Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) STMicroelectronics SA 2017
   4 * Author: Fabien Dessenne <fabien.dessenne@st.com>
   5 */
   6
   7#include <linux/clk.h>
   8#include <linux/delay.h>
   9#include <linux/interrupt.h>
  10#include <linux/iopoll.h>
  11#include <linux/module.h>
  12#include <linux/of_device.h>
  13#include <linux/platform_device.h>
  14#include <linux/pm_runtime.h>
  15#include <linux/reset.h>
  16
  17#include <crypto/aes.h>
  18#include <crypto/internal/des.h>
  19#include <crypto/engine.h>
  20#include <crypto/scatterwalk.h>
  21#include <crypto/internal/aead.h>
  22#include <crypto/internal/skcipher.h>
  23
  24#define DRIVER_NAME             "stm32-cryp"
  25
  26/* Bit [0] encrypt / decrypt */
  27#define FLG_ENCRYPT             BIT(0)
  28/* Bit [8..1] algo & operation mode */
  29#define FLG_AES                 BIT(1)
  30#define FLG_DES                 BIT(2)
  31#define FLG_TDES                BIT(3)
  32#define FLG_ECB                 BIT(4)
  33#define FLG_CBC                 BIT(5)
  34#define FLG_CTR                 BIT(6)
  35#define FLG_GCM                 BIT(7)
  36#define FLG_CCM                 BIT(8)
  37/* Mode mask = bits [15..0] */
  38#define FLG_MODE_MASK           GENMASK(15, 0)
  39/* Bit [31..16] status  */
  40#define FLG_CCM_PADDED_WA       BIT(16)
  41
  42/* Registers */
  43#define CRYP_CR                 0x00000000
  44#define CRYP_SR                 0x00000004
  45#define CRYP_DIN                0x00000008
  46#define CRYP_DOUT               0x0000000C
  47#define CRYP_DMACR              0x00000010
  48#define CRYP_IMSCR              0x00000014
  49#define CRYP_RISR               0x00000018
  50#define CRYP_MISR               0x0000001C
  51#define CRYP_K0LR               0x00000020
  52#define CRYP_K0RR               0x00000024
  53#define CRYP_K1LR               0x00000028
  54#define CRYP_K1RR               0x0000002C
  55#define CRYP_K2LR               0x00000030
  56#define CRYP_K2RR               0x00000034
  57#define CRYP_K3LR               0x00000038
  58#define CRYP_K3RR               0x0000003C
  59#define CRYP_IV0LR              0x00000040
  60#define CRYP_IV0RR              0x00000044
  61#define CRYP_IV1LR              0x00000048
  62#define CRYP_IV1RR              0x0000004C
  63#define CRYP_CSGCMCCM0R         0x00000050
  64#define CRYP_CSGCM0R            0x00000070
  65
  66/* Registers values */
  67#define CR_DEC_NOT_ENC          0x00000004
  68#define CR_TDES_ECB             0x00000000
  69#define CR_TDES_CBC             0x00000008
  70#define CR_DES_ECB              0x00000010
  71#define CR_DES_CBC              0x00000018
  72#define CR_AES_ECB              0x00000020
  73#define CR_AES_CBC              0x00000028
  74#define CR_AES_CTR              0x00000030
  75#define CR_AES_KP               0x00000038
  76#define CR_AES_GCM              0x00080000
  77#define CR_AES_CCM              0x00080008
  78#define CR_AES_UNKNOWN          0xFFFFFFFF
  79#define CR_ALGO_MASK            0x00080038
  80#define CR_DATA32               0x00000000
  81#define CR_DATA16               0x00000040
  82#define CR_DATA8                0x00000080
  83#define CR_DATA1                0x000000C0
  84#define CR_KEY128               0x00000000
  85#define CR_KEY192               0x00000100
  86#define CR_KEY256               0x00000200
  87#define CR_FFLUSH               0x00004000
  88#define CR_CRYPEN               0x00008000
  89#define CR_PH_INIT              0x00000000
  90#define CR_PH_HEADER            0x00010000
  91#define CR_PH_PAYLOAD           0x00020000
  92#define CR_PH_FINAL             0x00030000
  93#define CR_PH_MASK              0x00030000
  94#define CR_NBPBL_SHIFT          20
  95
  96#define SR_BUSY                 0x00000010
  97#define SR_OFNE                 0x00000004
  98
  99#define IMSCR_IN                BIT(0)
 100#define IMSCR_OUT               BIT(1)
 101
 102#define MISR_IN                 BIT(0)
 103#define MISR_OUT                BIT(1)
 104
 105/* Misc */
 106#define AES_BLOCK_32            (AES_BLOCK_SIZE / sizeof(u32))
 107#define GCM_CTR_INIT            2
 108#define _walked_in              (cryp->in_walk.offset - cryp->in_sg->offset)
 109#define _walked_out             (cryp->out_walk.offset - cryp->out_sg->offset)
 110#define CRYP_AUTOSUSPEND_DELAY	50
 111
 112struct stm32_cryp_caps {
 113	bool                    swap_final;
 114	bool                    padding_wa;
 115};
 116
 117struct stm32_cryp_ctx {
 118	struct crypto_engine_ctx enginectx;
 119	struct stm32_cryp       *cryp;
 120	int                     keylen;
 121	u32                     key[AES_KEYSIZE_256 / sizeof(u32)];
 122	unsigned long           flags;
 123};
 124
 125struct stm32_cryp_reqctx {
 126	unsigned long mode;
 127};
 128
 129struct stm32_cryp {
 130	struct list_head        list;
 131	struct device           *dev;
 132	void __iomem            *regs;
 133	struct clk              *clk;
 134	unsigned long           flags;
 135	u32                     irq_status;
 136	const struct stm32_cryp_caps *caps;
 137	struct stm32_cryp_ctx   *ctx;
 138
 139	struct crypto_engine    *engine;
 140
 141	struct skcipher_request *req;
 142	struct aead_request     *areq;
 143
 144	size_t                  authsize;
 145	size_t                  hw_blocksize;
 146
 147	size_t                  total_in;
 148	size_t                  total_in_save;
 149	size_t                  total_out;
 150	size_t                  total_out_save;
 151
 152	struct scatterlist      *in_sg;
 153	struct scatterlist      *out_sg;
 154	struct scatterlist      *out_sg_save;
 155
 156	struct scatterlist      in_sgl;
 157	struct scatterlist      out_sgl;
 158	bool                    sgs_copied;
 159
 160	int                     in_sg_len;
 161	int                     out_sg_len;
 162
 163	struct scatter_walk     in_walk;
 164	struct scatter_walk     out_walk;
 165
 166	u32                     last_ctr[4];
 167	u32                     gcm_ctr;
 168};
 169
 170struct stm32_cryp_list {
 171	struct list_head        dev_list;
 172	spinlock_t              lock; /* protect dev_list */
 173};
 174
 175static struct stm32_cryp_list cryp_list = {
 176	.dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
 177	.lock     = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
 178};
 179
 180static inline bool is_aes(struct stm32_cryp *cryp)
 181{
 182	return cryp->flags & FLG_AES;
 183}
 184
 185static inline bool is_des(struct stm32_cryp *cryp)
 186{
 187	return cryp->flags & FLG_DES;
 188}
 189
 190static inline bool is_tdes(struct stm32_cryp *cryp)
 191{
 192	return cryp->flags & FLG_TDES;
 193}
 194
 195static inline bool is_ecb(struct stm32_cryp *cryp)
 196{
 197	return cryp->flags & FLG_ECB;
 198}
 199
 200static inline bool is_cbc(struct stm32_cryp *cryp)
 201{
 202	return cryp->flags & FLG_CBC;
 203}
 204
 205static inline bool is_ctr(struct stm32_cryp *cryp)
 206{
 207	return cryp->flags & FLG_CTR;
 208}
 209
 210static inline bool is_gcm(struct stm32_cryp *cryp)
 211{
 212	return cryp->flags & FLG_GCM;
 213}
 214
 215static inline bool is_ccm(struct stm32_cryp *cryp)
 216{
 217	return cryp->flags & FLG_CCM;
 218}
 219
 220static inline bool is_encrypt(struct stm32_cryp *cryp)
 221{
 222	return cryp->flags & FLG_ENCRYPT;
 223}
 224
 225static inline bool is_decrypt(struct stm32_cryp *cryp)
 226{
 227	return !is_encrypt(cryp);
 228}
 229
 230static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
 231{
 232	return readl_relaxed(cryp->regs + ofst);
 233}
 234
 235static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
 236{
 237	writel_relaxed(val, cryp->regs + ofst);
 238}
 239
 240static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
 241{
 242	u32 status;
 243
 244	return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
 245			!(status & SR_BUSY), 10, 100000);
 246}
 247
 248static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
 249{
 250	u32 status;
 251
 252	return readl_relaxed_poll_timeout(cryp->regs + CRYP_CR, status,
 253			!(status & CR_CRYPEN), 10, 100000);
 254}
 255
 256static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
 257{
 258	u32 status;
 259
 260	return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
 261			status & SR_OFNE, 10, 100000);
 262}
 263
 264static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
 265
 266static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
 267{
 268	struct stm32_cryp *tmp, *cryp = NULL;
 269
 270	spin_lock_bh(&cryp_list.lock);
 271	if (!ctx->cryp) {
 272		list_for_each_entry(tmp, &cryp_list.dev_list, list) {
 273			cryp = tmp;
 274			break;
 275		}
 276		ctx->cryp = cryp;
 277	} else {
 278		cryp = ctx->cryp;
 279	}
 280
 281	spin_unlock_bh(&cryp_list.lock);
 282
 283	return cryp;
 284}
 285
 286static int stm32_cryp_check_aligned(struct scatterlist *sg, size_t total,
 287				    size_t align)
 288{
 289	int len = 0;
 290
 291	if (!total)
 292		return 0;
 293
 294	if (!IS_ALIGNED(total, align))
 295		return -EINVAL;
 296
 297	while (sg) {
 298		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
 299			return -EINVAL;
 300
 301		if (!IS_ALIGNED(sg->length, align))
 302			return -EINVAL;
 303
 304		len += sg->length;
 305		sg = sg_next(sg);
 306	}
 307
 308	if (len != total)
 309		return -EINVAL;
 310
 311	return 0;
 312}
 313
 314static int stm32_cryp_check_io_aligned(struct stm32_cryp *cryp)
 315{
 316	int ret;
 317
 318	ret = stm32_cryp_check_aligned(cryp->in_sg, cryp->total_in,
 319				       cryp->hw_blocksize);
 320	if (ret)
 321		return ret;
 322
 323	ret = stm32_cryp_check_aligned(cryp->out_sg, cryp->total_out,
 324				       cryp->hw_blocksize);
 325
 326	return ret;
 327}
 328
 329static void sg_copy_buf(void *buf, struct scatterlist *sg,
 330			unsigned int start, unsigned int nbytes, int out)
 331{
 332	struct scatter_walk walk;
 333
 334	if (!nbytes)
 335		return;
 336
 337	scatterwalk_start(&walk, sg);
 338	scatterwalk_advance(&walk, start);
 339	scatterwalk_copychunks(buf, &walk, nbytes, out);
 340	scatterwalk_done(&walk, out, 0);
 341}
 342
 343static int stm32_cryp_copy_sgs(struct stm32_cryp *cryp)
 344{
 345	void *buf_in, *buf_out;
 346	int pages, total_in, total_out;
 347
 348	if (!stm32_cryp_check_io_aligned(cryp)) {
 349		cryp->sgs_copied = 0;
 350		return 0;
 351	}
 352
 353	total_in = ALIGN(cryp->total_in, cryp->hw_blocksize);
 354	pages = total_in ? get_order(total_in) : 1;
 355	buf_in = (void *)__get_free_pages(GFP_ATOMIC, pages);
 356
 357	total_out = ALIGN(cryp->total_out, cryp->hw_blocksize);
 358	pages = total_out ? get_order(total_out) : 1;
 359	buf_out = (void *)__get_free_pages(GFP_ATOMIC, pages);
 360
 361	if (!buf_in || !buf_out) {
 362		dev_err(cryp->dev, "Can't allocate pages when unaligned\n");
 363		cryp->sgs_copied = 0;
 364		return -EFAULT;
 365	}
 366
 367	sg_copy_buf(buf_in, cryp->in_sg, 0, cryp->total_in, 0);
 368
 369	sg_init_one(&cryp->in_sgl, buf_in, total_in);
 370	cryp->in_sg = &cryp->in_sgl;
 371	cryp->in_sg_len = 1;
 372
 373	sg_init_one(&cryp->out_sgl, buf_out, total_out);
 374	cryp->out_sg_save = cryp->out_sg;
 375	cryp->out_sg = &cryp->out_sgl;
 376	cryp->out_sg_len = 1;
 377
 378	cryp->sgs_copied = 1;
 379
 380	return 0;
 381}
 382
 383static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, u32 *iv)
 384{
 385	if (!iv)
 386		return;
 387
 388	stm32_cryp_write(cryp, CRYP_IV0LR, cpu_to_be32(*iv++));
 389	stm32_cryp_write(cryp, CRYP_IV0RR, cpu_to_be32(*iv++));
 390
 391	if (is_aes(cryp)) {
 392		stm32_cryp_write(cryp, CRYP_IV1LR, cpu_to_be32(*iv++));
 393		stm32_cryp_write(cryp, CRYP_IV1RR, cpu_to_be32(*iv++));
 394	}
 395}
 396
 397static void stm32_cryp_get_iv(struct stm32_cryp *cryp)
 398{
 399	struct skcipher_request *req = cryp->req;
 400	u32 *tmp = (void *)req->iv;
 401
 402	if (!tmp)
 403		return;
 404
 405	*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0LR));
 406	*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0RR));
 407
 408	if (is_aes(cryp)) {
 409		*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1LR));
 410		*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1RR));
 411	}
 412}
 413
 414static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
 415{
 416	unsigned int i;
 417	int r_id;
 418
 419	if (is_des(c)) {
 420		stm32_cryp_write(c, CRYP_K1LR, cpu_to_be32(c->ctx->key[0]));
 421		stm32_cryp_write(c, CRYP_K1RR, cpu_to_be32(c->ctx->key[1]));
 422	} else {
 423		r_id = CRYP_K3RR;
 424		for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
 425			stm32_cryp_write(c, r_id,
 426					 cpu_to_be32(c->ctx->key[i - 1]));
 427	}
 428}
 429
 430static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
 431{
 432	if (is_aes(cryp) && is_ecb(cryp))
 433		return CR_AES_ECB;
 434
 435	if (is_aes(cryp) && is_cbc(cryp))
 436		return CR_AES_CBC;
 437
 438	if (is_aes(cryp) && is_ctr(cryp))
 439		return CR_AES_CTR;
 440
 441	if (is_aes(cryp) && is_gcm(cryp))
 442		return CR_AES_GCM;
 443
 444	if (is_aes(cryp) && is_ccm(cryp))
 445		return CR_AES_CCM;
 446
 447	if (is_des(cryp) && is_ecb(cryp))
 448		return CR_DES_ECB;
 449
 450	if (is_des(cryp) && is_cbc(cryp))
 451		return CR_DES_CBC;
 452
 453	if (is_tdes(cryp) && is_ecb(cryp))
 454		return CR_TDES_ECB;
 455
 456	if (is_tdes(cryp) && is_cbc(cryp))
 457		return CR_TDES_CBC;
 458
 459	dev_err(cryp->dev, "Unknown mode\n");
 460	return CR_AES_UNKNOWN;
 461}
 462
 463static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
 464{
 465	return is_encrypt(cryp) ? cryp->areq->cryptlen :
 466				  cryp->areq->cryptlen - cryp->authsize;
 467}
 468
 469static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
 470{
 471	int ret;
 472	u32 iv[4];
 473
 474	/* Phase 1 : init */
 475	memcpy(iv, cryp->areq->iv, 12);
 476	iv[3] = cpu_to_be32(GCM_CTR_INIT);
 477	cryp->gcm_ctr = GCM_CTR_INIT;
 478	stm32_cryp_hw_write_iv(cryp, iv);
 479
 480	stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
 481
 482	/* Wait for end of processing */
 483	ret = stm32_cryp_wait_enable(cryp);
 484	if (ret)
 485		dev_err(cryp->dev, "Timeout (gcm init)\n");
 486
 487	return ret;
 488}
 489
 490static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
 491{
 492	int ret;
 493	u8 iv[AES_BLOCK_SIZE], b0[AES_BLOCK_SIZE];
 
 494	u32 *d;
 495	unsigned int i, textlen;
 496
 497	/* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
 498	memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
 499	memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
 500	iv[AES_BLOCK_SIZE - 1] = 1;
 501	stm32_cryp_hw_write_iv(cryp, (u32 *)iv);
 502
 503	/* Build B0 */
 504	memcpy(b0, iv, AES_BLOCK_SIZE);
 505
 506	b0[0] |= (8 * ((cryp->authsize - 2) / 2));
 507
 508	if (cryp->areq->assoclen)
 509		b0[0] |= 0x40;
 510
 511	textlen = stm32_cryp_get_input_text_len(cryp);
 512
 513	b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
 514	b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
 515
 516	/* Enable HW */
 517	stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
 518
 519	/* Write B0 */
 520	d = (u32 *)b0;
 
 521
 522	for (i = 0; i < AES_BLOCK_32; i++) {
 
 
 523		if (!cryp->caps->padding_wa)
 524			*d = cpu_to_be32(*d);
 525		stm32_cryp_write(cryp, CRYP_DIN, *d++);
 526	}
 527
 528	/* Wait for end of processing */
 529	ret = stm32_cryp_wait_enable(cryp);
 530	if (ret)
 531		dev_err(cryp->dev, "Timeout (ccm init)\n");
