scsi_mode_select - issue a mode select
1963 * @sdev: SCSI device to be queried
1964 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1965 * @sp: Save page bit (0 == don't save, 1 == save)
1966 * @modepage: mode page being requested
1967 * @buffer: request buffer (may not be smaller than eight bytes)
1968 * @len: length of request buffer.
1969 * @timeout: command timeout
1970 * @retries: number of retries before failing
1971 * @data: returns a structure abstracting the mode header data
1972 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1973 * must be SCSI_SENSE_BUFFERSIZE big.
1974 *
1975 * Returns zero if successful; negative error number or scsi
1976 * status on error
1977 *
1978 */
1979int
1980scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1981 unsigned char *buffer, int len, int timeout, int retries,
1982 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1983{
1984 unsigned char cmd[10];
1985 unsigned char *real_buffer;
1986 int ret;
1987
1988 memset(cmd, 0, sizeof(cmd));
1989 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1990
1991 if (sdev->use_10_for_ms) {
1992 if (len > 65535)
1993 return -EINVAL;
1994 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1995 if (!real_buffer)
1996 return -ENOMEM;
1997 memcpy(real_buffer + 8, buffer, len);
1998 len += 8;
1999 real_buffer[0] = 0;
2000 real_buffer[1] = 0;
2001 real_buffer[2] = data->medium_type;
2002 real_buffer[3] = data->device_specific;
2003 real_buffer[4] = data->longlba ? 0x01 : 0;
2004 real_buffer[5] = 0;
2005 real_buffer[6] = data->block_descriptor_length >> 8;
2006 real_buffer[7] = data->block_descriptor_length;
2007
2008 cmd[0] = MODE_SELECT_10;
2009 cmd[7] = len >> 8;
2010 cmd[8] = len;
2011 } else {
2012 if (len > 255 || data->block_descriptor_length > 255 ||
2013 data->longlba)
2014 return -EINVAL;
2015
2016 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2017 if (!real_buffer)
2018 return -ENOMEM;
2019 memcpy(real_buffer + 4, buffer, len);
2020 len += 4;
2021 real_buffer[0] = 0;
2022 real_buffer[1] = data->medium_type;
2023 real_buffer[2] = data->device_specific;
2024 real_buffer[3] = data->block_descriptor_length;
2025
2026 cmd[0] = MODE_SELECT;
2027 cmd[4] = len;
2028 }
2029
2030 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2031 sshdr, timeout, retries, NULL);
2032 kfree(real_buffer);
2033 return ret;
2034}
2035EXPORT_SYMBOL_GPL(scsi_mode_select);
2036
2037/**
2038 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2039 * @sdev: SCSI device to be queried
2040 * @dbd: set if mode sense will allow block descriptors to be returned
2041 * @modepage: mode page being requested
2042 * @buffer: request buffer (may not be smaller than eight bytes)
2043 * @len: length of request buffer.
2044 * @timeout: command timeout
2045 * @retries: number of retries before failing
2046 * @data: returns a structure abstracting the mode header data
2047 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2048 * must be SCSI_SENSE_BUFFERSIZE big.
2049 *
2050 * Returns zero if unsuccessful, or the header offset (either 4
2051 * or 8 depending on whether a six or ten byte command was
2052 * issued) if successful.
2053 */
2054int
2055scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2056 unsigned char *buffer, int len, int timeout, int retries,
2057 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2058{
2059 unsigned char cmd[12];
2060 int use_10_for_ms;
2061 int header_length;
2062 int result, retry_count = retries;
2063 struct scsi_sense_hdr my_sshdr;
2064
2065 memset(data, 0, sizeof(*data));
2066 memset(&cmd[0], 0, 12);
2067
2068 dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2069 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2070 cmd[2] = modepage;
2071
2072 /* caller might not be interested in sense, but we need it */
2073 if (!sshdr)
2074 sshdr = &my_sshdr;
2075
2076 retry:
2077 use_10_for_ms = sdev->use_10_for_ms;
2078
2079 if (use_10_for_ms) {
2080 if (len < 8)
2081 len = 8;
2082
2083 cmd[0] = MODE_SENSE_10;
2084 cmd[8] = len;
2085 header_length = 8;
2086 } else {
2087 if (len < 4)
2088 len = 4;
2089
2090 cmd[0] = MODE_SENSE;
2091 cmd[4] = len;
2092 header_length = 4;
2093 }
2094
2095 memset(buffer, 0, len);
2096
2097 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2098 sshdr, timeout, retries, NULL);
2099
2100 /* This code looks awful: what it's doing is making sure an
2101 * ILLEGAL REQUEST sense return identifies the actual command
2102 * byte as the problem. MODE_SENSE commands can return
2103 * ILLEGAL REQUEST if the code page isn't supported */
2104
2105 if (use_10_for_ms && !scsi_status_is_good(result) &&
2106 driver_byte(result) == DRIVER_SENSE) {
2107 if (scsi_sense_valid(sshdr)) {
2108 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2109 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2110 /*
2111 * Invalid command operation code
2112 */
2113 sdev->use_10_for_ms = 0;
2114 goto retry;
2115 }
2116 }
2117 }
2118
2119 if (scsi_status_is_good(result)) {
2120 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2121 (modepage == 6 || modepage == 8))) {
2122 /* Initio breakage? */
2123 header_length = 0;
2124 data->length = 13;
2125 data->medium_type = 0;
2126 data->device_specific = 0;
2127 data->longlba = 0;
2128 data->block_descriptor_length = 0;
2129 } else if (use_10_for_ms) {
2130 data->length = buffer[0]*256 + buffer[1] + 2;
2131 data->medium_type = buffer[2];
2132 data->device_specific = buffer[3];
2133 data->longlba = buffer[4] & 0x01;
2134 data->block_descriptor_length = buffer[6]*256
2135 + buffer[7];
2136 } else {
2137 data->length = buffer[0] + 1;
2138 data->medium_type = buffer[1];
2139 data->device_specific = buffer[2];
2140 data->block_descriptor_length = buffer[3];
2141 }
2142 data->header_length = header_length;
2143 } else if ((status_byte(result) == CHECK_CONDITION) &&
2144 scsi_sense_valid(sshdr) &&
2145 sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2146 retry_count--;
2147 goto retry;
2148 }
2149
2150 return result;
2151}
2152EXPORT_SYMBOL(scsi_mode_sense);
2153
2154/**
2155 * scsi_test_unit_ready - test if unit is ready
2156 * @sdev: scsi device to change the state of.
2157 * @timeout: command timeout
2158 * @retries: number of retries before failing
2159 * @sshdr: outpout pointer for decoded sense information.
2160 *
2161 * Returns zero if unsuccessful or an error if TUR failed. For
2162 * removable media, UNIT_ATTENTION sets ->changed flag.
2163 **/
2164int
2165scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2166 struct scsi_sense_hdr *sshdr)
2167{
2168 char cmd[] = {
2169 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2170 };
2171 int result;
2172
2173 /* try to eat the UNIT_ATTENTION if there are enough retries */
2174 do {
2175 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2176 timeout, 1, NULL);
2177 if (sdev->removable && scsi_sense_valid(sshdr) &&
2178 sshdr->sense_key == UNIT_ATTENTION)
2179 sdev->changed = 1;
2180 } while (scsi_sense_valid(sshdr) &&
2181 sshdr->sense_key == UNIT_ATTENTION && --retries);
2182
2183 return result;
2184}
2185EXPORT_SYMBOL(scsi_test_unit_ready);
2186
2187/**
2188 * scsi_device_set_state - Take the given device through the device state model.
2189 * @sdev: scsi device to change the state of.
2190 * @state: state to change to.
2191 *
2192 * Returns zero if successful or an error if the requested
2193 * transition is illegal.
2194 */
2195int
2196scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2197{
2198 enum scsi_device_state oldstate = sdev->sdev_state;
2199
2200 if (state == oldstate)
2201 return 0;
2202
2203 switch (state) {
2204 case SDEV_CREATED:
2205 switch (oldstate) {
2206 case SDEV_CREATED_BLOCK:
2207 break;
2208 default:
2209 goto illegal;
2210 }
2211 break;
2212
2213 case SDEV_RUNNING:
2214 switch (oldstate) {
2215 case SDEV_CREATED:
2216 case SDEV_OFFLINE:
2217 case SDEV_TRANSPORT_OFFLINE:
2218 case SDEV_QUIESCE:
2219 case SDEV_BLOCK:
2220 break;
2221 default:
2222 goto illegal;
2223 }
2224 break;
2225
2226 case SDEV_QUIESCE:
2227 switch (oldstate) {
2228 case SDEV_RUNNING:
2229 case SDEV_OFFLINE:
2230 case SDEV_TRANSPORT_OFFLINE:
2231 break;
2232 default:
2233 goto illegal;
2234 }
2235 break;
2236
2237 case SDEV_OFFLINE:
2238 case SDEV_TRANSPORT_OFFLINE:
2239 switch (oldstate) {
2240 case SDEV_CREATED:
2241 case SDEV_RUNNING:
2242 case SDEV_QUIESCE:
2243 case SDEV_BLOCK:
2244 break;
2245 default:
2246 goto illegal;
2247 }
2248 break;
2249
2250 case SDEV_BLOCK:
2251 switch (oldstate) {
2252 case SDEV_RUNNING:
2253 case SDEV_CREATED_BLOCK:
2254 case SDEV_QUIESCE:
2255 case SDEV_OFFLINE:
2256 break;
2257 default:
2258 goto illegal;
2259 }
2260 break;
2261
2262 case SDEV_CREATED_BLOCK:
2263 switch (oldstate) {
2264 case SDEV_CREATED:
2265 break;
2266 default:
2267 goto illegal;
2268 }
2269 break;
2270
2271 case SDEV_CANCEL:
2272 switch (oldstate) {
2273 case SDEV_CREATED:
2274 case SDEV_RUNNING:
2275 case SDEV_QUIESCE:
2276 case SDEV_OFFLINE:
2277 case SDEV_TRANSPORT_OFFLINE:
2278 break;
2279 default:
2280 goto illegal;
2281 }
2282 break;
2283
2284 case SDEV_DEL:
2285 switch (oldstate) {
2286 case SDEV_CREATED:
2287 case SDEV_RUNNING:
2288 case SDEV_OFFLINE:
2289 case SDEV_TRANSPORT_OFFLINE:
2290 case SDEV_CANCEL:
2291 case SDEV_BLOCK:
2292 case SDEV_CREATED_BLOCK:
2293 break;
2294 default:
2295 goto illegal;
2296 }
2297 break;
2298
2299 }
2300 sdev->offline_already = false;
2301 sdev->sdev_state = state;
2302 return 0;
2303
2304 illegal:
2305 SCSI_LOG_ERROR_RECOVERY(1,
2306 sdev_printk(KERN_ERR, sdev,
2307 "Illegal state transition %s->%s",
2308 scsi_device_state_name(oldstate),
2309 scsi_device_state_name(state))
2310 );
2311 return -EINVAL;
2312}
2313EXPORT_SYMBOL(scsi_device_set_state);
2314
2315/**
2316 * sdev_evt_emit - emit a single SCSI device uevent
2317 * @sdev: associated SCSI device
2318 * @evt: event to emit
2319 *
2320 * Send a single uevent (scsi_event) to the associated scsi_device.
2321 */
2322static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2323{
2324 int idx = 0;
2325 char *envp[3];
2326
2327 switch (evt->evt_type) {
2328 case SDEV_EVT_MEDIA_CHANGE:
2329 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2330 break;
2331 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2332 scsi_rescan_device(&sdev->sdev_gendev);
2333 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2334 break;
2335 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2336 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2337 break;
2338 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2339 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2340 break;
2341 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2342 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2343 break;
2344 case SDEV_EVT_LUN_CHANGE_REPORTED:
2345 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2346 break;
2347 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2348 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2349 break;
2350 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2351 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2352 break;
2353 default:
2354 /* do nothing */
2355 break;
2356 }
2357
2358 envp[idx++] = NULL;
2359
2360 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2361}
2362
2363/**
2364 * sdev_evt_thread - send a uevent for each scsi event
2365 * @work: work struct for scsi_device
2366 *
2367 * Dispatch queued events to their associated scsi_device kobjects
2368 * as uevents.
2369 */
2370void scsi_evt_thread(struct work_struct *work)
2371{
2372 struct scsi_device *sdev;
2373 enum scsi_device_event evt_type;
2374 LIST_HEAD(event_list);
2375
2376 sdev = container_of(work, struct scsi_device, event_work);
2377
2378 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2379 if (test_and_clear_bit(evt_type, sdev->pending_events))
2380 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2381
2382 while (1) {
2383 struct scsi_event *evt;
2384 struct list_head *this, *tmp;
2385 unsigned long flags;
2386
2387 spin_lock_irqsave(&sdev->list_lock, flags);
2388 list_splice_init(&sdev->event_list, &event_list);
2389 spin_unlock_irqrestore(&sdev->list_lock, flags);
2390
2391 if (list_empty(&event_list))
2392 break;
2393
2394 list_for_each_safe(this, tmp, &event_list) {
2395 evt = list_entry(this, struct scsi_event, node);
2396 list_del(&evt->node);
2397 scsi_evt_emit(sdev, evt);
2398 kfree(evt);
2399 }
2400 }
2401}
2402
2403/**
2404 * sdev_evt_send - send asserted event to uevent thread
2405 * @sdev: scsi_device event occurred on
2406 * @evt: event to send
2407 *
2408 * Assert scsi device event asynchronously.
2409 */
2410void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2411{
2412 unsigned long flags;
2413
2414#if 0
2415 /* FIXME: currently this check eliminates all media change events
2416 * for polled devices. Need to update to discriminate between AN
2417 * and polled events */
2418 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2419 kfree(evt);
2420 return;
2421 }
2422#endif
2423
2424 spin_lock_irqsave(&sdev->list_lock, flags);
2425 list_add_tail(&evt->node, &sdev->event_list);
2426 schedule_work(&sdev->event_work);
2427 spin_unlock_irqrestore(&sdev->list_lock, flags);
2428}
2429EXPORT_SYMBOL_GPL(sdev_evt_send);
2430
2431/**
2432 * sdev_evt_alloc - allocate a new scsi event
2433 * @evt_type: type of event to allocate
2434 * @gfpflags: GFP flags for allocation
2435 *
2436 * Allocates and returns a new scsi_event.
2437 */
2438struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2439 gfp_t gfpflags)
2440{
2441 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2442 if (!evt)
2443 return NULL;
2444
2445 evt->evt_type = evt_type;
2446 INIT_LIST_HEAD(&evt->node);
2447
2448 /* evt_type-specific initialization, if any */
2449 switch (evt_type) {
2450 case SDEV_EVT_MEDIA_CHANGE:
2451 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2452 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2453 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2454 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2455 case SDEV_EVT_LUN_CHANGE_REPORTED:
2456 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2457 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2458 default:
2459 /* do nothing */
2460 break;
2461 }
2462
2463 return evt;
2464}
2465EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2466
2467/**
2468 * sdev_evt_send_simple - send asserted event to uevent thread
2469 * @sdev: scsi_device event occurred on
2470 * @evt_type: type of event to send
2471 * @gfpflags: GFP flags for allocation
2472 *
2473 * Assert scsi device event asynchronously, given an event type.
2474 */
2475void sdev_evt_send_simple(struct scsi_device *sdev,
2476 enum scsi_device_event evt_type, gfp_t gfpflags)
2477{
2478 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2479 if (!evt) {
2480 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2481 evt_type);
2482 return;
2483 }
2484
2485 sdev_evt_send(sdev, evt);
2486}
2487EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2488
2489/**
2490 * scsi_device_quiesce - Block user issued commands.
2491 * @sdev: scsi device to quiesce.
2492 *
2493 * This works by trying to transition to the SDEV_QUIESCE state
2494 * (which must be a legal transition). When the device is in this
2495 * state, only special requests will be accepted, all others will
2496 * be deferred. Since special requests may also be requeued requests,
2497 * a successful return doesn't guarantee the device will be
2498 * totally quiescent.
2499 *
2500 * Must be called with user context, may sleep.
2501 *
2502 * Returns zero if unsuccessful or an error if not.
2503 */
2504int
2505scsi_device_quiesce(struct scsi_device *sdev)
2506{
2507 struct request_queue *q = sdev->request_queue;
2508 int err;
2509
2510 /*
2511 * It is allowed to call scsi_device_quiesce() multiple times from
2512 * the same context but concurrent scsi_device_quiesce() calls are
2513 * not allowed.
2514 */
2515 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2516
2517 if (sdev->quiesced_by == current)
2518 return 0;
2519
2520 blk_set_pm_only(q);
2521
2522 blk_mq_freeze_queue(q);
2523 /*
2524 * Ensure that the effect of blk_set_pm_only() will be visible
2525 * for percpu_ref_tryget() callers that occur after the queue
2526 * unfreeze even if the queue was already frozen before this function
2527 * was called. See also https://lwn.net/Articles/573497/.
2528 */
2529 synchronize_rcu();
2530 blk_mq_unfreeze_queue(q);
2531
2532 mutex_lock(&sdev->state_mutex);
2533 err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2534 if (err == 0)
2535 sdev->quiesced_by = current;
2536 else
2537 blk_clear_pm_only(q);
2538 mutex_unlock(&sdev->state_mutex);
2539
2540 return err;
2541}
2542EXPORT_SYMBOL(scsi_device_quiesce);
2543
2544/**
2545 * scsi_device_resume - Restart user issued commands to a quiesced device.
2546 * @sdev: scsi device to resume.
2547 *
2548 * Moves the device from quiesced back to running and restarts the
2549 * queues.
2550 *
2551 * Must be called with user context, may sleep.
