Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Common EFI memory map functions.
  4 */
  5
  6#define pr_fmt(fmt) "efi: " fmt
  7
  8#include <linux/init.h>
  9#include <linux/kernel.h>
 10#include <linux/efi.h>
 11#include <linux/io.h>
 12#include <asm/early_ioremap.h>
 13#include <linux/memblock.h>
 14#include <linux/slab.h>
 15
 16static phys_addr_t __init __efi_memmap_alloc_early(unsigned long size)
 17{
 18	return memblock_phys_alloc(size, SMP_CACHE_BYTES);
 19}
 20
 21static phys_addr_t __init __efi_memmap_alloc_late(unsigned long size)
 22{
 23	unsigned int order = get_order(size);
 24	struct page *p = alloc_pages(GFP_KERNEL, order);
 25
 26	if (!p)
 27		return 0;
 28
 29	return PFN_PHYS(page_to_pfn(p));
 30}
 31
 32void __init __efi_memmap_free(u64 phys, unsigned long size, unsigned long flags)
 33{
 34	if (flags & EFI_MEMMAP_MEMBLOCK) {
 35		if (slab_is_available())
 36			memblock_free_late(phys, size);
 37		else
 38			memblock_free(phys, size);
 39	} else if (flags & EFI_MEMMAP_SLAB) {
 40		struct page *p = pfn_to_page(PHYS_PFN(phys));
 41		unsigned int order = get_order(size);
 42
 43		free_pages((unsigned long) page_address(p), order);
 44	}
 45}
 46
 47static void __init efi_memmap_free(void)
 48{
 49	__efi_memmap_free(efi.memmap.phys_map,
 50			efi.memmap.desc_size * efi.memmap.nr_map,
 51			efi.memmap.flags);
 52}
 53
 54/**
 55 * efi_memmap_alloc - Allocate memory for the EFI memory map
 56 * @num_entries: Number of entries in the allocated map.
 57 * @data: efi memmap installation parameters
 58 *
 59 * Depending on whether mm_init() has already been invoked or not,
 60 * either memblock or "normal" page allocation is used.
 61 *
 62 * Returns the physical address of the allocated memory map on
 63 * success, zero on failure.
 64 */
 65int __init efi_memmap_alloc(unsigned int num_entries,
 66		struct efi_memory_map_data *data)
 67{
 68	/* Expect allocation parameters are zero initialized */
 69	WARN_ON(data->phys_map || data->size);
 70
 71	data->size = num_entries * efi.memmap.desc_size;
 72	data->desc_version = efi.memmap.desc_version;
 73	data->desc_size = efi.memmap.desc_size;
 74	data->flags &= ~(EFI_MEMMAP_SLAB | EFI_MEMMAP_MEMBLOCK);
 75	data->flags |= efi.memmap.flags & EFI_MEMMAP_LATE;
 76
 77	if (slab_is_available()) {
 78		data->flags |= EFI_MEMMAP_SLAB;
 79		data->phys_map = __efi_memmap_alloc_late(data->size);
 80	} else {
 81		data->flags |= EFI_MEMMAP_MEMBLOCK;
 82		data->phys_map = __efi_memmap_alloc_early(data->size);
 83	}
 84
 85	if (!data->phys_map)
 86		return -ENOMEM;
 87	return 0;
 88}
 89
 90/**
 91 * __efi_memmap_init - Common code for mapping the EFI memory map
 92 * @data: EFI memory map data
 
 93 *
 94 * This function takes care of figuring out which function to use to
 95 * map the EFI memory map in efi.memmap based on how far into the boot
 96 * we are.
 97 *
 98 * During bootup EFI_MEMMAP_LATE in data->flags should be clear since we
 99 * only have access to the early_memremap*() functions as the vmalloc
100 * space isn't setup.  Once the kernel is fully booted we can fallback
101 * to the more robust memremap*() API.
102 *
103 * Returns zero on success, a negative error code on failure.
104 */
105static int __init __efi_memmap_init(struct efi_memory_map_data *data)
 
