Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) STMicroelectronics SA 2017
4 * Author: Fabien Dessenne <fabien.dessenne@st.com>
5 */
6
7#include <linux/clk.h>
8#include <linux/delay.h>
9#include <linux/interrupt.h>
10#include <linux/iopoll.h>
11#include <linux/module.h>
12#include <linux/of_device.h>
13#include <linux/platform_device.h>
14#include <linux/pm_runtime.h>
15#include <linux/reset.h>
16
17#include <crypto/aes.h>
18#include <crypto/internal/des.h>
19#include <crypto/engine.h>
20#include <crypto/scatterwalk.h>
21#include <crypto/internal/aead.h>
22#include <crypto/internal/skcipher.h>
23
24#define DRIVER_NAME "stm32-cryp"
25
26/* Bit [0] encrypt / decrypt */
27#define FLG_ENCRYPT BIT(0)
28/* Bit [8..1] algo & operation mode */
29#define FLG_AES BIT(1)
30#define FLG_DES BIT(2)
31#define FLG_TDES BIT(3)
32#define FLG_ECB BIT(4)
33#define FLG_CBC BIT(5)
34#define FLG_CTR BIT(6)
35#define FLG_GCM BIT(7)
36#define FLG_CCM BIT(8)
37/* Mode mask = bits [15..0] */
38#define FLG_MODE_MASK GENMASK(15, 0)
39/* Bit [31..16] status */
40#define FLG_CCM_PADDED_WA BIT(16)
41
42/* Registers */
43#define CRYP_CR 0x00000000
44#define CRYP_SR 0x00000004
45#define CRYP_DIN 0x00000008
46#define CRYP_DOUT 0x0000000C
47#define CRYP_DMACR 0x00000010
48#define CRYP_IMSCR 0x00000014
49#define CRYP_RISR 0x00000018
50#define CRYP_MISR 0x0000001C
51#define CRYP_K0LR 0x00000020
52#define CRYP_K0RR 0x00000024
53#define CRYP_K1LR 0x00000028
54#define CRYP_K1RR 0x0000002C
55#define CRYP_K2LR 0x00000030
56#define CRYP_K2RR 0x00000034
57#define CRYP_K3LR 0x00000038
58#define CRYP_K3RR 0x0000003C
59#define CRYP_IV0LR 0x00000040
60#define CRYP_IV0RR 0x00000044
61#define CRYP_IV1LR 0x00000048
62#define CRYP_IV1RR 0x0000004C
63#define CRYP_CSGCMCCM0R 0x00000050
64#define CRYP_CSGCM0R 0x00000070
65
66/* Registers values */
67#define CR_DEC_NOT_ENC 0x00000004
68#define CR_TDES_ECB 0x00000000
69#define CR_TDES_CBC 0x00000008
70#define CR_DES_ECB 0x00000010
71#define CR_DES_CBC 0x00000018
72#define CR_AES_ECB 0x00000020
73#define CR_AES_CBC 0x00000028
74#define CR_AES_CTR 0x00000030
75#define CR_AES_KP 0x00000038
76#define CR_AES_GCM 0x00080000
77#define CR_AES_CCM 0x00080008
78#define CR_AES_UNKNOWN 0xFFFFFFFF
79#define CR_ALGO_MASK 0x00080038
80#define CR_DATA32 0x00000000
81#define CR_DATA16 0x00000040
82#define CR_DATA8 0x00000080
83#define CR_DATA1 0x000000C0
84#define CR_KEY128 0x00000000
85#define CR_KEY192 0x00000100
86#define CR_KEY256 0x00000200
87#define CR_FFLUSH 0x00004000
88#define CR_CRYPEN 0x00008000
89#define CR_PH_INIT 0x00000000
90#define CR_PH_HEADER 0x00010000
91#define CR_PH_PAYLOAD 0x00020000
92#define CR_PH_FINAL 0x00030000
93#define CR_PH_MASK 0x00030000
94#define CR_NBPBL_SHIFT 20
95
96#define SR_BUSY 0x00000010
97#define SR_OFNE 0x00000004
98
99#define IMSCR_IN BIT(0)
100#define IMSCR_OUT BIT(1)
101
102#define MISR_IN BIT(0)
103#define MISR_OUT BIT(1)
104
105/* Misc */
106#define AES_BLOCK_32 (AES_BLOCK_SIZE / sizeof(u32))
107#define GCM_CTR_INIT 2
108#define _walked_in (cryp->in_walk.offset - cryp->in_sg->offset)
109#define _walked_out (cryp->out_walk.offset - cryp->out_sg->offset)
110#define CRYP_AUTOSUSPEND_DELAY 50
111
112struct stm32_cryp_caps {
113 bool swap_final;
114 bool padding_wa;
115};
116
117struct stm32_cryp_ctx {
118 struct crypto_engine_ctx enginectx;
119 struct stm32_cryp *cryp;
120 int keylen;
121 u32 key[AES_KEYSIZE_256 / sizeof(u32)];
122 unsigned long flags;
123};
124
125struct stm32_cryp_reqctx {
126 unsigned long mode;
127};
128
129struct stm32_cryp {
130 struct list_head list;
131 struct device *dev;
132 void __iomem *regs;
133 struct clk *clk;
134 unsigned long flags;
135 u32 irq_status;
136 const struct stm32_cryp_caps *caps;
137 struct stm32_cryp_ctx *ctx;
138
139 struct crypto_engine *engine;
140
141 struct skcipher_request *req;
142 struct aead_request *areq;
143
144 size_t authsize;
145 size_t hw_blocksize;
146
147 size_t total_in;
148 size_t total_in_save;
149 size_t total_out;
150 size_t total_out_save;
151
152 struct scatterlist *in_sg;
153 struct scatterlist *out_sg;
154 struct scatterlist *out_sg_save;
155
156 struct scatterlist in_sgl;
157 struct scatterlist out_sgl;
158 bool sgs_copied;
159
160 int in_sg_len;
161 int out_sg_len;
162
163 struct scatter_walk in_walk;
164 struct scatter_walk out_walk;
165
166 u32 last_ctr[4];
167 u32 gcm_ctr;
168};
169
170struct stm32_cryp_list {
171 struct list_head dev_list;
172 spinlock_t lock; /* protect dev_list */
173};
174
175static struct stm32_cryp_list cryp_list = {
176 .dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
177 .lock = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
178};
179
180static inline bool is_aes(struct stm32_cryp *cryp)
181{
182 return cryp->flags & FLG_AES;
183}
184
185static inline bool is_des(struct stm32_cryp *cryp)
186{
187 return cryp->flags & FLG_DES;
188}
189
190static inline bool is_tdes(struct stm32_cryp *cryp)
191{
192 return cryp->flags & FLG_TDES;
193}
194
195static inline bool is_ecb(struct stm32_cryp *cryp)
196{
197 return cryp->flags & FLG_ECB;
198}
199
200static inline bool is_cbc(struct stm32_cryp *cryp)
201{
202 return cryp->flags & FLG_CBC;
203}
204
205static inline bool is_ctr(struct stm32_cryp *cryp)
206{
207 return cryp->flags & FLG_CTR;
208}
209
210static inline bool is_gcm(struct stm32_cryp *cryp)
211{
212 return cryp->flags & FLG_GCM;
213}
214
215static inline bool is_ccm(struct stm32_cryp *cryp)
216{
217 return cryp->flags & FLG_CCM;
218}
219
220static inline bool is_encrypt(struct stm32_cryp *cryp)
221{
222 return cryp->flags & FLG_ENCRYPT;
223}
224
225static inline bool is_decrypt(struct stm32_cryp *cryp)
226{
227 return !is_encrypt(cryp);
228}
229
230static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
231{
232 return readl_relaxed(cryp->regs + ofst);
233}
234
235static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
236{
237 writel_relaxed(val, cryp->regs + ofst);
238}
239
240static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
241{
242 u32 status;
243
244 return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
245 !(status & SR_BUSY), 10, 100000);
246}
247
248static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
249{
250 u32 status;
251
252 return readl_relaxed_poll_timeout(cryp->regs + CRYP_CR, status,
253 !(status & CR_CRYPEN), 10, 100000);
254}
255
256static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
257{
258 u32 status;
259
260 return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
261 status & SR_OFNE, 10, 100000);
262}
263
264static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
265
266static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
267{
268 struct stm32_cryp *tmp, *cryp = NULL;
269
270 spin_lock_bh(&cryp_list.lock);
271 if (!ctx->cryp) {
272 list_for_each_entry(tmp, &cryp_list.dev_list, list) {
273 cryp = tmp;
274 break;
275 }
276 ctx->cryp = cryp;
277 } else {
278 cryp = ctx->cryp;
279 }
280
281 spin_unlock_bh(&cryp_list.lock);
282
283 return cryp;
284}
285
286static int stm32_cryp_check_aligned(struct scatterlist *sg, size_t total,
287 size_t align)
288{
289 int len = 0;
290
291 if (!total)
292 return 0;
293
294 if (!IS_ALIGNED(total, align))
295 return -EINVAL;
296
297 while (sg) {
298 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
299 return -EINVAL;
300
301 if (!IS_ALIGNED(sg->length, align))
302 return -EINVAL;
303
304 len += sg->length;
305 sg = sg_next(sg);
306 }
307
308 if (len != total)
309 return -EINVAL;
310
311 return 0;
312}
313
314static int stm32_cryp_check_io_aligned(struct stm32_cryp *cryp)
315{
316 int ret;
317
318 ret = stm32_cryp_check_aligned(cryp->in_sg, cryp->total_in,
319 cryp->hw_blocksize);
320 if (ret)
321 return ret;
322
323 ret = stm32_cryp_check_aligned(cryp->out_sg, cryp->total_out,
324 cryp->hw_blocksize);
325
326 return ret;
327}
328
329static void sg_copy_buf(void *buf, struct scatterlist *sg,
330 unsigned int start, unsigned int nbytes, int out)
331{
332 struct scatter_walk walk;
333
334 if (!nbytes)
335 return;
336
337 scatterwalk_start(&walk, sg);
338 scatterwalk_advance(&walk, start);
339 scatterwalk_copychunks(buf, &walk, nbytes, out);
340 scatterwalk_done(&walk, out, 0);
341}
342
343static int stm32_cryp_copy_sgs(struct stm32_cryp *cryp)
344{
345 void *buf_in, *buf_out;
346 int pages, total_in, total_out;
347
348 if (!stm32_cryp_check_io_aligned(cryp)) {
349 cryp->sgs_copied = 0;
350 return 0;
351 }
352
353 total_in = ALIGN(cryp->total_in, cryp->hw_blocksize);
354 pages = total_in ? get_order(total_in) : 1;
355 buf_in = (void *)__get_free_pages(GFP_ATOMIC, pages);
356
357 total_out = ALIGN(cryp->total_out, cryp->hw_blocksize);
358 pages = total_out ? get_order(total_out) : 1;
359 buf_out = (void *)__get_free_pages(GFP_ATOMIC, pages);
360
361 if (!buf_in || !buf_out) {
362 dev_err(cryp->dev, "Can't allocate pages when unaligned\n");
363 cryp->sgs_copied = 0;
364 return -EFAULT;
365 }
366
367 sg_copy_buf(buf_in, cryp->in_sg, 0, cryp->total_in, 0);
368
369 sg_init_one(&cryp->in_sgl, buf_in, total_in);
370 cryp->in_sg = &cryp->in_sgl;
371 cryp->in_sg_len = 1;
372
373 sg_init_one(&cryp->out_sgl, buf_out, total_out);
374 cryp->out_sg_save = cryp->out_sg;
375 cryp->out_sg = &cryp->out_sgl;
376 cryp->out_sg_len = 1;
377
378 cryp->sgs_copied = 1;
379
380 return 0;
381}
382
383static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, u32 *iv)
384{
385 if (!iv)
386 return;
387
388 stm32_cryp_write(cryp, CRYP_IV0LR, cpu_to_be32(*iv++));
389 stm32_cryp_write(cryp, CRYP_IV0RR, cpu_to_be32(*iv++));
390
391 if (is_aes(cryp)) {
392 stm32_cryp_write(cryp, CRYP_IV1LR, cpu_to_be32(*iv++));
393 stm32_cryp_write(cryp, CRYP_IV1RR, cpu_to_be32(*iv++));
394 }
395}
396
397static void stm32_cryp_get_iv(struct stm32_cryp *cryp)
398{
399 struct skcipher_request *req = cryp->req;
400 u32 *tmp = (void *)req->iv;
401
402 if (!tmp)
403 return;
404
405 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0LR));
406 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0RR));
407
408 if (is_aes(cryp)) {
409 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1LR));
410 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1RR));
411 }
412}
413
414static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
415{
416 unsigned int i;
417 int r_id;
418
419 if (is_des(c)) {
420 stm32_cryp_write(c, CRYP_K1LR, cpu_to_be32(c->ctx->key[0]));
421 stm32_cryp_write(c, CRYP_K1RR, cpu_to_be32(c->ctx->key[1]));
422 } else {
423 r_id = CRYP_K3RR;
424 for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
425 stm32_cryp_write(c, r_id,
426 cpu_to_be32(c->ctx->key[i - 1]));
427 }
428}
429
430static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
431{
432 if (is_aes(cryp) && is_ecb(cryp))
433 return CR_AES_ECB;
434
435 if (is_aes(cryp) && is_cbc(cryp))
436 return CR_AES_CBC;
437
438 if (is_aes(cryp) && is_ctr(cryp))
439 return CR_AES_CTR;
440
441 if (is_aes(cryp) && is_gcm(cryp))
442 return CR_AES_GCM;
443
444 if (is_aes(cryp) && is_ccm(cryp))
445 return CR_AES_CCM;
446
447 if (is_des(cryp) && is_ecb(cryp))
448 return CR_DES_ECB;
449
450 if (is_des(cryp) && is_cbc(cryp))
451 return CR_DES_CBC;
452
453 if (is_tdes(cryp) && is_ecb(cryp))
454 return CR_TDES_ECB;
455
456 if (is_tdes(cryp) && is_cbc(cryp))
457 return CR_TDES_CBC;
458
459 dev_err(cryp->dev, "Unknown mode\n");
460 return CR_AES_UNKNOWN;
461}
462
463static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
464{
465 return is_encrypt(cryp) ? cryp->areq->cryptlen :
466 cryp->areq->cryptlen - cryp->authsize;
467}
468
469static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
470{
471 int ret;
472 u32 iv[4];
473
474 /* Phase 1 : init */
475 memcpy(iv, cryp->areq->iv, 12);
476 iv[3] = cpu_to_be32(GCM_CTR_INIT);
477 cryp->gcm_ctr = GCM_CTR_INIT;
478 stm32_cryp_hw_write_iv(cryp, iv);
479
480 stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
481
482 /* Wait for end of processing */
483 ret = stm32_cryp_wait_enable(cryp);
484 if (ret)
485 dev_err(cryp->dev, "Timeout (gcm init)\n");
486
487 return ret;
488}
489
490static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
491{
492 int ret;
493 u8 iv[AES_BLOCK_SIZE], b0[AES_BLOCK_SIZE];
494 u32 *d;
495 unsigned int i, textlen;
496
497 /* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
498 memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
499 memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
500 iv[AES_BLOCK_SIZE - 1] = 1;
501 stm32_cryp_hw_write_iv(cryp, (u32 *)iv);
502
503 /* Build B0 */
504 memcpy(b0, iv, AES_BLOCK_SIZE);
505
506 b0[0] |= (8 * ((cryp->authsize - 2) / 2));
507
508 if (cryp->areq->assoclen)
509 b0[0] |= 0x40;
510
511 textlen = stm32_cryp_get_input_text_len(cryp);
512
513 b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
514 b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
515
516 /* Enable HW */
517 stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
518
519 /* Write B0 */
520 d = (u32 *)b0;
521
522 for (i = 0; i < AES_BLOCK_32; i++) {
523 if (!cryp->caps->padding_wa)
524 *d = cpu_to_be32(*d);
525 stm32_cryp_write(cryp, CRYP_DIN, *d++);
526 }
527
528 /* Wait for end of processing */
529 ret = stm32_cryp_wait_enable(cryp);
530 if (ret)
531 dev_err(cryp->dev, "Timeout (ccm init)\n");
532
533 return ret;
534}
535
536static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
537{
538 int ret;
539 u32 cfg, hw_mode;
540
541 pm_runtime_get_sync(cryp->dev);
542
543 /* Disable interrupt */
544 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
545
546 /* Set key */
547 stm32_cryp_hw_write_key(cryp);
548
549 /* Set configuration */
550 cfg = CR_DATA8 | CR_FFLUSH;
551
552 switch (cryp->ctx->keylen) {
553 case AES_KEYSIZE_128:
554 cfg |= CR_KEY128;
555 break;
556
557 case AES_KEYSIZE_192:
558 cfg |= CR_KEY192;
559 break;
560
561 default:
562 case AES_KEYSIZE_256:
563 cfg |= CR_KEY256;
564 break;
565 }
566
567 hw_mode = stm32_cryp_get_hw_mode(cryp);
568 if (hw_mode == CR_AES_UNKNOWN)
569 return -EINVAL;
570
571 /* AES ECB/CBC decrypt: run key preparation first */
572 if (is_decrypt(cryp) &&
573 ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
574 stm32_cryp_write(cryp, CRYP_CR, cfg | CR_AES_KP | CR_CRYPEN);
575
576 /* Wait for end of processing */
577 ret = stm32_cryp_wait_busy(cryp);
578 if (ret) {
579 dev_err(cryp->dev, "Timeout (key preparation)\n");
580 return ret;
581 }
582 }
583
584 cfg |= hw_mode;
585
586 if (is_decrypt(cryp))
587 cfg |= CR_DEC_NOT_ENC;
588
