Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Freescale MPC85xx, MPC83xx DMA Engine support
   4 *
   5 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
   6 *
   7 * Author:
   8 *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
   9 *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
  10 *
  11 * Description:
  12 *   DMA engine driver for Freescale MPC8540 DMA controller, which is
  13 *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
  14 *   The support for MPC8349 DMA controller is also added.
  15 *
  16 * This driver instructs the DMA controller to issue the PCI Read Multiple
  17 * command for PCI read operations, instead of using the default PCI Read Line
  18 * command. Please be aware that this setting may result in read pre-fetching
  19 * on some platforms.
  20 */
  21
  22#include <linux/init.h>
  23#include <linux/module.h>
  24#include <linux/pci.h>
  25#include <linux/slab.h>
  26#include <linux/interrupt.h>
  27#include <linux/dmaengine.h>
  28#include <linux/delay.h>
  29#include <linux/dma-mapping.h>
  30#include <linux/dmapool.h>
  31#include <linux/of_address.h>
  32#include <linux/of_irq.h>
  33#include <linux/of_platform.h>
  34#include <linux/fsldma.h>
  35#include "dmaengine.h"
  36#include "fsldma.h"
  37
  38#define chan_dbg(chan, fmt, arg...)					\
  39	dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
  40#define chan_err(chan, fmt, arg...)					\
  41	dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
  42
  43static const char msg_ld_oom[] = "No free memory for link descriptor";
  44
  45/*
  46 * Register Helpers
  47 */
  48
  49static void set_sr(struct fsldma_chan *chan, u32 val)
  50{
  51	FSL_DMA_OUT(chan, &chan->regs->sr, val, 32);
  52}
  53
  54static u32 get_sr(struct fsldma_chan *chan)
  55{
  56	return FSL_DMA_IN(chan, &chan->regs->sr, 32);
  57}
  58
  59static void set_mr(struct fsldma_chan *chan, u32 val)
  60{
  61	FSL_DMA_OUT(chan, &chan->regs->mr, val, 32);
  62}
  63
  64static u32 get_mr(struct fsldma_chan *chan)
  65{
  66	return FSL_DMA_IN(chan, &chan->regs->mr, 32);
  67}
  68
  69static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
  70{
  71	FSL_DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
  72}
  73
  74static dma_addr_t get_cdar(struct fsldma_chan *chan)
  75{
  76	return FSL_DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
  77}
  78
  79static void set_bcr(struct fsldma_chan *chan, u32 val)
  80{
  81	FSL_DMA_OUT(chan, &chan->regs->bcr, val, 32);
  82}
  83
  84static u32 get_bcr(struct fsldma_chan *chan)
  85{
  86	return FSL_DMA_IN(chan, &chan->regs->bcr, 32);
  87}
  88
  89/*
  90 * Descriptor Helpers
  91 */
  92
  93static void set_desc_cnt(struct fsldma_chan *chan,
  94				struct fsl_dma_ld_hw *hw, u32 count)
  95{
  96	hw->count = CPU_TO_DMA(chan, count, 32);
  97}
  98
  99static void set_desc_src(struct fsldma_chan *chan,
 100			 struct fsl_dma_ld_hw *hw, dma_addr_t src)
 101{
 102	u64 snoop_bits;
 103
 104	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
 105		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
 106	hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
 107}
 108
 109static void set_desc_dst(struct fsldma_chan *chan,
 110			 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
 111{
 112	u64 snoop_bits;
 113
 114	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
 115		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
 116	hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
 117}
 118
 119static void set_desc_next(struct fsldma_chan *chan,
 120			  struct fsl_dma_ld_hw *hw, dma_addr_t next)
 121{
 122	u64 snoop_bits;
 123
 124	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
 125		? FSL_DMA_SNEN : 0;
 126	hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
 127}
 128
 129static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
 130{
 131	u64 snoop_bits;
 132
 133	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
 134		? FSL_DMA_SNEN : 0;
 135
 136	desc->hw.next_ln_addr = CPU_TO_DMA(chan,
 137		DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
 138			| snoop_bits, 64);
 139}
 140
 141/*
 142 * DMA Engine Hardware Control Helpers
 143 */
 144
 145static void dma_init(struct fsldma_chan *chan)
 146{
 147	/* Reset the channel */
 148	set_mr(chan, 0);
 149
 150	switch (chan->feature & FSL_DMA_IP_MASK) {
 151	case FSL_DMA_IP_85XX:
 152		/* Set the channel to below modes:
 153		 * EIE - Error interrupt enable
 154		 * EOLNIE - End of links interrupt enable
 155		 * BWC - Bandwidth sharing among channels
 156		 */
 157		set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE
 158			| FSL_DMA_MR_EOLNIE);
 159		break;
 160	case FSL_DMA_IP_83XX:
 161		/* Set the channel to below modes:
 162		 * EOTIE - End-of-transfer interrupt enable
 163		 * PRC_RM - PCI read multiple
 164		 */
 165		set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM);
 166		break;
 167	}
 168}
 169
 170static int dma_is_idle(struct fsldma_chan *chan)
 171{
 172	u32 sr = get_sr(chan);
 173	return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
 174}
 175
 176/*
 177 * Start the DMA controller
 178 *
 179 * Preconditions:
 180 * - the CDAR register must point to the start descriptor
 181 * - the MRn[CS] bit must be cleared
 182 */
 183static void dma_start(struct fsldma_chan *chan)
 184{
 185	u32 mode;
 186
 187	mode = get_mr(chan);
 188
 189	if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
 190		set_bcr(chan, 0);
 191		mode |= FSL_DMA_MR_EMP_EN;
 192	} else {
 193		mode &= ~FSL_DMA_MR_EMP_EN;
 194	}
 195
 196	if (chan->feature & FSL_DMA_CHAN_START_EXT) {
 197		mode |= FSL_DMA_MR_EMS_EN;
 198	} else {
 199		mode &= ~FSL_DMA_MR_EMS_EN;
 200		mode |= FSL_DMA_MR_CS;
 201	}
 202
 203	set_mr(chan, mode);
 204}
 205
 206static void dma_halt(struct fsldma_chan *chan)
 207{
 208	u32 mode;
 209	int i;
 210
 211	/* read the mode register */
 212	mode = get_mr(chan);
 213
 214	/*
 215	 * The 85xx controller supports channel abort, which will stop
 216	 * the current transfer. On 83xx, this bit is the transfer error
 217	 * mask bit, which should not be changed.
 218	 */
 219	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
 220		mode |= FSL_DMA_MR_CA;
 221		set_mr(chan, mode);
 222
 223		mode &= ~FSL_DMA_MR_CA;
 224	}
 225
 226	/* stop the DMA controller */
 227	mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
 228	set_mr(chan, mode);
 229
 230	/* wait for the DMA controller to become idle */
 231	for (i = 0; i < 100; i++) {
 232		if (dma_is_idle(chan))
 233			return;
 234
 235		udelay(10);
 236	}
 237
 238	if (!dma_is_idle(chan))
 239		chan_err(chan, "DMA halt timeout!\n");
 240}
 241
 242/**
 243 * fsl_chan_set_src_loop_size - Set source address hold transfer size
 244 * @chan : Freescale DMA channel
 245 * @size     : Address loop size, 0 for disable loop
 246 *
 247 * The set source address hold transfer size. The source
 248 * address hold or loop transfer size is when the DMA transfer
 249 * data from source address (SA), if the loop size is 4, the DMA will
 250 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
 251 * SA + 1 ... and so on.
 252 */
 253static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
 254{
 255	u32 mode;
 256
 257	mode = get_mr(chan);
 258
 259	switch (size) {
 260	case 0:
 261		mode &= ~FSL_DMA_MR_SAHE;
 262		break;
 263	case 1:
 264	case 2:
 265	case 4:
 266	case 8:
 267		mode &= ~FSL_DMA_MR_SAHTS_MASK;
 268		mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
 269		break;
 270	}
 271
 272	set_mr(chan, mode);
 273}
 274
 275/**
 276 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
 277 * @chan : Freescale DMA channel
 278 * @size     : Address loop size, 0 for disable loop
 279 *
 280 * The set destination address hold transfer size. The destination
 281 * address hold or loop transfer size is when the DMA transfer
 282 * data to destination address (TA), if the loop size is 4, the DMA will
 283 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
 284 * TA + 1 ... and so on.
 285 */
 286static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
 287{
 288	u32 mode;
 289
 290	mode = get_mr(chan);
 291
 292	switch (size) {
 293	case 0:
 294		mode &= ~FSL_DMA_MR_DAHE;
 295		break;
 296	case 1:
 297	case 2:
 298	case 4:
 299	case 8:
 300		mode &= ~FSL_DMA_MR_DAHTS_MASK;
 301		mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
 302		break;
 303	}
 304
 305	set_mr(chan, mode);
 306}
 307
 308/**
 309 * fsl_chan_set_request_count - Set DMA Request Count for external control
 310 * @chan : Freescale DMA channel
 311 * @size     : Number of bytes to transfer in a single request
 312 *
 313 * The Freescale DMA channel can be controlled by the external signal DREQ#.
 314 * The DMA request count is how many bytes are allowed to transfer before
 315 * pausing the channel, after which a new assertion of DREQ# resumes channel
 316 * operation.
 317 *
 318 * A size of 0 disables external pause control. The maximum size is 1024.
 319 */
 320static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
 321{
 322	u32 mode;
 323
 324	BUG_ON(size > 1024);
 325
 326	mode = get_mr(chan);
 327	mode &= ~FSL_DMA_MR_BWC_MASK;
 328	mode |= (__ilog2(size) << 24) & FSL_DMA_MR_BWC_MASK;
 329
 330	set_mr(chan, mode);
 331}
 332
 333/**
 334 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
 335 * @chan : Freescale DMA channel
 336 * @enable   : 0 is disabled, 1 is enabled.
 337 *
 338 * The Freescale DMA channel can be controlled by the external signal DREQ#.
 339 * The DMA Request Count feature should be used in addition to this feature
 340 * to set the number of bytes to transfer before pausing the channel.
 341 */
 342static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
 343{
 344	if (enable)
 345		chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
 346	else
 347		chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
 348}
 349
 350/**
 351 * fsl_chan_toggle_ext_start - Toggle channel external start status
 352 * @chan : Freescale DMA channel
 353 * @enable   : 0 is disabled, 1 is enabled.
 354 *
 355 * If enable the external start, the channel can be started by an
 356 * external DMA start pin. So the dma_start() does not start the
 357 * transfer immediately. The DMA channel will wait for the
 358 * control pin asserted.