106{
107	struct efi_memory_map map;
108	phys_addr_t phys_map;
109
110	if (efi_enabled(EFI_PARAVIRT))
111		return 0;
112
113	phys_map = data->phys_map;
114
115	if (data->flags & EFI_MEMMAP_LATE)
116		map.map = memremap(phys_map, data->size, MEMREMAP_WB);
117	else
118		map.map = early_memremap(phys_map, data->size);
119
120	if (!map.map) {
121		pr_err("Could not map the memory map!\n");
122		return -ENOMEM;
123	}
124
125	/* NOP if data->flags & (EFI_MEMMAP_MEMBLOCK | EFI_MEMMAP_SLAB) == 0 */
126	efi_memmap_free();
127
128	map.phys_map = data->phys_map;
129	map.nr_map = data->size / data->desc_size;
130	map.map_end = map.map + data->size;
131
132	map.desc_version = data->desc_version;
133	map.desc_size = data->desc_size;
134	map.flags = data->flags;
135
136	set_bit(EFI_MEMMAP, &efi.flags);
137
138	efi.memmap = map;
139
140	return 0;
141}
142
143/**
144 * efi_memmap_init_early - Map the EFI memory map data structure
145 * @data: EFI memory map data
146 *
147 * Use early_memremap() to map the passed in EFI memory map and assign
148 * it to efi.memmap.
149 */
150int __init efi_memmap_init_early(struct efi_memory_map_data *data)
151{
152	/* Cannot go backwards */
153	WARN_ON(efi.memmap.flags & EFI_MEMMAP_LATE);
154
155	data->flags = 0;
156	return __efi_memmap_init(data);
157}
158
159void __init efi_memmap_unmap(void)
160{
161	if (!efi_enabled(EFI_MEMMAP))
162		return;
163
164	if (!(efi.memmap.flags & EFI_MEMMAP_LATE)) {
165		unsigned long size;
166
167		size = efi.memmap.desc_size * efi.memmap.nr_map;
168		early_memunmap(efi.memmap.map, size);
169	} else {
170		memunmap(efi.memmap.map);
171	}
172
173	efi.memmap.map = NULL;
174	clear_bit(EFI_MEMMAP, &efi.flags);
175}
176
177/**
178 * efi_memmap_init_late - Map efi.memmap with memremap()
179 * @phys_addr: Physical address of the new EFI memory map
180 * @size: Size in bytes of the new EFI memory map
181 *
182 * Setup a mapping of the EFI memory map using ioremap_cache(). This
183 * function should only be called once the vmalloc space has been
184 * setup and is therefore not suitable for calling during early EFI
185 * initialise, e.g. in efi_init(). Additionally, it expects
186 * efi_memmap_init_early() to have already been called.
187 *
188 * The reason there are two EFI memmap initialisation
189 * (efi_memmap_init_early() and this late version) is because the
190 * early EFI memmap should be explicitly unmapped once EFI
191 * initialisation is complete as the fixmap space used to map the EFI
192 * memmap (via early_memremap()) is a scarce resource.
193 *
194 * This late mapping is intended to persist for the duration of
195 * runtime so that things like efi_mem_desc_lookup() and
196 * efi_mem_attributes() always work.
197 *
198 * Returns zero on success, a negative error code on failure.
199 */
200int __init efi_memmap_init_late(phys_addr_t addr, unsigned long size)
201{
202	struct efi_memory_map_data data = {
203		.phys_map = addr,
204		.size = size,
205		.flags = EFI_MEMMAP_LATE,
206	};
207
208	/* Did we forget to unmap the early EFI memmap? */
209	WARN_ON(efi.memmap.map);
210
211	/* Were we already called? */
212	WARN_ON(efi.memmap.flags & EFI_MEMMAP_LATE);
213
214	/*
215	 * It makes no sense to allow callers to register different
216	 * values for the following fields. Copy them out of the
217	 * existing early EFI memmap.
218	 */
219	data.desc_version = efi.memmap.desc_version;
220	data.desc_size = efi.memmap.desc_size;
221
222	return __efi_memmap_init(&data);
223}
224
225/**
226 * efi_memmap_install - Install a new EFI memory map in efi.memmap
227 * @ctx: map allocation parameters (address, size, flags)
 