2552 */
2553void scsi_device_resume(struct scsi_device *sdev)
2554{
2555 /* check if the device state was mutated prior to resume, and if
2556 * so assume the state is being managed elsewhere (for example
2557 * device deleted during suspend)
2558 */
2559 mutex_lock(&sdev->state_mutex);
2560 if (sdev->quiesced_by) {
2561 sdev->quiesced_by = NULL;
2562 blk_clear_pm_only(sdev->request_queue);
2563 }
2564 if (sdev->sdev_state == SDEV_QUIESCE)
2565 scsi_device_set_state(sdev, SDEV_RUNNING);
2566 mutex_unlock(&sdev->state_mutex);
2567}
2568EXPORT_SYMBOL(scsi_device_resume);
2569
2570static void
2571device_quiesce_fn(struct scsi_device *sdev, void *data)
2572{
2573 scsi_device_quiesce(sdev);
2574}
2575
2576void
2577scsi_target_quiesce(struct scsi_target *starget)
2578{
2579 starget_for_each_device(starget, NULL, device_quiesce_fn);
2580}
2581EXPORT_SYMBOL(scsi_target_quiesce);
2582
2583static void
2584device_resume_fn(struct scsi_device *sdev, void *data)
2585{
2586 scsi_device_resume(sdev);
2587}
2588
2589void
2590scsi_target_resume(struct scsi_target *starget)
2591{
2592 starget_for_each_device(starget, NULL, device_resume_fn);
2593}
2594EXPORT_SYMBOL(scsi_target_resume);
2595
2596/**
2597 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2598 * @sdev: device to block
2599 *
2600 * Pause SCSI command processing on the specified device. Does not sleep.
2601 *
2602 * Returns zero if successful or a negative error code upon failure.
2603 *
2604 * Notes:
2605 * This routine transitions the device to the SDEV_BLOCK state (which must be
2606 * a legal transition). When the device is in this state, command processing
2607 * is paused until the device leaves the SDEV_BLOCK state. See also
2608 * scsi_internal_device_unblock_nowait().
2609 */
2610int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2611{
2612 struct request_queue *q = sdev->request_queue;
2613 int err = 0;
2614
2615 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2616 if (err) {
2617 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2618
2619 if (err)
2620 return err;
2621 }
2622
2623 /*
2624 * The device has transitioned to SDEV_BLOCK. Stop the
2625 * block layer from calling the midlayer with this device's
2626 * request queue.
2627 */
2628 blk_mq_quiesce_queue_nowait(q);
2629 return 0;
2630}
2631EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2632
2633/**
2634 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2635 * @sdev: device to block
2636 *
2637 * Pause SCSI command processing on the specified device and wait until all
2638 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2639 *
2640 * Returns zero if successful or a negative error code upon failure.
2641 *
2642 * Note:
2643 * This routine transitions the device to the SDEV_BLOCK state (which must be
2644 * a legal transition). When the device is in this state, command processing
2645 * is paused until the device leaves the SDEV_BLOCK state. See also
2646 * scsi_internal_device_unblock().
2647 */
2648static int scsi_internal_device_block(struct scsi_device *sdev)
2649{
2650 struct request_queue *q = sdev->request_queue;
2651 int err;
2652
2653 mutex_lock(&sdev->state_mutex);
2654 err = scsi_internal_device_block_nowait(sdev);
2655 if (err == 0)
2656 blk_mq_quiesce_queue(q);
2657 mutex_unlock(&sdev->state_mutex);
2658
2659 return err;
2660}
2661
2662void scsi_start_queue(struct scsi_device *sdev)
2663{
2664 struct request_queue *q = sdev->request_queue;
2665
2666 blk_mq_unquiesce_queue(q);
2667}
2668
2669/**
2670 * scsi_internal_device_unblock_nowait - resume a device after a block request
2671 * @sdev: device to resume
2672 * @new_state: state to set the device to after unblocking
2673 *
2674 * Restart the device queue for a previously suspended SCSI device. Does not
2675 * sleep.
2676 *
2677 * Returns zero if successful or a negative error code upon failure.
2678 *
2679 * Notes:
2680 * This routine transitions the device to the SDEV_RUNNING state or to one of
2681 * the offline states (which must be a legal transition) allowing the midlayer
2682 * to goose the queue for this device.
2683 */
2684int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2685 enum scsi_device_state new_state)
2686{
2687 switch (new_state) {
2688 case SDEV_RUNNING:
2689 case SDEV_TRANSPORT_OFFLINE:
2690 break;
2691 default:
2692 return -EINVAL;
2693 }
2694
2695 /*
2696 * Try to transition the scsi device to SDEV_RUNNING or one of the
2697 * offlined states and goose the device queue if successful.
2698 */
2699 switch (sdev->sdev_state) {
2700 case SDEV_BLOCK:
2701 case SDEV_TRANSPORT_OFFLINE:
2702 sdev->sdev_state = new_state;
2703 break;
2704 case SDEV_CREATED_BLOCK:
2705 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2706 new_state == SDEV_OFFLINE)
2707 sdev->sdev_state = new_state;
2708 else
2709 sdev->sdev_state = SDEV_CREATED;
2710 break;
2711 case SDEV_CANCEL:
2712 case SDEV_OFFLINE:
2713 break;
2714 default:
2715 return -EINVAL;
2716 }
2717 scsi_start_queue(sdev);
2718
2719 return 0;
2720}
2721EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2722
2723/**
2724 * scsi_internal_device_unblock - resume a device after a block request
2725 * @sdev: device to resume
2726 * @new_state: state to set the device to after unblocking
2727 *
2728 * Restart the device queue for a previously suspended SCSI device. May sleep.
2729 *
2730 * Returns zero if successful or a negative error code upon failure.
2731 *
2732 * Notes:
2733 * This routine transitions the device to the SDEV_RUNNING state or to one of
2734 * the offline states (which must be a legal transition) allowing the midlayer
2735 * to goose the queue for this device.
2736 */
2737static int scsi_internal_device_unblock(struct scsi_device *sdev,
2738 enum scsi_device_state new_state)
2739{
2740 int ret;
2741
2742 mutex_lock(&sdev->state_mutex);
2743 ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2744 mutex_unlock(&sdev->state_mutex);
2745
2746 return ret;
2747}
2748
2749static void
2750device_block(struct scsi_device *sdev, void *data)
2751{
2752 int ret;
2753
2754 ret = scsi_internal_device_block(sdev);
2755
2756 WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2757 dev_name(&sdev->sdev_gendev), ret);
2758}
2759
2760static int
2761target_block(struct device *dev, void *data)
2762{
2763 if (scsi_is_target_device(dev))
2764 starget_for_each_device(to_scsi_target(dev), NULL,
2765 device_block);
2766 return 0;
2767}
2768
2769void
2770scsi_target_block(struct device *dev)
2771{
2772 if (scsi_is_target_device(dev))
2773 starget_for_each_device(to_scsi_target(dev), NULL,
2774 device_block);
2775 else
2776 device_for_each_child(dev, NULL, target_block);
2777}
2778EXPORT_SYMBOL_GPL(scsi_target_block);
2779
2780static void
2781device_unblock(struct scsi_device *sdev, void *data)
2782{
2783 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2784}
2785
2786static int
2787target_unblock(struct device *dev, void *data)
2788{
2789 if (scsi_is_target_device(dev))
2790 starget_for_each_device(to_scsi_target(dev), data,
2791 device_unblock);
2792 return 0;
2793}
2794
2795void
2796scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2797{
2798 if (scsi_is_target_device(dev))
2799 starget_for_each_device(to_scsi_target(dev), &new_state,
2800 device_unblock);
2801 else
2802 device_for_each_child(dev, &new_state, target_unblock);
2803}
2804EXPORT_SYMBOL_GPL(scsi_target_unblock);
2805
2806int
2807scsi_host_block(struct Scsi_Host *shost)
2808{
2809 struct scsi_device *sdev;
2810 int ret = 0;
2811
2812 /*
2813 * Call scsi_internal_device_block_nowait so we can avoid
2814 * calling synchronize_rcu() for each LUN.
2815 */
2816 shost_for_each_device(sdev, shost) {
2817 mutex_lock(&sdev->state_mutex);
2818 ret = scsi_internal_device_block_nowait(sdev);
2819 mutex_unlock(&sdev->state_mutex);
2820 if (ret) {
2821 scsi_device_put(sdev);
2822 break;
2823 }
2824 }
2825
2826 /*
2827 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2828 * calling synchronize_rcu() once is enough.
2829 */
2830 WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2831
2832 if (!ret)
2833 synchronize_rcu();
2834
2835 return ret;
2836}
2837EXPORT_SYMBOL_GPL(scsi_host_block);
2838
2839int
2840scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2841{
2842 struct scsi_device *sdev;
2843 int ret = 0;
2844
2845 shost_for_each_device(sdev, shost) {
2846 ret = scsi_internal_device_unblock(sdev, new_state);
2847 if (ret) {
2848 scsi_device_put(sdev);
2849 break;
2850 }
2851 }
2852 return ret;
2853}
2854EXPORT_SYMBOL_GPL(scsi_host_unblock);
2855
2856/**
2857 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2858 * @sgl: scatter-gather list
2859 * @sg_count: number of segments in sg
2860 * @offset: offset in bytes into sg, on return offset into the mapped area
2861 * @len: bytes to map, on return number of bytes mapped
2862 *
2863 * Returns virtual address of the start of the mapped page
2864 */
2865void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2866 size_t *offset, size_t *len)
2867{
2868 int i;
2869 size_t sg_len = 0, len_complete = 0;
2870 struct scatterlist *sg;
2871 struct page *page;
2872
2873 WARN_ON(!irqs_disabled());
2874
2875 for_each_sg(sgl, sg, sg_count, i) {
2876 len_complete = sg_len; /* Complete sg-entries */
2877 sg_len += sg->length;
2878 if (sg_len > *offset)
2879 break;
2880 }
2881
2882 if (unlikely(i == sg_count)) {
2883 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2884 "elements %d\n",
2885 __func__, sg_len, *offset, sg_count);
2886 WARN_ON(1);
2887 return NULL;
2888 }
2889
2890 /* Offset starting from the beginning of first page in this sg-entry */
2891 *offset = *offset - len_complete + sg->offset;
2892
2893 /* Assumption: contiguous pages can be accessed as "page + i" */
2894 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2895 *offset &= ~PAGE_MASK;
2896
2897 /* Bytes in this sg-entry from *offset to the end of the page */
2898 sg_len = PAGE_SIZE - *offset;
2899 if (*len > sg_len)
2900 *len = sg_len;
2901
2902 return kmap_atomic(page);
2903}
2904EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2905
2906/**
2907 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2908 * @virt: virtual address to be unmapped
2909 */
2910void scsi_kunmap_atomic_sg(void *virt)
2911{
2912 kunmap_atomic(virt);
2913}
2914EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2915
2916void sdev_disable_disk_events(struct scsi_device *sdev)
2917{
2918 atomic_inc(&sdev->disk_events_disable_depth);
2919}
2920EXPORT_SYMBOL(sdev_disable_disk_events);
2921
2922void sdev_enable_disk_events(struct scsi_device *sdev)
2923{
2924 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2925 return;
2926 atomic_dec(&sdev->disk_events_disable_depth);
2927}
2928EXPORT_SYMBOL(sdev_enable_disk_events);
2929
2930/**
2931 * scsi_vpd_lun_id - return a unique device identification
2932 * @sdev: SCSI device
2933 * @id: buffer for the identification
2934 * @id_len: length of the buffer
2935 *
2936 * Copies a unique device identification into @id based
2937 * on the information in the VPD page 0x83 of the device.
2938 * The string will be formatted as a SCSI name string.
2939 *
2940 * Returns the length of the identification or error on failure.
2941 * If the identifier is longer than the supplied buffer the actual
2942 * identifier length is returned and the buffer is not zero-padded.
2943 */
2944int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
2945{
2946 u8 cur_id_type = 0xff;
2947 u8 cur_id_size = 0;
2948 const unsigned char *d, *cur_id_str;
2949 const struct scsi_vpd *vpd_pg83;
2950 int id_size = -EINVAL;
2951
2952 rcu_read_lock();
2953 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
2954 if (!vpd_pg83) {
2955 rcu_read_unlock();
2956 return -ENXIO;
2957 }
2958
2959 /*
2960 * Look for the correct descriptor.
2961 * Order of preference for lun descriptor:
2962 * - SCSI name string
2963 * - NAA IEEE Registered Extended
2964 * - EUI-64 based 16-byte
2965 * - EUI-64 based 12-byte
2966 * - NAA IEEE Registered
2967 * - NAA IEEE Extended
2968 * - T10 Vendor ID
2969 * as longer descriptors reduce the likelyhood
2970 * of identification clashes.
2971 */
2972
2973 /* The id string must be at least 20 bytes + terminating NULL byte */
2974 if (id_len < 21) {
2975 rcu_read_unlock();
2976 return -EINVAL;
2977 }
2978
2979 memset(id, 0, id_len);
2980 d = vpd_pg83->data + 4;
2981 while (d < vpd_pg83->data + vpd_pg83->len) {
2982 /* Skip designators not referring to the LUN */
2983 if ((d[1] & 0x30) != 0x00)
2984 goto next_desig;
2985
2986 switch (d[1] & 0xf) {
2987 case 0x1:
2988 /* T10 Vendor ID */
2989 if (cur_id_size > d[3])
2990 break;
2991 /* Prefer anything */
2992 if (cur_id_type > 0x01 && cur_id_type != 0xff)
2993 break;
2994 cur_id_size = d[3];
2995 if (cur_id_size + 4 > id_len)
2996 cur_id_size = id_len - 4;
2997 cur_id_str = d + 4;
2998 cur_id_type = d[1] & 0xf;
2999 id_size = snprintf(id, id_len, "t10.%*pE",
3000 cur_id_size, cur_id_str);
3001 break;
3002 case 0x2:
3003 /* EUI-64 */
3004 if (cur_id_size > d[3])
3005 break;
3006 /* Prefer NAA IEEE Registered Extended */
3007 if (cur_id_type == 0x3 &&
3008 cur_id_size == d[3])
3009 break;
3010 cur_id_size = d[3];
3011 cur_id_str = d + 4;
3012 cur_id_type = d[1] & 0xf;
3013 switch (cur_id_size) {
3014 case 8:
3015 id_size = snprintf(id, id_len,
3016 "eui.%8phN",
3017 cur_id_str);
3018 break;
3019 case 12:
3020 id_size = snprintf(id, id_len,
3021 "eui.%12phN",
3022 cur_id_str);
3023 break;
3024 case 16:
3025 id_size = snprintf(id, id_len,
3026 "eui.%16phN",
3027 cur_id_str);
3028 break;
3029 default:
3030 cur_id_size = 0;
3031 break;
3032 }
3033 break;
3034 case 0x3:
3035 /* NAA */
3036 if (cur_id_size > d[3])
3037 break;
3038 cur_id_size = d[3];
3039 cur_id_str = d + 4;
3040 cur_id_type = d[1] & 0xf;
3041 switch (cur_id_size) {
3042 case 8:
3043 id_size = snprintf(id, id_len,
3044 "naa.%8phN",
3045 cur_id_str);
3046 break;
3047 case 16:
3048 id_size = snprintf(id, id_len,
3049 "naa.%16phN",
3050 cur_id_str);
3051 break;
3052 default:
3053 cur_id_size = 0;
3054 break;
3055 }
3056 break;
3057 case 0x8:
3058 /* SCSI name string */
3059 if (cur_id_size + 4 > d[3])
3060 break;
3061 /* Prefer others for truncated descriptor */
3062 if (cur_id_size && d[3] > id_len)
3063 break;
3064 cur_id_size = id_size = d[3];
3065 cur_id_str = d + 4;
3066 cur_id_type = d[1] & 0xf;
3067 if (cur_id_size >= id_len)
3068 cur_id_size = id_len - 1;
3069 memcpy(id, cur_id_str, cur_id_size);
3070 /* Decrease priority for truncated descriptor */
3071 if (cur_id_size != id_size)
3072 cur_id_size = 6;
3073 break;
3074 default:
3075 break;
3076 }
3077next_desig:
3078 d += d[3] + 4;
3079 }
3080 rcu_read_unlock();
3081
3082 return id_size;
3083}
3084EXPORT_SYMBOL(scsi_vpd_lun_id);
3085
3086/*
3087 * scsi_vpd_tpg_id - return a target port group identifier
3088 * @sdev: SCSI device
3089 *
3090 * Returns the Target Port Group identifier from the information
3091 * froom VPD page 0x83 of the device.
3092 *
3093 * Returns the identifier or error on failure.
3094 */
3095int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3096{
3097 const unsigned char *d;
3098 const struct scsi_vpd *vpd_pg83;
3099 int group_id = -EAGAIN, rel_port = -1;
3100
3101 rcu_read_lock();
3102 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3103 if (!vpd_pg83) {
3104 rcu_read_unlock();
3105 return -ENXIO;
3106 }
3107
3108 d = vpd_pg83->data + 4;
3109 while (d < vpd_pg83->data + vpd_pg83->len) {
3110 switch (d[1] & 0xf) {
3111 case 0x4:
3112 /* Relative target port */
3113 rel_port = get_unaligned_be16(&d[6]);
3114 break;
3115 case 0x5:
3116 /* Target port group */
3117 group_id = get_unaligned_be16(&d[6]);
3118 break;
3119 default:
3120 break;
3121 }
3122 d += d[3] + 4;
3123 }
3124 rcu_read_unlock();
3125
3126 if (group_id >= 0 && rel_id && rel_port != -1)
3127 *rel_id = rel_port;
3128
3129 return group_id;
3130}
3131EXPORT_SYMBOL(scsi_vpd_tpg_id);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 1999 Eric Youngdale
4 * Copyright (C) 2014 Christoph Hellwig
5 *
6 * SCSI queueing library.
