Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * acpi-cpufreq.c - ACPI Processor P-States Driver
   4 *
   5 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   6 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   7 *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
   8 *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/kernel.h>
  14#include <linux/module.h>
  15#include <linux/init.h>
  16#include <linux/smp.h>
  17#include <linux/sched.h>
  18#include <linux/cpufreq.h>
  19#include <linux/compiler.h>
  20#include <linux/dmi.h>
  21#include <linux/slab.h>
  22
  23#include <linux/acpi.h>
  24#include <linux/io.h>
  25#include <linux/delay.h>
  26#include <linux/uaccess.h>
  27
  28#include <acpi/processor.h>
  29
  30#include <asm/msr.h>
  31#include <asm/processor.h>
  32#include <asm/cpufeature.h>
  33#include <asm/cpu_device_id.h>
  34
  35MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
  36MODULE_DESCRIPTION("ACPI Processor P-States Driver");
  37MODULE_LICENSE("GPL");
  38
  39enum {
  40	UNDEFINED_CAPABLE = 0,
  41	SYSTEM_INTEL_MSR_CAPABLE,
  42	SYSTEM_AMD_MSR_CAPABLE,
  43	SYSTEM_IO_CAPABLE,
  44};
  45
  46#define INTEL_MSR_RANGE		(0xffff)
  47#define AMD_MSR_RANGE		(0x7)
  48#define HYGON_MSR_RANGE		(0x7)
  49
  50#define MSR_K7_HWCR_CPB_DIS	(1ULL << 25)
  51
  52struct acpi_cpufreq_data {
  53	unsigned int resume;
  54	unsigned int cpu_feature;
  55	unsigned int acpi_perf_cpu;
  56	cpumask_var_t freqdomain_cpus;
  57	void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
  58	u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
  59};
  60
  61/* acpi_perf_data is a pointer to percpu data. */
  62static struct acpi_processor_performance __percpu *acpi_perf_data;
  63
  64static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
  65{
  66	return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
  67}
  68
  69static struct cpufreq_driver acpi_cpufreq_driver;
  70
  71static unsigned int acpi_pstate_strict;
  72
  73static bool boost_state(unsigned int cpu)
  74{
  75	u32 lo, hi;
  76	u64 msr;
  77
  78	switch (boot_cpu_data.x86_vendor) {
  79	case X86_VENDOR_INTEL:
  80		rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
  81		msr = lo | ((u64)hi << 32);
  82		return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
  83	case X86_VENDOR_HYGON:
  84	case X86_VENDOR_AMD:
  85		rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
  86		msr = lo | ((u64)hi << 32);
  87		return !(msr & MSR_K7_HWCR_CPB_DIS);
  88	}
  89	return false;
  90}
  91
  92static int boost_set_msr(bool enable)
  93{
  94	u32 msr_addr;
  95	u64 msr_mask, val;
  96
  97	switch (boot_cpu_data.x86_vendor) {
  98	case X86_VENDOR_INTEL:
  99		msr_addr = MSR_IA32_MISC_ENABLE;
 100		msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
 101		break;
 102	case X86_VENDOR_HYGON:
 103	case X86_VENDOR_AMD:
 104		msr_addr = MSR_K7_HWCR;
 105		msr_mask = MSR_K7_HWCR_CPB_DIS;
 106		break;
 107	default:
 108		return -EINVAL;
 109	}
 110
 111	rdmsrl(msr_addr, val);
 112
 113	if (enable)
 114		val &= ~msr_mask;
 115	else
 116		val |= msr_mask;
 117
 118	wrmsrl(msr_addr, val);
 119	return 0;
 120}
 121
 122static void boost_set_msr_each(void *p_en)
 123{
 124	bool enable = (bool) p_en;
 125
 126	boost_set_msr(enable);
 127}
 128
 129static int set_boost(struct cpufreq_policy *policy, int val)
 130{
 131	on_each_cpu_mask(policy->cpus, boost_set_msr_each,
 132			 (void *)(long)val, 1);
 133	pr_debug("CPU %*pbl: Core Boosting %sabled.\n",
 134		 cpumask_pr_args(policy->cpus), val ? "en" : "dis");
 135
 136	return 0;
 137}
 138
 139static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
 140{
 141	struct acpi_cpufreq_data *data = policy->driver_data;
 142
 143	if (unlikely(!data))
 144		return -ENODEV;
 145
 146	return cpufreq_show_cpus(data->freqdomain_cpus, buf);
 147}
 148
 149cpufreq_freq_attr_ro(freqdomain_cpus);
 150
 151#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
 152static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
 153			 size_t count)
 154{
 155	int ret;
 156	unsigned int val = 0;
 157
 158	if (!acpi_cpufreq_driver.set_boost)
 159		return -EINVAL;
 160
 161	ret = kstrtouint(buf, 10, &val);
 162	if (ret || val > 1)
 163		return -EINVAL;
 164
 165	get_online_cpus();
 166	set_boost(policy, val);
 167	put_online_cpus();
 168
 169	return count;
 170}
 171
 172static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
 173{
 174	return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
 175}
 176
 177cpufreq_freq_attr_rw(cpb);
 178#endif
 179
 180static int check_est_cpu(unsigned int cpuid)
 181{
 182	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
 183
 184	return cpu_has(cpu, X86_FEATURE_EST);
 185}
 186
 187static int check_amd_hwpstate_cpu(unsigned int cpuid)
 188{
 189	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
 190
 191	return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
 192}
 193
 194static unsigned extract_io(struct cpufreq_policy *policy, u32 value)
 195{
 196	struct acpi_cpufreq_data *data = policy->driver_data;
 197	struct acpi_processor_performance *perf;
 198	int i;
 199
 200	perf = to_perf_data(data);
 201
 202	for (i = 0; i < perf->state_count; i++) {
 203		if (value == perf->states[i].status)
 204			return policy->freq_table[i].frequency;
 205	}
 206	return 0;
 207}
 208
 209static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr)
 210{
 211	struct acpi_cpufreq_data *data = policy->driver_data;
 212	struct cpufreq_frequency_table *pos;
 213	struct acpi_processor_performance *perf;
 214
 215	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
 216		msr &= AMD_MSR_RANGE;
 217	else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
 218		msr &= HYGON_MSR_RANGE;
 219	else
 220		msr &= INTEL_MSR_RANGE;