589 /* Apply config and flush (valid when CRYPEN = 0) */
590 stm32_cryp_write(cryp, CRYP_CR, cfg);
591
592 switch (hw_mode) {
593 case CR_AES_GCM:
594 case CR_AES_CCM:
595 /* Phase 1 : init */
596 if (hw_mode == CR_AES_CCM)
597 ret = stm32_cryp_ccm_init(cryp, cfg);
598 else
599 ret = stm32_cryp_gcm_init(cryp, cfg);
600
601 if (ret)
602 return ret;
603
604 /* Phase 2 : header (authenticated data) */
605 if (cryp->areq->assoclen) {
606 cfg |= CR_PH_HEADER;
607 } else if (stm32_cryp_get_input_text_len(cryp)) {
608 cfg |= CR_PH_PAYLOAD;
609 stm32_cryp_write(cryp, CRYP_CR, cfg);
610 } else {
611 cfg |= CR_PH_INIT;
612 }
613
614 break;
615
616 case CR_DES_CBC:
617 case CR_TDES_CBC:
618 case CR_AES_CBC:
619 case CR_AES_CTR:
620 stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->req->iv);
621 break;
622
623 default:
624 break;
625 }
626
627 /* Enable now */
628 cfg |= CR_CRYPEN;
629
630 stm32_cryp_write(cryp, CRYP_CR, cfg);
631
632 cryp->flags &= ~FLG_CCM_PADDED_WA;
633
634 return 0;
635}
636
637static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
638{
639 if (!err && (is_gcm(cryp) || is_ccm(cryp)))
640 /* Phase 4 : output tag */
641 err = stm32_cryp_read_auth_tag(cryp);
642
643 if (!err && (!(is_gcm(cryp) || is_ccm(cryp))))
644 stm32_cryp_get_iv(cryp);
645
646 if (cryp->sgs_copied) {
647 void *buf_in, *buf_out;
648 int pages, len;
649
650 buf_in = sg_virt(&cryp->in_sgl);
651 buf_out = sg_virt(&cryp->out_sgl);
652
653 sg_copy_buf(buf_out, cryp->out_sg_save, 0,
654 cryp->total_out_save, 1);
655
656 len = ALIGN(cryp->total_in_save, cryp->hw_blocksize);
657 pages = len ? get_order(len) : 1;
658 free_pages((unsigned long)buf_in, pages);
659
660 len = ALIGN(cryp->total_out_save, cryp->hw_blocksize);
661 pages = len ? get_order(len) : 1;
662 free_pages((unsigned long)buf_out, pages);
663 }
664
665 pm_runtime_mark_last_busy(cryp->dev);
666 pm_runtime_put_autosuspend(cryp->dev);
667
668 if (is_gcm(cryp) || is_ccm(cryp))
669 crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
670 else
671 crypto_finalize_skcipher_request(cryp->engine, cryp->req,
672 err);
673
674 memset(cryp->ctx->key, 0, cryp->ctx->keylen);
675}
676
677static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
678{
679 /* Enable interrupt and let the IRQ handler do everything */
680 stm32_cryp_write(cryp, CRYP_IMSCR, IMSCR_IN | IMSCR_OUT);
681
682 return 0;
683}
684
685static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
686static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
687 void *areq);
688
689static int stm32_cryp_init_tfm(struct crypto_skcipher *tfm)
690{
691 struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
692
693 crypto_skcipher_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx));
694
695 ctx->enginectx.op.do_one_request = stm32_cryp_cipher_one_req;
696 ctx->enginectx.op.prepare_request = stm32_cryp_prepare_cipher_req;
697 ctx->enginectx.op.unprepare_request = NULL;
698 return 0;
699}
700
701static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
702static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine,
703 void *areq);
704
705static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
706{
707 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
708
709 tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
710
711 ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req;
712 ctx->enginectx.op.prepare_request = stm32_cryp_prepare_aead_req;
713 ctx->enginectx.op.unprepare_request = NULL;
714
715 return 0;
716}
717
718static int stm32_cryp_crypt(struct skcipher_request *req, unsigned long mode)
719{
720 struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
721 crypto_skcipher_reqtfm(req));
722 struct stm32_cryp_reqctx *rctx = skcipher_request_ctx(req);
723 struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
724
725 if (!cryp)
726 return -ENODEV;
727
728 rctx->mode = mode;
729
730 return crypto_transfer_skcipher_request_to_engine(cryp->engine, req);
731}
732
733static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
734{
735 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
736 struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
737 struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
738
739 if (!cryp)
740 return -ENODEV;
741
742 rctx->mode = mode;
743
744 return crypto_transfer_aead_request_to_engine(cryp->engine, req);
745}
746
747static int stm32_cryp_setkey(struct crypto_skcipher *tfm, const u8 *key,
748 unsigned int keylen)
749{
750 struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
751
752 memcpy(ctx->key, key, keylen);
753 ctx->keylen = keylen;
754
755 return 0;
756}
757
758static int stm32_cryp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
759 unsigned int keylen)
760{
761 if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
762 keylen != AES_KEYSIZE_256)
763 return -EINVAL;
764 else
765 return stm32_cryp_setkey(tfm, key, keylen);
766}
767
768static int stm32_cryp_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
769 unsigned int keylen)
770{
771 return verify_skcipher_des_key(tfm, key) ?:
772 stm32_cryp_setkey(tfm, key, keylen);
773}
774
775static int stm32_cryp_tdes_setkey(struct crypto_skcipher *tfm, const u8 *key,
776 unsigned int keylen)
777{
778 return verify_skcipher_des3_key(tfm, key) ?:
779 stm32_cryp_setkey(tfm, key, keylen);
780}
781
782static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
783 unsigned int keylen)
784{
785 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
786
787 if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
788 keylen != AES_KEYSIZE_256)
789 return -EINVAL;
790
791 memcpy(ctx->key, key, keylen);
792 ctx->keylen = keylen;
793
794 return 0;
795}
796
797static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
798 unsigned int authsize)
799{
800 return authsize == AES_BLOCK_SIZE ? 0 : -EINVAL;
801}
802
803static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
804 unsigned int authsize)
805{
806 switch (authsize) {
807 case 4:
808 case 6:
809 case 8:
810 case 10:
811 case 12:
812 case 14:
813 case 16:
814 break;
815 default:
816 return -EINVAL;
817 }
818
819 return 0;
820}
821
822static int stm32_cryp_aes_ecb_encrypt(struct skcipher_request *req)
823{
824 return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
825}
826
827static int stm32_cryp_aes_ecb_decrypt(struct skcipher_request *req)
828{
829 return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
830}
831
832static int stm32_cryp_aes_cbc_encrypt(struct skcipher_request *req)
833{
834 return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
835}
836
837static int stm32_cryp_aes_cbc_decrypt(struct skcipher_request *req)
838{
839 return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
840}
841
842static int stm32_cryp_aes_ctr_encrypt(struct skcipher_request *req)
843{
844 return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
845}
846
847static int stm32_cryp_aes_ctr_decrypt(struct skcipher_request *req)
848{
849 return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
850}
851
852static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
853{
854 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
855}
856
857static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
858{
859 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
860}
861
862static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
863{
864 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
865}
866
867static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
868{
869 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
870}
871
872static int stm32_cryp_des_ecb_encrypt(struct skcipher_request *req)
873{
874 return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
875}
876
877static int stm32_cryp_des_ecb_decrypt(struct skcipher_request *req)
878{
879 return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
880}
881
882static int stm32_cryp_des_cbc_encrypt(struct skcipher_request *req)
883{
884 return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
885}
886
887static int stm32_cryp_des_cbc_decrypt(struct skcipher_request *req)
888{
889 return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
890}
891
892static int stm32_cryp_tdes_ecb_encrypt(struct skcipher_request *req)
893{
894 return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
895}
896
897static int stm32_cryp_tdes_ecb_decrypt(struct skcipher_request *req)
898{
899 return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
900}
901
902static int stm32_cryp_tdes_cbc_encrypt(struct skcipher_request *req)
903{
904 return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
905}
906
907static int stm32_cryp_tdes_cbc_decrypt(struct skcipher_request *req)
908{
909 return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
910}
911
912static int stm32_cryp_prepare_req(struct skcipher_request *req,
913 struct aead_request *areq)
914{
915 struct stm32_cryp_ctx *ctx;
916 struct stm32_cryp *cryp;
917 struct stm32_cryp_reqctx *rctx;
918 int ret;
919
920 if (!req && !areq)
921 return -EINVAL;
922
923 ctx = req ? crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)) :
924 crypto_aead_ctx(crypto_aead_reqtfm(areq));
925
926 cryp = ctx->cryp;
927
928 if (!cryp)
929 return -ENODEV;
930
931 rctx = req ? skcipher_request_ctx(req) : aead_request_ctx(areq);
932 rctx->mode &= FLG_MODE_MASK;
933
934 ctx->cryp = cryp;
935
936 cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
937 cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
938 cryp->ctx = ctx;
939
940 if (req) {
941 cryp->req = req;
942 cryp->areq = NULL;
943 cryp->total_in = req->cryptlen;
944 cryp->total_out = cryp->total_in;
945 } else {
946 /*
947 * Length of input and output data:
948 * Encryption case:
949 * INPUT = AssocData || PlainText
950 * <- assoclen -> <- cryptlen ->
951 * <------- total_in ----------->
952 *
953 * OUTPUT = AssocData || CipherText || AuthTag
954 * <- assoclen -> <- cryptlen -> <- authsize ->
955 * <---------------- total_out ----------------->
956 *
957 * Decryption case:
958 * INPUT = AssocData || CipherText || AuthTag
959 * <- assoclen -> <--------- cryptlen --------->
960 * <- authsize ->
961 * <---------------- total_in ------------------>
962 *
963 * OUTPUT = AssocData || PlainText
964 * <- assoclen -> <- crypten - authsize ->
965 * <---------- total_out ----------------->
966 */
967 cryp->areq = areq;
968 cryp->req = NULL;
969 cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
970 cryp->total_in = areq->assoclen + areq->cryptlen;
971 if (is_encrypt(cryp))
972 /* Append auth tag to output */
973 cryp->total_out = cryp->total_in + cryp->authsize;
974 else
975 /* No auth tag in output */
976 cryp->total_out = cryp->total_in - cryp->authsize;
977 }
978
979 cryp->total_in_save = cryp->total_in;
980 cryp->total_out_save = cryp->total_out;
981
982 cryp->in_sg = req ? req->src : areq->src;
983 cryp->out_sg = req ? req->dst : areq->dst;
984 cryp->out_sg_save = cryp->out_sg;
985
986 cryp->in_sg_len = sg_nents_for_len(cryp->in_sg, cryp->total_in);
987 if (cryp->in_sg_len < 0) {
988 dev_err(cryp->dev, "Cannot get in_sg_len\n");
989 ret = cryp->in_sg_len;
990 return ret;
991 }
992
993 cryp->out_sg_len = sg_nents_for_len(cryp->out_sg, cryp->total_out);
994 if (cryp->out_sg_len < 0) {
995 dev_err(cryp->dev, "Cannot get out_sg_len\n");
996 ret = cryp->out_sg_len;
997 return ret;
998 }
999
1000 ret = stm32_cryp_copy_sgs(cryp);
1001 if (ret)
1002 return ret;
1003
1004 scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1005 scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1006
1007 if (is_gcm(cryp) || is_ccm(cryp)) {
1008 /* In output, jump after assoc data */
1009 scatterwalk_advance(&cryp->out_walk, cryp->areq->assoclen);
1010 cryp->total_out -= cryp->areq->assoclen;
1011 }
1012
1013 ret = stm32_cryp_hw_init(cryp);
1014 return ret;
1015}
1016
1017static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
1018 void *areq)
1019{
1020 struct skcipher_request *req = container_of(areq,
1021 struct skcipher_request,
1022 base);
1023
1024 return stm32_cryp_prepare_req(req, NULL);
1025}
1026
1027static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1028{
1029 struct skcipher_request *req = container_of(areq,
1030 struct skcipher_request,
1031 base);
1032 struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
1033 crypto_skcipher_reqtfm(req));
1034 struct stm32_cryp *cryp = ctx->cryp;
1035
1036 if (!cryp)
1037 return -ENODEV;
1038
1039 return stm32_cryp_cpu_start(cryp);
1040}
1041
1042static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq)
1043{
1044 struct aead_request *req = container_of(areq, struct aead_request,
1045 base);
1046
1047 return stm32_cryp_prepare_req(NULL, req);
1048}
1049
1050static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1051{
1052 struct aead_request *req = container_of(areq, struct aead_request,
1053 base);
1054 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1055 struct stm32_cryp *cryp = ctx->cryp;
1056
1057 if (!cryp)
1058 return -ENODEV;
1059
1060 if (unlikely(!cryp->areq->assoclen &&
1061 !stm32_cryp_get_input_text_len(cryp))) {
1062 /* No input data to process: get tag and finish */
1063 stm32_cryp_finish_req(cryp, 0);
1064 return 0;
1065 }
1066
1067 return stm32_cryp_cpu_start(cryp);
1068}
1069
1070static u32 *stm32_cryp_next_out(struct stm32_cryp *cryp, u32 *dst,
1071 unsigned int n)
1072{
1073 scatterwalk_advance(&cryp->out_walk, n);
1074
1075 if (unlikely(cryp->out_sg->length == _walked_out)) {
1076 cryp->out_sg = sg_next(cryp->out_sg);
1077 if (cryp->out_sg) {
1078 scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1079 return (sg_virt(cryp->out_sg) + _walked_out);
1080 }
1081 }
1082
1083 return (u32 *)((u8 *)dst + n);
1084}
1085
1086static u32 *stm32_cryp_next_in(struct stm32_cryp *cryp, u32 *src,
1087 unsigned int n)
1088{
1089 scatterwalk_advance(&cryp->in_walk, n);
1090
1091 if (unlikely(cryp->in_sg->length == _walked_in)) {
1092 cryp->in_sg = sg_next(cryp->in_sg);
1093 if (cryp->in_sg) {
1094 scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1095 return (sg_virt(cryp->in_sg) + _walked_in);
1096 }
1097 }
1098
1099 return (u32 *)((u8 *)src + n);
1100}
1101
1102static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1103{
1104 u32 cfg, size_bit, *dst, d32;
1105 u8 *d8;
1106 unsigned int i, j;
1107 int ret = 0;
1108
1109 /* Update Config */
1110 cfg = stm32_cryp_read(cryp, CRYP_CR);
1111
1112 cfg &= ~CR_PH_MASK;
1113 cfg |= CR_PH_FINAL;
