Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * drivers/pwm/pwm-tegra.c
  4 *
  5 * Tegra pulse-width-modulation controller driver
  6 *
  7 * Copyright (c) 2010-2020, NVIDIA Corporation.
  8 * Based on arch/arm/plat-mxc/pwm.c by Sascha Hauer <s.hauer@pengutronix.de>
  9 *
 10 * Overview of Tegra Pulse Width Modulator Register:
 11 * 1. 13-bit: Frequency division (SCALE)
 12 * 2. 8-bit : Pulse division (DUTY)
 13 * 3. 1-bit : Enable bit
 14 *
 15 * The PWM clock frequency is divided by 256 before subdividing it based
 16 * on the programmable frequency division value to generate the required
 17 * frequency for PWM output. The maximum output frequency that can be
 18 * achieved is (max rate of source clock) / 256.
 19 * e.g. if source clock rate is 408 MHz, maximum output frequency can be:
 20 * 408 MHz/256 = 1.6 MHz.
 21 * This 1.6 MHz frequency can further be divided using SCALE value in PWM.
 22 *
 23 * PWM pulse width: 8 bits are usable [23:16] for varying pulse width.
 24 * To achieve 100% duty cycle, program Bit [24] of this register to
 25 * 1’b1. In which case the other bits [23:16] are set to don't care.
 26 *
 27 * Limitations:
 28 * -	When PWM is disabled, the output is driven to inactive.
 29 * -	It does not allow the current PWM period to complete and
 30 *	stops abruptly.
 31 *
 32 * -	If the register is reconfigured while PWM is running,
 33 *	it does not complete the currently running period.
 34 *
 35 * -	If the user input duty is beyond acceptible limits,
 36 *	-EINVAL is returned.
 37 */
 38
 39#include <linux/clk.h>
 40#include <linux/err.h>
 41#include <linux/io.h>
 42#include <linux/module.h>
 43#include <linux/of.h>
 44#include <linux/of_device.h>
 45#include <linux/pwm.h>
 46#include <linux/platform_device.h>
 47#include <linux/pinctrl/consumer.h>
 48#include <linux/slab.h>
 49#include <linux/reset.h>
 50
 51#define PWM_ENABLE	(1 << 31)
 52#define PWM_DUTY_WIDTH	8
 53#define PWM_DUTY_SHIFT	16
 54#define PWM_SCALE_WIDTH	13
 55#define PWM_SCALE_SHIFT	0
 56
 57struct tegra_pwm_soc {
 58	unsigned int num_channels;
 59
 60	/* Maximum IP frequency for given SoCs */
 61	unsigned long max_frequency;
 62};
 63
 64struct tegra_pwm_chip {
 65	struct pwm_chip chip;
 66	struct device *dev;
 67
 68	struct clk *clk;
 69	struct reset_control*rst;
 70
 71	unsigned long clk_rate;
 72	unsigned long min_period_ns;
 73
 74	void __iomem *regs;
 75
 76	const struct tegra_pwm_soc *soc;
 77};
 78
 79static inline struct tegra_pwm_chip *to_tegra_pwm_chip(struct pwm_chip *chip)
 80{
 81	return container_of(chip, struct tegra_pwm_chip, chip);
 82}
 83
 84static inline u32 pwm_readl(struct tegra_pwm_chip *chip, unsigned int num)
 85{
 86	return readl(chip->regs + (num << 4));
 87}
 88
 89static inline void pwm_writel(struct tegra_pwm_chip *chip, unsigned int num,
 90			     unsigned long val)
 91{
 92	writel(val, chip->regs + (num << 4));
 93}
 94
 95static int tegra_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
 96			    int duty_ns, int period_ns)
 97{
 98	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
 99	unsigned long long c = duty_ns, hz;
100	unsigned long rate, required_clk_rate;
101	u32 val = 0;
102	int err;
103
104	/*
105	 * Convert from duty_ns / period_ns to a fixed number of duty ticks
106	 * per (1 << PWM_DUTY_WIDTH) cycles and make sure to round to the
107	 * nearest integer during division.
108	 */
109	c *= (1 << PWM_DUTY_WIDTH);
110	c = DIV_ROUND_CLOSEST_ULL(c, period_ns);
111
112	val = (u32)c << PWM_DUTY_SHIFT;
113
114	/*
115	 *  min period = max clock limit >> PWM_DUTY_WIDTH
116	 */
117	if (period_ns < pc->min_period_ns)
118		return -EINVAL;
119
120	/*
121	 * Compute the prescaler value for which (1 << PWM_DUTY_WIDTH)
122	 * cycles at the PWM clock rate will take period_ns nanoseconds.
123	 *
124	 * num_channels: If single instance of PWM controller has multiple
125	 * channels (e.g. Tegra210 or older) then it is not possible to
126	 * configure separate clock rates to each of the channels, in such
127	 * case the value stored during probe will be referred.
128	 *
129	 * If every PWM controller instance has one channel respectively, i.e.