 532
 533	return ret;
 534}
 535
 536static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
 537{
 538	int ret;
 539	u32 cfg, hw_mode;
 540
 541	pm_runtime_get_sync(cryp->dev);
 542
 543	/* Disable interrupt */
 544	stm32_cryp_write(cryp, CRYP_IMSCR, 0);
 545
 546	/* Set key */
 547	stm32_cryp_hw_write_key(cryp);
 548
 549	/* Set configuration */
 550	cfg = CR_DATA8 | CR_FFLUSH;
 551
 552	switch (cryp->ctx->keylen) {
 553	case AES_KEYSIZE_128:
 554		cfg |= CR_KEY128;
 555		break;
 556
 557	case AES_KEYSIZE_192:
 558		cfg |= CR_KEY192;
 559		break;
 560
 561	default:
 562	case AES_KEYSIZE_256:
 563		cfg |= CR_KEY256;
 564		break;
 565	}
 566
 567	hw_mode = stm32_cryp_get_hw_mode(cryp);
 568	if (hw_mode == CR_AES_UNKNOWN)
 569		return -EINVAL;
 570
 571	/* AES ECB/CBC decrypt: run key preparation first */
 572	if (is_decrypt(cryp) &&
 573	    ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
 574		stm32_cryp_write(cryp, CRYP_CR, cfg | CR_AES_KP | CR_CRYPEN);
 575
 576		/* Wait for end of processing */
 577		ret = stm32_cryp_wait_busy(cryp);
 578		if (ret) {
 579			dev_err(cryp->dev, "Timeout (key preparation)\n");
 580			return ret;
 581		}
 582	}
 583
 584	cfg |= hw_mode;
 585
 586	if (is_decrypt(cryp))
 587		cfg |= CR_DEC_NOT_ENC;
 588
 589	/* Apply config and flush (valid when CRYPEN = 0) */
 590	stm32_cryp_write(cryp, CRYP_CR, cfg);
 591
 592	switch (hw_mode) {
 593	case CR_AES_GCM:
 594	case CR_AES_CCM:
 595		/* Phase 1 : init */
 596		if (hw_mode == CR_AES_CCM)
 597			ret = stm32_cryp_ccm_init(cryp, cfg);
 598		else
 599			ret = stm32_cryp_gcm_init(cryp, cfg);
 600
 601		if (ret)
 602			return ret;
 603
 604		/* Phase 2 : header (authenticated data) */
 605		if (cryp->areq->assoclen) {
 606			cfg |= CR_PH_HEADER;
 607		} else if (stm32_cryp_get_input_text_len(cryp)) {
 608			cfg |= CR_PH_PAYLOAD;
 609			stm32_cryp_write(cryp, CRYP_CR, cfg);
 610		} else {
 611			cfg |= CR_PH_INIT;
 612		}
 613
 614		break;
 615
 616	case CR_DES_CBC:
 617	case CR_TDES_CBC:
 618	case CR_AES_CBC:
 619	case CR_AES_CTR:
 620		stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->req->iv);
 621		break;
 622
 623	default:
 624		break;
 625	}
 626
 627	/* Enable now */
 628	cfg |= CR_CRYPEN;
 629
 630	stm32_cryp_write(cryp, CRYP_CR, cfg);
 631
 632	cryp->flags &= ~FLG_CCM_PADDED_WA;
 633
 634	return 0;
 635}
 636
 637static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
 638{
 639	if (!err && (is_gcm(cryp) || is_ccm(cryp)))
 640		/* Phase 4 : output tag */
 641		err = stm32_cryp_read_auth_tag(cryp);
 642
 643	if (!err && (!(is_gcm(cryp) || is_ccm(cryp))))
 644		stm32_cryp_get_iv(cryp);
 645
 646	if (cryp->sgs_copied) {
 647		void *buf_in, *buf_out;
 648		int pages, len;
 649
 650		buf_in = sg_virt(&cryp->in_sgl);
 651		buf_out = sg_virt(&cryp->out_sgl);
 652
 653		sg_copy_buf(buf_out, cryp->out_sg_save, 0,
 654			    cryp->total_out_save, 1);
 655
 656		len = ALIGN(cryp->total_in_save, cryp->hw_blocksize);
 657		pages = len ? get_order(len) : 1;
 658		free_pages((unsigned long)buf_in, pages);
 659
 660		len = ALIGN(cryp->total_out_save, cryp->hw_blocksize);
 661		pages = len ? get_order(len) : 1;
 662		free_pages((unsigned long)buf_out, pages);
 663	}
 664
 665	pm_runtime_mark_last_busy(cryp->dev);
 666	pm_runtime_put_autosuspend(cryp->dev);
 667
 668	if (is_gcm(cryp) || is_ccm(cryp))
 669		crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
 670	else
 671		crypto_finalize_skcipher_request(cryp->engine, cryp->req,
 672						   err);
 673
 674	memset(cryp->ctx->key, 0, cryp->ctx->keylen);
 675}
 676
 677static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
 678{
 679	/* Enable interrupt and let the IRQ handler do everything */
 680	stm32_cryp_write(cryp, CRYP_IMSCR, IMSCR_IN | IMSCR_OUT);
 681
 682	return 0;
 683}
 684
 685static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
 686static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
 687					 void *areq);
 688
 689static int stm32_cryp_init_tfm(struct crypto_skcipher *tfm)
 690{
 691	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
 692
 693	crypto_skcipher_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx));
 694
 695	ctx->enginectx.op.do_one_request = stm32_cryp_cipher_one_req;
 696	ctx->enginectx.op.prepare_request = stm32_cryp_prepare_cipher_req;
 697	ctx->enginectx.op.unprepare_request = NULL;
 698	return 0;
 699}
 700
 701static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
 702static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine,
 703				       void *areq);
 704
 705static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
 706{
 707	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
 708
 709	tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
 710
 711	ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req;
 712	ctx->enginectx.op.prepare_request = stm32_cryp_prepare_aead_req;
 713	ctx->enginectx.op.unprepare_request = NULL;
 714
 715	return 0;
 716}
 717
 718static int stm32_cryp_crypt(struct skcipher_request *req, unsigned long mode)
 719{
 720	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
 721			crypto_skcipher_reqtfm(req));
 722	struct stm32_cryp_reqctx *rctx = skcipher_request_ctx(req);
 723	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
 724
 725	if (!cryp)
 726		return -ENODEV;
 727
 728	rctx->mode = mode;
 729
 730	return crypto_transfer_skcipher_request_to_engine(cryp->engine, req);
 731}
 732
 733static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
 734{
 735	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
 736	struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
 737	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
 738
 739	if (!cryp)
 740		return -ENODEV;
 741
 742	rctx->mode = mode;
 743
 744	return crypto_transfer_aead_request_to_engine(cryp->engine, req);
 745}
 746
 747static int stm32_cryp_setkey(struct crypto_skcipher *tfm, const u8 *key,
 748			     unsigned int keylen)
 749{
 750	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
 751
 752	memcpy(ctx->key, key, keylen);
 753	ctx->keylen = keylen;
 754
 755	return 0;
 756}
 757
 758static int stm32_cryp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
 759				 unsigned int keylen)
 760{
 761	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
 762	    keylen != AES_KEYSIZE_256)
 763		return -EINVAL;
 764	else
 765		return stm32_cryp_setkey(tfm, key, keylen);
 766}
 767
 768static int stm32_cryp_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
 769				 unsigned int keylen)
 770{
 771	return verify_skcipher_des_key(tfm, key) ?:
 772	       stm32_cryp_setkey(tfm, key, keylen);
 773}
 774
 775static int stm32_cryp_tdes_setkey(struct crypto_skcipher *tfm, const u8 *key,
 776				  unsigned int keylen)
 777{
 778	return verify_skcipher_des3_key(tfm, key) ?:
 779	       stm32_cryp_setkey(tfm, key, keylen);
 780}
 781
 782static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
 783				      unsigned int keylen)
 784{
 785	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
 786
 787	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
 788	    keylen != AES_KEYSIZE_256)
 789		return -EINVAL;
 790
 791	memcpy(ctx->key, key, keylen);
 792	ctx->keylen = keylen;
 793
 794	return 0;
 795}
 796
 797static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
 798					  unsigned int authsize)
 799{
 800	return authsize == AES_BLOCK_SIZE ? 0 : -EINVAL;
 801}
 802
 803static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
 804					  unsigned int authsize)
 805{
 806	switch (authsize) {
 807	case 4:
 808	case 6:
 809	case 8:
 810	case 10:
 811	case 12:
 812	case 14:
 813	case 16:
 814		break;
 815	default:
 816		return -EINVAL;
 817	}
 818
 819	return 0;
 820}
 821
 822static int stm32_cryp_aes_ecb_encrypt(struct skcipher_request *req)
 823{
 824	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
 825}
 826
 827static int stm32_cryp_aes_ecb_decrypt(struct skcipher_request *req)
 828{
 829	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
 830}
 831
 832static int stm32_cryp_aes_cbc_encrypt(struct skcipher_request *req)
 833{
 834	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
 835}
 836
 837static int stm32_cryp_aes_cbc_decrypt(struct skcipher_request *req)
 838{
 839	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
 840}
 841
 842static int stm32_cryp_aes_ctr_encrypt(struct skcipher_request *req)
 843{
 844	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
 845}
 846
 847static int stm32_cryp_aes_ctr_decrypt(struct skcipher_request *req)
 848{
 849	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
 850}
 851
 852static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
 853{
 854	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
 855}
 856
 857static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
 858{
 859	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
 860}
 861
 862static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
 863{
 864	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
 865}
 866
 867static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
 868{
 869	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
 870}
 871
 872static int stm32_cryp_des_ecb_encrypt(struct skcipher_request *req)
 873{
 874	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
 875}
 876
 877static int stm32_cryp_des_ecb_decrypt(struct skcipher_request *req)
 878{
 879	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
 880}
 881
 882static int stm32_cryp_des_cbc_encrypt(struct skcipher_request *req)
 883{
 884	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
 885}
 886
 887static int stm32_cryp_des_cbc_decrypt(struct skcipher_request *req)
 888{
 889	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
 890}
 891
 892static int stm32_cryp_tdes_ecb_encrypt(struct skcipher_request *req)
 893{
 894	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
 895}
 896
 897static int stm32_cryp_tdes_ecb_decrypt(struct skcipher_request *req)
 898{
 899	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
 900}
 901
 902static int stm32_cryp_tdes_cbc_encrypt(struct skcipher_request *req)
 903{
 904	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
 905}
 906
 907static int stm32_cryp_tdes_cbc_decrypt(struct skcipher_request *req)
 908{
 909	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
 910}
 911
 912static int stm32_cryp_prepare_req(struct skcipher_request *req,
 913				  struct aead_request *areq)
 914{
 915	struct stm32_cryp_ctx *ctx;
 916	struct stm32_cryp *cryp;
 917	struct stm32_cryp_reqctx *rctx;
 918	int ret;
 919
 920	if (!req && !areq)
 921		return -EINVAL;
 922
 923	ctx = req ? crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)) :
 924		    crypto_aead_ctx(crypto_aead_reqtfm(areq));
 925
 926	cryp = ctx->cryp;
 927
 928	if (!cryp)
 929		return -ENODEV;
 930
 931	rctx = req ? skcipher_request_ctx(req) : aead_request_ctx(areq);
 932	rctx->mode &= FLG_MODE_MASK;
 933
 934	ctx->cryp = cryp;
 935
 936	cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
 937	cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
 938	cryp->ctx = ctx;
 939
 940	if (req) {
 941		cryp->req = req;
 942		cryp->areq = NULL;
 943		cryp->total_in = req->cryptlen;
 944		cryp->total_out = cryp->total_in;
 945	} else {
 946		/*
 947		 * Length of input and output data:
 948		 * Encryption case:
 949		 *  INPUT  =   AssocData  ||   PlainText
 950		 *          <- assoclen ->  <- cryptlen ->
 951		 *          <------- total_in ----------->
 952		 *
 953		 *  OUTPUT =   AssocData  ||  CipherText  ||   AuthTag
 954		 *          <- assoclen ->  <- cryptlen ->  <- authsize ->
 955		 *          <---------------- total_out ----------------->
 956		 *
 957		 * Decryption case:
 958		 *  INPUT  =   AssocData  ||  CipherText  ||  AuthTag
 959		 *          <- assoclen ->  <--------- cryptlen --------->
 960		 *                                          <- authsize ->
 961		 *          <---------------- total_in ------------------>
 962		 *
 963		 *  OUTPUT =   AssocData  ||   PlainText
 964		 *          <- assoclen ->  <- crypten - authsize ->
 965		 *          <---------- total_out ----------------->
 966		 */
 967		cryp->areq = areq;
 968		cryp->req = NULL;
 969		cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
 970		cryp->total_in = areq->assoclen + areq->cryptlen;
 971		if (is_encrypt(cryp))
 972			/* Append auth tag to output */
 973			cryp->total_out = cryp->total_in + cryp->authsize;
 974		else
 975			/* No auth tag in output */
 976			cryp->total_out = cryp->total_in - cryp->authsize;
 977	}
 978
 979	cryp->total_in_save = cryp->total_in;
 980	cryp->total_out_save = cryp->total_out;
 981
 982	cryp->in_sg = req ? req->src : areq->src;
 983	cryp->out_sg = req ? req->dst : areq->dst;
 984	cryp->out_sg_save = cryp->out_sg;
 985
 986	cryp->in_sg_len = sg_nents_for_len(cryp->in_sg, cryp->total_in);
 987	if (cryp->in_sg_len < 0) {
 988		dev_err(cryp->dev, "Cannot get in_sg_len\n");
 989		ret = cryp->in_sg_len;
 990		return ret;
 991	}
 992
 993	cryp->out_sg_len = sg_nents_for_len(cryp->out_sg, cryp->total_out);
 994	if (cryp->out_sg_len < 0) {
 995		dev_err(cryp->dev, "Cannot get out_sg_len\n");
 996		ret = cryp->out_sg_len;
 997		return ret;
 998	}
 999
1000	ret = stm32_cryp_copy_sgs(cryp);
1001	if (ret)
1002		return ret;
1003
1004	scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1005	scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1006
1007	if (is_gcm(cryp) || is_ccm(cryp)) {
1008		/* In output, jump after assoc data */
1009		scatterwalk_advance(&cryp->out_walk, cryp->areq->assoclen);
1010		cryp->total_out -= cryp->areq->assoclen;
1011	}
1012
1013	ret = stm32_cryp_hw_init(cryp);
1014	return ret;
1015}
1016
1017static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
1018					 void *areq)
1019{
1020	struct skcipher_request *req = container_of(areq,
1021						      struct skcipher_request,
1022						      base);
1023
1024	return stm32_cryp_prepare_req(req, NULL);
1025}
1026
1027static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1028{
1029	struct skcipher_request *req = container_of(areq,
1030						      struct skcipher_request,
1031						      base);
1032	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
1033			crypto_skcipher_reqtfm(req));
1034	struct stm32_cryp *cryp = ctx->cryp;
1035
1036	if (!cryp)
1037		return -ENODEV;
1038
1039	return stm32_cryp_cpu_start(cryp);
1040}
1041
1042static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq)
1043{
1044	struct aead_request *req = container_of(areq, struct aead_request,
1045						base);
1046
1047	return stm32_cryp_prepare_req(NULL, req);
1048}
1049
1050static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1051{
1052	struct aead_request *req = container_of(areq, struct aead_request,
1053						base);
1054	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1055	struct stm32_cryp *cryp = ctx->cryp;
1056
1057	if (!cryp)
1058		return -ENODEV;
1059
1060	if (unlikely(!cryp->areq->assoclen &&
1061		     !stm32_cryp_get_input_text_len(cryp))) {
1062		/* No input data to process: get tag and finish */
1063		stm32_cryp_finish_req(cryp, 0);
1064		return 0;
1065	}
1066
1067	return stm32_cryp_cpu_start(cryp);
1068}
1069
1070static u32 *stm32_cryp_next_out(struct stm32_cryp *cryp, u32 *dst,