1114 cfg &= ~CR_DEC_NOT_ENC;
1115 cfg |= CR_CRYPEN;
1116
1117 stm32_cryp_write(cryp, CRYP_CR, cfg);
1118
1119 if (is_gcm(cryp)) {
1120 /* GCM: write aad and payload size (in bits) */
1121 size_bit = cryp->areq->assoclen * 8;
1122 if (cryp->caps->swap_final)
1123 size_bit = cpu_to_be32(size_bit);
1124
1125 stm32_cryp_write(cryp, CRYP_DIN, 0);
1126 stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1127
1128 size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1129 cryp->areq->cryptlen - AES_BLOCK_SIZE;
1130 size_bit *= 8;
1131 if (cryp->caps->swap_final)
1132 size_bit = cpu_to_be32(size_bit);
1133
1134 stm32_cryp_write(cryp, CRYP_DIN, 0);
1135 stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1136 } else {
1137 /* CCM: write CTR0 */
1138 u8 iv[AES_BLOCK_SIZE];
1139 u32 *iv32 = (u32 *)iv;
1140
1141 memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1142 memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1143
1144 for (i = 0; i < AES_BLOCK_32; i++) {
1145 if (!cryp->caps->padding_wa)
1146 *iv32 = cpu_to_be32(*iv32);
1147 stm32_cryp_write(cryp, CRYP_DIN, *iv32++);
1148 }
1149 }
1150
1151 /* Wait for output data */
1152 ret = stm32_cryp_wait_output(cryp);
1153 if (ret) {
1154 dev_err(cryp->dev, "Timeout (read tag)\n");
1155 return ret;
1156 }
1157
1158 if (is_encrypt(cryp)) {
1159 /* Get and write tag */
1160 dst = sg_virt(cryp->out_sg) + _walked_out;
1161
1162 for (i = 0; i < AES_BLOCK_32; i++) {
1163 if (cryp->total_out >= sizeof(u32)) {
1164 /* Read a full u32 */
1165 *dst = stm32_cryp_read(cryp, CRYP_DOUT);
1166
1167 dst = stm32_cryp_next_out(cryp, dst,
1168 sizeof(u32));
1169 cryp->total_out -= sizeof(u32);
1170 } else if (!cryp->total_out) {
1171 /* Empty fifo out (data from input padding) */
1172 stm32_cryp_read(cryp, CRYP_DOUT);
1173 } else {
1174 /* Read less than an u32 */
1175 d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1176 d8 = (u8 *)&d32;
1177
1178 for (j = 0; j < cryp->total_out; j++) {
1179 *((u8 *)dst) = *(d8++);
1180 dst = stm32_cryp_next_out(cryp, dst, 1);
1181 }
1182 cryp->total_out = 0;
1183 }
1184 }
1185 } else {
1186 /* Get and check tag */
1187 u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1188
1189 scatterwalk_map_and_copy(in_tag, cryp->in_sg,
1190 cryp->total_in_save - cryp->authsize,
1191 cryp->authsize, 0);
1192
1193 for (i = 0; i < AES_BLOCK_32; i++)
1194 out_tag[i] = stm32_cryp_read(cryp, CRYP_DOUT);
1195
1196 if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1197 ret = -EBADMSG;
1198 }
1199
1200 /* Disable cryp */
1201 cfg &= ~CR_CRYPEN;
1202 stm32_cryp_write(cryp, CRYP_CR, cfg);
1203
1204 return ret;
1205}
1206
1207static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1208{
1209 u32 cr;
1210
1211 if (unlikely(cryp->last_ctr[3] == 0xFFFFFFFF)) {
1212 cryp->last_ctr[3] = 0;
1213 cryp->last_ctr[2]++;
1214 if (!cryp->last_ctr[2]) {
1215 cryp->last_ctr[1]++;
1216 if (!cryp->last_ctr[1])
1217 cryp->last_ctr[0]++;
1218 }
1219
1220 cr = stm32_cryp_read(cryp, CRYP_CR);
1221 stm32_cryp_write(cryp, CRYP_CR, cr & ~CR_CRYPEN);
1222
1223 stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->last_ctr);
1224
1225 stm32_cryp_write(cryp, CRYP_CR, cr);
1226 }
1227
1228 cryp->last_ctr[0] = stm32_cryp_read(cryp, CRYP_IV0LR);
1229 cryp->last_ctr[1] = stm32_cryp_read(cryp, CRYP_IV0RR);
1230 cryp->last_ctr[2] = stm32_cryp_read(cryp, CRYP_IV1LR);
1231 cryp->last_ctr[3] = stm32_cryp_read(cryp, CRYP_IV1RR);
1232}
1233
1234static bool stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1235{
1236 unsigned int i, j;
1237 u32 d32, *dst;
1238 u8 *d8;
1239 size_t tag_size;
1240
1241 /* Do no read tag now (if any) */
1242 if (is_encrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1243 tag_size = cryp->authsize;
1244 else
1245 tag_size = 0;
1246
1247 dst = sg_virt(cryp->out_sg) + _walked_out;
1248
1249 for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1250 if (likely(cryp->total_out - tag_size >= sizeof(u32))) {
1251 /* Read a full u32 */
1252 *dst = stm32_cryp_read(cryp, CRYP_DOUT);
1253
1254 dst = stm32_cryp_next_out(cryp, dst, sizeof(u32));
1255 cryp->total_out -= sizeof(u32);
1256 } else if (cryp->total_out == tag_size) {
1257 /* Empty fifo out (data from input padding) */
1258 d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1259 } else {
1260 /* Read less than an u32 */
1261 d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1262 d8 = (u8 *)&d32;
1263
1264 for (j = 0; j < cryp->total_out - tag_size; j++) {
1265 *((u8 *)dst) = *(d8++);
1266 dst = stm32_cryp_next_out(cryp, dst, 1);
1267 }
1268 cryp->total_out = tag_size;
1269 }
1270 }
1271
1272 return !(cryp->total_out - tag_size) || !cryp->total_in;
1273}
1274
1275static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1276{
1277 unsigned int i, j;
1278 u32 *src;
1279 u8 d8[4];
1280 size_t tag_size;
1281
1282 /* Do no write tag (if any) */
1283 if (is_decrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1284 tag_size = cryp->authsize;
1285 else
1286 tag_size = 0;
1287
1288 src = sg_virt(cryp->in_sg) + _walked_in;
1289
1290 for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1291 if (likely(cryp->total_in - tag_size >= sizeof(u32))) {
1292 /* Write a full u32 */
1293 stm32_cryp_write(cryp, CRYP_DIN, *src);
1294
1295 src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1296 cryp->total_in -= sizeof(u32);
1297 } else if (cryp->total_in == tag_size) {
1298 /* Write padding data */
1299 stm32_cryp_write(cryp, CRYP_DIN, 0);
1300 } else {
1301 /* Write less than an u32 */
1302 memset(d8, 0, sizeof(u32));
1303 for (j = 0; j < cryp->total_in - tag_size; j++) {
1304 d8[j] = *((u8 *)src);
1305 src = stm32_cryp_next_in(cryp, src, 1);
1306 }
1307
1308 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1309 cryp->total_in = tag_size;
1310 }
1311 }
1312}
1313
1314static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1315{
1316 int err;
1317 u32 cfg, tmp[AES_BLOCK_32];
1318 size_t total_in_ori = cryp->total_in;
1319 struct scatterlist *out_sg_ori = cryp->out_sg;
1320 unsigned int i;
1321
1322 /* 'Special workaround' procedure described in the datasheet */
1323
1324 /* a) disable ip */
1325 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1326 cfg = stm32_cryp_read(cryp, CRYP_CR);
1327 cfg &= ~CR_CRYPEN;
1328 stm32_cryp_write(cryp, CRYP_CR, cfg);
1329
1330 /* b) Update IV1R */
1331 stm32_cryp_write(cryp, CRYP_IV1RR, cryp->gcm_ctr - 2);
1332
1333 /* c) change mode to CTR */
1334 cfg &= ~CR_ALGO_MASK;
1335 cfg |= CR_AES_CTR;
1336 stm32_cryp_write(cryp, CRYP_CR, cfg);
1337
1338 /* a) enable IP */
1339 cfg |= CR_CRYPEN;
1340 stm32_cryp_write(cryp, CRYP_CR, cfg);
1341
1342 /* b) pad and write the last block */
1343 stm32_cryp_irq_write_block(cryp);
1344 cryp->total_in = total_in_ori;
1345 err = stm32_cryp_wait_output(cryp);
1346 if (err) {
1347 dev_err(cryp->dev, "Timeout (write gcm header)\n");
1348 return stm32_cryp_finish_req(cryp, err);
1349 }
1350
1351 /* c) get and store encrypted data */
1352 stm32_cryp_irq_read_data(cryp);
1353 scatterwalk_map_and_copy(tmp, out_sg_ori,
1354 cryp->total_in_save - total_in_ori,
1355 total_in_ori, 0);
1356
1357 /* d) change mode back to AES GCM */
1358 cfg &= ~CR_ALGO_MASK;
1359 cfg |= CR_AES_GCM;
1360 stm32_cryp_write(cryp, CRYP_CR, cfg);
1361
1362 /* e) change phase to Final */
1363 cfg &= ~CR_PH_MASK;
1364 cfg |= CR_PH_FINAL;
1365 stm32_cryp_write(cryp, CRYP_CR, cfg);
1366
1367 /* f) write padded data */
1368 for (i = 0; i < AES_BLOCK_32; i++) {
1369 if (cryp->total_in)
1370 stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1371 else
1372 stm32_cryp_write(cryp, CRYP_DIN, 0);
1373
1374 cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1375 }
1376
1377 /* g) Empty fifo out */
1378 err = stm32_cryp_wait_output(cryp);
1379 if (err) {
1380 dev_err(cryp->dev, "Timeout (write gcm header)\n");
1381 return stm32_cryp_finish_req(cryp, err);
1382 }
1383
1384 for (i = 0; i < AES_BLOCK_32; i++)
1385 stm32_cryp_read(cryp, CRYP_DOUT);
1386
1387 /* h) run the he normal Final phase */
1388 stm32_cryp_finish_req(cryp, 0);
1389}
1390
1391static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1392{
1393 u32 cfg, payload_bytes;
1394
1395 /* disable ip, set NPBLB and reneable ip */
1396 cfg = stm32_cryp_read(cryp, CRYP_CR);
1397 cfg &= ~CR_CRYPEN;
1398 stm32_cryp_write(cryp, CRYP_CR, cfg);
1399
1400 payload_bytes = is_decrypt(cryp) ? cryp->total_in - cryp->authsize :
1401 cryp->total_in;
1402 cfg |= (cryp->hw_blocksize - payload_bytes) << CR_NBPBL_SHIFT;
1403 cfg |= CR_CRYPEN;
1404 stm32_cryp_write(cryp, CRYP_CR, cfg);
1405}
1406
1407static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1408{
1409 int err = 0;
1410 u32 cfg, iv1tmp;
1411 u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32], tmp[AES_BLOCK_32];
1412 size_t last_total_out, total_in_ori = cryp->total_in;
1413 struct scatterlist *out_sg_ori = cryp->out_sg;
1414 unsigned int i;
1415
1416 /* 'Special workaround' procedure described in the datasheet */
1417 cryp->flags |= FLG_CCM_PADDED_WA;
1418
1419 /* a) disable ip */
1420 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1421
1422 cfg = stm32_cryp_read(cryp, CRYP_CR);
1423 cfg &= ~CR_CRYPEN;
1424 stm32_cryp_write(cryp, CRYP_CR, cfg);
1425
1426 /* b) get IV1 from CRYP_CSGCMCCM7 */
1427 iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1428
1429 /* c) Load CRYP_CSGCMCCMxR */
1430 for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1431 cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1432
1433 /* d) Write IV1R */
1434 stm32_cryp_write(cryp, CRYP_IV1RR, iv1tmp);
1435
1436 /* e) change mode to CTR */
1437 cfg &= ~CR_ALGO_MASK;
1438 cfg |= CR_AES_CTR;
1439 stm32_cryp_write(cryp, CRYP_CR, cfg);
1440
1441 /* a) enable IP */
1442 cfg |= CR_CRYPEN;
1443 stm32_cryp_write(cryp, CRYP_CR, cfg);
1444
1445 /* b) pad and write the last block */
1446 stm32_cryp_irq_write_block(cryp);
1447 cryp->total_in = total_in_ori;
1448 err = stm32_cryp_wait_output(cryp);
1449 if (err) {
1450 dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1451 return stm32_cryp_finish_req(cryp, err);
1452 }
1453
1454 /* c) get and store decrypted data */
1455 last_total_out = cryp->total_out;
1456 stm32_cryp_irq_read_data(cryp);
1457
1458 memset(tmp, 0, sizeof(tmp));
1459 scatterwalk_map_and_copy(tmp, out_sg_ori,
1460 cryp->total_out_save - last_total_out,
1461 last_total_out, 0);
1462
1463 /* d) Load again CRYP_CSGCMCCMxR */
1464 for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1465 cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1466
1467 /* e) change mode back to AES CCM */
1468 cfg &= ~CR_ALGO_MASK;
1469 cfg |= CR_AES_CCM;
1470 stm32_cryp_write(cryp, CRYP_CR, cfg);
1471
1472 /* f) change phase to header */
1473 cfg &= ~CR_PH_MASK;
1474 cfg |= CR_PH_HEADER;
1475 stm32_cryp_write(cryp, CRYP_CR, cfg);
1476
1477 /* g) XOR and write padded data */
1478 for (i = 0; i < ARRAY_SIZE(tmp); i++) {
1479 tmp[i] ^= cstmp1[i];
1480 tmp[i] ^= cstmp2[i];
1481 stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1482 }
1483
1484 /* h) wait for completion */
1485 err = stm32_cryp_wait_busy(cryp);
1486 if (err)
1487 dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1488
1489 /* i) run the he normal Final phase */
1490 stm32_cryp_finish_req(cryp, err);
1491}
1492
1493static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1494{
1495 if (unlikely(!cryp->total_in)) {
1496 dev_warn(cryp->dev, "No more data to process\n");
1497 return;
1498 }
1499
1500 if (unlikely(cryp->total_in < AES_BLOCK_SIZE &&
1501 (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1502 is_encrypt(cryp))) {
1503 /* Padding for AES GCM encryption */
1504 if (cryp->caps->padding_wa)
1505 /* Special case 1 */
1506 return stm32_cryp_irq_write_gcm_padded_data(cryp);
1507
1508 /* Setting padding bytes (NBBLB) */
1509 stm32_cryp_irq_set_npblb(cryp);
1510 }
1511
1512 if (unlikely((cryp->total_in - cryp->authsize < AES_BLOCK_SIZE) &&
1513 (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1514 is_decrypt(cryp))) {
1515 /* Padding for AES CCM decryption */
1516 if (cryp->caps->padding_wa)
1517 /* Special case 2 */
1518 return stm32_cryp_irq_write_ccm_padded_data(cryp);
1519
1520 /* Setting padding bytes (NBBLB) */
1521 stm32_cryp_irq_set_npblb(cryp);
1522 }
1523
1524 if (is_aes(cryp) && is_ctr(cryp))
1525 stm32_cryp_check_ctr_counter(cryp);
1526
1527 stm32_cryp_irq_write_block(cryp);
1528}
1529
1530static void stm32_cryp_irq_write_gcm_header(struct stm32_cryp *cryp)
1531{
1532 int err;
1533 unsigned int i, j;
1534 u32 cfg, *src;
1535
1536 src = sg_virt(cryp->in_sg) + _walked_in;
1537
1538 for (i = 0; i < AES_BLOCK_32; i++) {
1539 stm32_cryp_write(cryp, CRYP_DIN, *src);
1540
1541 src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1542 cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1543
1544 /* Check if whole header written */
1545 if ((cryp->total_in_save - cryp->total_in) ==
1546 cryp->areq->assoclen) {
1547 /* Write padding if needed */
1548 for (j = i + 1; j < AES_BLOCK_32; j++)
1549 stm32_cryp_write(cryp, CRYP_DIN, 0);
1550
1551 /* Wait for completion */
1552 err = stm32_cryp_wait_busy(cryp);
1553 if (err) {
1554 dev_err(cryp->dev, "Timeout (gcm header)\n");
1555 return stm32_cryp_finish_req(cryp, err);
1556 }
1557
1558 if (stm32_cryp_get_input_text_len(cryp)) {
1559 /* Phase 3 : payload */
1560 cfg = stm32_cryp_read(cryp, CRYP_CR);
1561 cfg &= ~CR_CRYPEN;
1562 stm32_cryp_write(cryp, CRYP_CR, cfg);
1563
1564 cfg &= ~CR_PH_MASK;
1565 cfg |= CR_PH_PAYLOAD;
1566 cfg |= CR_CRYPEN;
1567 stm32_cryp_write(cryp, CRYP_CR, cfg);
1568 } else {
1569 /* Phase 4 : tag */
1570 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1571 stm32_cryp_finish_req(cryp, 0);
1572 }
1573
1574 break;
1575 }
1576
1577 if (!cryp->total_in)
1578 break;
1579 }
1580}
1581
1582static void stm32_cryp_irq_write_ccm_header(struct stm32_cryp *cryp)
1583{
1584 int err;
1585 unsigned int i = 0, j, k;
1586 u32 alen, cfg, *src;
1587 u8 d8[4];
1588
1589 src = sg_virt(cryp->in_sg) + _walked_in;
1590 alen = cryp->areq->assoclen;
1591
1592 if (!_walked_in) {
1593 if (cryp->areq->assoclen <= 65280) {
1594 /* Write first u32 of B1 */
1595 d8[0] = (alen >> 8) & 0xFF;
1596 d8[1] = alen & 0xFF;
1597 d8[2] = *((u8 *)src);
1598 src = stm32_cryp_next_in(cryp, src, 1);
1599 d8[3] = *((u8 *)src);
1600 src = stm32_cryp_next_in(cryp, src, 1);
1601
1602 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1603 i++;
1604
1605 cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1606 } else {
