Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Freescale MPC85xx, MPC83xx DMA Engine support
   4 *
   5 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
   6 *
   7 * Author:
   8 *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
   9 *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
  10 *
  11 * Description:
  12 *   DMA engine driver for Freescale MPC8540 DMA controller, which is
  13 *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
  14 *   The support for MPC8349 DMA controller is also added.
  15 *
  16 * This driver instructs the DMA controller to issue the PCI Read Multiple
  17 * command for PCI read operations, instead of using the default PCI Read Line
  18 * command. Please be aware that this setting may result in read pre-fetching
  19 * on some platforms.
 
 
 
 
 
 
  20 */
  21
  22#include <linux/init.h>
  23#include <linux/module.h>
  24#include <linux/pci.h>
  25#include <linux/slab.h>
  26#include <linux/interrupt.h>
  27#include <linux/dmaengine.h>
  28#include <linux/delay.h>
  29#include <linux/dma-mapping.h>
  30#include <linux/dmapool.h>
  31#include <linux/of_address.h>
  32#include <linux/of_irq.h>
  33#include <linux/of_platform.h>
  34#include <linux/fsldma.h>
  35#include "dmaengine.h"
  36#include "fsldma.h"
  37
  38#define chan_dbg(chan, fmt, arg...)					\
  39	dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
  40#define chan_err(chan, fmt, arg...)					\
  41	dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
  42
  43static const char msg_ld_oom[] = "No free memory for link descriptor";
  44
  45/*
  46 * Register Helpers
  47 */
  48
  49static void set_sr(struct fsldma_chan *chan, u32 val)
  50{
  51	FSL_DMA_OUT(chan, &chan->regs->sr, val, 32);
  52}
  53
  54static u32 get_sr(struct fsldma_chan *chan)
  55{
  56	return FSL_DMA_IN(chan, &chan->regs->sr, 32);
  57}
  58
  59static void set_mr(struct fsldma_chan *chan, u32 val)
  60{
  61	FSL_DMA_OUT(chan, &chan->regs->mr, val, 32);
  62}
  63
  64static u32 get_mr(struct fsldma_chan *chan)
  65{
  66	return FSL_DMA_IN(chan, &chan->regs->mr, 32);
  67}
  68
  69static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
  70{
  71	FSL_DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
  72}
  73
  74static dma_addr_t get_cdar(struct fsldma_chan *chan)
  75{
  76	return FSL_DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
  77}
  78
  79static void set_bcr(struct fsldma_chan *chan, u32 val)
  80{
  81	FSL_DMA_OUT(chan, &chan->regs->bcr, val, 32);
  82}
  83
  84static u32 get_bcr(struct fsldma_chan *chan)
  85{
  86	return FSL_DMA_IN(chan, &chan->regs->bcr, 32);
  87}
  88
  89/*
  90 * Descriptor Helpers
  91 */
  92
  93static void set_desc_cnt(struct fsldma_chan *chan,
  94				struct fsl_dma_ld_hw *hw, u32 count)
  95{
  96	hw->count = CPU_TO_DMA(chan, count, 32);
  97}
  98
  99static void set_desc_src(struct fsldma_chan *chan,
 100			 struct fsl_dma_ld_hw *hw, dma_addr_t src)
 101{
 102	u64 snoop_bits;
 103
 104	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
 105		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
 106	hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
 107}
 108
 109static void set_desc_dst(struct fsldma_chan *chan,
 110			 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
 111{
 112	u64 snoop_bits;
 113
 114	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
 115		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
 116	hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
 117}
 118
 119static void set_desc_next(struct fsldma_chan *chan,
 120			  struct fsl_dma_ld_hw *hw, dma_addr_t next)
 121{
 122	u64 snoop_bits;
 123
 124	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
 125		? FSL_DMA_SNEN : 0;
 126	hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
 127}
 128
 129static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
 130{
 131	u64 snoop_bits;
 132
 133	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
 134		? FSL_DMA_SNEN : 0;
 135
 136	desc->hw.next_ln_addr = CPU_TO_DMA(chan,
 137		DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
 138			| snoop_bits, 64);
 139}
 140
 141/*
 142 * DMA Engine Hardware Control Helpers
 143 */
 144
 145static void dma_init(struct fsldma_chan *chan)
 146{
 147	/* Reset the channel */
 148	set_mr(chan, 0);
 149
 150	switch (chan->feature & FSL_DMA_IP_MASK) {
 151	case FSL_DMA_IP_85XX:
 152		/* Set the channel to below modes:
 153		 * EIE - Error interrupt enable
 154		 * EOLNIE - End of links interrupt enable
 155		 * BWC - Bandwidth sharing among channels
 156		 */
 157		set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE
 158			| FSL_DMA_MR_EOLNIE);
 159		break;
 160	case FSL_DMA_IP_83XX:
 161		/* Set the channel to below modes:
 162		 * EOTIE - End-of-transfer interrupt enable
 163		 * PRC_RM - PCI read multiple
 164		 */
 165		set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM);
 166		break;
 167	}
 168}
 169
 170static int dma_is_idle(struct fsldma_chan *chan)
 171{
 172	u32 sr = get_sr(chan);
 173	return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
 174}
 175
 176/*
 177 * Start the DMA controller
 178 *
 179 * Preconditions:
 180 * - the CDAR register must point to the start descriptor
 181 * - the MRn[CS] bit must be cleared
 182 */
 183static void dma_start(struct fsldma_chan *chan)
 184{
 185	u32 mode;
 186
 187	mode = get_mr(chan);
 188
 189	if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
 190		set_bcr(chan, 0);
 191		mode |= FSL_DMA_MR_EMP_EN;
 192	} else {
 193		mode &= ~FSL_DMA_MR_EMP_EN;
 194	}
 195
 196	if (chan->feature & FSL_DMA_CHAN_START_EXT) {
 197		mode |= FSL_DMA_MR_EMS_EN;
 198	} else {
 199		mode &= ~FSL_DMA_MR_EMS_EN;
 200		mode |= FSL_DMA_MR_CS;
 201	}
 202
 203	set_mr(chan, mode);
 204}
 205
 206static void dma_halt(struct fsldma_chan *chan)
 207{
 208	u32 mode;
 209	int i;
 210
 211	/* read the mode register */
 212	mode = get_mr(chan);
 213
 214	/*
 215	 * The 85xx controller supports channel abort, which will stop
 216	 * the current transfer. On 83xx, this bit is the transfer error
 217	 * mask bit, which should not be changed.
 218	 */
 219	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
 220		mode |= FSL_DMA_MR_CA;
 221		set_mr(chan, mode);
 222
 223		mode &= ~FSL_DMA_MR_CA;
 224	}
 225
 226	/* stop the DMA controller */
 227	mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
 228	set_mr(chan, mode);
 229
 230	/* wait for the DMA controller to become idle */
 231	for (i = 0; i < 100; i++) {
 232		if (dma_is_idle(chan))
 233			return;
 234
 235		udelay(10);
 236	}
 237
 238	if (!dma_is_idle(chan))
 239		chan_err(chan, "DMA halt timeout!\n");
 240}
 241
 242/**
 243 * fsl_chan_set_src_loop_size - Set source address hold transfer size
 244 * @chan : Freescale DMA channel
 245 * @size     : Address loop size, 0 for disable loop
 246 *
 247 * The set source address hold transfer size. The source
 248 * address hold or loop transfer size is when the DMA transfer
 249 * data from source address (SA), if the loop size is 4, the DMA will
 250 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
 251 * SA + 1 ... and so on.
 252 */
 253static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
 254{
 255	u32 mode;
 256
 257	mode = get_mr(chan);
 258
 259	switch (size) {
 260	case 0:
 261		mode &= ~FSL_DMA_MR_SAHE;
 262		break;
 263	case 1:
 264	case 2:
 265	case 4:
 266	case 8:
 267		mode &= ~FSL_DMA_MR_SAHTS_MASK;
 268		mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
 269		break;
 270	}
 271
 272	set_mr(chan, mode);
 273}
 274
 275/**
 276 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
 277 * @chan : Freescale DMA channel
 278 * @size     : Address loop size, 0 for disable loop
 279 *
 280 * The set destination address hold transfer size. The destination
 281 * address hold or loop transfer size is when the DMA transfer
 282 * data to destination address (TA), if the loop size is 4, the DMA will
 283 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
 284 * TA + 1 ... and so on.
 285 */
 286static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
 287{
 288	u32 mode;
 289
 290	mode = get_mr(chan);
 291
 292	switch (size) {
 293	case 0:
 294		mode &= ~FSL_DMA_MR_DAHE;
 295		break;
 296	case 1:
 297	case 2:
 298	case 4:
 299	case 8:
 300		mode &= ~FSL_DMA_MR_DAHTS_MASK;
 301		mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
 302		break;
 303	}
 304
 305	set_mr(chan, mode);
 306}
 307
 308/**
 309 * fsl_chan_set_request_count - Set DMA Request Count for external control
 310 * @chan : Freescale DMA channel
 311 * @size     : Number of bytes to transfer in a single request
 312 *
 313 * The Freescale DMA channel can be controlled by the external signal DREQ#.
 314 * The DMA request count is how many bytes are allowed to transfer before
 315 * pausing the channel, after which a new assertion of DREQ# resumes channel
 316 * operation.
 317 *
 318 * A size of 0 disables external pause control. The maximum size is 1024.
 319 */
 320static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
 321{
 322	u32 mode;
 323
 324	BUG_ON(size > 1024);
 325
 326	mode = get_mr(chan);
 327	mode &= ~FSL_DMA_MR_BWC_MASK;
 328	mode |= (__ilog2(size) << 24) & FSL_DMA_MR_BWC_MASK;
 329
 330	set_mr(chan, mode);
 331}
 332
 333/**
 334 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
 335 * @chan : Freescale DMA channel
 336 * @enable   : 0 is disabled, 1 is enabled.
 337 *
 338 * The Freescale DMA channel can be controlled by the external signal DREQ#.
 339 * The DMA Request Count feature should be used in addition to this feature
 340 * to set the number of bytes to transfer before pausing the channel.
 341 */
 342static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
 343{
 344	if (enable)
 345		chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
 346	else
 347		chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
 348}
 349
 350/**
 351 * fsl_chan_toggle_ext_start - Toggle channel external start status
 352 * @chan : Freescale DMA channel
 353 * @enable   : 0 is disabled, 1 is enabled.
 354 *
 355 * If enable the external start, the channel can be started by an
 356 * external DMA start pin. So the dma_start() does not start the
 357 * transfer immediately. The DMA channel will wait for the
 358 * control pin asserted.
 359 */
 360static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
 361{
 362	if (enable)
 363		chan->feature |= FSL_DMA_CHAN_START_EXT;
 364	else
 365		chan->feature &= ~FSL_DMA_CHAN_START_EXT;
 366}
 367
 368int fsl_dma_external_start(struct dma_chan *dchan, int enable)
 369{
 370	struct fsldma_chan *chan;
 371
 372	if (!dchan)
 373		return -EINVAL;
 374
 375	chan = to_fsl_chan(dchan);
 376
 377	fsl_chan_toggle_ext_start(chan, enable);
 378	return 0;
 379}
 380EXPORT_SYMBOL_GPL(fsl_dma_external_start);
 381
 382static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
 383{
 384	struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
 385
 386	if (list_empty(&chan->ld_pending))
 387		goto out_splice;
 388
 389	/*
 390	 * Add the hardware descriptor to the chain of hardware descriptors
 391	 * that already exists in memory.
 392	 *
 393	 * This will un-set the EOL bit of the existing transaction, and the
 394	 * last link in this transaction will become the EOL descriptor.
 395	 */
 396	set_desc_next(chan, &tail->hw, desc->async_tx.phys);
 397
 398	/*
 399	 * Add the software descriptor and all children to the list
 400	 * of pending transactions
 401	 */
 402out_splice:
 403	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
 404}
 405
 406static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
 407{
 408	struct fsldma_chan *chan = to_fsl_chan(tx->chan);
 409	struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
 410	struct fsl_desc_sw *child;
 411	dma_cookie_t cookie = -EINVAL;
 412
 413	spin_lock_bh(&chan->desc_lock);
 414
 415#ifdef CONFIG_PM
 416	if (unlikely(chan->pm_state != RUNNING)) {
 417		chan_dbg(chan, "cannot submit due to suspend\n");
 418		spin_unlock_bh(&chan->desc_lock);
 419		return -1;
 420	}
 421#endif
 422
 423	/*
 424	 * assign cookies to all of the software descriptors
 425	 * that make up this transaction
 426	 */
 427	list_for_each_entry(child, &desc->tx_list, node) {
 428		cookie = dma_cookie_assign(&child->async_tx);
 429	}
 430
 431	/* put this transaction onto the tail of the pending queue */
 432	append_ld_queue(chan, desc);
 433
 434	spin_unlock_bh(&chan->desc_lock);
 435
 436	return cookie;
 437}
 438
 439/**
 440 * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
 441 * @chan : Freescale DMA channel
 442 * @desc: descriptor to be freed
 443 */
 444static void fsl_dma_free_descriptor(struct fsldma_chan *chan,
 445		struct fsl_desc_sw *desc)
 446{
 447	list_del(&desc->node);
 448	chan_dbg(chan, "LD %p free\n", desc);
 449	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
 450}
 451
 452/**
 453 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
 454 * @chan : Freescale DMA channel
 455 *
 456 * Return - The descriptor allocated. NULL for failed.
 457 */
 458static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
 459{
 460	struct fsl_desc_sw *desc;
 461	dma_addr_t pdesc;
 462
 463	desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
 464	if (!desc) {
 465		chan_dbg(chan, "out of memory for link descriptor\n");
 466		return NULL;
 467	}
 468
 