7 * Initial versions: Eric Youngdale (eric@andante.org).
8 * Based upon conversations with large numbers
9 * of people at Linux Expo.
10 */
11
12#include <linux/bio.h>
13#include <linux/bitops.h>
14#include <linux/blkdev.h>
15#include <linux/completion.h>
16#include <linux/kernel.h>
17#include <linux/export.h>
18#include <linux/init.h>
19#include <linux/pci.h>
20#include <linux/delay.h>
21#include <linux/hardirq.h>
22#include <linux/scatterlist.h>
23#include <linux/blk-mq.h>
24#include <linux/blk-integrity.h>
25#include <linux/ratelimit.h>
26#include <asm/unaligned.h>
27
28#include <scsi/scsi.h>
29#include <scsi/scsi_cmnd.h>
30#include <scsi/scsi_dbg.h>
31#include <scsi/scsi_device.h>
32#include <scsi/scsi_driver.h>
33#include <scsi/scsi_eh.h>
34#include <scsi/scsi_host.h>
35#include <scsi/scsi_transport.h> /* __scsi_init_queue() */
36#include <scsi/scsi_dh.h>
37
38#include <trace/events/scsi.h>
39
40#include "scsi_debugfs.h"
41#include "scsi_priv.h"
42#include "scsi_logging.h"
43
44/*
45 * Size of integrity metadata is usually small, 1 inline sg should
46 * cover normal cases.
47 */
48#ifdef CONFIG_ARCH_NO_SG_CHAIN
49#define SCSI_INLINE_PROT_SG_CNT 0
50#define SCSI_INLINE_SG_CNT 0
51#else
52#define SCSI_INLINE_PROT_SG_CNT 1
53#define SCSI_INLINE_SG_CNT 2
54#endif
55
56static struct kmem_cache *scsi_sense_cache;
57static DEFINE_MUTEX(scsi_sense_cache_mutex);
58
59static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60
61int scsi_init_sense_cache(struct Scsi_Host *shost)
62{
63 int ret = 0;
64
65 mutex_lock(&scsi_sense_cache_mutex);
66 if (!scsi_sense_cache) {
67 scsi_sense_cache =
68 kmem_cache_create_usercopy("scsi_sense_cache",
69 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70 0, SCSI_SENSE_BUFFERSIZE, NULL);
71 if (!scsi_sense_cache)
72 ret = -ENOMEM;
73 }
74 mutex_unlock(&scsi_sense_cache_mutex);
75 return ret;
76}
77
78static void
79scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
80{
81 struct Scsi_Host *host = cmd->device->host;
82 struct scsi_device *device = cmd->device;
83 struct scsi_target *starget = scsi_target(device);
84
85 /*
86 * Set the appropriate busy bit for the device/host.
87 *
88 * If the host/device isn't busy, assume that something actually
89 * completed, and that we should be able to queue a command now.
90 *
91 * Note that the prior mid-layer assumption that any host could
92 * always queue at least one command is now broken. The mid-layer
93 * will implement a user specifiable stall (see
94 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
95 * if a command is requeued with no other commands outstanding
96 * either for the device or for the host.
97 */
98 switch (reason) {
99 case SCSI_MLQUEUE_HOST_BUSY:
100 atomic_set(&host->host_blocked, host->max_host_blocked);
101 break;
102 case SCSI_MLQUEUE_DEVICE_BUSY:
103 case SCSI_MLQUEUE_EH_RETRY:
104 atomic_set(&device->device_blocked,
105 device->max_device_blocked);
106 break;
107 case SCSI_MLQUEUE_TARGET_BUSY:
108 atomic_set(&starget->target_blocked,
109 starget->max_target_blocked);
110 break;
111 }
112}
113
114static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
115{
116 struct request *rq = scsi_cmd_to_rq(cmd);
117
118 if (rq->rq_flags & RQF_DONTPREP) {
119 rq->rq_flags &= ~RQF_DONTPREP;
120 scsi_mq_uninit_cmd(cmd);
121 } else {
122 WARN_ON_ONCE(true);
123 }
124
125 blk_mq_requeue_request(rq, false);
126 if (!scsi_host_in_recovery(cmd->device->host))
127 blk_mq_delay_kick_requeue_list(rq->q, msecs);
128}
129
130/**
131 * __scsi_queue_insert - private queue insertion
132 * @cmd: The SCSI command being requeued
133 * @reason: The reason for the requeue
134 * @unbusy: Whether the queue should be unbusied
135 *
136 * This is a private queue insertion. The public interface
137 * scsi_queue_insert() always assumes the queue should be unbusied
138 * because it's always called before the completion. This function is
139 * for a requeue after completion, which should only occur in this
140 * file.
141 */
142static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
143{
144 struct scsi_device *device = cmd->device;
145
146 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
147 "Inserting command %p into mlqueue\n", cmd));
148
149 scsi_set_blocked(cmd, reason);
150
151 /*
152 * Decrement the counters, since these commands are no longer
153 * active on the host/device.
154 */
155 if (unbusy)
156 scsi_device_unbusy(device, cmd);
157
158 /*
159 * Requeue this command. It will go before all other commands
160 * that are already in the queue. Schedule requeue work under
161 * lock such that the kblockd_schedule_work() call happens
162 * before blk_mq_destroy_queue() finishes.
163 */
164 cmd->result = 0;
165
166 blk_mq_requeue_request(scsi_cmd_to_rq(cmd),
167 !scsi_host_in_recovery(cmd->device->host));
168}
169
170/**
171 * scsi_queue_insert - Reinsert a command in the queue.
172 * @cmd: command that we are adding to queue.
173 * @reason: why we are inserting command to queue.
174 *
175 * We do this for one of two cases. Either the host is busy and it cannot accept
176 * any more commands for the time being, or the device returned QUEUE_FULL and
177 * can accept no more commands.
178 *
179 * Context: This could be called either from an interrupt context or a normal
180 * process context.
181 */
182void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
183{
184 __scsi_queue_insert(cmd, reason, true);
185}
186
187void scsi_failures_reset_retries(struct scsi_failures *failures)
188{
189 struct scsi_failure *failure;
190
191 failures->total_retries = 0;
192
193 for (failure = failures->failure_definitions; failure->result;
194 failure++)
195 failure->retries = 0;
196}
197EXPORT_SYMBOL_GPL(scsi_failures_reset_retries);
198
199/**
200 * scsi_check_passthrough - Determine if passthrough scsi_cmnd needs a retry.
201 * @scmd: scsi_cmnd to check.
202 * @failures: scsi_failures struct that lists failures to check for.
203 *
204 * Returns -EAGAIN if the caller should retry else 0.
205 */
206static int scsi_check_passthrough(struct scsi_cmnd *scmd,
207 struct scsi_failures *failures)
208{
209 struct scsi_failure *failure;
210 struct scsi_sense_hdr sshdr;
211 enum sam_status status;
212
213 if (!failures)
214 return 0;
215
216 for (failure = failures->failure_definitions; failure->result;
217 failure++) {
218 if (failure->result == SCMD_FAILURE_RESULT_ANY)
219 goto maybe_retry;
220
221 if (host_byte(scmd->result) &&
222 host_byte(scmd->result) == host_byte(failure->result))
223 goto maybe_retry;
224
225 status = status_byte(scmd->result);
226 if (!status)
227 continue;
228
229 if (failure->result == SCMD_FAILURE_STAT_ANY &&
230 !scsi_status_is_good(scmd->result))
231 goto maybe_retry;
232
233 if (status != status_byte(failure->result))
234 continue;
235
236 if (status_byte(failure->result) != SAM_STAT_CHECK_CONDITION ||
237 failure->sense == SCMD_FAILURE_SENSE_ANY)
238 goto maybe_retry;
239
240 if (!scsi_command_normalize_sense(scmd, &sshdr))
241 return 0;
242
243 if (failure->sense != sshdr.sense_key)
244 continue;
245
246 if (failure->asc == SCMD_FAILURE_ASC_ANY)
247 goto maybe_retry;
248
249 if (failure->asc != sshdr.asc)
250 continue;
251
252 if (failure->ascq == SCMD_FAILURE_ASCQ_ANY ||
253 failure->ascq == sshdr.ascq)
254 goto maybe_retry;
255 }
256
257 return 0;
258
259maybe_retry:
260 if (failure->allowed) {
261 if (failure->allowed == SCMD_FAILURE_NO_LIMIT ||
262 ++failure->retries <= failure->allowed)
263 return -EAGAIN;
264 } else {
265 if (failures->total_allowed == SCMD_FAILURE_NO_LIMIT ||
266 ++failures->total_retries <= failures->total_allowed)
267 return -EAGAIN;
268 }
269
270 return 0;
271}
272
273/**
274 * scsi_execute_cmd - insert request and wait for the result
275 * @sdev: scsi_device
276 * @cmd: scsi command
277 * @opf: block layer request cmd_flags
278 * @buffer: data buffer
279 * @bufflen: len of buffer
280 * @timeout: request timeout in HZ
281 * @ml_retries: number of times SCSI midlayer will retry request
282 * @args: Optional args. See struct definition for field descriptions
283 *
284 * Returns the scsi_cmnd result field if a command was executed, or a negative
285 * Linux error code if we didn't get that far.
286 */
287int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
288 blk_opf_t opf, void *buffer, unsigned int bufflen,
289 int timeout, int ml_retries,
290 const struct scsi_exec_args *args)
291{
292 static const struct scsi_exec_args default_args;
293 struct request *req;
294 struct scsi_cmnd *scmd;
295 int ret;
296
297 if (!args)
298 args = &default_args;
299 else if (WARN_ON_ONCE(args->sense &&
300 args->sense_len != SCSI_SENSE_BUFFERSIZE))
301 return -EINVAL;
302
303retry:
304 req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
305 if (IS_ERR(req))
306 return PTR_ERR(req);
307
308 if (bufflen) {
309 ret = blk_rq_map_kern(sdev->request_queue, req,
310 buffer, bufflen, GFP_NOIO);
311 if (ret)
312 goto out;
313 }
314 scmd = blk_mq_rq_to_pdu(req);
315 scmd->cmd_len = COMMAND_SIZE(cmd[0]);
316 memcpy(scmd->cmnd, cmd, scmd->cmd_len);
317 scmd->allowed = ml_retries;
318 scmd->flags |= args->scmd_flags;
319 req->timeout = timeout;
320 req->rq_flags |= RQF_QUIET;
321
322 /*
323 * head injection *required* here otherwise quiesce won't work
324 */
325 blk_execute_rq(req, true);
326
327 if (scsi_check_passthrough(scmd, args->failures) == -EAGAIN) {
328 blk_mq_free_request(req);
329 goto retry;
330 }
331
332 /*
333 * Some devices (USB mass-storage in particular) may transfer
334 * garbage data together with a residue indicating that the data
335 * is invalid. Prevent the garbage from being misinterpreted
336 * and prevent security leaks by zeroing out the excess data.
337 */
338 if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
339 memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
340
341 if (args->resid)
342 *args->resid = scmd->resid_len;
343 if (args->sense)
344 memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
345 if (args->sshdr)
346 scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
347 args->sshdr);
348
349 ret = scmd->result;
350 out:
351 blk_mq_free_request(req);
352
353 return ret;
354}
355EXPORT_SYMBOL(scsi_execute_cmd);
356
357/*
358 * Wake up the error handler if necessary. Avoid as follows that the error
359 * handler is not woken up if host in-flight requests number ==
360 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
361 * with an RCU read lock in this function to ensure that this function in
362 * its entirety either finishes before scsi_eh_scmd_add() increases the
363 * host_failed counter or that it notices the shost state change made by
364 * scsi_eh_scmd_add().
365 */
366static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
367{
368 unsigned long flags;
369
370 rcu_read_lock();
371 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
372 if (unlikely(scsi_host_in_recovery(shost))) {
373 unsigned int busy = scsi_host_busy(shost);
374
375 spin_lock_irqsave(shost->host_lock, flags);
376 if (shost->host_failed || shost->host_eh_scheduled)
377 scsi_eh_wakeup(shost, busy);
378 spin_unlock_irqrestore(shost->host_lock, flags);
379 }
380 rcu_read_unlock();
381}
382
383void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
384{
385 struct Scsi_Host *shost = sdev->host;
386 struct scsi_target *starget = scsi_target(sdev);
387
388 scsi_dec_host_busy(shost, cmd);
389
390 if (starget->can_queue > 0)
391 atomic_dec(&starget->target_busy);
392
393 sbitmap_put(&sdev->budget_map, cmd->budget_token);
394 cmd->budget_token = -1;
395}
396
397/*
398 * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
399 * interrupts disabled.
400 */
401static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
402{
403 struct scsi_device *current_sdev = data;
404
405 if (sdev != current_sdev)
406 blk_mq_run_hw_queues(sdev->request_queue, true);
407}
408
409/*
410 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
411 * and call blk_run_queue for all the scsi_devices on the target -
412 * including current_sdev first.
413 *
414 * Called with *no* scsi locks held.
415 */
416static void scsi_single_lun_run(struct scsi_device *current_sdev)
417{
418 struct Scsi_Host *shost = current_sdev->host;
419 struct scsi_target *starget = scsi_target(current_sdev);
420 unsigned long flags;
421
422 spin_lock_irqsave(shost->host_lock, flags);
423 starget->starget_sdev_user = NULL;
424 spin_unlock_irqrestore(shost->host_lock, flags);
425
426 /*
427 * Call blk_run_queue for all LUNs on the target, starting with
428 * current_sdev. We race with others (to set starget_sdev_user),
429 * but in most cases, we will be first. Ideally, each LU on the
430 * target would get some limited time or requests on the target.
431 */
432 blk_mq_run_hw_queues(current_sdev->request_queue,
433 shost->queuecommand_may_block);
434
435 spin_lock_irqsave(shost->host_lock, flags);
436 if (!starget->starget_sdev_user)
437 __starget_for_each_device(starget, current_sdev,
438 scsi_kick_sdev_queue);
439 spin_unlock_irqrestore(shost->host_lock, flags);
440}
441
442static inline bool scsi_device_is_busy(struct scsi_device *sdev)
443{
444 if (scsi_device_busy(sdev) >= sdev->queue_depth)
445 return true;
446 if (atomic_read(&sdev->device_blocked) > 0)
447 return true;
448 return false;
449}
450
451static inline bool scsi_target_is_busy(struct scsi_target *starget)
452{
453 if (starget->can_queue > 0) {
454 if (atomic_read(&starget->target_busy) >= starget->can_queue)
455 return true;
456 if (atomic_read(&starget->target_blocked) > 0)
457 return true;
458 }
459 return false;
460}
461
462static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
463{
464 if (atomic_read(&shost->host_blocked) > 0)
465 return true;
466 if (shost->host_self_blocked)
467 return true;
468 return false;
469}
470
471static void scsi_starved_list_run(struct Scsi_Host *shost)
472{
473 LIST_HEAD(starved_list);
474 struct scsi_device *sdev;
475 unsigned long flags;
476
477 spin_lock_irqsave(shost->host_lock, flags);
478 list_splice_init(&shost->starved_list, &starved_list);
479
480 while (!list_empty(&starved_list)) {
481 struct request_queue *slq;
482
483 /*
484 * As long as shost is accepting commands and we have
485 * starved queues, call blk_run_queue. scsi_request_fn
486 * drops the queue_lock and can add us back to the
487 * starved_list.
488 *
489 * host_lock protects the starved_list and starved_entry.
490 * scsi_request_fn must get the host_lock before checking
491 * or modifying starved_list or starved_entry.
492 */
493 if (scsi_host_is_busy(shost))
494 break;
495
496 sdev = list_entry(starved_list.next,
497 struct scsi_device, starved_entry);
498 list_del_init(&sdev->starved_entry);
499 if (scsi_target_is_busy(scsi_target(sdev))) {
500 list_move_tail(&sdev->starved_entry,
501 &shost->starved_list);
502 continue;
503 }
504
505 /*
506 * Once we drop the host lock, a racing scsi_remove_device()
507 * call may remove the sdev from the starved list and destroy
508 * it and the queue. Mitigate by taking a reference to the
509 * queue and never touching the sdev again after we drop the
510 * host lock. Note: if __scsi_remove_device() invokes
511 * blk_mq_destroy_queue() before the queue is run from this
512 * function then blk_run_queue() will return immediately since
513 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
514 */
515 slq = sdev->request_queue;
516 if (!blk_get_queue(slq))
517 continue;
518 spin_unlock_irqrestore(shost->host_lock, flags);
519
520 blk_mq_run_hw_queues(slq, false);
521 blk_put_queue(slq);
522
523 spin_lock_irqsave(shost->host_lock, flags);
524 }
525 /* put any unprocessed entries back */
526 list_splice(&starved_list, &shost->starved_list);
527 spin_unlock_irqrestore(shost->host_lock, flags);
528}
529
530/**
531 * scsi_run_queue - Select a proper request queue to serve next.
532 * @q: last request's queue
533 *
534 * The previous command was completely finished, start a new one if possible.