 359 */
 360static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
 361{
 362	if (enable)
 363		chan->feature |= FSL_DMA_CHAN_START_EXT;
 364	else
 365		chan->feature &= ~FSL_DMA_CHAN_START_EXT;
 366}
 367
 368int fsl_dma_external_start(struct dma_chan *dchan, int enable)
 369{
 370	struct fsldma_chan *chan;
 371
 372	if (!dchan)
 373		return -EINVAL;
 374
 375	chan = to_fsl_chan(dchan);
 376
 377	fsl_chan_toggle_ext_start(chan, enable);
 378	return 0;
 379}
 380EXPORT_SYMBOL_GPL(fsl_dma_external_start);
 381
 382static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
 383{
 384	struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
 385
 386	if (list_empty(&chan->ld_pending))
 387		goto out_splice;
 388
 389	/*
 390	 * Add the hardware descriptor to the chain of hardware descriptors
 391	 * that already exists in memory.
 392	 *
 393	 * This will un-set the EOL bit of the existing transaction, and the
 394	 * last link in this transaction will become the EOL descriptor.
 395	 */
 396	set_desc_next(chan, &tail->hw, desc->async_tx.phys);
 397
 398	/*
 399	 * Add the software descriptor and all children to the list
 400	 * of pending transactions
 401	 */
 402out_splice:
 403	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
 404}
 405
 406static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
 407{
 408	struct fsldma_chan *chan = to_fsl_chan(tx->chan);
 409	struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
 410	struct fsl_desc_sw *child;
 411	dma_cookie_t cookie = -EINVAL;
 412
 413	spin_lock_bh(&chan->desc_lock);
 414
 415#ifdef CONFIG_PM
 416	if (unlikely(chan->pm_state != RUNNING)) {
 417		chan_dbg(chan, "cannot submit due to suspend\n");
 418		spin_unlock_bh(&chan->desc_lock);
 419		return -1;
 420	}
 421#endif
 422
 423	/*
 424	 * assign cookies to all of the software descriptors
 425	 * that make up this transaction
 426	 */
 427	list_for_each_entry(child, &desc->tx_list, node) {
 428		cookie = dma_cookie_assign(&child->async_tx);
 429	}
 430
 431	/* put this transaction onto the tail of the pending queue */
 432	append_ld_queue(chan, desc);
 433
 434	spin_unlock_bh(&chan->desc_lock);
 435
 436	return cookie;
 437}
 438
 439/**
 440 * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
 441 * @chan : Freescale DMA channel
 442 * @desc: descriptor to be freed
 443 */
 444static void fsl_dma_free_descriptor(struct fsldma_chan *chan,
 445		struct fsl_desc_sw *desc)
 446{
 447	list_del(&desc->node);
 448	chan_dbg(chan, "LD %p free\n", desc);
 449	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
 450}
 451
 452/**
 453 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
 454 * @chan : Freescale DMA channel
 455 *
 456 * Return - The descriptor allocated. NULL for failed.
 457 */
 458static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
 459{
 460	struct fsl_desc_sw *desc;
 461	dma_addr_t pdesc;
 462
 463	desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
 464	if (!desc) {
 465		chan_dbg(chan, "out of memory for link descriptor\n");
 466		return NULL;
 467	}
 468
 469	INIT_LIST_HEAD(&desc->tx_list);
 470	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
 471	desc->async_tx.tx_submit = fsl_dma_tx_submit;
 472	desc->async_tx.phys = pdesc;
 473
 474	chan_dbg(chan, "LD %p allocated\n", desc);
 475
 476	return desc;
 477}
 478
 479/**
 480 * fsldma_clean_completed_descriptor - free all descriptors which
 481 * has been completed and acked
 482 * @chan: Freescale DMA channel
 483 *
 484 * This function is used on all completed and acked descriptors.
 485 * All descriptors should only be freed in this function.
 486 */
 487static void fsldma_clean_completed_descriptor(struct fsldma_chan *chan)
 488{
 489	struct fsl_desc_sw *desc, *_desc;
 490
 491	/* Run the callback for each descriptor, in order */
 492	list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node)
 493		if (async_tx_test_ack(&desc->async_tx))
 494			fsl_dma_free_descriptor(chan, desc);
 495}
 496
 497/**
 498 * fsldma_run_tx_complete_actions - cleanup a single link descriptor
 499 * @chan: Freescale DMA channel
 500 * @desc: descriptor to cleanup and free
 501 * @cookie: Freescale DMA transaction identifier
 502 *
 503 * This function is used on a descriptor which has been executed by the DMA
 504 * controller. It will run any callbacks, submit any dependencies.
 505 */
 506static dma_cookie_t fsldma_run_tx_complete_actions(struct fsldma_chan *chan,
 507		struct fsl_desc_sw *desc, dma_cookie_t cookie)
 508{
 509	struct dma_async_tx_descriptor *txd = &desc->async_tx;
 510	dma_cookie_t ret = cookie;
 511
 512	BUG_ON(txd->cookie < 0);
 513
 514	if (txd->cookie > 0) {
 515		ret = txd->cookie;
 516
 517		dma_descriptor_unmap(txd);
 518		/* Run the link descriptor callback function */
 519		dmaengine_desc_get_callback_invoke(txd, NULL);
 520	}
 521
 522	/* Run any dependencies */
 523	dma_run_dependencies(txd);
 524
 525	return ret;
 526}
 527
 528/**
 529 * fsldma_clean_running_descriptor - move the completed descriptor from
 530 * ld_running to ld_completed
 531 * @chan: Freescale DMA channel
 532 * @desc: the descriptor which is completed
 533 *
 534 * Free the descriptor directly if acked by async_tx api, or move it to
 535 * queue ld_completed.
 536 */
 537static void fsldma_clean_running_descriptor(struct fsldma_chan *chan,
 538		struct fsl_desc_sw *desc)
 539{
 540	/* Remove from the list of transactions */
 541	list_del(&desc->node);
 542
 543	/*
 544	 * the client is allowed to attach dependent operations
 545	 * until 'ack' is set
 546	 */
 547	if (!async_tx_test_ack(&desc->async_tx)) {
 548		/*
 549		 * Move this descriptor to the list of descriptors which is
 550		 * completed, but still awaiting the 'ack' bit to be set.
 551		 */
 552		list_add_tail(&desc->node, &chan->ld_completed);
 553		return;
 554	}
 555
 556	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
 557}
 558
 559/**
 560 * fsl_chan_xfer_ld_queue - transfer any pending transactions
 561 * @chan : Freescale DMA channel
 562 *
 563 * HARDWARE STATE: idle
 564 * LOCKING: must hold chan->desc_lock
 565 */
 566static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
 567{
 568	struct fsl_desc_sw *desc;
 569
 570	/*
 571	 * If the list of pending descriptors is empty, then we
 572	 * don't need to do any work at all
 573	 */
 574	if (list_empty(&chan->ld_pending)) {
 575		chan_dbg(chan, "no pending LDs\n");
 576		return;
 577	}
 578
 579	/*
 580	 * The DMA controller is not idle, which means that the interrupt
 581	 * handler will start any queued transactions when it runs after
 582	 * this transaction finishes
 583	 */
 584	if (!chan->idle) {
 585		chan_dbg(chan, "DMA controller still busy\n");
 586		return;
 587	}
 588
 589	/*
 590	 * If there are some link descriptors which have not been
 591	 * transferred, we need to start the controller
 592	 */
 593
 594	/*
 595	 * Move all elements from the queue of pending transactions
 596	 * onto the list of running transactions
 597	 */
 598	chan_dbg(chan, "idle, starting controller\n");
 599	desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
 600	list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
 601
 602	/*
 603	 * The 85xx DMA controller doesn't clear the channel start bit
 604	 * automatically at the end of a transfer. Therefore we must clear
 605	 * it in software before starting the transfer.
 606	 */
 607	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
 608		u32 mode;
 609
 610		mode = get_mr(chan);
 611		mode &= ~FSL_DMA_MR_CS;
 612		set_mr(chan, mode);
 613	}
 614
 615	/*
 616	 * Program the descriptor's address into the DMA controller,
 617	 * then start the DMA transaction
 618	 */
 619	set_cdar(chan, desc->async_tx.phys);
 620	get_cdar(chan);
 621
 622	dma_start(chan);
 623	chan->idle = false;
 624}
 625
 626/**
 627 * fsldma_cleanup_descriptors - cleanup link descriptors which are completed
 628 * and move them to ld_completed to free until flag 'ack' is set
 629 * @chan: Freescale DMA channel
 630 *
 631 * This function is used on descriptors which have been executed by the DMA
 632 * controller. It will run any callbacks, submit any dependencies, then
 633 * free these descriptors if flag 'ack' is set.
 634 */
 635static void fsldma_cleanup_descriptors(struct fsldma_chan *chan)
 636{
 637	struct fsl_desc_sw *desc, *_desc;
 638	dma_cookie_t cookie = 0;
 639	dma_addr_t curr_phys = get_cdar(chan);
 640	int seen_current = 0;
 641
 642	fsldma_clean_completed_descriptor(chan);
 643
 644	/* Run the callback for each descriptor, in order */
 645	list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
 646		/*
 647		 * do not advance past the current descriptor loaded into the
 648		 * hardware channel, subsequent descriptors are either in
 649		 * process or have not been submitted
 650		 */
 651		if (seen_current)
 652			break;
 653
 654		/*
 655		 * stop the search if we reach the current descriptor and the
 656		 * channel is busy
 657		 */
 658		if (desc->async_tx.phys == curr_phys) {
 659			seen_current = 1;
 660			if (!dma_is_idle(chan))
 661				break;
 662		}
 663
 664		cookie = fsldma_run_tx_complete_actions(chan, desc, cookie);
 665
 666		fsldma_clean_running_descriptor(chan, desc);
 667	}
 668
 669	/*
 670	 * Start any pending transactions automatically
 671	 *
 672	 * In the ideal case, we keep the DMA controller busy while we go
 673	 * ahead and free the descriptors below.
 674	 */
 675	fsl_chan_xfer_ld_queue(chan);
 676
 677	if (cookie > 0)
 678		chan->common.completed_cookie = cookie;
 679}
 680
 681/**
 682 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
 683 * @chan : Freescale DMA channel
 684 *
 685 * This function will create a dma pool for descriptor allocation.
 686 *
 687 * Return - The number of descriptors allocated.
 688 */
 689static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
 690{
 691	struct fsldma_chan *chan = to_fsl_chan(dchan);
 692
 693	/* Has this channel already been allocated? */
 694	if (chan->desc_pool)
 695		return 1;
 696
 697	/*
 698	 * We need the descriptor to be aligned to 32bytes
 699	 * for meeting FSL DMA specification requirement.
 700	 */
 701	chan->desc_pool = dma_pool_create(chan->name, chan->dev,
 702					  sizeof(struct fsl_desc_sw),
 703					  __alignof__(struct fsl_desc_sw), 0);
 704	if (!chan->desc_pool) {
 705		chan_err(chan, "unable to allocate descriptor pool\n");
 706		return -ENOMEM;
 707	}
 708
 709	/* there is at least one descriptor free to be allocated */
 710	return 1;
 711}
 712
 713/**
 714 * fsldma_free_desc_list - Free all descriptors in a queue
 715 * @chan: Freescae DMA channel
 716 * @list: the list to free
 717 *
 718 * LOCKING: must hold chan->desc_lock
 719 */
 720static void fsldma_free_desc_list(struct fsldma_chan *chan,
 721				  struct list_head *list)
 722{
 723	struct fsl_desc_sw *desc, *_desc;
 724
 725	list_for_each_entry_safe(desc, _desc, list, node)
 726		fsl_dma_free_descriptor(chan, desc);
 727}
 728
 729static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
 730					  struct list_head *list)
 731{
 732	struct fsl_desc_sw *desc, *_desc;
 733
 734	list_for_each_entry_safe_reverse(desc, _desc, list, node)
 735		fsl_dma_free_descriptor(chan, desc);
 736}
 737
 738/**
 739 * fsl_dma_free_chan_resources - Free all resources of the channel.
