Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Common EFI memory map functions.
  4 */
  5
  6#define pr_fmt(fmt) "efi: " fmt
  7
  8#include <linux/init.h>
  9#include <linux/kernel.h>
 10#include <linux/efi.h>
 11#include <linux/io.h>
 12#include <asm/early_ioremap.h>
 13#include <linux/memblock.h>
 14#include <linux/slab.h>
 15
 16static phys_addr_t __init __efi_memmap_alloc_early(unsigned long size)
 17{
 18	return memblock_phys_alloc(size, SMP_CACHE_BYTES);
 19}
 20
 21static phys_addr_t __init __efi_memmap_alloc_late(unsigned long size)
 22{
 23	unsigned int order = get_order(size);
 24	struct page *p = alloc_pages(GFP_KERNEL, order);
 25
 26	if (!p)
 27		return 0;
 28
 29	return PFN_PHYS(page_to_pfn(p));
 30}
 31
 32void __init __efi_memmap_free(u64 phys, unsigned long size, unsigned long flags)
 33{
 34	if (flags & EFI_MEMMAP_MEMBLOCK) {
 35		if (slab_is_available())
 36			memblock_free_late(phys, size);
 37		else
 38			memblock_free(phys, size);
 39	} else if (flags & EFI_MEMMAP_SLAB) {
 40		struct page *p = pfn_to_page(PHYS_PFN(phys));
 41		unsigned int order = get_order(size);
 42
 43		free_pages((unsigned long) page_address(p), order);
 44	}
 45}
 46
 47static void __init efi_memmap_free(void)
 48{
 49	__efi_memmap_free(efi.memmap.phys_map,
 50			efi.memmap.desc_size * efi.memmap.nr_map,
 51			efi.memmap.flags);
 52}
 53
 54/**
 55 * efi_memmap_alloc - Allocate memory for the EFI memory map
 56 * @num_entries: Number of entries in the allocated map.
 57 * @data: efi memmap installation parameters
 58 *
 59 * Depending on whether mm_init() has already been invoked or not,
 60 * either memblock or "normal" page allocation is used.
 61 *
 62 * Returns the physical address of the allocated memory map on
 63 * success, zero on failure.
 64 */
 65int __init efi_memmap_alloc(unsigned int num_entries,
 66		struct efi_memory_map_data *data)
 67{
 68	/* Expect allocation parameters are zero initialized */
 69	WARN_ON(data->phys_map || data->size);
 70
 71	data->size = num_entries * efi.memmap.desc_size;
 72	data->desc_version = efi.memmap.desc_version;
 73	data->desc_size = efi.memmap.desc_size;
 74	data->flags &= ~(EFI_MEMMAP_SLAB | EFI_MEMMAP_MEMBLOCK);
 75	data->flags |= efi.memmap.flags & EFI_MEMMAP_LATE;
 76
 77	if (slab_is_available()) {
 78		data->flags |= EFI_MEMMAP_SLAB;
 79		data->phys_map = __efi_memmap_alloc_late(data->size);
 80	} else {
 81		data->flags |= EFI_MEMMAP_MEMBLOCK;
 82		data->phys_map = __efi_memmap_alloc_early(data->size);
 83	}
 84
 85	if (!data->phys_map)
 86		return -ENOMEM;
 87	return 0;
 88}
 89
 90/**
 91 * __efi_memmap_init - Common code for mapping the EFI memory map
 92 * @data: EFI memory map data
 
 93 *
 94 * This function takes care of figuring out which function to use to
 95 * map the EFI memory map in efi.memmap based on how far into the boot
 96 * we are.
 97 *
 98 * During bootup EFI_MEMMAP_LATE in data->flags should be clear since we
 99 * only have access to the early_memremap*() functions as the vmalloc
100 * space isn't setup.  Once the kernel is fully booted we can fallback
101 * to the more robust memremap*() API.
102 *
103 * Returns zero on success, a negative error code on failure.
104 */
105static int __init __efi_memmap_init(struct efi_memory_map_data *data)
 