535 */
536static void scsi_run_queue(struct request_queue *q)
537{
538 struct scsi_device *sdev = q->queuedata;
539
540 if (scsi_target(sdev)->single_lun)
541 scsi_single_lun_run(sdev);
542 if (!list_empty(&sdev->host->starved_list))
543 scsi_starved_list_run(sdev->host);
544
545 /* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */
546 blk_mq_kick_requeue_list(q);
547}
548
549void scsi_requeue_run_queue(struct work_struct *work)
550{
551 struct scsi_device *sdev;
552 struct request_queue *q;
553
554 sdev = container_of(work, struct scsi_device, requeue_work);
555 q = sdev->request_queue;
556 scsi_run_queue(q);
557}
558
559void scsi_run_host_queues(struct Scsi_Host *shost)
560{
561 struct scsi_device *sdev;
562
563 shost_for_each_device(sdev, shost)
564 scsi_run_queue(sdev->request_queue);
565}
566
567static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
568{
569 if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
570 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
571
572 if (drv->uninit_command)
573 drv->uninit_command(cmd);
574 }
575}
576
577void scsi_free_sgtables(struct scsi_cmnd *cmd)
578{
579 if (cmd->sdb.table.nents)
580 sg_free_table_chained(&cmd->sdb.table,
581 SCSI_INLINE_SG_CNT);
582 if (scsi_prot_sg_count(cmd))
583 sg_free_table_chained(&cmd->prot_sdb->table,
584 SCSI_INLINE_PROT_SG_CNT);
585}
586EXPORT_SYMBOL_GPL(scsi_free_sgtables);
587
588static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
589{
590 scsi_free_sgtables(cmd);
591 scsi_uninit_cmd(cmd);
592}
593
594static void scsi_run_queue_async(struct scsi_device *sdev)
595{
596 if (scsi_host_in_recovery(sdev->host))
597 return;
598
599 if (scsi_target(sdev)->single_lun ||
600 !list_empty(&sdev->host->starved_list)) {
601 kblockd_schedule_work(&sdev->requeue_work);
602 } else {
603 /*
604 * smp_mb() present in sbitmap_queue_clear() or implied in
605 * .end_io is for ordering writing .device_busy in
606 * scsi_device_unbusy() and reading sdev->restarts.
607 */
608 int old = atomic_read(&sdev->restarts);
609
610 /*
611 * ->restarts has to be kept as non-zero if new budget
612 * contention occurs.
613 *
614 * No need to run queue when either another re-run
615 * queue wins in updating ->restarts or a new budget
616 * contention occurs.
617 */
618 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
619 blk_mq_run_hw_queues(sdev->request_queue, true);
620 }
621}
622
623/* Returns false when no more bytes to process, true if there are more */
624static bool scsi_end_request(struct request *req, blk_status_t error,
625 unsigned int bytes)
626{
627 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
628 struct scsi_device *sdev = cmd->device;
629 struct request_queue *q = sdev->request_queue;
630
631 if (blk_update_request(req, error, bytes))
632 return true;
633
634 // XXX:
635 if (blk_queue_add_random(q))
636 add_disk_randomness(req->q->disk);
637
638 WARN_ON_ONCE(!blk_rq_is_passthrough(req) &&
639 !(cmd->flags & SCMD_INITIALIZED));
640 cmd->flags = 0;
641
642 /*
643 * Calling rcu_barrier() is not necessary here because the
644 * SCSI error handler guarantees that the function called by
645 * call_rcu() has been called before scsi_end_request() is
646 * called.
647 */
648 destroy_rcu_head(&cmd->rcu);
649
650 /*
651 * In the MQ case the command gets freed by __blk_mq_end_request,
652 * so we have to do all cleanup that depends on it earlier.
653 *
654 * We also can't kick the queues from irq context, so we
655 * will have to defer it to a workqueue.
656 */
657 scsi_mq_uninit_cmd(cmd);
658
659 /*
660 * queue is still alive, so grab the ref for preventing it
661 * from being cleaned up during running queue.
662 */
663 percpu_ref_get(&q->q_usage_counter);
664
665 __blk_mq_end_request(req, error);
666
667 scsi_run_queue_async(sdev);
668
669 percpu_ref_put(&q->q_usage_counter);
670 return false;
671}
672
673/**
674 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
675 * @result: scsi error code
676 *
677 * Translate a SCSI result code into a blk_status_t value.
678 */
679static blk_status_t scsi_result_to_blk_status(int result)
680{
681 /*
682 * Check the scsi-ml byte first in case we converted a host or status
683 * byte.
684 */
685 switch (scsi_ml_byte(result)) {
686 case SCSIML_STAT_OK:
687 break;
688 case SCSIML_STAT_RESV_CONFLICT:
689 return BLK_STS_RESV_CONFLICT;
690 case SCSIML_STAT_NOSPC:
691 return BLK_STS_NOSPC;
692 case SCSIML_STAT_MED_ERROR:
693 return BLK_STS_MEDIUM;
694 case SCSIML_STAT_TGT_FAILURE:
695 return BLK_STS_TARGET;
696 case SCSIML_STAT_DL_TIMEOUT:
697 return BLK_STS_DURATION_LIMIT;
698 }
699
700 switch (host_byte(result)) {
701 case DID_OK:
702 if (scsi_status_is_good(result))
703 return BLK_STS_OK;
704 return BLK_STS_IOERR;
705 case DID_TRANSPORT_FAILFAST:
706 case DID_TRANSPORT_MARGINAL:
707 return BLK_STS_TRANSPORT;
708 default:
709 return BLK_STS_IOERR;
710 }
711}
712
713/**
714 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
715 * @rq: request to examine
716 *
717 * Description:
718 * A request could be merge of IOs which require different failure
719 * handling. This function determines the number of bytes which
720 * can be failed from the beginning of the request without
721 * crossing into area which need to be retried further.
722 *
723 * Return:
724 * The number of bytes to fail.
725 */
726static unsigned int scsi_rq_err_bytes(const struct request *rq)
727{
728 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
729 unsigned int bytes = 0;
730 struct bio *bio;
731
732 if (!(rq->rq_flags & RQF_MIXED_MERGE))
733 return blk_rq_bytes(rq);
734
735 /*
736 * Currently the only 'mixing' which can happen is between
737 * different fastfail types. We can safely fail portions
738 * which have all the failfast bits that the first one has -
739 * the ones which are at least as eager to fail as the first
740 * one.
741 */
742 for (bio = rq->bio; bio; bio = bio->bi_next) {
743 if ((bio->bi_opf & ff) != ff)
744 break;
745 bytes += bio->bi_iter.bi_size;
746 }
747
748 /* this could lead to infinite loop */
749 BUG_ON(blk_rq_bytes(rq) && !bytes);
750 return bytes;
751}
752
753static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
754{
755 struct request *req = scsi_cmd_to_rq(cmd);
756 unsigned long wait_for;
757
758 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
759 return false;
760
761 wait_for = (cmd->allowed + 1) * req->timeout;
762 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
763 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
764 wait_for/HZ);
765 return true;
766 }
767 return false;
768}
769
770/*
771 * When ALUA transition state is returned, reprep the cmd to
772 * use the ALUA handler's transition timeout. Delay the reprep
773 * 1 sec to avoid aggressive retries of the target in that
774 * state.
775 */
776#define ALUA_TRANSITION_REPREP_DELAY 1000
777
778/* Helper for scsi_io_completion() when special action required. */
779static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
780{
781 struct request *req = scsi_cmd_to_rq(cmd);
782 int level = 0;
783 enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
784 ACTION_RETRY, ACTION_DELAYED_RETRY} action;
785 struct scsi_sense_hdr sshdr;
786 bool sense_valid;
787 bool sense_current = true; /* false implies "deferred sense" */
788 blk_status_t blk_stat;
789
790 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
791 if (sense_valid)
792 sense_current = !scsi_sense_is_deferred(&sshdr);
793
794 blk_stat = scsi_result_to_blk_status(result);
795
796 if (host_byte(result) == DID_RESET) {
797 /* Third party bus reset or reset for error recovery
798 * reasons. Just retry the command and see what
799 * happens.
800 */
801 action = ACTION_RETRY;
802 } else if (sense_valid && sense_current) {
803 switch (sshdr.sense_key) {
804 case UNIT_ATTENTION:
805 if (cmd->device->removable) {
806 /* Detected disc change. Set a bit
807 * and quietly refuse further access.
808 */
809 cmd->device->changed = 1;
810 action = ACTION_FAIL;
811 } else {
812 /* Must have been a power glitch, or a
813 * bus reset. Could not have been a
814 * media change, so we just retry the
815 * command and see what happens.
816 */
817 action = ACTION_RETRY;
818 }
819 break;
820 case ILLEGAL_REQUEST:
821 /* If we had an ILLEGAL REQUEST returned, then
822 * we may have performed an unsupported
823 * command. The only thing this should be
824 * would be a ten byte read where only a six
825 * byte read was supported. Also, on a system
826 * where READ CAPACITY failed, we may have
827 * read past the end of the disk.
828 */
829 if ((cmd->device->use_10_for_rw &&
830 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
831 (cmd->cmnd[0] == READ_10 ||
832 cmd->cmnd[0] == WRITE_10)) {
833 /* This will issue a new 6-byte command. */
834 cmd->device->use_10_for_rw = 0;
835 action = ACTION_REPREP;
836 } else if (sshdr.asc == 0x10) /* DIX */ {
837 action = ACTION_FAIL;
838 blk_stat = BLK_STS_PROTECTION;
839 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
840 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
841 action = ACTION_FAIL;
842 blk_stat = BLK_STS_TARGET;
843 } else
844 action = ACTION_FAIL;
845 break;
846 case ABORTED_COMMAND:
847 action = ACTION_FAIL;
848 if (sshdr.asc == 0x10) /* DIF */
849 blk_stat = BLK_STS_PROTECTION;
850 break;
851 case NOT_READY:
852 /* If the device is in the process of becoming
853 * ready, or has a temporary blockage, retry.
854 */
855 if (sshdr.asc == 0x04) {
856 switch (sshdr.ascq) {
857 case 0x01: /* becoming ready */
858 case 0x04: /* format in progress */
859 case 0x05: /* rebuild in progress */
860 case 0x06: /* recalculation in progress */
861 case 0x07: /* operation in progress */
862 case 0x08: /* Long write in progress */
863 case 0x09: /* self test in progress */
864 case 0x11: /* notify (enable spinup) required */
865 case 0x14: /* space allocation in progress */
866 case 0x1a: /* start stop unit in progress */
867 case 0x1b: /* sanitize in progress */
868 case 0x1d: /* configuration in progress */
869 case 0x24: /* depopulation in progress */
870 case 0x25: /* depopulation restore in progress */
871 action = ACTION_DELAYED_RETRY;
872 break;
873 case 0x0a: /* ALUA state transition */
874 action = ACTION_DELAYED_REPREP;
875 break;
876 default:
877 action = ACTION_FAIL;
878 break;
879 }
880 } else
881 action = ACTION_FAIL;
882 break;
883 case VOLUME_OVERFLOW:
884 /* See SSC3rXX or current. */
885 action = ACTION_FAIL;
886 break;
887 case DATA_PROTECT:
888 action = ACTION_FAIL;
889 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
890 (sshdr.asc == 0x55 &&
891 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
892 /* Insufficient zone resources */
893 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
894 }
895 break;
896 case COMPLETED:
897 fallthrough;
898 default:
899 action = ACTION_FAIL;
900 break;
901 }
902 } else
903 action = ACTION_FAIL;
904
905 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
906 action = ACTION_FAIL;
907
908 switch (action) {
909 case ACTION_FAIL:
910 /* Give up and fail the remainder of the request */
911 if (!(req->rq_flags & RQF_QUIET)) {
912 static DEFINE_RATELIMIT_STATE(_rs,
913 DEFAULT_RATELIMIT_INTERVAL,
914 DEFAULT_RATELIMIT_BURST);
915
916 if (unlikely(scsi_logging_level))
917 level =
918 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
919 SCSI_LOG_MLCOMPLETE_BITS);
920
921 /*
922 * if logging is enabled the failure will be printed
923 * in scsi_log_completion(), so avoid duplicate messages
924 */
925 if (!level && __ratelimit(&_rs)) {
926 scsi_print_result(cmd, NULL, FAILED);
927 if (sense_valid)
928 scsi_print_sense(cmd);
929 scsi_print_command(cmd);
930 }
931 }
932 if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
933 return;
934 fallthrough;
935 case ACTION_REPREP:
936 scsi_mq_requeue_cmd(cmd, 0);
937 break;
938 case ACTION_DELAYED_REPREP:
939 scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
940 break;
941 case ACTION_RETRY:
942 /* Retry the same command immediately */
943 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
944 break;
945 case ACTION_DELAYED_RETRY:
946 /* Retry the same command after a delay */
947 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
948 break;
949 }
950}
951
952/*
953 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
954 * new result that may suppress further error checking. Also modifies
955 * *blk_statp in some cases.
956 */
957static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
958 blk_status_t *blk_statp)
959{
960 bool sense_valid;
961 bool sense_current = true; /* false implies "deferred sense" */
962 struct request *req = scsi_cmd_to_rq(cmd);
963 struct scsi_sense_hdr sshdr;
964
965 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
966 if (sense_valid)
967 sense_current = !scsi_sense_is_deferred(&sshdr);
968
969 if (blk_rq_is_passthrough(req)) {
970 if (sense_valid) {
971 /*
972 * SG_IO wants current and deferred errors
973 */
974 cmd->sense_len = min(8 + cmd->sense_buffer[7],
975 SCSI_SENSE_BUFFERSIZE);
976 }
977 if (sense_current)
978 *blk_statp = scsi_result_to_blk_status(result);
979 } else if (blk_rq_bytes(req) == 0 && sense_current) {
980 /*
981 * Flush commands do not transfers any data, and thus cannot use
982 * good_bytes != blk_rq_bytes(req) as the signal for an error.
983 * This sets *blk_statp explicitly for the problem case.
984 */
985 *blk_statp = scsi_result_to_blk_status(result);
986 }
987 /*
988 * Recovered errors need reporting, but they're always treated as
989 * success, so fiddle the result code here. For passthrough requests
990 * we already took a copy of the original into sreq->result which
991 * is what gets returned to the user
992 */
993 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
994 bool do_print = true;
995 /*
996 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
997 * skip print since caller wants ATA registers. Only occurs
998 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
999 */
1000 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
1001 do_print = false;
1002 else if (req->rq_flags & RQF_QUIET)
1003 do_print = false;
1004 if (do_print)
1005 scsi_print_sense(cmd);
1006 result = 0;
1007 /* for passthrough, *blk_statp may be set */
1008 *blk_statp = BLK_STS_OK;
1009 }
1010 /*
1011 * Another corner case: the SCSI status byte is non-zero but 'good'.
1012 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
1013 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
1014 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
1015 * intermediate statuses (both obsolete in SAM-4) as good.
1016 */
1017 if ((result & 0xff) && scsi_status_is_good(result)) {
1018 result = 0;
1019 *blk_statp = BLK_STS_OK;
1020 }
1021 return result;
1022}
1023
1024/**
1025 * scsi_io_completion - Completion processing for SCSI commands.
1026 * @cmd: command that is finished.
1027 * @good_bytes: number of processed bytes.
1028 *
1029 * We will finish off the specified number of sectors. If we are done, the
1030 * command block will be released and the queue function will be goosed. If we
1031 * are not done then we have to figure out what to do next:
1032 *
1033 * a) We can call scsi_mq_requeue_cmd(). The request will be
1034 * unprepared and put back on the queue. Then a new command will
1035 * be created for it. This should be used if we made forward
1036 * progress, or if we want to switch from READ(10) to READ(6) for
1037 * example.
1038 *
1039 * b) We can call scsi_io_completion_action(). The request will be
1040 * put back on the queue and retried using the same command as
1041 * before, possibly after a delay.
1042 *
1043 * c) We can call scsi_end_request() with blk_stat other than
1044 * BLK_STS_OK, to fail the remainder of the request.
1045 */
1046void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
1047{
1048 int result = cmd->result;
1049 struct request *req = scsi_cmd_to_rq(cmd);
1050 blk_status_t blk_stat = BLK_STS_OK;
1051
1052 if (unlikely(result)) /* a nz result may or may not be an error */
1053 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
1054
1055 /*
1056 * Next deal with any sectors which we were able to correctly
1057 * handle.
1058 */
1059 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
1060 "%u sectors total, %d bytes done.\n",
1061 blk_rq_sectors(req), good_bytes));
1062
1063 /*
1064 * Failed, zero length commands always need to drop down
1065 * to retry code. Fast path should return in this block.
1066 */
1067 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
1068 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
1069 return; /* no bytes remaining */
1070 }
1071
1072 /* Kill remainder if no retries. */
1073 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
1074 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
1075 WARN_ONCE(true,
1076 "Bytes remaining after failed, no-retry command");
1077 return;
1078 }
1079
1080 /*
1081 * If there had been no error, but we have leftover bytes in the
1082 * request just queue the command up again.
1083 */
1084 if (likely(result == 0))
1085 scsi_mq_requeue_cmd(cmd, 0);
1086 else
1087 scsi_io_completion_action(cmd, result);
1088}
1089
1090static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
1091 struct request *rq)
1092{
1093 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1094 !op_is_write(req_op(rq)) &&
1095 sdev->host->hostt->dma_need_drain(rq);
1096}
1097
1098/**
1099 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1100 * @cmd: SCSI command data structure to initialize.
1101 *
1102 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1103 * for @cmd.
1104 *
1105 * Returns:
1106 * * BLK_STS_OK - on success
1107 * * BLK_STS_RESOURCE - if the failure is retryable
1108 * * BLK_STS_IOERR - if the failure is fatal
1109 */
1110blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1111{
1112 struct scsi_device *sdev = cmd->device;
1113 struct request *rq = scsi_cmd_to_rq(cmd);
1114 unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1115 struct scatterlist *last_sg = NULL;
1116 blk_status_t ret;
1117 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1118 int count;
1119
1120 if (WARN_ON_ONCE(!nr_segs))
1121 return BLK_STS_IOERR;
1122
1123 /*
1124 * Make sure there is space for the drain. The driver must adjust
1125 * max_hw_segments to be prepared for this.
1126 */
1127 if (need_drain)
1128 nr_segs++;
1129
1130 /*
1131 * If sg table allocation fails, requeue request later.
1132 */
1133 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1134 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1135 return BLK_STS_RESOURCE;
1136
1137 /*
1138 * Next, walk the list, and fill in the addresses and sizes of
1139 * each segment.