1607 /* Build the two first u32 of B1 */
1608 d8[0] = 0xFF;
1609 d8[1] = 0xFE;
1610 d8[2] = alen & 0xFF000000;
1611 d8[3] = alen & 0x00FF0000;
1612
1613 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1614 i++;
1615
1616 d8[0] = alen & 0x0000FF00;
1617 d8[1] = alen & 0x000000FF;
1618 d8[2] = *((u8 *)src);
1619 src = stm32_cryp_next_in(cryp, src, 1);
1620 d8[3] = *((u8 *)src);
1621 src = stm32_cryp_next_in(cryp, src, 1);
1622
1623 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1624 i++;
1625
1626 cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1627 }
1628 }
1629
1630 /* Write next u32 */
1631 for (; i < AES_BLOCK_32; i++) {
1632 /* Build an u32 */
1633 memset(d8, 0, sizeof(u32));
1634 for (k = 0; k < sizeof(u32); k++) {
1635 d8[k] = *((u8 *)src);
1636 src = stm32_cryp_next_in(cryp, src, 1);
1637
1638 cryp->total_in -= min_t(size_t, 1, cryp->total_in);
1639 if ((cryp->total_in_save - cryp->total_in) == alen)
1640 break;
1641 }
1642
1643 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1644
1645 if ((cryp->total_in_save - cryp->total_in) == alen) {
1646 /* Write padding if needed */
1647 for (j = i + 1; j < AES_BLOCK_32; j++)
1648 stm32_cryp_write(cryp, CRYP_DIN, 0);
1649
1650 /* Wait for completion */
1651 err = stm32_cryp_wait_busy(cryp);
1652 if (err) {
1653 dev_err(cryp->dev, "Timeout (ccm header)\n");
1654 return stm32_cryp_finish_req(cryp, err);
1655 }
1656
1657 if (stm32_cryp_get_input_text_len(cryp)) {
1658 /* Phase 3 : payload */
1659 cfg = stm32_cryp_read(cryp, CRYP_CR);
1660 cfg &= ~CR_CRYPEN;
1661 stm32_cryp_write(cryp, CRYP_CR, cfg);
1662
1663 cfg &= ~CR_PH_MASK;
1664 cfg |= CR_PH_PAYLOAD;
1665 cfg |= CR_CRYPEN;
1666 stm32_cryp_write(cryp, CRYP_CR, cfg);
1667 } else {
1668 /* Phase 4 : tag */
1669 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1670 stm32_cryp_finish_req(cryp, 0);
1671 }
1672
1673 break;
1674 }
1675 }
1676}
1677
1678static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1679{
1680 struct stm32_cryp *cryp = arg;
1681 u32 ph;
1682
1683 if (cryp->irq_status & MISR_OUT)
1684 /* Output FIFO IRQ: read data */
1685 if (unlikely(stm32_cryp_irq_read_data(cryp))) {
1686 /* All bytes processed, finish */
1687 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1688 stm32_cryp_finish_req(cryp, 0);
1689 return IRQ_HANDLED;
1690 }
1691
1692 if (cryp->irq_status & MISR_IN) {
1693 if (is_gcm(cryp)) {
1694 ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1695 if (unlikely(ph == CR_PH_HEADER))
1696 /* Write Header */
1697 stm32_cryp_irq_write_gcm_header(cryp);
1698 else
1699 /* Input FIFO IRQ: write data */
1700 stm32_cryp_irq_write_data(cryp);
1701 cryp->gcm_ctr++;
1702 } else if (is_ccm(cryp)) {
1703 ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1704 if (unlikely(ph == CR_PH_HEADER))
1705 /* Write Header */
1706 stm32_cryp_irq_write_ccm_header(cryp);
1707 else
1708 /* Input FIFO IRQ: write data */
1709 stm32_cryp_irq_write_data(cryp);
1710 } else {
1711 /* Input FIFO IRQ: write data */
1712 stm32_cryp_irq_write_data(cryp);
1713 }
1714 }
1715
1716 return IRQ_HANDLED;
1717}
1718
1719static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1720{
1721 struct stm32_cryp *cryp = arg;
1722
1723 cryp->irq_status = stm32_cryp_read(cryp, CRYP_MISR);
1724
1725 return IRQ_WAKE_THREAD;
1726}
1727
1728static struct skcipher_alg crypto_algs[] = {
1729{
1730 .base.cra_name = "ecb(aes)",
1731 .base.cra_driver_name = "stm32-ecb-aes",
1732 .base.cra_priority = 200,
1733 .base.cra_flags = CRYPTO_ALG_ASYNC,
1734 .base.cra_blocksize = AES_BLOCK_SIZE,
1735 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1736 .base.cra_alignmask = 0xf,
1737 .base.cra_module = THIS_MODULE,
1738
1739 .init = stm32_cryp_init_tfm,
1740 .min_keysize = AES_MIN_KEY_SIZE,
1741 .max_keysize = AES_MAX_KEY_SIZE,
1742 .setkey = stm32_cryp_aes_setkey,
1743 .encrypt = stm32_cryp_aes_ecb_encrypt,
1744 .decrypt = stm32_cryp_aes_ecb_decrypt,
1745},
1746{
1747 .base.cra_name = "cbc(aes)",
1748 .base.cra_driver_name = "stm32-cbc-aes",
1749 .base.cra_priority = 200,
1750 .base.cra_flags = CRYPTO_ALG_ASYNC,
1751 .base.cra_blocksize = AES_BLOCK_SIZE,
1752 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1753 .base.cra_alignmask = 0xf,
1754 .base.cra_module = THIS_MODULE,
1755
1756 .init = stm32_cryp_init_tfm,
1757 .min_keysize = AES_MIN_KEY_SIZE,
1758 .max_keysize = AES_MAX_KEY_SIZE,
1759 .ivsize = AES_BLOCK_SIZE,
1760 .setkey = stm32_cryp_aes_setkey,
1761 .encrypt = stm32_cryp_aes_cbc_encrypt,
1762 .decrypt = stm32_cryp_aes_cbc_decrypt,
1763},
1764{
1765 .base.cra_name = "ctr(aes)",
1766 .base.cra_driver_name = "stm32-ctr-aes",
1767 .base.cra_priority = 200,
1768 .base.cra_flags = CRYPTO_ALG_ASYNC,
1769 .base.cra_blocksize = 1,
1770 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1771 .base.cra_alignmask = 0xf,
1772 .base.cra_module = THIS_MODULE,
1773
1774 .init = stm32_cryp_init_tfm,
1775 .min_keysize = AES_MIN_KEY_SIZE,
1776 .max_keysize = AES_MAX_KEY_SIZE,
1777 .ivsize = AES_BLOCK_SIZE,
1778 .setkey = stm32_cryp_aes_setkey,
1779 .encrypt = stm32_cryp_aes_ctr_encrypt,
1780 .decrypt = stm32_cryp_aes_ctr_decrypt,
1781},
1782{
1783 .base.cra_name = "ecb(des)",
1784 .base.cra_driver_name = "stm32-ecb-des",
1785 .base.cra_priority = 200,
1786 .base.cra_flags = CRYPTO_ALG_ASYNC,
1787 .base.cra_blocksize = DES_BLOCK_SIZE,
1788 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1789 .base.cra_alignmask = 0xf,
1790 .base.cra_module = THIS_MODULE,
1791
1792 .init = stm32_cryp_init_tfm,
1793 .min_keysize = DES_BLOCK_SIZE,
1794 .max_keysize = DES_BLOCK_SIZE,
1795 .setkey = stm32_cryp_des_setkey,
1796 .encrypt = stm32_cryp_des_ecb_encrypt,
1797 .decrypt = stm32_cryp_des_ecb_decrypt,
1798},
1799{
1800 .base.cra_name = "cbc(des)",
1801 .base.cra_driver_name = "stm32-cbc-des",
1802 .base.cra_priority = 200,
1803 .base.cra_flags = CRYPTO_ALG_ASYNC,
1804 .base.cra_blocksize = DES_BLOCK_SIZE,
1805 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1806 .base.cra_alignmask = 0xf,
1807 .base.cra_module = THIS_MODULE,
1808
1809 .init = stm32_cryp_init_tfm,
1810 .min_keysize = DES_BLOCK_SIZE,
1811 .max_keysize = DES_BLOCK_SIZE,
1812 .ivsize = DES_BLOCK_SIZE,
1813 .setkey = stm32_cryp_des_setkey,
1814 .encrypt = stm32_cryp_des_cbc_encrypt,
1815 .decrypt = stm32_cryp_des_cbc_decrypt,
1816},
1817{
1818 .base.cra_name = "ecb(des3_ede)",
1819 .base.cra_driver_name = "stm32-ecb-des3",
1820 .base.cra_priority = 200,
1821 .base.cra_flags = CRYPTO_ALG_ASYNC,
1822 .base.cra_blocksize = DES_BLOCK_SIZE,
1823 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1824 .base.cra_alignmask = 0xf,
1825 .base.cra_module = THIS_MODULE,
1826
1827 .init = stm32_cryp_init_tfm,
1828 .min_keysize = 3 * DES_BLOCK_SIZE,
1829 .max_keysize = 3 * DES_BLOCK_SIZE,
1830 .setkey = stm32_cryp_tdes_setkey,
1831 .encrypt = stm32_cryp_tdes_ecb_encrypt,
1832 .decrypt = stm32_cryp_tdes_ecb_decrypt,
1833},
1834{
1835 .base.cra_name = "cbc(des3_ede)",
1836 .base.cra_driver_name = "stm32-cbc-des3",
1837 .base.cra_priority = 200,
1838 .base.cra_flags = CRYPTO_ALG_ASYNC,
1839 .base.cra_blocksize = DES_BLOCK_SIZE,
1840 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1841 .base.cra_alignmask = 0xf,
1842 .base.cra_module = THIS_MODULE,
1843
1844 .init = stm32_cryp_init_tfm,
1845 .min_keysize = 3 * DES_BLOCK_SIZE,
1846 .max_keysize = 3 * DES_BLOCK_SIZE,
1847 .ivsize = DES_BLOCK_SIZE,
1848 .setkey = stm32_cryp_tdes_setkey,
1849 .encrypt = stm32_cryp_tdes_cbc_encrypt,
1850 .decrypt = stm32_cryp_tdes_cbc_decrypt,
1851},
1852};
1853
1854static struct aead_alg aead_algs[] = {
1855{
1856 .setkey = stm32_cryp_aes_aead_setkey,
1857 .setauthsize = stm32_cryp_aes_gcm_setauthsize,
1858 .encrypt = stm32_cryp_aes_gcm_encrypt,
1859 .decrypt = stm32_cryp_aes_gcm_decrypt,
1860 .init = stm32_cryp_aes_aead_init,
1861 .ivsize = 12,
1862 .maxauthsize = AES_BLOCK_SIZE,
1863
1864 .base = {
1865 .cra_name = "gcm(aes)",
1866 .cra_driver_name = "stm32-gcm-aes",
1867 .cra_priority = 200,
1868 .cra_flags = CRYPTO_ALG_ASYNC,
1869 .cra_blocksize = 1,
1870 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1871 .cra_alignmask = 0xf,
1872 .cra_module = THIS_MODULE,
1873 },
1874},
1875{
1876 .setkey = stm32_cryp_aes_aead_setkey,
1877 .setauthsize = stm32_cryp_aes_ccm_setauthsize,
1878 .encrypt = stm32_cryp_aes_ccm_encrypt,
1879 .decrypt = stm32_cryp_aes_ccm_decrypt,
1880 .init = stm32_cryp_aes_aead_init,
1881 .ivsize = AES_BLOCK_SIZE,
1882 .maxauthsize = AES_BLOCK_SIZE,
1883
1884 .base = {
1885 .cra_name = "ccm(aes)",
1886 .cra_driver_name = "stm32-ccm-aes",
1887 .cra_priority = 200,
1888 .cra_flags = CRYPTO_ALG_ASYNC,
1889 .cra_blocksize = 1,
1890 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1891 .cra_alignmask = 0xf,
1892 .cra_module = THIS_MODULE,
1893 },
1894},
1895};
1896
1897static const struct stm32_cryp_caps f7_data = {
1898 .swap_final = true,
1899 .padding_wa = true,
1900};
1901
1902static const struct stm32_cryp_caps mp1_data = {
1903 .swap_final = false,
1904 .padding_wa = false,
1905};
1906
1907static const struct of_device_id stm32_dt_ids[] = {
1908 { .compatible = "st,stm32f756-cryp", .data = &f7_data},
1909 { .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1910 {},
1911};
1912MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1913
1914static int stm32_cryp_probe(struct platform_device *pdev)
1915{
1916 struct device *dev = &pdev->dev;
1917 struct stm32_cryp *cryp;
1918 struct reset_control *rst;
1919 int irq, ret;
1920
1921 cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1922 if (!cryp)
1923 return -ENOMEM;
1924
1925 cryp->caps = of_device_get_match_data(dev);
1926 if (!cryp->caps)
1927 return -ENODEV;
1928
1929 cryp->dev = dev;
1930
1931 cryp->regs = devm_platform_ioremap_resource(pdev, 0);
1932 if (IS_ERR(cryp->regs))
1933 return PTR_ERR(cryp->regs);
1934
1935 irq = platform_get_irq(pdev, 0);
1936 if (irq < 0)
1937 return irq;
1938
1939 ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1940 stm32_cryp_irq_thread, IRQF_ONESHOT,
1941 dev_name(dev), cryp);
1942 if (ret) {
1943 dev_err(dev, "Cannot grab IRQ\n");
1944 return ret;
1945 }
1946
1947 cryp->clk = devm_clk_get(dev, NULL);
1948 if (IS_ERR(cryp->clk)) {
1949 dev_err(dev, "Could not get clock\n");
1950 return PTR_ERR(cryp->clk);
1951 }
1952
1953 ret = clk_prepare_enable(cryp->clk);
1954 if (ret) {
1955 dev_err(cryp->dev, "Failed to enable clock\n");
1956 return ret;
1957 }
1958
1959 pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
1960 pm_runtime_use_autosuspend(dev);
1961
1962 pm_runtime_get_noresume(dev);
1963 pm_runtime_set_active(dev);
1964 pm_runtime_enable(dev);
1965
1966 rst = devm_reset_control_get(dev, NULL);
1967 if (!IS_ERR(rst)) {
1968 reset_control_assert(rst);
1969 udelay(2);
1970 reset_control_deassert(rst);
1971 }
1972
1973 platform_set_drvdata(pdev, cryp);
1974
1975 spin_lock(&cryp_list.lock);
1976 list_add(&cryp->list, &cryp_list.dev_list);
1977 spin_unlock(&cryp_list.lock);
1978
1979 /* Initialize crypto engine */
1980 cryp->engine = crypto_engine_alloc_init(dev, 1);
1981 if (!cryp->engine) {
1982 dev_err(dev, "Could not init crypto engine\n");
1983 ret = -ENOMEM;
1984 goto err_engine1;
1985 }
1986
1987 ret = crypto_engine_start(cryp->engine);
1988 if (ret) {
1989 dev_err(dev, "Could not start crypto engine\n");
1990 goto err_engine2;
1991 }
1992
1993 ret = crypto_register_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
1994 if (ret) {
1995 dev_err(dev, "Could not register algs\n");
1996 goto err_algs;
1997 }
1998
1999 ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2000 if (ret)
2001 goto err_aead_algs;
2002
2003 dev_info(dev, "Initialized\n");
2004
2005 pm_runtime_put_sync(dev);
2006
2007 return 0;
2008
2009err_aead_algs:
2010 crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2011err_algs:
2012err_engine2:
2013 crypto_engine_exit(cryp->engine);
2014err_engine1:
2015 spin_lock(&cryp_list.lock);
2016 list_del(&cryp->list);
2017 spin_unlock(&cryp_list.lock);
2018
2019 pm_runtime_disable(dev);
2020 pm_runtime_put_noidle(dev);
2021 pm_runtime_disable(dev);
2022 pm_runtime_put_noidle(dev);
2023
2024 clk_disable_unprepare(cryp->clk);
2025
2026 return ret;
2027}
2028
2029static int stm32_cryp_remove(struct platform_device *pdev)
2030{
2031 struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2032 int ret;
2033
2034 if (!cryp)
2035 return -ENODEV;
2036
2037 ret = pm_runtime_get_sync(cryp->dev);
2038 if (ret < 0)
2039 return ret;
2040
2041 crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2042 crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2043
2044 crypto_engine_exit(cryp->engine);
2045
2046 spin_lock(&cryp_list.lock);
2047 list_del(&cryp->list);
2048 spin_unlock(&cryp_list.lock);
2049
2050 pm_runtime_disable(cryp->dev);
2051 pm_runtime_put_noidle(cryp->dev);
2052
2053 clk_disable_unprepare(cryp->clk);
2054
2055 return 0;
2056}
2057
2058#ifdef CONFIG_PM
2059static int stm32_cryp_runtime_suspend(struct device *dev)
2060{
2061 struct stm32_cryp *cryp = dev_get_drvdata(dev);
2062
2063 clk_disable_unprepare(cryp->clk);
2064
2065 return 0;
2066}
2067
2068static int stm32_cryp_runtime_resume(struct device *dev)
2069{
2070 struct stm32_cryp *cryp = dev_get_drvdata(dev);
2071 int ret;
2072
2073 ret = clk_prepare_enable(cryp->clk);
2074 if (ret) {
2075 dev_err(cryp->dev, "Failed to prepare_enable clock\n");
2076 return ret;
2077 }
2078
2079 return 0;
2080}
2081#endif
2082
2083static const struct dev_pm_ops stm32_cryp_pm_ops = {
2084 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2085 pm_runtime_force_resume)
2086 SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
2087 stm32_cryp_runtime_resume, NULL)
2088};
2089
2090static struct platform_driver stm32_cryp_driver = {
2091 .probe = stm32_cryp_probe,
2092 .remove = stm32_cryp_remove,
2093 .driver = {
2094 .name = DRIVER_NAME,
2095 .pm = &stm32_cryp_pm_ops,
2096 .of_match_table = stm32_dt_ids,
2097 },
2098};
2099
2100module_platform_driver(stm32_cryp_driver);
2101
2102MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
2103MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2104MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) STMicroelectronics SA 2017
4 * Author: Fabien Dessenne <fabien.dessenne@st.com>
5 */
6
7#include <linux/clk.h>
8#include <linux/delay.h>
9#include <linux/interrupt.h>
10#include <linux/iopoll.h>
11#include <linux/module.h>
12#include <linux/of_device.h>