 221
 222	perf = to_perf_data(data);
 223
 224	cpufreq_for_each_entry(pos, policy->freq_table)
 225		if (msr == perf->states[pos->driver_data].status)
 226			return pos->frequency;
 227	return policy->freq_table[0].frequency;
 228}
 229
 230static unsigned extract_freq(struct cpufreq_policy *policy, u32 val)
 231{
 232	struct acpi_cpufreq_data *data = policy->driver_data;
 233
 234	switch (data->cpu_feature) {
 235	case SYSTEM_INTEL_MSR_CAPABLE:
 236	case SYSTEM_AMD_MSR_CAPABLE:
 237		return extract_msr(policy, val);
 238	case SYSTEM_IO_CAPABLE:
 239		return extract_io(policy, val);
 240	default:
 241		return 0;
 242	}
 243}
 244
 245static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
 246{
 247	u32 val, dummy __always_unused;
 248
 249	rdmsr(MSR_IA32_PERF_CTL, val, dummy);
 250	return val;
 251}
 252
 253static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
 254{
 255	u32 lo, hi;
 256
 257	rdmsr(MSR_IA32_PERF_CTL, lo, hi);
 258	lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
 259	wrmsr(MSR_IA32_PERF_CTL, lo, hi);
 260}
 261
 262static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
 263{
 264	u32 val, dummy __always_unused;
 265
 266	rdmsr(MSR_AMD_PERF_CTL, val, dummy);
 267	return val;
 268}
 269
 270static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
 271{
 272	wrmsr(MSR_AMD_PERF_CTL, val, 0);
 273}
 274
 275static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
 276{
 277	u32 val;
 278
 279	acpi_os_read_port(reg->address, &val, reg->bit_width);
 280	return val;
 281}
 282
 283static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
 284{
 285	acpi_os_write_port(reg->address, val, reg->bit_width);
 286}
 287
 288struct drv_cmd {
 289	struct acpi_pct_register *reg;
 290	u32 val;
 291	union {
 292		void (*write)(struct acpi_pct_register *reg, u32 val);
 293		u32 (*read)(struct acpi_pct_register *reg);
 294	} func;
 295};
 296
 297/* Called via smp_call_function_single(), on the target CPU */
 298static void do_drv_read(void *_cmd)
 299{
 300	struct drv_cmd *cmd = _cmd;
 301
 302	cmd->val = cmd->func.read(cmd->reg);
 303}
 304
 305static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
 306{
 307	struct acpi_processor_performance *perf = to_perf_data(data);
 308	struct drv_cmd cmd = {
 309		.reg = &perf->control_register,
 310		.func.read = data->cpu_freq_read,
 311	};
 312	int err;
 313
 314	err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
 315	WARN_ON_ONCE(err);	/* smp_call_function_any() was buggy? */
 316	return cmd.val;
 317}
 318
 319/* Called via smp_call_function_many(), on the target CPUs */
 320static void do_drv_write(void *_cmd)
 321{
 322	struct drv_cmd *cmd = _cmd;
 323
 324	cmd->func.write(cmd->reg, cmd->val);
 325}
 326
 327static void drv_write(struct acpi_cpufreq_data *data,
 328		      const struct cpumask *mask, u32 val)
 329{
 330	struct acpi_processor_performance *perf = to_perf_data(data);
 331	struct drv_cmd cmd = {
 332		.reg = &perf->control_register,
 333		.val = val,
 334		.func.write = data->cpu_freq_write,
 335	};
 336	int this_cpu;
 337
 338	this_cpu = get_cpu();
 339	if (cpumask_test_cpu(this_cpu, mask))
 340		do_drv_write(&cmd);
 341
 342	smp_call_function_many(mask, do_drv_write, &cmd, 1);
 343	put_cpu();
 344}
 345
 346static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
 347{
 348	u32 val;
 349
 350	if (unlikely(cpumask_empty(mask)))
 351		return 0;
 352
 353	val = drv_read(data, mask);
 354
 355	pr_debug("%s = %u\n", __func__, val);
 356
 357	return val;
 358}
 359
 360static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
 361{
 362	struct acpi_cpufreq_data *data;
 363	struct cpufreq_policy *policy;
 364	unsigned int freq;
 365	unsigned int cached_freq;
 366
 367	pr_debug("%s (%d)\n", __func__, cpu);
 368
 369	policy = cpufreq_cpu_get_raw(cpu);
 370	if (unlikely(!policy))
 371		return 0;
 372
 373	data = policy->driver_data;
 374	if (unlikely(!data || !policy->freq_table))
 375		return 0;
 376
 377	cached_freq = policy->freq_table[to_perf_data(data)->state].frequency;
 378	freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data));
 379	if (freq != cached_freq) {
 380		/*
 381		 * The dreaded BIOS frequency change behind our back.
 382		 * Force set the frequency on next target call.
 383		 */
 384		data->resume = 1;
 385	}
 386
 387	pr_debug("cur freq = %u\n", freq);
 388
 389	return freq;
 390}
 391
 392static unsigned int check_freqs(struct cpufreq_policy *policy,
 393				const struct cpumask *mask, unsigned int freq)
 394{
 395	struct acpi_cpufreq_data *data = policy->driver_data;
 396	unsigned int cur_freq;
 397	unsigned int i;
 398
 399	for (i = 0; i < 100; i++) {
 400		cur_freq = extract_freq(policy, get_cur_val(mask, data));
 401		if (cur_freq == freq)
 402			return 1;
 403		udelay(10);
 404	}
 405	return 0;
 406}
 407
 408static int acpi_cpufreq_target(struct cpufreq_policy *policy,
 409			       unsigned int index)
 410{
 411	struct acpi_cpufreq_data *data = policy->driver_data;
 412	struct acpi_processor_performance *perf;
 413	const struct cpumask *mask;
 414	unsigned int next_perf_state = 0; /* Index into perf table */
 415	int result = 0;
 416
 417	if (unlikely(!data)) {
 418		return -ENODEV;
 419	}
 420
 421	perf = to_perf_data(data);
 422	next_perf_state = policy->freq_table[index].driver_data;
 423	if (perf->state == next_perf_state) {
 424		if (unlikely(data->resume)) {
 425			pr_debug("Called after resume, resetting to P%d\n",
 426				next_perf_state);
 427			data->resume = 0;
 428		} else {
 429			pr_debug("Already at target state (P%d)\n",
 430				next_perf_state);
 431			return 0;
 432		}
 433	}
 434
 435	/*
 436	 * The core won't allow CPUs to go away until the governor has been
 437	 * stopped, so we can rely on the stability of policy->cpus.