1140 */
1141 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1142
1143 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1144 unsigned int pad_len =
1145 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1146
1147 last_sg->length += pad_len;
1148 cmd->extra_len += pad_len;
1149 }
1150
1151 if (need_drain) {
1152 sg_unmark_end(last_sg);
1153 last_sg = sg_next(last_sg);
1154 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1155 sg_mark_end(last_sg);
1156
1157 cmd->extra_len += sdev->dma_drain_len;
1158 count++;
1159 }
1160
1161 BUG_ON(count > cmd->sdb.table.nents);
1162 cmd->sdb.table.nents = count;
1163 cmd->sdb.length = blk_rq_payload_bytes(rq);
1164
1165 if (blk_integrity_rq(rq)) {
1166 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1167 int ivecs;
1168
1169 if (WARN_ON_ONCE(!prot_sdb)) {
1170 /*
1171 * This can happen if someone (e.g. multipath)
1172 * queues a command to a device on an adapter
1173 * that does not support DIX.
1174 */
1175 ret = BLK_STS_IOERR;
1176 goto out_free_sgtables;
1177 }
1178
1179 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1180
1181 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1182 prot_sdb->table.sgl,
1183 SCSI_INLINE_PROT_SG_CNT)) {
1184 ret = BLK_STS_RESOURCE;
1185 goto out_free_sgtables;
1186 }
1187
1188 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1189 prot_sdb->table.sgl);
1190 BUG_ON(count > ivecs);
1191 BUG_ON(count > queue_max_integrity_segments(rq->q));
1192
1193 cmd->prot_sdb = prot_sdb;
1194 cmd->prot_sdb->table.nents = count;
1195 }
1196
1197 return BLK_STS_OK;
1198out_free_sgtables:
1199 scsi_free_sgtables(cmd);
1200 return ret;
1201}
1202EXPORT_SYMBOL(scsi_alloc_sgtables);
1203
1204/**
1205 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1206 * @rq: Request associated with the SCSI command to be initialized.
1207 *
1208 * This function initializes the members of struct scsi_cmnd that must be
1209 * initialized before request processing starts and that won't be
1210 * reinitialized if a SCSI command is requeued.
1211 */
1212static void scsi_initialize_rq(struct request *rq)
1213{
1214 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1215
1216 memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1217 cmd->cmd_len = MAX_COMMAND_SIZE;
1218 cmd->sense_len = 0;
1219 init_rcu_head(&cmd->rcu);
1220 cmd->jiffies_at_alloc = jiffies;
1221 cmd->retries = 0;
1222}
1223
1224struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1225 blk_mq_req_flags_t flags)
1226{
1227 struct request *rq;
1228
1229 rq = blk_mq_alloc_request(q, opf, flags);
1230 if (!IS_ERR(rq))
1231 scsi_initialize_rq(rq);
1232 return rq;
1233}
1234EXPORT_SYMBOL_GPL(scsi_alloc_request);
1235
1236/*
1237 * Only called when the request isn't completed by SCSI, and not freed by
1238 * SCSI
1239 */
1240static void scsi_cleanup_rq(struct request *rq)
1241{
1242 if (rq->rq_flags & RQF_DONTPREP) {
1243 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1244 rq->rq_flags &= ~RQF_DONTPREP;
1245 }
1246}
1247
1248/* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1249void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1250{
1251 struct request *rq = scsi_cmd_to_rq(cmd);
1252
1253 if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1254 cmd->flags |= SCMD_INITIALIZED;
1255 scsi_initialize_rq(rq);
1256 }
1257
1258 cmd->device = dev;
1259 INIT_LIST_HEAD(&cmd->eh_entry);
1260 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1261}
1262
1263static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1264 struct request *req)
1265{
1266 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1267
1268 /*
1269 * Passthrough requests may transfer data, in which case they must
1270 * a bio attached to them. Or they might contain a SCSI command
1271 * that does not transfer data, in which case they may optionally
1272 * submit a request without an attached bio.
1273 */
1274 if (req->bio) {
1275 blk_status_t ret = scsi_alloc_sgtables(cmd);
1276 if (unlikely(ret != BLK_STS_OK))
1277 return ret;
1278 } else {
1279 BUG_ON(blk_rq_bytes(req));
1280
1281 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1282 }
1283
1284 cmd->transfersize = blk_rq_bytes(req);
1285 return BLK_STS_OK;
1286}
1287
1288static blk_status_t
1289scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1290{
1291 switch (sdev->sdev_state) {
1292 case SDEV_CREATED:
1293 return BLK_STS_OK;
1294 case SDEV_OFFLINE:
1295 case SDEV_TRANSPORT_OFFLINE:
1296 /*
1297 * If the device is offline we refuse to process any
1298 * commands. The device must be brought online
1299 * before trying any recovery commands.
1300 */
1301 if (!sdev->offline_already) {
1302 sdev->offline_already = true;
1303 sdev_printk(KERN_ERR, sdev,
1304 "rejecting I/O to offline device\n");
1305 }
1306 return BLK_STS_IOERR;
1307 case SDEV_DEL:
1308 /*
1309 * If the device is fully deleted, we refuse to
1310 * process any commands as well.
1311 */
1312 sdev_printk(KERN_ERR, sdev,
1313 "rejecting I/O to dead device\n");
1314 return BLK_STS_IOERR;
1315 case SDEV_BLOCK:
1316 case SDEV_CREATED_BLOCK:
1317 return BLK_STS_RESOURCE;
1318 case SDEV_QUIESCE:
1319 /*
1320 * If the device is blocked we only accept power management
1321 * commands.
1322 */
1323 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1324 return BLK_STS_RESOURCE;
1325 return BLK_STS_OK;
1326 default:
1327 /*
1328 * For any other not fully online state we only allow
1329 * power management commands.
1330 */
1331 if (req && !(req->rq_flags & RQF_PM))
1332 return BLK_STS_OFFLINE;
1333 return BLK_STS_OK;
1334 }
1335}
1336
1337/*
1338 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1339 * and return the token else return -1.
1340 */
1341static inline int scsi_dev_queue_ready(struct request_queue *q,
1342 struct scsi_device *sdev)
1343{
1344 int token;
1345
1346 token = sbitmap_get(&sdev->budget_map);
1347 if (token < 0)
1348 return -1;
1349
1350 if (!atomic_read(&sdev->device_blocked))
1351 return token;
1352
1353 /*
1354 * Only unblock if no other commands are pending and
1355 * if device_blocked has decreased to zero
1356 */
1357 if (scsi_device_busy(sdev) > 1 ||
1358 atomic_dec_return(&sdev->device_blocked) > 0) {
1359 sbitmap_put(&sdev->budget_map, token);
1360 return -1;
1361 }
1362
1363 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1364 "unblocking device at zero depth\n"));
1365
1366 return token;
1367}
1368
1369/*
1370 * scsi_target_queue_ready: checks if there we can send commands to target
1371 * @sdev: scsi device on starget to check.
1372 */
1373static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1374 struct scsi_device *sdev)
1375{
1376 struct scsi_target *starget = scsi_target(sdev);
1377 unsigned int busy;
1378
1379 if (starget->single_lun) {
1380 spin_lock_irq(shost->host_lock);
1381 if (starget->starget_sdev_user &&
1382 starget->starget_sdev_user != sdev) {
1383 spin_unlock_irq(shost->host_lock);
1384 return 0;
1385 }
1386 starget->starget_sdev_user = sdev;
1387 spin_unlock_irq(shost->host_lock);
1388 }
1389
1390 if (starget->can_queue <= 0)
1391 return 1;
1392
1393 busy = atomic_inc_return(&starget->target_busy) - 1;
1394 if (atomic_read(&starget->target_blocked) > 0) {
1395 if (busy)
1396 goto starved;
1397
1398 /*
1399 * unblock after target_blocked iterates to zero
1400 */
1401 if (atomic_dec_return(&starget->target_blocked) > 0)
1402 goto out_dec;
1403
1404 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1405 "unblocking target at zero depth\n"));
1406 }
1407
1408 if (busy >= starget->can_queue)
1409 goto starved;
1410
1411 return 1;
1412
1413starved:
1414 spin_lock_irq(shost->host_lock);
1415 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1416 spin_unlock_irq(shost->host_lock);
1417out_dec:
1418 if (starget->can_queue > 0)
1419 atomic_dec(&starget->target_busy);
1420 return 0;
1421}
1422
1423/*
1424 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1425 * return 0. We must end up running the queue again whenever 0 is
1426 * returned, else IO can hang.
1427 */
1428static inline int scsi_host_queue_ready(struct request_queue *q,
1429 struct Scsi_Host *shost,
1430 struct scsi_device *sdev,
1431 struct scsi_cmnd *cmd)
1432{
1433 if (atomic_read(&shost->host_blocked) > 0) {
1434 if (scsi_host_busy(shost) > 0)
1435 goto starved;
1436
1437 /*
1438 * unblock after host_blocked iterates to zero
1439 */
1440 if (atomic_dec_return(&shost->host_blocked) > 0)
1441 goto out_dec;
1442
1443 SCSI_LOG_MLQUEUE(3,
1444 shost_printk(KERN_INFO, shost,
1445 "unblocking host at zero depth\n"));
1446 }
1447
1448 if (shost->host_self_blocked)
1449 goto starved;
1450
1451 /* We're OK to process the command, so we can't be starved */
1452 if (!list_empty(&sdev->starved_entry)) {
1453 spin_lock_irq(shost->host_lock);
1454 if (!list_empty(&sdev->starved_entry))
1455 list_del_init(&sdev->starved_entry);
1456 spin_unlock_irq(shost->host_lock);
1457 }
1458
1459 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1460
1461 return 1;
1462
1463starved:
1464 spin_lock_irq(shost->host_lock);
1465 if (list_empty(&sdev->starved_entry))
1466 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1467 spin_unlock_irq(shost->host_lock);
1468out_dec:
1469 scsi_dec_host_busy(shost, cmd);
1470 return 0;
1471}
1472
1473/*
1474 * Busy state exporting function for request stacking drivers.
1475 *
1476 * For efficiency, no lock is taken to check the busy state of
1477 * shost/starget/sdev, since the returned value is not guaranteed and
1478 * may be changed after request stacking drivers call the function,
1479 * regardless of taking lock or not.
1480 *
1481 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1482 * needs to return 'not busy'. Otherwise, request stacking drivers
1483 * may hold requests forever.
1484 */
1485static bool scsi_mq_lld_busy(struct request_queue *q)
1486{
1487 struct scsi_device *sdev = q->queuedata;
1488 struct Scsi_Host *shost;
1489
1490 if (blk_queue_dying(q))
1491 return false;
1492
1493 shost = sdev->host;
1494
1495 /*
1496 * Ignore host/starget busy state.
1497 * Since block layer does not have a concept of fairness across
1498 * multiple queues, congestion of host/starget needs to be handled
1499 * in SCSI layer.
1500 */
1501 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1502 return true;
1503
1504 return false;
1505}
1506
1507/*
1508 * Block layer request completion callback. May be called from interrupt
1509 * context.
1510 */
1511static void scsi_complete(struct request *rq)
1512{
1513 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1514 enum scsi_disposition disposition;
1515
1516 INIT_LIST_HEAD(&cmd->eh_entry);
1517
1518 atomic_inc(&cmd->device->iodone_cnt);
1519 if (cmd->result)
1520 atomic_inc(&cmd->device->ioerr_cnt);
1521
1522 disposition = scsi_decide_disposition(cmd);
1523 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1524 disposition = SUCCESS;
1525
1526 scsi_log_completion(cmd, disposition);
1527
1528 switch (disposition) {
1529 case SUCCESS:
1530 scsi_finish_command(cmd);
1531 break;
1532 case NEEDS_RETRY:
1533 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1534 break;
1535 case ADD_TO_MLQUEUE:
1536 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1537 break;
1538 default:
1539 scsi_eh_scmd_add(cmd);
1540 break;
1541 }
1542}
1543
1544/**
1545 * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1546 * @cmd: command block we are dispatching.
1547 *
1548 * Return: nonzero return request was rejected and device's queue needs to be
1549 * plugged.
1550 */
1551static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1552{
1553 struct Scsi_Host *host = cmd->device->host;
1554 int rtn = 0;
1555
1556 atomic_inc(&cmd->device->iorequest_cnt);
1557
1558 /* check if the device is still usable */
1559 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1560 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1561 * returns an immediate error upwards, and signals
1562 * that the device is no longer present */
1563 cmd->result = DID_NO_CONNECT << 16;
1564 goto done;
1565 }
1566
1567 /* Check to see if the scsi lld made this device blocked. */
1568 if (unlikely(scsi_device_blocked(cmd->device))) {
1569 /*
1570 * in blocked state, the command is just put back on
1571 * the device queue. The suspend state has already
1572 * blocked the queue so future requests should not
1573 * occur until the device transitions out of the
1574 * suspend state.
1575 */
1576 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1577 "queuecommand : device blocked\n"));
1578 atomic_dec(&cmd->device->iorequest_cnt);
1579 return SCSI_MLQUEUE_DEVICE_BUSY;
1580 }
1581
1582 /* Store the LUN value in cmnd, if needed. */
1583 if (cmd->device->lun_in_cdb)
1584 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1585 (cmd->device->lun << 5 & 0xe0);
1586
1587 scsi_log_send(cmd);
1588
1589 /*
1590 * Before we queue this command, check if the command
1591 * length exceeds what the host adapter can handle.
1592 */
1593 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1594 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1595 "queuecommand : command too long. "
1596 "cdb_size=%d host->max_cmd_len=%d\n",
1597 cmd->cmd_len, cmd->device->host->max_cmd_len));
1598 cmd->result = (DID_ABORT << 16);
1599 goto done;
1600 }
1601
1602 if (unlikely(host->shost_state == SHOST_DEL)) {
1603 cmd->result = (DID_NO_CONNECT << 16);
1604 goto done;
1605
1606 }
1607
1608 trace_scsi_dispatch_cmd_start(cmd);
1609 rtn = host->hostt->queuecommand(host, cmd);
1610 if (rtn) {
1611 atomic_dec(&cmd->device->iorequest_cnt);
1612 trace_scsi_dispatch_cmd_error(cmd, rtn);
1613 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1614 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1615 rtn = SCSI_MLQUEUE_HOST_BUSY;
1616
1617 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1618 "queuecommand : request rejected\n"));
1619 }
1620
1621 return rtn;
1622 done:
1623 scsi_done(cmd);
1624 return 0;
1625}
1626
1627/* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1628static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1629{
1630 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1631 sizeof(struct scatterlist);
1632}
1633
1634static blk_status_t scsi_prepare_cmd(struct request *req)
1635{
1636 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1637 struct scsi_device *sdev = req->q->queuedata;
1638 struct Scsi_Host *shost = sdev->host;
1639 bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1640 struct scatterlist *sg;
1641
1642 scsi_init_command(sdev, cmd);
1643
1644 cmd->eh_eflags = 0;
1645 cmd->prot_type = 0;
1646 cmd->prot_flags = 0;
1647 cmd->submitter = 0;
1648 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1649 cmd->underflow = 0;
1650 cmd->transfersize = 0;
1651 cmd->host_scribble = NULL;
1652 cmd->result = 0;
1653 cmd->extra_len = 0;
1654 cmd->state = 0;
1655 if (in_flight)
1656 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1657
1658 /*
1659 * Only clear the driver-private command data if the LLD does not supply
1660 * a function to initialize that data.
1661 */
1662 if (!shost->hostt->init_cmd_priv)
1663 memset(cmd + 1, 0, shost->hostt->cmd_size);
1664
1665 cmd->prot_op = SCSI_PROT_NORMAL;
1666 if (blk_rq_bytes(req))
1667 cmd->sc_data_direction = rq_dma_dir(req);
1668 else
1669 cmd->sc_data_direction = DMA_NONE;
1670
1671 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1672 cmd->sdb.table.sgl = sg;
1673
1674 if (scsi_host_get_prot(shost)) {
1675 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1676
1677 cmd->prot_sdb->table.sgl =
1678 (struct scatterlist *)(cmd->prot_sdb + 1);
1679 }
1680
1681 /*
1682 * Special handling for passthrough commands, which don't go to the ULP
1683 * at all:
1684 */
1685 if (blk_rq_is_passthrough(req))
1686 return scsi_setup_scsi_cmnd(sdev, req);
1687
1688 if (sdev->handler && sdev->handler->prep_fn) {
1689 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1690
1691 if (ret != BLK_STS_OK)
1692 return ret;
1693 }
1694
1695 /* Usually overridden by the ULP */
1696 cmd->allowed = 0;
1697 memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1698 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1699}
1700
1701static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1702{
1703 struct request *req = scsi_cmd_to_rq(cmd);
1704
1705 switch (cmd->submitter) {
1706 case SUBMITTED_BY_BLOCK_LAYER:
1707 break;
1708 case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1709 return scsi_eh_done(cmd);
1710 case SUBMITTED_BY_SCSI_RESET_IOCTL:
1711 return;
1712 }
1713
1714 if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1715 return;
1716 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1717 return;
1718 trace_scsi_dispatch_cmd_done(cmd);
1719
1720 if (complete_directly)
1721 blk_mq_complete_request_direct(req, scsi_complete);
1722 else
1723 blk_mq_complete_request(req);
1724}
1725
1726void scsi_done(struct scsi_cmnd *cmd)
1727{
1728 scsi_done_internal(cmd, false);
1729}
1730EXPORT_SYMBOL(scsi_done);
1731
1732void scsi_done_direct(struct scsi_cmnd *cmd)
1733{
1734 scsi_done_internal(cmd, true);
1735}
1736EXPORT_SYMBOL(scsi_done_direct);
1737
1738static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1739{
1740 struct scsi_device *sdev = q->queuedata;
1741
1742 sbitmap_put(&sdev->budget_map, budget_token);
1743}
1744
1745/*
1746 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1747 * not change behaviour from the previous unplug mechanism, experimentation
1748 * may prove this needs changing.