130	 * nums_channels == 1 then only the clock rate can be modified
131	 * dynamically (e.g. Tegra186 or Tegra194).
132	 */
133	if (pc->soc->num_channels == 1) {
134		/*
135		 * Rate is multiplied with 2^PWM_DUTY_WIDTH so that it matches
136		 * with the maximum possible rate that the controller can
137		 * provide. Any further lower value can be derived by setting
138		 * PFM bits[0:12].
139		 *
140		 * required_clk_rate is a reference rate for source clock and
141		 * it is derived based on user requested period. By setting the
142		 * source clock rate as required_clk_rate, PWM controller will
143		 * be able to configure the requested period.
144		 */
145		required_clk_rate =
146			(NSEC_PER_SEC / period_ns) << PWM_DUTY_WIDTH;
147
148		err = clk_set_rate(pc->clk, required_clk_rate);
149		if (err < 0)
150			return -EINVAL;
151
152		/* Store the new rate for further references */
153		pc->clk_rate = clk_get_rate(pc->clk);
154	}
155
156	rate = pc->clk_rate >> PWM_DUTY_WIDTH;
157
158	/* Consider precision in PWM_SCALE_WIDTH rate calculation */
159	hz = DIV_ROUND_CLOSEST_ULL(100ULL * NSEC_PER_SEC, period_ns);
160	rate = DIV_ROUND_CLOSEST_ULL(100ULL * rate, hz);
161
162	/*
163	 * Since the actual PWM divider is the register's frequency divider
164	 * field plus 1, we need to decrement to get the correct value to
165	 * write to the register.
166	 */
167	if (rate > 0)
168		rate--;
169
170	/*
171	 * Make sure that the rate will fit in the register's frequency
172	 * divider field.
173	 */
174	if (rate >> PWM_SCALE_WIDTH)
175		return -EINVAL;
176
177	val |= rate << PWM_SCALE_SHIFT;
178
179	/*
180	 * If the PWM channel is disabled, make sure to turn on the clock
181	 * before writing the register. Otherwise, keep it enabled.
182	 */
183	if (!pwm_is_enabled(pwm)) {
184		err = clk_prepare_enable(pc->clk);
185		if (err < 0)
186			return err;
187	} else
188		val |= PWM_ENABLE;
189
190	pwm_writel(pc, pwm->hwpwm, val);
191
192	/*
193	 * If the PWM is not enabled, turn the clock off again to save power.
194	 */
195	if (!pwm_is_enabled(pwm))
196		clk_disable_unprepare(pc->clk);
197
198	return 0;
199}
200
201static int tegra_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
202{
203	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
204	int rc = 0;
205	u32 val;
206
207	rc = clk_prepare_enable(pc->clk);
208	if (rc < 0)
209		return rc;
210
211	val = pwm_readl(pc, pwm->hwpwm);
212	val |= PWM_ENABLE;
213	pwm_writel(pc, pwm->hwpwm, val);
214
215	return 0;
216}
217
218static void tegra_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
219{
220	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
221	u32 val;
222
223	val = pwm_readl(pc, pwm->hwpwm);
224	val &= ~PWM_ENABLE;
225	pwm_writel(pc, pwm->hwpwm, val);
226
227	clk_disable_unprepare(pc->clk);
228}
229
230static const struct pwm_ops tegra_pwm_ops = {
231	.config = tegra_pwm_config,
232	.enable = tegra_pwm_enable,
233	.disable = tegra_pwm_disable,
234	.owner = THIS_MODULE,
235};
236
237static int tegra_pwm_probe(struct platform_device *pdev)
238{
239	struct tegra_pwm_chip *pwm;
240	struct resource *r;
241	int ret;
242
243	pwm = devm_kzalloc(&pdev->dev, sizeof(*pwm), GFP_KERNEL);
244	if (!pwm)
245		return -ENOMEM;
246
247	pwm->soc = of_device_get_match_data(&pdev->dev);
248	pwm->dev = &pdev->dev;
249
250	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
251	pwm->regs = devm_ioremap_resource(&pdev->dev, r);
252	if (IS_ERR(pwm->regs))
253		return PTR_ERR(pwm->regs);
254
255	platform_set_drvdata(pdev, pwm);
256
257	pwm->clk = devm_clk_get(&pdev->dev, NULL);
258	if (IS_ERR(pwm->clk))
259		return PTR_ERR(pwm->clk);
260
261	/* Set maximum frequency of the IP */
262	ret = clk_set_rate(pwm->clk, pwm->soc->max_frequency);
263	if (ret < 0) {
264		dev_err(&pdev->dev, "Failed to set max frequency: %d\n", ret);
265		return ret;
266	}
267
268	/*
269	 * The requested and configured frequency may differ due to
270	 * clock register resolutions. Get the configured frequency
271	 * so that PWM period can be calculated more accurately.
272	 */
273	pwm->clk_rate = clk_get_rate(pwm->clk);
274