228 *
229 * Unlike efi_memmap_init_*(), this function does not allow the caller
230 * to switch from early to late mappings. It simply uses the existing
231 * mapping function and installs the new memmap.
232 *
233 * Returns zero on success, a negative error code on failure.
234 */
235int __init efi_memmap_install(struct efi_memory_map_data *data)
236{
 
 
237	efi_memmap_unmap();
238
239	return __efi_memmap_init(data);
 
 
 
 
 
240}
241
242/**
243 * efi_memmap_split_count - Count number of additional EFI memmap entries
244 * @md: EFI memory descriptor to split
245 * @range: Address range (start, end) to split around
246 *
247 * Returns the number of additional EFI memmap entries required to
248 * accomodate @range.
249 */
250int __init efi_memmap_split_count(efi_memory_desc_t *md, struct range *range)
251{
252	u64 m_start, m_end;
253	u64 start, end;
254	int count = 0;
255
256	start = md->phys_addr;
257	end = start + (md->num_pages << EFI_PAGE_SHIFT) - 1;
258
259	/* modifying range */
260	m_start = range->start;
261	m_end = range->end;
262
263	if (m_start <= start) {
264		/* split into 2 parts */
265		if (start < m_end && m_end < end)
266			count++;
267	}
268
269	if (start < m_start && m_start < end) {
270		/* split into 3 parts */
271		if (m_end < end)
272			count += 2;
273		/* split into 2 parts */
274		if (end <= m_end)
275			count++;
276	}
277
278	return count;
279}
280
281/**
282 * efi_memmap_insert - Insert a memory region in an EFI memmap
283 * @old_memmap: The existing EFI memory map structure
284 * @buf: Address of buffer to store new map
285 * @mem: Memory map entry to insert
286 *
287 * It is suggested that you call efi_memmap_split_count() first
288 * to see how large @buf needs to be.
289 */
290void __init efi_memmap_insert(struct efi_memory_map *old_memmap, void *buf,
291			      struct efi_mem_range *mem)
292{
293	u64 m_start, m_end, m_attr;
294	efi_memory_desc_t *md;
295	u64 start, end;
296	void *old, *new;
297
298	/* modifying range */
299	m_start = mem->range.start;
300	m_end = mem->range.end;
301	m_attr = mem->attribute;
302
303	/*
304	 * The EFI memory map deals with regions in EFI_PAGE_SIZE
305	 * units. Ensure that the region described by 'mem' is aligned
306	 * correctly.
307	 */
308	if (!IS_ALIGNED(m_start, EFI_PAGE_SIZE) ||
309	    !IS_ALIGNED(m_end + 1, EFI_PAGE_SIZE)) {
310		WARN_ON(1);
311		return;
312	}
313
314	for (old = old_memmap->map, new = buf;
315	     old < old_memmap->map_end;
316	     old += old_memmap->desc_size, new += old_memmap->desc_size) {
317
318		/* copy original EFI memory descriptor */
319		memcpy(new, old, old_memmap->desc_size);
320		md = new;
321		start = md->phys_addr;
322		end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1;
323
324		if (m_start <= start && end <= m_end)
325			md->attribute |= m_attr;
326
327		if (m_start <= start &&
328		    (start < m_end && m_end < end)) {
329			/* first part */
330			md->attribute |= m_attr;
331			md->num_pages = (m_end - md->phys_addr + 1) >>
332				EFI_PAGE_SHIFT;
333			/* latter part */
334			new += old_memmap->desc_size;
335			memcpy(new, old, old_memmap->desc_size);
336			md = new;
337			md->phys_addr = m_end + 1;
338			md->num_pages = (end - md->phys_addr + 1) >>
339				EFI_PAGE_SHIFT;
340		}
341
342		if ((start < m_start && m_start < end) && m_end < end) {
343			/* first part */
344			md->num_pages = (m_start - md->phys_addr) >>
345				EFI_PAGE_SHIFT;
346			/* middle part */
347			new += old_memmap->desc_size;
348			memcpy(new, old, old_memmap->desc_size);
349			md = new;
350			md->attribute |= m_attr;
351			md->phys_addr = m_start;
352			md->num_pages = (m_end - m_start + 1) >>
353				EFI_PAGE_SHIFT;
354			/* last part */
355			new += old_memmap->desc_size;
356			memcpy(new, old, old_memmap->desc_size);
357			md = new;
358			md->phys_addr = m_end + 1;
359			md->num_pages = (end - m_end) >>
360				EFI_PAGE_SHIFT;
361		}
362
363		if ((start < m_start && m_start < end) &&
364		    (end <= m_end)) {
365			/* first part */
366			md->num_pages = (m_start - md->phys_addr) >>
367				EFI_PAGE_SHIFT;
368			/* latter part */
369			new += old_memmap->desc_size;
370			memcpy(new, old, old_memmap->desc_size);
371			md = new;
372			md->phys_addr = m_start;
373			md->num_pages = (end - md->phys_addr + 1) >>
374				EFI_PAGE_SHIFT;
375			md->attribute |= m_attr;
376		}
377	}
378}
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Common EFI memory map functions.
  4 */
  5
  6#define pr_fmt(fmt) "efi: " fmt
  7
  8#include <linux/init.h>
  9#include <linux/kernel.h>
 10#include <linux/efi.h>
 11#include <linux/io.h>
 12#include <asm/early_ioremap.h>
 13#include <linux/memblock.h>
 14#include <linux/slab.h>
 15
 16static phys_addr_t __init __efi_memmap_alloc_early(unsigned long size)
 17{
 18	return memblock_phys_alloc(size, SMP_CACHE_BYTES);
 19}
 20
 21static phys_addr_t __init __efi_memmap_alloc_late(unsigned long size)
 22{
 23	unsigned int order = get_order(size);
 24	struct page *p = alloc_pages(GFP_KERNEL, order);
 25
 26	if (!p)
 27		return 0;
 28
 29	return PFN_PHYS(page_to_pfn(p));
 30}
 31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 32/**
 33 * efi_memmap_alloc - Allocate memory for the EFI memory map
 34 * @num_entries: Number of entries in the allocated map.
 