1749 */
1750#define SCSI_QUEUE_DELAY 3
1751
1752static int scsi_mq_get_budget(struct request_queue *q)
1753{
1754 struct scsi_device *sdev = q->queuedata;
1755 int token = scsi_dev_queue_ready(q, sdev);
1756
1757 if (token >= 0)
1758 return token;
1759
1760 atomic_inc(&sdev->restarts);
1761
1762 /*
1763 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1764 * .restarts must be incremented before .device_busy is read because the
1765 * code in scsi_run_queue_async() depends on the order of these operations.
1766 */
1767 smp_mb__after_atomic();
1768
1769 /*
1770 * If all in-flight requests originated from this LUN are completed
1771 * before reading .device_busy, sdev->device_busy will be observed as
1772 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1773 * soon. Otherwise, completion of one of these requests will observe
1774 * the .restarts flag, and the request queue will be run for handling
1775 * this request, see scsi_end_request().
1776 */
1777 if (unlikely(scsi_device_busy(sdev) == 0 &&
1778 !scsi_device_blocked(sdev)))
1779 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1780 return -1;
1781}
1782
1783static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1784{
1785 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1786
1787 cmd->budget_token = token;
1788}
1789
1790static int scsi_mq_get_rq_budget_token(struct request *req)
1791{
1792 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1793
1794 return cmd->budget_token;
1795}
1796
1797static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1798 const struct blk_mq_queue_data *bd)
1799{
1800 struct request *req = bd->rq;
1801 struct request_queue *q = req->q;
1802 struct scsi_device *sdev = q->queuedata;
1803 struct Scsi_Host *shost = sdev->host;
1804 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1805 blk_status_t ret;
1806 int reason;
1807
1808 WARN_ON_ONCE(cmd->budget_token < 0);
1809
1810 /*
1811 * If the device is not in running state we will reject some or all
1812 * commands.
1813 */
1814 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1815 ret = scsi_device_state_check(sdev, req);
1816 if (ret != BLK_STS_OK)
1817 goto out_put_budget;
1818 }
1819
1820 ret = BLK_STS_RESOURCE;
1821 if (!scsi_target_queue_ready(shost, sdev))
1822 goto out_put_budget;
1823 if (unlikely(scsi_host_in_recovery(shost))) {
1824 if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1825 ret = BLK_STS_OFFLINE;
1826 goto out_dec_target_busy;
1827 }
1828 if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1829 goto out_dec_target_busy;
1830
1831 if (!(req->rq_flags & RQF_DONTPREP)) {
1832 ret = scsi_prepare_cmd(req);
1833 if (ret != BLK_STS_OK)
1834 goto out_dec_host_busy;
1835 req->rq_flags |= RQF_DONTPREP;
1836 } else {
1837 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1838 }
1839
1840 cmd->flags &= SCMD_PRESERVED_FLAGS;
1841 if (sdev->simple_tags)
1842 cmd->flags |= SCMD_TAGGED;
1843 if (bd->last)
1844 cmd->flags |= SCMD_LAST;
1845
1846 scsi_set_resid(cmd, 0);
1847 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1848 cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1849
1850 blk_mq_start_request(req);
1851 reason = scsi_dispatch_cmd(cmd);
1852 if (reason) {
1853 scsi_set_blocked(cmd, reason);
1854 ret = BLK_STS_RESOURCE;
1855 goto out_dec_host_busy;
1856 }
1857
1858 return BLK_STS_OK;
1859
1860out_dec_host_busy:
1861 scsi_dec_host_busy(shost, cmd);
1862out_dec_target_busy:
1863 if (scsi_target(sdev)->can_queue > 0)
1864 atomic_dec(&scsi_target(sdev)->target_busy);
1865out_put_budget:
1866 scsi_mq_put_budget(q, cmd->budget_token);
1867 cmd->budget_token = -1;
1868 switch (ret) {
1869 case BLK_STS_OK:
1870 break;
1871 case BLK_STS_RESOURCE:
1872 case BLK_STS_ZONE_RESOURCE:
1873 if (scsi_device_blocked(sdev))
1874 ret = BLK_STS_DEV_RESOURCE;
1875 break;
1876 case BLK_STS_AGAIN:
1877 cmd->result = DID_BUS_BUSY << 16;
1878 if (req->rq_flags & RQF_DONTPREP)
1879 scsi_mq_uninit_cmd(cmd);
1880 break;
1881 default:
1882 if (unlikely(!scsi_device_online(sdev)))
1883 cmd->result = DID_NO_CONNECT << 16;
1884 else
1885 cmd->result = DID_ERROR << 16;
1886 /*
1887 * Make sure to release all allocated resources when
1888 * we hit an error, as we will never see this command
1889 * again.
1890 */
1891 if (req->rq_flags & RQF_DONTPREP)
1892 scsi_mq_uninit_cmd(cmd);
1893 scsi_run_queue_async(sdev);
1894 break;
1895 }
1896 return ret;
1897}
1898
1899static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1900 unsigned int hctx_idx, unsigned int numa_node)
1901{
1902 struct Scsi_Host *shost = set->driver_data;
1903 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1904 struct scatterlist *sg;
1905 int ret = 0;
1906
1907 cmd->sense_buffer =
1908 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1909 if (!cmd->sense_buffer)
1910 return -ENOMEM;
1911
1912 if (scsi_host_get_prot(shost)) {
1913 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1914 shost->hostt->cmd_size;
1915 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1916 }
1917
1918 if (shost->hostt->init_cmd_priv) {
1919 ret = shost->hostt->init_cmd_priv(shost, cmd);
1920 if (ret < 0)
1921 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1922 }
1923
1924 return ret;
1925}
1926
1927static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1928 unsigned int hctx_idx)
1929{
1930 struct Scsi_Host *shost = set->driver_data;
1931 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1932
1933 if (shost->hostt->exit_cmd_priv)
1934 shost->hostt->exit_cmd_priv(shost, cmd);
1935 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1936}
1937
1938
1939static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1940{
1941 struct Scsi_Host *shost = hctx->driver_data;
1942
1943 if (shost->hostt->mq_poll)
1944 return shost->hostt->mq_poll(shost, hctx->queue_num);
1945
1946 return 0;
1947}
1948
1949static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1950 unsigned int hctx_idx)
1951{
1952 struct Scsi_Host *shost = data;
1953
1954 hctx->driver_data = shost;
1955 return 0;
1956}
1957
1958static void scsi_map_queues(struct blk_mq_tag_set *set)
1959{
1960 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1961
1962 if (shost->hostt->map_queues)
1963 return shost->hostt->map_queues(shost);
1964 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1965}
1966
1967void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1968{
1969 struct device *dev = shost->dma_dev;
1970
1971 /*
1972 * this limit is imposed by hardware restrictions
1973 */
1974 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1975 SG_MAX_SEGMENTS));
1976
1977 if (scsi_host_prot_dma(shost)) {
1978 shost->sg_prot_tablesize =
1979 min_not_zero(shost->sg_prot_tablesize,
1980 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1981 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1982 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1983 }
1984
1985 blk_queue_max_hw_sectors(q, shost->max_sectors);
1986 blk_queue_segment_boundary(q, shost->dma_boundary);
1987 dma_set_seg_boundary(dev, shost->dma_boundary);
1988
1989 blk_queue_max_segment_size(q, shost->max_segment_size);
1990 blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1991 dma_set_max_seg_size(dev, queue_max_segment_size(q));
1992
1993 /*
1994 * Set a reasonable default alignment: The larger of 32-byte (dword),
1995 * which is a common minimum for HBAs, and the minimum DMA alignment,
1996 * which is set by the platform.
1997 *
1998 * Devices that require a bigger alignment can increase it later.
1999 */
2000 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2001}
2002EXPORT_SYMBOL_GPL(__scsi_init_queue);
2003
2004static const struct blk_mq_ops scsi_mq_ops_no_commit = {
2005 .get_budget = scsi_mq_get_budget,
2006 .put_budget = scsi_mq_put_budget,
2007 .queue_rq = scsi_queue_rq,
2008 .complete = scsi_complete,
2009 .timeout = scsi_timeout,
2010#ifdef CONFIG_BLK_DEBUG_FS
2011 .show_rq = scsi_show_rq,
2012#endif
2013 .init_request = scsi_mq_init_request,
2014 .exit_request = scsi_mq_exit_request,
2015 .cleanup_rq = scsi_cleanup_rq,
2016 .busy = scsi_mq_lld_busy,
2017 .map_queues = scsi_map_queues,
2018 .init_hctx = scsi_init_hctx,
2019 .poll = scsi_mq_poll,
2020 .set_rq_budget_token = scsi_mq_set_rq_budget_token,
2021 .get_rq_budget_token = scsi_mq_get_rq_budget_token,
2022};
2023
2024
2025static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
2026{
2027 struct Scsi_Host *shost = hctx->driver_data;
2028
2029 shost->hostt->commit_rqs(shost, hctx->queue_num);
2030}
2031
2032static const struct blk_mq_ops scsi_mq_ops = {
2033 .get_budget = scsi_mq_get_budget,
2034 .put_budget = scsi_mq_put_budget,
2035 .queue_rq = scsi_queue_rq,
2036 .commit_rqs = scsi_commit_rqs,
2037 .complete = scsi_complete,
2038 .timeout = scsi_timeout,
2039#ifdef CONFIG_BLK_DEBUG_FS
2040 .show_rq = scsi_show_rq,
2041#endif
2042 .init_request = scsi_mq_init_request,
2043 .exit_request = scsi_mq_exit_request,
2044 .cleanup_rq = scsi_cleanup_rq,
2045 .busy = scsi_mq_lld_busy,
2046 .map_queues = scsi_map_queues,
2047 .init_hctx = scsi_init_hctx,
2048 .poll = scsi_mq_poll,
2049 .set_rq_budget_token = scsi_mq_set_rq_budget_token,
2050 .get_rq_budget_token = scsi_mq_get_rq_budget_token,
2051};
2052
2053int scsi_mq_setup_tags(struct Scsi_Host *shost)
2054{
2055 unsigned int cmd_size, sgl_size;
2056 struct blk_mq_tag_set *tag_set = &shost->tag_set;
2057
2058 sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
2059 scsi_mq_inline_sgl_size(shost));
2060 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2061 if (scsi_host_get_prot(shost))
2062 cmd_size += sizeof(struct scsi_data_buffer) +
2063 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
2064
2065 memset(tag_set, 0, sizeof(*tag_set));
2066 if (shost->hostt->commit_rqs)
2067 tag_set->ops = &scsi_mq_ops;
2068 else
2069 tag_set->ops = &scsi_mq_ops_no_commit;
2070 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
2071 tag_set->nr_maps = shost->nr_maps ? : 1;
2072 tag_set->queue_depth = shost->can_queue;
2073 tag_set->cmd_size = cmd_size;
2074 tag_set->numa_node = dev_to_node(shost->dma_dev);
2075 tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
2076 tag_set->flags |=
2077 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2078 if (shost->queuecommand_may_block)
2079 tag_set->flags |= BLK_MQ_F_BLOCKING;
2080 tag_set->driver_data = shost;
2081 if (shost->host_tagset)
2082 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
2083
2084 return blk_mq_alloc_tag_set(tag_set);
2085}
2086
2087void scsi_mq_free_tags(struct kref *kref)
2088{
2089 struct Scsi_Host *shost = container_of(kref, typeof(*shost),
2090 tagset_refcnt);
2091
2092 blk_mq_free_tag_set(&shost->tag_set);
2093 complete(&shost->tagset_freed);
2094}
2095
2096/**
2097 * scsi_device_from_queue - return sdev associated with a request_queue
2098 * @q: The request queue to return the sdev from
2099 *
2100 * Return the sdev associated with a request queue or NULL if the
2101 * request_queue does not reference a SCSI device.
2102 */
2103struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2104{
2105 struct scsi_device *sdev = NULL;
2106
2107 if (q->mq_ops == &scsi_mq_ops_no_commit ||
2108 q->mq_ops == &scsi_mq_ops)
2109 sdev = q->queuedata;
2110 if (!sdev || !get_device(&sdev->sdev_gendev))
2111 sdev = NULL;
2112
2113 return sdev;
2114}
2115/*
2116 * pktcdvd should have been integrated into the SCSI layers, but for historical
2117 * reasons like the old IDE driver it isn't. This export allows it to safely
2118 * probe if a given device is a SCSI one and only attach to that.
2119 */
2120#ifdef CONFIG_CDROM_PKTCDVD_MODULE
2121EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2122#endif
2123
2124/**
2125 * scsi_block_requests - Utility function used by low-level drivers to prevent
2126 * further commands from being queued to the device.
2127 * @shost: host in question
2128 *
2129 * There is no timer nor any other means by which the requests get unblocked
2130 * other than the low-level driver calling scsi_unblock_requests().
2131 */
2132void scsi_block_requests(struct Scsi_Host *shost)
2133{
2134 shost->host_self_blocked = 1;
2135}
2136EXPORT_SYMBOL(scsi_block_requests);
2137
2138/**
2139 * scsi_unblock_requests - Utility function used by low-level drivers to allow
2140 * further commands to be queued to the device.
2141 * @shost: host in question
2142 *
2143 * There is no timer nor any other means by which the requests get unblocked
2144 * other than the low-level driver calling scsi_unblock_requests(). This is done
2145 * as an API function so that changes to the internals of the scsi mid-layer
2146 * won't require wholesale changes to drivers that use this feature.
2147 */
2148void scsi_unblock_requests(struct Scsi_Host *shost)
2149{
2150 shost->host_self_blocked = 0;
2151 scsi_run_host_queues(shost);
2152}
2153EXPORT_SYMBOL(scsi_unblock_requests);
2154
2155void scsi_exit_queue(void)
2156{
2157 kmem_cache_destroy(scsi_sense_cache);
2158}
2159
2160/**
2161 * scsi_mode_select - issue a mode select
2162 * @sdev: SCSI device to be queried
2163 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2164 * @sp: Save page bit (0 == don't save, 1 == save)
2165 * @buffer: request buffer (may not be smaller than eight bytes)
2166 * @len: length of request buffer.
2167 * @timeout: command timeout
2168 * @retries: number of retries before failing
2169 * @data: returns a structure abstracting the mode header data
2170 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2171 * must be SCSI_SENSE_BUFFERSIZE big.
2172 *
2173 * Returns zero if successful; negative error number or scsi
2174 * status on error
2175 *
2176 */
2177int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2178 unsigned char *buffer, int len, int timeout, int retries,
2179 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2180{
2181 unsigned char cmd[10];
2182 unsigned char *real_buffer;
2183 const struct scsi_exec_args exec_args = {
2184 .sshdr = sshdr,
2185 };
2186 int ret;
2187
2188 memset(cmd, 0, sizeof(cmd));
2189 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2190
2191 /*
2192 * Use MODE SELECT(10) if the device asked for it or if the mode page
2193 * and the mode select header cannot fit within the maximumm 255 bytes
2194 * of the MODE SELECT(6) command.
2195 */
2196 if (sdev->use_10_for_ms ||
2197 len + 4 > 255 ||
2198 data->block_descriptor_length > 255) {
2199 if (len > 65535 - 8)
2200 return -EINVAL;
2201 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2202 if (!real_buffer)
2203 return -ENOMEM;
2204 memcpy(real_buffer + 8, buffer, len);
2205 len += 8;
2206 real_buffer[0] = 0;
2207 real_buffer[1] = 0;
2208 real_buffer[2] = data->medium_type;
2209 real_buffer[3] = data->device_specific;
2210 real_buffer[4] = data->longlba ? 0x01 : 0;
2211 real_buffer[5] = 0;
2212 put_unaligned_be16(data->block_descriptor_length,
2213 &real_buffer[6]);
2214
2215 cmd[0] = MODE_SELECT_10;
2216 put_unaligned_be16(len, &cmd[7]);
2217 } else {
2218 if (data->longlba)
2219 return -EINVAL;
2220
2221 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2222 if (!real_buffer)
2223 return -ENOMEM;
2224 memcpy(real_buffer + 4, buffer, len);
2225 len += 4;
2226 real_buffer[0] = 0;
2227 real_buffer[1] = data->medium_type;
2228 real_buffer[2] = data->device_specific;
2229 real_buffer[3] = data->block_descriptor_length;
2230
2231 cmd[0] = MODE_SELECT;
2232 cmd[4] = len;
2233 }
2234
2235 ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2236 timeout, retries, &exec_args);
2237 kfree(real_buffer);
2238 return ret;
2239}
2240EXPORT_SYMBOL_GPL(scsi_mode_select);
2241
2242/**
2243 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2244 * @sdev: SCSI device to be queried
2245 * @dbd: set to prevent mode sense from returning block descriptors
2246 * @modepage: mode page being requested
2247 * @subpage: sub-page of the mode page being requested
2248 * @buffer: request buffer (may not be smaller than eight bytes)
2249 * @len: length of request buffer.
2250 * @timeout: command timeout
2251 * @retries: number of retries before failing
2252 * @data: returns a structure abstracting the mode header data
2253 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2254 * must be SCSI_SENSE_BUFFERSIZE big.