275	/* Set minimum limit of PWM period for the IP */
276	pwm->min_period_ns =
277	    (NSEC_PER_SEC / (pwm->soc->max_frequency >> PWM_DUTY_WIDTH)) + 1;
278
279	pwm->rst = devm_reset_control_get_exclusive(&pdev->dev, "pwm");
280	if (IS_ERR(pwm->rst)) {
281		ret = PTR_ERR(pwm->rst);
282		dev_err(&pdev->dev, "Reset control is not found: %d\n", ret);
283		return ret;
284	}
285
286	reset_control_deassert(pwm->rst);
287
288	pwm->chip.dev = &pdev->dev;
289	pwm->chip.ops = &tegra_pwm_ops;
290	pwm->chip.base = -1;
291	pwm->chip.npwm = pwm->soc->num_channels;
292
293	ret = pwmchip_add(&pwm->chip);
294	if (ret < 0) {
295		dev_err(&pdev->dev, "pwmchip_add() failed: %d\n", ret);
296		reset_control_assert(pwm->rst);
297		return ret;
298	}
299
300	return 0;
301}
302
303static int tegra_pwm_remove(struct platform_device *pdev)
304{
305	struct tegra_pwm_chip *pc = platform_get_drvdata(pdev);
306	unsigned int i;
307	int err;
308
309	if (WARN_ON(!pc))
310		return -ENODEV;
311
312	err = clk_prepare_enable(pc->clk);
313	if (err < 0)
314		return err;
315
316	for (i = 0; i < pc->chip.npwm; i++) {
317		struct pwm_device *pwm = &pc->chip.pwms[i];
318
319		if (!pwm_is_enabled(pwm))
320			if (clk_prepare_enable(pc->clk) < 0)
321				continue;
322
323		pwm_writel(pc, i, 0);
324
325		clk_disable_unprepare(pc->clk);
326	}
327
328	reset_control_assert(pc->rst);
329	clk_disable_unprepare(pc->clk);
330
331	return pwmchip_remove(&pc->chip);
332}
333
334#ifdef CONFIG_PM_SLEEP
335static int tegra_pwm_suspend(struct device *dev)
336{
337	return pinctrl_pm_select_sleep_state(dev);
338}
339
340static int tegra_pwm_resume(struct device *dev)
341{
342	return pinctrl_pm_select_default_state(dev);
343}
344#endif
345
346static const struct tegra_pwm_soc tegra20_pwm_soc = {
347	.num_channels = 4,
348	.max_frequency = 48000000UL,
349};
350
351static const struct tegra_pwm_soc tegra186_pwm_soc = {
352	.num_channels = 1,
353	.max_frequency = 102000000UL,
354};
355
356static const struct tegra_pwm_soc tegra194_pwm_soc = {
357	.num_channels = 1,
358	.max_frequency = 408000000UL,
359};
360
361static const struct of_device_id tegra_pwm_of_match[] = {
362	{ .compatible = "nvidia,tegra20-pwm", .data = &tegra20_pwm_soc },
363	{ .compatible = "nvidia,tegra186-pwm", .data = &tegra186_pwm_soc },
364	{ .compatible = "nvidia,tegra194-pwm", .data = &tegra194_pwm_soc },
365	{ }
366};
367MODULE_DEVICE_TABLE(of, tegra_pwm_of_match);
368
369static const struct dev_pm_ops tegra_pwm_pm_ops = {
370	SET_SYSTEM_SLEEP_PM_OPS(tegra_pwm_suspend, tegra_pwm_resume)
371};
372
373static struct platform_driver tegra_pwm_driver = {
374	.driver = {
375		.name = "tegra-pwm",
376		.of_match_table = tegra_pwm_of_match,
377		.pm = &tegra_pwm_pm_ops,
378	},
379	.probe = tegra_pwm_probe,
380	.remove = tegra_pwm_remove,
381};
382
383module_platform_driver(tegra_pwm_driver);
384
385MODULE_LICENSE("GPL");
386MODULE_AUTHOR("Sandipan Patra <spatra@nvidia.com>");
387MODULE_DESCRIPTION("Tegra PWM controller driver");
388MODULE_ALIAS("platform:tegra-pwm");
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * drivers/pwm/pwm-tegra.c
  4 *
  5 * Tegra pulse-width-modulation controller driver
  6 *
  7 * Copyright (c) 2010, NVIDIA Corporation.
  8 * Based on arch/arm/plat-mxc/pwm.c by Sascha Hauer <s.hauer@pengutronix.de>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  9 */
 10
 11#include <linux/clk.h>
 12#include <linux/err.h>
 13#include <linux/io.h>
 14#include <linux/module.h>
 15#include <linux/of.h>
 16#include <linux/of_device.h>
 17#include <linux/pwm.h>
 18#include <linux/platform_device.h>
 19#include <linux/pinctrl/consumer.h>
 20#include <linux/slab.h>
 21#include <linux/reset.h>
 22
 23#define PWM_ENABLE	(1 << 31)
 24#define PWM_DUTY_WIDTH	8
 25#define PWM_DUTY_SHIFT	16
 26#define PWM_SCALE_WIDTH	13
 27#define PWM_SCALE_SHIFT	0
 28
 29struct tegra_pwm_soc {
 30	unsigned int num_channels;
 31
 32	/* Maximum IP frequency for given SoCs */
 33	unsigned long max_frequency;
 34};
 35
 36struct tegra_pwm_chip {
 37	struct pwm_chip chip;
 38	struct device *dev;
 39
 40	struct clk *clk;
 41	struct reset_control*rst;
 42
 43	unsigned long clk_rate;
 