 469	INIT_LIST_HEAD(&desc->tx_list);
 470	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
 471	desc->async_tx.tx_submit = fsl_dma_tx_submit;
 472	desc->async_tx.phys = pdesc;
 473
 474	chan_dbg(chan, "LD %p allocated\n", desc);
 475
 476	return desc;
 477}
 478
 479/**
 480 * fsldma_clean_completed_descriptor - free all descriptors which
 481 * has been completed and acked
 482 * @chan: Freescale DMA channel
 483 *
 484 * This function is used on all completed and acked descriptors.
 485 * All descriptors should only be freed in this function.
 486 */
 487static void fsldma_clean_completed_descriptor(struct fsldma_chan *chan)
 488{
 489	struct fsl_desc_sw *desc, *_desc;
 490
 491	/* Run the callback for each descriptor, in order */
 492	list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node)
 493		if (async_tx_test_ack(&desc->async_tx))
 494			fsl_dma_free_descriptor(chan, desc);
 495}
 496
 497/**
 498 * fsldma_run_tx_complete_actions - cleanup a single link descriptor
 499 * @chan: Freescale DMA channel
 500 * @desc: descriptor to cleanup and free
 501 * @cookie: Freescale DMA transaction identifier
 502 *
 503 * This function is used on a descriptor which has been executed by the DMA
 504 * controller. It will run any callbacks, submit any dependencies.
 505 */
 506static dma_cookie_t fsldma_run_tx_complete_actions(struct fsldma_chan *chan,
 507		struct fsl_desc_sw *desc, dma_cookie_t cookie)
 508{
 509	struct dma_async_tx_descriptor *txd = &desc->async_tx;
 510	dma_cookie_t ret = cookie;
 511
 512	BUG_ON(txd->cookie < 0);
 513
 514	if (txd->cookie > 0) {
 515		ret = txd->cookie;
 516
 517		dma_descriptor_unmap(txd);
 518		/* Run the link descriptor callback function */
 519		dmaengine_desc_get_callback_invoke(txd, NULL);
 
 
 
 
 