106{
107	struct efi_memory_map map;
108	phys_addr_t phys_map;
109
110	if (efi_enabled(EFI_PARAVIRT))
111		return 0;
112
113	phys_map = data->phys_map;
114
115	if (data->flags & EFI_MEMMAP_LATE)
116		map.map = memremap(phys_map, data->size, MEMREMAP_WB);
117	else
118		map.map = early_memremap(phys_map, data->size);
119
120	if (!map.map) {
121		pr_err("Could not map the memory map!\n");
122		return -ENOMEM;
123	}
124
125	/* NOP if data->flags & (EFI_MEMMAP_MEMBLOCK | EFI_MEMMAP_SLAB) == 0 */
126	efi_memmap_free();
127
128	map.phys_map = data->phys_map;
129	map.nr_map = data->size / data->desc_size;
130	map.map_end = map.map + data->size;
131
132	map.desc_version = data->desc_version;
133	map.desc_size = data->desc_size;
134	map.flags = data->flags;
135
136	set_bit(EFI_MEMMAP, &efi.flags);
137
138	efi.memmap = map;
139
140	return 0;
141}
142
143/**
144 * efi_memmap_init_early - Map the EFI memory map data structure
145 * @data: EFI memory map data
146 *
147 * Use early_memremap() to map the passed in EFI memory map and assign
148 * it to efi.memmap.
149 */
150int __init efi_memmap_init_early(struct efi_memory_map_data *data)
151{
152	/* Cannot go backwards */
153	WARN_ON(efi.memmap.flags & EFI_MEMMAP_LATE);
154
155	data->flags = 0;
156	return __efi_memmap_init(data);
157}
158
159void __init efi_memmap_unmap(void)
160{
161	if (!efi_enabled(EFI_MEMMAP))
162		return;
163
164	if (!(efi.memmap.flags & EFI_MEMMAP_LATE)) {
165		unsigned long size;
166
167		size = efi.memmap.desc_size * efi.memmap.nr_map;
168		early_memunmap(efi.memmap.map, size);
169	} else {
170		memunmap(efi.memmap.map);
171	}
172
173	efi.memmap.map = NULL;
174	clear_bit(EFI_MEMMAP, &efi.flags);
175}
176
177/**
178 * efi_memmap_init_late - Map efi.memmap with memremap()
179 * @phys_addr: Physical address of the new EFI memory map
180 * @size: Size in bytes of the new EFI memory map
181 *
182 * Setup a mapping of the EFI memory map using ioremap_cache(). This
183 * function should only be called once the vmalloc space has been
184 * setup and is therefore not suitable for calling during early EFI
185 * initialise, e.g. in efi_init(). Additionally, it expects
186 * efi_memmap_init_early() to have already been called.
187 *
188 * The reason there are two EFI memmap initialisation
189 * (efi_memmap_init_early() and this late version) is because the
190 * early EFI memmap should be explicitly unmapped once EFI
191 * initialisation is complete as the fixmap space used to map the EFI
192 * memmap (via early_memremap()) is a scarce resource.
193 *
194 * This late mapping is intended to persist for the duration of
195 * runtime so that things like efi_mem_desc_lookup() and
196 * efi_mem_attributes() always work.
197 *
198 * Returns zero on success, a negative error code on failure.
199 */
200int __init efi_memmap_init_late(phys_addr_t addr, unsigned long size)
201{
202	struct efi_memory_map_data data = {
203		.phys_map = addr,
204		.size = size,
205		.flags = EFI_MEMMAP_LATE,
206	};
207
208	/* Did we forget to unmap the early EFI memmap? */
209	WARN_ON(efi.memmap.map);
210
211	/* Were we already called? */
212	WARN_ON(efi.memmap.flags & EFI_MEMMAP_LATE);
213
214	/*
215	 * It makes no sense to allow callers to register different
216	 * values for the following fields. Copy them out of the
217	 * existing early EFI memmap.
218	 */
219	data.desc_version = efi.memmap.desc_version;
220	data.desc_size = efi.memmap.desc_size;
221
222	return __efi_memmap_init(&data);
223}
224
225/**
226 * efi_memmap_install - Install a new EFI memory map in efi.memmap
227 * @ctx: map allocation parameters (address, size, flags)
 