1071				unsigned int n)
1072{
1073	scatterwalk_advance(&cryp->out_walk, n);
1074
1075	if (unlikely(cryp->out_sg->length == _walked_out)) {
1076		cryp->out_sg = sg_next(cryp->out_sg);
1077		if (cryp->out_sg) {
1078			scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1079			return (sg_virt(cryp->out_sg) + _walked_out);
1080		}
1081	}
1082
1083	return (u32 *)((u8 *)dst + n);
1084}
1085
1086static u32 *stm32_cryp_next_in(struct stm32_cryp *cryp, u32 *src,
1087			       unsigned int n)
1088{
1089	scatterwalk_advance(&cryp->in_walk, n);
1090
1091	if (unlikely(cryp->in_sg->length == _walked_in)) {
1092		cryp->in_sg = sg_next(cryp->in_sg);
1093		if (cryp->in_sg) {
1094			scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1095			return (sg_virt(cryp->in_sg) + _walked_in);
1096		}
1097	}
1098
1099	return (u32 *)((u8 *)src + n);
1100}
1101
1102static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1103{
1104	u32 cfg, size_bit, *dst, d32;
1105	u8 *d8;
1106	unsigned int i, j;
1107	int ret = 0;
1108
1109	/* Update Config */
1110	cfg = stm32_cryp_read(cryp, CRYP_CR);
1111
1112	cfg &= ~CR_PH_MASK;
1113	cfg |= CR_PH_FINAL;
1114	cfg &= ~CR_DEC_NOT_ENC;
1115	cfg |= CR_CRYPEN;
1116
1117	stm32_cryp_write(cryp, CRYP_CR, cfg);
1118
1119	if (is_gcm(cryp)) {
1120		/* GCM: write aad and payload size (in bits) */
1121		size_bit = cryp->areq->assoclen * 8;
1122		if (cryp->caps->swap_final)
1123			size_bit = cpu_to_be32(size_bit);
1124
1125		stm32_cryp_write(cryp, CRYP_DIN, 0);
1126		stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1127
1128		size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1129				cryp->areq->cryptlen - AES_BLOCK_SIZE;
1130		size_bit *= 8;
1131		if (cryp->caps->swap_final)
1132			size_bit = cpu_to_be32(size_bit);
1133
1134		stm32_cryp_write(cryp, CRYP_DIN, 0);
1135		stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1136	} else {
1137		/* CCM: write CTR0 */
1138		u8 iv[AES_BLOCK_SIZE];
1139		u32 *iv32 = (u32 *)iv;
 
 
 
1140
1141		memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1142		memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1143
1144		for (i = 0; i < AES_BLOCK_32; i++) {
 
 
1145			if (!cryp->caps->padding_wa)
1146				*iv32 = cpu_to_be32(*iv32);
1147			stm32_cryp_write(cryp, CRYP_DIN, *iv32++);
1148		}
1149	}
1150
1151	/* Wait for output data */
1152	ret = stm32_cryp_wait_output(cryp);
1153	if (ret) {
1154		dev_err(cryp->dev, "Timeout (read tag)\n");
1155		return ret;
1156	}
1157
1158	if (is_encrypt(cryp)) {
1159		/* Get and write tag */
1160		dst = sg_virt(cryp->out_sg) + _walked_out;
1161
1162		for (i = 0; i < AES_BLOCK_32; i++) {
1163			if (cryp->total_out >= sizeof(u32)) {
1164				/* Read a full u32 */
1165				*dst = stm32_cryp_read(cryp, CRYP_DOUT);
1166
1167				dst = stm32_cryp_next_out(cryp, dst,
1168							  sizeof(u32));
1169				cryp->total_out -= sizeof(u32);
1170			} else if (!cryp->total_out) {
1171				/* Empty fifo out (data from input padding) */
1172				stm32_cryp_read(cryp, CRYP_DOUT);
1173			} else {
1174				/* Read less than an u32 */
1175				d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1176				d8 = (u8 *)&d32;
1177
1178				for (j = 0; j < cryp->total_out; j++) {
1179					*((u8 *)dst) = *(d8++);
1180					dst = stm32_cryp_next_out(cryp, dst, 1);
1181				}
1182				cryp->total_out = 0;
1183			}
1184		}
1185	} else {
1186		/* Get and check tag */
1187		u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1188
1189		scatterwalk_map_and_copy(in_tag, cryp->in_sg,
1190					 cryp->total_in_save - cryp->authsize,
1191					 cryp->authsize, 0);
1192
1193		for (i = 0; i < AES_BLOCK_32; i++)
1194			out_tag[i] = stm32_cryp_read(cryp, CRYP_DOUT);
1195
1196		if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1197			ret = -EBADMSG;
1198	}
1199
1200	/* Disable cryp */
1201	cfg &= ~CR_CRYPEN;
1202	stm32_cryp_write(cryp, CRYP_CR, cfg);
1203
1204	return ret;
1205}
1206
1207static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1208{
1209	u32 cr;
1210
1211	if (unlikely(cryp->last_ctr[3] == 0xFFFFFFFF)) {
1212		cryp->last_ctr[3] = 0;
1213		cryp->last_ctr[2]++;
1214		if (!cryp->last_ctr[2]) {
1215			cryp->last_ctr[1]++;
1216			if (!cryp->last_ctr[1])
1217				cryp->last_ctr[0]++;
1218		}
1219
1220		cr = stm32_cryp_read(cryp, CRYP_CR);
1221		stm32_cryp_write(cryp, CRYP_CR, cr & ~CR_CRYPEN);
1222
1223		stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->last_ctr);
1224
1225		stm32_cryp_write(cryp, CRYP_CR, cr);
1226	}
1227
1228	cryp->last_ctr[0] = stm32_cryp_read(cryp, CRYP_IV0LR);
1229	cryp->last_ctr[1] = stm32_cryp_read(cryp, CRYP_IV0RR);
1230	cryp->last_ctr[2] = stm32_cryp_read(cryp, CRYP_IV1LR);
1231	cryp->last_ctr[3] = stm32_cryp_read(cryp, CRYP_IV1RR);
1232}
1233
1234static bool stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1235{
1236	unsigned int i, j;
1237	u32 d32, *dst;
1238	u8 *d8;
1239	size_t tag_size;
1240
1241	/* Do no read tag now (if any) */
1242	if (is_encrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1243		tag_size = cryp->authsize;
1244	else
1245		tag_size = 0;
1246
1247	dst = sg_virt(cryp->out_sg) + _walked_out;
1248
1249	for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1250		if (likely(cryp->total_out - tag_size >= sizeof(u32))) {
1251			/* Read a full u32 */
1252			*dst = stm32_cryp_read(cryp, CRYP_DOUT);
1253
1254			dst = stm32_cryp_next_out(cryp, dst, sizeof(u32));
1255			cryp->total_out -= sizeof(u32);
1256		} else if (cryp->total_out == tag_size) {
1257			/* Empty fifo out (data from input padding) */
1258			d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1259		} else {
1260			/* Read less than an u32 */
1261			d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1262			d8 = (u8 *)&d32;
1263
1264			for (j = 0; j < cryp->total_out - tag_size; j++) {
1265				*((u8 *)dst) = *(d8++);
1266				dst = stm32_cryp_next_out(cryp, dst, 1);
1267			}
1268			cryp->total_out = tag_size;
1269		}
1270	}
1271
1272	return !(cryp->total_out - tag_size) || !cryp->total_in;
1273}
1274
1275static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1276{
1277	unsigned int i, j;
1278	u32 *src;
1279	u8 d8[4];
1280	size_t tag_size;
1281
1282	/* Do no write tag (if any) */
1283	if (is_decrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1284		tag_size = cryp->authsize;
1285	else
1286		tag_size = 0;
1287
1288	src = sg_virt(cryp->in_sg) + _walked_in;
1289
1290	for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1291		if (likely(cryp->total_in - tag_size >= sizeof(u32))) {
1292			/* Write a full u32 */
1293			stm32_cryp_write(cryp, CRYP_DIN, *src);
1294
1295			src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1296			cryp->total_in -= sizeof(u32);
1297		} else if (cryp->total_in == tag_size) {
1298			/* Write padding data */
1299			stm32_cryp_write(cryp, CRYP_DIN, 0);
1300		} else {
1301			/* Write less than an u32 */
1302			memset(d8, 0, sizeof(u32));
1303			for (j = 0; j < cryp->total_in - tag_size; j++) {
1304				d8[j] = *((u8 *)src);
1305				src = stm32_cryp_next_in(cryp, src, 1);
1306			}
1307
1308			stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1309			cryp->total_in = tag_size;
1310		}
1311	}
1312}
1313
1314static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1315{
1316	int err;
1317	u32 cfg, tmp[AES_BLOCK_32];
1318	size_t total_in_ori = cryp->total_in;
1319	struct scatterlist *out_sg_ori = cryp->out_sg;
1320	unsigned int i;
1321
1322	/* 'Special workaround' procedure described in the datasheet */
1323
1324	/* a) disable ip */
1325	stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1326	cfg = stm32_cryp_read(cryp, CRYP_CR);
1327	cfg &= ~CR_CRYPEN;
1328	stm32_cryp_write(cryp, CRYP_CR, cfg);
1329
1330	/* b) Update IV1R */
1331	stm32_cryp_write(cryp, CRYP_IV1RR, cryp->gcm_ctr - 2);
1332
1333	/* c) change mode to CTR */
1334	cfg &= ~CR_ALGO_MASK;
1335	cfg |= CR_AES_CTR;
1336	stm32_cryp_write(cryp, CRYP_CR, cfg);
1337
1338	/* a) enable IP */
1339	cfg |= CR_CRYPEN;
1340	stm32_cryp_write(cryp, CRYP_CR, cfg);
1341
1342	/* b) pad and write the last block */
1343	stm32_cryp_irq_write_block(cryp);
1344	cryp->total_in = total_in_ori;
1345	err = stm32_cryp_wait_output(cryp);
1346	if (err) {
1347		dev_err(cryp->dev, "Timeout (write gcm header)\n");
1348		return stm32_cryp_finish_req(cryp, err);
1349	}
1350
1351	/* c) get and store encrypted data */
1352	stm32_cryp_irq_read_data(cryp);
1353	scatterwalk_map_and_copy(tmp, out_sg_ori,
1354				 cryp->total_in_save - total_in_ori,
1355				 total_in_ori, 0);
1356
1357	/* d) change mode back to AES GCM */
1358	cfg &= ~CR_ALGO_MASK;
1359	cfg |= CR_AES_GCM;
1360	stm32_cryp_write(cryp, CRYP_CR, cfg);
1361
1362	/* e) change phase to Final */
1363	cfg &= ~CR_PH_MASK;
1364	cfg |= CR_PH_FINAL;
1365	stm32_cryp_write(cryp, CRYP_CR, cfg);
1366
1367	/* f) write padded data */
1368	for (i = 0; i < AES_BLOCK_32; i++) {
1369		if (cryp->total_in)
1370			stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1371		else
1372			stm32_cryp_write(cryp, CRYP_DIN, 0);
1373
1374		cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1375	}
1376
1377	/* g) Empty fifo out */
1378	err = stm32_cryp_wait_output(cryp);
1379	if (err) {
1380		dev_err(cryp->dev, "Timeout (write gcm header)\n");
1381		return stm32_cryp_finish_req(cryp, err);
1382	}
1383
1384	for (i = 0; i < AES_BLOCK_32; i++)
1385		stm32_cryp_read(cryp, CRYP_DOUT);
1386
1387	/* h) run the he normal Final phase */
1388	stm32_cryp_finish_req(cryp, 0);
1389}
1390
1391static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1392{
1393	u32 cfg, payload_bytes;
1394
1395	/* disable ip, set NPBLB and reneable ip */
1396	cfg = stm32_cryp_read(cryp, CRYP_CR);
1397	cfg &= ~CR_CRYPEN;
1398	stm32_cryp_write(cryp, CRYP_CR, cfg);
1399
1400	payload_bytes = is_decrypt(cryp) ? cryp->total_in - cryp->authsize :
1401					   cryp->total_in;
1402	cfg |= (cryp->hw_blocksize - payload_bytes) << CR_NBPBL_SHIFT;
1403	cfg |= CR_CRYPEN;
1404	stm32_cryp_write(cryp, CRYP_CR, cfg);
1405}
1406
1407static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1408{
1409	int err = 0;
1410	u32 cfg, iv1tmp;
1411	u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32], tmp[AES_BLOCK_32];
1412	size_t last_total_out, total_in_ori = cryp->total_in;
1413	struct scatterlist *out_sg_ori = cryp->out_sg;
1414	unsigned int i;
1415
1416	/* 'Special workaround' procedure described in the datasheet */
1417	cryp->flags |= FLG_CCM_PADDED_WA;
1418
1419	/* a) disable ip */
1420	stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1421
1422	cfg = stm32_cryp_read(cryp, CRYP_CR);
1423	cfg &= ~CR_CRYPEN;
1424	stm32_cryp_write(cryp, CRYP_CR, cfg);
1425
1426	/* b) get IV1 from CRYP_CSGCMCCM7 */
1427	iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1428
1429	/* c) Load CRYP_CSGCMCCMxR */
1430	for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1431		cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1432
1433	/* d) Write IV1R */
1434	stm32_cryp_write(cryp, CRYP_IV1RR, iv1tmp);
1435
1436	/* e) change mode to CTR */
1437	cfg &= ~CR_ALGO_MASK;
1438	cfg |= CR_AES_CTR;
1439	stm32_cryp_write(cryp, CRYP_CR, cfg);
1440
1441	/* a) enable IP */
1442	cfg |= CR_CRYPEN;
1443	stm32_cryp_write(cryp, CRYP_CR, cfg);
1444
1445	/* b) pad and write the last block */
1446	stm32_cryp_irq_write_block(cryp);
1447	cryp->total_in = total_in_ori;
1448	err = stm32_cryp_wait_output(cryp);
1449	if (err) {
1450		dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1451		return stm32_cryp_finish_req(cryp, err);
1452	}
1453
1454	/* c) get and store decrypted data */
1455	last_total_out = cryp->total_out;
1456	stm32_cryp_irq_read_data(cryp);
1457
1458	memset(tmp, 0, sizeof(tmp));
1459	scatterwalk_map_and_copy(tmp, out_sg_ori,
1460				 cryp->total_out_save - last_total_out,
1461				 last_total_out, 0);
1462
1463	/* d) Load again CRYP_CSGCMCCMxR */
1464	for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1465		cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1466
1467	/* e) change mode back to AES CCM */
1468	cfg &= ~CR_ALGO_MASK;
1469	cfg |= CR_AES_CCM;
1470	stm32_cryp_write(cryp, CRYP_CR, cfg);
1471
1472	/* f) change phase to header */
1473	cfg &= ~CR_PH_MASK;
1474	cfg |= CR_PH_HEADER;
1475	stm32_cryp_write(cryp, CRYP_CR, cfg);
1476
1477	/* g) XOR and write padded data */
1478	for (i = 0; i < ARRAY_SIZE(tmp); i++) {
1479		tmp[i] ^= cstmp1[i];
1480		tmp[i] ^= cstmp2[i];
1481		stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1482	}
1483
1484	/* h) wait for completion */
1485	err = stm32_cryp_wait_busy(cryp);
1486	if (err)
1487		dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1488
1489	/* i) run the he normal Final phase */
1490	stm32_cryp_finish_req(cryp, err);
1491}
1492
1493static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1494{
1495	if (unlikely(!cryp->total_in)) {
1496		dev_warn(cryp->dev, "No more data to process\n");
1497		return;
1498	}
1499
1500	if (unlikely(cryp->total_in < AES_BLOCK_SIZE &&
1501		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1502		     is_encrypt(cryp))) {
1503		/* Padding for AES GCM encryption */
1504		if (cryp->caps->padding_wa)
1505			/* Special case 1 */
1506			return stm32_cryp_irq_write_gcm_padded_data(cryp);
1507
1508		/* Setting padding bytes (NBBLB) */
1509		stm32_cryp_irq_set_npblb(cryp);
1510	}
1511
1512	if (unlikely((cryp->total_in - cryp->authsize < AES_BLOCK_SIZE) &&
1513		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1514		     is_decrypt(cryp))) {
1515		/* Padding for AES CCM decryption */
1516		if (cryp->caps->padding_wa)
1517			/* Special case 2 */
1518			return stm32_cryp_irq_write_ccm_padded_data(cryp);
1519
1520		/* Setting padding bytes (NBBLB) */
1521		stm32_cryp_irq_set_npblb(cryp);
1522	}
1523
1524	if (is_aes(cryp) && is_ctr(cryp))
1525		stm32_cryp_check_ctr_counter(cryp);
1526
1527	stm32_cryp_irq_write_block(cryp);
1528}
1529
1530static void stm32_cryp_irq_write_gcm_header(struct stm32_cryp *cryp)
1531{
1532	int err;
1533	unsigned int i, j;
1534	u32 cfg, *src;
1535
1536	src = sg_virt(cryp->in_sg) + _walked_in;
1537
1538	for (i = 0; i < AES_BLOCK_32; i++) {
1539		stm32_cryp_write(cryp, CRYP_DIN, *src);
1540
1541		src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1542		cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1543
1544		/* Check if whole header written */
1545		if ((cryp->total_in_save - cryp->total_in) ==
1546				cryp->areq->assoclen) {
1547			/* Write padding if needed */
1548			for (j = i + 1; j < AES_BLOCK_32; j++)
1549				stm32_cryp_write(cryp, CRYP_DIN, 0);
1550
1551			/* Wait for completion */
1552			err = stm32_cryp_wait_busy(cryp);
1553			if (err) {
1554				dev_err(cryp->dev, "Timeout (gcm header)\n");
1555				return stm32_cryp_finish_req(cryp, err);
1556			}
1557
1558			if (stm32_cryp_get_input_text_len(cryp)) {
1559				/* Phase 3 : payload */
1560				cfg = stm32_cryp_read(cryp, CRYP_CR);
1561				cfg &= ~CR_CRYPEN;
1562				stm32_cryp_write(cryp, CRYP_CR, cfg);
1563
1564				cfg &= ~CR_PH_MASK;
1565				cfg |= CR_PH_PAYLOAD;
1566				cfg |= CR_CRYPEN;
1567				stm32_cryp_write(cryp, CRYP_CR, cfg);
1568			} else {
1569				/* Phase 4 : tag */
1570				stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1571				stm32_cryp_finish_req(cryp, 0);
1572			}
1573
1574			break;
1575		}
1576
1577		if (!cryp->total_in)
1578			break;
1579	}
1580}
1581
1582static void stm32_cryp_irq_write_ccm_header(struct stm32_cryp *cryp)