 44
 45	void __iomem *regs;
 46
 47	const struct tegra_pwm_soc *soc;
 48};
 49
 50static inline struct tegra_pwm_chip *to_tegra_pwm_chip(struct pwm_chip *chip)
 51{
 52	return container_of(chip, struct tegra_pwm_chip, chip);
 53}
 54
 55static inline u32 pwm_readl(struct tegra_pwm_chip *chip, unsigned int num)
 56{
 57	return readl(chip->regs + (num << 4));
 58}
 59
 60static inline void pwm_writel(struct tegra_pwm_chip *chip, unsigned int num,
 61			     unsigned long val)
 62{
 63	writel(val, chip->regs + (num << 4));
 64}
 65
 66static int tegra_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
 67			    int duty_ns, int period_ns)
 68{
 69	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
 70	unsigned long long c = duty_ns, hz;
 71	unsigned long rate;
 72	u32 val = 0;
 73	int err;
 74
 75	/*
 76	 * Convert from duty_ns / period_ns to a fixed number of duty ticks
 77	 * per (1 << PWM_DUTY_WIDTH) cycles and make sure to round to the
 78	 * nearest integer during division.
 79	 */
 80	c *= (1 << PWM_DUTY_WIDTH);
 81	c = DIV_ROUND_CLOSEST_ULL(c, period_ns);
 82
 83	val = (u32)c << PWM_DUTY_SHIFT;
 84
 85	/*
 