 438	 */
 439	mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
 440		cpumask_of(policy->cpu) : policy->cpus;
 441
 442	drv_write(data, mask, perf->states[next_perf_state].control);
 443
 444	if (acpi_pstate_strict) {
 445		if (!check_freqs(policy, mask,
 446				 policy->freq_table[index].frequency)) {
 447			pr_debug("%s (%d)\n", __func__, policy->cpu);
 448			result = -EAGAIN;
 449		}
 450	}
 451
 452	if (!result)
 453		perf->state = next_perf_state;
 454
 455	return result;
 456}
 457
 458static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy,
 459					     unsigned int target_freq)
 460{
 461	struct acpi_cpufreq_data *data = policy->driver_data;
 462	struct acpi_processor_performance *perf;
 463	struct cpufreq_frequency_table *entry;
 464	unsigned int next_perf_state, next_freq, index;
 465
 466	/*
 467	 * Find the closest frequency above target_freq.
 468	 */
 469	if (policy->cached_target_freq == target_freq)
 470		index = policy->cached_resolved_idx;
 471	else
 472		index = cpufreq_table_find_index_dl(policy, target_freq);
 473
 474	entry = &policy->freq_table[index];
 475	next_freq = entry->frequency;
 476	next_perf_state = entry->driver_data;
 477
 478	perf = to_perf_data(data);
 479	if (perf->state == next_perf_state) {
 480		if (unlikely(data->resume))
 481			data->resume = 0;
 482		else
 483			return next_freq;
 484	}
 485
 486	data->cpu_freq_write(&perf->control_register,
 487			     perf->states[next_perf_state].control);
 488	perf->state = next_perf_state;
 489	return next_freq;
 490}
 491
 492static unsigned long
 493acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
 494{
 495	struct acpi_processor_performance *perf;
 496
 497	perf = to_perf_data(data);
 498	if (cpu_khz) {
 499		/* search the closest match to cpu_khz */
 500		unsigned int i;
 501		unsigned long freq;
 502		unsigned long freqn = perf->states[0].core_frequency * 1000;
 503
 504		for (i = 0; i < (perf->state_count-1); i++) {
 505			freq = freqn;
 506			freqn = perf->states[i+1].core_frequency * 1000;
 507			if ((2 * cpu_khz) > (freqn + freq)) {
 508				perf->state = i;
 509				return freq;
 510			}
 511		}
 512		perf->state = perf->state_count-1;
 513		return freqn;
 514	} else {
 515		/* assume CPU is at P0... */
 516		perf->state = 0;
 517		return perf->states[0].core_frequency * 1000;
 518	}
 519}
 520
 521static void free_acpi_perf_data(void)
 522{
 523	unsigned int i;
 524
 525	/* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
 526	for_each_possible_cpu(i)
 527		free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
 528				 ->shared_cpu_map);
 529	free_percpu(acpi_perf_data);
 530}
 531
 532static int cpufreq_boost_online(unsigned int cpu)
 533{
 534	/*
 535	 * On the CPU_UP path we simply keep the boost-disable flag
 536	 * in sync with the current global state.
 537	 */
 538	return boost_set_msr(acpi_cpufreq_driver.boost_enabled);
 539}
 540
 541static int cpufreq_boost_down_prep(unsigned int cpu)
 542{
 543	/*
 544	 * Clear the boost-disable bit on the CPU_DOWN path so that
 545	 * this cpu cannot block the remaining ones from boosting.
 546	 */
 547	return boost_set_msr(1);
 548}
 549
 550/*
 551 * acpi_cpufreq_early_init - initialize ACPI P-States library
 552 *
 553 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
 554 * in order to determine correct frequency and voltage pairings. We can
 555 * do _PDC and _PSD and find out the processor dependency for the
 556 * actual init that will happen later...
 557 */
 558static int __init acpi_cpufreq_early_init(void)
 559{
 560	unsigned int i;
 561	pr_debug("%s\n", __func__);
 562
 563	acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
 564	if (!acpi_perf_data) {
 565		pr_debug("Memory allocation error for acpi_perf_data.\n");
 566		return -ENOMEM;
 567	}
 568	for_each_possible_cpu(i) {
 569		if (!zalloc_cpumask_var_node(
 570			&per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
 571			GFP_KERNEL, cpu_to_node(i))) {
 572
 573			/* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
 574			free_acpi_perf_data();
 575			return -ENOMEM;
 576		}
 577	}
 578
 579	/* Do initialization in ACPI core */
 580	acpi_processor_preregister_performance(acpi_perf_data);
 581	return 0;
 582}
 583
 584#ifdef CONFIG_SMP
 585/*
 586 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
 587 * or do it in BIOS firmware and won't inform about it to OS. If not
 588 * detected, this has a side effect of making CPU run at a different speed
 589 * than OS intended it to run at. Detect it and handle it cleanly.