228 *
229 * Unlike efi_memmap_init_*(), this function does not allow the caller
230 * to switch from early to late mappings. It simply uses the existing
231 * mapping function and installs the new memmap.
232 *
233 * Returns zero on success, a negative error code on failure.
234 */
235int __init efi_memmap_install(struct efi_memory_map_data *data)
236{
 
 
237	efi_memmap_unmap();
238
239	return __efi_memmap_init(data);
 
 
 
 
 
240}
241
242/**
243 * efi_memmap_split_count - Count number of additional EFI memmap entries
244 * @md: EFI memory descriptor to split
245 * @range: Address range (start, end) to split around
246 *
247 * Returns the number of additional EFI memmap entries required to
248 * accomodate @range.
249 */
250int __init efi_memmap_split_count(efi_memory_desc_t *md, struct range *range)
251{
252	u64 m_start, m_end;
253	u64 start, end;
254	int count = 0;
255
256	start = md->phys_addr;
257	end = start + (md->num_pages << EFI_PAGE_SHIFT) - 1;
258
259	/* modifying range */
260	m_start = range->start;
261	m_end = range->end;
262
263	if (m_start <= start) {
264		/* split into 2 parts */
265		if (start < m_end && m_end < end)
266			count++;
267	}
268
269	if (start < m_start && m_start < end) {
270		/* split into 3 parts */
271		if (m_end < end)
272			count += 2;
273		/* split into 2 parts */
274		if (end <= m_end)
275			count++;
276	}
277
278	return count;
279}
280
281/**
282 * efi_memmap_insert - Insert a memory region in an EFI memmap
283 * @old_memmap: The existing EFI memory map structure
284 * @buf: Address of buffer to store new map
285 * @mem: Memory map entry to insert
286 *
287 * It is suggested that you call efi_memmap_split_count() first
288 * to see how large @buf needs to be.
289 */
290void __init efi_memmap_insert(struct efi_memory_map *old_memmap, void *buf,
291			      struct efi_mem_range *mem)
292{
293	u64 m_start, m_end, m_attr;
294	efi_memory_desc_t *md;
295	u64 start, end;
296	void *old, *new;
297
298	/* modifying range */
299	m_start = mem->range.start;
300	m_end = mem->range.end;
301	m_attr = mem->attribute;
302
303	/*
304	 * The EFI memory map deals with regions in EFI_PAGE_SIZE
305	 * units. Ensure that the region described by 'mem' is aligned
306	 * correctly.
307	 */
308	if (!IS_ALIGNED(m_start, EFI_PAGE_SIZE) ||
309	    !IS_ALIGNED(m_end + 1, EFI_PAGE_SIZE)) {
310		WARN_ON(1);
311		return;
312	}
313
314	for (old = old_memmap->map, new = buf;
315	     old < old_memmap->map_end;
316	     old += old_memmap->desc_size, new += old_memmap->desc_size) {
317
318		/* copy original EFI memory descriptor */
319		memcpy(new, old, old_memmap->desc_size);
320		md = new;
321		start = md->phys_addr;
322		end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1;
323
324		if (m_start <= start && end <= m_end)
325			md->attribute |= m_attr;
326
327		if (m_start <= start &&
328		    (start < m_end && m_end < end)) {
329			/* first part */
330			md->attribute |= m_attr;
331			md->num_pages = (m_end - md->phys_addr + 1) >>
332				EFI_PAGE_SHIFT;
333			/* latter part */
334			new += old_memmap->desc_size;
335			memcpy(new, old, old_memmap->desc_size);
336			md = new;
337			md->phys_addr = m_end + 1;
338			md->num_pages = (end - md->phys_addr + 1) >>
339				EFI_PAGE_SHIFT;
340		}
341
342		if ((start < m_start && m_start < end) && m_end < end) {
343			/* first part */
344			md->num_pages = (m_start - md->phys_addr) >>
345				EFI_PAGE_SHIFT;
346			/* middle part */
347			new += old_memmap->desc_size;
348			memcpy(new, old, old_memmap->desc_size);
349			md = new;
350			md->attribute |= m_attr;
351			md->phys_addr = m_start;
352			md->num_pages = (m_end - m_start + 1) >>
353				EFI_PAGE_SHIFT;
354			/* last part */
355			new += old_memmap->desc_size;
356			memcpy(new, old, old_memmap->desc_size);
357			md = new;
358			md->phys_addr = m_end + 1;
359			md->num_pages = (end - m_end) >>
360				EFI_PAGE_SHIFT;
361		}
362
363		if ((start < m_start && m_start < end) &&
364		    (end <= m_end)) {
365			/* first part */
366			md->num_pages = (m_start - md->phys_addr) >>
367				EFI_PAGE_SHIFT;
368			/* latter part */
369			new += old_memmap->desc_size;
370			memcpy(new, old, old_memmap->desc_size);
371			md = new;
372			md->phys_addr = m_start;
373			md->num_pages = (end - md->phys_addr + 1) >>
374				EFI_PAGE_SHIFT;
375			md->attribute |= m_attr;
376		}
377	}
378}
v4.10.11
 