13#include <linux/platform_device.h>
14#include <linux/pm_runtime.h>
15#include <linux/reset.h>
16
17#include <crypto/aes.h>
18#include <crypto/internal/des.h>
19#include <crypto/engine.h>
20#include <crypto/scatterwalk.h>
21#include <crypto/internal/aead.h>
22
23#define DRIVER_NAME "stm32-cryp"
24
25/* Bit [0] encrypt / decrypt */
26#define FLG_ENCRYPT BIT(0)
27/* Bit [8..1] algo & operation mode */
28#define FLG_AES BIT(1)
29#define FLG_DES BIT(2)
30#define FLG_TDES BIT(3)
31#define FLG_ECB BIT(4)
32#define FLG_CBC BIT(5)
33#define FLG_CTR BIT(6)
34#define FLG_GCM BIT(7)
35#define FLG_CCM BIT(8)
36/* Mode mask = bits [15..0] */
37#define FLG_MODE_MASK GENMASK(15, 0)
38/* Bit [31..16] status */
39#define FLG_CCM_PADDED_WA BIT(16)
40
41/* Registers */
42#define CRYP_CR 0x00000000
43#define CRYP_SR 0x00000004
44#define CRYP_DIN 0x00000008
45#define CRYP_DOUT 0x0000000C
46#define CRYP_DMACR 0x00000010
47#define CRYP_IMSCR 0x00000014
48#define CRYP_RISR 0x00000018
49#define CRYP_MISR 0x0000001C
50#define CRYP_K0LR 0x00000020
51#define CRYP_K0RR 0x00000024
52#define CRYP_K1LR 0x00000028
53#define CRYP_K1RR 0x0000002C
54#define CRYP_K2LR 0x00000030
55#define CRYP_K2RR 0x00000034
56#define CRYP_K3LR 0x00000038
57#define CRYP_K3RR 0x0000003C
58#define CRYP_IV0LR 0x00000040
59#define CRYP_IV0RR 0x00000044
60#define CRYP_IV1LR 0x00000048
61#define CRYP_IV1RR 0x0000004C
62#define CRYP_CSGCMCCM0R 0x00000050
63#define CRYP_CSGCM0R 0x00000070
64
65/* Registers values */
66#define CR_DEC_NOT_ENC 0x00000004
67#define CR_TDES_ECB 0x00000000
68#define CR_TDES_CBC 0x00000008
69#define CR_DES_ECB 0x00000010
70#define CR_DES_CBC 0x00000018
71#define CR_AES_ECB 0x00000020
72#define CR_AES_CBC 0x00000028
73#define CR_AES_CTR 0x00000030
74#define CR_AES_KP 0x00000038
75#define CR_AES_GCM 0x00080000
76#define CR_AES_CCM 0x00080008
77#define CR_AES_UNKNOWN 0xFFFFFFFF
78#define CR_ALGO_MASK 0x00080038
79#define CR_DATA32 0x00000000
80#define CR_DATA16 0x00000040
81#define CR_DATA8 0x00000080
82#define CR_DATA1 0x000000C0
83#define CR_KEY128 0x00000000
84#define CR_KEY192 0x00000100
85#define CR_KEY256 0x00000200
86#define CR_FFLUSH 0x00004000
87#define CR_CRYPEN 0x00008000
88#define CR_PH_INIT 0x00000000
89#define CR_PH_HEADER 0x00010000
90#define CR_PH_PAYLOAD 0x00020000
91#define CR_PH_FINAL 0x00030000
92#define CR_PH_MASK 0x00030000
93#define CR_NBPBL_SHIFT 20
94
95#define SR_BUSY 0x00000010
96#define SR_OFNE 0x00000004
97
98#define IMSCR_IN BIT(0)
99#define IMSCR_OUT BIT(1)
100
101#define MISR_IN BIT(0)
102#define MISR_OUT BIT(1)
103
104/* Misc */
105#define AES_BLOCK_32 (AES_BLOCK_SIZE / sizeof(u32))
106#define GCM_CTR_INIT 2
107#define _walked_in (cryp->in_walk.offset - cryp->in_sg->offset)
108#define _walked_out (cryp->out_walk.offset - cryp->out_sg->offset)
109#define CRYP_AUTOSUSPEND_DELAY 50
110
111struct stm32_cryp_caps {
112 bool swap_final;
113 bool padding_wa;
114};
115
116struct stm32_cryp_ctx {
117 struct crypto_engine_ctx enginectx;
118 struct stm32_cryp *cryp;
119 int keylen;
120 u32 key[AES_KEYSIZE_256 / sizeof(u32)];
121 unsigned long flags;
122};
123
124struct stm32_cryp_reqctx {
125 unsigned long mode;
126};
127
128struct stm32_cryp {
129 struct list_head list;
130 struct device *dev;
131 void __iomem *regs;
132 struct clk *clk;
133 unsigned long flags;
134 u32 irq_status;
135 const struct stm32_cryp_caps *caps;
136 struct stm32_cryp_ctx *ctx;
137
138 struct crypto_engine *engine;
139
140 struct ablkcipher_request *req;
141 struct aead_request *areq;
142
143 size_t authsize;
144 size_t hw_blocksize;
145
146 size_t total_in;
147 size_t total_in_save;
148 size_t total_out;
149 size_t total_out_save;
150
151 struct scatterlist *in_sg;
152 struct scatterlist *out_sg;
153 struct scatterlist *out_sg_save;
154
155 struct scatterlist in_sgl;
156 struct scatterlist out_sgl;
157 bool sgs_copied;
158
159 int in_sg_len;
160 int out_sg_len;
161
162 struct scatter_walk in_walk;
163 struct scatter_walk out_walk;
164
165 u32 last_ctr[4];
166 u32 gcm_ctr;
167};
168
169struct stm32_cryp_list {
170 struct list_head dev_list;
171 spinlock_t lock; /* protect dev_list */
172};
173
174static struct stm32_cryp_list cryp_list = {
175 .dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
176 .lock = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
177};
178
179static inline bool is_aes(struct stm32_cryp *cryp)
180{
181 return cryp->flags & FLG_AES;
182}
183
184static inline bool is_des(struct stm32_cryp *cryp)
185{
186 return cryp->flags & FLG_DES;
187}
188
189static inline bool is_tdes(struct stm32_cryp *cryp)
190{
191 return cryp->flags & FLG_TDES;
192}
193
194static inline bool is_ecb(struct stm32_cryp *cryp)
195{
196 return cryp->flags & FLG_ECB;
197}
198
199static inline bool is_cbc(struct stm32_cryp *cryp)
200{
201 return cryp->flags & FLG_CBC;
202}
203
204static inline bool is_ctr(struct stm32_cryp *cryp)
205{
206 return cryp->flags & FLG_CTR;
207}
208
209static inline bool is_gcm(struct stm32_cryp *cryp)
210{
211 return cryp->flags & FLG_GCM;
212}
213
214static inline bool is_ccm(struct stm32_cryp *cryp)
215{
216 return cryp->flags & FLG_CCM;
217}
218
219static inline bool is_encrypt(struct stm32_cryp *cryp)
220{
221 return cryp->flags & FLG_ENCRYPT;
222}
223
224static inline bool is_decrypt(struct stm32_cryp *cryp)
225{
226 return !is_encrypt(cryp);
227}
228
229static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
230{
231 return readl_relaxed(cryp->regs + ofst);
232}
233
234static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
235{
236 writel_relaxed(val, cryp->regs + ofst);
237}
238
239static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
240{
241 u32 status;
242
243 return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
244 !(status & SR_BUSY), 10, 100000);
245}
246
247static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
248{
249 u32 status;
250
251 return readl_relaxed_poll_timeout(cryp->regs + CRYP_CR, status,
252 !(status & CR_CRYPEN), 10, 100000);
253}
254
255static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
256{
257 u32 status;
258
259 return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
260 status & SR_OFNE, 10, 100000);
261}
262
263static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
264
265static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
266{
267 struct stm32_cryp *tmp, *cryp = NULL;
268
269 spin_lock_bh(&cryp_list.lock);
270 if (!ctx->cryp) {
271 list_for_each_entry(tmp, &cryp_list.dev_list, list) {
272 cryp = tmp;
273 break;
274 }
275 ctx->cryp = cryp;
276 } else {
277 cryp = ctx->cryp;
278 }
279
280 spin_unlock_bh(&cryp_list.lock);
281
282 return cryp;
283}
284
285static int stm32_cryp_check_aligned(struct scatterlist *sg, size_t total,
286 size_t align)
287{
288 int len = 0;
289
290 if (!total)
291 return 0;
292
293 if (!IS_ALIGNED(total, align))
294 return -EINVAL;
295
296 while (sg) {
297 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
298 return -EINVAL;
299
300 if (!IS_ALIGNED(sg->length, align))
301 return -EINVAL;
302
303 len += sg->length;
304 sg = sg_next(sg);
305 }
306
307 if (len != total)
308 return -EINVAL;
309
310 return 0;
311}
312
313static int stm32_cryp_check_io_aligned(struct stm32_cryp *cryp)
314{
315 int ret;
316
317 ret = stm32_cryp_check_aligned(cryp->in_sg, cryp->total_in,
318 cryp->hw_blocksize);
319 if (ret)
320 return ret;
321
322 ret = stm32_cryp_check_aligned(cryp->out_sg, cryp->total_out,
323 cryp->hw_blocksize);
324
325 return ret;
326}
327
328static void sg_copy_buf(void *buf, struct scatterlist *sg,
329 unsigned int start, unsigned int nbytes, int out)
330{
331 struct scatter_walk walk;
332
333 if (!nbytes)
334 return;
335
336 scatterwalk_start(&walk, sg);
337 scatterwalk_advance(&walk, start);
338 scatterwalk_copychunks(buf, &walk, nbytes, out);
339 scatterwalk_done(&walk, out, 0);
340}
341
342static int stm32_cryp_copy_sgs(struct stm32_cryp *cryp)
343{
344 void *buf_in, *buf_out;
345 int pages, total_in, total_out;
346
347 if (!stm32_cryp_check_io_aligned(cryp)) {
348 cryp->sgs_copied = 0;
349 return 0;
350 }
351
352 total_in = ALIGN(cryp->total_in, cryp->hw_blocksize);
353 pages = total_in ? get_order(total_in) : 1;
354 buf_in = (void *)__get_free_pages(GFP_ATOMIC, pages);
355
356 total_out = ALIGN(cryp->total_out, cryp->hw_blocksize);
357 pages = total_out ? get_order(total_out) : 1;
358 buf_out = (void *)__get_free_pages(GFP_ATOMIC, pages);
359
360 if (!buf_in || !buf_out) {
361 dev_err(cryp->dev, "Can't allocate pages when unaligned\n");
362 cryp->sgs_copied = 0;
363 return -EFAULT;
364 }
365
366 sg_copy_buf(buf_in, cryp->in_sg, 0, cryp->total_in, 0);
367
368 sg_init_one(&cryp->in_sgl, buf_in, total_in);
369 cryp->in_sg = &cryp->in_sgl;
370 cryp->in_sg_len = 1;
371
372 sg_init_one(&cryp->out_sgl, buf_out, total_out);
373 cryp->out_sg_save = cryp->out_sg;
374 cryp->out_sg = &cryp->out_sgl;
375 cryp->out_sg_len = 1;
376
377 cryp->sgs_copied = 1;
378
379 return 0;
380}
381
382static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, u32 *iv)
383{
384 if (!iv)
385 return;
386
387 stm32_cryp_write(cryp, CRYP_IV0LR, cpu_to_be32(*iv++));
388 stm32_cryp_write(cryp, CRYP_IV0RR, cpu_to_be32(*iv++));
389
390 if (is_aes(cryp)) {
391 stm32_cryp_write(cryp, CRYP_IV1LR, cpu_to_be32(*iv++));
392 stm32_cryp_write(cryp, CRYP_IV1RR, cpu_to_be32(*iv++));
393 }
394}
395
396static void stm32_cryp_get_iv(struct stm32_cryp *cryp)
397{
398 struct ablkcipher_request *req = cryp->req;
399 u32 *tmp = req->info;
400
401 if (!tmp)
402 return;
403
404 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0LR));
405 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0RR));
406
407 if (is_aes(cryp)) {
408 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1LR));
409 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1RR));
410 }
411}
412
413static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
414{
415 unsigned int i;
416 int r_id;
417
418 if (is_des(c)) {
419 stm32_cryp_write(c, CRYP_K1LR, cpu_to_be32(c->ctx->key[0]));
420 stm32_cryp_write(c, CRYP_K1RR, cpu_to_be32(c->ctx->key[1]));
421 } else {
422 r_id = CRYP_K3RR;
423 for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
424 stm32_cryp_write(c, r_id,
425 cpu_to_be32(c->ctx->key[i - 1]));
426 }
427}
428
429static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
430{
431 if (is_aes(cryp) && is_ecb(cryp))
432 return CR_AES_ECB;
433
434 if (is_aes(cryp) && is_cbc(cryp))
435 return CR_AES_CBC;
436
437 if (is_aes(cryp) && is_ctr(cryp))
438 return CR_AES_CTR;
439
440 if (is_aes(cryp) && is_gcm(cryp))
441 return CR_AES_GCM;
442
443 if (is_aes(cryp) && is_ccm(cryp))
444 return CR_AES_CCM;
445
446 if (is_des(cryp) && is_ecb(cryp))
447 return CR_DES_ECB;
448
449 if (is_des(cryp) && is_cbc(cryp))
450 return CR_DES_CBC;
451
452 if (is_tdes(cryp) && is_ecb(cryp))
453 return CR_TDES_ECB;
454
455 if (is_tdes(cryp) && is_cbc(cryp))
456 return CR_TDES_CBC;
457
458 dev_err(cryp->dev, "Unknown mode\n");
459 return CR_AES_UNKNOWN;
460}
461
462static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
463{
464 return is_encrypt(cryp) ? cryp->areq->cryptlen :
465 cryp->areq->cryptlen - cryp->authsize;
466}
467
468static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
469{
470 int ret;
471 u32 iv[4];
472
473 /* Phase 1 : init */
474 memcpy(iv, cryp->areq->iv, 12);
475 iv[3] = cpu_to_be32(GCM_CTR_INIT);
476 cryp->gcm_ctr = GCM_CTR_INIT;
477 stm32_cryp_hw_write_iv(cryp, iv);
478
479 stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
480
481 /* Wait for end of processing */
482 ret = stm32_cryp_wait_enable(cryp);
483 if (ret)
484 dev_err(cryp->dev, "Timeout (gcm init)\n");
485
486 return ret;
487}
488
489static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
490{
491 int ret;
492 u8 iv[AES_BLOCK_SIZE], b0[AES_BLOCK_SIZE];
493 u32 *d;
494 unsigned int i, textlen;
495
496 /* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
497 memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
498 memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
499 iv[AES_BLOCK_SIZE - 1] = 1;
500 stm32_cryp_hw_write_iv(cryp, (u32 *)iv);
501
502 /* Build B0 */
503 memcpy(b0, iv, AES_BLOCK_SIZE);
504
505 b0[0] |= (8 * ((cryp->authsize - 2) / 2));
506
507 if (cryp->areq->assoclen)
508 b0[0] |= 0x40;
509
510 textlen = stm32_cryp_get_input_text_len(cryp);
511
512 b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
513 b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
514
515 /* Enable HW */
516 stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
517
518 /* Write B0 */
519 d = (u32 *)b0;
520
521 for (i = 0; i < AES_BLOCK_32; i++) {
522 if (!cryp->caps->padding_wa)
523 *d = cpu_to_be32(*d);
524 stm32_cryp_write(cryp, CRYP_DIN, *d++);
525 }
526
527 /* Wait for end of processing */
528 ret = stm32_cryp_wait_enable(cryp);
529 if (ret)
530 dev_err(cryp->dev, "Timeout (ccm init)\n");
531
532 return ret;
533}
534
535static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
536{
537 int ret;
538 u32 cfg, hw_mode;
539
540 pm_runtime_get_sync(cryp->dev);
541
542 /* Disable interrupt */
543 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
544
545 /* Set key */
546 stm32_cryp_hw_write_key(cryp);
547
548 /* Set configuration */
549 cfg = CR_DATA8 | CR_FFLUSH;
550
551 switch (cryp->ctx->keylen) {
552 case AES_KEYSIZE_128:
553 cfg |= CR_KEY128;
554 break;
555
556 case AES_KEYSIZE_192:
557 cfg |= CR_KEY192;
558 break;
559
560 default:
561 case AES_KEYSIZE_256:
562 cfg |= CR_KEY256;
563 break;
564 }
565
566 hw_mode = stm32_cryp_get_hw_mode(cryp);
567 if (hw_mode == CR_AES_UNKNOWN)
568 return -EINVAL;
569
570 /* AES ECB/CBC decrypt: run key preparation first */
571 if (is_decrypt(cryp) &&
572 ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
573 stm32_cryp_write(cryp, CRYP_CR, cfg | CR_AES_KP | CR_CRYPEN);
574
575 /* Wait for end of processing */
576 ret = stm32_cryp_wait_busy(cryp);
577 if (ret) {
578 dev_err(cryp->dev, "Timeout (key preparation)\n");
579 return ret;
580 }
581 }
582
583 cfg |= hw_mode;
584
585 if (is_decrypt(cryp))
586 cfg |= CR_DEC_NOT_ENC;
587
588 /* Apply config and flush (valid when CRYPEN = 0) */
589 stm32_cryp_write(cryp, CRYP_CR, cfg);
590
591 switch (hw_mode) {
592 case CR_AES_GCM:
593 case CR_AES_CCM:
594 /* Phase 1 : init */
595 if (hw_mode == CR_AES_CCM)
596 ret = stm32_cryp_ccm_init(cryp, cfg);
597 else
598 ret = stm32_cryp_gcm_init(cryp, cfg);
599
600 if (ret)
601 return ret;
602