 520	}
 521
 522	/* Run any dependencies */
 523	dma_run_dependencies(txd);
 524
 525	return ret;
 526}
 527
 528/**
 529 * fsldma_clean_running_descriptor - move the completed descriptor from
 530 * ld_running to ld_completed
 531 * @chan: Freescale DMA channel
 532 * @desc: the descriptor which is completed
 533 *
 534 * Free the descriptor directly if acked by async_tx api, or move it to
 535 * queue ld_completed.
 536 */
 537static void fsldma_clean_running_descriptor(struct fsldma_chan *chan,
 538		struct fsl_desc_sw *desc)
 539{
 540	/* Remove from the list of transactions */
 541	list_del(&desc->node);
 542
 543	/*
 544	 * the client is allowed to attach dependent operations
 545	 * until 'ack' is set
 546	 */
 547	if (!async_tx_test_ack(&desc->async_tx)) {
 548		/*
 549		 * Move this descriptor to the list of descriptors which is
 550		 * completed, but still awaiting the 'ack' bit to be set.
 551		 */
 552		list_add_tail(&desc->node, &chan->ld_completed);
 553		return;
 554	}
 555
 556	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
 557}
 558
 559/**
 560 * fsl_chan_xfer_ld_queue - transfer any pending transactions
 561 * @chan : Freescale DMA channel
 562 *
 563 * HARDWARE STATE: idle
 564 * LOCKING: must hold chan->desc_lock
 565 */
 566static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
 567{
 568	struct fsl_desc_sw *desc;
 569
 570	/*
 571	 * If the list of pending descriptors is empty, then we
 572	 * don't need to do any work at all
 573	 */
 574	if (list_empty(&chan->ld_pending)) {
 575		chan_dbg(chan, "no pending LDs\n");
 576		return;
 577	}
 578
 579	/*
 580	 * The DMA controller is not idle, which means that the interrupt
 581	 * handler will start any queued transactions when it runs after
 582	 * this transaction finishes
 583	 */
 584	if (!chan->idle) {
 585		chan_dbg(chan, "DMA controller still busy\n");
 586		return;
 587	}
 588
 589	/*
 590	 * If there are some link descriptors which have not been
 591	 * transferred, we need to start the controller
 592	 */
 593
 594	/*
 595	 * Move all elements from the queue of pending transactions
 596	 * onto the list of running transactions
 597	 */
 598	chan_dbg(chan, "idle, starting controller\n");
 599	desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
 600	list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
 601
 602	/*
 603	 * The 85xx DMA controller doesn't clear the channel start bit
 604	 * automatically at the end of a transfer. Therefore we must clear
 605	 * it in software before starting the transfer.
 606	 */
 607	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
 608		u32 mode;
 609
 610		mode = get_mr(chan);
 611		mode &= ~FSL_DMA_MR_CS;
 612		set_mr(chan, mode);
 613	}
 614
 615	/*
 616	 * Program the descriptor's address into the DMA controller,
 617	 * then start the DMA transaction
 618	 */
 619	set_cdar(chan, desc->async_tx.phys);
 620	get_cdar(chan);
 621
 622	dma_start(chan);
 623	chan->idle = false;
 624}
 625
 626/**
 627 * fsldma_cleanup_descriptors - cleanup link descriptors which are completed
 628 * and move them to ld_completed to free until flag 'ack' is set
 629 * @chan: Freescale DMA channel
 630 *
 631 * This function is used on descriptors which have been executed by the DMA
 632 * controller. It will run any callbacks, submit any dependencies, then
 633 * free these descriptors if flag 'ack' is set.
 634 */
 635static void fsldma_cleanup_descriptors(struct fsldma_chan *chan)
 636{
 637	struct fsl_desc_sw *desc, *_desc;
 638	dma_cookie_t cookie = 0;
 639	dma_addr_t curr_phys = get_cdar(chan);
 640	int seen_current = 0;
 641
 642	fsldma_clean_completed_descriptor(chan);
 643
 644	/* Run the callback for each descriptor, in order */
 645	list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
 646		/*
 647		 * do not advance past the current descriptor loaded into the
 648		 * hardware channel, subsequent descriptors are either in
 649		 * process or have not been submitted
 650		 */
 651		if (seen_current)
 652			break;
 653
 654		/*
 655		 * stop the search if we reach the current descriptor and the
 656		 * channel is busy
 657		 */
 658		if (desc->async_tx.phys == curr_phys) {
 659			seen_current = 1;
 660			if (!dma_is_idle(chan))
 661				break;
 662		}
 663
 664		cookie = fsldma_run_tx_complete_actions(chan, desc, cookie);
 665
 666		fsldma_clean_running_descriptor(chan, desc);
 667	}
 668
 669	/*
 670	 * Start any pending transactions automatically
 671	 *
 672	 * In the ideal case, we keep the DMA controller busy while we go
 673	 * ahead and free the descriptors below.
 674	 */
 675	fsl_chan_xfer_ld_queue(chan);
 676
 677	if (cookie > 0)
 678		chan->common.completed_cookie = cookie;
 679}
 680
 681/**
 682 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
 683 * @chan : Freescale DMA channel
 684 *
 685 * This function will create a dma pool for descriptor allocation.
 686 *
 687 * Return - The number of descriptors allocated.
 688 */
 689static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
 690{
 691	struct fsldma_chan *chan = to_fsl_chan(dchan);
 692
 693	/* Has this channel already been allocated? */
 694	if (chan->desc_pool)
 695		return 1;
 696
 697	/*
 698	 * We need the descriptor to be aligned to 32bytes
 699	 * for meeting FSL DMA specification requirement.
 700	 */
 701	chan->desc_pool = dma_pool_create(chan->name, chan->dev,
 702					  sizeof(struct fsl_desc_sw),
 703					  __alignof__(struct fsl_desc_sw), 0);
 704	if (!chan->desc_pool) {
 705		chan_err(chan, "unable to allocate descriptor pool\n");
 706		return -ENOMEM;
 707	}
 708
 709	/* there is at least one descriptor free to be allocated */
 710	return 1;
 711}
 712
 713/**
 714 * fsldma_free_desc_list - Free all descriptors in a queue
 715 * @chan: Freescae DMA channel
 716 * @list: the list to free
 717 *
 718 * LOCKING: must hold chan->desc_lock
 719 */
 720static void fsldma_free_desc_list(struct fsldma_chan *chan,
 721				  struct list_head *list)
 722{
 723	struct fsl_desc_sw *desc, *_desc;
 724
 725	list_for_each_entry_safe(desc, _desc, list, node)
 726		fsl_dma_free_descriptor(chan, desc);
 727}
 728
 729static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
 730					  struct list_head *list)
 731{
 732	struct fsl_desc_sw *desc, *_desc;
 733
 734	list_for_each_entry_safe_reverse(desc, _desc, list, node)
 735		fsl_dma_free_descriptor(chan, desc);
 736}
 737
 738/**
 739 * fsl_dma_free_chan_resources - Free all resources of the channel.
 740 * @chan : Freescale DMA channel
 741 */
 742static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
 743{
 744	struct fsldma_chan *chan = to_fsl_chan(dchan);
 745
 746	chan_dbg(chan, "free all channel resources\n");
 747	spin_lock_bh(&chan->desc_lock);
 748	fsldma_cleanup_descriptors(chan);
 749	fsldma_free_desc_list(chan, &chan->ld_pending);
 750	fsldma_free_desc_list(chan, &chan->ld_running);
 751	fsldma_free_desc_list(chan, &chan->ld_completed);
 752	spin_unlock_bh(&chan->desc_lock);
 753
 754	dma_pool_destroy(chan->desc_pool);
 755	chan->desc_pool = NULL;
 756}
 757
 758static struct dma_async_tx_descriptor *
 759fsl_dma_prep_memcpy(struct dma_chan *dchan,
 760	dma_addr_t dma_dst, dma_addr_t dma_src,
 761	size_t len, unsigned long flags)
 762{
 763	struct fsldma_chan *chan;
 764	struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
 765	size_t copy;
 766
 767	if (!dchan)
 768		return NULL;
 769
 770	if (!len)
 771		return NULL;
 772
 773	chan = to_fsl_chan(dchan);
 774
 775	do {
 776
 777		/* Allocate the link descriptor from DMA pool */
 778		new = fsl_dma_alloc_descriptor(chan);
 779		if (!new) {
 780			chan_err(chan, "%s\n", msg_ld_oom);
 781			goto fail;
 782		}
 783
 784		copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
 785
 786		set_desc_cnt(chan, &new->hw, copy);
 787		set_desc_src(chan, &new->hw, dma_src);
 788		set_desc_dst(chan, &new->hw, dma_dst);
 789
 790		if (!first)
 791			first = new;
 792		else
 793			set_desc_next(chan, &prev->hw, new->async_tx.phys);
 794
 795		new->async_tx.cookie = 0;
 796		async_tx_ack(&new->async_tx);
 797
 798		prev = new;
 799		len -= copy;
 800		dma_src += copy;
 801		dma_dst += copy;
 802
 803		/* Insert the link descriptor to the LD ring */
 804		list_add_tail(&new->node, &first->tx_list);
 805	} while (len);
 806
 807	new->async_tx.flags = flags; /* client is in control of this ack */
 808	new->async_tx.cookie = -EBUSY;
 809
 810	/* Set End-of-link to the last link descriptor of new list */
 811	set_ld_eol(chan, new);
 812
 813	return &first->async_tx;
 814
 815fail:
 816	if (!first)
 817		return NULL;
 818
 819	fsldma_free_desc_list_reverse(chan, &first->tx_list);
 820	return NULL;
 821}
 822
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 823static int fsl_dma_device_terminate_all(struct dma_chan *dchan)
 824{
 825	struct fsldma_chan *chan;
 826
 827	if (!dchan)
 828		return -EINVAL;
 829
 830	chan = to_fsl_chan(dchan);
 831
 832	spin_lock_bh(&chan->desc_lock);
 833
 834	/* Halt the DMA engine */
 835	dma_halt(chan);
 836
 837	/* Remove and free all of the descriptors in the LD queue */
 838	fsldma_free_desc_list(chan, &chan->ld_pending);
 839	fsldma_free_desc_list(chan, &chan->ld_running);
 840	fsldma_free_desc_list(chan, &chan->ld_completed);
 841	chan->idle = true;
 842
 843	spin_unlock_bh(&chan->desc_lock);
 844	return 0;
 845}
 846
 847static int fsl_dma_device_config(struct dma_chan *dchan,
 848				 struct dma_slave_config *config)
 849{
 850	struct fsldma_chan *chan;
 851	int size;
 852
 853	if (!dchan)
 854		return -EINVAL;
 855
 856	chan = to_fsl_chan(dchan);
 857
 858	/* make sure the channel supports setting burst size */
 859	if (!chan->set_request_count)
 860		return -ENXIO;
 861
 862	/* we set the controller burst size depending on direction */
 863	if (config->direction == DMA_MEM_TO_DEV)
 864		size = config->dst_addr_width * config->dst_maxburst;
 865	else
 866		size = config->src_addr_width * config->src_maxburst;
 867
 868	chan->set_request_count(chan, size);
 869	return 0;
 870}
 871
 872
 873/**
 874 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
 875 * @chan : Freescale DMA channel
 876 */
 877static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
 878{
 879	struct fsldma_chan *chan = to_fsl_chan(dchan);
 880
 881	spin_lock_bh(&chan->desc_lock);
 882	fsl_chan_xfer_ld_queue(chan);
 883	spin_unlock_bh(&chan->desc_lock);
 884}
 885
 886/**
 887 * fsl_tx_status - Determine the DMA status
 888 * @chan : Freescale DMA channel
 889 */
 890static enum dma_status fsl_tx_status(struct dma_chan *dchan,
 891					dma_cookie_t cookie,
 892					struct dma_tx_state *txstate)
 893{
 894	struct fsldma_chan *chan = to_fsl_chan(dchan);
 895	enum dma_status ret;
 896
 897	ret = dma_cookie_status(dchan, cookie, txstate);
 898	if (ret == DMA_COMPLETE)
 899		return ret;
 900
 901	spin_lock_bh(&chan->desc_lock);
 902	fsldma_cleanup_descriptors(chan);
 903	spin_unlock_bh(&chan->desc_lock);
 904
 905	return dma_cookie_status(dchan, cookie, txstate);
 906}
 907
 908/*----------------------------------------------------------------------------*/
 909/* Interrupt Handling                                                         */
 910/*----------------------------------------------------------------------------*/
 911
 912static irqreturn_t fsldma_chan_irq(int irq, void *data)
 913{
 914	struct fsldma_chan *chan = data;
 915	u32 stat;
 916
 917	/* save and clear the status register */
 918	stat = get_sr(chan);
 919	set_sr(chan, stat);
 920	chan_dbg(chan, "irq: stat = 0x%x\n", stat);
 921
 922	/* check that this was really our device */
 923	stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
 924	if (!stat)
 925		return IRQ_NONE;
 926
 927	if (stat & FSL_DMA_SR_TE)
 928		chan_err(chan, "Transfer Error!\n");
 929
 930	/*
 931	 * Programming Error
 932	 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
 933	 * trigger a PE interrupt.
 934	 */
 935	if (stat & FSL_DMA_SR_PE) {
 936		chan_dbg(chan, "irq: Programming Error INT\n");
 937		stat &= ~FSL_DMA_SR_PE;
 938		if (get_bcr(chan) != 0)
 939			chan_err(chan, "Programming Error!\n");
 940	}
 941
 942	/*
 943	 * For MPC8349, EOCDI event need to update cookie
 944	 * and start the next transfer if it exist.
 945	 */
 946	if (stat & FSL_DMA_SR_EOCDI) {
 947		chan_dbg(chan, "irq: End-of-Chain link INT\n");
 948		stat &= ~FSL_DMA_SR_EOCDI;
 949	}
 950
 951	/*
 952	 * If it current transfer is the end-of-transfer,
 953	 * we should clear the Channel Start bit for
 954	 * prepare next transfer.
 955	 */
 956	if (stat & FSL_DMA_SR_EOLNI) {
 957		chan_dbg(chan, "irq: End-of-link INT\n");
 958		stat &= ~FSL_DMA_SR_EOLNI;
 959	}
 960
 961	/* check that the DMA controller is really idle */
 962	if (!dma_is_idle(chan))
 963		chan_err(chan, "irq: controller not idle!\n");
 964
 965	/* check that we handled all of the bits */
 966	if (stat)
 967		chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
 968
 969	/*
 970	 * Schedule the tasklet to handle all cleanup of the current
 971	 * transaction. It will start a new transaction if there is
 972	 * one pending.
 973	 */
 974	tasklet_schedule(&chan->tasklet);
 975	chan_dbg(chan, "irq: Exit\n");
 976	return IRQ_HANDLED;
 977}
 978
 979static void dma_do_tasklet(unsigned long data)
 980{
 981	struct fsldma_chan *chan = (struct fsldma_chan *)data;
 982
 983	chan_dbg(chan, "tasklet entry\n");
 984
 985	spin_lock(&chan->desc_lock);
 986
 987	/* the hardware is now idle and ready for more */
 988	chan->idle = true;
 989
 990	/* Run all cleanup for descriptors which have been completed */
 991	fsldma_cleanup_descriptors(chan);
 992
 993	spin_unlock(&chan->desc_lock);
 994
 995	chan_dbg(chan, "tasklet exit\n");
 996}
 997
 998static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
 999{
1000	struct fsldma_device *fdev = data;
1001	struct fsldma_chan *chan;
1002	unsigned int handled = 0;
1003	u32 gsr, mask;
1004	int i;
1005
1006	gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1007						   : in_le32(fdev->regs);
1008	mask = 0xff000000;
1009	dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1010
1011	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1012		chan = fdev->chan[i];
1013		if (!chan)
1014			continue;
1015
1016		if (gsr & mask) {
1017			dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1018			fsldma_chan_irq(irq, chan);
1019			handled++;
1020		}
1021
1022		gsr &= ~mask;
1023		mask >>= 8;
1024	}
1025
1026	return IRQ_RETVAL(handled);
1027}
1028
1029static void fsldma_free_irqs(struct fsldma_device *fdev)
1030{
1031	struct fsldma_chan *chan;
1032	int i;
1033
1034	if (fdev->irq) {
1035		dev_dbg(fdev->dev, "free per-controller IRQ\n");
1036		free_irq(fdev->irq, fdev);
1037		return;
1038	}
1039
1040	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1041		chan = fdev->chan[i];
1042		if (chan && chan->irq) {
1043			chan_dbg(chan, "free per-channel IRQ\n");
1044			free_irq(chan->irq, chan);
1045		}
1046	}
1047}
1048
1049static int fsldma_request_irqs(struct fsldma_device *fdev)
1050{
1051	struct fsldma_chan *chan;
1052	int ret;
1053	int i;
1054
1055	/* if we have a per-controller IRQ, use that */
1056	if (fdev->irq) {
1057		dev_dbg(fdev->dev, "request per-controller IRQ\n");
1058		ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1059				  "fsldma-controller", fdev);
1060		return ret;
1061	}
1062
1063	/* no per-controller IRQ, use the per-channel IRQs */
1064	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1065		chan = fdev->chan[i];
1066		if (!chan)
1067			continue;
1068
1069		if (!chan->irq) {
1070			chan_err(chan, "interrupts property missing in device tree\n");
1071			ret = -ENODEV;
1072			goto out_unwind;
1073		}
1074
1075		chan_dbg(chan, "request per-channel IRQ\n");
1076		ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1077				  "fsldma-chan", chan);
1078		if (ret) {
1079			chan_err(chan, "unable to request per-channel IRQ\n");
1080			goto out_unwind;
1081		}
1082	}
1083
1084	return 0;
1085
1086out_unwind:
1087	for (/* none */; i >= 0; i--) {
1088		chan = fdev->chan[i];
1089		if (!chan)
1090			continue;
1091
1092		if (!chan->irq)
1093			continue;
1094
1095		free_irq(chan->irq, chan);
1096	}
1097
1098	return ret;
1099}
1100
1101/*----------------------------------------------------------------------------*/
1102/* OpenFirmware Subsystem                                                     */
1103/*----------------------------------------------------------------------------*/
1104
1105static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1106	struct device_node *node, u32 feature, const char *compatible)
1107{
1108	struct fsldma_chan *chan;
1109	struct resource res;
1110	int err;
1111
1112	/* alloc channel */
1113	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1114	if (!chan) {
 