 35 *
 36 * Depending on whether mm_init() has already been invoked or not,
 37 * either memblock or "normal" page allocation is used.
 38 *
 39 * Returns the physical address of the allocated memory map on
 40 * success, zero on failure.
 41 */
 42phys_addr_t __init efi_memmap_alloc(unsigned int num_entries)
 
 43{
 44	unsigned long size = num_entries * efi.memmap.desc_size;
 
 45
 46	if (slab_is_available())
 47		return __efi_memmap_alloc_late(size);
 
 
 
 
 
 
 
 
 
 
 
 48
 49	return __efi_memmap_alloc_early(size);
 
 
 50}
 51
 52/**
 53 * __efi_memmap_init - Common code for mapping the EFI memory map
 54 * @data: EFI memory map data
 55 * @late: Use early or late mapping function?
 56 *
 57 * This function takes care of figuring out which function to use to
 58 * map the EFI memory map in efi.memmap based on how far into the boot
 59 * we are.
 60 *
 61 * During bootup @late should be %false since we only have access to
 62 * the early_memremap*() functions as the vmalloc space isn't setup.
 63 * Once the kernel is fully booted we can fallback to the more robust
 64 * memremap*() API.
 65 *
 66 * Returns zero on success, a negative error code on failure.
 67 */
 68static int __init
 69__efi_memmap_init(struct efi_memory_map_data *data, bool late)
 70{
 71	struct efi_memory_map map;
 72	phys_addr_t phys_map;
 73
 74	if (efi_enabled(EFI_PARAVIRT))
 75		return 0;
 76
 77	phys_map = data->phys_map;
 78
 79	if (late)
 80		map.map = memremap(phys_map, data->size, MEMREMAP_WB);
 81	else
 82		map.map = early_memremap(phys_map, data->size);
 83
 84	if (!map.map) {
 85		pr_err("Could not map the memory map!\n");
 86		return -ENOMEM;
 87	}
 88
 
 
 