  1/*
  2 * Common EFI memory map functions.
  3 */
  4
  5#define pr_fmt(fmt) "efi: " fmt
  6
  7#include <linux/init.h>
  8#include <linux/kernel.h>
  9#include <linux/efi.h>
 10#include <linux/io.h>
 11#include <asm/early_ioremap.h>
 12#include <linux/memblock.h>
 13#include <linux/slab.h>
 14
 15static phys_addr_t __init __efi_memmap_alloc_early(unsigned long size)
 16{
 17	return memblock_alloc(size, 0);
 18}
 19
 20static phys_addr_t __init __efi_memmap_alloc_late(unsigned long size)
 21{
 22	unsigned int order = get_order(size);
 23	struct page *p = alloc_pages(GFP_KERNEL, order);
 24
 25	if (!p)
 26		return 0;
 27
 28	return PFN_PHYS(page_to_pfn(p));
 29}
 30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 31/**
 32 * efi_memmap_alloc - Allocate memory for the EFI memory map
 33 * @num_entries: Number of entries in the allocated map.
 
 34 *
 35 * Depending on whether mm_init() has already been invoked or not,
 36 * either memblock or "normal" page allocation is used.
 37 *
 38 * Returns the physical address of the allocated memory map on
 39 * success, zero on failure.
 40 */
 41phys_addr_t __init efi_memmap_alloc(unsigned int num_entries)
 
 42{
 43	unsigned long size = num_entries * efi.memmap.desc_size;
 
 44
 45	if (slab_is_available())
 46		return __efi_memmap_alloc_late(size);
 
 
 
 
 
 
 
 
 
 
 
 47
 48	return __efi_memmap_alloc_early(size);
 
 
 49}
 50
 51/**
 52 * __efi_memmap_init - Common code for mapping the EFI memory map
 53 * @data: EFI memory map data
 54 * @late: Use early or late mapping function?
 55 *
 56 * This function takes care of figuring out which function to use to
 57 * map the EFI memory map in efi.memmap based on how far into the boot
 58 * we are.
 59 *
 60 * During bootup @late should be %false since we only have access to
 61 * the early_memremap*() functions as the vmalloc space isn't setup.
 62 * Once the kernel is fully booted we can fallback to the more robust
 63 * memremap*() API.
 64 *
 65 * Returns zero on success, a negative error code on failure.
 66 */
 67static int __init
 68__efi_memmap_init(struct efi_memory_map_data *data, bool late)
 69{
 70	struct efi_memory_map map;
 71	phys_addr_t phys_map;
 72
 73	if (efi_enabled(EFI_PARAVIRT))
 74		return 0;
 75
 76	phys_map = data->phys_map;
 77
 78	if (late)
 79		map.map = memremap(phys_map, data->size, MEMREMAP_WB);
 80	else
 81		map.map = early_memremap(phys_map, data->size);
 82
 83	if (!map.map) {
 84		pr_err("Could not map the memory map!\n");
 85		return -ENOMEM;
 86	}
 87
 
 
 