2255 *
2256 * Returns zero if successful, or a negative error number on failure
2257 */
2258int
2259scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage,
2260 unsigned char *buffer, int len, int timeout, int retries,
2261 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2262{
2263 unsigned char cmd[12];
2264 int use_10_for_ms;
2265 int header_length;
2266 int result;
2267 struct scsi_sense_hdr my_sshdr;
2268 struct scsi_failure failure_defs[] = {
2269 {
2270 .sense = UNIT_ATTENTION,
2271 .asc = SCMD_FAILURE_ASC_ANY,
2272 .ascq = SCMD_FAILURE_ASCQ_ANY,
2273 .allowed = retries,
2274 .result = SAM_STAT_CHECK_CONDITION,
2275 },
2276 {}
2277 };
2278 struct scsi_failures failures = {
2279 .failure_definitions = failure_defs,
2280 };
2281 const struct scsi_exec_args exec_args = {
2282 /* caller might not be interested in sense, but we need it */
2283 .sshdr = sshdr ? : &my_sshdr,
2284 .failures = &failures,
2285 };
2286
2287 memset(data, 0, sizeof(*data));
2288 memset(&cmd[0], 0, 12);
2289
2290 dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2291 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2292 cmd[2] = modepage;
2293 cmd[3] = subpage;
2294
2295 sshdr = exec_args.sshdr;
2296
2297 retry:
2298 use_10_for_ms = sdev->use_10_for_ms || len > 255;
2299
2300 if (use_10_for_ms) {
2301 if (len < 8 || len > 65535)
2302 return -EINVAL;
2303
2304 cmd[0] = MODE_SENSE_10;
2305 put_unaligned_be16(len, &cmd[7]);
2306 header_length = 8;
2307 } else {
2308 if (len < 4)
2309 return -EINVAL;
2310
2311 cmd[0] = MODE_SENSE;
2312 cmd[4] = len;
2313 header_length = 4;
2314 }
2315
2316 memset(buffer, 0, len);
2317
2318 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2319 timeout, retries, &exec_args);
2320 if (result < 0)
2321 return result;
2322
2323 /* This code looks awful: what it's doing is making sure an
2324 * ILLEGAL REQUEST sense return identifies the actual command
2325 * byte as the problem. MODE_SENSE commands can return
2326 * ILLEGAL REQUEST if the code page isn't supported */
2327
2328 if (!scsi_status_is_good(result)) {
2329 if (scsi_sense_valid(sshdr)) {
2330 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2331 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2332 /*
2333 * Invalid command operation code: retry using
2334 * MODE SENSE(6) if this was a MODE SENSE(10)
2335 * request, except if the request mode page is
2336 * too large for MODE SENSE single byte
2337 * allocation length field.
2338 */
2339 if (use_10_for_ms) {
2340 if (len > 255)
2341 return -EIO;
2342 sdev->use_10_for_ms = 0;
2343 goto retry;
2344 }
2345 }
2346 }
2347 return -EIO;
2348 }
2349 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2350 (modepage == 6 || modepage == 8))) {
2351 /* Initio breakage? */
2352 header_length = 0;
2353 data->length = 13;
2354 data->medium_type = 0;
2355 data->device_specific = 0;
2356 data->longlba = 0;
2357 data->block_descriptor_length = 0;
2358 } else if (use_10_for_ms) {
2359 data->length = get_unaligned_be16(&buffer[0]) + 2;
2360 data->medium_type = buffer[2];
2361 data->device_specific = buffer[3];
2362 data->longlba = buffer[4] & 0x01;
2363 data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2364 } else {
2365 data->length = buffer[0] + 1;
2366 data->medium_type = buffer[1];
2367 data->device_specific = buffer[2];
2368 data->block_descriptor_length = buffer[3];
2369 }
2370 data->header_length = header_length;
2371
2372 return 0;
2373}
2374EXPORT_SYMBOL(scsi_mode_sense);
2375
2376/**
2377 * scsi_test_unit_ready - test if unit is ready
2378 * @sdev: scsi device to change the state of.
2379 * @timeout: command timeout
2380 * @retries: number of retries before failing
2381 * @sshdr: outpout pointer for decoded sense information.
2382 *
2383 * Returns zero if unsuccessful or an error if TUR failed. For
2384 * removable media, UNIT_ATTENTION sets ->changed flag.
2385 **/
2386int
2387scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2388 struct scsi_sense_hdr *sshdr)
2389{
2390 char cmd[] = {
2391 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2392 };
2393 const struct scsi_exec_args exec_args = {
2394 .sshdr = sshdr,
2395 };
2396 int result;
2397
2398 /* try to eat the UNIT_ATTENTION if there are enough retries */
2399 do {
2400 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2401 timeout, 1, &exec_args);
2402 if (sdev->removable && result > 0 && scsi_sense_valid(sshdr) &&
2403 sshdr->sense_key == UNIT_ATTENTION)
2404 sdev->changed = 1;
2405 } while (result > 0 && scsi_sense_valid(sshdr) &&
2406 sshdr->sense_key == UNIT_ATTENTION && --retries);
2407
2408 return result;
2409}
2410EXPORT_SYMBOL(scsi_test_unit_ready);
2411
2412/**
2413 * scsi_device_set_state - Take the given device through the device state model.
2414 * @sdev: scsi device to change the state of.
2415 * @state: state to change to.
2416 *
2417 * Returns zero if successful or an error if the requested
2418 * transition is illegal.
2419 */
2420int
2421scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2422{
2423 enum scsi_device_state oldstate = sdev->sdev_state;
2424
2425 if (state == oldstate)
2426 return 0;
2427
2428 switch (state) {
2429 case SDEV_CREATED:
2430 switch (oldstate) {
2431 case SDEV_CREATED_BLOCK:
2432 break;
2433 default:
2434 goto illegal;
2435 }
2436 break;
2437
2438 case SDEV_RUNNING:
2439 switch (oldstate) {
2440 case SDEV_CREATED:
2441 case SDEV_OFFLINE:
2442 case SDEV_TRANSPORT_OFFLINE:
2443 case SDEV_QUIESCE:
2444 case SDEV_BLOCK:
2445 break;
2446 default:
2447 goto illegal;
2448 }
2449 break;
2450
2451 case SDEV_QUIESCE:
2452 switch (oldstate) {
2453 case SDEV_RUNNING:
2454 case SDEV_OFFLINE:
2455 case SDEV_TRANSPORT_OFFLINE:
2456 break;
2457 default:
2458 goto illegal;
2459 }
2460 break;
2461
2462 case SDEV_OFFLINE:
2463 case SDEV_TRANSPORT_OFFLINE:
2464 switch (oldstate) {
2465 case SDEV_CREATED:
2466 case SDEV_RUNNING:
2467 case SDEV_QUIESCE:
2468 case SDEV_BLOCK:
2469 break;
2470 default:
2471 goto illegal;
2472 }
2473 break;
2474
2475 case SDEV_BLOCK:
2476 switch (oldstate) {
2477 case SDEV_RUNNING:
2478 case SDEV_CREATED_BLOCK:
2479 case SDEV_QUIESCE:
2480 case SDEV_OFFLINE:
2481 break;
2482 default:
2483 goto illegal;
2484 }
2485 break;
2486
2487 case SDEV_CREATED_BLOCK:
2488 switch (oldstate) {
2489 case SDEV_CREATED:
2490 break;
2491 default:
2492 goto illegal;
2493 }
2494 break;
2495
2496 case SDEV_CANCEL:
2497 switch (oldstate) {
2498 case SDEV_CREATED:
2499 case SDEV_RUNNING:
2500 case SDEV_QUIESCE:
2501 case SDEV_OFFLINE:
2502 case SDEV_TRANSPORT_OFFLINE:
2503 break;
2504 default:
2505 goto illegal;
2506 }
2507 break;
2508
2509 case SDEV_DEL:
2510 switch (oldstate) {
2511 case SDEV_CREATED:
2512 case SDEV_RUNNING:
2513 case SDEV_OFFLINE:
2514 case SDEV_TRANSPORT_OFFLINE:
2515 case SDEV_CANCEL:
2516 case SDEV_BLOCK:
2517 case SDEV_CREATED_BLOCK:
2518 break;
2519 default:
2520 goto illegal;
2521 }
2522 break;
2523
2524 }
2525 sdev->offline_already = false;
2526 sdev->sdev_state = state;
2527 return 0;
2528
2529 illegal:
2530 SCSI_LOG_ERROR_RECOVERY(1,
2531 sdev_printk(KERN_ERR, sdev,
2532 "Illegal state transition %s->%s",
2533 scsi_device_state_name(oldstate),
2534 scsi_device_state_name(state))
2535 );
2536 return -EINVAL;
2537}
2538EXPORT_SYMBOL(scsi_device_set_state);
2539
2540/**
2541 * scsi_evt_emit - emit a single SCSI device uevent
2542 * @sdev: associated SCSI device
2543 * @evt: event to emit
2544 *
2545 * Send a single uevent (scsi_event) to the associated scsi_device.
2546 */
2547static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2548{
2549 int idx = 0;
2550 char *envp[3];
2551
2552 switch (evt->evt_type) {
2553 case SDEV_EVT_MEDIA_CHANGE:
2554 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2555 break;
2556 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2557 scsi_rescan_device(sdev);
2558 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2559 break;
2560 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2561 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2562 break;
2563 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2564 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2565 break;
2566 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2567 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2568 break;
2569 case SDEV_EVT_LUN_CHANGE_REPORTED:
2570 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2571 break;
2572 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2573 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2574 break;
2575 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2576 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2577 break;
2578 default:
2579 /* do nothing */
2580 break;
2581 }
2582
2583 envp[idx++] = NULL;
2584
2585 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2586}
2587
2588/**
2589 * scsi_evt_thread - send a uevent for each scsi event
2590 * @work: work struct for scsi_device
2591 *
2592 * Dispatch queued events to their associated scsi_device kobjects
2593 * as uevents.
2594 */
2595void scsi_evt_thread(struct work_struct *work)
2596{
2597 struct scsi_device *sdev;
2598 enum scsi_device_event evt_type;
2599 LIST_HEAD(event_list);
2600
2601 sdev = container_of(work, struct scsi_device, event_work);
2602
2603 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2604 if (test_and_clear_bit(evt_type, sdev->pending_events))
2605 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2606
2607 while (1) {
2608 struct scsi_event *evt;
2609 struct list_head *this, *tmp;
2610 unsigned long flags;
2611
2612 spin_lock_irqsave(&sdev->list_lock, flags);
2613 list_splice_init(&sdev->event_list, &event_list);
2614 spin_unlock_irqrestore(&sdev->list_lock, flags);
2615
2616 if (list_empty(&event_list))
2617 break;
2618
2619 list_for_each_safe(this, tmp, &event_list) {
2620 evt = list_entry(this, struct scsi_event, node);
2621 list_del(&evt->node);
2622 scsi_evt_emit(sdev, evt);
2623 kfree(evt);
2624 }
2625 }
2626}
2627
2628/**
2629 * sdev_evt_send - send asserted event to uevent thread
2630 * @sdev: scsi_device event occurred on
2631 * @evt: event to send
2632 *
2633 * Assert scsi device event asynchronously.
2634 */
2635void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2636{
2637 unsigned long flags;
2638
2639#if 0
2640 /* FIXME: currently this check eliminates all media change events
2641 * for polled devices. Need to update to discriminate between AN
2642 * and polled events */
2643 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2644 kfree(evt);
2645 return;
2646 }
2647#endif
2648
2649 spin_lock_irqsave(&sdev->list_lock, flags);
2650 list_add_tail(&evt->node, &sdev->event_list);
2651 schedule_work(&sdev->event_work);
2652 spin_unlock_irqrestore(&sdev->list_lock, flags);
2653}
2654EXPORT_SYMBOL_GPL(sdev_evt_send);
2655
2656/**
2657 * sdev_evt_alloc - allocate a new scsi event
2658 * @evt_type: type of event to allocate
2659 * @gfpflags: GFP flags for allocation
2660 *
2661 * Allocates and returns a new scsi_event.
2662 */
2663struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2664 gfp_t gfpflags)
2665{
2666 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2667 if (!evt)
2668 return NULL;
2669
2670 evt->evt_type = evt_type;
2671 INIT_LIST_HEAD(&evt->node);
2672
2673 /* evt_type-specific initialization, if any */
2674 switch (evt_type) {
2675 case SDEV_EVT_MEDIA_CHANGE:
2676 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2677 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2678 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2679 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2680 case SDEV_EVT_LUN_CHANGE_REPORTED:
2681 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2682 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2683 default:
2684 /* do nothing */
2685 break;
2686 }
2687
2688 return evt;
2689}
2690EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2691
2692/**
2693 * sdev_evt_send_simple - send asserted event to uevent thread
2694 * @sdev: scsi_device event occurred on
2695 * @evt_type: type of event to send
2696 * @gfpflags: GFP flags for allocation
2697 *
2698 * Assert scsi device event asynchronously, given an event type.
2699 */
2700void sdev_evt_send_simple(struct scsi_device *sdev,
2701 enum scsi_device_event evt_type, gfp_t gfpflags)
2702{
2703 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2704 if (!evt) {
2705 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2706 evt_type);
2707 return;
2708 }
2709
2710 sdev_evt_send(sdev, evt);
2711}
2712EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2713
2714/**
2715 * scsi_device_quiesce - Block all commands except power management.
2716 * @sdev: scsi device to quiesce.
2717 *
2718 * This works by trying to transition to the SDEV_QUIESCE state
2719 * (which must be a legal transition). When the device is in this
2720 * state, only power management requests will be accepted, all others will
2721 * be deferred.
2722 *
2723 * Must be called with user context, may sleep.
2724 *
2725 * Returns zero if unsuccessful or an error if not.
2726 */
2727int
2728scsi_device_quiesce(struct scsi_device *sdev)
2729{
2730 struct request_queue *q = sdev->request_queue;
2731 int err;
2732
2733 /*
2734 * It is allowed to call scsi_device_quiesce() multiple times from
2735 * the same context but concurrent scsi_device_quiesce() calls are
2736 * not allowed.
2737 */
2738 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2739
2740 if (sdev->quiesced_by == current)
2741 return 0;
2742
2743 blk_set_pm_only(q);
2744
2745 blk_mq_freeze_queue(q);
2746 /*
2747 * Ensure that the effect of blk_set_pm_only() will be visible
2748 * for percpu_ref_tryget() callers that occur after the queue
2749 * unfreeze even if the queue was already frozen before this function
2750 * was called. See also https://lwn.net/Articles/573497/.
2751 */
2752 synchronize_rcu();
2753 blk_mq_unfreeze_queue(q);
2754
2755 mutex_lock(&sdev->state_mutex);
2756 err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2757 if (err == 0)
2758 sdev->quiesced_by = current;
2759 else
2760 blk_clear_pm_only(q);
2761 mutex_unlock(&sdev->state_mutex);
2762
2763 return err;
2764}
2765EXPORT_SYMBOL(scsi_device_quiesce);
2766
2767/**
2768 * scsi_device_resume - Restart user issued commands to a quiesced device.
2769 * @sdev: scsi device to resume.
2770 *
2771 * Moves the device from quiesced back to running and restarts the
2772 * queues.
2773 *
2774 * Must be called with user context, may sleep.
2775 */
2776void scsi_device_resume(struct scsi_device *sdev)
2777{
2778 /* check if the device state was mutated prior to resume, and if
2779 * so assume the state is being managed elsewhere (for example
2780 * device deleted during suspend)
2781 */
2782 mutex_lock(&sdev->state_mutex);
2783 if (sdev->sdev_state == SDEV_QUIESCE)
2784 scsi_device_set_state(sdev, SDEV_RUNNING);
2785 if (sdev->quiesced_by) {
2786 sdev->quiesced_by = NULL;
2787 blk_clear_pm_only(sdev->request_queue);
2788 }
2789 mutex_unlock(&sdev->state_mutex);
2790}
2791EXPORT_SYMBOL(scsi_device_resume);
2792
2793static void
2794device_quiesce_fn(struct scsi_device *sdev, void *data)
2795{
2796 scsi_device_quiesce(sdev);
2797}
2798
2799void
2800scsi_target_quiesce(struct scsi_target *starget)
2801{
2802 starget_for_each_device(starget, NULL, device_quiesce_fn);
2803}
2804EXPORT_SYMBOL(scsi_target_quiesce);
2805
2806static void
2807device_resume_fn(struct scsi_device *sdev, void *data)
2808{
2809 scsi_device_resume(sdev);
2810}
2811
2812void
2813scsi_target_resume(struct scsi_target *starget)
2814{
2815 starget_for_each_device(starget, NULL, device_resume_fn);
2816}
2817EXPORT_SYMBOL(scsi_target_resume);
2818
2819static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2820{
2821 if (scsi_device_set_state(sdev, SDEV_BLOCK))
2822 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2823
2824 return 0;
2825}
2826
2827void scsi_start_queue(struct scsi_device *sdev)
2828{
2829 if (cmpxchg(&sdev->queue_stopped, 1, 0))
2830 blk_mq_unquiesce_queue(sdev->request_queue);
2831}
2832
2833static void scsi_stop_queue(struct scsi_device *sdev)
2834{
2835 /*
2836 * The atomic variable of ->queue_stopped covers that
2837 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2838 *
2839 * The caller needs to wait until quiesce is done.
2840 */
2841 if (!cmpxchg(&sdev->queue_stopped, 0, 1))
2842 blk_mq_quiesce_queue_nowait(sdev->request_queue);
2843}
2844
2845/**
2846 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2847 * @sdev: device to block
2848 *
2849 * Pause SCSI command processing on the specified device. Does not sleep.
2850 *
2851 * Returns zero if successful or a negative error code upon failure.
2852 *
2853 * Notes:
2854 * This routine transitions the device to the SDEV_BLOCK state (which must be
2855 * a legal transition). When the device is in this state, command processing
2856 * is paused until the device leaves the SDEV_BLOCK state. See also
2857 * scsi_internal_device_unblock_nowait().
2858 */
2859int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2860{
2861 int ret = __scsi_internal_device_block_nowait(sdev);
2862
2863 /*
2864 * The device has transitioned to SDEV_BLOCK. Stop the
2865 * block layer from calling the midlayer with this device's
2866 * request queue.