1583{
1584	int err;
1585	unsigned int i = 0, j, k;
1586	u32 alen, cfg, *src;
1587	u8 d8[4];
1588
1589	src = sg_virt(cryp->in_sg) + _walked_in;
1590	alen = cryp->areq->assoclen;
1591
1592	if (!_walked_in) {
1593		if (cryp->areq->assoclen <= 65280) {
1594			/* Write first u32 of B1 */
1595			d8[0] = (alen >> 8) & 0xFF;
1596			d8[1] = alen & 0xFF;
1597			d8[2] = *((u8 *)src);
1598			src = stm32_cryp_next_in(cryp, src, 1);
1599			d8[3] = *((u8 *)src);
1600			src = stm32_cryp_next_in(cryp, src, 1);
1601
1602			stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1603			i++;
1604
1605			cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1606		} else {
1607			/* Build the two first u32 of B1 */
1608			d8[0] = 0xFF;
1609			d8[1] = 0xFE;
1610			d8[2] = alen & 0xFF000000;
1611			d8[3] = alen & 0x00FF0000;
1612
1613			stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1614			i++;
1615
1616			d8[0] = alen & 0x0000FF00;
1617			d8[1] = alen & 0x000000FF;
1618			d8[2] = *((u8 *)src);
1619			src = stm32_cryp_next_in(cryp, src, 1);
1620			d8[3] = *((u8 *)src);
1621			src = stm32_cryp_next_in(cryp, src, 1);
1622
1623			stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1624			i++;
1625
1626			cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1627		}
1628	}
1629
1630	/* Write next u32 */
1631	for (; i < AES_BLOCK_32; i++) {
1632		/* Build an u32 */
1633		memset(d8, 0, sizeof(u32));
1634		for (k = 0; k < sizeof(u32); k++) {
1635			d8[k] = *((u8 *)src);
1636			src = stm32_cryp_next_in(cryp, src, 1);
1637
1638			cryp->total_in -= min_t(size_t, 1, cryp->total_in);
1639			if ((cryp->total_in_save - cryp->total_in) == alen)
1640				break;
1641		}
1642
1643		stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1644
1645		if ((cryp->total_in_save - cryp->total_in) == alen) {
1646			/* Write padding if needed */
1647			for (j = i + 1; j < AES_BLOCK_32; j++)
1648				stm32_cryp_write(cryp, CRYP_DIN, 0);
1649
1650			/* Wait for completion */
1651			err = stm32_cryp_wait_busy(cryp);
1652			if (err) {
1653				dev_err(cryp->dev, "Timeout (ccm header)\n");
1654				return stm32_cryp_finish_req(cryp, err);
1655			}
1656
1657			if (stm32_cryp_get_input_text_len(cryp)) {
1658				/* Phase 3 : payload */
1659				cfg = stm32_cryp_read(cryp, CRYP_CR);
1660				cfg &= ~CR_CRYPEN;
1661				stm32_cryp_write(cryp, CRYP_CR, cfg);
1662
1663				cfg &= ~CR_PH_MASK;
1664				cfg |= CR_PH_PAYLOAD;
1665				cfg |= CR_CRYPEN;
1666				stm32_cryp_write(cryp, CRYP_CR, cfg);
1667			} else {
1668				/* Phase 4 : tag */
1669				stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1670				stm32_cryp_finish_req(cryp, 0);
1671			}
1672
1673			break;
1674		}
1675	}
1676}
1677
1678static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1679{
1680	struct stm32_cryp *cryp = arg;
1681	u32 ph;
1682
1683	if (cryp->irq_status & MISR_OUT)
1684		/* Output FIFO IRQ: read data */
1685		if (unlikely(stm32_cryp_irq_read_data(cryp))) {
1686			/* All bytes processed, finish */
1687			stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1688			stm32_cryp_finish_req(cryp, 0);
1689			return IRQ_HANDLED;
1690		}
1691
1692	if (cryp->irq_status & MISR_IN) {
1693		if (is_gcm(cryp)) {
1694			ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1695			if (unlikely(ph == CR_PH_HEADER))
1696				/* Write Header */
1697				stm32_cryp_irq_write_gcm_header(cryp);
1698			else
1699				/* Input FIFO IRQ: write data */
1700				stm32_cryp_irq_write_data(cryp);
1701			cryp->gcm_ctr++;
1702		} else if (is_ccm(cryp)) {
1703			ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1704			if (unlikely(ph == CR_PH_HEADER))
1705				/* Write Header */
1706				stm32_cryp_irq_write_ccm_header(cryp);
1707			else
1708				/* Input FIFO IRQ: write data */
1709				stm32_cryp_irq_write_data(cryp);
1710		} else {
1711			/* Input FIFO IRQ: write data */
1712			stm32_cryp_irq_write_data(cryp);
1713		}
1714	}
1715
1716	return IRQ_HANDLED;
1717}
1718
1719static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1720{
1721	struct stm32_cryp *cryp = arg;
1722
1723	cryp->irq_status = stm32_cryp_read(cryp, CRYP_MISR);
1724
1725	return IRQ_WAKE_THREAD;
1726}
1727
1728static struct skcipher_alg crypto_algs[] = {
1729{
1730	.base.cra_name		= "ecb(aes)",
1731	.base.cra_driver_name	= "stm32-ecb-aes",
1732	.base.cra_priority	= 200,
1733	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1734	.base.cra_blocksize	= AES_BLOCK_SIZE,
1735	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1736	.base.cra_alignmask	= 0xf,
1737	.base.cra_module	= THIS_MODULE,
1738
1739	.init			= stm32_cryp_init_tfm,
1740	.min_keysize		= AES_MIN_KEY_SIZE,
1741	.max_keysize		= AES_MAX_KEY_SIZE,
1742	.setkey			= stm32_cryp_aes_setkey,
1743	.encrypt		= stm32_cryp_aes_ecb_encrypt,
1744	.decrypt		= stm32_cryp_aes_ecb_decrypt,
1745},
1746{
1747	.base.cra_name		= "cbc(aes)",
1748	.base.cra_driver_name	= "stm32-cbc-aes",
1749	.base.cra_priority	= 200,
1750	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1751	.base.cra_blocksize	= AES_BLOCK_SIZE,
1752	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1753	.base.cra_alignmask	= 0xf,
1754	.base.cra_module	= THIS_MODULE,
1755
1756	.init			= stm32_cryp_init_tfm,
1757	.min_keysize		= AES_MIN_KEY_SIZE,
1758	.max_keysize		= AES_MAX_KEY_SIZE,
1759	.ivsize			= AES_BLOCK_SIZE,
1760	.setkey			= stm32_cryp_aes_setkey,
1761	.encrypt		= stm32_cryp_aes_cbc_encrypt,
1762	.decrypt		= stm32_cryp_aes_cbc_decrypt,
1763},
1764{
1765	.base.cra_name		= "ctr(aes)",
1766	.base.cra_driver_name	= "stm32-ctr-aes",
1767	.base.cra_priority	= 200,
1768	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1769	.base.cra_blocksize	= 1,
1770	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1771	.base.cra_alignmask	= 0xf,
1772	.base.cra_module	= THIS_MODULE,
1773
1774	.init			= stm32_cryp_init_tfm,
1775	.min_keysize		= AES_MIN_KEY_SIZE,
1776	.max_keysize		= AES_MAX_KEY_SIZE,
1777	.ivsize			= AES_BLOCK_SIZE,
1778	.setkey			= stm32_cryp_aes_setkey,
1779	.encrypt		= stm32_cryp_aes_ctr_encrypt,
1780	.decrypt		= stm32_cryp_aes_ctr_decrypt,
1781},
1782{
1783	.base.cra_name		= "ecb(des)",
1784	.base.cra_driver_name	= "stm32-ecb-des",
1785	.base.cra_priority	= 200,
1786	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1787	.base.cra_blocksize	= DES_BLOCK_SIZE,
1788	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1789	.base.cra_alignmask	= 0xf,
1790	.base.cra_module	= THIS_MODULE,
1791
1792	.init			= stm32_cryp_init_tfm,
1793	.min_keysize		= DES_BLOCK_SIZE,
1794	.max_keysize		= DES_BLOCK_SIZE,
1795	.setkey			= stm32_cryp_des_setkey,
1796	.encrypt		= stm32_cryp_des_ecb_encrypt,
1797	.decrypt		= stm32_cryp_des_ecb_decrypt,
1798},
1799{
1800	.base.cra_name		= "cbc(des)",
1801	.base.cra_driver_name	= "stm32-cbc-des",
1802	.base.cra_priority	= 200,
1803	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1804	.base.cra_blocksize	= DES_BLOCK_SIZE,
1805	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1806	.base.cra_alignmask	= 0xf,
1807	.base.cra_module	= THIS_MODULE,
1808
1809	.init			= stm32_cryp_init_tfm,
1810	.min_keysize		= DES_BLOCK_SIZE,
1811	.max_keysize		= DES_BLOCK_SIZE,
1812	.ivsize			= DES_BLOCK_SIZE,
1813	.setkey			= stm32_cryp_des_setkey,
1814	.encrypt		= stm32_cryp_des_cbc_encrypt,
1815	.decrypt		= stm32_cryp_des_cbc_decrypt,
1816},
1817{
1818	.base.cra_name		= "ecb(des3_ede)",
1819	.base.cra_driver_name	= "stm32-ecb-des3",
1820	.base.cra_priority	= 200,
1821	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1822	.base.cra_blocksize	= DES_BLOCK_SIZE,
1823	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1824	.base.cra_alignmask	= 0xf,
1825	.base.cra_module	= THIS_MODULE,
1826
1827	.init			= stm32_cryp_init_tfm,
1828	.min_keysize		= 3 * DES_BLOCK_SIZE,
1829	.max_keysize		= 3 * DES_BLOCK_SIZE,
1830	.setkey			= stm32_cryp_tdes_setkey,
1831	.encrypt		= stm32_cryp_tdes_ecb_encrypt,
1832	.decrypt		= stm32_cryp_tdes_ecb_decrypt,
1833},
1834{
1835	.base.cra_name		= "cbc(des3_ede)",
1836	.base.cra_driver_name	= "stm32-cbc-des3",
1837	.base.cra_priority	= 200,
1838	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1839	.base.cra_blocksize	= DES_BLOCK_SIZE,
1840	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1841	.base.cra_alignmask	= 0xf,
1842	.base.cra_module	= THIS_MODULE,
1843
1844	.init			= stm32_cryp_init_tfm,
1845	.min_keysize		= 3 * DES_BLOCK_SIZE,
1846	.max_keysize		= 3 * DES_BLOCK_SIZE,
1847	.ivsize			= DES_BLOCK_SIZE,
1848	.setkey			= stm32_cryp_tdes_setkey,
1849	.encrypt		= stm32_cryp_tdes_cbc_encrypt,
1850	.decrypt		= stm32_cryp_tdes_cbc_decrypt,
1851},
1852};
1853
1854static struct aead_alg aead_algs[] = {
1855{
1856	.setkey		= stm32_cryp_aes_aead_setkey,
1857	.setauthsize	= stm32_cryp_aes_gcm_setauthsize,
1858	.encrypt	= stm32_cryp_aes_gcm_encrypt,
1859	.decrypt	= stm32_cryp_aes_gcm_decrypt,
1860	.init		= stm32_cryp_aes_aead_init,
1861	.ivsize		= 12,
1862	.maxauthsize	= AES_BLOCK_SIZE,
1863
1864	.base = {
1865		.cra_name		= "gcm(aes)",
1866		.cra_driver_name	= "stm32-gcm-aes",
1867		.cra_priority		= 200,
1868		.cra_flags		= CRYPTO_ALG_ASYNC,
1869		.cra_blocksize		= 1,
1870		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1871		.cra_alignmask		= 0xf,
1872		.cra_module		= THIS_MODULE,
1873	},
1874},
1875{
1876	.setkey		= stm32_cryp_aes_aead_setkey,
1877	.setauthsize	= stm32_cryp_aes_ccm_setauthsize,
1878	.encrypt	= stm32_cryp_aes_ccm_encrypt,
1879	.decrypt	= stm32_cryp_aes_ccm_decrypt,
1880	.init		= stm32_cryp_aes_aead_init,
1881	.ivsize		= AES_BLOCK_SIZE,
1882	.maxauthsize	= AES_BLOCK_SIZE,
1883
1884	.base = {
1885		.cra_name		= "ccm(aes)",
1886		.cra_driver_name	= "stm32-ccm-aes",
1887		.cra_priority		= 200,
1888		.cra_flags		= CRYPTO_ALG_ASYNC,
1889		.cra_blocksize		= 1,
1890		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1891		.cra_alignmask		= 0xf,
1892		.cra_module		= THIS_MODULE,
1893	},
1894},
1895};
1896
1897static const struct stm32_cryp_caps f7_data = {
1898	.swap_final = true,
1899	.padding_wa = true,
1900};
1901
1902static const struct stm32_cryp_caps mp1_data = {
1903	.swap_final = false,
1904	.padding_wa = false,
1905};
1906
1907static const struct of_device_id stm32_dt_ids[] = {
1908	{ .compatible = "st,stm32f756-cryp", .data = &f7_data},
1909	{ .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1910	{},
1911};
1912MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1913
1914static int stm32_cryp_probe(struct platform_device *pdev)
1915{
1916	struct device *dev = &pdev->dev;
1917	struct stm32_cryp *cryp;
1918	struct reset_control *rst;
1919	int irq, ret;
1920
1921	cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1922	if (!cryp)
1923		return -ENOMEM;
1924
1925	cryp->caps = of_device_get_match_data(dev);
1926	if (!cryp->caps)
1927		return -ENODEV;
1928
1929	cryp->dev = dev;
1930
1931	cryp->regs = devm_platform_ioremap_resource(pdev, 0);
1932	if (IS_ERR(cryp->regs))
1933		return PTR_ERR(cryp->regs);
1934
1935	irq = platform_get_irq(pdev, 0);
1936	if (irq < 0)
1937		return irq;
1938
1939	ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1940					stm32_cryp_irq_thread, IRQF_ONESHOT,
1941					dev_name(dev), cryp);
1942	if (ret) {
1943		dev_err(dev, "Cannot grab IRQ\n");
1944		return ret;
1945	}
1946
1947	cryp->clk = devm_clk_get(dev, NULL);
1948	if (IS_ERR(cryp->clk)) {
1949		dev_err(dev, "Could not get clock\n");
1950		return PTR_ERR(cryp->clk);
1951	}
1952
1953	ret = clk_prepare_enable(cryp->clk);
1954	if (ret) {
1955		dev_err(cryp->dev, "Failed to enable clock\n");
1956		return ret;
1957	}
1958
1959	pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
1960	pm_runtime_use_autosuspend(dev);
1961
1962	pm_runtime_get_noresume(dev);
1963	pm_runtime_set_active(dev);
1964	pm_runtime_enable(dev);
1965
1966	rst = devm_reset_control_get(dev, NULL);
1967	if (!IS_ERR(rst)) {
1968		reset_control_assert(rst);
1969		udelay(2);
1970		reset_control_deassert(rst);
1971	}
1972
1973	platform_set_drvdata(pdev, cryp);
1974
1975	spin_lock(&cryp_list.lock);
1976	list_add(&cryp->list, &cryp_list.dev_list);
1977	spin_unlock(&cryp_list.lock);
1978
1979	/* Initialize crypto engine */
1980	cryp->engine = crypto_engine_alloc_init(dev, 1);
1981	if (!cryp->engine) {
1982		dev_err(dev, "Could not init crypto engine\n");
1983		ret = -ENOMEM;
1984		goto err_engine1;
1985	}
1986
1987	ret = crypto_engine_start(cryp->engine);
1988	if (ret) {
1989		dev_err(dev, "Could not start crypto engine\n");
1990		goto err_engine2;
1991	}
1992
1993	ret = crypto_register_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
1994	if (ret) {
1995		dev_err(dev, "Could not register algs\n");
1996		goto err_algs;
1997	}
1998
1999	ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2000	if (ret)
2001		goto err_aead_algs;
2002
2003	dev_info(dev, "Initialized\n");
2004
2005	pm_runtime_put_sync(dev);
2006
2007	return 0;
2008
2009err_aead_algs:
2010	crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2011err_algs:
2012err_engine2:
2013	crypto_engine_exit(cryp->engine);
2014err_engine1:
2015	spin_lock(&cryp_list.lock);
2016	list_del(&cryp->list);
2017	spin_unlock(&cryp_list.lock);
2018
2019	pm_runtime_disable(dev);
2020	pm_runtime_put_noidle(dev);
2021	pm_runtime_disable(dev);
2022	pm_runtime_put_noidle(dev);
2023
2024	clk_disable_unprepare(cryp->clk);
2025
2026	return ret;
2027}
2028
2029static int stm32_cryp_remove(struct platform_device *pdev)
2030{
2031	struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2032	int ret;
2033
2034	if (!cryp)
2035		return -ENODEV;
2036
2037	ret = pm_runtime_get_sync(cryp->dev);
2038	if (ret < 0)
2039		return ret;
2040
2041	crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2042	crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2043
2044	crypto_engine_exit(cryp->engine);
2045
2046	spin_lock(&cryp_list.lock);
2047	list_del(&cryp->list);
2048	spin_unlock(&cryp_list.lock);
2049
2050	pm_runtime_disable(cryp->dev);
2051	pm_runtime_put_noidle(cryp->dev);
2052
2053	clk_disable_unprepare(cryp->clk);
2054
2055	return 0;
2056}
2057
2058#ifdef CONFIG_PM
2059static int stm32_cryp_runtime_suspend(struct device *dev)
2060{
2061	struct stm32_cryp *cryp = dev_get_drvdata(dev);
2062
2063	clk_disable_unprepare(cryp->clk);
2064
2065	return 0;
2066}
2067
2068static int stm32_cryp_runtime_resume(struct device *dev)
2069{
2070	struct stm32_cryp *cryp = dev_get_drvdata(dev);
2071	int ret;
2072
2073	ret = clk_prepare_enable(cryp->clk);
2074	if (ret) {
2075		dev_err(cryp->dev, "Failed to prepare_enable clock\n");
2076		return ret;
2077	}
2078
2079	return 0;
2080}
2081#endif
2082
2083static const struct dev_pm_ops stm32_cryp_pm_ops = {
2084	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2085				pm_runtime_force_resume)
2086	SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
2087			   stm32_cryp_runtime_resume, NULL)
2088};
2089
2090static struct platform_driver stm32_cryp_driver = {
2091	.probe  = stm32_cryp_probe,
2092	.remove = stm32_cryp_remove,
2093	.driver = {
2094		.name           = DRIVER_NAME,
2095		.pm		= &stm32_cryp_pm_ops,
2096		.of_match_table = stm32_dt_ids,
2097	},
2098};
2099
2100module_platform_driver(stm32_cryp_driver);
2101
2102MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
2103MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2104MODULE_LICENSE("GPL");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) STMicroelectronics SA 2017