 89	map.phys_map = data->phys_map;
 90	map.nr_map = data->size / data->desc_size;
 91	map.map_end = map.map + data->size;
 92
 93	map.desc_version = data->desc_version;
 94	map.desc_size = data->desc_size;
 95	map.late = late;
 96
 97	set_bit(EFI_MEMMAP, &efi.flags);
 98
 99	efi.memmap = map;
100
101	return 0;
102}
103
104/**
105 * efi_memmap_init_early - Map the EFI memory map data structure
106 * @data: EFI memory map data
107 *
108 * Use early_memremap() to map the passed in EFI memory map and assign
109 * it to efi.memmap.
110 */
111int __init efi_memmap_init_early(struct efi_memory_map_data *data)
112{
113	/* Cannot go backwards */
114	WARN_ON(efi.memmap.late);
115
116	return __efi_memmap_init(data, false);
 
117}
118
119void __init efi_memmap_unmap(void)
120{
121	if (!efi_enabled(EFI_MEMMAP))
122		return;
123
124	if (!efi.memmap.late) {
125		unsigned long size;
126
127		size = efi.memmap.desc_size * efi.memmap.nr_map;
128		early_memunmap(efi.memmap.map, size);
129	} else {
130		memunmap(efi.memmap.map);
131	}
132
133	efi.memmap.map = NULL;
134	clear_bit(EFI_MEMMAP, &efi.flags);
135}
136
137/**
138 * efi_memmap_init_late - Map efi.memmap with memremap()
139 * @phys_addr: Physical address of the new EFI memory map
140 * @size: Size in bytes of the new EFI memory map
141 *
142 * Setup a mapping of the EFI memory map using ioremap_cache(). This
143 * function should only be called once the vmalloc space has been
144 * setup and is therefore not suitable for calling during early EFI
145 * initialise, e.g. in efi_init(). Additionally, it expects
146 * efi_memmap_init_early() to have already been called.
147 *
148 * The reason there are two EFI memmap initialisation
149 * (efi_memmap_init_early() and this late version) is because the
150 * early EFI memmap should be explicitly unmapped once EFI
151 * initialisation is complete as the fixmap space used to map the EFI
152 * memmap (via early_memremap()) is a scarce resource.
153 *
154 * This late mapping is intended to persist for the duration of
155 * runtime so that things like efi_mem_desc_lookup() and
156 * efi_mem_attributes() always work.
157 *
158 * Returns zero on success, a negative error code on failure.
159 */
160int __init efi_memmap_init_late(phys_addr_t addr, unsigned long size)
161{
162	struct efi_memory_map_data data = {
163		.phys_map = addr,
164		.size = size,
 