2867 */
2868 if (!ret)
2869 scsi_stop_queue(sdev);
2870 return ret;
2871}
2872EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2873
2874/**
2875 * scsi_device_block - try to transition to the SDEV_BLOCK state
2876 * @sdev: device to block
2877 * @data: dummy argument, ignored
2878 *
2879 * Pause SCSI command processing on the specified device. Callers must wait
2880 * until all ongoing scsi_queue_rq() calls have finished after this function
2881 * returns.
2882 *
2883 * Note:
2884 * This routine transitions the device to the SDEV_BLOCK state (which must be
2885 * a legal transition). When the device is in this state, command processing
2886 * is paused until the device leaves the SDEV_BLOCK state. See also
2887 * scsi_internal_device_unblock().
2888 */
2889static void scsi_device_block(struct scsi_device *sdev, void *data)
2890{
2891 int err;
2892 enum scsi_device_state state;
2893
2894 mutex_lock(&sdev->state_mutex);
2895 err = __scsi_internal_device_block_nowait(sdev);
2896 state = sdev->sdev_state;
2897 if (err == 0)
2898 /*
2899 * scsi_stop_queue() must be called with the state_mutex
2900 * held. Otherwise a simultaneous scsi_start_queue() call
2901 * might unquiesce the queue before we quiesce it.
2902 */
2903 scsi_stop_queue(sdev);
2904
2905 mutex_unlock(&sdev->state_mutex);
2906
2907 WARN_ONCE(err, "%s: failed to block %s in state %d\n",
2908 __func__, dev_name(&sdev->sdev_gendev), state);
2909}
2910
2911/**
2912 * scsi_internal_device_unblock_nowait - resume a device after a block request
2913 * @sdev: device to resume
2914 * @new_state: state to set the device to after unblocking
2915 *
2916 * Restart the device queue for a previously suspended SCSI device. Does not
2917 * sleep.
2918 *
2919 * Returns zero if successful or a negative error code upon failure.
2920 *
2921 * Notes:
2922 * This routine transitions the device to the SDEV_RUNNING state or to one of
2923 * the offline states (which must be a legal transition) allowing the midlayer
2924 * to goose the queue for this device.
2925 */
2926int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2927 enum scsi_device_state new_state)
2928{
2929 switch (new_state) {
2930 case SDEV_RUNNING:
2931 case SDEV_TRANSPORT_OFFLINE:
2932 break;
2933 default:
2934 return -EINVAL;
2935 }
2936
2937 /*
2938 * Try to transition the scsi device to SDEV_RUNNING or one of the
2939 * offlined states and goose the device queue if successful.
2940 */
2941 switch (sdev->sdev_state) {
2942 case SDEV_BLOCK:
2943 case SDEV_TRANSPORT_OFFLINE:
2944 sdev->sdev_state = new_state;
2945 break;
2946 case SDEV_CREATED_BLOCK:
2947 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2948 new_state == SDEV_OFFLINE)
2949 sdev->sdev_state = new_state;
2950 else
2951 sdev->sdev_state = SDEV_CREATED;
2952 break;
2953 case SDEV_CANCEL:
2954 case SDEV_OFFLINE:
2955 break;
2956 default:
2957 return -EINVAL;
2958 }
2959 scsi_start_queue(sdev);
2960
2961 return 0;
2962}
2963EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2964
2965/**
2966 * scsi_internal_device_unblock - resume a device after a block request
2967 * @sdev: device to resume
2968 * @new_state: state to set the device to after unblocking
2969 *
2970 * Restart the device queue for a previously suspended SCSI device. May sleep.
2971 *
2972 * Returns zero if successful or a negative error code upon failure.
2973 *
2974 * Notes:
2975 * This routine transitions the device to the SDEV_RUNNING state or to one of
2976 * the offline states (which must be a legal transition) allowing the midlayer
2977 * to goose the queue for this device.
2978 */
2979static int scsi_internal_device_unblock(struct scsi_device *sdev,
2980 enum scsi_device_state new_state)
2981{
2982 int ret;
2983
2984 mutex_lock(&sdev->state_mutex);
2985 ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2986 mutex_unlock(&sdev->state_mutex);
2987
2988 return ret;
2989}
2990
2991static int
2992target_block(struct device *dev, void *data)
2993{
2994 if (scsi_is_target_device(dev))
2995 starget_for_each_device(to_scsi_target(dev), NULL,
2996 scsi_device_block);
2997 return 0;
2998}
2999
3000/**
3001 * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state
3002 * @dev: a parent device of one or more scsi_target devices
3003 * @shost: the Scsi_Host to which this device belongs
3004 *
3005 * Iterate over all children of @dev, which should be scsi_target devices,
3006 * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for
3007 * ongoing scsi_queue_rq() calls to finish. May sleep.
3008 *
3009 * Note:
3010 * @dev must not itself be a scsi_target device.
3011 */
3012void
3013scsi_block_targets(struct Scsi_Host *shost, struct device *dev)
3014{
3015 WARN_ON_ONCE(scsi_is_target_device(dev));
3016 device_for_each_child(dev, NULL, target_block);
3017 blk_mq_wait_quiesce_done(&shost->tag_set);
3018}
3019EXPORT_SYMBOL_GPL(scsi_block_targets);
3020
3021static void
3022device_unblock(struct scsi_device *sdev, void *data)
3023{
3024 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3025}
3026
3027static int
3028target_unblock(struct device *dev, void *data)
3029{
3030 if (scsi_is_target_device(dev))
3031 starget_for_each_device(to_scsi_target(dev), data,
3032 device_unblock);
3033 return 0;
3034}
3035
3036void
3037scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3038{
3039 if (scsi_is_target_device(dev))
3040 starget_for_each_device(to_scsi_target(dev), &new_state,
3041 device_unblock);
3042 else
3043 device_for_each_child(dev, &new_state, target_unblock);
3044}
3045EXPORT_SYMBOL_GPL(scsi_target_unblock);
3046
3047/**
3048 * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state
3049 * @shost: device to block
3050 *
3051 * Pause SCSI command processing for all logical units associated with the SCSI
3052 * host and wait until pending scsi_queue_rq() calls have finished.
3053 *
3054 * Returns zero if successful or a negative error code upon failure.
3055 */
3056int
3057scsi_host_block(struct Scsi_Host *shost)
3058{
3059 struct scsi_device *sdev;
3060 int ret;
3061
3062 /*
3063 * Call scsi_internal_device_block_nowait so we can avoid
3064 * calling synchronize_rcu() for each LUN.
3065 */
3066 shost_for_each_device(sdev, shost) {
3067 mutex_lock(&sdev->state_mutex);
3068 ret = scsi_internal_device_block_nowait(sdev);
3069 mutex_unlock(&sdev->state_mutex);
3070 if (ret) {
3071 scsi_device_put(sdev);
3072 return ret;
3073 }
3074 }
3075
3076 /* Wait for ongoing scsi_queue_rq() calls to finish. */
3077 blk_mq_wait_quiesce_done(&shost->tag_set);
3078
3079 return 0;
3080}
3081EXPORT_SYMBOL_GPL(scsi_host_block);
3082
3083int
3084scsi_host_unblock(struct Scsi_Host *shost, int new_state)
3085{
3086 struct scsi_device *sdev;
3087 int ret = 0;
3088
3089 shost_for_each_device(sdev, shost) {
3090 ret = scsi_internal_device_unblock(sdev, new_state);
3091 if (ret) {
3092 scsi_device_put(sdev);
3093 break;
3094 }
3095 }
3096 return ret;
3097}
3098EXPORT_SYMBOL_GPL(scsi_host_unblock);
3099
3100/**
3101 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3102 * @sgl: scatter-gather list
3103 * @sg_count: number of segments in sg
3104 * @offset: offset in bytes into sg, on return offset into the mapped area
3105 * @len: bytes to map, on return number of bytes mapped
3106 *
3107 * Returns virtual address of the start of the mapped page
3108 */
3109void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3110 size_t *offset, size_t *len)
3111{
3112 int i;
3113 size_t sg_len = 0, len_complete = 0;
3114 struct scatterlist *sg;
3115 struct page *page;
3116
3117 WARN_ON(!irqs_disabled());
3118
3119 for_each_sg(sgl, sg, sg_count, i) {
3120 len_complete = sg_len; /* Complete sg-entries */
3121 sg_len += sg->length;
3122 if (sg_len > *offset)
3123 break;
3124 }
3125
3126 if (unlikely(i == sg_count)) {
3127 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3128 "elements %d\n",
3129 __func__, sg_len, *offset, sg_count);
3130 WARN_ON(1);
3131 return NULL;
3132 }
3133
3134 /* Offset starting from the beginning of first page in this sg-entry */
3135 *offset = *offset - len_complete + sg->offset;
3136
3137 /* Assumption: contiguous pages can be accessed as "page + i" */
3138 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3139 *offset &= ~PAGE_MASK;
3140
3141 /* Bytes in this sg-entry from *offset to the end of the page */
3142 sg_len = PAGE_SIZE - *offset;
3143 if (*len > sg_len)
3144 *len = sg_len;
3145
3146 return kmap_atomic(page);
3147}
3148EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3149
3150/**
3151 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3152 * @virt: virtual address to be unmapped
3153 */
3154void scsi_kunmap_atomic_sg(void *virt)
3155{
3156 kunmap_atomic(virt);
3157}
3158EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3159
3160void sdev_disable_disk_events(struct scsi_device *sdev)
3161{
3162 atomic_inc(&sdev->disk_events_disable_depth);
3163}
3164EXPORT_SYMBOL(sdev_disable_disk_events);
3165
3166void sdev_enable_disk_events(struct scsi_device *sdev)
3167{
3168 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3169 return;
3170 atomic_dec(&sdev->disk_events_disable_depth);
3171}
3172EXPORT_SYMBOL(sdev_enable_disk_events);
3173
3174static unsigned char designator_prio(const unsigned char *d)
3175{
3176 if (d[1] & 0x30)
3177 /* not associated with LUN */
3178 return 0;
3179
3180 if (d[3] == 0)
3181 /* invalid length */
3182 return 0;
3183
3184 /*
3185 * Order of preference for lun descriptor:
3186 * - SCSI name string
3187 * - NAA IEEE Registered Extended
3188 * - EUI-64 based 16-byte
3189 * - EUI-64 based 12-byte
3190 * - NAA IEEE Registered
3191 * - NAA IEEE Extended
3192 * - EUI-64 based 8-byte
3193 * - SCSI name string (truncated)
3194 * - T10 Vendor ID
3195 * as longer descriptors reduce the likelyhood
3196 * of identification clashes.
3197 */
3198
3199 switch (d[1] & 0xf) {
3200 case 8:
3201 /* SCSI name string, variable-length UTF-8 */
3202 return 9;
3203 case 3:
3204 switch (d[4] >> 4) {
3205 case 6:
3206 /* NAA registered extended */
3207 return 8;
3208 case 5:
3209 /* NAA registered */
3210 return 5;
3211 case 4:
3212 /* NAA extended */
3213 return 4;
3214 case 3:
3215 /* NAA locally assigned */
3216 return 1;
3217 default:
3218 break;
3219 }
3220 break;
3221 case 2:
3222 switch (d[3]) {
3223 case 16:
3224 /* EUI64-based, 16 byte */
3225 return 7;
3226 case 12:
3227 /* EUI64-based, 12 byte */
3228 return 6;
3229 case 8:
3230 /* EUI64-based, 8 byte */
3231 return 3;
3232 default:
3233 break;
3234 }
3235 break;
3236 case 1:
3237 /* T10 vendor ID */
3238 return 1;
3239 default:
3240 break;
3241 }
3242
3243 return 0;
3244}
3245
3246/**
3247 * scsi_vpd_lun_id - return a unique device identification
3248 * @sdev: SCSI device
3249 * @id: buffer for the identification
3250 * @id_len: length of the buffer
3251 *
3252 * Copies a unique device identification into @id based
3253 * on the information in the VPD page 0x83 of the device.
3254 * The string will be formatted as a SCSI name string.
3255 *
3256 * Returns the length of the identification or error on failure.
3257 * If the identifier is longer than the supplied buffer the actual
3258 * identifier length is returned and the buffer is not zero-padded.
3259 */
3260int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3261{
3262 u8 cur_id_prio = 0;
3263 u8 cur_id_size = 0;
3264 const unsigned char *d, *cur_id_str;
3265 const struct scsi_vpd *vpd_pg83;
3266 int id_size = -EINVAL;
3267
3268 rcu_read_lock();
3269 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3270 if (!vpd_pg83) {
3271 rcu_read_unlock();
3272 return -ENXIO;
3273 }
3274
3275 /* The id string must be at least 20 bytes + terminating NULL byte */
3276 if (id_len < 21) {
3277 rcu_read_unlock();
3278 return -EINVAL;
3279 }
3280
3281 memset(id, 0, id_len);
3282 for (d = vpd_pg83->data + 4;
3283 d < vpd_pg83->data + vpd_pg83->len;
3284 d += d[3] + 4) {
3285 u8 prio = designator_prio(d);
3286
3287 if (prio == 0 || cur_id_prio > prio)
3288 continue;
3289
3290 switch (d[1] & 0xf) {
3291 case 0x1:
3292 /* T10 Vendor ID */
3293 if (cur_id_size > d[3])
3294 break;
3295 cur_id_prio = prio;
3296 cur_id_size = d[3];
3297 if (cur_id_size + 4 > id_len)
3298 cur_id_size = id_len - 4;
3299 cur_id_str = d + 4;
3300 id_size = snprintf(id, id_len, "t10.%*pE",
3301 cur_id_size, cur_id_str);
3302 break;
3303 case 0x2:
3304 /* EUI-64 */
3305 cur_id_prio = prio;
3306 cur_id_size = d[3];
3307 cur_id_str = d + 4;
3308 switch (cur_id_size) {
3309 case 8:
3310 id_size = snprintf(id, id_len,
3311 "eui.%8phN",
3312 cur_id_str);
3313 break;
3314 case 12:
3315 id_size = snprintf(id, id_len,
3316 "eui.%12phN",
3317 cur_id_str);
3318 break;
3319 case 16:
3320 id_size = snprintf(id, id_len,
3321 "eui.%16phN",
3322 cur_id_str);
3323 break;
3324 default:
3325 break;
3326 }
3327 break;
3328 case 0x3:
3329 /* NAA */
3330 cur_id_prio = prio;
3331 cur_id_size = d[3];
3332 cur_id_str = d + 4;
3333 switch (cur_id_size) {
3334 case 8:
3335 id_size = snprintf(id, id_len,
3336 "naa.%8phN",
3337 cur_id_str);
3338 break;
3339 case 16:
3340 id_size = snprintf(id, id_len,
3341 "naa.%16phN",
3342 cur_id_str);
3343 break;
3344 default:
3345 break;
3346 }
3347 break;
3348 case 0x8:
3349 /* SCSI name string */
3350 if (cur_id_size > d[3])
3351 break;
3352 /* Prefer others for truncated descriptor */
3353 if (d[3] > id_len) {
3354 prio = 2;
3355 if (cur_id_prio > prio)
3356 break;
3357 }
3358 cur_id_prio = prio;
3359 cur_id_size = id_size = d[3];
3360 cur_id_str = d + 4;
3361 if (cur_id_size >= id_len)
3362 cur_id_size = id_len - 1;
3363 memcpy(id, cur_id_str, cur_id_size);
3364 break;
3365 default:
3366 break;
3367 }
3368 }
3369 rcu_read_unlock();
3370
3371 return id_size;
3372}
3373EXPORT_SYMBOL(scsi_vpd_lun_id);
3374
3375/*
3376 * scsi_vpd_tpg_id - return a target port group identifier
3377 * @sdev: SCSI device
3378 *
3379 * Returns the Target Port Group identifier from the information
3380 * froom VPD page 0x83 of the device.
3381 *
3382 * Returns the identifier or error on failure.
3383 */
3384int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3385{
3386 const unsigned char *d;
3387 const struct scsi_vpd *vpd_pg83;
3388 int group_id = -EAGAIN, rel_port = -1;
3389
3390 rcu_read_lock();
3391 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3392 if (!vpd_pg83) {
3393 rcu_read_unlock();
3394 return -ENXIO;
3395 }
3396
3397 d = vpd_pg83->data + 4;
3398 while (d < vpd_pg83->data + vpd_pg83->len) {
3399 switch (d[1] & 0xf) {
3400 case 0x4:
3401 /* Relative target port */
3402 rel_port = get_unaligned_be16(&d[6]);
3403 break;
3404 case 0x5:
3405 /* Target port group */
3406 group_id = get_unaligned_be16(&d[6]);
3407 break;
3408 default:
3409 break;
3410 }
3411 d += d[3] + 4;
3412 }
3413 rcu_read_unlock();
3414
3415 if (group_id >= 0 && rel_id && rel_port != -1)
3416 *rel_id = rel_port;
3417
3418 return group_id;
3419}
3420EXPORT_SYMBOL(scsi_vpd_tpg_id);
3421
3422/**
3423 * scsi_build_sense - build sense data for a command
3424 * @scmd: scsi command for which the sense should be formatted
3425 * @desc: Sense format (non-zero == descriptor format,
3426 * 0 == fixed format)
3427 * @key: Sense key
3428 * @asc: Additional sense code
3429 * @ascq: Additional sense code qualifier
3430 *
3431 **/
3432void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3433{
3434 scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3435 scmd->result = SAM_STAT_CHECK_CONDITION;
3436}
3437EXPORT_SYMBOL_GPL(scsi_build_sense);
3438
3439#ifdef CONFIG_SCSI_LIB_KUNIT_TEST
3440#include "scsi_lib_test.c"
3441#endif