   4 * Author: Fabien Dessenne <fabien.dessenne@st.com>
   5 */
   6
   7#include <linux/clk.h>
   8#include <linux/delay.h>
   9#include <linux/interrupt.h>
  10#include <linux/iopoll.h>
  11#include <linux/module.h>
  12#include <linux/of_device.h>
  13#include <linux/platform_device.h>
  14#include <linux/pm_runtime.h>
  15#include <linux/reset.h>
  16
  17#include <crypto/aes.h>
  18#include <crypto/internal/des.h>
  19#include <crypto/engine.h>
  20#include <crypto/scatterwalk.h>
  21#include <crypto/internal/aead.h>
  22#include <crypto/internal/skcipher.h>
  23
  24#define DRIVER_NAME             "stm32-cryp"
  25
  26/* Bit [0] encrypt / decrypt */
  27#define FLG_ENCRYPT             BIT(0)
  28/* Bit [8..1] algo & operation mode */
  29#define FLG_AES                 BIT(1)
  30#define FLG_DES                 BIT(2)
  31#define FLG_TDES                BIT(3)
  32#define FLG_ECB                 BIT(4)
  33#define FLG_CBC                 BIT(5)
  34#define FLG_CTR                 BIT(6)
  35#define FLG_GCM                 BIT(7)
  36#define FLG_CCM                 BIT(8)
  37/* Mode mask = bits [15..0] */
  38#define FLG_MODE_MASK           GENMASK(15, 0)
  39/* Bit [31..16] status  */
  40#define FLG_CCM_PADDED_WA       BIT(16)
  41
  42/* Registers */
  43#define CRYP_CR                 0x00000000
  44#define CRYP_SR                 0x00000004
  45#define CRYP_DIN                0x00000008
  46#define CRYP_DOUT               0x0000000C
  47#define CRYP_DMACR              0x00000010
  48#define CRYP_IMSCR              0x00000014
  49#define CRYP_RISR               0x00000018
  50#define CRYP_MISR               0x0000001C
  51#define CRYP_K0LR               0x00000020
  52#define CRYP_K0RR               0x00000024
  53#define CRYP_K1LR               0x00000028
  54#define CRYP_K1RR               0x0000002C
  55#define CRYP_K2LR               0x00000030
  56#define CRYP_K2RR               0x00000034
  57#define CRYP_K3LR               0x00000038
  58#define CRYP_K3RR               0x0000003C
  59#define CRYP_IV0LR              0x00000040
  60#define CRYP_IV0RR              0x00000044
  61#define CRYP_IV1LR              0x00000048
  62#define CRYP_IV1RR              0x0000004C
  63#define CRYP_CSGCMCCM0R         0x00000050
  64#define CRYP_CSGCM0R            0x00000070
  65
  66/* Registers values */
  67#define CR_DEC_NOT_ENC          0x00000004
  68#define CR_TDES_ECB             0x00000000
  69#define CR_TDES_CBC             0x00000008
  70#define CR_DES_ECB              0x00000010
  71#define CR_DES_CBC              0x00000018
  72#define CR_AES_ECB              0x00000020
  73#define CR_AES_CBC              0x00000028
  74#define CR_AES_CTR              0x00000030
  75#define CR_AES_KP               0x00000038
  76#define CR_AES_GCM              0x00080000
  77#define CR_AES_CCM              0x00080008
  78#define CR_AES_UNKNOWN          0xFFFFFFFF
  79#define CR_ALGO_MASK            0x00080038
  80#define CR_DATA32               0x00000000
  81#define CR_DATA16               0x00000040
  82#define CR_DATA8                0x00000080
  83#define CR_DATA1                0x000000C0
  84#define CR_KEY128               0x00000000
  85#define CR_KEY192               0x00000100
  86#define CR_KEY256               0x00000200
  87#define CR_FFLUSH               0x00004000
  88#define CR_CRYPEN               0x00008000
  89#define CR_PH_INIT              0x00000000
  90#define CR_PH_HEADER            0x00010000
  91#define CR_PH_PAYLOAD           0x00020000
  92#define CR_PH_FINAL             0x00030000
  93#define CR_PH_MASK              0x00030000
  94#define CR_NBPBL_SHIFT          20
  95
  96#define SR_BUSY                 0x00000010
  97#define SR_OFNE                 0x00000004
  98
  99#define IMSCR_IN                BIT(0)
 100#define IMSCR_OUT               BIT(1)
 101
 102#define MISR_IN                 BIT(0)
 103#define MISR_OUT                BIT(1)
 104
 105/* Misc */
 106#define AES_BLOCK_32            (AES_BLOCK_SIZE / sizeof(u32))
 107#define GCM_CTR_INIT            2
 108#define _walked_in              (cryp->in_walk.offset - cryp->in_sg->offset)
 109#define _walked_out             (cryp->out_walk.offset - cryp->out_sg->offset)
 110#define CRYP_AUTOSUSPEND_DELAY	50
 111
 112struct stm32_cryp_caps {
 113	bool                    swap_final;
 114	bool                    padding_wa;
 115};
 116
 117struct stm32_cryp_ctx {
 118	struct crypto_engine_ctx enginectx;
 119	struct stm32_cryp       *cryp;
 120	int                     keylen;
 121	__be32                  key[AES_KEYSIZE_256 / sizeof(u32)];
 122	unsigned long           flags;
 123};
 124
 125struct stm32_cryp_reqctx {
 126	unsigned long mode;
 127};
 128
 129struct stm32_cryp {
 130	struct list_head        list;
 131	struct device           *dev;
 132	void __iomem            *regs;
 133	struct clk              *clk;
 134	unsigned long           flags;
 135	u32                     irq_status;
 136	const struct stm32_cryp_caps *caps;
 137	struct stm32_cryp_ctx   *ctx;
 138
 139	struct crypto_engine    *engine;
 140
 141	struct skcipher_request *req;
 142	struct aead_request     *areq;
 143
 144	size_t                  authsize;
 145	size_t                  hw_blocksize;
 146
 147	size_t                  total_in;
 148	size_t                  total_in_save;
 149	size_t                  total_out;
 150	size_t                  total_out_save;
 151
 152	struct scatterlist      *in_sg;
 153	struct scatterlist      *out_sg;
 154	struct scatterlist      *out_sg_save;
 155
 156	struct scatterlist      in_sgl;
 157	struct scatterlist      out_sgl;
 158	bool                    sgs_copied;
 159
 160	int                     in_sg_len;
 161	int                     out_sg_len;
 162
 163	struct scatter_walk     in_walk;
 164	struct scatter_walk     out_walk;
 165
 166	u32                     last_ctr[4];
 167	u32                     gcm_ctr;
 168};
 169
 170struct stm32_cryp_list {
 171	struct list_head        dev_list;
 172	spinlock_t              lock; /* protect dev_list */
 173};
 174
 175static struct stm32_cryp_list cryp_list = {
 176	.dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
 177	.lock     = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
 178};
 179
 180static inline bool is_aes(struct stm32_cryp *cryp)
 181{
 182	return cryp->flags & FLG_AES;
 183}
 184
 185static inline bool is_des(struct stm32_cryp *cryp)
 186{
 187	return cryp->flags & FLG_DES;
 188}
 189
 190static inline bool is_tdes(struct stm32_cryp *cryp)
 191{
 192	return cryp->flags & FLG_TDES;
 193}
 194
 195static inline bool is_ecb(struct stm32_cryp *cryp)
 196{
 197	return cryp->flags & FLG_ECB;
 198}
 199
 200static inline bool is_cbc(struct stm32_cryp *cryp)
 201{
 202	return cryp->flags & FLG_CBC;
 203}
 204
 205static inline bool is_ctr(struct stm32_cryp *cryp)
 206{
 207	return cryp->flags & FLG_CTR;
 208}
 209
 210static inline bool is_gcm(struct stm32_cryp *cryp)
 211{
 212	return cryp->flags & FLG_GCM;
 213}
 214
 215static inline bool is_ccm(struct stm32_cryp *cryp)
 216{
 217	return cryp->flags & FLG_CCM;
 218}
 219
 220static inline bool is_encrypt(struct stm32_cryp *cryp)
 221{
 222	return cryp->flags & FLG_ENCRYPT;
 223}
 224
 225static inline bool is_decrypt(struct stm32_cryp *cryp)
 226{
 227	return !is_encrypt(cryp);
 228}
 229
 230static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
 231{
 232	return readl_relaxed(cryp->regs + ofst);
 233}
 234
 235static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
 236{
 237	writel_relaxed(val, cryp->regs + ofst);
 238}
 239
 240static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
 241{
 242	u32 status;
 243
 244	return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
 245			!(status & SR_BUSY), 10, 100000);
 246}
 247
 248static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
 249{
 250	u32 status;
 251
 252	return readl_relaxed_poll_timeout(cryp->regs + CRYP_CR, status,
 253			!(status & CR_CRYPEN), 10, 100000);
 254}
 255
 256static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
 257{
 258	u32 status;
 259
 260	return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
 261			status & SR_OFNE, 10, 100000);
 262}
 263
 264static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
 265
 266static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
 267{
 268	struct stm32_cryp *tmp, *cryp = NULL;
 269
 270	spin_lock_bh(&cryp_list.lock);
 271	if (!ctx->cryp) {
 272		list_for_each_entry(tmp, &cryp_list.dev_list, list) {
 273			cryp = tmp;
 274			break;
 275		}
 276		ctx->cryp = cryp;
 277	} else {
 278		cryp = ctx->cryp;
 279	}
 280
 281	spin_unlock_bh(&cryp_list.lock);
 282
 283	return cryp;
 284}
 285
 286static int stm32_cryp_check_aligned(struct scatterlist *sg, size_t total,
 287				    size_t align)
 288{
 289	int len = 0;
 290
 291	if (!total)
 292		return 0;
 293
 294	if (!IS_ALIGNED(total, align))
 295		return -EINVAL;
 296
 297	while (sg) {
 298		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
 299			return -EINVAL;
 300
 301		if (!IS_ALIGNED(sg->length, align))
 302			return -EINVAL;
 303
 304		len += sg->length;
 305		sg = sg_next(sg);
 306	}
 307
 308	if (len != total)
 309		return -EINVAL;
 310
 311	return 0;
 312}
 313
 314static int stm32_cryp_check_io_aligned(struct stm32_cryp *cryp)
 315{
 316	int ret;
 317
 318	ret = stm32_cryp_check_aligned(cryp->in_sg, cryp->total_in,
 319				       cryp->hw_blocksize);
 320	if (ret)
 321		return ret;
 322
 323	ret = stm32_cryp_check_aligned(cryp->out_sg, cryp->total_out,
 324				       cryp->hw_blocksize);
 325
 326	return ret;
 327}
 328
 329static void sg_copy_buf(void *buf, struct scatterlist *sg,
 330			unsigned int start, unsigned int nbytes, int out)
 331{
 332	struct scatter_walk walk;
 333
 334	if (!nbytes)
 335		return;
 336
 337	scatterwalk_start(&walk, sg);
 338	scatterwalk_advance(&walk, start);
 339	scatterwalk_copychunks(buf, &walk, nbytes, out);
 340	scatterwalk_done(&walk, out, 0);
 341}
 342
 343static int stm32_cryp_copy_sgs(struct stm32_cryp *cryp)
 344{
 345	void *buf_in, *buf_out;
 346	int pages, total_in, total_out;
 347
 348	if (!stm32_cryp_check_io_aligned(cryp)) {
 349		cryp->sgs_copied = 0;
 350		return 0;
 351	}
 352
 353	total_in = ALIGN(cryp->total_in, cryp->hw_blocksize);
 354	pages = total_in ? get_order(total_in) : 1;
 355	buf_in = (void *)__get_free_pages(GFP_ATOMIC, pages);
 356
 357	total_out = ALIGN(cryp->total_out, cryp->hw_blocksize);
 358	pages = total_out ? get_order(total_out) : 1;
 359	buf_out = (void *)__get_free_pages(GFP_ATOMIC, pages);
 360
 361	if (!buf_in || !buf_out) {
 362		dev_err(cryp->dev, "Can't allocate pages when unaligned\n");
 363		cryp->sgs_copied = 0;
 364		return -EFAULT;
 365	}
 366
 367	sg_copy_buf(buf_in, cryp->in_sg, 0, cryp->total_in, 0);
 368
 369	sg_init_one(&cryp->in_sgl, buf_in, total_in);
 370	cryp->in_sg = &cryp->in_sgl;
 371	cryp->in_sg_len = 1;
 372
 373	sg_init_one(&cryp->out_sgl, buf_out, total_out);
 374	cryp->out_sg_save = cryp->out_sg;
 375	cryp->out_sg = &cryp->out_sgl;
 376	cryp->out_sg_len = 1;
 377
 378	cryp->sgs_copied = 1;
 379
 380	return 0;
 381}
 382
 383static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, __be32 *iv)
 384{
 385	if (!iv)
 386		return;
 387
 388	stm32_cryp_write(cryp, CRYP_IV0LR, be32_to_cpu(*iv++));
 389	stm32_cryp_write(cryp, CRYP_IV0RR, be32_to_cpu(*iv++));
 390
 391	if (is_aes(cryp)) {
 392		stm32_cryp_write(cryp, CRYP_IV1LR, be32_to_cpu(*iv++));
 393		stm32_cryp_write(cryp, CRYP_IV1RR, be32_to_cpu(*iv++));
 394	}
 395}
 396
 397static void stm32_cryp_get_iv(struct stm32_cryp *cryp)
 398{
 399	struct skcipher_request *req = cryp->req;
 400	__be32 *tmp = (void *)req->iv;
 401
 402	if (!tmp)
 403		return;
 404
 405	*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0LR));
 406	*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0RR));
 407
 408	if (is_aes(cryp)) {
 409		*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1LR));
 410		*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1RR));
 411	}
 412}
 413
 414static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
 415{
 416	unsigned int i;
 417	int r_id;
 418
 419	if (is_des(c)) {
 420		stm32_cryp_write(c, CRYP_K1LR, be32_to_cpu(c->ctx->key[0]));
 421		stm32_cryp_write(c, CRYP_K1RR, be32_to_cpu(c->ctx->key[1]));
 422	} else {
 423		r_id = CRYP_K3RR;
 424		for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
 425			stm32_cryp_write(c, r_id,
 426					 be32_to_cpu(c->ctx->key[i - 1]));
 427	}
 428}
 429
 430static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
 431{
 432	if (is_aes(cryp) && is_ecb(cryp))
 433		return CR_AES_ECB;
 434
 435	if (is_aes(cryp) && is_cbc(cryp))
 436		return CR_AES_CBC;
 437
 438	if (is_aes(cryp) && is_ctr(cryp))
 439		return CR_AES_CTR;
 440
 441	if (is_aes(cryp) && is_gcm(cryp))
 442		return CR_AES_GCM;
 443
 444	if (is_aes(cryp) && is_ccm(cryp))
 445		return CR_AES_CCM;
 446
 447	if (is_des(cryp) && is_ecb(cryp))
 448		return CR_DES_ECB;
 449
 450	if (is_des(cryp) && is_cbc(cryp))
 451		return CR_DES_CBC;
 452
 453	if (is_tdes(cryp) && is_ecb(cryp))
 454		return CR_TDES_ECB;
 455
 456	if (is_tdes(cryp) && is_cbc(cryp))
 457		return CR_TDES_CBC;
 458
 459	dev_err(cryp->dev, "Unknown mode\n");
 460	return CR_AES_UNKNOWN;
 461}
 462
 463static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
 464{
 465	return is_encrypt(cryp) ? cryp->areq->cryptlen :
 466				  cryp->areq->cryptlen - cryp->authsize;
 467}
 468
 469static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
 470{
 471	int ret;
 472	__be32 iv[4];
 473
 474	/* Phase 1 : init */
 475	memcpy(iv, cryp->areq->iv, 12);
 476	iv[3] = cpu_to_be32(GCM_CTR_INIT);
 477	cryp->gcm_ctr = GCM_CTR_INIT;
 478	stm32_cryp_hw_write_iv(cryp, iv);
 479
 480	stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
 481
 482	/* Wait for end of processing */
 483	ret = stm32_cryp_wait_enable(cryp);
 484	if (ret)
 485		dev_err(cryp->dev, "Timeout (gcm init)\n");
 486
 487	return ret;
 488}
 489
 490static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
 491{
 492	int ret;
 493	u8 iv[AES_BLOCK_SIZE], b0[AES_BLOCK_SIZE];
 494	__be32 *bd;
 495	u32 *d;
 496	unsigned int i, textlen;
 497
 498	/* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
 499	memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
 500	memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
 501	iv[AES_BLOCK_SIZE - 1] = 1;
 502	stm32_cryp_hw_write_iv(cryp, (__be32 *)iv);
 503
 504	/* Build B0 */
 505	memcpy(b0, iv, AES_BLOCK_SIZE);
 506
 507	b0[0] |= (8 * ((cryp->authsize - 2) / 2));
 508
 509	if (cryp->areq->assoclen)
 510		b0[0] |= 0x40;
 511
 512	textlen = stm32_cryp_get_input_text_len(cryp);
 513
 514	b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
 515	b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
 516
 517	/* Enable HW */
 518	stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
 519
 520	/* Write B0 */
 521	d = (u32 *)b0;
 522	bd = (__be32 *)b0;
 523
 524	for (i = 0; i < AES_BLOCK_32; i++) {
 525		u32 xd = d[i];
 526
 527		if (!cryp->caps->padding_wa)
 528			xd = be32_to_cpu(bd[i]);
 529		stm32_cryp_write(cryp, CRYP_DIN, xd);
 530	}
 531
 532	/* Wait for end of processing */
 533	ret = stm32_cryp_wait_enable(cryp);
 534	if (ret)
 535		dev_err(cryp->dev, "Timeout (ccm init)\n");