 590 */
 591static int bios_with_sw_any_bug;
 592
 593static int sw_any_bug_found(const struct dmi_system_id *d)
 594{
 595	bios_with_sw_any_bug = 1;
 596	return 0;
 597}
 598
 599static const struct dmi_system_id sw_any_bug_dmi_table[] = {
 600	{
 601		.callback = sw_any_bug_found,
 602		.ident = "Supermicro Server X6DLP",
 603		.matches = {
 604			DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
 605			DMI_MATCH(DMI_BIOS_VERSION, "080010"),
 606			DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
 607		},
 608	},
 609	{ }
 610};
 611
 612static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
 613{
 614	/* Intel Xeon Processor 7100 Series Specification Update
 615	 * https://www.intel.com/Assets/PDF/specupdate/314554.pdf
 616	 * AL30: A Machine Check Exception (MCE) Occurring during an
 617	 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
 618	 * Both Processor Cores to Lock Up. */
 619	if (c->x86_vendor == X86_VENDOR_INTEL) {
 620		if ((c->x86 == 15) &&
 621		    (c->x86_model == 6) &&
 622		    (c->x86_stepping == 8)) {
 623			pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n");
 624			return -ENODEV;
 625		    }
 626		}
 627	return 0;
 628}
 629#endif
 630
 631static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
 632{
 633	unsigned int i;
 634	unsigned int valid_states = 0;
 635	unsigned int cpu = policy->cpu;
 636	struct acpi_cpufreq_data *data;
 637	unsigned int result = 0;
 638	struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
 639	struct acpi_processor_performance *perf;
 640	struct cpufreq_frequency_table *freq_table;
 641#ifdef CONFIG_SMP
 642	static int blacklisted;
 643#endif
 644
 645	pr_debug("%s\n", __func__);
 646
 647#ifdef CONFIG_SMP
 648	if (blacklisted)
 649		return blacklisted;
 650	blacklisted = acpi_cpufreq_blacklist(c);
 651	if (blacklisted)
 652		return blacklisted;
 653#endif
 654
 655	data = kzalloc(sizeof(*data), GFP_KERNEL);
 656	if (!data)
 657		return -ENOMEM;
 658
 659	if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
 660		result = -ENOMEM;
 661		goto err_free;
 662	}
 663
 664	perf = per_cpu_ptr(acpi_perf_data, cpu);
 665	data->acpi_perf_cpu = cpu;
 666	policy->driver_data = data;
 667
 668	if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
 669		acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
 670
 671	result = acpi_processor_register_performance(perf, cpu);
 672	if (result)
 673		goto err_free_mask;
 674
 675	policy->shared_type = perf->shared_type;
 676
 677	/*
 678	 * Will let policy->cpus know about dependency only when software
 679	 * coordination is required.
 680	 */
 681	if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
 682	    policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
 683		cpumask_copy(policy->cpus, perf->shared_cpu_map);
 684	}
 685	cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
 686
 687#ifdef CONFIG_SMP
 688	dmi_check_system(sw_any_bug_dmi_table);
 689	if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
 690		policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
 691		cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
 692	}
 693
 694	if (check_amd_hwpstate_cpu(cpu) && !acpi_pstate_strict) {
 695		cpumask_clear(policy->cpus);
 696		cpumask_set_cpu(cpu, policy->cpus);
 697		cpumask_copy(data->freqdomain_cpus,
 698			     topology_sibling_cpumask(cpu));
 699		policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
 700		pr_info_once("overriding BIOS provided _PSD data\n");
 701	}
 702#endif
 703
 704	/* capability check */
 705	if (perf->state_count <= 1) {
 706		pr_debug("No P-States\n");
 707		result = -ENODEV;
 708		goto err_unreg;
 709	}
 710
 711	if (perf->control_register.space_id != perf->status_register.space_id) {
 712		result = -ENODEV;
 713		goto err_unreg;
 714	}
 715
 716	switch (perf->control_register.space_id) {
 717	case ACPI_ADR_SPACE_SYSTEM_IO:
 718		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
 719		    boot_cpu_data.x86 == 0xf) {
 720			pr_debug("AMD K8 systems must use native drivers.\n");
 721			result = -ENODEV;
 722			goto err_unreg;
 723		}
 724		pr_debug("SYSTEM IO addr space\n");
 725		data->cpu_feature = SYSTEM_IO_CAPABLE;
 726		data->cpu_freq_read = cpu_freq_read_io;
 727		data->cpu_freq_write = cpu_freq_write_io;
 728		break;
 729	case ACPI_ADR_SPACE_FIXED_HARDWARE:
 730		pr_debug("HARDWARE addr space\n");
 731		if (check_est_cpu(cpu)) {
 732			data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
 733			data->cpu_freq_read = cpu_freq_read_intel;
 734			data->cpu_freq_write = cpu_freq_write_intel;
 735			break;
 736		}
 737		if (check_amd_hwpstate_cpu(cpu)) {
 738			data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
 739			data->cpu_freq_read = cpu_freq_read_amd;
 740			data->cpu_freq_write = cpu_freq_write_amd;
 741			break;
 742		}
 743		result = -ENODEV;
 744		goto err_unreg;
 745	default:
 746		pr_debug("Unknown addr space %d\n",
 747			(u32) (perf->control_register.space_id));
 748		result = -ENODEV;
 749		goto err_unreg;
 750	}
 751
 752	freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table),
 753			     GFP_KERNEL);
 754	if (!freq_table) {
 755		result = -ENOMEM;
 756		goto err_unreg;
 757	}
 758
 759	/* detect transition latency */
 760	policy->cpuinfo.transition_latency = 0;
 761	for (i = 0; i < perf->state_count; i++) {
 762		if ((perf->states[i].transition_latency * 1000) >
 763		    policy->cpuinfo.transition_latency)
 764			policy->cpuinfo.transition_latency =
 765			    perf->states[i].transition_latency * 1000;
 766	}
 767
 768	/* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
 769	if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
 770	    policy->cpuinfo.transition_latency > 20 * 1000) {
 771		policy->cpuinfo.transition_latency = 20 * 1000;
 772		pr_info_once("P-state transition latency capped at 20 uS\n");
 773	}
 774
 775	/* table init */
 776	for (i = 0; i < perf->state_count; i++) {
 777		if (i > 0 && perf->states[i].core_frequency >=
 778		    freq_table[valid_states-1].frequency / 1000)
 779			continue;
 780
 781		freq_table[valid_states].driver_data = i;
 782		freq_table[valid_states].frequency =
 783		    perf->states[i].core_frequency * 1000;
 784		valid_states++;
 785	}
 786	freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
 787	policy->freq_table = freq_table;
 788	perf->state = 0;
 789
 790	switch (perf->control_register.space_id) {
 791	case ACPI_ADR_SPACE_SYSTEM_IO:
 792		/*
 793		 * The core will not set policy->cur, because
 794		 * cpufreq_driver->get is NULL, so we need to set it here.
 795		 * However, we have to guess it, because the current speed is
 796		 * unknown and not detectable via IO ports.