603 /* Phase 2 : header (authenticated data) */
604 if (cryp->areq->assoclen) {
605 cfg |= CR_PH_HEADER;
606 } else if (stm32_cryp_get_input_text_len(cryp)) {
607 cfg |= CR_PH_PAYLOAD;
608 stm32_cryp_write(cryp, CRYP_CR, cfg);
609 } else {
610 cfg |= CR_PH_INIT;
611 }
612
613 break;
614
615 case CR_DES_CBC:
616 case CR_TDES_CBC:
617 case CR_AES_CBC:
618 case CR_AES_CTR:
619 stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->req->info);
620 break;
621
622 default:
623 break;
624 }
625
626 /* Enable now */
627 cfg |= CR_CRYPEN;
628
629 stm32_cryp_write(cryp, CRYP_CR, cfg);
630
631 cryp->flags &= ~FLG_CCM_PADDED_WA;
632
633 return 0;
634}
635
636static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
637{
638 if (!err && (is_gcm(cryp) || is_ccm(cryp)))
639 /* Phase 4 : output tag */
640 err = stm32_cryp_read_auth_tag(cryp);
641
642 if (!err && (!(is_gcm(cryp) || is_ccm(cryp))))
643 stm32_cryp_get_iv(cryp);
644
645 if (cryp->sgs_copied) {
646 void *buf_in, *buf_out;
647 int pages, len;
648
649 buf_in = sg_virt(&cryp->in_sgl);
650 buf_out = sg_virt(&cryp->out_sgl);
651
652 sg_copy_buf(buf_out, cryp->out_sg_save, 0,
653 cryp->total_out_save, 1);
654
655 len = ALIGN(cryp->total_in_save, cryp->hw_blocksize);
656 pages = len ? get_order(len) : 1;
657 free_pages((unsigned long)buf_in, pages);
658
659 len = ALIGN(cryp->total_out_save, cryp->hw_blocksize);
660 pages = len ? get_order(len) : 1;
661 free_pages((unsigned long)buf_out, pages);
662 }
663
664 pm_runtime_mark_last_busy(cryp->dev);
665 pm_runtime_put_autosuspend(cryp->dev);
666
667 if (is_gcm(cryp) || is_ccm(cryp))
668 crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
669 else
670 crypto_finalize_ablkcipher_request(cryp->engine, cryp->req,
671 err);
672
673 memset(cryp->ctx->key, 0, cryp->ctx->keylen);
674}
675
676static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
677{
678 /* Enable interrupt and let the IRQ handler do everything */
679 stm32_cryp_write(cryp, CRYP_IMSCR, IMSCR_IN | IMSCR_OUT);
680
681 return 0;
682}
683
684static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
685static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
686 void *areq);
687
688static int stm32_cryp_cra_init(struct crypto_tfm *tfm)
689{
690 struct stm32_cryp_ctx *ctx = crypto_tfm_ctx(tfm);
691
692 tfm->crt_ablkcipher.reqsize = sizeof(struct stm32_cryp_reqctx);
693
694 ctx->enginectx.op.do_one_request = stm32_cryp_cipher_one_req;
695 ctx->enginectx.op.prepare_request = stm32_cryp_prepare_cipher_req;
696 ctx->enginectx.op.unprepare_request = NULL;
697 return 0;
698}
699
700static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
701static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine,
702 void *areq);
703
704static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
705{
706 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
707
708 tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
709
710 ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req;
711 ctx->enginectx.op.prepare_request = stm32_cryp_prepare_aead_req;
712 ctx->enginectx.op.unprepare_request = NULL;
713
714 return 0;
715}
716
717static int stm32_cryp_crypt(struct ablkcipher_request *req, unsigned long mode)
718{
719 struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(
720 crypto_ablkcipher_reqtfm(req));
721 struct stm32_cryp_reqctx *rctx = ablkcipher_request_ctx(req);
722 struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
723
724 if (!cryp)
725 return -ENODEV;
726
727 rctx->mode = mode;
728
729 return crypto_transfer_ablkcipher_request_to_engine(cryp->engine, req);
730}
731
732static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
733{
734 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
735 struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
736 struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
737
738 if (!cryp)
739 return -ENODEV;
740
741 rctx->mode = mode;
742
743 return crypto_transfer_aead_request_to_engine(cryp->engine, req);
744}
745
746static int stm32_cryp_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
747 unsigned int keylen)
748{
749 struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
750
751 memcpy(ctx->key, key, keylen);
752 ctx->keylen = keylen;
753
754 return 0;
755}
756
757static int stm32_cryp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
758 unsigned int keylen)
759{
760 if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
761 keylen != AES_KEYSIZE_256)
762 return -EINVAL;
763 else
764 return stm32_cryp_setkey(tfm, key, keylen);
765}
766
767static int stm32_cryp_des_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
768 unsigned int keylen)
769{
770 return verify_ablkcipher_des_key(tfm, key) ?:
771 stm32_cryp_setkey(tfm, key, keylen);
772}
773
774static int stm32_cryp_tdes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
775 unsigned int keylen)
776{
777 return verify_ablkcipher_des3_key(tfm, key) ?:
778 stm32_cryp_setkey(tfm, key, keylen);
779}
780
781static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
782 unsigned int keylen)
783{
784 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
785
786 if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
787 keylen != AES_KEYSIZE_256)
788 return -EINVAL;
789
790 memcpy(ctx->key, key, keylen);
791 ctx->keylen = keylen;
792
793 return 0;
794}
795
796static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
797 unsigned int authsize)
798{
799 return authsize == AES_BLOCK_SIZE ? 0 : -EINVAL;
800}
801
802static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
803 unsigned int authsize)
804{
805 switch (authsize) {
806 case 4:
807 case 6:
808 case 8:
809 case 10:
810 case 12:
811 case 14:
812 case 16:
813 break;
814 default:
815 return -EINVAL;
816 }
817
818 return 0;
819}
820
821static int stm32_cryp_aes_ecb_encrypt(struct ablkcipher_request *req)
822{
823 return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
824}
825
826static int stm32_cryp_aes_ecb_decrypt(struct ablkcipher_request *req)
827{
828 return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
829}
830
831static int stm32_cryp_aes_cbc_encrypt(struct ablkcipher_request *req)
832{
833 return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
834}
835
836static int stm32_cryp_aes_cbc_decrypt(struct ablkcipher_request *req)
837{
838 return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
839}
840
841static int stm32_cryp_aes_ctr_encrypt(struct ablkcipher_request *req)
842{
843 return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
844}
845
846static int stm32_cryp_aes_ctr_decrypt(struct ablkcipher_request *req)
847{
848 return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
849}
850
851static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
852{
853 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
854}
855
856static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
857{
858 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
859}
860
861static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
862{
863 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
864}
865
866static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
867{
868 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
869}
870
871static int stm32_cryp_des_ecb_encrypt(struct ablkcipher_request *req)
872{
873 return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
874}
875
876static int stm32_cryp_des_ecb_decrypt(struct ablkcipher_request *req)
877{
878 return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
879}
880
881static int stm32_cryp_des_cbc_encrypt(struct ablkcipher_request *req)
882{
883 return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
884}
885
886static int stm32_cryp_des_cbc_decrypt(struct ablkcipher_request *req)
887{
888 return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
889}
890
891static int stm32_cryp_tdes_ecb_encrypt(struct ablkcipher_request *req)
892{
893 return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
894}
895
896static int stm32_cryp_tdes_ecb_decrypt(struct ablkcipher_request *req)
897{
898 return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
899}
900
901static int stm32_cryp_tdes_cbc_encrypt(struct ablkcipher_request *req)
902{
903 return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
904}
905
906static int stm32_cryp_tdes_cbc_decrypt(struct ablkcipher_request *req)
907{
908 return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
909}
910
911static int stm32_cryp_prepare_req(struct ablkcipher_request *req,
912 struct aead_request *areq)
913{
914 struct stm32_cryp_ctx *ctx;
915 struct stm32_cryp *cryp;
916 struct stm32_cryp_reqctx *rctx;
917 int ret;
918
919 if (!req && !areq)
920 return -EINVAL;
921
922 ctx = req ? crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req)) :
923 crypto_aead_ctx(crypto_aead_reqtfm(areq));
924
925 cryp = ctx->cryp;
926
927 if (!cryp)
928 return -ENODEV;
929
930 rctx = req ? ablkcipher_request_ctx(req) : aead_request_ctx(areq);
931 rctx->mode &= FLG_MODE_MASK;
932
933 ctx->cryp = cryp;
934
935 cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
936 cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
937 cryp->ctx = ctx;
938
939 if (req) {
940 cryp->req = req;
941 cryp->areq = NULL;
942 cryp->total_in = req->nbytes;
943 cryp->total_out = cryp->total_in;
944 } else {
945 /*
946 * Length of input and output data:
947 * Encryption case:
948 * INPUT = AssocData || PlainText
949 * <- assoclen -> <- cryptlen ->
950 * <------- total_in ----------->
951 *
952 * OUTPUT = AssocData || CipherText || AuthTag
953 * <- assoclen -> <- cryptlen -> <- authsize ->
954 * <---------------- total_out ----------------->
955 *
956 * Decryption case:
957 * INPUT = AssocData || CipherText || AuthTag
958 * <- assoclen -> <--------- cryptlen --------->
959 * <- authsize ->
960 * <---------------- total_in ------------------>
961 *
962 * OUTPUT = AssocData || PlainText
963 * <- assoclen -> <- crypten - authsize ->
964 * <---------- total_out ----------------->
965 */
966 cryp->areq = areq;
967 cryp->req = NULL;
968 cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
969 cryp->total_in = areq->assoclen + areq->cryptlen;
970 if (is_encrypt(cryp))
971 /* Append auth tag to output */
972 cryp->total_out = cryp->total_in + cryp->authsize;
973 else
974 /* No auth tag in output */
975 cryp->total_out = cryp->total_in - cryp->authsize;
976 }
977
978 cryp->total_in_save = cryp->total_in;
979 cryp->total_out_save = cryp->total_out;
980
981 cryp->in_sg = req ? req->src : areq->src;
982 cryp->out_sg = req ? req->dst : areq->dst;
983 cryp->out_sg_save = cryp->out_sg;
984
985 cryp->in_sg_len = sg_nents_for_len(cryp->in_sg, cryp->total_in);
986 if (cryp->in_sg_len < 0) {
987 dev_err(cryp->dev, "Cannot get in_sg_len\n");
988 ret = cryp->in_sg_len;
989 return ret;
990 }
991
992 cryp->out_sg_len = sg_nents_for_len(cryp->out_sg, cryp->total_out);
993 if (cryp->out_sg_len < 0) {
994 dev_err(cryp->dev, "Cannot get out_sg_len\n");
995 ret = cryp->out_sg_len;
996 return ret;
997 }
998
999 ret = stm32_cryp_copy_sgs(cryp);
1000 if (ret)
1001 return ret;
1002
1003 scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1004 scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1005
1006 if (is_gcm(cryp) || is_ccm(cryp)) {
1007 /* In output, jump after assoc data */
1008 scatterwalk_advance(&cryp->out_walk, cryp->areq->assoclen);
1009 cryp->total_out -= cryp->areq->assoclen;
1010 }
1011
1012 ret = stm32_cryp_hw_init(cryp);
1013 return ret;
1014}
1015
1016static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
1017 void *areq)
1018{
1019 struct ablkcipher_request *req = container_of(areq,
1020 struct ablkcipher_request,
1021 base);
1022
1023 return stm32_cryp_prepare_req(req, NULL);
1024}
1025
1026static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1027{
1028 struct ablkcipher_request *req = container_of(areq,
1029 struct ablkcipher_request,
1030 base);
1031 struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(
1032 crypto_ablkcipher_reqtfm(req));
1033 struct stm32_cryp *cryp = ctx->cryp;
1034
1035 if (!cryp)
1036 return -ENODEV;
1037
1038 return stm32_cryp_cpu_start(cryp);
1039}
1040
1041static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq)
1042{
1043 struct aead_request *req = container_of(areq, struct aead_request,
1044 base);
1045
1046 return stm32_cryp_prepare_req(NULL, req);
1047}
1048
1049static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1050{
1051 struct aead_request *req = container_of(areq, struct aead_request,
1052 base);
1053 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1054 struct stm32_cryp *cryp = ctx->cryp;
1055
1056 if (!cryp)
1057 return -ENODEV;
1058
1059 if (unlikely(!cryp->areq->assoclen &&
1060 !stm32_cryp_get_input_text_len(cryp))) {
1061 /* No input data to process: get tag and finish */
1062 stm32_cryp_finish_req(cryp, 0);
1063 return 0;
1064 }
1065
1066 return stm32_cryp_cpu_start(cryp);
1067}
1068
1069static u32 *stm32_cryp_next_out(struct stm32_cryp *cryp, u32 *dst,
1070 unsigned int n)
1071{
1072 scatterwalk_advance(&cryp->out_walk, n);
1073
1074 if (unlikely(cryp->out_sg->length == _walked_out)) {
1075 cryp->out_sg = sg_next(cryp->out_sg);
1076 if (cryp->out_sg) {
1077 scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1078 return (sg_virt(cryp->out_sg) + _walked_out);
1079 }
1080 }
1081
1082 return (u32 *)((u8 *)dst + n);
1083}
1084
1085static u32 *stm32_cryp_next_in(struct stm32_cryp *cryp, u32 *src,
1086 unsigned int n)
1087{
1088 scatterwalk_advance(&cryp->in_walk, n);
1089
1090 if (unlikely(cryp->in_sg->length == _walked_in)) {
1091 cryp->in_sg = sg_next(cryp->in_sg);
1092 if (cryp->in_sg) {
1093 scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1094 return (sg_virt(cryp->in_sg) + _walked_in);
1095 }
1096 }
1097
1098 return (u32 *)((u8 *)src + n);
1099}
1100
1101static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1102{
1103 u32 cfg, size_bit, *dst, d32;
1104 u8 *d8;
1105 unsigned int i, j;
1106 int ret = 0;
1107
1108 /* Update Config */
1109 cfg = stm32_cryp_read(cryp, CRYP_CR);
1110
1111 cfg &= ~CR_PH_MASK;
1112 cfg |= CR_PH_FINAL;
1113 cfg &= ~CR_DEC_NOT_ENC;
1114 cfg |= CR_CRYPEN;
1115
1116 stm32_cryp_write(cryp, CRYP_CR, cfg);
1117
1118 if (is_gcm(cryp)) {
1119 /* GCM: write aad and payload size (in bits) */
1120 size_bit = cryp->areq->assoclen * 8;
1121 if (cryp->caps->swap_final)
1122 size_bit = cpu_to_be32(size_bit);
1123