1115		err = -ENOMEM;
1116		goto out_return;
1117	}
1118
1119	/* ioremap registers for use */
1120	chan->regs = of_iomap(node, 0);
1121	if (!chan->regs) {
1122		dev_err(fdev->dev, "unable to ioremap registers\n");
1123		err = -ENOMEM;
1124		goto out_free_chan;
1125	}
1126
1127	err = of_address_to_resource(node, 0, &res);
1128	if (err) {
1129		dev_err(fdev->dev, "unable to find 'reg' property\n");
1130		goto out_iounmap_regs;
1131	}
1132
1133	chan->feature = feature;
1134	if (!fdev->feature)
1135		fdev->feature = chan->feature;
1136
1137	/*
1138	 * If the DMA device's feature is different than the feature
1139	 * of its channels, report the bug
1140	 */
1141	WARN_ON(fdev->feature != chan->feature);
1142
1143	chan->dev = fdev->dev;
1144	chan->id = (res.start & 0xfff) < 0x300 ?
1145		   ((res.start - 0x100) & 0xfff) >> 7 :
1146		   ((res.start - 0x200) & 0xfff) >> 7;
1147	if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1148		dev_err(fdev->dev, "too many channels for device\n");
1149		err = -EINVAL;
1150		goto out_iounmap_regs;
1151	}
1152
1153	fdev->chan[chan->id] = chan;
1154	tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1155	snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1156
1157	/* Initialize the channel */
1158	dma_init(chan);
1159
1160	/* Clear cdar registers */
1161	set_cdar(chan, 0);
1162
1163	switch (chan->feature & FSL_DMA_IP_MASK) {
1164	case FSL_DMA_IP_85XX:
1165		chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1166		fallthrough;
1167	case FSL_DMA_IP_83XX:
1168		chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1169		chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1170		chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1171		chan->set_request_count = fsl_chan_set_request_count;
1172	}
1173
1174	spin_lock_init(&chan->desc_lock);
1175	INIT_LIST_HEAD(&chan->ld_pending);
1176	INIT_LIST_HEAD(&chan->ld_running);
1177	INIT_LIST_HEAD(&chan->ld_completed);
1178	chan->idle = true;
1179#ifdef CONFIG_PM
1180	chan->pm_state = RUNNING;
1181#endif
1182
1183	chan->common.device = &fdev->common;
1184	dma_cookie_init(&chan->common);
1185
1186	/* find the IRQ line, if it exists in the device tree */
1187	chan->irq = irq_of_parse_and_map(node, 0);
1188
1189	/* Add the channel to DMA device channel list */
1190	list_add_tail(&chan->common.device_node, &fdev->common.channels);
1191
1192	dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1193		 chan->irq ? chan->irq : fdev->irq);
1194
1195	return 0;
1196
1197out_iounmap_regs:
1198	iounmap(chan->regs);
1199out_free_chan:
1200	kfree(chan);
1201out_return:
1202	return err;
1203}
1204
1205static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1206{
1207	irq_dispose_mapping(chan->irq);
1208	list_del(&chan->common.device_node);
1209	iounmap(chan->regs);
1210	kfree(chan);
1211}
1212
1213static int fsldma_of_probe(struct platform_device *op)
1214{
1215	struct fsldma_device *fdev;
1216	struct device_node *child;
1217	int err;
1218
1219	fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1220	if (!fdev) {
 
1221		err = -ENOMEM;
1222		goto out_return;
1223	}
1224
1225	fdev->dev = &op->dev;
1226	INIT_LIST_HEAD(&fdev->common.channels);
1227
1228	/* ioremap the registers for use */
1229	fdev->regs = of_iomap(op->dev.of_node, 0);
1230	if (!fdev->regs) {
1231		dev_err(&op->dev, "unable to ioremap registers\n");
1232		err = -ENOMEM;
1233		goto out_free;
1234	}
1235
1236	/* map the channel IRQ if it exists, but don't hookup the handler yet */
1237	fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1238
1239	dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
 
1240	dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1241	fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1242	fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1243	fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
 
1244	fdev->common.device_tx_status = fsl_tx_status;
1245	fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1246	fdev->common.device_config = fsl_dma_device_config;
1247	fdev->common.device_terminate_all = fsl_dma_device_terminate_all;
1248	fdev->common.dev = &op->dev;
1249
1250	fdev->common.src_addr_widths = FSL_DMA_BUSWIDTHS;
1251	fdev->common.dst_addr_widths = FSL_DMA_BUSWIDTHS;
1252	fdev->common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1253	fdev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1254
1255	dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1256
1257	platform_set_drvdata(op, fdev);
1258
1259	/*
1260	 * We cannot use of_platform_bus_probe() because there is no
1261	 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1262	 * channel object.
1263	 */
1264	for_each_child_of_node(op->dev.of_node, child) {
1265		if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1266			fsl_dma_chan_probe(fdev, child,
1267				FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1268				"fsl,eloplus-dma-channel");
1269		}
1270
1271		if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1272			fsl_dma_chan_probe(fdev, child,
1273				FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1274				"fsl,elo-dma-channel");
1275		}
1276	}
1277
1278	/*
1279	 * Hookup the IRQ handler(s)
1280	 *
1281	 * If we have a per-controller interrupt, we prefer that to the
1282	 * per-channel interrupts to reduce the number of shared interrupt
1283	 * handlers on the same IRQ line
1284	 */
1285	err = fsldma_request_irqs(fdev);
1286	if (err) {
1287		dev_err(fdev->dev, "unable to request IRQs\n");
1288		goto out_free_fdev;
1289	}
1290
1291	dma_async_device_register(&fdev->common);
1292	return 0;
1293
1294out_free_fdev:
1295	irq_dispose_mapping(fdev->irq);
1296	iounmap(fdev->regs);
1297out_free:
1298	kfree(fdev);
1299out_return:
1300	return err;
1301}
1302
1303static int fsldma_of_remove(struct platform_device *op)
1304{
1305	struct fsldma_device *fdev;
1306	unsigned int i;
1307
1308	fdev = platform_get_drvdata(op);
1309	dma_async_device_unregister(&fdev->common);
1310
1311	fsldma_free_irqs(fdev);
1312
1313	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1314		if (fdev->chan[i])
1315			fsl_dma_chan_remove(fdev->chan[i]);
1316	}
1317
1318	iounmap(fdev->regs);
1319	kfree(fdev);
1320
1321	return 0;
1322}
1323
1324#ifdef CONFIG_PM
1325static int fsldma_suspend_late(struct device *dev)
1326{
1327	struct fsldma_device *fdev = dev_get_drvdata(dev);
 
1328	struct fsldma_chan *chan;
1329	int i;
1330
1331	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1332		chan = fdev->chan[i];
1333		if (!chan)
1334			continue;
1335
1336		spin_lock_bh(&chan->desc_lock);
1337		if (unlikely(!chan->idle))
1338			goto out;
1339		chan->regs_save.mr = get_mr(chan);
1340		chan->pm_state = SUSPENDED;
1341		spin_unlock_bh(&chan->desc_lock);
1342	}
1343	return 0;
1344
1345out:
1346	for (; i >= 0; i--) {
1347		chan = fdev->chan[i];
1348		if (!chan)
1349			continue;
1350		chan->pm_state = RUNNING;
1351		spin_unlock_bh(&chan->desc_lock);
1352	}
1353	return -EBUSY;
1354}
1355
1356static int fsldma_resume_early(struct device *dev)
1357{
1358	struct fsldma_device *fdev = dev_get_drvdata(dev);
 
1359	struct fsldma_chan *chan;
1360	u32 mode;
1361	int i;
1362
1363	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1364		chan = fdev->chan[i];
1365		if (!chan)
1366			continue;
1367
1368		spin_lock_bh(&chan->desc_lock);
1369		mode = chan->regs_save.mr
1370			& ~FSL_DMA_MR_CS & ~FSL_DMA_MR_CC & ~FSL_DMA_MR_CA;
1371		set_mr(chan, mode);
1372		chan->pm_state = RUNNING;
1373		spin_unlock_bh(&chan->desc_lock);
1374	}
1375
1376	return 0;
1377}
1378
1379static const struct dev_pm_ops fsldma_pm_ops = {
1380	.suspend_late	= fsldma_suspend_late,
1381	.resume_early	= fsldma_resume_early,
1382};
1383#endif
1384
1385static const struct of_device_id fsldma_of_ids[] = {
1386	{ .compatible = "fsl,elo3-dma", },
1387	{ .compatible = "fsl,eloplus-dma", },
1388	{ .compatible = "fsl,elo-dma", },
1389	{}
1390};
1391MODULE_DEVICE_TABLE(of, fsldma_of_ids);
1392
1393static struct platform_driver fsldma_of_driver = {
1394	.driver = {
1395		.name = "fsl-elo-dma",
1396		.of_match_table = fsldma_of_ids,
1397#ifdef CONFIG_PM
1398		.pm = &fsldma_pm_ops,
1399#endif
1400	},
1401	.probe = fsldma_of_probe,
1402	.remove = fsldma_of_remove,
1403};
1404
1405/*----------------------------------------------------------------------------*/
1406/* Module Init / Exit                                                         */
1407/*----------------------------------------------------------------------------*/
1408
1409static __init int fsldma_init(void)
1410{
1411	pr_info("Freescale Elo series DMA driver\n");
1412	return platform_driver_register(&fsldma_of_driver);
1413}
1414
1415static void __exit fsldma_exit(void)
1416{
1417	platform_driver_unregister(&fsldma_of_driver);
1418}
1419
1420subsys_initcall(fsldma_init);
1421module_exit(fsldma_exit);
1422
1423MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1424MODULE_LICENSE("GPL");
v4.6
 