 797		 */
 798		policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
 799		break;
 800	case ACPI_ADR_SPACE_FIXED_HARDWARE:
 801		acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
 802		break;
 803	default:
 804		break;
 805	}
 806
 807	/* notify BIOS that we exist */
 808	acpi_processor_notify_smm(THIS_MODULE);
 809
 810	pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
 811	for (i = 0; i < perf->state_count; i++)
 812		pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
 813			(i == perf->state ? '*' : ' '), i,
 814			(u32) perf->states[i].core_frequency,
 815			(u32) perf->states[i].power,
 816			(u32) perf->states[i].transition_latency);
 817
 818	/*
 819	 * the first call to ->target() should result in us actually
 820	 * writing something to the appropriate registers.
 821	 */
 822	data->resume = 1;
 823
 824	policy->fast_switch_possible = !acpi_pstate_strict &&
 825		!(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY);
 826
 827	return result;
 828
 829err_unreg:
 830	acpi_processor_unregister_performance(cpu);
 831err_free_mask:
 832	free_cpumask_var(data->freqdomain_cpus);
 833err_free:
 834	kfree(data);
 835	policy->driver_data = NULL;
 836
 837	return result;
 838}
 839
 840static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
 841{
 842	struct acpi_cpufreq_data *data = policy->driver_data;
 843
 844	pr_debug("%s\n", __func__);
 845
 846	policy->fast_switch_possible = false;
 847	policy->driver_data = NULL;
 848	acpi_processor_unregister_performance(data->acpi_perf_cpu);
 849	free_cpumask_var(data->freqdomain_cpus);
 850	kfree(policy->freq_table);
 851	kfree(data);
 852
 853	return 0;
 854}
 855
 856static void acpi_cpufreq_cpu_ready(struct cpufreq_policy *policy)
 857{
 858	struct acpi_processor_performance *perf = per_cpu_ptr(acpi_perf_data,
 859							      policy->cpu);
 860
 861	if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
 862		pr_warn(FW_WARN "P-state 0 is not max freq\n");
 863}
 864
 865static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
 866{
 867	struct acpi_cpufreq_data *data = policy->driver_data;
 868
 869	pr_debug("%s\n", __func__);
 870
 871	data->resume = 1;
 872
 873	return 0;
 874}
 875
 876static struct freq_attr *acpi_cpufreq_attr[] = {
 877	&cpufreq_freq_attr_scaling_available_freqs,
 878	&freqdomain_cpus,
 879#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
 880	&cpb,
 881#endif
 882	NULL,
 883};
 884
 885static struct cpufreq_driver acpi_cpufreq_driver = {
 886	.verify		= cpufreq_generic_frequency_table_verify,
 887	.target_index	= acpi_cpufreq_target,
 888	.fast_switch	= acpi_cpufreq_fast_switch,
 889	.bios_limit	= acpi_processor_get_bios_limit,
 890	.init		= acpi_cpufreq_cpu_init,
 891	.exit		= acpi_cpufreq_cpu_exit,
 892	.ready		= acpi_cpufreq_cpu_ready,
 893	.resume		= acpi_cpufreq_resume,
 894	.name		= "acpi-cpufreq",
 895	.attr		= acpi_cpufreq_attr,
 896};
 897
 898static enum cpuhp_state acpi_cpufreq_online;
 899
 900static void __init acpi_cpufreq_boost_init(void)
 901{
 902	int ret;
 903
 904	if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) {
 905		pr_debug("Boost capabilities not present in the processor\n");
 906		return;
 907	}
 908
 909	acpi_cpufreq_driver.set_boost = set_boost;
 910	acpi_cpufreq_driver.boost_enabled = boost_state(0);
 911
 912	/*
 913	 * This calls the online callback on all online cpu and forces all
 914	 * MSRs to the same value.
 915	 */
 916	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "cpufreq/acpi:online",
 917				cpufreq_boost_online, cpufreq_boost_down_prep);
 918	if (ret < 0) {
 919		pr_err("acpi_cpufreq: failed to register hotplug callbacks\n");
 920		return;
 921	}
 922	acpi_cpufreq_online = ret;
 923}
 924
 925static void acpi_cpufreq_boost_exit(void)
 926{
 927	if (acpi_cpufreq_online > 0)
 928		cpuhp_remove_state_nocalls(acpi_cpufreq_online);
 929}
 930
 931static int __init acpi_cpufreq_init(void)
 932{
 933	int ret;
 934
 935	if (acpi_disabled)
 936		return -ENODEV;
 937
 938	/* don't keep reloading if cpufreq_driver exists */
 939	if (cpufreq_get_current_driver())
 940		return -EEXIST;
 941
 942	pr_debug("%s\n", __func__);
 943
 944	ret = acpi_cpufreq_early_init();
 945	if (ret)
 946		return ret;
 947
 948#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
 949	/* this is a sysfs file with a strange name and an even stranger
 950	 * semantic - per CPU instantiation, but system global effect.
 951	 * Lets enable it only on AMD CPUs for compatibility reasons and
 952	 * only if configured. This is considered legacy code, which
 953	 * will probably be removed at some point in the future.