 740 * @chan : Freescale DMA channel
 741 */
 742static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
 743{
 744	struct fsldma_chan *chan = to_fsl_chan(dchan);
 745
 746	chan_dbg(chan, "free all channel resources\n");
 747	spin_lock_bh(&chan->desc_lock);
 748	fsldma_cleanup_descriptors(chan);
 749	fsldma_free_desc_list(chan, &chan->ld_pending);
 750	fsldma_free_desc_list(chan, &chan->ld_running);
 751	fsldma_free_desc_list(chan, &chan->ld_completed);
 752	spin_unlock_bh(&chan->desc_lock);
 753
 754	dma_pool_destroy(chan->desc_pool);
 755	chan->desc_pool = NULL;
 756}
 757
 758static struct dma_async_tx_descriptor *
 759fsl_dma_prep_memcpy(struct dma_chan *dchan,
 760	dma_addr_t dma_dst, dma_addr_t dma_src,
 761	size_t len, unsigned long flags)
 762{
 763	struct fsldma_chan *chan;
 764	struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
 765	size_t copy;
 766
 767	if (!dchan)
 768		return NULL;
 769
 770	if (!len)
 771		return NULL;
 772
 773	chan = to_fsl_chan(dchan);
 774
 775	do {
 776
 777		/* Allocate the link descriptor from DMA pool */
 778		new = fsl_dma_alloc_descriptor(chan);
 779		if (!new) {
 780			chan_err(chan, "%s\n", msg_ld_oom);
 781			goto fail;
 782		}
 783
 784		copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
 785
 786		set_desc_cnt(chan, &new->hw, copy);
 787		set_desc_src(chan, &new->hw, dma_src);
 788		set_desc_dst(chan, &new->hw, dma_dst);
 789
 790		if (!first)
 791			first = new;
 792		else
 793			set_desc_next(chan, &prev->hw, new->async_tx.phys);
 794
 795		new->async_tx.cookie = 0;
 796		async_tx_ack(&new->async_tx);
 797
 798		prev = new;
 799		len -= copy;
 800		dma_src += copy;
 801		dma_dst += copy;
 802
 803		/* Insert the link descriptor to the LD ring */
 804		list_add_tail(&new->node, &first->tx_list);
 805	} while (len);
 806
 807	new->async_tx.flags = flags; /* client is in control of this ack */
 808	new->async_tx.cookie = -EBUSY;
 809
 810	/* Set End-of-link to the last link descriptor of new list */
 811	set_ld_eol(chan, new);
 812
 813	return &first->async_tx;
 814
 815fail:
 816	if (!first)
 817		return NULL;
 818
 819	fsldma_free_desc_list_reverse(chan, &first->tx_list);
 820	return NULL;
 821}
 822
 823static int fsl_dma_device_terminate_all(struct dma_chan *dchan)
 824{
 825	struct fsldma_chan *chan;
 826
 827	if (!dchan)
 828		return -EINVAL;
 829
 830	chan = to_fsl_chan(dchan);
 831
 832	spin_lock_bh(&chan->desc_lock);
 833
 834	/* Halt the DMA engine */
 835	dma_halt(chan);
 836
 837	/* Remove and free all of the descriptors in the LD queue */
 838	fsldma_free_desc_list(chan, &chan->ld_pending);
 839	fsldma_free_desc_list(chan, &chan->ld_running);
 840	fsldma_free_desc_list(chan, &chan->ld_completed);
 841	chan->idle = true;
 842
 843	spin_unlock_bh(&chan->desc_lock);
 844	return 0;
 845}
 846
 847static int fsl_dma_device_config(struct dma_chan *dchan,
 848				 struct dma_slave_config *config)
 849{
 850	struct fsldma_chan *chan;
 851	int size;
 852
 853	if (!dchan)
 854		return -EINVAL;
 855
 856	chan = to_fsl_chan(dchan);
 857
 858	/* make sure the channel supports setting burst size */
 859	if (!chan->set_request_count)
 860		return -ENXIO;
 861
 862	/* we set the controller burst size depending on direction */
 863	if (config->direction == DMA_MEM_TO_DEV)
 864		size = config->dst_addr_width * config->dst_maxburst;
 865	else
 866		size = config->src_addr_width * config->src_maxburst;
 867
 868	chan->set_request_count(chan, size);
 869	return 0;
 870}
 871
 872
 873/**
 874 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
 875 * @chan : Freescale DMA channel
 876 */
 877static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
 878{
 879	struct fsldma_chan *chan = to_fsl_chan(dchan);
 880
 881	spin_lock_bh(&chan->desc_lock);
 882	fsl_chan_xfer_ld_queue(chan);
 883	spin_unlock_bh(&chan->desc_lock);
 884}
 885
 886/**
 887 * fsl_tx_status - Determine the DMA status
 888 * @chan : Freescale DMA channel
 889 */
 890static enum dma_status fsl_tx_status(struct dma_chan *dchan,
 891					dma_cookie_t cookie,
 892					struct dma_tx_state *txstate)
 893{
 894	struct fsldma_chan *chan = to_fsl_chan(dchan);
 895	enum dma_status ret;
 896
 897	ret = dma_cookie_status(dchan, cookie, txstate);
 898	if (ret == DMA_COMPLETE)
 899		return ret;
 900
 901	spin_lock_bh(&chan->desc_lock);
 902	fsldma_cleanup_descriptors(chan);
 903	spin_unlock_bh(&chan->desc_lock);
 904
 905	return dma_cookie_status(dchan, cookie, txstate);
 906}
 907
 908/*----------------------------------------------------------------------------*/
 909/* Interrupt Handling                                                         */
 910/*----------------------------------------------------------------------------*/
 911
 912static irqreturn_t fsldma_chan_irq(int irq, void *data)
 913{
 914	struct fsldma_chan *chan = data;
 915	u32 stat;
 916
 917	/* save and clear the status register */
 918	stat = get_sr(chan);
 919	set_sr(chan, stat);
 920	chan_dbg(chan, "irq: stat = 0x%x\n", stat);
 921
 922	/* check that this was really our device */
 923	stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
 924	if (!stat)
 925		return IRQ_NONE;
 926
 927	if (stat & FSL_DMA_SR_TE)
 928		chan_err(chan, "Transfer Error!\n");
 929
 930	/*
 931	 * Programming Error
 932	 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
 933	 * trigger a PE interrupt.
 934	 */
 935	if (stat & FSL_DMA_SR_PE) {
 936		chan_dbg(chan, "irq: Programming Error INT\n");
 937		stat &= ~FSL_DMA_SR_PE;
 938		if (get_bcr(chan) != 0)
 939			chan_err(chan, "Programming Error!\n");
 940	}
 941
 942	/*
 943	 * For MPC8349, EOCDI event need to update cookie
 944	 * and start the next transfer if it exist.
 945	 */
 946	if (stat & FSL_DMA_SR_EOCDI) {
 947		chan_dbg(chan, "irq: End-of-Chain link INT\n");
 948		stat &= ~FSL_DMA_SR_EOCDI;
 949	}
 950
 951	/*
 952	 * If it current transfer is the end-of-transfer,
 953	 * we should clear the Channel Start bit for
 954	 * prepare next transfer.
 955	 */
 956	if (stat & FSL_DMA_SR_EOLNI) {
 957		chan_dbg(chan, "irq: End-of-link INT\n");
 958		stat &= ~FSL_DMA_SR_EOLNI;
 959	}
 960
 961	/* check that the DMA controller is really idle */
 962	if (!dma_is_idle(chan))
 963		chan_err(chan, "irq: controller not idle!\n");
 964
 965	/* check that we handled all of the bits */
 966	if (stat)
 967		chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
 968
 969	/*
 970	 * Schedule the tasklet to handle all cleanup of the current
 971	 * transaction. It will start a new transaction if there is
 972	 * one pending.
 973	 */
 974	tasklet_schedule(&chan->tasklet);
 975	chan_dbg(chan, "irq: Exit\n");
 976	return IRQ_HANDLED;
 977}
 978
 979static void dma_do_tasklet(unsigned long data)
 980{
 981	struct fsldma_chan *chan = (struct fsldma_chan *)data;
 982
 983	chan_dbg(chan, "tasklet entry\n");
 984
 985	spin_lock(&chan->desc_lock);
 986
 987	/* the hardware is now idle and ready for more */
 988	chan->idle = true;
 989
 990	/* Run all cleanup for descriptors which have been completed */
 991	fsldma_cleanup_descriptors(chan);
 992
 993	spin_unlock(&chan->desc_lock);
 994
 995	chan_dbg(chan, "tasklet exit\n");
 996}
 997
 998static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
 999{
1000	struct fsldma_device *fdev = data;
1001	struct fsldma_chan *chan;
1002	unsigned int handled = 0;
1003	u32 gsr, mask;
1004	int i;
1005
1006	gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1007						   : in_le32(fdev->regs);
1008	mask = 0xff000000;
1009	dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1010
1011	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1012		chan = fdev->chan[i];
1013		if (!chan)
1014			continue;
1015
1016		if (gsr & mask) {
1017			dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1018			fsldma_chan_irq(irq, chan);
1019			handled++;
1020		}
1021
1022		gsr &= ~mask;
1023		mask >>= 8;
1024	}
1025
1026	return IRQ_RETVAL(handled);
1027}
1028
1029static void fsldma_free_irqs(struct fsldma_device *fdev)
1030{
1031	struct fsldma_chan *chan;
1032	int i;
1033
1034	if (fdev->irq) {
1035		dev_dbg(fdev->dev, "free per-controller IRQ\n");
1036		free_irq(fdev->irq, fdev);
1037		return;
1038	}
1039
1040	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1041		chan = fdev->chan[i];
1042		if (chan && chan->irq) {
1043			chan_dbg(chan, "free per-channel IRQ\n");
1044			free_irq(chan->irq, chan);
1045		}
1046	}
1047}
1048
1049static int fsldma_request_irqs(struct fsldma_device *fdev)
1050{
1051	struct fsldma_chan *chan;
1052	int ret;
1053	int i;
1054
1055	/* if we have a per-controller IRQ, use that */
1056	if (fdev->irq) {
1057		dev_dbg(fdev->dev, "request per-controller IRQ\n");
1058		ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1059				  "fsldma-controller", fdev);
1060		return ret;
1061	}
1062
1063	/* no per-controller IRQ, use the per-channel IRQs */
1064	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1065		chan = fdev->chan[i];
1066		if (!chan)
1067			continue;
1068
1069		if (!chan->irq) {
1070			chan_err(chan, "interrupts property missing in device tree\n");
1071			ret = -ENODEV;
1072			goto out_unwind;
1073		}
1074
1075		chan_dbg(chan, "request per-channel IRQ\n");
1076		ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1077				  "fsldma-chan", chan);
1078		if (ret) {
1079			chan_err(chan, "unable to request per-channel IRQ\n");
1080			goto out_unwind;
1081		}
1082	}
1083
1084	return 0;
1085
1086out_unwind:
1087	for (/* none */; i >= 0; i--) {
1088		chan = fdev->chan[i];
1089		if (!chan)
1090			continue;
1091
1092		if (!chan->irq)
1093			continue;
1094
1095		free_irq(chan->irq, chan);
1096	}
1097
1098	return ret;
1099}
1100
1101/*----------------------------------------------------------------------------*/
1102/* OpenFirmware Subsystem                                                     */
1103/*----------------------------------------------------------------------------*/
1104
1105static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1106	struct device_node *node, u32 feature, const char *compatible)
1107{
1108	struct fsldma_chan *chan;
1109	struct resource res;
1110	int err;
1111
1112	/* alloc channel */
1113	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1114	if (!chan) {
1115		err = -ENOMEM;
1116		goto out_return;
1117	}
1118
1119	/* ioremap registers for use */
1120	chan->regs = of_iomap(node, 0);
1121	if (!chan->regs) {
1122		dev_err(fdev->dev, "unable to ioremap registers\n");
1123		err = -ENOMEM;
1124		goto out_free_chan;
1125	}
1126
1127	err = of_address_to_resource(node, 0, &res);
1128	if (err) {
1129		dev_err(fdev->dev, "unable to find 'reg' property\n");
1130		goto out_iounmap_regs;
1131	}
1132
1133	chan->feature = feature;
1134	if (!fdev->feature)
1135		fdev->feature = chan->feature;
1136
1137	/*
1138	 * If the DMA device's feature is different than the feature
1139	 * of its channels, report the bug
1140	 */
1141	WARN_ON(fdev->feature != chan->feature);
1142
1143	chan->dev = fdev->dev;
1144	chan->id = (res.start & 0xfff) < 0x300 ?