   1/*
   2 * Freescale MPC85xx, MPC83xx DMA Engine support
   3 *
   4 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
   5 *
   6 * Author:
   7 *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
   8 *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
   9 *
  10 * Description:
  11 *   DMA engine driver for Freescale MPC8540 DMA controller, which is
  12 *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
  13 *   The support for MPC8349 DMA controller is also added.
  14 *
  15 * This driver instructs the DMA controller to issue the PCI Read Multiple
  16 * command for PCI read operations, instead of using the default PCI Read Line
  17 * command. Please be aware that this setting may result in read pre-fetching
  18 * on some platforms.
  19 *
  20 * This is free software; you can redistribute it and/or modify
  21 * it under the terms of the GNU General Public License as published by
  22 * the Free Software Foundation; either version 2 of the License, or
  23 * (at your option) any later version.
  24 *
  25 */
  26
  27#include <linux/init.h>
  28#include <linux/module.h>
  29#include <linux/pci.h>
  30#include <linux/slab.h>
  31#include <linux/interrupt.h>
  32#include <linux/dmaengine.h>
  33#include <linux/delay.h>
  34#include <linux/dma-mapping.h>
  35#include <linux/dmapool.h>
  36#include <linux/of_address.h>
  37#include <linux/of_irq.h>
  38#include <linux/of_platform.h>
  39#include <linux/fsldma.h>
  40#include "dmaengine.h"
  41#include "fsldma.h"
  42
  43#define chan_dbg(chan, fmt, arg...)					\
  44	dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
  45#define chan_err(chan, fmt, arg...)					\
  46	dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
  47
  48static const char msg_ld_oom[] = "No free memory for link descriptor";
  49
  50/*
  51 * Register Helpers
  52 */
  53
  54static void set_sr(struct fsldma_chan *chan, u32 val)
  55{
  56	DMA_OUT(chan, &chan->regs->sr, val, 32);
  57}
  58
  59static u32 get_sr(struct fsldma_chan *chan)
  60{
  61	return DMA_IN(chan, &chan->regs->sr, 32);
  62}
  63
  64static void set_mr(struct fsldma_chan *chan, u32 val)
  65{
  66	DMA_OUT(chan, &chan->regs->mr, val, 32);
  67}
  68
  69static u32 get_mr(struct fsldma_chan *chan)
  70{
  71	return DMA_IN(chan, &chan->regs->mr, 32);
  72}
  73
  74static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
  75{
  76	DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
  77}
  78
  79static dma_addr_t get_cdar(struct fsldma_chan *chan)
  80{
  81	return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
  82}
  83
  84static void set_bcr(struct fsldma_chan *chan, u32 val)
  85{
  86	DMA_OUT(chan, &chan->regs->bcr, val, 32);
  87}
  88
  89static u32 get_bcr(struct fsldma_chan *chan)
  90{
  91	return DMA_IN(chan, &chan->regs->bcr, 32);
  92}
  93
  94/*
  95 * Descriptor Helpers
  96 */
  97
  98static void set_desc_cnt(struct fsldma_chan *chan,
  99				struct fsl_dma_ld_hw *hw, u32 count)
 100{
 101	hw->count = CPU_TO_DMA(chan, count, 32);
 102}
 103
 104static void set_desc_src(struct fsldma_chan *chan,
 105			 struct fsl_dma_ld_hw *hw, dma_addr_t src)
 106{
 107	u64 snoop_bits;
 108
 109	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
 110		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
 111	hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
 112}
 113
 114static void set_desc_dst(struct fsldma_chan *chan,
 115			 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
 116{
 117	u64 snoop_bits;
 118
 119	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
 120		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
 121	hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
 122}
 123
 124static void set_desc_next(struct fsldma_chan *chan,
 125			  struct fsl_dma_ld_hw *hw, dma_addr_t next)
 126{
 127	u64 snoop_bits;
 128
 129	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
 130		? FSL_DMA_SNEN : 0;
 131	hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
 132}
 133
 134static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
 135{
 136	u64 snoop_bits;
 137
 138	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
 139		? FSL_DMA_SNEN : 0;
 140
 141	desc->hw.next_ln_addr = CPU_TO_DMA(chan,
 142		DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
 143			| snoop_bits, 64);
 144}
 145
 146/*
 147 * DMA Engine Hardware Control Helpers
 148 */
 149
 150static void dma_init(struct fsldma_chan *chan)
 151{
 152	/* Reset the channel */
 153	set_mr(chan, 0);
 154
 155	switch (chan->feature & FSL_DMA_IP_MASK) {
 156	case FSL_DMA_IP_85XX:
 157		/* Set the channel to below modes:
 158		 * EIE - Error interrupt enable
 159		 * EOLNIE - End of links interrupt enable
 160		 * BWC - Bandwidth sharing among channels
 161		 */
 162		set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE
 163			| FSL_DMA_MR_EOLNIE);
 164		break;
 165	case FSL_DMA_IP_83XX:
 166		/* Set the channel to below modes:
 167		 * EOTIE - End-of-transfer interrupt enable
 168		 * PRC_RM - PCI read multiple
 169		 */
 170		set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM);
 171		break;
 172	}
 173}
 174
 175static int dma_is_idle(struct fsldma_chan *chan)
 176{
 177	u32 sr = get_sr(chan);
 178	return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
 179}
 180
 181/*
 182 * Start the DMA controller
 183 *
 184 * Preconditions:
 185 * - the CDAR register must point to the start descriptor
 186 * - the MRn[CS] bit must be cleared
 187 */
 188static void dma_start(struct fsldma_chan *chan)
 189{
 190	u32 mode;
 191
 192	mode = get_mr(chan);
 193
 194	if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
 195		set_bcr(chan, 0);
 196		mode |= FSL_DMA_MR_EMP_EN;
 197	} else {
 198		mode &= ~FSL_DMA_MR_EMP_EN;
 199	}
 200
 201	if (chan->feature & FSL_DMA_CHAN_START_EXT) {
 202		mode |= FSL_DMA_MR_EMS_EN;
 203	} else {
 204		mode &= ~FSL_DMA_MR_EMS_EN;
 205		mode |= FSL_DMA_MR_CS;
 206	}
 207
 208	set_mr(chan, mode);
 209}
 210
 211static void dma_halt(struct fsldma_chan *chan)
 212{
 213	u32 mode;
 214	int i;
 215
 216	/* read the mode register */
 217	mode = get_mr(chan);
 218
 219	/*
 220	 * The 85xx controller supports channel abort, which will stop
 221	 * the current transfer. On 83xx, this bit is the transfer error
 222	 * mask bit, which should not be changed.
 223	 */
 224	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
 225		mode |= FSL_DMA_MR_CA;
 226		set_mr(chan, mode);
 227
 228		mode &= ~FSL_DMA_MR_CA;
 229	}
 230
 231	/* stop the DMA controller */
 232	mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
 233	set_mr(chan, mode);
 234
 235	/* wait for the DMA controller to become idle */
 236	for (i = 0; i < 100; i++) {
 237		if (dma_is_idle(chan))
 238			return;
 239
 240		udelay(10);
 241	}
 242
 243	if (!dma_is_idle(chan))
 244		chan_err(chan, "DMA halt timeout!\n");
 245}
 246
 247/**
 248 * fsl_chan_set_src_loop_size - Set source address hold transfer size
 249 * @chan : Freescale DMA channel
 250 * @size     : Address loop size, 0 for disable loop
 251 *
 252 * The set source address hold transfer size. The source
 253 * address hold or loop transfer size is when the DMA transfer
 254 * data from source address (SA), if the loop size is 4, the DMA will
 255 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
 256 * SA + 1 ... and so on.
 257 */
 258static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
 259{
 260	u32 mode;
 261
 262	mode = get_mr(chan);
 263
 264	switch (size) {
 265	case 0:
 266		mode &= ~FSL_DMA_MR_SAHE;
 267		break;
 268	case 1:
 269	case 2:
 270	case 4:
 271	case 8:
 
 272		mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
 273		break;
 274	}
 275
 276	set_mr(chan, mode);
 277}
 278
 279/**
 280 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
 281 * @chan : Freescale DMA channel
 282 * @size     : Address loop size, 0 for disable loop
 283 *
 284 * The set destination address hold transfer size. The destination
 285 * address hold or loop transfer size is when the DMA transfer
 286 * data to destination address (TA), if the loop size is 4, the DMA will
 287 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
 288 * TA + 1 ... and so on.
 289 */
 290static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
 291{
 292	u32 mode;
 293
 294	mode = get_mr(chan);
 295
 296	switch (size) {
 297	case 0:
 298		mode &= ~FSL_DMA_MR_DAHE;
 299		break;
 300	case 1:
 301	case 2:
 302	case 4:
 303	case 8:
 
 304		mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
 305		break;
 306	}
 307
 308	set_mr(chan, mode);
 309}
 310
 311/**
 312 * fsl_chan_set_request_count - Set DMA Request Count for external control
 313 * @chan : Freescale DMA channel
 314 * @size     : Number of bytes to transfer in a single request
 315 *
 316 * The Freescale DMA channel can be controlled by the external signal DREQ#.
 317 * The DMA request count is how many bytes are allowed to transfer before
 318 * pausing the channel, after which a new assertion of DREQ# resumes channel
 319 * operation.
 320 *
 321 * A size of 0 disables external pause control. The maximum size is 1024.
 322 */
 323static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
 324{
 325	u32 mode;
 326
 327	BUG_ON(size > 1024);
 328
 329	mode = get_mr(chan);
 330	mode |= (__ilog2(size) << 24) & 0x0f000000;
 
 331
 332	set_mr(chan, mode);
 333}
 334
 335/**
 336 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
 337 * @chan : Freescale DMA channel
 338 * @enable   : 0 is disabled, 1 is enabled.
 339 *
 340 * The Freescale DMA channel can be controlled by the external signal DREQ#.
 341 * The DMA Request Count feature should be used in addition to this feature
 342 * to set the number of bytes to transfer before pausing the channel.
 343 */
 344static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
 345{
 346	if (enable)
 347		chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
 348	else
 349		chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
 350}
 351
 352/**
 353 * fsl_chan_toggle_ext_start - Toggle channel external start status
 354 * @chan : Freescale DMA channel
 355 * @enable   : 0 is disabled, 1 is enabled.
 356 *
 357 * If enable the external start, the channel can be started by an
 358 * external DMA start pin. So the dma_start() does not start the
 359 * transfer immediately. The DMA channel will wait for the
 360 * control pin asserted.
 361 */
 362static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
 363{
 364	if (enable)
 365		chan->feature |= FSL_DMA_CHAN_START_EXT;
 366	else
 367		chan->feature &= ~FSL_DMA_CHAN_START_EXT;
 368}
 369
 370int fsl_dma_external_start(struct dma_chan *dchan, int enable)
 371{
 372	struct fsldma_chan *chan;
 373
 374	if (!dchan)
 375		return -EINVAL;
 376
 377	chan = to_fsl_chan(dchan);
 378
 379	fsl_chan_toggle_ext_start(chan, enable);
 380	return 0;
 381}
 382EXPORT_SYMBOL_GPL(fsl_dma_external_start);
 383
 384static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
 385{
 386	struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
 387
 388	if (list_empty(&chan->ld_pending))
 389		goto out_splice;
 390
 391	/*
 392	 * Add the hardware descriptor to the chain of hardware descriptors
 393	 * that already exists in memory.
 394	 *
 395	 * This will un-set the EOL bit of the existing transaction, and the
 396	 * last link in this transaction will become the EOL descriptor.
 397	 */
 398	set_desc_next(chan, &tail->hw, desc->async_tx.phys);
 399
 400	/*
 401	 * Add the software descriptor and all children to the list
 402	 * of pending transactions
 403	 */
 404out_splice:
 405	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
 406}
 407
 408static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
 409{
 410	struct fsldma_chan *chan = to_fsl_chan(tx->chan);
 411	struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
 412	struct fsl_desc_sw *child;
 413	dma_cookie_t cookie = -EINVAL;
 414
 415	spin_lock_bh(&chan->desc_lock);
 416
 417#ifdef CONFIG_PM
 418	if (unlikely(chan->pm_state != RUNNING)) {
 419		chan_dbg(chan, "cannot submit due to suspend\n");
 420		spin_unlock_bh(&chan->desc_lock);
 421		return -1;
 422	}
 423#endif
 424
 425	/*
 426	 * assign cookies to all of the software descriptors
 427	 * that make up this transaction
 428	 */
 429	list_for_each_entry(child, &desc->tx_list, node) {
 430		cookie = dma_cookie_assign(&child->async_tx);
 431	}
 432
 433	/* put this transaction onto the tail of the pending queue */
 434	append_ld_queue(chan, desc);
 435
 436	spin_unlock_bh(&chan->desc_lock);
 437
 438	return cookie;
 439}
 440
 441/**
 442 * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
 443 * @chan : Freescale DMA channel
 444 * @desc: descriptor to be freed
 445 */
 446static void fsl_dma_free_descriptor(struct fsldma_chan *chan,
 447		struct fsl_desc_sw *desc)
 448{
 449	list_del(&desc->node);
 450	chan_dbg(chan, "LD %p free\n", desc);
 451	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
 452}
 453
 454/**
 455 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
 456 * @chan : Freescale DMA channel
 457 *
 458 * Return - The descriptor allocated. NULL for failed.
 459 */
 460static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
 461{
 462	struct fsl_desc_sw *desc;
 463	dma_addr_t pdesc;
 464
 465	desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
 466	if (!desc) {
 467		chan_dbg(chan, "out of memory for link descriptor\n");
 468		return NULL;
 469	}
 470
 471	memset(desc, 0, sizeof(*desc));
 472	INIT_LIST_HEAD(&desc->tx_list);
 473	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
 474	desc->async_tx.tx_submit = fsl_dma_tx_submit;
 475	desc->async_tx.phys = pdesc;
 476
 477	chan_dbg(chan, "LD %p allocated\n", desc);
 478
 479	return desc;
 480}
 481
 482/**
 483 * fsldma_clean_completed_descriptor - free all descriptors which
 484 * has been completed and acked
 485 * @chan: Freescale DMA channel
 486 *
 487 * This function is used on all completed and acked descriptors.
 488 * All descriptors should only be freed in this function.
 489 */
 490static void fsldma_clean_completed_descriptor(struct fsldma_chan *chan)
 491{
 492	struct fsl_desc_sw *desc, *_desc;
 493
 494	/* Run the callback for each descriptor, in order */
 495	list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node)
 496		if (async_tx_test_ack(&desc->async_tx))
 497			fsl_dma_free_descriptor(chan, desc);
 498}
 499
 500/**
 501 * fsldma_run_tx_complete_actions - cleanup a single link descriptor
 502 * @chan: Freescale DMA channel
 503 * @desc: descriptor to cleanup and free
 504 * @cookie: Freescale DMA transaction identifier
 505 *
 506 * This function is used on a descriptor which has been executed by the DMA
 507 * controller. It will run any callbacks, submit any dependencies.
 508 */
 509static dma_cookie_t fsldma_run_tx_complete_actions(struct fsldma_chan *chan,
 510		struct fsl_desc_sw *desc, dma_cookie_t cookie)
 511{
 512	struct dma_async_tx_descriptor *txd = &desc->async_tx;
 513	dma_cookie_t ret = cookie;
 514
 515	BUG_ON(txd->cookie < 0);
 516
 517	if (txd->cookie > 0) {
 518		ret = txd->cookie;
 519
 