 536
 537	return ret;
 538}
 539
 540static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
 541{
 542	int ret;
 543	u32 cfg, hw_mode;
 544
 545	pm_runtime_resume_and_get(cryp->dev);
 546
 547	/* Disable interrupt */
 548	stm32_cryp_write(cryp, CRYP_IMSCR, 0);
 549
 550	/* Set key */
 551	stm32_cryp_hw_write_key(cryp);
 552
 553	/* Set configuration */
 554	cfg = CR_DATA8 | CR_FFLUSH;
 555
 556	switch (cryp->ctx->keylen) {
 557	case AES_KEYSIZE_128:
 558		cfg |= CR_KEY128;
 559		break;
 560
 561	case AES_KEYSIZE_192:
 562		cfg |= CR_KEY192;
 563		break;
 564
 565	default:
 566	case AES_KEYSIZE_256:
 567		cfg |= CR_KEY256;
 568		break;
 569	}
 570
 571	hw_mode = stm32_cryp_get_hw_mode(cryp);
 572	if (hw_mode == CR_AES_UNKNOWN)
 573		return -EINVAL;
 574
 575	/* AES ECB/CBC decrypt: run key preparation first */
 576	if (is_decrypt(cryp) &&
 577	    ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
 578		stm32_cryp_write(cryp, CRYP_CR, cfg | CR_AES_KP | CR_CRYPEN);
 579
 580		/* Wait for end of processing */
 581		ret = stm32_cryp_wait_busy(cryp);
 582		if (ret) {
 583			dev_err(cryp->dev, "Timeout (key preparation)\n");
 584			return ret;
 585		}
 586	}
 587
 588	cfg |= hw_mode;
 589
 590	if (is_decrypt(cryp))
 591		cfg |= CR_DEC_NOT_ENC;
 592
 593	/* Apply config and flush (valid when CRYPEN = 0) */
 594	stm32_cryp_write(cryp, CRYP_CR, cfg);
 595
 596	switch (hw_mode) {
 597	case CR_AES_GCM:
 598	case CR_AES_CCM:
 599		/* Phase 1 : init */
 600		if (hw_mode == CR_AES_CCM)
 601			ret = stm32_cryp_ccm_init(cryp, cfg);
 602		else
 603			ret = stm32_cryp_gcm_init(cryp, cfg);
 604
 605		if (ret)
 606			return ret;
 607
 608		/* Phase 2 : header (authenticated data) */
 609		if (cryp->areq->assoclen) {
 610			cfg |= CR_PH_HEADER;
 611		} else if (stm32_cryp_get_input_text_len(cryp)) {
 612			cfg |= CR_PH_PAYLOAD;
 613			stm32_cryp_write(cryp, CRYP_CR, cfg);
 614		} else {
 615			cfg |= CR_PH_INIT;
 616		}
 617
 618		break;
 619
 620	case CR_DES_CBC:
 621	case CR_TDES_CBC:
 622	case CR_AES_CBC:
 623	case CR_AES_CTR:
 624		stm32_cryp_hw_write_iv(cryp, (__be32 *)cryp->req->iv);
 625		break;
 626
 627	default:
 628		break;
 629	}
 630
 631	/* Enable now */
 632	cfg |= CR_CRYPEN;
 633
 634	stm32_cryp_write(cryp, CRYP_CR, cfg);
 635
 636	cryp->flags &= ~FLG_CCM_PADDED_WA;
 637
 638	return 0;
 639}
 640
 641static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
 642{
 643	if (!err && (is_gcm(cryp) || is_ccm(cryp)))
 644		/* Phase 4 : output tag */
 645		err = stm32_cryp_read_auth_tag(cryp);
 646
 647	if (!err && (!(is_gcm(cryp) || is_ccm(cryp))))
 648		stm32_cryp_get_iv(cryp);
 649
 650	if (cryp->sgs_copied) {
 651		void *buf_in, *buf_out;
 652		int pages, len;
 653
 654		buf_in = sg_virt(&cryp->in_sgl);
 655		buf_out = sg_virt(&cryp->out_sgl);
 656
 657		sg_copy_buf(buf_out, cryp->out_sg_save, 0,
 658			    cryp->total_out_save, 1);
 659
 660		len = ALIGN(cryp->total_in_save, cryp->hw_blocksize);
 661		pages = len ? get_order(len) : 1;
 662		free_pages((unsigned long)buf_in, pages);
 663
 664		len = ALIGN(cryp->total_out_save, cryp->hw_blocksize);
 665		pages = len ? get_order(len) : 1;
 666		free_pages((unsigned long)buf_out, pages);
 667	}
 668
 669	pm_runtime_mark_last_busy(cryp->dev);
 670	pm_runtime_put_autosuspend(cryp->dev);
 671
 672	if (is_gcm(cryp) || is_ccm(cryp))
 673		crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
 674	else
 675		crypto_finalize_skcipher_request(cryp->engine, cryp->req,
 676						   err);
 677
 678	memset(cryp->ctx->key, 0, cryp->ctx->keylen);
 679}
 680
 681static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
 682{
 683	/* Enable interrupt and let the IRQ handler do everything */
 684	stm32_cryp_write(cryp, CRYP_IMSCR, IMSCR_IN | IMSCR_OUT);
 685
 686	return 0;
 687}
 688
 689static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
 690static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
 691					 void *areq);
 692
 693static int stm32_cryp_init_tfm(struct crypto_skcipher *tfm)
 694{
 695	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
 696
 697	crypto_skcipher_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx));
 698
 699	ctx->enginectx.op.do_one_request = stm32_cryp_cipher_one_req;
 700	ctx->enginectx.op.prepare_request = stm32_cryp_prepare_cipher_req;
 701	ctx->enginectx.op.unprepare_request = NULL;
 702	return 0;
 703}
 704
 705static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
 706static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine,
 707				       void *areq);
 708
 709static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
 710{
 711	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
 712
 713	tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
 714
 715	ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req;
 716	ctx->enginectx.op.prepare_request = stm32_cryp_prepare_aead_req;
 717	ctx->enginectx.op.unprepare_request = NULL;
 718
 719	return 0;
 720}
 721
 722static int stm32_cryp_crypt(struct skcipher_request *req, unsigned long mode)
 723{
 724	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
 725			crypto_skcipher_reqtfm(req));
 726	struct stm32_cryp_reqctx *rctx = skcipher_request_ctx(req);
 727	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
 728
 729	if (!cryp)
 730		return -ENODEV;
 731
 732	rctx->mode = mode;
 733
 734	return crypto_transfer_skcipher_request_to_engine(cryp->engine, req);
 735}
 736
 737static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
 738{
 739	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
 740	struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
 741	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
 742
 743	if (!cryp)
 744		return -ENODEV;
 745
 746	rctx->mode = mode;
 747
 748	return crypto_transfer_aead_request_to_engine(cryp->engine, req);
 749}
 750
 751static int stm32_cryp_setkey(struct crypto_skcipher *tfm, const u8 *key,
 752			     unsigned int keylen)
 753{
 754	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
 755
 756	memcpy(ctx->key, key, keylen);
 757	ctx->keylen = keylen;
 758
 759	return 0;
 760}
 761
 762static int stm32_cryp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
 763				 unsigned int keylen)
 764{
 765	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
 766	    keylen != AES_KEYSIZE_256)
 767		return -EINVAL;
 768	else
 769		return stm32_cryp_setkey(tfm, key, keylen);
 770}
 771
 772static int stm32_cryp_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
 773				 unsigned int keylen)
 774{
 775	return verify_skcipher_des_key(tfm, key) ?:
 776	       stm32_cryp_setkey(tfm, key, keylen);
 777}
 778
 779static int stm32_cryp_tdes_setkey(struct crypto_skcipher *tfm, const u8 *key,
 780				  unsigned int keylen)
 781{
 782	return verify_skcipher_des3_key(tfm, key) ?:
 783	       stm32_cryp_setkey(tfm, key, keylen);
 784}
 785
 786static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
 787				      unsigned int keylen)
 788{
 789	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
 790
 791	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
 792	    keylen != AES_KEYSIZE_256)
 793		return -EINVAL;
 794
 795	memcpy(ctx->key, key, keylen);
 796	ctx->keylen = keylen;
 797
 798	return 0;
 799}
 800
 801static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
 802					  unsigned int authsize)
 803{
 804	return authsize == AES_BLOCK_SIZE ? 0 : -EINVAL;
 805}
 806
 807static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
 808					  unsigned int authsize)
 809{
 810	switch (authsize) {
 811	case 4:
 812	case 6:
 813	case 8:
 814	case 10:
 815	case 12:
 816	case 14:
 817	case 16:
 818		break;
 819	default:
 820		return -EINVAL;
 821	}
 822
 823	return 0;
 824}
 825
 826static int stm32_cryp_aes_ecb_encrypt(struct skcipher_request *req)
 827{
 828	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
 829}
 830
 831static int stm32_cryp_aes_ecb_decrypt(struct skcipher_request *req)
 832{
 833	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
 834}
 835
 836static int stm32_cryp_aes_cbc_encrypt(struct skcipher_request *req)
 837{
 838	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
 839}
 840
 841static int stm32_cryp_aes_cbc_decrypt(struct skcipher_request *req)
 842{
 843	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
 844}
 845
 846static int stm32_cryp_aes_ctr_encrypt(struct skcipher_request *req)
 847{
 848	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
 849}
 850
 851static int stm32_cryp_aes_ctr_decrypt(struct skcipher_request *req)
 852{
 853	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
 854}
 855
 856static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
 857{
 858	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
 859}
 860
 861static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
 862{
 863	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
 864}
 865
 866static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
 867{
 868	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
 869}
 870
 871static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
 872{
 873	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
 874}
 875
 876static int stm32_cryp_des_ecb_encrypt(struct skcipher_request *req)
 877{
 878	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
 879}
 880
 881static int stm32_cryp_des_ecb_decrypt(struct skcipher_request *req)
 882{
 883	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
 884}
 885
 886static int stm32_cryp_des_cbc_encrypt(struct skcipher_request *req)
 887{
 888	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
 889}
 890
 891static int stm32_cryp_des_cbc_decrypt(struct skcipher_request *req)
 892{
 893	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
 894}
 895
 896static int stm32_cryp_tdes_ecb_encrypt(struct skcipher_request *req)
 897{
 898	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
 899}
 900
 901static int stm32_cryp_tdes_ecb_decrypt(struct skcipher_request *req)
 902{
 903	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
 904}
 905
 906static int stm32_cryp_tdes_cbc_encrypt(struct skcipher_request *req)
 907{
 908	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
 909}
 910
 911static int stm32_cryp_tdes_cbc_decrypt(struct skcipher_request *req)
 912{
 913	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
 914}
 915
 916static int stm32_cryp_prepare_req(struct skcipher_request *req,
 917				  struct aead_request *areq)
 918{
 919	struct stm32_cryp_ctx *ctx;
 920	struct stm32_cryp *cryp;
 921	struct stm32_cryp_reqctx *rctx;
 922	int ret;
 923
 924	if (!req && !areq)
 925		return -EINVAL;
 926
 927	ctx = req ? crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)) :
 928		    crypto_aead_ctx(crypto_aead_reqtfm(areq));
 929
 930	cryp = ctx->cryp;
 931
 932	if (!cryp)
 933		return -ENODEV;
 934
 935	rctx = req ? skcipher_request_ctx(req) : aead_request_ctx(areq);
 936	rctx->mode &= FLG_MODE_MASK;
 937
 938	ctx->cryp = cryp;
 939
 940	cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
 941	cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
 942	cryp->ctx = ctx;
 943
 944	if (req) {
 945		cryp->req = req;
 946		cryp->areq = NULL;
 947		cryp->total_in = req->cryptlen;
 948		cryp->total_out = cryp->total_in;
 949	} else {
 950		/*
 951		 * Length of input and output data:
 952		 * Encryption case:
 953		 *  INPUT  =   AssocData  ||   PlainText
 954		 *          <- assoclen ->  <- cryptlen ->
 955		 *          <------- total_in ----------->
 956		 *
 957		 *  OUTPUT =   AssocData  ||  CipherText  ||   AuthTag
 958		 *          <- assoclen ->  <- cryptlen ->  <- authsize ->
 959		 *          <---------------- total_out ----------------->
 960		 *
 961		 * Decryption case:
 962		 *  INPUT  =   AssocData  ||  CipherText  ||  AuthTag
 963		 *          <- assoclen ->  <--------- cryptlen --------->
 964		 *                                          <- authsize ->
 965		 *          <---------------- total_in ------------------>
 966		 *
 967		 *  OUTPUT =   AssocData  ||   PlainText
 968		 *          <- assoclen ->  <- crypten - authsize ->
 969		 *          <---------- total_out ----------------->
 970		 */
 971		cryp->areq = areq;
 972		cryp->req = NULL;
 973		cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
 974		cryp->total_in = areq->assoclen + areq->cryptlen;
 975		if (is_encrypt(cryp))
 976			/* Append auth tag to output */
 977			cryp->total_out = cryp->total_in + cryp->authsize;
 978		else
 979			/* No auth tag in output */
 980			cryp->total_out = cryp->total_in - cryp->authsize;
 981	}
 982
 983	cryp->total_in_save = cryp->total_in;
 984	cryp->total_out_save = cryp->total_out;
 985
 986	cryp->in_sg = req ? req->src : areq->src;
 987	cryp->out_sg = req ? req->dst : areq->dst;
 988	cryp->out_sg_save = cryp->out_sg;
 989
 990	cryp->in_sg_len = sg_nents_for_len(cryp->in_sg, cryp->total_in);
 991	if (cryp->in_sg_len < 0) {
 992		dev_err(cryp->dev, "Cannot get in_sg_len\n");
 993		ret = cryp->in_sg_len;
 994		return ret;
 995	}
 996
 997	cryp->out_sg_len = sg_nents_for_len(cryp->out_sg, cryp->total_out);
 998	if (cryp->out_sg_len < 0) {
 999		dev_err(cryp->dev, "Cannot get out_sg_len\n");
1000		ret = cryp->out_sg_len;
1001		return ret;
1002	}
1003
1004	ret = stm32_cryp_copy_sgs(cryp);
1005	if (ret)
1006		return ret;
1007
1008	scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1009	scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1010
1011	if (is_gcm(cryp) || is_ccm(cryp)) {
1012		/* In output, jump after assoc data */
1013		scatterwalk_advance(&cryp->out_walk, cryp->areq->assoclen);
1014		cryp->total_out -= cryp->areq->assoclen;
1015	}
1016
1017	ret = stm32_cryp_hw_init(cryp);
1018	return ret;
1019}
1020
1021static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
1022					 void *areq)
1023{
1024	struct skcipher_request *req = container_of(areq,
1025						      struct skcipher_request,
1026						      base);
1027
1028	return stm32_cryp_prepare_req(req, NULL);
1029}
1030
1031static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1032{
1033	struct skcipher_request *req = container_of(areq,
1034						      struct skcipher_request,
1035						      base);
1036	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
1037			crypto_skcipher_reqtfm(req));
1038	struct stm32_cryp *cryp = ctx->cryp;
1039
1040	if (!cryp)
1041		return -ENODEV;
1042
1043	return stm32_cryp_cpu_start(cryp);
1044}
1045
1046static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq)
1047{
1048	struct aead_request *req = container_of(areq, struct aead_request,
1049						base);
1050
1051	return stm32_cryp_prepare_req(NULL, req);
1052}
1053
1054static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1055{
1056	struct aead_request *req = container_of(areq, struct aead_request,
1057						base);
1058	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1059	struct stm32_cryp *cryp = ctx->cryp;
1060
1061	if (!cryp)
1062		return -ENODEV;
1063
1064	if (unlikely(!cryp->areq->assoclen &&
1065		     !stm32_cryp_get_input_text_len(cryp))) {
1066		/* No input data to process: get tag and finish */
1067		stm32_cryp_finish_req(cryp, 0);
1068		return 0;
1069	}
1070
1071	return stm32_cryp_cpu_start(cryp);
1072}
1073
1074static u32 *stm32_cryp_next_out(struct stm32_cryp *cryp, u32 *dst,