1145		   ((res.start - 0x100) & 0xfff) >> 7 :
1146		   ((res.start - 0x200) & 0xfff) >> 7;
1147	if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1148		dev_err(fdev->dev, "too many channels for device\n");
1149		err = -EINVAL;
1150		goto out_iounmap_regs;
1151	}
1152
1153	fdev->chan[chan->id] = chan;
1154	tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1155	snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1156
1157	/* Initialize the channel */
1158	dma_init(chan);
1159
1160	/* Clear cdar registers */
1161	set_cdar(chan, 0);
1162
1163	switch (chan->feature & FSL_DMA_IP_MASK) {
1164	case FSL_DMA_IP_85XX:
1165		chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1166		fallthrough;
1167	case FSL_DMA_IP_83XX:
1168		chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1169		chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1170		chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1171		chan->set_request_count = fsl_chan_set_request_count;
1172	}
1173
1174	spin_lock_init(&chan->desc_lock);
1175	INIT_LIST_HEAD(&chan->ld_pending);
1176	INIT_LIST_HEAD(&chan->ld_running);
1177	INIT_LIST_HEAD(&chan->ld_completed);
1178	chan->idle = true;
1179#ifdef CONFIG_PM
1180	chan->pm_state = RUNNING;
1181#endif
1182
1183	chan->common.device = &fdev->common;
1184	dma_cookie_init(&chan->common);
1185
1186	/* find the IRQ line, if it exists in the device tree */
1187	chan->irq = irq_of_parse_and_map(node, 0);
1188
1189	/* Add the channel to DMA device channel list */
1190	list_add_tail(&chan->common.device_node, &fdev->common.channels);
1191
1192	dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1193		 chan->irq ? chan->irq : fdev->irq);
1194
1195	return 0;
1196
1197out_iounmap_regs:
1198	iounmap(chan->regs);
1199out_free_chan:
1200	kfree(chan);
1201out_return:
1202	return err;
1203}
1204
1205static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1206{
1207	irq_dispose_mapping(chan->irq);
1208	list_del(&chan->common.device_node);
1209	iounmap(chan->regs);
1210	kfree(chan);
1211}
1212
1213static int fsldma_of_probe(struct platform_device *op)
1214{
1215	struct fsldma_device *fdev;
1216	struct device_node *child;
1217	int err;
1218
1219	fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1220	if (!fdev) {
1221		err = -ENOMEM;
1222		goto out_return;
1223	}
1224
1225	fdev->dev = &op->dev;
1226	INIT_LIST_HEAD(&fdev->common.channels);
1227
1228	/* ioremap the registers for use */
1229	fdev->regs = of_iomap(op->dev.of_node, 0);
1230	if (!fdev->regs) {
1231		dev_err(&op->dev, "unable to ioremap registers\n");
1232		err = -ENOMEM;
1233		goto out_free;
1234	}
1235
1236	/* map the channel IRQ if it exists, but don't hookup the handler yet */
1237	fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1238
1239	dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1240	dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1241	fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1242	fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1243	fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1244	fdev->common.device_tx_status = fsl_tx_status;
1245	fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1246	fdev->common.device_config = fsl_dma_device_config;
1247	fdev->common.device_terminate_all = fsl_dma_device_terminate_all;
1248	fdev->common.dev = &op->dev;
1249
1250	fdev->common.src_addr_widths = FSL_DMA_BUSWIDTHS;
1251	fdev->common.dst_addr_widths = FSL_DMA_BUSWIDTHS;
1252	fdev->common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1253	fdev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1254
1255	dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1256
1257	platform_set_drvdata(op, fdev);
1258
1259	/*
1260	 * We cannot use of_platform_bus_probe() because there is no
1261	 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1262	 * channel object.
1263	 */
1264	for_each_child_of_node(op->dev.of_node, child) {
1265		if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1266			fsl_dma_chan_probe(fdev, child,
1267				FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1268				"fsl,eloplus-dma-channel");
1269		}
1270
1271		if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1272			fsl_dma_chan_probe(fdev, child,
1273				FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1274				"fsl,elo-dma-channel");
1275		}
1276	}
1277
1278	/*
1279	 * Hookup the IRQ handler(s)
1280	 *
1281	 * If we have a per-controller interrupt, we prefer that to the
1282	 * per-channel interrupts to reduce the number of shared interrupt
1283	 * handlers on the same IRQ line
1284	 */
1285	err = fsldma_request_irqs(fdev);
1286	if (err) {
1287		dev_err(fdev->dev, "unable to request IRQs\n");
1288		goto out_free_fdev;
1289	}
1290
1291	dma_async_device_register(&fdev->common);
1292	return 0;
1293
1294out_free_fdev:
1295	irq_dispose_mapping(fdev->irq);
1296	iounmap(fdev->regs);
1297out_free:
1298	kfree(fdev);
1299out_return:
1300	return err;
1301}
1302
1303static int fsldma_of_remove(struct platform_device *op)
1304{
1305	struct fsldma_device *fdev;
1306	unsigned int i;
1307
1308	fdev = platform_get_drvdata(op);
1309	dma_async_device_unregister(&fdev->common);
1310
1311	fsldma_free_irqs(fdev);
1312
1313	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1314		if (fdev->chan[i])
1315			fsl_dma_chan_remove(fdev->chan[i]);
1316	}
1317
1318	iounmap(fdev->regs);
1319	kfree(fdev);
1320
1321	return 0;
1322}
1323
1324#ifdef CONFIG_PM
1325static int fsldma_suspend_late(struct device *dev)
1326{
1327	struct fsldma_device *fdev = dev_get_drvdata(dev);
1328	struct fsldma_chan *chan;
1329	int i;
1330
1331	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1332		chan = fdev->chan[i];
1333		if (!chan)
1334			continue;
1335
1336		spin_lock_bh(&chan->desc_lock);
1337		if (unlikely(!chan->idle))
1338			goto out;
1339		chan->regs_save.mr = get_mr(chan);
1340		chan->pm_state = SUSPENDED;
1341		spin_unlock_bh(&chan->desc_lock);
1342	}
1343	return 0;
1344
1345out:
1346	for (; i >= 0; i--) {
1347		chan = fdev->chan[i];
1348		if (!chan)
1349			continue;
1350		chan->pm_state = RUNNING;
1351		spin_unlock_bh(&chan->desc_lock);
1352	}
1353	return -EBUSY;
1354}
1355
1356static int fsldma_resume_early(struct device *dev)
1357{
1358	struct fsldma_device *fdev = dev_get_drvdata(dev);
1359	struct fsldma_chan *chan;
1360	u32 mode;
1361	int i;
1362
1363	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1364		chan = fdev->chan[i];
1365		if (!chan)
1366			continue;
1367
1368		spin_lock_bh(&chan->desc_lock);
1369		mode = chan->regs_save.mr
1370			& ~FSL_DMA_MR_CS & ~FSL_DMA_MR_CC & ~FSL_DMA_MR_CA;
1371		set_mr(chan, mode);
1372		chan->pm_state = RUNNING;
1373		spin_unlock_bh(&chan->desc_lock);
1374	}
1375
1376	return 0;
1377}
1378
1379static const struct dev_pm_ops fsldma_pm_ops = {
1380	.suspend_late	= fsldma_suspend_late,
1381	.resume_early	= fsldma_resume_early,
1382};
1383#endif
1384
1385static const struct of_device_id fsldma_of_ids[] = {
1386	{ .compatible = "fsl,elo3-dma", },
1387	{ .compatible = "fsl,eloplus-dma", },
1388	{ .compatible = "fsl,elo-dma", },
1389	{}
1390};
1391MODULE_DEVICE_TABLE(of, fsldma_of_ids);
1392
1393static struct platform_driver fsldma_of_driver = {
1394	.driver = {
1395		.name = "fsl-elo-dma",
1396		.of_match_table = fsldma_of_ids,
1397#ifdef CONFIG_PM
1398		.pm = &fsldma_pm_ops,
1399#endif
1400	},
1401	.probe = fsldma_of_probe,
1402	.remove = fsldma_of_remove,
1403};
1404
1405/*----------------------------------------------------------------------------*/
1406/* Module Init / Exit                                                         */
1407/*----------------------------------------------------------------------------*/
1408
1409static __init int fsldma_init(void)
1410{
1411	pr_info("Freescale Elo series DMA driver\n");
1412	return platform_driver_register(&fsldma_of_driver);
1413}
1414
1415static void __exit fsldma_exit(void)
1416{
1417	platform_driver_unregister(&fsldma_of_driver);
1418}
1419
1420subsys_initcall(fsldma_init);
1421module_exit(fsldma_exit);
1422
1423MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1424MODULE_LICENSE("GPL");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Freescale MPC85xx, MPC83xx DMA Engine support
   4 *
   5 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
   6 *
   7 * Author:
   8 *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
   9 *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
  10 *
  11 * Description:
  12 *   DMA engine driver for Freescale MPC8540 DMA controller, which is
  13 *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
  14 *   The support for MPC8349 DMA controller is also added.