 520		/* Run the link descriptor callback function */
 521		if (txd->callback) {
 522			chan_dbg(chan, "LD %p callback\n", desc);
 523			txd->callback(txd->callback_param);
 524		}
 525
 526		dma_descriptor_unmap(txd);
 527	}
 528
 529	/* Run any dependencies */
 530	dma_run_dependencies(txd);
 531
 532	return ret;
 533}
 534
 535/**
 536 * fsldma_clean_running_descriptor - move the completed descriptor from
 537 * ld_running to ld_completed
 538 * @chan: Freescale DMA channel
 539 * @desc: the descriptor which is completed
 540 *
 541 * Free the descriptor directly if acked by async_tx api, or move it to
 542 * queue ld_completed.
 543 */
 544static void fsldma_clean_running_descriptor(struct fsldma_chan *chan,
 545		struct fsl_desc_sw *desc)
 546{
 547	/* Remove from the list of transactions */
 548	list_del(&desc->node);
 549
 550	/*
 551	 * the client is allowed to attach dependent operations
 552	 * until 'ack' is set
 553	 */
 554	if (!async_tx_test_ack(&desc->async_tx)) {
 555		/*
 556		 * Move this descriptor to the list of descriptors which is
 557		 * completed, but still awaiting the 'ack' bit to be set.
 558		 */
 559		list_add_tail(&desc->node, &chan->ld_completed);
 560		return;
 561	}
 562
 563	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
 564}
 565
 566/**
 567 * fsl_chan_xfer_ld_queue - transfer any pending transactions
 568 * @chan : Freescale DMA channel
 569 *
 570 * HARDWARE STATE: idle
 571 * LOCKING: must hold chan->desc_lock
 572 */
 573static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
 574{
 575	struct fsl_desc_sw *desc;
 576
 577	/*
 578	 * If the list of pending descriptors is empty, then we
 579	 * don't need to do any work at all
 580	 */
 581	if (list_empty(&chan->ld_pending)) {
 582		chan_dbg(chan, "no pending LDs\n");
 583		return;
 584	}
 585
 586	/*
 587	 * The DMA controller is not idle, which means that the interrupt
 588	 * handler will start any queued transactions when it runs after
 589	 * this transaction finishes
 590	 */
 591	if (!chan->idle) {
 592		chan_dbg(chan, "DMA controller still busy\n");
 593		return;
 594	}
 595
 596	/*
 597	 * If there are some link descriptors which have not been
 598	 * transferred, we need to start the controller
 599	 */
 600
 601	/*
 602	 * Move all elements from the queue of pending transactions
 603	 * onto the list of running transactions
 604	 */
 605	chan_dbg(chan, "idle, starting controller\n");
 606	desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
 607	list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
 608
 609	/*
 610	 * The 85xx DMA controller doesn't clear the channel start bit
 611	 * automatically at the end of a transfer. Therefore we must clear
 612	 * it in software before starting the transfer.
 613	 */
 614	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
 615		u32 mode;
 616
 617		mode = get_mr(chan);
 618		mode &= ~FSL_DMA_MR_CS;
 619		set_mr(chan, mode);
 620	}
 621
 622	/*
 623	 * Program the descriptor's address into the DMA controller,
 624	 * then start the DMA transaction
 625	 */
 626	set_cdar(chan, desc->async_tx.phys);
 627	get_cdar(chan);
 628
 629	dma_start(chan);
 630	chan->idle = false;
 631}
 632
 633/**
 634 * fsldma_cleanup_descriptors - cleanup link descriptors which are completed
 635 * and move them to ld_completed to free until flag 'ack' is set
 636 * @chan: Freescale DMA channel
 637 *
 638 * This function is used on descriptors which have been executed by the DMA
 639 * controller. It will run any callbacks, submit any dependencies, then
 640 * free these descriptors if flag 'ack' is set.
 641 */
 642static void fsldma_cleanup_descriptors(struct fsldma_chan *chan)
 643{
 644	struct fsl_desc_sw *desc, *_desc;
 645	dma_cookie_t cookie = 0;
 646	dma_addr_t curr_phys = get_cdar(chan);
 647	int seen_current = 0;
 648
 649	fsldma_clean_completed_descriptor(chan);
 650
 651	/* Run the callback for each descriptor, in order */
 652	list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
 653		/*
 654		 * do not advance past the current descriptor loaded into the
 655		 * hardware channel, subsequent descriptors are either in
 656		 * process or have not been submitted
 657		 */
 658		if (seen_current)
 659			break;
 660
 661		/*
 662		 * stop the search if we reach the current descriptor and the
 663		 * channel is busy
 664		 */
 665		if (desc->async_tx.phys == curr_phys) {
 666			seen_current = 1;
 667			if (!dma_is_idle(chan))
 668				break;
 669		}
 670
 671		cookie = fsldma_run_tx_complete_actions(chan, desc, cookie);
 672
 673		fsldma_clean_running_descriptor(chan, desc);
 674	}
 675
 676	/*
 677	 * Start any pending transactions automatically
 678	 *
 679	 * In the ideal case, we keep the DMA controller busy while we go
 680	 * ahead and free the descriptors below.
 681	 */
 682	fsl_chan_xfer_ld_queue(chan);
 683
 684	if (cookie > 0)
 685		chan->common.completed_cookie = cookie;
 686}
 687
 688/**
 689 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
 690 * @chan : Freescale DMA channel
 691 *
 692 * This function will create a dma pool for descriptor allocation.
 693 *
 694 * Return - The number of descriptors allocated.
 695 */
 696static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
 697{
 698	struct fsldma_chan *chan = to_fsl_chan(dchan);
 699
 700	/* Has this channel already been allocated? */
 701	if (chan->desc_pool)
 702		return 1;
 703
 704	/*
 705	 * We need the descriptor to be aligned to 32bytes
 706	 * for meeting FSL DMA specification requirement.
 707	 */
 708	chan->desc_pool = dma_pool_create(chan->name, chan->dev,
 709					  sizeof(struct fsl_desc_sw),
 710					  __alignof__(struct fsl_desc_sw), 0);
 711	if (!chan->desc_pool) {
 712		chan_err(chan, "unable to allocate descriptor pool\n");
 713		return -ENOMEM;
 714	}
 715
 716	/* there is at least one descriptor free to be allocated */
 717	return 1;
 718}
 719
 720/**
 721 * fsldma_free_desc_list - Free all descriptors in a queue
 722 * @chan: Freescae DMA channel
 723 * @list: the list to free
 724 *
 725 * LOCKING: must hold chan->desc_lock
 726 */
 727static void fsldma_free_desc_list(struct fsldma_chan *chan,
 728				  struct list_head *list)
 729{
 730	struct fsl_desc_sw *desc, *_desc;
 731
 732	list_for_each_entry_safe(desc, _desc, list, node)
 733		fsl_dma_free_descriptor(chan, desc);
 734}
 735
 736static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
 737					  struct list_head *list)
 738{
 739	struct fsl_desc_sw *desc, *_desc;
 740
 741	list_for_each_entry_safe_reverse(desc, _desc, list, node)
 742		fsl_dma_free_descriptor(chan, desc);
 743}
 744
 745/**
 746 * fsl_dma_free_chan_resources - Free all resources of the channel.
 747 * @chan : Freescale DMA channel
 748 */
 749static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
 750{
 751	struct fsldma_chan *chan = to_fsl_chan(dchan);
 752
 753	chan_dbg(chan, "free all channel resources\n");
 754	spin_lock_bh(&chan->desc_lock);
 755	fsldma_cleanup_descriptors(chan);
 756	fsldma_free_desc_list(chan, &chan->ld_pending);
 757	fsldma_free_desc_list(chan, &chan->ld_running);
 758	fsldma_free_desc_list(chan, &chan->ld_completed);
 759	spin_unlock_bh(&chan->desc_lock);
 760
 761	dma_pool_destroy(chan->desc_pool);
 762	chan->desc_pool = NULL;
 763}
 764
 765static struct dma_async_tx_descriptor *
 766fsl_dma_prep_memcpy(struct dma_chan *dchan,
 767	dma_addr_t dma_dst, dma_addr_t dma_src,
 768	size_t len, unsigned long flags)
 769{
 770	struct fsldma_chan *chan;
 771	struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
 772	size_t copy;
 773
 774	if (!dchan)
 775		return NULL;
 776
 777	if (!len)
 778		return NULL;
 779
 780	chan = to_fsl_chan(dchan);
 781
 782	do {
 783
 784		/* Allocate the link descriptor from DMA pool */
 785		new = fsl_dma_alloc_descriptor(chan);
 786		if (!new) {
 787			chan_err(chan, "%s\n", msg_ld_oom);
 788			goto fail;
 789		}
 790
 791		copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
 792
 793		set_desc_cnt(chan, &new->hw, copy);
 794		set_desc_src(chan, &new->hw, dma_src);
 795		set_desc_dst(chan, &new->hw, dma_dst);
 796
 797		if (!first)
 798			first = new;
 799		else
 800			set_desc_next(chan, &prev->hw, new->async_tx.phys);
 801
 802		new->async_tx.cookie = 0;
 803		async_tx_ack(&new->async_tx);
 804
 805		prev = new;
 806		len -= copy;
 807		dma_src += copy;
 808		dma_dst += copy;
 809
 810		/* Insert the link descriptor to the LD ring */
 811		list_add_tail(&new->node, &first->tx_list);
 812	} while (len);
 813
 814	new->async_tx.flags = flags; /* client is in control of this ack */
 815	new->async_tx.cookie = -EBUSY;
 816
 817	/* Set End-of-link to the last link descriptor of new list */
 818	set_ld_eol(chan, new);
 819
 820	return &first->async_tx;
 821
 822fail:
 823	if (!first)
 824		return NULL;
 825
 826	fsldma_free_desc_list_reverse(chan, &first->tx_list);
 827	return NULL;
 828}
 829
 830static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan,
 831	struct scatterlist *dst_sg, unsigned int dst_nents,
 832	struct scatterlist *src_sg, unsigned int src_nents,
 833	unsigned long flags)
 834{
 835	struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
 836	struct fsldma_chan *chan = to_fsl_chan(dchan);
 837	size_t dst_avail, src_avail;
 838	dma_addr_t dst, src;
 839	size_t len;
 840
 841	/* basic sanity checks */
 842	if (dst_nents == 0 || src_nents == 0)
 843		return NULL;
 844
 845	if (dst_sg == NULL || src_sg == NULL)
 846		return NULL;
 847
 848	/*
 849	 * TODO: should we check that both scatterlists have the same
 850	 * TODO: number of bytes in total? Is that really an error?
 851	 */
 852
 853	/* get prepared for the loop */
 854	dst_avail = sg_dma_len(dst_sg);
 855	src_avail = sg_dma_len(src_sg);
 856
 857	/* run until we are out of scatterlist entries */
 858	while (true) {
 859
 860		/* create the largest transaction possible */
 861		len = min_t(size_t, src_avail, dst_avail);
 862		len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT);
 863		if (len == 0)
 864			goto fetch;
 865
 866		dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
 867		src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
 868
 869		/* allocate and populate the descriptor */
 870		new = fsl_dma_alloc_descriptor(chan);
 871		if (!new) {
 872			chan_err(chan, "%s\n", msg_ld_oom);
 873			goto fail;
 874		}
 875
 876		set_desc_cnt(chan, &new->hw, len);
 877		set_desc_src(chan, &new->hw, src);
 878		set_desc_dst(chan, &new->hw, dst);
 879
 880		if (!first)
 881			first = new;
 882		else
 883			set_desc_next(chan, &prev->hw, new->async_tx.phys);
 884
 885		new->async_tx.cookie = 0;
 886		async_tx_ack(&new->async_tx);
 887		prev = new;
 888
 889		/* Insert the link descriptor to the LD ring */
 890		list_add_tail(&new->node, &first->tx_list);
 891
 892		/* update metadata */
 893		dst_avail -= len;
 894		src_avail -= len;
 895
 896fetch:
 897		/* fetch the next dst scatterlist entry */
 898		if (dst_avail == 0) {
 899
 900			/* no more entries: we're done */
 901			if (dst_nents == 0)
 902				break;
 903
 904			/* fetch the next entry: if there are no more: done */
 905			dst_sg = sg_next(dst_sg);
 906			if (dst_sg == NULL)
 907				break;
 908
 909			dst_nents--;
 910			dst_avail = sg_dma_len(dst_sg);
 911		}
 912
 913		/* fetch the next src scatterlist entry */
 914		if (src_avail == 0) {
 915
 916			/* no more entries: we're done */
 917			if (src_nents == 0)
 918				break;
 919
 920			/* fetch the next entry: if there are no more: done */
 921			src_sg = sg_next(src_sg);
 922			if (src_sg == NULL)
 923				break;
 924
 925			src_nents--;
 926			src_avail = sg_dma_len(src_sg);
 927		}
 928	}
 929
 930	new->async_tx.flags = flags; /* client is in control of this ack */
 931	new->async_tx.cookie = -EBUSY;
 932
 933	/* Set End-of-link to the last link descriptor of new list */
 934	set_ld_eol(chan, new);
 935
 936	return &first->async_tx;
 937
 938fail:
 939	if (!first)
 940		return NULL;
 941
 942	fsldma_free_desc_list_reverse(chan, &first->tx_list);
 943	return NULL;
 944}
 945
 946static int fsl_dma_device_terminate_all(struct dma_chan *dchan)
 947{
 948	struct fsldma_chan *chan;
 949
 950	if (!dchan)
 951		return -EINVAL;
 952
 953	chan = to_fsl_chan(dchan);
 954
 955	spin_lock_bh(&chan->desc_lock);
 956
 957	/* Halt the DMA engine */
 958	dma_halt(chan);
 959
 960	/* Remove and free all of the descriptors in the LD queue */
 961	fsldma_free_desc_list(chan, &chan->ld_pending);
 962	fsldma_free_desc_list(chan, &chan->ld_running);
 963	fsldma_free_desc_list(chan, &chan->ld_completed);
 964	chan->idle = true;
 965
 966	spin_unlock_bh(&chan->desc_lock);
 967	return 0;
 968}
 969
 970static int fsl_dma_device_config(struct dma_chan *dchan,
 971				 struct dma_slave_config *config)
 972{
 973	struct fsldma_chan *chan;
 974	int size;
 975
 976	if (!dchan)
 977		return -EINVAL;
 978
 979	chan = to_fsl_chan(dchan);
 980
 981	/* make sure the channel supports setting burst size */
 982	if (!chan->set_request_count)
 983		return -ENXIO;
 984
 985	/* we set the controller burst size depending on direction */
 986	if (config->direction == DMA_MEM_TO_DEV)
 987		size = config->dst_addr_width * config->dst_maxburst;
 988	else
 989		size = config->src_addr_width * config->src_maxburst;
 990
 991	chan->set_request_count(chan, size);
 992	return 0;
 993}
 994
 995
 996/**
 997 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
 998 * @chan : Freescale DMA channel
 999 */
1000static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
1001{
1002	struct fsldma_chan *chan = to_fsl_chan(dchan);
1003
1004	spin_lock_bh(&chan->desc_lock);
1005	fsl_chan_xfer_ld_queue(chan);
1006	spin_unlock_bh(&chan->desc_lock);
1007}
1008
1009/**
1010 * fsl_tx_status - Determine the DMA status
1011 * @chan : Freescale DMA channel
1012 */
1013static enum dma_status fsl_tx_status(struct dma_chan *dchan,
1014					dma_cookie_t cookie,
1015					struct dma_tx_state *txstate)
1016{
1017	struct fsldma_chan *chan = to_fsl_chan(dchan);
1018	enum dma_status ret;
1019
1020	ret = dma_cookie_status(dchan, cookie, txstate);
1021	if (ret == DMA_COMPLETE)
1022		return ret;
1023
1024	spin_lock_bh(&chan->desc_lock);
1025	fsldma_cleanup_descriptors(chan);
1026	spin_unlock_bh(&chan->desc_lock);
1027
1028	return dma_cookie_status(dchan, cookie, txstate);
1029}
1030
1031/*----------------------------------------------------------------------------*/
1032/* Interrupt Handling                                                         */
1033/*----------------------------------------------------------------------------*/
1034
1035static irqreturn_t fsldma_chan_irq(int irq, void *data)
1036{
1037	struct fsldma_chan *chan = data;
1038	u32 stat;
1039
1040	/* save and clear the status register */
1041	stat = get_sr(chan);
1042	set_sr(chan, stat);
1043	chan_dbg(chan, "irq: stat = 0x%x\n", stat);
1044
1045	/* check that this was really our device */
1046	stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
1047	if (!stat)
1048		return IRQ_NONE;
1049
1050	if (stat & FSL_DMA_SR_TE)
1051		chan_err(chan, "Transfer Error!\n");
1052
1053	/*
1054	 * Programming Error
1055	 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
1056	 * trigger a PE interrupt.
1057	 */
1058	if (stat & FSL_DMA_SR_PE) {
1059		chan_dbg(chan, "irq: Programming Error INT\n");
1060		stat &= ~FSL_DMA_SR_PE;
1061		if (get_bcr(chan) != 0)
1062			chan_err(chan, "Programming Error!\n");
1063	}
1064
1065	/*
1066	 * For MPC8349, EOCDI event need to update cookie
1067	 * and start the next transfer if it exist.
1068	 */
1069	if (stat & FSL_DMA_SR_EOCDI) {
1070		chan_dbg(chan, "irq: End-of-Chain link INT\n");
1071		stat &= ~FSL_DMA_SR_EOCDI;
1072	}
1073
1074	/*
1075	 * If it current transfer is the end-of-transfer,
1076	 * we should clear the Channel Start bit for
1077	 * prepare next transfer.
1078	 */
1079	if (stat & FSL_DMA_SR_EOLNI) {
1080		chan_dbg(chan, "irq: End-of-link INT\n");
1081		stat &= ~FSL_DMA_SR_EOLNI;
1082	}
1083
1084	/* check that the DMA controller is really idle */
1085	if (!dma_is_idle(chan))
1086		chan_err(chan, "irq: controller not idle!\n");
1087
1088	/* check that we handled all of the bits */
1089	if (stat)
1090		chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
1091
1092	/*
1093	 * Schedule the tasklet to handle all cleanup of the current
1094	 * transaction. It will start a new transaction if there is
1095	 * one pending.
1096	 */
1097	tasklet_schedule(&chan->tasklet);
1098	chan_dbg(chan, "irq: Exit\n");
1099	return IRQ_HANDLED;
1100}
1101
1102static void dma_do_tasklet(unsigned long data)
1103{
1104	struct fsldma_chan *chan = (struct fsldma_chan *)data;
1105
1106	chan_dbg(chan, "tasklet entry\n");
1107
1108	spin_lock_bh(&chan->desc_lock);
1109
1110	/* the hardware is now idle and ready for more */
1111	chan->idle = true;
1112
1113	/* Run all cleanup for descriptors which have been completed */
1114	fsldma_cleanup_descriptors(chan);
1115
1116	spin_unlock_bh(&chan->desc_lock);
1117
1118	chan_dbg(chan, "tasklet exit\n");
1119}
1120
1121static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1122{
1123	struct fsldma_device *fdev = data;
1124	struct fsldma_chan *chan;
1125	unsigned int handled = 0;
1126	u32 gsr, mask;
1127	int i;
1128
1129	gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1130						   : in_le32(fdev->regs);
1131	mask = 0xff000000;
1132	dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1133
1134	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1135		chan = fdev->chan[i];
1136		if (!chan)
1137			continue;
1138
1139		if (gsr & mask) {
1140			dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1141			fsldma_chan_irq(irq, chan);
1142			handled++;
1143		}
1144
1145		gsr &= ~mask;
1146		mask >>= 8;
1147	}
1148
1149	return IRQ_RETVAL(handled);
1150}
1151
1152static void fsldma_free_irqs(struct fsldma_device *fdev)
1153{
1154	struct fsldma_chan *chan;
1155	int i;
1156
1157	if (fdev->irq != NO_IRQ) {
1158		dev_dbg(fdev->dev, "free per-controller IRQ\n");
1159		free_irq(fdev->irq, fdev);
1160		return;
1161	}
1162
1163	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1164		chan = fdev->chan[i];
1165		if (chan && chan->irq != NO_IRQ) {
1166			chan_dbg(chan, "free per-channel IRQ\n");
1167			free_irq(chan->irq, chan);
1168		}
1169	}
1170}
1171
1172static int fsldma_request_irqs(struct fsldma_device *fdev)
1173{
1174	struct fsldma_chan *chan;
1175	int ret;
1176	int i;
1177
1178	/* if we have a per-controller IRQ, use that */
1179	if (fdev->irq != NO_IRQ) {
1180		dev_dbg(fdev->dev, "request per-controller IRQ\n");
1181		ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1182				  "fsldma-controller", fdev);
1183		return ret;
1184	}
1185
1186	/* no per-controller IRQ, use the per-channel IRQs */
1187	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1188		chan = fdev->chan[i];
1189		if (!chan)
1190			continue;
1191
1192		if (chan->irq == NO_IRQ) {
1193			chan_err(chan, "interrupts property missing in device tree\n");
1194			ret = -ENODEV;
1195			goto out_unwind;
1196		}
1197
1198		chan_dbg(chan, "request per-channel IRQ\n");
1199		ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1200				  "fsldma-chan", chan);
1201		if (ret) {
1202			chan_err(chan, "unable to request per-channel IRQ\n");
1203			goto out_unwind;
1204		}
1205	}
1206
1207	return 0;
1208
1209out_unwind:
1210	for (/* none */; i >= 0; i--) {
1211		chan = fdev->chan[i];
1212		if (!chan)
1213			continue;
1214
1215		if (chan->irq == NO_IRQ)
1216			continue;
1217
1218		free_irq(chan->irq, chan);
1219	}
1220
1221	return ret;
1222}
1223
1224/*----------------------------------------------------------------------------*/
1225/* OpenFirmware Subsystem                                                     */
1226/*----------------------------------------------------------------------------*/
1227
1228static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1229	struct device_node *node, u32 feature, const char *compatible)
1230{
1231	struct fsldma_chan *chan;
1232	struct resource res;
1233	int err;
1234
1235	/* alloc channel */
1236	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1237	if (!chan) {
1238		dev_err(fdev->dev, "no free memory for DMA channels!\n");
1239		err = -ENOMEM;
1240		goto out_return;
1241	}
1242
1243	/* ioremap registers for use */
1244	chan->regs = of_iomap(node, 0);
1245	if (!chan->regs) {
1246		dev_err(fdev->dev, "unable to ioremap registers\n");
1247		err = -ENOMEM;
1248		goto out_free_chan;
1249	}
1250
1251	err = of_address_to_resource(node, 0, &res);
1252	if (err) {
1253		dev_err(fdev->dev, "unable to find 'reg' property\n");
1254		goto out_iounmap_regs;
1255	}
1256
1257	chan->feature = feature;
1258	if (!fdev->feature)
1259		fdev->feature = chan->feature;
1260
1261	/*
1262	 * If the DMA device's feature is different than the feature
1263	 * of its channels, report the bug
1264	 */
1265	WARN_ON(fdev->feature != chan->feature);
1266
1267	chan->dev = fdev->dev;
1268	chan->id = (res.start & 0xfff) < 0x300 ?
1269		   ((res.start - 0x100) & 0xfff) >> 7 :
1270		   ((res.start - 0x200) & 0xfff) >> 7;
1271	if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1272		dev_err(fdev->dev, "too many channels for device\n");
1273		err = -EINVAL;
1274		goto out_iounmap_regs;
1275	}
1276
1277	fdev->chan[chan->id] = chan;
1278	tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1279	snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1280
1281	/* Initialize the channel */
1282	dma_init(chan);
1283
1284	/* Clear cdar registers */
1285	set_cdar(chan, 0);
1286
1287	switch (chan->feature & FSL_DMA_IP_MASK) {
1288	case FSL_DMA_IP_85XX:
1289		chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
 