1124 stm32_cryp_write(cryp, CRYP_DIN, 0);
1125 stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1126
1127 size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1128 cryp->areq->cryptlen - AES_BLOCK_SIZE;
1129 size_bit *= 8;
1130 if (cryp->caps->swap_final)
1131 size_bit = cpu_to_be32(size_bit);
1132
1133 stm32_cryp_write(cryp, CRYP_DIN, 0);
1134 stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1135 } else {
1136 /* CCM: write CTR0 */
1137 u8 iv[AES_BLOCK_SIZE];
1138 u32 *iv32 = (u32 *)iv;
1139
1140 memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1141 memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1142
1143 for (i = 0; i < AES_BLOCK_32; i++) {
1144 if (!cryp->caps->padding_wa)
1145 *iv32 = cpu_to_be32(*iv32);
1146 stm32_cryp_write(cryp, CRYP_DIN, *iv32++);
1147 }
1148 }
1149
1150 /* Wait for output data */
1151 ret = stm32_cryp_wait_output(cryp);
1152 if (ret) {
1153 dev_err(cryp->dev, "Timeout (read tag)\n");
1154 return ret;
1155 }
1156
1157 if (is_encrypt(cryp)) {
1158 /* Get and write tag */
1159 dst = sg_virt(cryp->out_sg) + _walked_out;
1160
1161 for (i = 0; i < AES_BLOCK_32; i++) {
1162 if (cryp->total_out >= sizeof(u32)) {
1163 /* Read a full u32 */
1164 *dst = stm32_cryp_read(cryp, CRYP_DOUT);
1165
1166 dst = stm32_cryp_next_out(cryp, dst,
1167 sizeof(u32));
1168 cryp->total_out -= sizeof(u32);
1169 } else if (!cryp->total_out) {
1170 /* Empty fifo out (data from input padding) */
1171 stm32_cryp_read(cryp, CRYP_DOUT);
1172 } else {
1173 /* Read less than an u32 */
1174 d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1175 d8 = (u8 *)&d32;
1176
1177 for (j = 0; j < cryp->total_out; j++) {
1178 *((u8 *)dst) = *(d8++);
1179 dst = stm32_cryp_next_out(cryp, dst, 1);
1180 }
1181 cryp->total_out = 0;
1182 }
1183 }
1184 } else {
1185 /* Get and check tag */
1186 u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1187
1188 scatterwalk_map_and_copy(in_tag, cryp->in_sg,
1189 cryp->total_in_save - cryp->authsize,
1190 cryp->authsize, 0);
1191
1192 for (i = 0; i < AES_BLOCK_32; i++)
1193 out_tag[i] = stm32_cryp_read(cryp, CRYP_DOUT);
1194
1195 if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1196 ret = -EBADMSG;
1197 }
1198
1199 /* Disable cryp */
1200 cfg &= ~CR_CRYPEN;
1201 stm32_cryp_write(cryp, CRYP_CR, cfg);
1202
1203 return ret;
1204}
1205
1206static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1207{
1208 u32 cr;
1209
1210 if (unlikely(cryp->last_ctr[3] == 0xFFFFFFFF)) {
1211 cryp->last_ctr[3] = 0;
1212 cryp->last_ctr[2]++;
1213 if (!cryp->last_ctr[2]) {
1214 cryp->last_ctr[1]++;
1215 if (!cryp->last_ctr[1])
1216 cryp->last_ctr[0]++;
1217 }
1218
1219 cr = stm32_cryp_read(cryp, CRYP_CR);
1220 stm32_cryp_write(cryp, CRYP_CR, cr & ~CR_CRYPEN);
1221
1222 stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->last_ctr);
1223
1224 stm32_cryp_write(cryp, CRYP_CR, cr);
1225 }
1226
1227 cryp->last_ctr[0] = stm32_cryp_read(cryp, CRYP_IV0LR);
1228 cryp->last_ctr[1] = stm32_cryp_read(cryp, CRYP_IV0RR);
1229 cryp->last_ctr[2] = stm32_cryp_read(cryp, CRYP_IV1LR);
1230 cryp->last_ctr[3] = stm32_cryp_read(cryp, CRYP_IV1RR);
1231}
1232
1233static bool stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1234{
1235 unsigned int i, j;
1236 u32 d32, *dst;
1237 u8 *d8;
1238 size_t tag_size;
1239
1240 /* Do no read tag now (if any) */
1241 if (is_encrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1242 tag_size = cryp->authsize;
1243 else
1244 tag_size = 0;
1245
1246 dst = sg_virt(cryp->out_sg) + _walked_out;
1247
1248 for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1249 if (likely(cryp->total_out - tag_size >= sizeof(u32))) {
1250 /* Read a full u32 */
1251 *dst = stm32_cryp_read(cryp, CRYP_DOUT);
1252
1253 dst = stm32_cryp_next_out(cryp, dst, sizeof(u32));
1254 cryp->total_out -= sizeof(u32);
1255 } else if (cryp->total_out == tag_size) {
1256 /* Empty fifo out (data from input padding) */
1257 d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1258 } else {
1259 /* Read less than an u32 */
1260 d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1261 d8 = (u8 *)&d32;
1262
1263 for (j = 0; j < cryp->total_out - tag_size; j++) {
1264 *((u8 *)dst) = *(d8++);
1265 dst = stm32_cryp_next_out(cryp, dst, 1);
1266 }
1267 cryp->total_out = tag_size;
1268 }
1269 }
1270
1271 return !(cryp->total_out - tag_size) || !cryp->total_in;
1272}
1273
1274static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1275{
1276 unsigned int i, j;
1277 u32 *src;
1278 u8 d8[4];
1279 size_t tag_size;
1280
1281 /* Do no write tag (if any) */
1282 if (is_decrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1283 tag_size = cryp->authsize;
1284 else
1285 tag_size = 0;
1286
1287 src = sg_virt(cryp->in_sg) + _walked_in;
1288
1289 for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1290 if (likely(cryp->total_in - tag_size >= sizeof(u32))) {
1291 /* Write a full u32 */
1292 stm32_cryp_write(cryp, CRYP_DIN, *src);
1293
1294 src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1295 cryp->total_in -= sizeof(u32);
1296 } else if (cryp->total_in == tag_size) {
1297 /* Write padding data */
1298 stm32_cryp_write(cryp, CRYP_DIN, 0);
1299 } else {
1300 /* Write less than an u32 */
1301 memset(d8, 0, sizeof(u32));
1302 for (j = 0; j < cryp->total_in - tag_size; j++) {
1303 d8[j] = *((u8 *)src);
1304 src = stm32_cryp_next_in(cryp, src, 1);
1305 }
1306
1307 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1308 cryp->total_in = tag_size;
1309 }
1310 }
1311}
1312
1313static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1314{
1315 int err;
1316 u32 cfg, tmp[AES_BLOCK_32];
1317 size_t total_in_ori = cryp->total_in;
1318 struct scatterlist *out_sg_ori = cryp->out_sg;
1319 unsigned int i;
1320
1321 /* 'Special workaround' procedure described in the datasheet */
1322
1323 /* a) disable ip */
1324 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1325 cfg = stm32_cryp_read(cryp, CRYP_CR);
1326 cfg &= ~CR_CRYPEN;
1327 stm32_cryp_write(cryp, CRYP_CR, cfg);
1328
1329 /* b) Update IV1R */
1330 stm32_cryp_write(cryp, CRYP_IV1RR, cryp->gcm_ctr - 2);
1331
1332 /* c) change mode to CTR */
1333 cfg &= ~CR_ALGO_MASK;
1334 cfg |= CR_AES_CTR;
1335 stm32_cryp_write(cryp, CRYP_CR, cfg);
1336
1337 /* a) enable IP */
1338 cfg |= CR_CRYPEN;
1339 stm32_cryp_write(cryp, CRYP_CR, cfg);
1340
1341 /* b) pad and write the last block */
1342 stm32_cryp_irq_write_block(cryp);
1343 cryp->total_in = total_in_ori;
1344 err = stm32_cryp_wait_output(cryp);
1345 if (err) {
1346 dev_err(cryp->dev, "Timeout (write gcm header)\n");
1347 return stm32_cryp_finish_req(cryp, err);
1348 }
1349
1350 /* c) get and store encrypted data */
1351 stm32_cryp_irq_read_data(cryp);
1352 scatterwalk_map_and_copy(tmp, out_sg_ori,
1353 cryp->total_in_save - total_in_ori,
1354 total_in_ori, 0);
1355
1356 /* d) change mode back to AES GCM */
1357 cfg &= ~CR_ALGO_MASK;
1358 cfg |= CR_AES_GCM;
1359 stm32_cryp_write(cryp, CRYP_CR, cfg);
1360
1361 /* e) change phase to Final */
1362 cfg &= ~CR_PH_MASK;
1363 cfg |= CR_PH_FINAL;
1364 stm32_cryp_write(cryp, CRYP_CR, cfg);
1365
1366 /* f) write padded data */
1367 for (i = 0; i < AES_BLOCK_32; i++) {
1368 if (cryp->total_in)
1369 stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1370 else
1371 stm32_cryp_write(cryp, CRYP_DIN, 0);
1372
1373 cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1374 }
1375
1376 /* g) Empty fifo out */
1377 err = stm32_cryp_wait_output(cryp);
1378 if (err) {
1379 dev_err(cryp->dev, "Timeout (write gcm header)\n");
1380 return stm32_cryp_finish_req(cryp, err);
1381 }
1382
1383 for (i = 0; i < AES_BLOCK_32; i++)
1384 stm32_cryp_read(cryp, CRYP_DOUT);
1385
1386 /* h) run the he normal Final phase */
1387 stm32_cryp_finish_req(cryp, 0);
1388}
1389
1390static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1391{
1392 u32 cfg, payload_bytes;
1393
1394 /* disable ip, set NPBLB and reneable ip */
1395 cfg = stm32_cryp_read(cryp, CRYP_CR);
1396 cfg &= ~CR_CRYPEN;
1397 stm32_cryp_write(cryp, CRYP_CR, cfg);
1398
1399 payload_bytes = is_decrypt(cryp) ? cryp->total_in - cryp->authsize :
1400 cryp->total_in;
1401 cfg |= (cryp->hw_blocksize - payload_bytes) << CR_NBPBL_SHIFT;
1402 cfg |= CR_CRYPEN;
1403 stm32_cryp_write(cryp, CRYP_CR, cfg);
1404}
1405
1406static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1407{
1408 int err = 0;
1409 u32 cfg, iv1tmp;
1410 u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32], tmp[AES_BLOCK_32];
1411 size_t last_total_out, total_in_ori = cryp->total_in;
1412 struct scatterlist *out_sg_ori = cryp->out_sg;
1413 unsigned int i;
1414
1415 /* 'Special workaround' procedure described in the datasheet */
1416 cryp->flags |= FLG_CCM_PADDED_WA;
1417
1418 /* a) disable ip */
1419 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1420
1421 cfg = stm32_cryp_read(cryp, CRYP_CR);
1422 cfg &= ~CR_CRYPEN;
1423 stm32_cryp_write(cryp, CRYP_CR, cfg);
1424
1425 /* b) get IV1 from CRYP_CSGCMCCM7 */
1426 iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1427
1428 /* c) Load CRYP_CSGCMCCMxR */
1429 for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1430 cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1431
1432 /* d) Write IV1R */
1433 stm32_cryp_write(cryp, CRYP_IV1RR, iv1tmp);
1434
1435 /* e) change mode to CTR */
1436 cfg &= ~CR_ALGO_MASK;
1437 cfg |= CR_AES_CTR;
1438 stm32_cryp_write(cryp, CRYP_CR, cfg);
1439
1440 /* a) enable IP */
1441 cfg |= CR_CRYPEN;
1442 stm32_cryp_write(cryp, CRYP_CR, cfg);
1443
1444 /* b) pad and write the last block */
1445 stm32_cryp_irq_write_block(cryp);
1446 cryp->total_in = total_in_ori;
1447 err = stm32_cryp_wait_output(cryp);
1448 if (err) {
1449 dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1450 return stm32_cryp_finish_req(cryp, err);
1451 }
1452
1453 /* c) get and store decrypted data */
1454 last_total_out = cryp->total_out;
1455 stm32_cryp_irq_read_data(cryp);
1456
1457 memset(tmp, 0, sizeof(tmp));
1458 scatterwalk_map_and_copy(tmp, out_sg_ori,
1459 cryp->total_out_save - last_total_out,
1460 last_total_out, 0);
1461
1462 /* d) Load again CRYP_CSGCMCCMxR */
1463 for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1464 cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1465
1466 /* e) change mode back to AES CCM */
1467 cfg &= ~CR_ALGO_MASK;
1468 cfg |= CR_AES_CCM;
1469 stm32_cryp_write(cryp, CRYP_CR, cfg);
1470
1471 /* f) change phase to header */
1472 cfg &= ~CR_PH_MASK;
1473 cfg |= CR_PH_HEADER;
1474 stm32_cryp_write(cryp, CRYP_CR, cfg);
1475
1476 /* g) XOR and write padded data */
1477 for (i = 0; i < ARRAY_SIZE(tmp); i++) {
1478 tmp[i] ^= cstmp1[i];
1479 tmp[i] ^= cstmp2[i];
1480 stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1481 }
1482
1483 /* h) wait for completion */
1484 err = stm32_cryp_wait_busy(cryp);
1485 if (err)
1486 dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1487
1488 /* i) run the he normal Final phase */
1489 stm32_cryp_finish_req(cryp, err);
1490}
1491
1492static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1493{
1494 if (unlikely(!cryp->total_in)) {
1495 dev_warn(cryp->dev, "No more data to process\n");
1496 return;
1497 }
1498
1499 if (unlikely(cryp->total_in < AES_BLOCK_SIZE &&
1500 (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1501 is_encrypt(cryp))) {
1502 /* Padding for AES GCM encryption */
1503 if (cryp->caps->padding_wa)
1504 /* Special case 1 */
1505 return stm32_cryp_irq_write_gcm_padded_data(cryp);
1506
1507 /* Setting padding bytes (NBBLB) */
1508 stm32_cryp_irq_set_npblb(cryp);
1509 }
1510
1511 if (unlikely((cryp->total_in - cryp->authsize < AES_BLOCK_SIZE) &&
1512 (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1513 is_decrypt(cryp))) {
1514 /* Padding for AES CCM decryption */
1515 if (cryp->caps->padding_wa)
1516 /* Special case 2 */
1517 return stm32_cryp_irq_write_ccm_padded_data(cryp);
1518
1519 /* Setting padding bytes (NBBLB) */
1520 stm32_cryp_irq_set_npblb(cryp);
1521 }
1522
1523 if (is_aes(cryp) && is_ctr(cryp))
1524 stm32_cryp_check_ctr_counter(cryp);
1525
1526 stm32_cryp_irq_write_block(cryp);
1527}
1528
1529static void stm32_cryp_irq_write_gcm_header(struct stm32_cryp *cryp)
1530{
1531 int err;
1532 unsigned int i, j;
1533 u32 cfg, *src;
1534
1535 src = sg_virt(cryp->in_sg) + _walked_in;
1536
1537 for (i = 0; i < AES_BLOCK_32; i++) {
1538 stm32_cryp_write(cryp, CRYP_DIN, *src);
1539
1540 src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1541 cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1542
1543 /* Check if whole header written */
1544 if ((cryp->total_in_save - cryp->total_in) ==
1545 cryp->areq->assoclen) {
1546 /* Write padding if needed */
1547 for (j = i + 1; j < AES_BLOCK_32; j++)
1548 stm32_cryp_write(cryp, CRYP_DIN, 0);
1549
1550 /* Wait for completion */
1551 err = stm32_cryp_wait_busy(cryp);
1552 if (err) {
1553 dev_err(cryp->dev, "Timeout (gcm header)\n");
1554 return stm32_cryp_finish_req(cryp, err);
1555 }
1556
1557 if (stm32_cryp_get_input_text_len(cryp)) {
1558 /* Phase 3 : payload */
1559 cfg = stm32_cryp_read(cryp, CRYP_CR);
1560 cfg &= ~CR_CRYPEN;
1561 stm32_cryp_write(cryp, CRYP_CR, cfg);
1562
1563 cfg &= ~CR_PH_MASK;
1564 cfg |= CR_PH_PAYLOAD;
1565 cfg |= CR_CRYPEN;
1566 stm32_cryp_write(cryp, CRYP_CR, cfg);
1567 } else {
1568 /* Phase 4 : tag */
1569 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1570 stm32_cryp_finish_req(cryp, 0);
1571 }
1572
1573 break;
1574 }
1575
1576 if (!cryp->total_in)
1577 break;
1578 }
1579}
1580
1581static void stm32_cryp_irq_write_ccm_header(struct stm32_cryp *cryp)
1582{
1583 int err;
1584 unsigned int i = 0, j, k;
1585 u32 alen, cfg, *src;
1586 u8 d8[4];
1587
1588 src = sg_virt(cryp->in_sg) + _walked_in;
1589 alen = cryp->areq->assoclen;
1590
1591 if (!_walked_in) {
1592 if (cryp->areq->assoclen <= 65280) {
1593 /* Write first u32 of B1 */
1594 d8[0] = (alen >> 8) & 0xFF;
1595 d8[1] = alen & 0xFF;
1596 d8[2] = *((u8 *)src);
1597 src = stm32_cryp_next_in(cryp, src, 1);
1598 d8[3] = *((u8 *)src);
1599 src = stm32_cryp_next_in(cryp, src, 1);
1600
1601 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1602 i++;
1603
1604 cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1605 } else {
1606 /* Build the two first u32 of B1 */
1607 d8[0] = 0xFF;
1608 d8[1] = 0xFE;
1609 d8[2] = alen & 0xFF000000;
1610 d8[3] = alen & 0x00FF0000;
1611
1612 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1613 i++;
1614
1615 d8[0] = alen & 0x0000FF00;
1616 d8[1] = alen & 0x000000FF;