  15 *
  16 * This driver instructs the DMA controller to issue the PCI Read Multiple
  17 * command for PCI read operations, instead of using the default PCI Read Line
  18 * command. Please be aware that this setting may result in read pre-fetching
  19 * on some platforms.
  20 */
  21
  22#include <linux/init.h>
  23#include <linux/module.h>
  24#include <linux/pci.h>
  25#include <linux/slab.h>
  26#include <linux/interrupt.h>
  27#include <linux/dmaengine.h>
  28#include <linux/delay.h>
  29#include <linux/dma-mapping.h>
  30#include <linux/dmapool.h>
  31#include <linux/of_address.h>
  32#include <linux/of_irq.h>
  33#include <linux/of_platform.h>
  34#include <linux/fsldma.h>
  35#include "dmaengine.h"
  36#include "fsldma.h"
  37
  38#define chan_dbg(chan, fmt, arg...)					\
  39	dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
  40#define chan_err(chan, fmt, arg...)					\
  41	dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
  42
  43static const char msg_ld_oom[] = "No free memory for link descriptor";
  44
  45/*
  46 * Register Helpers
  47 */
  48
  49static void set_sr(struct fsldma_chan *chan, u32 val)
  50{
  51	FSL_DMA_OUT(chan, &chan->regs->sr, val, 32);
  52}
  53
  54static u32 get_sr(struct fsldma_chan *chan)
  55{
  56	return FSL_DMA_IN(chan, &chan->regs->sr, 32);
  57}
  58
  59static void set_mr(struct fsldma_chan *chan, u32 val)
  60{
  61	FSL_DMA_OUT(chan, &chan->regs->mr, val, 32);
  62}
  63
  64static u32 get_mr(struct fsldma_chan *chan)
  65{
  66	return FSL_DMA_IN(chan, &chan->regs->mr, 32);
  67}
  68
  69static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
  70{
  71	FSL_DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
  72}
  73
  74static dma_addr_t get_cdar(struct fsldma_chan *chan)
  75{
  76	return FSL_DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
  77}
  78
  79static void set_bcr(struct fsldma_chan *chan, u32 val)
  80{
  81	FSL_DMA_OUT(chan, &chan->regs->bcr, val, 32);
  82}
  83
  84static u32 get_bcr(struct fsldma_chan *chan)
  85{
  86	return FSL_DMA_IN(chan, &chan->regs->bcr, 32);
  87}
  88
  89/*
  90 * Descriptor Helpers
  91 */
  92
  93static void set_desc_cnt(struct fsldma_chan *chan,
  94				struct fsl_dma_ld_hw *hw, u32 count)
  95{
  96	hw->count = CPU_TO_DMA(chan, count, 32);
  97}
  98
  99static void set_desc_src(struct fsldma_chan *chan,
 100			 struct fsl_dma_ld_hw *hw, dma_addr_t src)
 101{
 102	u64 snoop_bits;
 103
 104	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
 105		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
 106	hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
 107}
 108
 109static void set_desc_dst(struct fsldma_chan *chan,
 110			 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
 111{
 112	u64 snoop_bits;
 113
 114	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
 115		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
 116	hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
 117}
 118
 119static void set_desc_next(struct fsldma_chan *chan,
 120			  struct fsl_dma_ld_hw *hw, dma_addr_t next)
 121{
 122	u64 snoop_bits;
 123
 124	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
 125		? FSL_DMA_SNEN : 0;
 126	hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
 127}
 128
 129static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
 130{
 131	u64 snoop_bits;
 132
 133	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
 134		? FSL_DMA_SNEN : 0;
 135
 136	desc->hw.next_ln_addr = CPU_TO_DMA(chan,
 137		DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
 138			| snoop_bits, 64);
 139}
 140
 141/*
 142 * DMA Engine Hardware Control Helpers
 143 */
 144
 145static void dma_init(struct fsldma_chan *chan)
 146{
 147	/* Reset the channel */
 148	set_mr(chan, 0);
 149
 150	switch (chan->feature & FSL_DMA_IP_MASK) {
 151	case FSL_DMA_IP_85XX:
 152		/* Set the channel to below modes:
 153		 * EIE - Error interrupt enable
 154		 * EOLNIE - End of links interrupt enable
 155		 * BWC - Bandwidth sharing among channels
 156		 */
 157		set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE
 158			| FSL_DMA_MR_EOLNIE);
 159		break;
 160	case FSL_DMA_IP_83XX:
 161		/* Set the channel to below modes:
 162		 * EOTIE - End-of-transfer interrupt enable
 163		 * PRC_RM - PCI read multiple
 164		 */
 165		set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM);
 166		break;
 167	}
 168}
 169
 170static int dma_is_idle(struct fsldma_chan *chan)
 171{
 172	u32 sr = get_sr(chan);
 173	return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
 174}
 175
 176/*
 177 * Start the DMA controller
 178 *
 179 * Preconditions:
 180 * - the CDAR register must point to the start descriptor
 181 * - the MRn[CS] bit must be cleared
 182 */
 183static void dma_start(struct fsldma_chan *chan)
 184{
 185	u32 mode;
 186
 187	mode = get_mr(chan);
 188
 189	if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
 190		set_bcr(chan, 0);
 191		mode |= FSL_DMA_MR_EMP_EN;
 192	} else {
 193		mode &= ~FSL_DMA_MR_EMP_EN;
 194	}
 195
 196	if (chan->feature & FSL_DMA_CHAN_START_EXT) {
 197		mode |= FSL_DMA_MR_EMS_EN;
 198	} else {
 199		mode &= ~FSL_DMA_MR_EMS_EN;
 200		mode |= FSL_DMA_MR_CS;
 201	}
 202
 203	set_mr(chan, mode);
 204}
 205
 206static void dma_halt(struct fsldma_chan *chan)
 207{
 208	u32 mode;
 209	int i;
 210
 211	/* read the mode register */
 212	mode = get_mr(chan);
 213
 214	/*
 215	 * The 85xx controller supports channel abort, which will stop
 216	 * the current transfer. On 83xx, this bit is the transfer error
 217	 * mask bit, which should not be changed.
 218	 */
 219	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
 220		mode |= FSL_DMA_MR_CA;
 221		set_mr(chan, mode);
 222
 223		mode &= ~FSL_DMA_MR_CA;
 224	}
 225
 226	/* stop the DMA controller */
 227	mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
 228	set_mr(chan, mode);
 229
 230	/* wait for the DMA controller to become idle */
 231	for (i = 0; i < 100; i++) {
 232		if (dma_is_idle(chan))
 233			return;
 234
 235		udelay(10);
 236	}
 237
 238	if (!dma_is_idle(chan))
 239		chan_err(chan, "DMA halt timeout!\n");
 240}
 241
 242/**
 243 * fsl_chan_set_src_loop_size - Set source address hold transfer size
 244 * @chan : Freescale DMA channel
 245 * @size     : Address loop size, 0 for disable loop
 246 *
 247 * The set source address hold transfer size. The source
 248 * address hold or loop transfer size is when the DMA transfer
 249 * data from source address (SA), if the loop size is 4, the DMA will
 250 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
 251 * SA + 1 ... and so on.
 252 */
 253static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
 254{
 255	u32 mode;
 256
 257	mode = get_mr(chan);
 258
 259	switch (size) {
 260	case 0:
 261		mode &= ~FSL_DMA_MR_SAHE;
 262		break;
 263	case 1:
 264	case 2:
 265	case 4:
 266	case 8:
 267		mode &= ~FSL_DMA_MR_SAHTS_MASK;
 268		mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
 269		break;
 270	}
 271
 272	set_mr(chan, mode);
 273}
 274
 275/**
 276 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
 277 * @chan : Freescale DMA channel
 278 * @size     : Address loop size, 0 for disable loop
 279 *
 280 * The set destination address hold transfer size. The destination
 281 * address hold or loop transfer size is when the DMA transfer
 282 * data to destination address (TA), if the loop size is 4, the DMA will
 283 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
 284 * TA + 1 ... and so on.
 285 */
 286static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
 287{
 288	u32 mode;
 289
 290	mode = get_mr(chan);
 291
 292	switch (size) {
 293	case 0:
 294		mode &= ~FSL_DMA_MR_DAHE;
 295		break;
 296	case 1:
 297	case 2:
 298	case 4:
 299	case 8:
 300		mode &= ~FSL_DMA_MR_DAHTS_MASK;
 301		mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
 302		break;
 303	}
 304
 305	set_mr(chan, mode);
 306}
 307
 308/**
 309 * fsl_chan_set_request_count - Set DMA Request Count for external control
 310 * @chan : Freescale DMA channel
 311 * @size     : Number of bytes to transfer in a single request
 312 *
 313 * The Freescale DMA channel can be controlled by the external signal DREQ#.
 314 * The DMA request count is how many bytes are allowed to transfer before
 315 * pausing the channel, after which a new assertion of DREQ# resumes channel
 316 * operation.
 317 *
 318 * A size of 0 disables external pause control. The maximum size is 1024.
 319 */
 320static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
 321{
 322	u32 mode;
 323
 324	BUG_ON(size > 1024);
 325
 326	mode = get_mr(chan);
 327	mode &= ~FSL_DMA_MR_BWC_MASK;
 328	mode |= (__ilog2(size) << 24) & FSL_DMA_MR_BWC_MASK;
 329
 330	set_mr(chan, mode);
 331}
 332
 333/**
 334 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
 335 * @chan : Freescale DMA channel
 336 * @enable   : 0 is disabled, 1 is enabled.
 337 *
 338 * The Freescale DMA channel can be controlled by the external signal DREQ#.
 339 * The DMA Request Count feature should be used in addition to this feature
 340 * to set the number of bytes to transfer before pausing the channel.
 341 */
 342static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
 343{
 344	if (enable)
 345		chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
 346	else
 347		chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
 348}
 349
 350/**
 351 * fsl_chan_toggle_ext_start - Toggle channel external start status
 352 * @chan : Freescale DMA channel
 353 * @enable   : 0 is disabled, 1 is enabled.
 354 *
 355 * If enable the external start, the channel can be started by an
 356 * external DMA start pin. So the dma_start() does not start the
 357 * transfer immediately. The DMA channel will wait for the
 358 * control pin asserted.