 
 
 
 
 
 86	 * Compute the prescaler value for which (1 << PWM_DUTY_WIDTH)
 87	 * cycles at the PWM clock rate will take period_ns nanoseconds.
 
 
 
 
 
 
 
 
 
 88	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 89	rate = pc->clk_rate >> PWM_DUTY_WIDTH;
 90
 91	/* Consider precision in PWM_SCALE_WIDTH rate calculation */
 92	hz = DIV_ROUND_CLOSEST_ULL(100ULL * NSEC_PER_SEC, period_ns);
 93	rate = DIV_ROUND_CLOSEST_ULL(100ULL * rate, hz);
 94
 95	/*
 96	 * Since the actual PWM divider is the register's frequency divider
 97	 * field minus 1, we need to decrement to get the correct value to
 98	 * write to the register.
 99	 */
100	if (rate > 0)
101		rate--;
102
103	/*
104	 * Make sure that the rate will fit in the register's frequency
105	 * divider field.
106	 */
107	if (rate >> PWM_SCALE_WIDTH)
108		return -EINVAL;
109
110	val |= rate << PWM_SCALE_SHIFT;
111
112	/*
113	 * If the PWM channel is disabled, make sure to turn on the clock
114	 * before writing the register. Otherwise, keep it enabled.
115	 */
116	if (!pwm_is_enabled(pwm)) {
117		err = clk_prepare_enable(pc->clk);
118		if (err < 0)
119			return err;
120	} else
121		val |= PWM_ENABLE;
122
123	pwm_writel(pc, pwm->hwpwm, val);
124
125	/*
126	 * If the PWM is not enabled, turn the clock off again to save power.
127	 */
128	if (!pwm_is_enabled(pwm))
129		clk_disable_unprepare(pc->clk);
130
131	return 0;
132}
133
134static int tegra_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
135{
136	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
137	int rc = 0;
138	u32 val;
139
140	rc = clk_prepare_enable(pc->clk);
141	if (rc < 0)
142		return rc;
143
144	val = pwm_readl(pc, pwm->hwpwm);
145	val |= PWM_ENABLE;
146	pwm_writel(pc, pwm->hwpwm, val);
147
148	return 0;
149}
150
151static void tegra_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
152{
153	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
154	u32 val;
155
156	val = pwm_readl(pc, pwm->hwpwm);
157	val &= ~PWM_ENABLE;
158	pwm_writel(pc, pwm->hwpwm, val);
159
160	clk_disable_unprepare(pc->clk);
161}
162
163static const struct pwm_ops tegra_pwm_ops = {
164	.config = tegra_pwm_config,
165	.enable = tegra_pwm_enable,
166	.disable = tegra_pwm_disable,
167	.owner = THIS_MODULE,
168};
169
170static int tegra_pwm_probe(struct platform_device *pdev)
171{
172	struct tegra_pwm_chip *pwm;
173	struct resource *r;
174	int ret;
175
176	pwm = devm_kzalloc(&pdev->dev, sizeof(*pwm), GFP_KERNEL);
177	if (!pwm)
178		return -ENOMEM;
179
180	pwm->soc = of_device_get_match_data(&pdev->dev);
181	pwm->dev = &pdev->dev;
182
183	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
184	pwm->regs = devm_ioremap_resource(&pdev->dev, r);
185	if (IS_ERR(pwm->regs))
186		return PTR_ERR(pwm->regs);
187
188	platform_set_drvdata(pdev, pwm);
189
190	pwm->clk = devm_clk_get(&pdev->dev, NULL);
191	if (IS_ERR(pwm->clk))
192		return PTR_ERR(pwm->clk);
193
194	/* Set maximum frequency of the IP */
195	ret = clk_set_rate(pwm->clk, pwm->soc->max_frequency);
196	if (ret < 0) {
197		dev_err(&pdev->dev, "Failed to set max frequency: %d\n", ret);
198		return ret;
199	}
200
201	/*
202	 * The requested and configured frequency may differ due to
203	 * clock register resolutions. Get the configured frequency
204	 * so that PWM period can be calculated more accurately.
205	 */
206	pwm->clk_rate = clk_get_rate(pwm->clk);
207
 