 954	 */
 955	if (!check_amd_hwpstate_cpu(0)) {
 956		struct freq_attr **attr;
 957
 958		pr_debug("CPB unsupported, do not expose it\n");
 959
 960		for (attr = acpi_cpufreq_attr; *attr; attr++)
 961			if (*attr == &cpb) {
 962				*attr = NULL;
 963				break;
 964			}
 965	}
 966#endif
 967	acpi_cpufreq_boost_init();
 968
 969	ret = cpufreq_register_driver(&acpi_cpufreq_driver);
 970	if (ret) {
 971		free_acpi_perf_data();
 972		acpi_cpufreq_boost_exit();
 973	}
 974	return ret;
 975}
 976
 977static void __exit acpi_cpufreq_exit(void)
 978{
 979	pr_debug("%s\n", __func__);
 980
 981	acpi_cpufreq_boost_exit();
 982
 983	cpufreq_unregister_driver(&acpi_cpufreq_driver);
 984
 985	free_acpi_perf_data();
 986}
 987
 988module_param(acpi_pstate_strict, uint, 0644);
 989MODULE_PARM_DESC(acpi_pstate_strict,
 990	"value 0 or non-zero. non-zero -> strict ACPI checks are "
 991	"performed during frequency changes.");
 992
 993late_initcall(acpi_cpufreq_init);
 994module_exit(acpi_cpufreq_exit);
 995
 996static const struct x86_cpu_id __maybe_unused acpi_cpufreq_ids[] = {
 997	X86_MATCH_FEATURE(X86_FEATURE_ACPI, NULL),
 998	X86_MATCH_FEATURE(X86_FEATURE_HW_PSTATE, NULL),
 999	{}
1000};
1001MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
1002
1003static const struct acpi_device_id __maybe_unused processor_device_ids[] = {
1004	{ACPI_PROCESSOR_OBJECT_HID, },
1005	{ACPI_PROCESSOR_DEVICE_HID, },
1006	{},
1007};
1008MODULE_DEVICE_TABLE(acpi, processor_device_ids);
1009
1010MODULE_ALIAS("acpi");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * acpi-cpufreq.c - ACPI Processor P-States Driver
   4 *
   5 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   6 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   7 *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
   8 *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/kernel.h>
  14#include <linux/module.h>
  15#include <linux/init.h>
  16#include <linux/smp.h>
  17#include <linux/sched.h>
  18#include <linux/cpufreq.h>
  19#include <linux/compiler.h>
  20#include <linux/dmi.h>
  21#include <linux/slab.h>
  22
  23#include <linux/acpi.h>
  24#include <linux/io.h>
  25#include <linux/delay.h>
  26#include <linux/uaccess.h>
  27
  28#include <acpi/processor.h>
  29
  30#include <asm/msr.h>
  31#include <asm/processor.h>
  32#include <asm/cpufeature.h>
 
  33
  34MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
  35MODULE_DESCRIPTION("ACPI Processor P-States Driver");
  36MODULE_LICENSE("GPL");
  37
  38enum {
  39	UNDEFINED_CAPABLE = 0,
  40	SYSTEM_INTEL_MSR_CAPABLE,
  41	SYSTEM_AMD_MSR_CAPABLE,
  42	SYSTEM_IO_CAPABLE,
  43};
  44
  45#define INTEL_MSR_RANGE		(0xffff)
  46#define AMD_MSR_RANGE		(0x7)
  47#define HYGON_MSR_RANGE		(0x7)
  48
  49#define MSR_K7_HWCR_CPB_DIS	(1ULL << 25)
  50
  51struct acpi_cpufreq_data {
  52	unsigned int resume;
  53	unsigned int cpu_feature;
  54	unsigned int acpi_perf_cpu;
  55	cpumask_var_t freqdomain_cpus;
  56	void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
  57	u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
  58};
  59
  60/* acpi_perf_data is a pointer to percpu data. */
  61static struct acpi_processor_performance __percpu *acpi_perf_data;
  62
  63static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
  64{
  65	return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
  66}
  67
  68static struct cpufreq_driver acpi_cpufreq_driver;
  69
  70static unsigned int acpi_pstate_strict;
  71
  72static bool boost_state(unsigned int cpu)
  73{
  74	u32 lo, hi;
  75	u64 msr;
  76
  77	switch (boot_cpu_data.x86_vendor) {
  78	case X86_VENDOR_INTEL:
  79		rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
  80		msr = lo | ((u64)hi << 32);
  81		return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
  82	case X86_VENDOR_HYGON:
  83	case X86_VENDOR_AMD:
  84		rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
  85		msr = lo | ((u64)hi << 32);
  86		return !(msr & MSR_K7_HWCR_CPB_DIS);
  87	}
  88	return false;
  89}
  90
  91static int boost_set_msr(bool enable)
  92{
  93	u32 msr_addr;
  94	u64 msr_mask, val;
  95
  96	switch (boot_cpu_data.x86_vendor) {
  97	case X86_VENDOR_INTEL:
  98		msr_addr = MSR_IA32_MISC_ENABLE;
  99		msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
 100		break;
 101	case X86_VENDOR_HYGON:
 102	case X86_VENDOR_AMD:
 103		msr_addr = MSR_K7_HWCR;
 104		msr_mask = MSR_K7_HWCR_CPB_DIS;
 105		break;
 106	default:
 107		return -EINVAL;
 108	}
 109
 110	rdmsrl(msr_addr, val);
 111
 112	if (enable)
 113		val &= ~msr_mask;
 114	else
 115		val |= msr_mask;
 116
 117	wrmsrl(msr_addr, val);
 118	return 0;
 119}
 120
 121static void boost_set_msr_each(void *p_en)
 122{
 123	bool enable = (bool) p_en;
 124
 125	boost_set_msr(enable);
 126}
 127
 128static int set_boost(int val)
 129{
 130	get_online_cpus();
 131	on_each_cpu(boost_set_msr_each, (void *)(long)val, 1);
 132	put_online_cpus();
 133	pr_debug("Core Boosting %sabled.\n", val ? "en" : "dis");
 134
 135	return 0;
 136}
 137
 138static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
 139{
 140	struct acpi_cpufreq_data *data = policy->driver_data;
 141
 142	if (unlikely(!data))
 143		return -ENODEV;
 144
 145	return cpufreq_show_cpus(data->freqdomain_cpus, buf);
 146}
 147
 148cpufreq_freq_attr_ro(freqdomain_cpus);
 149
 150#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
 151static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
 152			 size_t count)
 153{
 154	int ret;
 155	unsigned int val = 0;
 156
 157	if (!acpi_cpufreq_driver.set_boost)
 158		return -EINVAL;
 159
 160	ret = kstrtouint(buf, 10, &val);
 161	if (ret || val > 1)
 162		return -EINVAL;
 163
 164	set_boost(val);
 
 
 165
 166	return count;
 167}
 168
 169static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
 170{
 171	return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
 172}
 173
 174cpufreq_freq_attr_rw(cpb);
 175#endif
 176
 177static int check_est_cpu(unsigned int cpuid)
 178{
 179	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
 180
 181	return cpu_has(cpu, X86_FEATURE_EST);
 182}
 183
 184static int check_amd_hwpstate_cpu(unsigned int cpuid)
 185{
 186	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
 187
 188	return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
 189}
 190
 191static unsigned extract_io(struct cpufreq_policy *policy, u32 value)
 192{
 193	struct acpi_cpufreq_data *data = policy->driver_data;