1075				unsigned int n)
1076{
1077	scatterwalk_advance(&cryp->out_walk, n);
1078
1079	if (unlikely(cryp->out_sg->length == _walked_out)) {
1080		cryp->out_sg = sg_next(cryp->out_sg);
1081		if (cryp->out_sg) {
1082			scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1083			return (sg_virt(cryp->out_sg) + _walked_out);
1084		}
1085	}
1086
1087	return (u32 *)((u8 *)dst + n);
1088}
1089
1090static u32 *stm32_cryp_next_in(struct stm32_cryp *cryp, u32 *src,
1091			       unsigned int n)
1092{
1093	scatterwalk_advance(&cryp->in_walk, n);
1094
1095	if (unlikely(cryp->in_sg->length == _walked_in)) {
1096		cryp->in_sg = sg_next(cryp->in_sg);
1097		if (cryp->in_sg) {
1098			scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1099			return (sg_virt(cryp->in_sg) + _walked_in);
1100		}
1101	}
1102
1103	return (u32 *)((u8 *)src + n);
1104}
1105
1106static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1107{
1108	u32 cfg, size_bit, *dst, d32;
1109	u8 *d8;
1110	unsigned int i, j;
1111	int ret = 0;
1112
1113	/* Update Config */
1114	cfg = stm32_cryp_read(cryp, CRYP_CR);
1115
1116	cfg &= ~CR_PH_MASK;
1117	cfg |= CR_PH_FINAL;
1118	cfg &= ~CR_DEC_NOT_ENC;
1119	cfg |= CR_CRYPEN;
1120
1121	stm32_cryp_write(cryp, CRYP_CR, cfg);
1122
1123	if (is_gcm(cryp)) {
1124		/* GCM: write aad and payload size (in bits) */
1125		size_bit = cryp->areq->assoclen * 8;
1126		if (cryp->caps->swap_final)
1127			size_bit = (__force u32)cpu_to_be32(size_bit);
1128
1129		stm32_cryp_write(cryp, CRYP_DIN, 0);
1130		stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1131
1132		size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1133				cryp->areq->cryptlen - AES_BLOCK_SIZE;
1134		size_bit *= 8;
1135		if (cryp->caps->swap_final)
1136			size_bit = (__force u32)cpu_to_be32(size_bit);
1137
1138		stm32_cryp_write(cryp, CRYP_DIN, 0);
1139		stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1140	} else {
1141		/* CCM: write CTR0 */
1142		u8 iv[AES_BLOCK_SIZE];
1143		u32 *iv32 = (u32 *)iv;
1144		__be32 *biv;
1145
1146		biv = (void *)iv;
1147
1148		memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1149		memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1150
1151		for (i = 0; i < AES_BLOCK_32; i++) {
1152			u32 xiv = iv32[i];
1153
1154			if (!cryp->caps->padding_wa)
1155				xiv = be32_to_cpu(biv[i]);
1156			stm32_cryp_write(cryp, CRYP_DIN, xiv);
1157		}
1158	}
1159
1160	/* Wait for output data */
1161	ret = stm32_cryp_wait_output(cryp);
1162	if (ret) {
1163		dev_err(cryp->dev, "Timeout (read tag)\n");
1164		return ret;
1165	}
1166
1167	if (is_encrypt(cryp)) {
1168		/* Get and write tag */
1169		dst = sg_virt(cryp->out_sg) + _walked_out;
1170
1171		for (i = 0; i < AES_BLOCK_32; i++) {
1172			if (cryp->total_out >= sizeof(u32)) {
1173				/* Read a full u32 */
1174				*dst = stm32_cryp_read(cryp, CRYP_DOUT);
1175
1176				dst = stm32_cryp_next_out(cryp, dst,
1177							  sizeof(u32));
1178				cryp->total_out -= sizeof(u32);
1179			} else if (!cryp->total_out) {
1180				/* Empty fifo out (data from input padding) */
1181				stm32_cryp_read(cryp, CRYP_DOUT);
1182			} else {
1183				/* Read less than an u32 */
1184				d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1185				d8 = (u8 *)&d32;
1186
1187				for (j = 0; j < cryp->total_out; j++) {
1188					*((u8 *)dst) = *(d8++);
1189					dst = stm32_cryp_next_out(cryp, dst, 1);
1190				}
1191				cryp->total_out = 0;
1192			}
1193		}
1194	} else {
1195		/* Get and check tag */
1196		u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1197
1198		scatterwalk_map_and_copy(in_tag, cryp->in_sg,
1199					 cryp->total_in_save - cryp->authsize,
1200					 cryp->authsize, 0);
1201
1202		for (i = 0; i < AES_BLOCK_32; i++)
1203			out_tag[i] = stm32_cryp_read(cryp, CRYP_DOUT);
1204
1205		if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1206			ret = -EBADMSG;
1207	}
1208
1209	/* Disable cryp */
1210	cfg &= ~CR_CRYPEN;
1211	stm32_cryp_write(cryp, CRYP_CR, cfg);
1212
1213	return ret;
1214}
1215
1216static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1217{
1218	u32 cr;
1219
1220	if (unlikely(cryp->last_ctr[3] == 0xFFFFFFFF)) {
1221		cryp->last_ctr[3] = 0;
1222		cryp->last_ctr[2]++;
1223		if (!cryp->last_ctr[2]) {
1224			cryp->last_ctr[1]++;
1225			if (!cryp->last_ctr[1])
1226				cryp->last_ctr[0]++;
1227		}
1228
1229		cr = stm32_cryp_read(cryp, CRYP_CR);
1230		stm32_cryp_write(cryp, CRYP_CR, cr & ~CR_CRYPEN);
1231
1232		stm32_cryp_hw_write_iv(cryp, (__be32 *)cryp->last_ctr);
1233
1234		stm32_cryp_write(cryp, CRYP_CR, cr);
1235	}
1236
1237	cryp->last_ctr[0] = stm32_cryp_read(cryp, CRYP_IV0LR);
1238	cryp->last_ctr[1] = stm32_cryp_read(cryp, CRYP_IV0RR);
1239	cryp->last_ctr[2] = stm32_cryp_read(cryp, CRYP_IV1LR);
1240	cryp->last_ctr[3] = stm32_cryp_read(cryp, CRYP_IV1RR);
1241}
1242
1243static bool stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1244{
1245	unsigned int i, j;
1246	u32 d32, *dst;
1247	u8 *d8;
1248	size_t tag_size;
1249
1250	/* Do no read tag now (if any) */
1251	if (is_encrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1252		tag_size = cryp->authsize;
1253	else
1254		tag_size = 0;
1255
1256	dst = sg_virt(cryp->out_sg) + _walked_out;
1257
1258	for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1259		if (likely(cryp->total_out - tag_size >= sizeof(u32))) {
1260			/* Read a full u32 */
1261			*dst = stm32_cryp_read(cryp, CRYP_DOUT);
1262
1263			dst = stm32_cryp_next_out(cryp, dst, sizeof(u32));
1264			cryp->total_out -= sizeof(u32);
1265		} else if (cryp->total_out == tag_size) {
1266			/* Empty fifo out (data from input padding) */
1267			d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1268		} else {
1269			/* Read less than an u32 */
1270			d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1271			d8 = (u8 *)&d32;
1272
1273			for (j = 0; j < cryp->total_out - tag_size; j++) {
1274				*((u8 *)dst) = *(d8++);
1275				dst = stm32_cryp_next_out(cryp, dst, 1);
1276			}
1277			cryp->total_out = tag_size;
1278		}
1279	}
1280
1281	return !(cryp->total_out - tag_size) || !cryp->total_in;
1282}
1283
1284static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1285{
1286	unsigned int i, j;
1287	u32 *src;
1288	u8 d8[4];
1289	size_t tag_size;
1290
1291	/* Do no write tag (if any) */
1292	if (is_decrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1293		tag_size = cryp->authsize;
1294	else
1295		tag_size = 0;
1296
1297	src = sg_virt(cryp->in_sg) + _walked_in;
1298
1299	for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1300		if (likely(cryp->total_in - tag_size >= sizeof(u32))) {
1301			/* Write a full u32 */
1302			stm32_cryp_write(cryp, CRYP_DIN, *src);
1303
1304			src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1305			cryp->total_in -= sizeof(u32);
1306		} else if (cryp->total_in == tag_size) {
1307			/* Write padding data */
1308			stm32_cryp_write(cryp, CRYP_DIN, 0);
1309		} else {
1310			/* Write less than an u32 */
1311			memset(d8, 0, sizeof(u32));
1312			for (j = 0; j < cryp->total_in - tag_size; j++) {
1313				d8[j] = *((u8 *)src);
1314				src = stm32_cryp_next_in(cryp, src, 1);
1315			}
1316
1317			stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1318			cryp->total_in = tag_size;
1319		}
1320	}
1321}
1322
1323static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1324{
1325	int err;
1326	u32 cfg, tmp[AES_BLOCK_32];
1327	size_t total_in_ori = cryp->total_in;
1328	struct scatterlist *out_sg_ori = cryp->out_sg;
1329	unsigned int i;
1330
1331	/* 'Special workaround' procedure described in the datasheet */
1332
1333	/* a) disable ip */
1334	stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1335	cfg = stm32_cryp_read(cryp, CRYP_CR);
1336	cfg &= ~CR_CRYPEN;
1337	stm32_cryp_write(cryp, CRYP_CR, cfg);
1338
1339	/* b) Update IV1R */
1340	stm32_cryp_write(cryp, CRYP_IV1RR, cryp->gcm_ctr - 2);
1341
1342	/* c) change mode to CTR */
1343	cfg &= ~CR_ALGO_MASK;
1344	cfg |= CR_AES_CTR;
1345	stm32_cryp_write(cryp, CRYP_CR, cfg);
1346
1347	/* a) enable IP */
1348	cfg |= CR_CRYPEN;
1349	stm32_cryp_write(cryp, CRYP_CR, cfg);
1350
1351	/* b) pad and write the last block */
1352	stm32_cryp_irq_write_block(cryp);
1353	cryp->total_in = total_in_ori;
1354	err = stm32_cryp_wait_output(cryp);
1355	if (err) {
1356		dev_err(cryp->dev, "Timeout (write gcm header)\n");
1357		return stm32_cryp_finish_req(cryp, err);
1358	}
1359
1360	/* c) get and store encrypted data */
1361	stm32_cryp_irq_read_data(cryp);
1362	scatterwalk_map_and_copy(tmp, out_sg_ori,
1363				 cryp->total_in_save - total_in_ori,
1364				 total_in_ori, 0);
1365
1366	/* d) change mode back to AES GCM */
1367	cfg &= ~CR_ALGO_MASK;
1368	cfg |= CR_AES_GCM;
1369	stm32_cryp_write(cryp, CRYP_CR, cfg);
1370
1371	/* e) change phase to Final */
1372	cfg &= ~CR_PH_MASK;
1373	cfg |= CR_PH_FINAL;
1374	stm32_cryp_write(cryp, CRYP_CR, cfg);
1375
1376	/* f) write padded data */
1377	for (i = 0; i < AES_BLOCK_32; i++) {
1378		if (cryp->total_in)
1379			stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1380		else
1381			stm32_cryp_write(cryp, CRYP_DIN, 0);
1382
1383		cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1384	}
1385
1386	/* g) Empty fifo out */
1387	err = stm32_cryp_wait_output(cryp);
1388	if (err) {
1389		dev_err(cryp->dev, "Timeout (write gcm header)\n");
1390		return stm32_cryp_finish_req(cryp, err);
1391	}
1392
1393	for (i = 0; i < AES_BLOCK_32; i++)
1394		stm32_cryp_read(cryp, CRYP_DOUT);
1395
1396	/* h) run the he normal Final phase */
1397	stm32_cryp_finish_req(cryp, 0);
1398}
1399
1400static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1401{
1402	u32 cfg, payload_bytes;
1403
1404	/* disable ip, set NPBLB and reneable ip */
1405	cfg = stm32_cryp_read(cryp, CRYP_CR);
1406	cfg &= ~CR_CRYPEN;
1407	stm32_cryp_write(cryp, CRYP_CR, cfg);
1408
1409	payload_bytes = is_decrypt(cryp) ? cryp->total_in - cryp->authsize :
1410					   cryp->total_in;
1411	cfg |= (cryp->hw_blocksize - payload_bytes) << CR_NBPBL_SHIFT;
1412	cfg |= CR_CRYPEN;
1413	stm32_cryp_write(cryp, CRYP_CR, cfg);
1414}
1415
1416static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1417{
1418	int err = 0;
1419	u32 cfg, iv1tmp;
1420	u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32], tmp[AES_BLOCK_32];
1421	size_t last_total_out, total_in_ori = cryp->total_in;
1422	struct scatterlist *out_sg_ori = cryp->out_sg;
1423	unsigned int i;
1424
1425	/* 'Special workaround' procedure described in the datasheet */
1426	cryp->flags |= FLG_CCM_PADDED_WA;
1427
1428	/* a) disable ip */
1429	stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1430
1431	cfg = stm32_cryp_read(cryp, CRYP_CR);
1432	cfg &= ~CR_CRYPEN;
1433	stm32_cryp_write(cryp, CRYP_CR, cfg);
1434
1435	/* b) get IV1 from CRYP_CSGCMCCM7 */
1436	iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1437
1438	/* c) Load CRYP_CSGCMCCMxR */
1439	for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1440		cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1441
1442	/* d) Write IV1R */
1443	stm32_cryp_write(cryp, CRYP_IV1RR, iv1tmp);
1444
1445	/* e) change mode to CTR */
1446	cfg &= ~CR_ALGO_MASK;
1447	cfg |= CR_AES_CTR;
1448	stm32_cryp_write(cryp, CRYP_CR, cfg);
1449
1450	/* a) enable IP */
1451	cfg |= CR_CRYPEN;
1452	stm32_cryp_write(cryp, CRYP_CR, cfg);
1453
1454	/* b) pad and write the last block */
1455	stm32_cryp_irq_write_block(cryp);
1456	cryp->total_in = total_in_ori;
1457	err = stm32_cryp_wait_output(cryp);
1458	if (err) {
1459		dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1460		return stm32_cryp_finish_req(cryp, err);
1461	}
1462
1463	/* c) get and store decrypted data */
1464	last_total_out = cryp->total_out;
1465	stm32_cryp_irq_read_data(cryp);
1466
1467	memset(tmp, 0, sizeof(tmp));
1468	scatterwalk_map_and_copy(tmp, out_sg_ori,
1469				 cryp->total_out_save - last_total_out,
1470				 last_total_out, 0);
1471
1472	/* d) Load again CRYP_CSGCMCCMxR */
1473	for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1474		cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1475
1476	/* e) change mode back to AES CCM */
1477	cfg &= ~CR_ALGO_MASK;
1478	cfg |= CR_AES_CCM;
1479	stm32_cryp_write(cryp, CRYP_CR, cfg);
1480
1481	/* f) change phase to header */
1482	cfg &= ~CR_PH_MASK;
1483	cfg |= CR_PH_HEADER;
1484	stm32_cryp_write(cryp, CRYP_CR, cfg);
1485
1486	/* g) XOR and write padded data */
1487	for (i = 0; i < ARRAY_SIZE(tmp); i++) {
1488		tmp[i] ^= cstmp1[i];
1489		tmp[i] ^= cstmp2[i];
1490		stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1491	}
1492
1493	/* h) wait for completion */
1494	err = stm32_cryp_wait_busy(cryp);
1495	if (err)
1496		dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1497
1498	/* i) run the he normal Final phase */
1499	stm32_cryp_finish_req(cryp, err);
1500}
1501
1502static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1503{
1504	if (unlikely(!cryp->total_in)) {
1505		dev_warn(cryp->dev, "No more data to process\n");
1506		return;
1507	}
1508
1509	if (unlikely(cryp->total_in < AES_BLOCK_SIZE &&
1510		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1511		     is_encrypt(cryp))) {
1512		/* Padding for AES GCM encryption */
1513		if (cryp->caps->padding_wa)
1514			/* Special case 1 */
1515			return stm32_cryp_irq_write_gcm_padded_data(cryp);
1516
1517		/* Setting padding bytes (NBBLB) */
1518		stm32_cryp_irq_set_npblb(cryp);
1519	}
1520
1521	if (unlikely((cryp->total_in - cryp->authsize < AES_BLOCK_SIZE) &&
1522		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1523		     is_decrypt(cryp))) {
1524		/* Padding for AES CCM decryption */
1525		if (cryp->caps->padding_wa)
1526			/* Special case 2 */
1527			return stm32_cryp_irq_write_ccm_padded_data(cryp);
1528
1529		/* Setting padding bytes (NBBLB) */
1530		stm32_cryp_irq_set_npblb(cryp);
1531	}
1532
1533	if (is_aes(cryp) && is_ctr(cryp))
1534		stm32_cryp_check_ctr_counter(cryp);
1535
1536	stm32_cryp_irq_write_block(cryp);
1537}
1538
1539static void stm32_cryp_irq_write_gcm_header(struct stm32_cryp *cryp)
1540{
1541	int err;
1542	unsigned int i, j;
1543	u32 cfg, *src;
1544
1545	src = sg_virt(cryp->in_sg) + _walked_in;
1546
1547	for (i = 0; i < AES_BLOCK_32; i++) {
1548		stm32_cryp_write(cryp, CRYP_DIN, *src);
1549
1550		src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1551		cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1552
1553		/* Check if whole header written */
1554		if ((cryp->total_in_save - cryp->total_in) ==
1555				cryp->areq->assoclen) {
1556			/* Write padding if needed */
1557			for (j = i + 1; j < AES_BLOCK_32; j++)
1558				stm32_cryp_write(cryp, CRYP_DIN, 0);
1559
1560			/* Wait for completion */
1561			err = stm32_cryp_wait_busy(cryp);
1562			if (err) {
1563				dev_err(cryp->dev, "Timeout (gcm header)\n");
1564				return stm32_cryp_finish_req(cryp, err);
1565			}
1566
1567			if (stm32_cryp_get_input_text_len(cryp)) {
1568				/* Phase 3 : payload */
1569				cfg = stm32_cryp_read(cryp, CRYP_CR);
1570				cfg &= ~CR_CRYPEN;
1571				stm32_cryp_write(cryp, CRYP_CR, cfg);
1572
1573				cfg &= ~CR_PH_MASK;
1574				cfg |= CR_PH_PAYLOAD;
1575				cfg |= CR_CRYPEN;
1576				stm32_cryp_write(cryp, CRYP_CR, cfg);
1577			} else {
1578				/* Phase 4 : tag */
1579				stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1580				stm32_cryp_finish_req(cryp, 0);
1581			}
1582
1583			break;
1584		}
1585
1586		if (!cryp->total_in)