 359 */
 360static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
 361{
 362	if (enable)
 363		chan->feature |= FSL_DMA_CHAN_START_EXT;
 364	else
 365		chan->feature &= ~FSL_DMA_CHAN_START_EXT;
 366}
 367
 368int fsl_dma_external_start(struct dma_chan *dchan, int enable)
 369{
 370	struct fsldma_chan *chan;
 371
 372	if (!dchan)
 373		return -EINVAL;
 374
 375	chan = to_fsl_chan(dchan);
 376
 377	fsl_chan_toggle_ext_start(chan, enable);
 378	return 0;
 379}
 380EXPORT_SYMBOL_GPL(fsl_dma_external_start);
 381
 382static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
 383{
 384	struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
 385
 386	if (list_empty(&chan->ld_pending))
 387		goto out_splice;
 388
 389	/*
 390	 * Add the hardware descriptor to the chain of hardware descriptors
 391	 * that already exists in memory.
 392	 *
 393	 * This will un-set the EOL bit of the existing transaction, and the
 394	 * last link in this transaction will become the EOL descriptor.
 395	 */
 396	set_desc_next(chan, &tail->hw, desc->async_tx.phys);
 397
 398	/*
 399	 * Add the software descriptor and all children to the list
 400	 * of pending transactions
 401	 */
 402out_splice:
 403	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
 404}
 405
 406static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
 407{
 408	struct fsldma_chan *chan = to_fsl_chan(tx->chan);
 409	struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
 410	struct fsl_desc_sw *child;
 411	dma_cookie_t cookie = -EINVAL;
 412
 413	spin_lock_bh(&chan->desc_lock);
 414
 415#ifdef CONFIG_PM
 416	if (unlikely(chan->pm_state != RUNNING)) {
 417		chan_dbg(chan, "cannot submit due to suspend\n");
 418		spin_unlock_bh(&chan->desc_lock);
 419		return -1;
 420	}
 421#endif
 422
 423	/*
 424	 * assign cookies to all of the software descriptors
 425	 * that make up this transaction
 426	 */
 427	list_for_each_entry(child, &desc->tx_list, node) {
 428		cookie = dma_cookie_assign(&child->async_tx);
 429	}
 430
 431	/* put this transaction onto the tail of the pending queue */
 432	append_ld_queue(chan, desc);
 433
 434	spin_unlock_bh(&chan->desc_lock);
 435
 436	return cookie;
 437}
 438
 439/**
 440 * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
 441 * @chan : Freescale DMA channel
 442 * @desc: descriptor to be freed
 443 */
 444static void fsl_dma_free_descriptor(struct fsldma_chan *chan,
 445		struct fsl_desc_sw *desc)
 446{
 447	list_del(&desc->node);
 448	chan_dbg(chan, "LD %p free\n", desc);
 449	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
 450}
 451
 452/**
 453 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
 454 * @chan : Freescale DMA channel
 455 *
 456 * Return - The descriptor allocated. NULL for failed.
 457 */
 458static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
 459{
 460	struct fsl_desc_sw *desc;
 461	dma_addr_t pdesc;
 462
 463	desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
 464	if (!desc) {
 465		chan_dbg(chan, "out of memory for link descriptor\n");
 466		return NULL;
 467	}
 468
 469	INIT_LIST_HEAD(&desc->tx_list);
 470	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
 471	desc->async_tx.tx_submit = fsl_dma_tx_submit;
 472	desc->async_tx.phys = pdesc;
 473
 474	chan_dbg(chan, "LD %p allocated\n", desc);
 475
 476	return desc;
 477}
 478
 479/**
 480 * fsldma_clean_completed_descriptor - free all descriptors which
 481 * has been completed and acked
 482 * @chan: Freescale DMA channel
 483 *
 484 * This function is used on all completed and acked descriptors.
 485 * All descriptors should only be freed in this function.
 486 */
 487static void fsldma_clean_completed_descriptor(struct fsldma_chan *chan)
 488{
 489	struct fsl_desc_sw *desc, *_desc;
 490
 491	/* Run the callback for each descriptor, in order */
 492	list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node)
 493		if (async_tx_test_ack(&desc->async_tx))
 494			fsl_dma_free_descriptor(chan, desc);
 495}
 496
 497/**
 498 * fsldma_run_tx_complete_actions - cleanup a single link descriptor
 499 * @chan: Freescale DMA channel
 500 * @desc: descriptor to cleanup and free
 501 * @cookie: Freescale DMA transaction identifier
 502 *
 503 * This function is used on a descriptor which has been executed by the DMA
 504 * controller. It will run any callbacks, submit any dependencies.
 505 */
 506static dma_cookie_t fsldma_run_tx_complete_actions(struct fsldma_chan *chan,
 507		struct fsl_desc_sw *desc, dma_cookie_t cookie)
 508{
 509	struct dma_async_tx_descriptor *txd = &desc->async_tx;
 510	dma_cookie_t ret = cookie;
 511
 512	BUG_ON(txd->cookie < 0);
 513
 514	if (txd->cookie > 0) {
 515		ret = txd->cookie;
 516
 517		dma_descriptor_unmap(txd);
 518		/* Run the link descriptor callback function */
 519		dmaengine_desc_get_callback_invoke(txd, NULL);
 520	}
 521
 522	/* Run any dependencies */
 523	dma_run_dependencies(txd);
 524
 525	return ret;
 526}
 527
 528/**
 529 * fsldma_clean_running_descriptor - move the completed descriptor from
 530 * ld_running to ld_completed
 531 * @chan: Freescale DMA channel
 532 * @desc: the descriptor which is completed
 533 *
 534 * Free the descriptor directly if acked by async_tx api, or move it to
 535 * queue ld_completed.
 536 */
 537static void fsldma_clean_running_descriptor(struct fsldma_chan *chan,
 538		struct fsl_desc_sw *desc)
 539{
 540	/* Remove from the list of transactions */
 541	list_del(&desc->node);
 542
 543	/*
 544	 * the client is allowed to attach dependent operations
 545	 * until 'ack' is set
 546	 */
 547	if (!async_tx_test_ack(&desc->async_tx)) {
 548		/*
 549		 * Move this descriptor to the list of descriptors which is
 550		 * completed, but still awaiting the 'ack' bit to be set.
 551		 */
 552		list_add_tail(&desc->node, &chan->ld_completed);
 553		return;
 554	}
 555
 556	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
 557}
 558
 559/**
 560 * fsl_chan_xfer_ld_queue - transfer any pending transactions
 561 * @chan : Freescale DMA channel
 562 *
 563 * HARDWARE STATE: idle
 564 * LOCKING: must hold chan->desc_lock
 565 */
 566static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
 567{
 568	struct fsl_desc_sw *desc;
 569
 570	/*
 571	 * If the list of pending descriptors is empty, then we
 572	 * don't need to do any work at all
 573	 */
 574	if (list_empty(&chan->ld_pending)) {
 575		chan_dbg(chan, "no pending LDs\n");
 576		return;
 577	}
 578
 579	/*
 580	 * The DMA controller is not idle, which means that the interrupt
 581	 * handler will start any queued transactions when it runs after
 582	 * this transaction finishes
 583	 */
 584	if (!chan->idle) {
 585		chan_dbg(chan, "DMA controller still busy\n");
 586		return;
 587	}
 588
 589	/*
 590	 * If there are some link descriptors which have not been
 591	 * transferred, we need to start the controller
 592	 */
 593
 594	/*
 595	 * Move all elements from the queue of pending transactions
 596	 * onto the list of running transactions
 597	 */
 598	chan_dbg(chan, "idle, starting controller\n");
 599	desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
 600	list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
 601
 602	/*
 603	 * The 85xx DMA controller doesn't clear the channel start bit
 604	 * automatically at the end of a transfer. Therefore we must clear
 605	 * it in software before starting the transfer.
 606	 */
 607	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
 608		u32 mode;
 609
 610		mode = get_mr(chan);
 611		mode &= ~FSL_DMA_MR_CS;
 612		set_mr(chan, mode);
 613	}
 614
 615	/*
 616	 * Program the descriptor's address into the DMA controller,
 617	 * then start the DMA transaction
 618	 */
 619	set_cdar(chan, desc->async_tx.phys);
 620	get_cdar(chan);
 621
 622	dma_start(chan);
 623	chan->idle = false;
 624}
 625
 626/**
 627 * fsldma_cleanup_descriptors - cleanup link descriptors which are completed
 628 * and move them to ld_completed to free until flag 'ack' is set
 629 * @chan: Freescale DMA channel
 630 *
 631 * This function is used on descriptors which have been executed by the DMA
 632 * controller. It will run any callbacks, submit any dependencies, then
 633 * free these descriptors if flag 'ack' is set.
 634 */
 635static void fsldma_cleanup_descriptors(struct fsldma_chan *chan)
 636{
 637	struct fsl_desc_sw *desc, *_desc;
 638	dma_cookie_t cookie = 0;
 639	dma_addr_t curr_phys = get_cdar(chan);
 640	int seen_current = 0;
 641
 642	fsldma_clean_completed_descriptor(chan);
 643
 644	/* Run the callback for each descriptor, in order */
 645	list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
 646		/*
 647		 * do not advance past the current descriptor loaded into the
 648		 * hardware channel, subsequent descriptors are either in
 649		 * process or have not been submitted
 650		 */
 651		if (seen_current)
 652			break;
 653
 654		/*
 655		 * stop the search if we reach the current descriptor and the
 656		 * channel is busy
 657		 */
 658		if (desc->async_tx.phys == curr_phys) {
 659			seen_current = 1;
 660			if (!dma_is_idle(chan))
 661				break;
 662		}
 663
 664		cookie = fsldma_run_tx_complete_actions(chan, desc, cookie);
 665
 666		fsldma_clean_running_descriptor(chan, desc);
 667	}
 668
 669	/*
 670	 * Start any pending transactions automatically
 671	 *
 672	 * In the ideal case, we keep the DMA controller busy while we go
 673	 * ahead and free the descriptors below.
 674	 */
 675	fsl_chan_xfer_ld_queue(chan);
 676
 677	if (cookie > 0)
 678		chan->common.completed_cookie = cookie;
 679}
 680
 681/**
 682 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
 683 * @chan : Freescale DMA channel
 684 *
 685 * This function will create a dma pool for descriptor allocation.
 686 *
 687 * Return - The number of descriptors allocated.
 688 */
 689static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
 690{
 691	struct fsldma_chan *chan = to_fsl_chan(dchan);
 692
 693	/* Has this channel already been allocated? */
 694	if (chan->desc_pool)
 695		return 1;
 696
 697	/*
 698	 * We need the descriptor to be aligned to 32bytes
 699	 * for meeting FSL DMA specification requirement.
 700	 */
 701	chan->desc_pool = dma_pool_create(chan->name, chan->dev,
 702					  sizeof(struct fsl_desc_sw),
 703					  __alignof__(struct fsl_desc_sw), 0);
 704	if (!chan->desc_pool) {
 705		chan_err(chan, "unable to allocate descriptor pool\n");
 706		return -ENOMEM;
 707	}
 708
 709	/* there is at least one descriptor free to be allocated */
 710	return 1;
 711}
 712
 713/**
 714 * fsldma_free_desc_list - Free all descriptors in a queue
 715 * @chan: Freescae DMA channel
 716 * @list: the list to free
 717 *
 718 * LOCKING: must hold chan->desc_lock
 719 */
 720static void fsldma_free_desc_list(struct fsldma_chan *chan,
 721				  struct list_head *list)
 722{
 723	struct fsl_desc_sw *desc, *_desc;
 724
 725	list_for_each_entry_safe(desc, _desc, list, node)
 726		fsl_dma_free_descriptor(chan, desc);
 727}
 728
 729static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
 730					  struct list_head *list)
 731{
 732	struct fsl_desc_sw *desc, *_desc;
 733
 734	list_for_each_entry_safe_reverse(desc, _desc, list, node)
 735		fsl_dma_free_descriptor(chan, desc);
 736}
 737
 738/**
 739 * fsl_dma_free_chan_resources - Free all resources of the channel.