 
 
 
208	pwm->rst = devm_reset_control_get_exclusive(&pdev->dev, "pwm");
209	if (IS_ERR(pwm->rst)) {
210		ret = PTR_ERR(pwm->rst);
211		dev_err(&pdev->dev, "Reset control is not found: %d\n", ret);
212		return ret;
213	}
214
215	reset_control_deassert(pwm->rst);
216
217	pwm->chip.dev = &pdev->dev;
218	pwm->chip.ops = &tegra_pwm_ops;
219	pwm->chip.base = -1;
220	pwm->chip.npwm = pwm->soc->num_channels;
221
222	ret = pwmchip_add(&pwm->chip);
223	if (ret < 0) {
224		dev_err(&pdev->dev, "pwmchip_add() failed: %d\n", ret);
225		reset_control_assert(pwm->rst);
226		return ret;
227	}
228
229	return 0;
230}
231
232static int tegra_pwm_remove(struct platform_device *pdev)
233{
234	struct tegra_pwm_chip *pc = platform_get_drvdata(pdev);
235	unsigned int i;
236	int err;
237
238	if (WARN_ON(!pc))
239		return -ENODEV;
240
241	err = clk_prepare_enable(pc->clk);
242	if (err < 0)
243		return err;
244
245	for (i = 0; i < pc->chip.npwm; i++) {
246		struct pwm_device *pwm = &pc->chip.pwms[i];
247
248		if (!pwm_is_enabled(pwm))
249			if (clk_prepare_enable(pc->clk) < 0)
250				continue;
251
252		pwm_writel(pc, i, 0);
253
254		clk_disable_unprepare(pc->clk);
255	}
256
257	reset_control_assert(pc->rst);
258	clk_disable_unprepare(pc->clk);
259
260	return pwmchip_remove(&pc->chip);
261}
262
263#ifdef CONFIG_PM_SLEEP
264static int tegra_pwm_suspend(struct device *dev)
265{
266	return pinctrl_pm_select_sleep_state(dev);
267}
268
269static int tegra_pwm_resume(struct device *dev)
270{
271	return pinctrl_pm_select_default_state(dev);
272}
273#endif
274
275static const struct tegra_pwm_soc tegra20_pwm_soc = {
276	.num_channels = 4,
277	.max_frequency = 48000000UL,
278};
279
280static const struct tegra_pwm_soc tegra186_pwm_soc = {
281	.num_channels = 1,
282	.max_frequency = 102000000UL,
283};
284
 
 
 
 
 
285static const struct of_device_id tegra_pwm_of_match[] = {
286	{ .compatible = "nvidia,tegra20-pwm", .data = &tegra20_pwm_soc },
287	{ .compatible = "nvidia,tegra186-pwm", .data = &tegra186_pwm_soc },
 
288	{ }
289};
290MODULE_DEVICE_TABLE(of, tegra_pwm_of_match);
291
292static const struct dev_pm_ops tegra_pwm_pm_ops = {
293	SET_SYSTEM_SLEEP_PM_OPS(tegra_pwm_suspend, tegra_pwm_resume)
294};
295
296static struct platform_driver tegra_pwm_driver = {
297	.driver = {
298		.name = "tegra-pwm",
299		.of_match_table = tegra_pwm_of_match,
300		.pm = &tegra_pwm_pm_ops,
301	},
302	.probe = tegra_pwm_probe,
303	.remove = tegra_pwm_remove,
304};
305
306module_platform_driver(tegra_pwm_driver);
307
308MODULE_LICENSE("GPL");
309MODULE_AUTHOR("NVIDIA Corporation");
 
310MODULE_ALIAS("platform:tegra-pwm");