 194	struct acpi_processor_performance *perf;
 195	int i;
 196
 197	perf = to_perf_data(data);
 198
 199	for (i = 0; i < perf->state_count; i++) {
 200		if (value == perf->states[i].status)
 201			return policy->freq_table[i].frequency;
 202	}
 203	return 0;
 204}
 205
 206static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr)
 207{
 208	struct acpi_cpufreq_data *data = policy->driver_data;
 209	struct cpufreq_frequency_table *pos;
 210	struct acpi_processor_performance *perf;
 211
 212	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
 213		msr &= AMD_MSR_RANGE;
 214	else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
 215		msr &= HYGON_MSR_RANGE;
 216	else
 217		msr &= INTEL_MSR_RANGE;
 218
 219	perf = to_perf_data(data);
 220
 221	cpufreq_for_each_entry(pos, policy->freq_table)
 222		if (msr == perf->states[pos->driver_data].status)
 223			return pos->frequency;
 224	return policy->freq_table[0].frequency;
 225}
 226
 227static unsigned extract_freq(struct cpufreq_policy *policy, u32 val)
 228{
 229	struct acpi_cpufreq_data *data = policy->driver_data;
 230
 231	switch (data->cpu_feature) {
 232	case SYSTEM_INTEL_MSR_CAPABLE:
 233	case SYSTEM_AMD_MSR_CAPABLE:
 234		return extract_msr(policy, val);
 235	case SYSTEM_IO_CAPABLE:
 236		return extract_io(policy, val);
 237	default:
 238		return 0;
 239	}
 240}
 241
 242static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
 243{
 244	u32 val, dummy;
 245
 246	rdmsr(MSR_IA32_PERF_CTL, val, dummy);
 247	return val;
 248}
 249
 250static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
 251{
 252	u32 lo, hi;
 253
 254	rdmsr(MSR_IA32_PERF_CTL, lo, hi);
 255	lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
 256	wrmsr(MSR_IA32_PERF_CTL, lo, hi);
 257}
 258
 259static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
 260{
 261	u32 val, dummy;
 262
 263	rdmsr(MSR_AMD_PERF_CTL, val, dummy);
 264	return val;
 265}
 266
 267static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
 268{
 269	wrmsr(MSR_AMD_PERF_CTL, val, 0);
 270}
 271
 272static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
 273{
 274	u32 val;
 275
 276	acpi_os_read_port(reg->address, &val, reg->bit_width);
 277	return val;
 278}
 279
 280static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
 281{
 282	acpi_os_write_port(reg->address, val, reg->bit_width);
 283}
 284
 285struct drv_cmd {
 286	struct acpi_pct_register *reg;
 287	u32 val;
 288	union {
 289		void (*write)(struct acpi_pct_register *reg, u32 val);
 290		u32 (*read)(struct acpi_pct_register *reg);
 291	} func;
 292};
 293
 294/* Called via smp_call_function_single(), on the target CPU */
 295static void do_drv_read(void *_cmd)
 296{
 297	struct drv_cmd *cmd = _cmd;
 298
 299	cmd->val = cmd->func.read(cmd->reg);
 300}
 301
 302static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
 303{
 304	struct acpi_processor_performance *perf = to_perf_data(data);
 305	struct drv_cmd cmd = {
 306		.reg = &perf->control_register,
 307		.func.read = data->cpu_freq_read,
 308	};
 309	int err;
 310
 311	err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
 312	WARN_ON_ONCE(err);	/* smp_call_function_any() was buggy? */
 313	return cmd.val;
 314}
 315
 316/* Called via smp_call_function_many(), on the target CPUs */
 317static void do_drv_write(void *_cmd)
 318{
 319	struct drv_cmd *cmd = _cmd;
 320
 321	cmd->func.write(cmd->reg, cmd->val);
 322}
 323
 324static void drv_write(struct acpi_cpufreq_data *data,
 325		      const struct cpumask *mask, u32 val)
 326{
 327	struct acpi_processor_performance *perf = to_perf_data(data);
 328	struct drv_cmd cmd = {
 329		.reg = &perf->control_register,
 330		.val = val,
 331		.func.write = data->cpu_freq_write,
 332	};
 333	int this_cpu;
 334
 335	this_cpu = get_cpu();
 336	if (cpumask_test_cpu(this_cpu, mask))
 337		do_drv_write(&cmd);
 338
 339	smp_call_function_many(mask, do_drv_write, &cmd, 1);
 340	put_cpu();
 341}
 342
 343static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
 344{
 345	u32 val;
 346
 347	if (unlikely(cpumask_empty(mask)))
 348		return 0;
 349
 350	val = drv_read(data, mask);
 351
 352	pr_debug("%s = %u\n", __func__, val);
 353
 354	return val;
 355}
 356
 357static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
 358{
 359	struct acpi_cpufreq_data *data;
 360	struct cpufreq_policy *policy;
 361	unsigned int freq;
 362	unsigned int cached_freq;
 363
 364	pr_debug("%s (%d)\n", __func__, cpu);
 365
 366	policy = cpufreq_cpu_get_raw(cpu);
 367	if (unlikely(!policy))
 368		return 0;
 369
 370	data = policy->driver_data;
 371	if (unlikely(!data || !policy->freq_table))
 372		return 0;
 373
 374	cached_freq = policy->freq_table[to_perf_data(data)->state].frequency;
 375	freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data));
 376	if (freq != cached_freq) {
 377		/*
 378		 * The dreaded BIOS frequency change behind our back.
 379		 * Force set the frequency on next target call.
 380		 */
 381		data->resume = 1;
 382	}
 383
 384	pr_debug("cur freq = %u\n", freq);
 385
 386	return freq;
 387}
 388
 389static unsigned int check_freqs(struct cpufreq_policy *policy,
 390				const struct cpumask *mask, unsigned int freq)
 391{
 392	struct acpi_cpufreq_data *data = policy->driver_data;
 393	unsigned int cur_freq;
 394	unsigned int i;
 395
 396	for (i = 0; i < 100; i++) {
 397		cur_freq = extract_freq(policy, get_cur_val(mask, data));
 398		if (cur_freq == freq)
 399			return 1;
 400		udelay(10);
 401	}
 402	return 0;
 403}
 404
 405static int acpi_cpufreq_target(struct cpufreq_policy *policy,
 406			       unsigned int index)
 407{
 408	struct acpi_cpufreq_data *data = policy->driver_data;
 409	struct acpi_processor_performance *perf;
 410	const struct cpumask *mask;
 411	unsigned int next_perf_state = 0; /* Index into perf table */
 412	int result = 0;
 413
 414	if (unlikely(!data)) {
 415		return -ENODEV;
 416	}
 417
 418	perf = to_perf_data(data);
 419	next_perf_state = policy->freq_table[index].driver_data;
 420	if (perf->state == next_perf_state) {
 421		if (unlikely(data->resume)) {
 422			pr_debug("Called after resume, resetting to P%d\n",
 423				next_perf_state);
 424			data->resume = 0;
 425		} else {
 426			pr_debug("Already at target state (P%d)\n",
 427				next_perf_state);
 428			return 0;
 429		}
 430	}
 431
 432	/*
 433	 * The core won't allow CPUs to go away until the governor has been
 434	 * stopped, so we can rely on the stability of policy->cpus.