1290	case FSL_DMA_IP_83XX:
1291		chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1292		chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1293		chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1294		chan->set_request_count = fsl_chan_set_request_count;
1295	}
1296
1297	spin_lock_init(&chan->desc_lock);
1298	INIT_LIST_HEAD(&chan->ld_pending);
1299	INIT_LIST_HEAD(&chan->ld_running);
1300	INIT_LIST_HEAD(&chan->ld_completed);
1301	chan->idle = true;
1302#ifdef CONFIG_PM
1303	chan->pm_state = RUNNING;
1304#endif
1305
1306	chan->common.device = &fdev->common;
1307	dma_cookie_init(&chan->common);
1308
1309	/* find the IRQ line, if it exists in the device tree */
1310	chan->irq = irq_of_parse_and_map(node, 0);
1311
1312	/* Add the channel to DMA device channel list */
1313	list_add_tail(&chan->common.device_node, &fdev->common.channels);
1314
1315	dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1316		 chan->irq != NO_IRQ ? chan->irq : fdev->irq);
1317
1318	return 0;
1319
1320out_iounmap_regs:
1321	iounmap(chan->regs);
1322out_free_chan:
1323	kfree(chan);
1324out_return:
1325	return err;
1326}
1327
1328static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1329{
1330	irq_dispose_mapping(chan->irq);
1331	list_del(&chan->common.device_node);
1332	iounmap(chan->regs);
1333	kfree(chan);
1334}
1335
1336static int fsldma_of_probe(struct platform_device *op)
1337{
1338	struct fsldma_device *fdev;
1339	struct device_node *child;
1340	int err;
1341
1342	fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1343	if (!fdev) {
1344		dev_err(&op->dev, "No enough memory for 'priv'\n");
1345		err = -ENOMEM;
1346		goto out_return;
1347	}
1348
1349	fdev->dev = &op->dev;
1350	INIT_LIST_HEAD(&fdev->common.channels);
1351
1352	/* ioremap the registers for use */
1353	fdev->regs = of_iomap(op->dev.of_node, 0);
1354	if (!fdev->regs) {
1355		dev_err(&op->dev, "unable to ioremap registers\n");
1356		err = -ENOMEM;
1357		goto out_free_fdev;
1358	}
1359
1360	/* map the channel IRQ if it exists, but don't hookup the handler yet */
1361	fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1362
1363	dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1364	dma_cap_set(DMA_SG, fdev->common.cap_mask);
1365	dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1366	fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1367	fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1368	fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1369	fdev->common.device_prep_dma_sg = fsl_dma_prep_sg;
1370	fdev->common.device_tx_status = fsl_tx_status;
1371	fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1372	fdev->common.device_config = fsl_dma_device_config;
1373	fdev->common.device_terminate_all = fsl_dma_device_terminate_all;
1374	fdev->common.dev = &op->dev;
1375
1376	fdev->common.src_addr_widths = FSL_DMA_BUSWIDTHS;
1377	fdev->common.dst_addr_widths = FSL_DMA_BUSWIDTHS;
1378	fdev->common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1379	fdev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1380
1381	dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1382
1383	platform_set_drvdata(op, fdev);
1384
1385	/*
1386	 * We cannot use of_platform_bus_probe() because there is no
1387	 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1388	 * channel object.
1389	 */
1390	for_each_child_of_node(op->dev.of_node, child) {
1391		if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1392			fsl_dma_chan_probe(fdev, child,
1393				FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1394				"fsl,eloplus-dma-channel");
1395		}
1396
1397		if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1398			fsl_dma_chan_probe(fdev, child,
1399				FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1400				"fsl,elo-dma-channel");
1401		}
1402	}
1403
1404	/*
1405	 * Hookup the IRQ handler(s)
1406	 *
1407	 * If we have a per-controller interrupt, we prefer that to the
1408	 * per-channel interrupts to reduce the number of shared interrupt
1409	 * handlers on the same IRQ line
1410	 */
1411	err = fsldma_request_irqs(fdev);
1412	if (err) {
1413		dev_err(fdev->dev, "unable to request IRQs\n");
1414		goto out_free_fdev;
1415	}
1416
1417	dma_async_device_register(&fdev->common);
1418	return 0;
1419
1420out_free_fdev:
1421	irq_dispose_mapping(fdev->irq);
 