165	};
166
167	/* Did we forget to unmap the early EFI memmap? */
168	WARN_ON(efi.memmap.map);
169
170	/* Were we already called? */
171	WARN_ON(efi.memmap.late);
172
173	/*
174	 * It makes no sense to allow callers to register different
175	 * values for the following fields. Copy them out of the
176	 * existing early EFI memmap.
177	 */
178	data.desc_version = efi.memmap.desc_version;
179	data.desc_size = efi.memmap.desc_size;
180
181	return __efi_memmap_init(&data, true);
182}
183
184/**
185 * efi_memmap_install - Install a new EFI memory map in efi.memmap
186 * @addr: Physical address of the memory map
187 * @nr_map: Number of entries in the memory map
188 *
189 * Unlike efi_memmap_init_*(), this function does not allow the caller
190 * to switch from early to late mappings. It simply uses the existing
191 * mapping function and installs the new memmap.
192 *
193 * Returns zero on success, a negative error code on failure.
194 */
195int __init efi_memmap_install(phys_addr_t addr, unsigned int nr_map)
196{
197	struct efi_memory_map_data data;
198
199	efi_memmap_unmap();
200
201	data.phys_map = addr;
202	data.size = efi.memmap.desc_size * nr_map;
203	data.desc_version = efi.memmap.desc_version;
204	data.desc_size = efi.memmap.desc_size;
205
206	return __efi_memmap_init(&data, efi.memmap.late);
207}
208
209/**
210 * efi_memmap_split_count - Count number of additional EFI memmap entries
211 * @md: EFI memory descriptor to split
212 * @range: Address range (start, end) to split around
213 *
214 * Returns the number of additional EFI memmap entries required to
215 * accomodate @range.
216 */
217int __init efi_memmap_split_count(efi_memory_desc_t *md, struct range *range)
218{
219	u64 m_start, m_end;
220	u64 start, end;
221	int count = 0;
222
223	start = md->phys_addr;
224	end = start + (md->num_pages << EFI_PAGE_SHIFT) - 1;
225
226	/* modifying range */
227	m_start = range->start;
228	m_end = range->end;
229
230	if (m_start <= start) {
231		/* split into 2 parts */
232		if (start < m_end && m_end < end)
233			count++;
234	}
235
236	if (start < m_start && m_start < end) {
237		/* split into 3 parts */
238		if (m_end < end)
239			count += 2;
240		/* split into 2 parts */
241		if (end <= m_end)
242			count++;
243	}
244
245	return count;
246}
247
248/**
249 * efi_memmap_insert - Insert a memory region in an EFI memmap
250 * @old_memmap: The existing EFI memory map structure
251 * @buf: Address of buffer to store new map
252 * @mem: Memory map entry to insert
253 *
254 * It is suggested that you call efi_memmap_split_count() first
255 * to see how large @buf needs to be.
256 */
257void __init efi_memmap_insert(struct efi_memory_map *old_memmap, void *buf,
258			      struct efi_mem_range *mem)
259{
260	u64 m_start, m_end, m_attr;
261	efi_memory_desc_t *md;
262	u64 start, end;
263	void *old, *new;
264
265	/* modifying range */
266	m_start = mem->range.start;
267	m_end = mem->range.end;
268	m_attr = mem->attribute;
269
270	/*
271	 * The EFI memory map deals with regions in EFI_PAGE_SIZE
272	 * units. Ensure that the region described by 'mem' is aligned
273	 * correctly.
274	 */
275	if (!IS_ALIGNED(m_start, EFI_PAGE_SIZE) ||
276	    !IS_ALIGNED(m_end + 1, EFI_PAGE_SIZE)) {
277		WARN_ON(1);
278		return;
279	}
280
281	for (old = old_memmap->map, new = buf;
282	     old < old_memmap->map_end;
283	     old += old_memmap->desc_size, new += old_memmap->desc_size) {
284
285		/* copy original EFI memory descriptor */
286		memcpy(new, old, old_memmap->desc_size);
287		md = new;
288		start = md->phys_addr;
289		end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1;
290
291		if (m_start <= start && end <= m_end)
292			md->attribute |= m_attr;
293
294		if (m_start <= start &&
295		    (start < m_end && m_end < end)) {
296			/* first part */
297			md->attribute |= m_attr;
298			md->num_pages = (m_end - md->phys_addr + 1) >>
299				EFI_PAGE_SHIFT;
300			/* latter part */
301			new += old_memmap->desc_size;
302			memcpy(new, old, old_memmap->desc_size);
303			md = new;
304			md->phys_addr = m_end + 1;
305			md->num_pages = (end - md->phys_addr + 1) >>
306				EFI_PAGE_SHIFT;
307		}
308
309		if ((start < m_start && m_start < end) && m_end < end) {
310			/* first part */
311			md->num_pages = (m_start - md->phys_addr) >>
312				EFI_PAGE_SHIFT;
313			/* middle part */
314			new += old_memmap->desc_size;
315			memcpy(new, old, old_memmap->desc_size);
316			md = new;
317			md->attribute |= m_attr;
318			md->phys_addr = m_start;
319			md->num_pages = (m_end - m_start + 1) >>
320				EFI_PAGE_SHIFT;
321			/* last part */
322			new += old_memmap->desc_size;
323			memcpy(new, old, old_memmap->desc_size);
324			md = new;
325			md->phys_addr = m_end + 1;
326			md->num_pages = (end - m_end) >>
327				EFI_PAGE_SHIFT;
328		}
329
330		if ((start < m_start && m_start < end) &&
331		    (end <= m_end)) {
332			/* first part */
333			md->num_pages = (m_start - md->phys_addr) >>
334				EFI_PAGE_SHIFT;
335			/* latter part */
336			new += old_memmap->desc_size;
337			memcpy(new, old, old_memmap->desc_size);
338			md = new;
339			md->phys_addr = m_start;
340			md->num_pages = (end - md->phys_addr + 1) >>
341				EFI_PAGE_SHIFT;
342			md->attribute |= m_attr;
343		}
344	}
345}