 88	map.phys_map = data->phys_map;
 89	map.nr_map = data->size / data->desc_size;
 90	map.map_end = map.map + data->size;
 91
 92	map.desc_version = data->desc_version;
 93	map.desc_size = data->desc_size;
 94	map.late = late;
 95
 96	set_bit(EFI_MEMMAP, &efi.flags);
 97
 98	efi.memmap = map;
 99
100	return 0;
101}
102
103/**
104 * efi_memmap_init_early - Map the EFI memory map data structure
105 * @data: EFI memory map data
106 *
107 * Use early_memremap() to map the passed in EFI memory map and assign
108 * it to efi.memmap.
109 */
110int __init efi_memmap_init_early(struct efi_memory_map_data *data)
111{
112	/* Cannot go backwards */
113	WARN_ON(efi.memmap.late);
114
115	return __efi_memmap_init(data, false);
 
116}
117
118void __init efi_memmap_unmap(void)
119{
120	if (!efi.memmap.late) {
 
 
 
121		unsigned long size;
122
123		size = efi.memmap.desc_size * efi.memmap.nr_map;
124		early_memunmap(efi.memmap.map, size);
125	} else {
126		memunmap(efi.memmap.map);
127	}
128
129	efi.memmap.map = NULL;
130	clear_bit(EFI_MEMMAP, &efi.flags);
131}
132
133/**
134 * efi_memmap_init_late - Map efi.memmap with memremap()
135 * @phys_addr: Physical address of the new EFI memory map
136 * @size: Size in bytes of the new EFI memory map
137 *
138 * Setup a mapping of the EFI memory map using ioremap_cache(). This
139 * function should only be called once the vmalloc space has been
140 * setup and is therefore not suitable for calling during early EFI
141 * initialise, e.g. in efi_init(). Additionally, it expects
142 * efi_memmap_init_early() to have already been called.
143 *
144 * The reason there are two EFI memmap initialisation
145 * (efi_memmap_init_early() and this late version) is because the
146 * early EFI memmap should be explicitly unmapped once EFI
147 * initialisation is complete as the fixmap space used to map the EFI
148 * memmap (via early_memremap()) is a scarce resource.
149 *
150 * This late mapping is intended to persist for the duration of
151 * runtime so that things like efi_mem_desc_lookup() and
152 * efi_mem_attributes() always work.
153 *
154 * Returns zero on success, a negative error code on failure.
155 */
156int __init efi_memmap_init_late(phys_addr_t addr, unsigned long size)
157{
158	struct efi_memory_map_data data = {
159		.phys_map = addr,
160		.size = size,
 