 
1422	kfree(fdev);
1423out_return:
1424	return err;
1425}
1426
1427static int fsldma_of_remove(struct platform_device *op)
1428{
1429	struct fsldma_device *fdev;
1430	unsigned int i;
1431
1432	fdev = platform_get_drvdata(op);
1433	dma_async_device_unregister(&fdev->common);
1434
1435	fsldma_free_irqs(fdev);
1436
1437	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1438		if (fdev->chan[i])
1439			fsl_dma_chan_remove(fdev->chan[i]);
1440	}
1441
1442	iounmap(fdev->regs);
1443	kfree(fdev);
1444
1445	return 0;
1446}
1447
1448#ifdef CONFIG_PM
1449static int fsldma_suspend_late(struct device *dev)
1450{
1451	struct platform_device *pdev = to_platform_device(dev);
1452	struct fsldma_device *fdev = platform_get_drvdata(pdev);
1453	struct fsldma_chan *chan;
1454	int i;
1455
1456	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1457		chan = fdev->chan[i];
1458		if (!chan)
1459			continue;
1460
1461		spin_lock_bh(&chan->desc_lock);
1462		if (unlikely(!chan->idle))
1463			goto out;
1464		chan->regs_save.mr = get_mr(chan);
1465		chan->pm_state = SUSPENDED;
1466		spin_unlock_bh(&chan->desc_lock);
1467	}
1468	return 0;
1469
1470out:
1471	for (; i >= 0; i--) {
1472		chan = fdev->chan[i];
1473		if (!chan)
1474			continue;
1475		chan->pm_state = RUNNING;
1476		spin_unlock_bh(&chan->desc_lock);
1477	}
1478	return -EBUSY;
1479}
1480
1481static int fsldma_resume_early(struct device *dev)
1482{
1483	struct platform_device *pdev = to_platform_device(dev);
1484	struct fsldma_device *fdev = platform_get_drvdata(pdev);
1485	struct fsldma_chan *chan;
1486	u32 mode;
1487	int i;
1488
1489	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1490		chan = fdev->chan[i];
1491		if (!chan)
1492			continue;
1493
1494		spin_lock_bh(&chan->desc_lock);
1495		mode = chan->regs_save.mr
1496			& ~FSL_DMA_MR_CS & ~FSL_DMA_MR_CC & ~FSL_DMA_MR_CA;
1497		set_mr(chan, mode);
1498		chan->pm_state = RUNNING;
1499		spin_unlock_bh(&chan->desc_lock);
1500	}
1501
1502	return 0;
1503}
1504
1505static const struct dev_pm_ops fsldma_pm_ops = {
1506	.suspend_late	= fsldma_suspend_late,
1507	.resume_early	= fsldma_resume_early,
1508};
1509#endif
1510
1511static const struct of_device_id fsldma_of_ids[] = {
1512	{ .compatible = "fsl,elo3-dma", },
1513	{ .compatible = "fsl,eloplus-dma", },
1514	{ .compatible = "fsl,elo-dma", },
1515	{}
1516};
1517MODULE_DEVICE_TABLE(of, fsldma_of_ids);
1518
1519static struct platform_driver fsldma_of_driver = {
1520	.driver = {
1521		.name = "fsl-elo-dma",
1522		.of_match_table = fsldma_of_ids,
1523#ifdef CONFIG_PM
1524		.pm = &fsldma_pm_ops,
1525#endif
1526	},
1527	.probe = fsldma_of_probe,
1528	.remove = fsldma_of_remove,
1529};
1530
1531/*----------------------------------------------------------------------------*/
1532/* Module Init / Exit                                                         */
1533/*----------------------------------------------------------------------------*/
1534
1535static __init int fsldma_init(void)
1536{
1537	pr_info("Freescale Elo series DMA driver\n");
1538	return platform_driver_register(&fsldma_of_driver);
1539}
1540
1541static void __exit fsldma_exit(void)
1542{
1543	platform_driver_unregister(&fsldma_of_driver);
1544}
1545
1546subsys_initcall(fsldma_init);
1547module_exit(fsldma_exit);
1548
1549MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1550MODULE_LICENSE("GPL");