1587			break;
1588	}
1589}
1590
1591static void stm32_cryp_irq_write_ccm_header(struct stm32_cryp *cryp)
1592{
1593	int err;
1594	unsigned int i = 0, j, k;
1595	u32 alen, cfg, *src;
1596	u8 d8[4];
1597
1598	src = sg_virt(cryp->in_sg) + _walked_in;
1599	alen = cryp->areq->assoclen;
1600
1601	if (!_walked_in) {
1602		if (cryp->areq->assoclen <= 65280) {
1603			/* Write first u32 of B1 */
1604			d8[0] = (alen >> 8) & 0xFF;
1605			d8[1] = alen & 0xFF;
1606			d8[2] = *((u8 *)src);
1607			src = stm32_cryp_next_in(cryp, src, 1);
1608			d8[3] = *((u8 *)src);
1609			src = stm32_cryp_next_in(cryp, src, 1);
1610
1611			stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1612			i++;
1613
1614			cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1615		} else {
1616			/* Build the two first u32 of B1 */
1617			d8[0] = 0xFF;
1618			d8[1] = 0xFE;
1619			d8[2] = alen & 0xFF000000;
1620			d8[3] = alen & 0x00FF0000;
1621
1622			stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1623			i++;
1624
1625			d8[0] = alen & 0x0000FF00;
1626			d8[1] = alen & 0x000000FF;
1627			d8[2] = *((u8 *)src);
1628			src = stm32_cryp_next_in(cryp, src, 1);
1629			d8[3] = *((u8 *)src);
1630			src = stm32_cryp_next_in(cryp, src, 1);
1631
1632			stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1633			i++;
1634
1635			cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1636		}
1637	}
1638
1639	/* Write next u32 */
1640	for (; i < AES_BLOCK_32; i++) {
1641		/* Build an u32 */
1642		memset(d8, 0, sizeof(u32));
1643		for (k = 0; k < sizeof(u32); k++) {
1644			d8[k] = *((u8 *)src);
1645			src = stm32_cryp_next_in(cryp, src, 1);
1646
1647			cryp->total_in -= min_t(size_t, 1, cryp->total_in);
1648			if ((cryp->total_in_save - cryp->total_in) == alen)
1649				break;
1650		}
1651
1652		stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1653
1654		if ((cryp->total_in_save - cryp->total_in) == alen) {
1655			/* Write padding if needed */
1656			for (j = i + 1; j < AES_BLOCK_32; j++)
1657				stm32_cryp_write(cryp, CRYP_DIN, 0);
1658
1659			/* Wait for completion */
1660			err = stm32_cryp_wait_busy(cryp);
1661			if (err) {
1662				dev_err(cryp->dev, "Timeout (ccm header)\n");
1663				return stm32_cryp_finish_req(cryp, err);
1664			}
1665
1666			if (stm32_cryp_get_input_text_len(cryp)) {
1667				/* Phase 3 : payload */
1668				cfg = stm32_cryp_read(cryp, CRYP_CR);
1669				cfg &= ~CR_CRYPEN;
1670				stm32_cryp_write(cryp, CRYP_CR, cfg);
1671
1672				cfg &= ~CR_PH_MASK;
1673				cfg |= CR_PH_PAYLOAD;
1674				cfg |= CR_CRYPEN;
1675				stm32_cryp_write(cryp, CRYP_CR, cfg);
1676			} else {
1677				/* Phase 4 : tag */
1678				stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1679				stm32_cryp_finish_req(cryp, 0);
1680			}
1681
1682			break;
1683		}
1684	}
1685}
1686
1687static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1688{
1689	struct stm32_cryp *cryp = arg;
1690	u32 ph;
1691
1692	if (cryp->irq_status & MISR_OUT)
1693		/* Output FIFO IRQ: read data */
1694		if (unlikely(stm32_cryp_irq_read_data(cryp))) {
1695			/* All bytes processed, finish */
1696			stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1697			stm32_cryp_finish_req(cryp, 0);
1698			return IRQ_HANDLED;
1699		}
1700
1701	if (cryp->irq_status & MISR_IN) {
1702		if (is_gcm(cryp)) {
1703			ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1704			if (unlikely(ph == CR_PH_HEADER))
1705				/* Write Header */
1706				stm32_cryp_irq_write_gcm_header(cryp);
1707			else
1708				/* Input FIFO IRQ: write data */
1709				stm32_cryp_irq_write_data(cryp);
1710			cryp->gcm_ctr++;
1711		} else if (is_ccm(cryp)) {
1712			ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1713			if (unlikely(ph == CR_PH_HEADER))
1714				/* Write Header */
1715				stm32_cryp_irq_write_ccm_header(cryp);
1716			else
1717				/* Input FIFO IRQ: write data */
1718				stm32_cryp_irq_write_data(cryp);
1719		} else {
1720			/* Input FIFO IRQ: write data */
1721			stm32_cryp_irq_write_data(cryp);
1722		}
1723	}
1724
1725	return IRQ_HANDLED;
1726}
1727
1728static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1729{
1730	struct stm32_cryp *cryp = arg;
1731
1732	cryp->irq_status = stm32_cryp_read(cryp, CRYP_MISR);
1733
1734	return IRQ_WAKE_THREAD;
1735}
1736
1737static struct skcipher_alg crypto_algs[] = {
1738{
1739	.base.cra_name		= "ecb(aes)",
1740	.base.cra_driver_name	= "stm32-ecb-aes",
1741	.base.cra_priority	= 200,
1742	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1743	.base.cra_blocksize	= AES_BLOCK_SIZE,
1744	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1745	.base.cra_alignmask	= 0xf,
1746	.base.cra_module	= THIS_MODULE,
1747
1748	.init			= stm32_cryp_init_tfm,
1749	.min_keysize		= AES_MIN_KEY_SIZE,
1750	.max_keysize		= AES_MAX_KEY_SIZE,
1751	.setkey			= stm32_cryp_aes_setkey,
1752	.encrypt		= stm32_cryp_aes_ecb_encrypt,
1753	.decrypt		= stm32_cryp_aes_ecb_decrypt,
1754},
1755{
1756	.base.cra_name		= "cbc(aes)",
1757	.base.cra_driver_name	= "stm32-cbc-aes",
1758	.base.cra_priority	= 200,
1759	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1760	.base.cra_blocksize	= AES_BLOCK_SIZE,
1761	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1762	.base.cra_alignmask	= 0xf,
1763	.base.cra_module	= THIS_MODULE,
1764
1765	.init			= stm32_cryp_init_tfm,
1766	.min_keysize		= AES_MIN_KEY_SIZE,
1767	.max_keysize		= AES_MAX_KEY_SIZE,
1768	.ivsize			= AES_BLOCK_SIZE,
1769	.setkey			= stm32_cryp_aes_setkey,
1770	.encrypt		= stm32_cryp_aes_cbc_encrypt,
1771	.decrypt		= stm32_cryp_aes_cbc_decrypt,
1772},
1773{
1774	.base.cra_name		= "ctr(aes)",
1775	.base.cra_driver_name	= "stm32-ctr-aes",
1776	.base.cra_priority	= 200,
1777	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1778	.base.cra_blocksize	= 1,
1779	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1780	.base.cra_alignmask	= 0xf,
1781	.base.cra_module	= THIS_MODULE,
1782
1783	.init			= stm32_cryp_init_tfm,
1784	.min_keysize		= AES_MIN_KEY_SIZE,
1785	.max_keysize		= AES_MAX_KEY_SIZE,
1786	.ivsize			= AES_BLOCK_SIZE,
1787	.setkey			= stm32_cryp_aes_setkey,
1788	.encrypt		= stm32_cryp_aes_ctr_encrypt,
1789	.decrypt		= stm32_cryp_aes_ctr_decrypt,
1790},
1791{
1792	.base.cra_name		= "ecb(des)",
1793	.base.cra_driver_name	= "stm32-ecb-des",
1794	.base.cra_priority	= 200,
1795	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1796	.base.cra_blocksize	= DES_BLOCK_SIZE,
1797	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1798	.base.cra_alignmask	= 0xf,
1799	.base.cra_module	= THIS_MODULE,
1800
1801	.init			= stm32_cryp_init_tfm,
1802	.min_keysize		= DES_BLOCK_SIZE,
1803	.max_keysize		= DES_BLOCK_SIZE,
1804	.setkey			= stm32_cryp_des_setkey,
1805	.encrypt		= stm32_cryp_des_ecb_encrypt,
1806	.decrypt		= stm32_cryp_des_ecb_decrypt,
1807},
1808{
1809	.base.cra_name		= "cbc(des)",
1810	.base.cra_driver_name	= "stm32-cbc-des",
1811	.base.cra_priority	= 200,
1812	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1813	.base.cra_blocksize	= DES_BLOCK_SIZE,
1814	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1815	.base.cra_alignmask	= 0xf,
1816	.base.cra_module	= THIS_MODULE,
1817
1818	.init			= stm32_cryp_init_tfm,
1819	.min_keysize		= DES_BLOCK_SIZE,
1820	.max_keysize		= DES_BLOCK_SIZE,
1821	.ivsize			= DES_BLOCK_SIZE,
1822	.setkey			= stm32_cryp_des_setkey,
1823	.encrypt		= stm32_cryp_des_cbc_encrypt,
1824	.decrypt		= stm32_cryp_des_cbc_decrypt,
1825},
1826{
1827	.base.cra_name		= "ecb(des3_ede)",
1828	.base.cra_driver_name	= "stm32-ecb-des3",
1829	.base.cra_priority	= 200,
1830	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1831	.base.cra_blocksize	= DES_BLOCK_SIZE,
1832	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1833	.base.cra_alignmask	= 0xf,
1834	.base.cra_module	= THIS_MODULE,
1835
1836	.init			= stm32_cryp_init_tfm,
1837	.min_keysize		= 3 * DES_BLOCK_SIZE,
1838	.max_keysize		= 3 * DES_BLOCK_SIZE,
1839	.setkey			= stm32_cryp_tdes_setkey,
1840	.encrypt		= stm32_cryp_tdes_ecb_encrypt,
1841	.decrypt		= stm32_cryp_tdes_ecb_decrypt,
1842},
1843{
1844	.base.cra_name		= "cbc(des3_ede)",
1845	.base.cra_driver_name	= "stm32-cbc-des3",
1846	.base.cra_priority	= 200,
1847	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1848	.base.cra_blocksize	= DES_BLOCK_SIZE,
1849	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1850	.base.cra_alignmask	= 0xf,
1851	.base.cra_module	= THIS_MODULE,
1852
1853	.init			= stm32_cryp_init_tfm,
1854	.min_keysize		= 3 * DES_BLOCK_SIZE,
1855	.max_keysize		= 3 * DES_BLOCK_SIZE,
1856	.ivsize			= DES_BLOCK_SIZE,
1857	.setkey			= stm32_cryp_tdes_setkey,
1858	.encrypt		= stm32_cryp_tdes_cbc_encrypt,
1859	.decrypt		= stm32_cryp_tdes_cbc_decrypt,
1860},
1861};
1862
1863static struct aead_alg aead_algs[] = {
1864{
1865	.setkey		= stm32_cryp_aes_aead_setkey,
1866	.setauthsize	= stm32_cryp_aes_gcm_setauthsize,
1867	.encrypt	= stm32_cryp_aes_gcm_encrypt,
1868	.decrypt	= stm32_cryp_aes_gcm_decrypt,
1869	.init		= stm32_cryp_aes_aead_init,
1870	.ivsize		= 12,
1871	.maxauthsize	= AES_BLOCK_SIZE,
1872
1873	.base = {
1874		.cra_name		= "gcm(aes)",
1875		.cra_driver_name	= "stm32-gcm-aes",
1876		.cra_priority		= 200,
1877		.cra_flags		= CRYPTO_ALG_ASYNC,
1878		.cra_blocksize		= 1,
1879		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1880		.cra_alignmask		= 0xf,
1881		.cra_module		= THIS_MODULE,
1882	},
1883},
1884{
1885	.setkey		= stm32_cryp_aes_aead_setkey,
1886	.setauthsize	= stm32_cryp_aes_ccm_setauthsize,
1887	.encrypt	= stm32_cryp_aes_ccm_encrypt,
1888	.decrypt	= stm32_cryp_aes_ccm_decrypt,
1889	.init		= stm32_cryp_aes_aead_init,
1890	.ivsize		= AES_BLOCK_SIZE,
1891	.maxauthsize	= AES_BLOCK_SIZE,
1892
1893	.base = {
1894		.cra_name		= "ccm(aes)",
1895		.cra_driver_name	= "stm32-ccm-aes",
1896		.cra_priority		= 200,
1897		.cra_flags		= CRYPTO_ALG_ASYNC,
1898		.cra_blocksize		= 1,
1899		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1900		.cra_alignmask		= 0xf,
1901		.cra_module		= THIS_MODULE,
1902	},
1903},
1904};
1905
1906static const struct stm32_cryp_caps f7_data = {
1907	.swap_final = true,
1908	.padding_wa = true,
1909};
1910
1911static const struct stm32_cryp_caps mp1_data = {
1912	.swap_final = false,
1913	.padding_wa = false,
1914};
1915
1916static const struct of_device_id stm32_dt_ids[] = {
1917	{ .compatible = "st,stm32f756-cryp", .data = &f7_data},
1918	{ .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1919	{},
1920};
1921MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1922
1923static int stm32_cryp_probe(struct platform_device *pdev)
1924{
1925	struct device *dev = &pdev->dev;
1926	struct stm32_cryp *cryp;
1927	struct reset_control *rst;
1928	int irq, ret;
1929
1930	cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1931	if (!cryp)
1932		return -ENOMEM;
1933
1934	cryp->caps = of_device_get_match_data(dev);
1935	if (!cryp->caps)
1936		return -ENODEV;
1937
1938	cryp->dev = dev;
1939
1940	cryp->regs = devm_platform_ioremap_resource(pdev, 0);
1941	if (IS_ERR(cryp->regs))
1942		return PTR_ERR(cryp->regs);
1943
1944	irq = platform_get_irq(pdev, 0);
1945	if (irq < 0)
1946		return irq;
1947
1948	ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1949					stm32_cryp_irq_thread, IRQF_ONESHOT,
1950					dev_name(dev), cryp);
1951	if (ret) {
1952		dev_err(dev, "Cannot grab IRQ\n");
1953		return ret;
1954	}
1955
1956	cryp->clk = devm_clk_get(dev, NULL);
1957	if (IS_ERR(cryp->clk)) {
1958		dev_err(dev, "Could not get clock\n");
1959		return PTR_ERR(cryp->clk);
1960	}
1961
1962	ret = clk_prepare_enable(cryp->clk);
1963	if (ret) {
1964		dev_err(cryp->dev, "Failed to enable clock\n");
1965		return ret;
1966	}
1967
1968	pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
1969	pm_runtime_use_autosuspend(dev);
1970
1971	pm_runtime_get_noresume(dev);
1972	pm_runtime_set_active(dev);
1973	pm_runtime_enable(dev);
1974
1975	rst = devm_reset_control_get(dev, NULL);
1976	if (!IS_ERR(rst)) {
1977		reset_control_assert(rst);
1978		udelay(2);
1979		reset_control_deassert(rst);
1980	}
1981
1982	platform_set_drvdata(pdev, cryp);
1983
1984	spin_lock(&cryp_list.lock);
1985	list_add(&cryp->list, &cryp_list.dev_list);
1986	spin_unlock(&cryp_list.lock);
1987
1988	/* Initialize crypto engine */
1989	cryp->engine = crypto_engine_alloc_init(dev, 1);
1990	if (!cryp->engine) {
1991		dev_err(dev, "Could not init crypto engine\n");
1992		ret = -ENOMEM;
1993		goto err_engine1;
1994	}
1995
1996	ret = crypto_engine_start(cryp->engine);
1997	if (ret) {
1998		dev_err(dev, "Could not start crypto engine\n");
1999		goto err_engine2;
2000	}
2001
2002	ret = crypto_register_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2003	if (ret) {
2004		dev_err(dev, "Could not register algs\n");
2005		goto err_algs;
2006	}
2007
2008	ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2009	if (ret)
2010		goto err_aead_algs;
2011
2012	dev_info(dev, "Initialized\n");
2013
2014	pm_runtime_put_sync(dev);
2015
2016	return 0;
2017
2018err_aead_algs:
2019	crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2020err_algs:
2021err_engine2:
2022	crypto_engine_exit(cryp->engine);
2023err_engine1:
2024	spin_lock(&cryp_list.lock);
2025	list_del(&cryp->list);
2026	spin_unlock(&cryp_list.lock);
2027
2028	pm_runtime_disable(dev);
2029	pm_runtime_put_noidle(dev);
2030	pm_runtime_disable(dev);
2031	pm_runtime_put_noidle(dev);
2032
2033	clk_disable_unprepare(cryp->clk);
2034
2035	return ret;
2036}
2037
2038static int stm32_cryp_remove(struct platform_device *pdev)
2039{
2040	struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2041	int ret;
2042
2043	if (!cryp)
2044		return -ENODEV;
2045
2046	ret = pm_runtime_resume_and_get(cryp->dev);
2047	if (ret < 0)
2048		return ret;
2049
2050	crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2051	crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2052
2053	crypto_engine_exit(cryp->engine);
2054
2055	spin_lock(&cryp_list.lock);
2056	list_del(&cryp->list);
2057	spin_unlock(&cryp_list.lock);
2058
2059	pm_runtime_disable(cryp->dev);
2060	pm_runtime_put_noidle(cryp->dev);
2061
2062	clk_disable_unprepare(cryp->clk);
2063
2064	return 0;
2065}
2066
2067#ifdef CONFIG_PM
2068static int stm32_cryp_runtime_suspend(struct device *dev)
2069{
2070	struct stm32_cryp *cryp = dev_get_drvdata(dev);
2071
2072	clk_disable_unprepare(cryp->clk);
2073
2074	return 0;
2075}
2076
2077static int stm32_cryp_runtime_resume(struct device *dev)
2078{
2079	struct stm32_cryp *cryp = dev_get_drvdata(dev);
2080	int ret;
2081
2082	ret = clk_prepare_enable(cryp->clk);
2083	if (ret) {
2084		dev_err(cryp->dev, "Failed to prepare_enable clock\n");
2085		return ret;
2086	}
2087
2088	return 0;
2089}
2090#endif
2091
2092static const struct dev_pm_ops stm32_cryp_pm_ops = {
2093	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2094				pm_runtime_force_resume)
2095	SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
2096			   stm32_cryp_runtime_resume, NULL)
2097};
2098
2099static struct platform_driver stm32_cryp_driver = {
2100	.probe  = stm32_cryp_probe,
2101	.remove = stm32_cryp_remove,
2102	.driver = {
2103		.name           = DRIVER_NAME,
2104		.pm		= &stm32_cryp_pm_ops,
2105		.of_match_table = stm32_dt_ids,
2106	},
2107};
2108
2109module_platform_driver(stm32_cryp_driver);
2110
2111MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
2112MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2113MODULE_LICENSE("GPL");