161	};
162
163	/* Did we forget to unmap the early EFI memmap? */
164	WARN_ON(efi.memmap.map);
165
166	/* Were we already called? */
167	WARN_ON(efi.memmap.late);
168
169	/*
170	 * It makes no sense to allow callers to register different
171	 * values for the following fields. Copy them out of the
172	 * existing early EFI memmap.
173	 */
174	data.desc_version = efi.memmap.desc_version;
175	data.desc_size = efi.memmap.desc_size;
176
177	return __efi_memmap_init(&data, true);
178}
179
180/**
181 * efi_memmap_install - Install a new EFI memory map in efi.memmap
182 * @addr: Physical address of the memory map
183 * @nr_map: Number of entries in the memory map
184 *
185 * Unlike efi_memmap_init_*(), this function does not allow the caller
186 * to switch from early to late mappings. It simply uses the existing
187 * mapping function and installs the new memmap.
188 *
189 * Returns zero on success, a negative error code on failure.
190 */
191int __init efi_memmap_install(phys_addr_t addr, unsigned int nr_map)
192{
193	struct efi_memory_map_data data;
194
195	efi_memmap_unmap();
196
197	data.phys_map = addr;
198	data.size = efi.memmap.desc_size * nr_map;
199	data.desc_version = efi.memmap.desc_version;
200	data.desc_size = efi.memmap.desc_size;
201
202	return __efi_memmap_init(&data, efi.memmap.late);
203}
204
205/**
206 * efi_memmap_split_count - Count number of additional EFI memmap entries
207 * @md: EFI memory descriptor to split
208 * @range: Address range (start, end) to split around
209 *
210 * Returns the number of additional EFI memmap entries required to
211 * accomodate @range.
212 */
213int __init efi_memmap_split_count(efi_memory_desc_t *md, struct range *range)
214{
215	u64 m_start, m_end;
216	u64 start, end;
217	int count = 0;
218
219	start = md->phys_addr;
220	end = start + (md->num_pages << EFI_PAGE_SHIFT) - 1;
221
222	/* modifying range */
223	m_start = range->start;
224	m_end = range->end;
225
226	if (m_start <= start) {
227		/* split into 2 parts */
228		if (start < m_end && m_end < end)
229			count++;
230	}
231
232	if (start < m_start && m_start < end) {
233		/* split into 3 parts */
234		if (m_end < end)
235			count += 2;
236		/* split into 2 parts */
237		if (end <= m_end)
238			count++;
239	}
240
241	return count;
242}
243
244/**
245 * efi_memmap_insert - Insert a memory region in an EFI memmap
246 * @old_memmap: The existing EFI memory map structure
247 * @buf: Address of buffer to store new map
248 * @mem: Memory map entry to insert
249 *
250 * It is suggested that you call efi_memmap_split_count() first
251 * to see how large @buf needs to be.
252 */
253void __init efi_memmap_insert(struct efi_memory_map *old_memmap, void *buf,
254			      struct efi_mem_range *mem)
255{
256	u64 m_start, m_end, m_attr;
257	efi_memory_desc_t *md;
258	u64 start, end;
259	void *old, *new;
260
261	/* modifying range */
262	m_start = mem->range.start;
263	m_end = mem->range.end;
264	m_attr = mem->attribute;
265
266	/*
267	 * The EFI memory map deals with regions in EFI_PAGE_SIZE
268	 * units. Ensure that the region described by 'mem' is aligned
269	 * correctly.
270	 */
271	if (!IS_ALIGNED(m_start, EFI_PAGE_SIZE) ||
272	    !IS_ALIGNED(m_end + 1, EFI_PAGE_SIZE)) {
273		WARN_ON(1);
274		return;
275	}
276
277	for (old = old_memmap->map, new = buf;
278	     old < old_memmap->map_end;
279	     old += old_memmap->desc_size, new += old_memmap->desc_size) {
280
281		/* copy original EFI memory descriptor */
282		memcpy(new, old, old_memmap->desc_size);
283		md = new;
284		start = md->phys_addr;
285		end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1;
286
287		if (m_start <= start && end <= m_end)
288			md->attribute |= m_attr;
289
290		if (m_start <= start &&
291		    (start < m_end && m_end < end)) {
292			/* first part */
293			md->attribute |= m_attr;
294			md->num_pages = (m_end - md->phys_addr + 1) >>
295				EFI_PAGE_SHIFT;
296			/* latter part */
297			new += old_memmap->desc_size;
298			memcpy(new, old, old_memmap->desc_size);
299			md = new;
300			md->phys_addr = m_end + 1;
301			md->num_pages = (end - md->phys_addr + 1) >>
302				EFI_PAGE_SHIFT;
303		}
304
305		if ((start < m_start && m_start < end) && m_end < end) {
306			/* first part */
307			md->num_pages = (m_start - md->phys_addr) >>
308				EFI_PAGE_SHIFT;
309			/* middle part */
310			new += old_memmap->desc_size;
311			memcpy(new, old, old_memmap->desc_size);
312			md = new;
313			md->attribute |= m_attr;
314			md->phys_addr = m_start;
315			md->num_pages = (m_end - m_start + 1) >>
316				EFI_PAGE_SHIFT;
317			/* last part */
318			new += old_memmap->desc_size;
319			memcpy(new, old, old_memmap->desc_size);
320			md = new;
321			md->phys_addr = m_end + 1;
322			md->num_pages = (end - m_end) >>
323				EFI_PAGE_SHIFT;
324		}
325
326		if ((start < m_start && m_start < end) &&
327		    (end <= m_end)) {
328			/* first part */
329			md->num_pages = (m_start - md->phys_addr) >>
330				EFI_PAGE_SHIFT;
331			/* latter part */
332			new += old_memmap->desc_size;
333			memcpy(new, old, old_memmap->desc_size);
334			md = new;
335			md->phys_addr = m_start;
336			md->num_pages = (end - md->phys_addr + 1) >>
337				EFI_PAGE_SHIFT;
338			md->attribute |= m_attr;
339		}
340	}
341}