 740 * @chan : Freescale DMA channel
 741 */
 742static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
 743{
 744	struct fsldma_chan *chan = to_fsl_chan(dchan);
 745
 746	chan_dbg(chan, "free all channel resources\n");
 747	spin_lock_bh(&chan->desc_lock);
 748	fsldma_cleanup_descriptors(chan);
 749	fsldma_free_desc_list(chan, &chan->ld_pending);
 750	fsldma_free_desc_list(chan, &chan->ld_running);
 751	fsldma_free_desc_list(chan, &chan->ld_completed);
 752	spin_unlock_bh(&chan->desc_lock);
 753
 754	dma_pool_destroy(chan->desc_pool);
 755	chan->desc_pool = NULL;
 756}
 757
 758static struct dma_async_tx_descriptor *
 759fsl_dma_prep_memcpy(struct dma_chan *dchan,
 760	dma_addr_t dma_dst, dma_addr_t dma_src,
 761	size_t len, unsigned long flags)
 762{
 763	struct fsldma_chan *chan;
 764	struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
 765	size_t copy;
 766
 767	if (!dchan)
 768		return NULL;
 769
 770	if (!len)
 771		return NULL;
 772
 773	chan = to_fsl_chan(dchan);
 774
 775	do {
 776
 777		/* Allocate the link descriptor from DMA pool */
 778		new = fsl_dma_alloc_descriptor(chan);
 779		if (!new) {
 780			chan_err(chan, "%s\n", msg_ld_oom);
 781			goto fail;
 782		}
 783
 784		copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
 785
 786		set_desc_cnt(chan, &new->hw, copy);
 787		set_desc_src(chan, &new->hw, dma_src);
 788		set_desc_dst(chan, &new->hw, dma_dst);
 789
 790		if (!first)
 791			first = new;
 792		else
 793			set_desc_next(chan, &prev->hw, new->async_tx.phys);
 794
 795		new->async_tx.cookie = 0;
 796		async_tx_ack(&new->async_tx);
 797
 798		prev = new;
 799		len -= copy;
 800		dma_src += copy;
 801		dma_dst += copy;
 802
 803		/* Insert the link descriptor to the LD ring */
 804		list_add_tail(&new->node, &first->tx_list);
 805	} while (len);
 806
 807	new->async_tx.flags = flags; /* client is in control of this ack */
 808	new->async_tx.cookie = -EBUSY;
 809
 810	/* Set End-of-link to the last link descriptor of new list */
 811	set_ld_eol(chan, new);
 812
 813	return &first->async_tx;
 814
 815fail:
 816	if (!first)
 817		return NULL;
 818
 819	fsldma_free_desc_list_reverse(chan, &first->tx_list);
 820	return NULL;
 821}
 822
 823static int fsl_dma_device_terminate_all(struct dma_chan *dchan)
 824{
 825	struct fsldma_chan *chan;
 826
 827	if (!dchan)
 828		return -EINVAL;
 829
 830	chan = to_fsl_chan(dchan);
 831
 832	spin_lock_bh(&chan->desc_lock);
 833
 834	/* Halt the DMA engine */
 835	dma_halt(chan);
 836
 837	/* Remove and free all of the descriptors in the LD queue */
 838	fsldma_free_desc_list(chan, &chan->ld_pending);
 839	fsldma_free_desc_list(chan, &chan->ld_running);
 840	fsldma_free_desc_list(chan, &chan->ld_completed);
 841	chan->idle = true;
 842
 843	spin_unlock_bh(&chan->desc_lock);
 844	return 0;
 845}
 846
 847static int fsl_dma_device_config(struct dma_chan *dchan,
 848				 struct dma_slave_config *config)
 849{
 850	struct fsldma_chan *chan;
 851	int size;
 852
 853	if (!dchan)
 854		return -EINVAL;
 855
 856	chan = to_fsl_chan(dchan);
 857
 858	/* make sure the channel supports setting burst size */
 859	if (!chan->set_request_count)
 860		return -ENXIO;
 861
 862	/* we set the controller burst size depending on direction */
 863	if (config->direction == DMA_MEM_TO_DEV)
 864		size = config->dst_addr_width * config->dst_maxburst;
 865	else
 866		size = config->src_addr_width * config->src_maxburst;
 867
 868	chan->set_request_count(chan, size);
 869	return 0;
 870}
 871
 872
 873/**
 874 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
 875 * @chan : Freescale DMA channel
 876 */
 877static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
 878{
 879	struct fsldma_chan *chan = to_fsl_chan(dchan);
 880
 881	spin_lock_bh(&chan->desc_lock);
 882	fsl_chan_xfer_ld_queue(chan);
 883	spin_unlock_bh(&chan->desc_lock);
 884}
 885
 886/**
 887 * fsl_tx_status - Determine the DMA status
 888 * @chan : Freescale DMA channel
 889 */
 890static enum dma_status fsl_tx_status(struct dma_chan *dchan,
 891					dma_cookie_t cookie,
 892					struct dma_tx_state *txstate)
 893{
 894	struct fsldma_chan *chan = to_fsl_chan(dchan);
 895	enum dma_status ret;
 896
 897	ret = dma_cookie_status(dchan, cookie, txstate);
 898	if (ret == DMA_COMPLETE)
 899		return ret;
 900
 901	spin_lock_bh(&chan->desc_lock);
 902	fsldma_cleanup_descriptors(chan);
 903	spin_unlock_bh(&chan->desc_lock);
 904
 905	return dma_cookie_status(dchan, cookie, txstate);
 906}
 907
 908/*----------------------------------------------------------------------------*/
 909/* Interrupt Handling                                                         */
 910/*----------------------------------------------------------------------------*/
 911
 912static irqreturn_t fsldma_chan_irq(int irq, void *data)
 913{
 914	struct fsldma_chan *chan = data;
 915	u32 stat;
 916
 917	/* save and clear the status register */
 918	stat = get_sr(chan);
 919	set_sr(chan, stat);
 920	chan_dbg(chan, "irq: stat = 0x%x\n", stat);
 921
 922	/* check that this was really our device */
 923	stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
 924	if (!stat)
 925		return IRQ_NONE;
 926
 927	if (stat & FSL_DMA_SR_TE)
 928		chan_err(chan, "Transfer Error!\n");
 929
 930	/*
 931	 * Programming Error
 932	 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
 933	 * trigger a PE interrupt.
 934	 */
 935	if (stat & FSL_DMA_SR_PE) {
 936		chan_dbg(chan, "irq: Programming Error INT\n");
 937		stat &= ~FSL_DMA_SR_PE;
 938		if (get_bcr(chan) != 0)
 939			chan_err(chan, "Programming Error!\n");
 940	}
 941
 942	/*
 943	 * For MPC8349, EOCDI event need to update cookie
 944	 * and start the next transfer if it exist.
 945	 */
 946	if (stat & FSL_DMA_SR_EOCDI) {
 947		chan_dbg(chan, "irq: End-of-Chain link INT\n");
 948		stat &= ~FSL_DMA_SR_EOCDI;
 949	}
 950
 951	/*
 952	 * If it current transfer is the end-of-transfer,
 953	 * we should clear the Channel Start bit for
 954	 * prepare next transfer.
 955	 */
 956	if (stat & FSL_DMA_SR_EOLNI) {
 957		chan_dbg(chan, "irq: End-of-link INT\n");
 958		stat &= ~FSL_DMA_SR_EOLNI;
 959	}
 960
 961	/* check that the DMA controller is really idle */
 962	if (!dma_is_idle(chan))
 963		chan_err(chan, "irq: controller not idle!\n");
 964
 965	/* check that we handled all of the bits */
 966	if (stat)
 967		chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
 968
 969	/*
 970	 * Schedule the tasklet to handle all cleanup of the current
 971	 * transaction. It will start a new transaction if there is
 972	 * one pending.
 973	 */
 974	tasklet_schedule(&chan->tasklet);
 975	chan_dbg(chan, "irq: Exit\n");
 976	return IRQ_HANDLED;
 977}
 978
 979static void dma_do_tasklet(unsigned long data)
 980{
 981	struct fsldma_chan *chan = (struct fsldma_chan *)data;
 982
 983	chan_dbg(chan, "tasklet entry\n");
 984
 985	spin_lock(&chan->desc_lock);
 986
 987	/* the hardware is now idle and ready for more */
 988	chan->idle = true;
 989
 990	/* Run all cleanup for descriptors which have been completed */
 991	fsldma_cleanup_descriptors(chan);
 992
 993	spin_unlock(&chan->desc_lock);
 994
 995	chan_dbg(chan, "tasklet exit\n");
 996}
 997
 998static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
 999{
1000	struct fsldma_device *fdev = data;
1001	struct fsldma_chan *chan;
1002	unsigned int handled = 0;
1003	u32 gsr, mask;
1004	int i;
1005
1006	gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1007						   : in_le32(fdev->regs);
1008	mask = 0xff000000;
1009	dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1010
1011	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1012		chan = fdev->chan[i];
1013		if (!chan)
1014			continue;
1015
1016		if (gsr & mask) {
1017			dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1018			fsldma_chan_irq(irq, chan);
1019			handled++;
1020		}
1021
1022		gsr &= ~mask;
1023		mask >>= 8;
1024	}
1025
1026	return IRQ_RETVAL(handled);
1027}
1028
1029static void fsldma_free_irqs(struct fsldma_device *fdev)
1030{
1031	struct fsldma_chan *chan;
1032	int i;
1033
1034	if (fdev->irq) {
1035		dev_dbg(fdev->dev, "free per-controller IRQ\n");
1036		free_irq(fdev->irq, fdev);
1037		return;
1038	}
1039
1040	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1041		chan = fdev->chan[i];
1042		if (chan && chan->irq) {
1043			chan_dbg(chan, "free per-channel IRQ\n");
1044			free_irq(chan->irq, chan);
1045		}
1046	}
1047}
1048
1049static int fsldma_request_irqs(struct fsldma_device *fdev)
1050{
1051	struct fsldma_chan *chan;
1052	int ret;
1053	int i;
1054
1055	/* if we have a per-controller IRQ, use that */
1056	if (fdev->irq) {
1057		dev_dbg(fdev->dev, "request per-controller IRQ\n");
1058		ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1059				  "fsldma-controller", fdev);
1060		return ret;
1061	}
1062
1063	/* no per-controller IRQ, use the per-channel IRQs */
1064	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1065		chan = fdev->chan[i];
1066		if (!chan)
1067			continue;
1068
1069		if (!chan->irq) {
1070			chan_err(chan, "interrupts property missing in device tree\n");
1071			ret = -ENODEV;
1072			goto out_unwind;
1073		}
1074
1075		chan_dbg(chan, "request per-channel IRQ\n");
1076		ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1077				  "fsldma-chan", chan);
1078		if (ret) {
1079			chan_err(chan, "unable to request per-channel IRQ\n");
1080			goto out_unwind;
1081		}
1082	}
1083
1084	return 0;
1085
1086out_unwind:
1087	for (/* none */; i >= 0; i--) {
1088		chan = fdev->chan[i];
1089		if (!chan)
1090			continue;
1091
1092		if (!chan->irq)
1093			continue;
1094
1095		free_irq(chan->irq, chan);
1096	}
1097
1098	return ret;
1099}
1100
1101/*----------------------------------------------------------------------------*/
1102/* OpenFirmware Subsystem                                                     */
1103/*----------------------------------------------------------------------------*/
1104
1105static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1106	struct device_node *node, u32 feature, const char *compatible)
1107{
1108	struct fsldma_chan *chan;
1109	struct resource res;
1110	int err;
1111
1112	/* alloc channel */
1113	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1114	if (!chan) {
1115		err = -ENOMEM;
1116		goto out_return;
1117	}
1118
1119	/* ioremap registers for use */
1120	chan->regs = of_iomap(node, 0);
1121	if (!chan->regs) {
1122		dev_err(fdev->dev, "unable to ioremap registers\n");
1123		err = -ENOMEM;
1124		goto out_free_chan;
1125	}
1126
1127	err = of_address_to_resource(node, 0, &res);
1128	if (err) {
1129		dev_err(fdev->dev, "unable to find 'reg' property\n");
1130		goto out_iounmap_regs;
1131	}
1132
1133	chan->feature = feature;
1134	if (!fdev->feature)
1135		fdev->feature = chan->feature;
1136
1137	/*
1138	 * If the DMA device's feature is different than the feature
1139	 * of its channels, report the bug
1140	 */
1141	WARN_ON(fdev->feature != chan->feature);
1142
1143	chan->dev = fdev->dev;
1144	chan->id = (res.start & 0xfff) < 0x300 ?