1617 d8[2] = *((u8 *)src);
1618 src = stm32_cryp_next_in(cryp, src, 1);
1619 d8[3] = *((u8 *)src);
1620 src = stm32_cryp_next_in(cryp, src, 1);
1621
1622 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1623 i++;
1624
1625 cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1626 }
1627 }
1628
1629 /* Write next u32 */
1630 for (; i < AES_BLOCK_32; i++) {
1631 /* Build an u32 */
1632 memset(d8, 0, sizeof(u32));
1633 for (k = 0; k < sizeof(u32); k++) {
1634 d8[k] = *((u8 *)src);
1635 src = stm32_cryp_next_in(cryp, src, 1);
1636
1637 cryp->total_in -= min_t(size_t, 1, cryp->total_in);
1638 if ((cryp->total_in_save - cryp->total_in) == alen)
1639 break;
1640 }
1641
1642 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1643
1644 if ((cryp->total_in_save - cryp->total_in) == alen) {
1645 /* Write padding if needed */
1646 for (j = i + 1; j < AES_BLOCK_32; j++)
1647 stm32_cryp_write(cryp, CRYP_DIN, 0);
1648
1649 /* Wait for completion */
1650 err = stm32_cryp_wait_busy(cryp);
1651 if (err) {
1652 dev_err(cryp->dev, "Timeout (ccm header)\n");
1653 return stm32_cryp_finish_req(cryp, err);
1654 }
1655
1656 if (stm32_cryp_get_input_text_len(cryp)) {
1657 /* Phase 3 : payload */
1658 cfg = stm32_cryp_read(cryp, CRYP_CR);
1659 cfg &= ~CR_CRYPEN;
1660 stm32_cryp_write(cryp, CRYP_CR, cfg);
1661
1662 cfg &= ~CR_PH_MASK;
1663 cfg |= CR_PH_PAYLOAD;
1664 cfg |= CR_CRYPEN;
1665 stm32_cryp_write(cryp, CRYP_CR, cfg);
1666 } else {
1667 /* Phase 4 : tag */
1668 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1669 stm32_cryp_finish_req(cryp, 0);
1670 }
1671
1672 break;
1673 }
1674 }
1675}
1676
1677static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1678{
1679 struct stm32_cryp *cryp = arg;
1680 u32 ph;
1681
1682 if (cryp->irq_status & MISR_OUT)
1683 /* Output FIFO IRQ: read data */
1684 if (unlikely(stm32_cryp_irq_read_data(cryp))) {
1685 /* All bytes processed, finish */
1686 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1687 stm32_cryp_finish_req(cryp, 0);
1688 return IRQ_HANDLED;
1689 }
1690
1691 if (cryp->irq_status & MISR_IN) {
1692 if (is_gcm(cryp)) {
1693 ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1694 if (unlikely(ph == CR_PH_HEADER))
1695 /* Write Header */
1696 stm32_cryp_irq_write_gcm_header(cryp);
1697 else
1698 /* Input FIFO IRQ: write data */
1699 stm32_cryp_irq_write_data(cryp);
1700 cryp->gcm_ctr++;
1701 } else if (is_ccm(cryp)) {
1702 ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1703 if (unlikely(ph == CR_PH_HEADER))
1704 /* Write Header */
1705 stm32_cryp_irq_write_ccm_header(cryp);
1706 else
1707 /* Input FIFO IRQ: write data */
1708 stm32_cryp_irq_write_data(cryp);
1709 } else {
1710 /* Input FIFO IRQ: write data */
1711 stm32_cryp_irq_write_data(cryp);
1712 }
1713 }
1714
1715 return IRQ_HANDLED;
1716}
1717
1718static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1719{
1720 struct stm32_cryp *cryp = arg;
1721
1722 cryp->irq_status = stm32_cryp_read(cryp, CRYP_MISR);
1723
1724 return IRQ_WAKE_THREAD;
1725}
1726
1727static struct crypto_alg crypto_algs[] = {
1728{
1729 .cra_name = "ecb(aes)",
1730 .cra_driver_name = "stm32-ecb-aes",
1731 .cra_priority = 200,
1732 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1733 CRYPTO_ALG_ASYNC,
1734 .cra_blocksize = AES_BLOCK_SIZE,
1735 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1736 .cra_alignmask = 0xf,
1737 .cra_type = &crypto_ablkcipher_type,
1738 .cra_module = THIS_MODULE,
1739 .cra_init = stm32_cryp_cra_init,
1740 .cra_ablkcipher = {
1741 .min_keysize = AES_MIN_KEY_SIZE,
1742 .max_keysize = AES_MAX_KEY_SIZE,
1743 .setkey = stm32_cryp_aes_setkey,
1744 .encrypt = stm32_cryp_aes_ecb_encrypt,
1745 .decrypt = stm32_cryp_aes_ecb_decrypt,
1746 }
1747},
1748{
1749 .cra_name = "cbc(aes)",
1750 .cra_driver_name = "stm32-cbc-aes",
1751 .cra_priority = 200,
1752 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1753 CRYPTO_ALG_ASYNC,
1754 .cra_blocksize = AES_BLOCK_SIZE,
1755 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1756 .cra_alignmask = 0xf,
1757 .cra_type = &crypto_ablkcipher_type,
1758 .cra_module = THIS_MODULE,
1759 .cra_init = stm32_cryp_cra_init,
1760 .cra_ablkcipher = {
1761 .min_keysize = AES_MIN_KEY_SIZE,
1762 .max_keysize = AES_MAX_KEY_SIZE,
1763 .ivsize = AES_BLOCK_SIZE,
1764 .setkey = stm32_cryp_aes_setkey,
1765 .encrypt = stm32_cryp_aes_cbc_encrypt,
1766 .decrypt = stm32_cryp_aes_cbc_decrypt,
1767 }
1768},
1769{
1770 .cra_name = "ctr(aes)",
1771 .cra_driver_name = "stm32-ctr-aes",
1772 .cra_priority = 200,
1773 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1774 CRYPTO_ALG_ASYNC,
1775 .cra_blocksize = 1,
1776 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1777 .cra_alignmask = 0xf,
1778 .cra_type = &crypto_ablkcipher_type,
1779 .cra_module = THIS_MODULE,
1780 .cra_init = stm32_cryp_cra_init,
1781 .cra_ablkcipher = {
1782 .min_keysize = AES_MIN_KEY_SIZE,
1783 .max_keysize = AES_MAX_KEY_SIZE,
1784 .ivsize = AES_BLOCK_SIZE,
1785 .setkey = stm32_cryp_aes_setkey,
1786 .encrypt = stm32_cryp_aes_ctr_encrypt,
1787 .decrypt = stm32_cryp_aes_ctr_decrypt,
1788 }
1789},
1790{
1791 .cra_name = "ecb(des)",
1792 .cra_driver_name = "stm32-ecb-des",
1793 .cra_priority = 200,
1794 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1795 CRYPTO_ALG_ASYNC,
1796 .cra_blocksize = DES_BLOCK_SIZE,
1797 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1798 .cra_alignmask = 0xf,
1799 .cra_type = &crypto_ablkcipher_type,
1800 .cra_module = THIS_MODULE,
1801 .cra_init = stm32_cryp_cra_init,
1802 .cra_ablkcipher = {
1803 .min_keysize = DES_BLOCK_SIZE,
1804 .max_keysize = DES_BLOCK_SIZE,
1805 .setkey = stm32_cryp_des_setkey,
1806 .encrypt = stm32_cryp_des_ecb_encrypt,
1807 .decrypt = stm32_cryp_des_ecb_decrypt,
1808 }
1809},
1810{
1811 .cra_name = "cbc(des)",
1812 .cra_driver_name = "stm32-cbc-des",
1813 .cra_priority = 200,
1814 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1815 CRYPTO_ALG_ASYNC,
1816 .cra_blocksize = DES_BLOCK_SIZE,
1817 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1818 .cra_alignmask = 0xf,
1819 .cra_type = &crypto_ablkcipher_type,
1820 .cra_module = THIS_MODULE,
1821 .cra_init = stm32_cryp_cra_init,
1822 .cra_ablkcipher = {
1823 .min_keysize = DES_BLOCK_SIZE,
1824 .max_keysize = DES_BLOCK_SIZE,
1825 .ivsize = DES_BLOCK_SIZE,
1826 .setkey = stm32_cryp_des_setkey,
1827 .encrypt = stm32_cryp_des_cbc_encrypt,
1828 .decrypt = stm32_cryp_des_cbc_decrypt,
1829 }
1830},
1831{
1832 .cra_name = "ecb(des3_ede)",
1833 .cra_driver_name = "stm32-ecb-des3",
1834 .cra_priority = 200,
1835 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1836 CRYPTO_ALG_ASYNC,
1837 .cra_blocksize = DES_BLOCK_SIZE,
1838 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1839 .cra_alignmask = 0xf,
1840 .cra_type = &crypto_ablkcipher_type,
1841 .cra_module = THIS_MODULE,
1842 .cra_init = stm32_cryp_cra_init,
1843 .cra_ablkcipher = {
1844 .min_keysize = 3 * DES_BLOCK_SIZE,
1845 .max_keysize = 3 * DES_BLOCK_SIZE,
1846 .setkey = stm32_cryp_tdes_setkey,
1847 .encrypt = stm32_cryp_tdes_ecb_encrypt,
1848 .decrypt = stm32_cryp_tdes_ecb_decrypt,
1849 }
1850},
1851{
1852 .cra_name = "cbc(des3_ede)",
1853 .cra_driver_name = "stm32-cbc-des3",
1854 .cra_priority = 200,
1855 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1856 CRYPTO_ALG_ASYNC,
1857 .cra_blocksize = DES_BLOCK_SIZE,
1858 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1859 .cra_alignmask = 0xf,
1860 .cra_type = &crypto_ablkcipher_type,
1861 .cra_module = THIS_MODULE,
1862 .cra_init = stm32_cryp_cra_init,
1863 .cra_ablkcipher = {
1864 .min_keysize = 3 * DES_BLOCK_SIZE,
1865 .max_keysize = 3 * DES_BLOCK_SIZE,
1866 .ivsize = DES_BLOCK_SIZE,
1867 .setkey = stm32_cryp_tdes_setkey,
1868 .encrypt = stm32_cryp_tdes_cbc_encrypt,
1869 .decrypt = stm32_cryp_tdes_cbc_decrypt,
1870 }
1871},
1872};
1873
1874static struct aead_alg aead_algs[] = {
1875{
1876 .setkey = stm32_cryp_aes_aead_setkey,
1877 .setauthsize = stm32_cryp_aes_gcm_setauthsize,
1878 .encrypt = stm32_cryp_aes_gcm_encrypt,
1879 .decrypt = stm32_cryp_aes_gcm_decrypt,
1880 .init = stm32_cryp_aes_aead_init,
1881 .ivsize = 12,
1882 .maxauthsize = AES_BLOCK_SIZE,
1883
1884 .base = {
1885 .cra_name = "gcm(aes)",
1886 .cra_driver_name = "stm32-gcm-aes",
1887 .cra_priority = 200,
1888 .cra_flags = CRYPTO_ALG_ASYNC,
1889 .cra_blocksize = 1,
1890 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1891 .cra_alignmask = 0xf,
1892 .cra_module = THIS_MODULE,
1893 },
1894},
1895{
1896 .setkey = stm32_cryp_aes_aead_setkey,
1897 .setauthsize = stm32_cryp_aes_ccm_setauthsize,
1898 .encrypt = stm32_cryp_aes_ccm_encrypt,
1899 .decrypt = stm32_cryp_aes_ccm_decrypt,
1900 .init = stm32_cryp_aes_aead_init,
1901 .ivsize = AES_BLOCK_SIZE,
1902 .maxauthsize = AES_BLOCK_SIZE,
1903
1904 .base = {
1905 .cra_name = "ccm(aes)",
1906 .cra_driver_name = "stm32-ccm-aes",
1907 .cra_priority = 200,
1908 .cra_flags = CRYPTO_ALG_ASYNC,
1909 .cra_blocksize = 1,
1910 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1911 .cra_alignmask = 0xf,
1912 .cra_module = THIS_MODULE,
1913 },
1914},
1915};
1916
1917static const struct stm32_cryp_caps f7_data = {
1918 .swap_final = true,
1919 .padding_wa = true,
1920};
1921
1922static const struct stm32_cryp_caps mp1_data = {
1923 .swap_final = false,
1924 .padding_wa = false,
1925};
1926
1927static const struct of_device_id stm32_dt_ids[] = {
1928 { .compatible = "st,stm32f756-cryp", .data = &f7_data},
1929 { .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1930 {},
1931};
1932MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1933
1934static int stm32_cryp_probe(struct platform_device *pdev)
1935{
1936 struct device *dev = &pdev->dev;
1937 struct stm32_cryp *cryp;
1938 struct reset_control *rst;
1939 int irq, ret;
1940
1941 cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1942 if (!cryp)
1943 return -ENOMEM;
1944
1945 cryp->caps = of_device_get_match_data(dev);
1946 if (!cryp->caps)
1947 return -ENODEV;
1948
1949 cryp->dev = dev;
1950
1951 cryp->regs = devm_platform_ioremap_resource(pdev, 0);
1952 if (IS_ERR(cryp->regs))
1953 return PTR_ERR(cryp->regs);
1954
1955 irq = platform_get_irq(pdev, 0);
1956 if (irq < 0)
1957 return irq;
1958
1959 ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1960 stm32_cryp_irq_thread, IRQF_ONESHOT,
1961 dev_name(dev), cryp);
1962 if (ret) {
1963 dev_err(dev, "Cannot grab IRQ\n");
1964 return ret;
1965 }
1966
1967 cryp->clk = devm_clk_get(dev, NULL);
1968 if (IS_ERR(cryp->clk)) {
1969 dev_err(dev, "Could not get clock\n");
1970 return PTR_ERR(cryp->clk);
1971 }
1972
1973 ret = clk_prepare_enable(cryp->clk);
1974 if (ret) {
1975 dev_err(cryp->dev, "Failed to enable clock\n");
1976 return ret;
1977 }
1978
1979 pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
1980 pm_runtime_use_autosuspend(dev);
1981
1982 pm_runtime_get_noresume(dev);
1983 pm_runtime_set_active(dev);
1984 pm_runtime_enable(dev);
1985
1986 rst = devm_reset_control_get(dev, NULL);
1987 if (!IS_ERR(rst)) {
1988 reset_control_assert(rst);
1989 udelay(2);
1990 reset_control_deassert(rst);
1991 }
1992
1993 platform_set_drvdata(pdev, cryp);
1994
1995 spin_lock(&cryp_list.lock);
1996 list_add(&cryp->list, &cryp_list.dev_list);
1997 spin_unlock(&cryp_list.lock);
1998
1999 /* Initialize crypto engine */
2000 cryp->engine = crypto_engine_alloc_init(dev, 1);
2001 if (!cryp->engine) {
2002 dev_err(dev, "Could not init crypto engine\n");
2003 ret = -ENOMEM;
2004 goto err_engine1;
2005 }
2006
2007 ret = crypto_engine_start(cryp->engine);
2008 if (ret) {
2009 dev_err(dev, "Could not start crypto engine\n");
2010 goto err_engine2;
2011 }
2012
2013 ret = crypto_register_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2014 if (ret) {
2015 dev_err(dev, "Could not register algs\n");
2016 goto err_algs;
2017 }
2018
2019 ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2020 if (ret)
2021 goto err_aead_algs;
2022
2023 dev_info(dev, "Initialized\n");
2024
2025 pm_runtime_put_sync(dev);
2026
2027 return 0;
2028
2029err_aead_algs:
2030 crypto_unregister_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2031err_algs:
2032err_engine2:
2033 crypto_engine_exit(cryp->engine);
2034err_engine1:
2035 spin_lock(&cryp_list.lock);
2036 list_del(&cryp->list);
2037 spin_unlock(&cryp_list.lock);
2038
2039 pm_runtime_disable(dev);
2040 pm_runtime_put_noidle(dev);
2041 pm_runtime_disable(dev);
2042 pm_runtime_put_noidle(dev);
2043
2044 clk_disable_unprepare(cryp->clk);
2045
2046 return ret;
2047}
2048
2049static int stm32_cryp_remove(struct platform_device *pdev)
2050{
2051 struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2052 int ret;
2053
2054 if (!cryp)
2055 return -ENODEV;
2056
2057 ret = pm_runtime_get_sync(cryp->dev);
2058 if (ret < 0)
2059 return ret;
2060
2061 crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2062 crypto_unregister_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2063
2064 crypto_engine_exit(cryp->engine);
2065
2066 spin_lock(&cryp_list.lock);
2067 list_del(&cryp->list);
2068 spin_unlock(&cryp_list.lock);
2069
2070 pm_runtime_disable(cryp->dev);
2071 pm_runtime_put_noidle(cryp->dev);
2072
2073 clk_disable_unprepare(cryp->clk);
2074
2075 return 0;
2076}
2077
2078#ifdef CONFIG_PM
2079static int stm32_cryp_runtime_suspend(struct device *dev)
2080{
2081 struct stm32_cryp *cryp = dev_get_drvdata(dev);
2082
2083 clk_disable_unprepare(cryp->clk);
2084
2085 return 0;
2086}
2087
2088static int stm32_cryp_runtime_resume(struct device *dev)
2089{
2090 struct stm32_cryp *cryp = dev_get_drvdata(dev);
2091 int ret;
2092
2093 ret = clk_prepare_enable(cryp->clk);
2094 if (ret) {
2095 dev_err(cryp->dev, "Failed to prepare_enable clock\n");
2096 return ret;
2097 }
2098
2099 return 0;
2100}
2101#endif
2102
2103static const struct dev_pm_ops stm32_cryp_pm_ops = {
2104 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2105 pm_runtime_force_resume)
2106 SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
2107 stm32_cryp_runtime_resume, NULL)
2108};
2109
2110static struct platform_driver stm32_cryp_driver = {
2111 .probe = stm32_cryp_probe,
2112 .remove = stm32_cryp_remove,
2113 .driver = {
2114 .name = DRIVER_NAME,
2115 .pm = &stm32_cryp_pm_ops,
2116 .of_match_table = stm32_dt_ids,
2117 },
2118};
2119
2120module_platform_driver(stm32_cryp_driver);
2121
2122MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
2123MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2124MODULE_LICENSE("GPL");