1145		   ((res.start - 0x100) & 0xfff) >> 7 :
1146		   ((res.start - 0x200) & 0xfff) >> 7;
1147	if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1148		dev_err(fdev->dev, "too many channels for device\n");
1149		err = -EINVAL;
1150		goto out_iounmap_regs;
1151	}
1152
1153	fdev->chan[chan->id] = chan;
1154	tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1155	snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1156
1157	/* Initialize the channel */
1158	dma_init(chan);
1159
1160	/* Clear cdar registers */
1161	set_cdar(chan, 0);
1162
1163	switch (chan->feature & FSL_DMA_IP_MASK) {
1164	case FSL_DMA_IP_85XX:
1165		chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1166		/* Fall through */
1167	case FSL_DMA_IP_83XX:
1168		chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1169		chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1170		chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1171		chan->set_request_count = fsl_chan_set_request_count;
1172	}
1173
1174	spin_lock_init(&chan->desc_lock);
1175	INIT_LIST_HEAD(&chan->ld_pending);
1176	INIT_LIST_HEAD(&chan->ld_running);
1177	INIT_LIST_HEAD(&chan->ld_completed);
1178	chan->idle = true;
1179#ifdef CONFIG_PM
1180	chan->pm_state = RUNNING;
1181#endif
1182
1183	chan->common.device = &fdev->common;
1184	dma_cookie_init(&chan->common);
1185
1186	/* find the IRQ line, if it exists in the device tree */
1187	chan->irq = irq_of_parse_and_map(node, 0);
1188
1189	/* Add the channel to DMA device channel list */
1190	list_add_tail(&chan->common.device_node, &fdev->common.channels);
1191
1192	dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1193		 chan->irq ? chan->irq : fdev->irq);
1194
1195	return 0;
1196
1197out_iounmap_regs:
1198	iounmap(chan->regs);
1199out_free_chan:
1200	kfree(chan);
1201out_return:
1202	return err;
1203}
1204
1205static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1206{
1207	irq_dispose_mapping(chan->irq);
1208	list_del(&chan->common.device_node);
1209	iounmap(chan->regs);
1210	kfree(chan);
1211}
1212
1213static int fsldma_of_probe(struct platform_device *op)
1214{
1215	struct fsldma_device *fdev;
1216	struct device_node *child;
1217	int err;
1218
1219	fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1220	if (!fdev) {
1221		err = -ENOMEM;
1222		goto out_return;
1223	}
1224
1225	fdev->dev = &op->dev;
1226	INIT_LIST_HEAD(&fdev->common.channels);
1227
1228	/* ioremap the registers for use */
1229	fdev->regs = of_iomap(op->dev.of_node, 0);
1230	if (!fdev->regs) {
1231		dev_err(&op->dev, "unable to ioremap registers\n");
1232		err = -ENOMEM;
1233		goto out_free;
1234	}
1235
1236	/* map the channel IRQ if it exists, but don't hookup the handler yet */
1237	fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1238
1239	dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1240	dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1241	fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1242	fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1243	fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1244	fdev->common.device_tx_status = fsl_tx_status;
1245	fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1246	fdev->common.device_config = fsl_dma_device_config;
1247	fdev->common.device_terminate_all = fsl_dma_device_terminate_all;
1248	fdev->common.dev = &op->dev;
1249
1250	fdev->common.src_addr_widths = FSL_DMA_BUSWIDTHS;
1251	fdev->common.dst_addr_widths = FSL_DMA_BUSWIDTHS;
1252	fdev->common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1253	fdev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1254
1255	dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1256
1257	platform_set_drvdata(op, fdev);
1258
1259	/*
1260	 * We cannot use of_platform_bus_probe() because there is no
1261	 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1262	 * channel object.
1263	 */
1264	for_each_child_of_node(op->dev.of_node, child) {
1265		if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1266			fsl_dma_chan_probe(fdev, child,
1267				FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1268				"fsl,eloplus-dma-channel");
1269		}
1270
1271		if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1272			fsl_dma_chan_probe(fdev, child,
1273				FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1274				"fsl,elo-dma-channel");
1275		}
1276	}
1277
1278	/*
1279	 * Hookup the IRQ handler(s)
1280	 *
1281	 * If we have a per-controller interrupt, we prefer that to the
1282	 * per-channel interrupts to reduce the number of shared interrupt
1283	 * handlers on the same IRQ line
1284	 */
1285	err = fsldma_request_irqs(fdev);
1286	if (err) {
1287		dev_err(fdev->dev, "unable to request IRQs\n");
1288		goto out_free_fdev;
1289	}
1290
1291	dma_async_device_register(&fdev->common);
1292	return 0;
1293
1294out_free_fdev:
1295	irq_dispose_mapping(fdev->irq);
1296	iounmap(fdev->regs);
1297out_free:
1298	kfree(fdev);
1299out_return:
1300	return err;
1301}
1302
1303static int fsldma_of_remove(struct platform_device *op)
1304{
1305	struct fsldma_device *fdev;
1306	unsigned int i;
1307
1308	fdev = platform_get_drvdata(op);
1309	dma_async_device_unregister(&fdev->common);
1310
1311	fsldma_free_irqs(fdev);
1312
1313	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1314		if (fdev->chan[i])
1315			fsl_dma_chan_remove(fdev->chan[i]);
1316	}
1317
1318	iounmap(fdev->regs);
1319	kfree(fdev);
1320
1321	return 0;
1322}
1323
1324#ifdef CONFIG_PM
1325static int fsldma_suspend_late(struct device *dev)
1326{
1327	struct fsldma_device *fdev = dev_get_drvdata(dev);
1328	struct fsldma_chan *chan;
1329	int i;
1330
1331	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1332		chan = fdev->chan[i];
1333		if (!chan)
1334			continue;
1335
1336		spin_lock_bh(&chan->desc_lock);
1337		if (unlikely(!chan->idle))
1338			goto out;
1339		chan->regs_save.mr = get_mr(chan);
1340		chan->pm_state = SUSPENDED;
1341		spin_unlock_bh(&chan->desc_lock);
1342	}
1343	return 0;
1344
1345out:
1346	for (; i >= 0; i--) {
1347		chan = fdev->chan[i];
1348		if (!chan)
1349			continue;
1350		chan->pm_state = RUNNING;
1351		spin_unlock_bh(&chan->desc_lock);
1352	}
1353	return -EBUSY;
1354}
1355
1356static int fsldma_resume_early(struct device *dev)
1357{
1358	struct fsldma_device *fdev = dev_get_drvdata(dev);
1359	struct fsldma_chan *chan;
1360	u32 mode;
1361	int i;
1362
1363	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1364		chan = fdev->chan[i];
1365		if (!chan)
1366			continue;
1367
1368		spin_lock_bh(&chan->desc_lock);
1369		mode = chan->regs_save.mr
1370			& ~FSL_DMA_MR_CS & ~FSL_DMA_MR_CC & ~FSL_DMA_MR_CA;
1371		set_mr(chan, mode);
1372		chan->pm_state = RUNNING;
1373		spin_unlock_bh(&chan->desc_lock);
1374	}
1375
1376	return 0;
1377}
1378
1379static const struct dev_pm_ops fsldma_pm_ops = {
1380	.suspend_late	= fsldma_suspend_late,
1381	.resume_early	= fsldma_resume_early,
1382};
1383#endif
1384
1385static const struct of_device_id fsldma_of_ids[] = {
1386	{ .compatible = "fsl,elo3-dma", },
1387	{ .compatible = "fsl,eloplus-dma", },
1388	{ .compatible = "fsl,elo-dma", },
1389	{}
1390};
1391MODULE_DEVICE_TABLE(of, fsldma_of_ids);
1392
1393static struct platform_driver fsldma_of_driver = {
1394	.driver = {
1395		.name = "fsl-elo-dma",
1396		.of_match_table = fsldma_of_ids,
1397#ifdef CONFIG_PM
1398		.pm = &fsldma_pm_ops,
1399#endif
1400	},
1401	.probe = fsldma_of_probe,
1402	.remove = fsldma_of_remove,
1403};
1404
1405/*----------------------------------------------------------------------------*/
1406/* Module Init / Exit                                                         */
1407/*----------------------------------------------------------------------------*/
1408
1409static __init int fsldma_init(void)
1410{
1411	pr_info("Freescale Elo series DMA driver\n");
1412	return platform_driver_register(&fsldma_of_driver);
1413}
1414
1415static void __exit fsldma_exit(void)
1416{
1417	platform_driver_unregister(&fsldma_of_driver);
1418}
1419
1420subsys_initcall(fsldma_init);
1421module_exit(fsldma_exit);
1422
1423MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1424MODULE_LICENSE("GPL");