 435	 */
 436	mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
 437		cpumask_of(policy->cpu) : policy->cpus;
 438
 439	drv_write(data, mask, perf->states[next_perf_state].control);
 440
 441	if (acpi_pstate_strict) {
 442		if (!check_freqs(policy, mask,
 443				 policy->freq_table[index].frequency)) {
 444			pr_debug("%s (%d)\n", __func__, policy->cpu);
 445			result = -EAGAIN;
 446		}
 447	}
 448
 449	if (!result)
 450		perf->state = next_perf_state;
 451
 452	return result;
 453}
 454
 455static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy,
 456					     unsigned int target_freq)
 457{
 458	struct acpi_cpufreq_data *data = policy->driver_data;
 459	struct acpi_processor_performance *perf;
 460	struct cpufreq_frequency_table *entry;
 461	unsigned int next_perf_state, next_freq, index;
 462
 463	/*
 464	 * Find the closest frequency above target_freq.
 465	 */
 466	if (policy->cached_target_freq == target_freq)
 467		index = policy->cached_resolved_idx;
 468	else
 469		index = cpufreq_table_find_index_dl(policy, target_freq);
 470
 471	entry = &policy->freq_table[index];
 472	next_freq = entry->frequency;
 473	next_perf_state = entry->driver_data;
 474
 475	perf = to_perf_data(data);
 476	if (perf->state == next_perf_state) {
 477		if (unlikely(data->resume))
 478			data->resume = 0;
 479		else
 480			return next_freq;
 481	}
 482
 483	data->cpu_freq_write(&perf->control_register,
 484			     perf->states[next_perf_state].control);
 485	perf->state = next_perf_state;
 486	return next_freq;
 487}
 488
 489static unsigned long
 490acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
 491{
 492	struct acpi_processor_performance *perf;
 493
 494	perf = to_perf_data(data);
 495	if (cpu_khz) {
 496		/* search the closest match to cpu_khz */
 497		unsigned int i;
 498		unsigned long freq;
 499		unsigned long freqn = perf->states[0].core_frequency * 1000;
 500
 501		for (i = 0; i < (perf->state_count-1); i++) {
 502			freq = freqn;
 503			freqn = perf->states[i+1].core_frequency * 1000;
 504			if ((2 * cpu_khz) > (freqn + freq)) {
 505				perf->state = i;
 506				return freq;
 507			}
 508		}
 509		perf->state = perf->state_count-1;
 510		return freqn;
 511	} else {
 512		/* assume CPU is at P0... */
 513		perf->state = 0;
 514		return perf->states[0].core_frequency * 1000;
 515	}
 516}
 517
 518static void free_acpi_perf_data(void)
 519{
 520	unsigned int i;
 521
 522	/* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
 523	for_each_possible_cpu(i)
 524		free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
 525				 ->shared_cpu_map);
 526	free_percpu(acpi_perf_data);
 527}
 528
 529static int cpufreq_boost_online(unsigned int cpu)
 530{
 531	/*
 532	 * On the CPU_UP path we simply keep the boost-disable flag
 533	 * in sync with the current global state.
 534	 */
 535	return boost_set_msr(acpi_cpufreq_driver.boost_enabled);
 536}
 537
 538static int cpufreq_boost_down_prep(unsigned int cpu)
 539{
 540	/*
 541	 * Clear the boost-disable bit on the CPU_DOWN path so that
 542	 * this cpu cannot block the remaining ones from boosting.
 543	 */
 544	return boost_set_msr(1);
 545}
 546
 547/*
 548 * acpi_cpufreq_early_init - initialize ACPI P-States library
 549 *
 550 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
 551 * in order to determine correct frequency and voltage pairings. We can
 552 * do _PDC and _PSD and find out the processor dependency for the
 553 * actual init that will happen later...
 554 */
 555static int __init acpi_cpufreq_early_init(void)
 556{
 557	unsigned int i;
 558	pr_debug("%s\n", __func__);
 559
 560	acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
 561	if (!acpi_perf_data) {
 562		pr_debug("Memory allocation error for acpi_perf_data.\n");
 563		return -ENOMEM;
 564	}
 565	for_each_possible_cpu(i) {
 566		if (!zalloc_cpumask_var_node(
 567			&per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
 568			GFP_KERNEL, cpu_to_node(i))) {
 569
 570			/* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
 571			free_acpi_perf_data();
 572			return -ENOMEM;
 573		}
 574	}
 575
 576	/* Do initialization in ACPI core */
 577	acpi_processor_preregister_performance(acpi_perf_data);
 578	return 0;
 579}
 580
 581#ifdef CONFIG_SMP
 582/*
 583 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
 584 * or do it in BIOS firmware and won't inform about it to OS. If not
 585 * detected, this has a side effect of making CPU run at a different speed
 586 * than OS intended it to run at. Detect it and handle it cleanly.
 587 */
 588static int bios_with_sw_any_bug;
 589
 590static int sw_any_bug_found(const struct dmi_system_id *d)
 591{
 592	bios_with_sw_any_bug = 1;
 593	return 0;
 594}
 595
 596static const struct dmi_system_id sw_any_bug_dmi_table[] = {
 597	{
 598		.callback = sw_any_bug_found,
 599		.ident = "Supermicro Server X6DLP",
 600		.matches = {
 601			DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
 602			DMI_MATCH(DMI_BIOS_VERSION, "080010"),
 603			DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
 604		},
 605	},
 606	{ }
 607};
 608
 609static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
 610{
 611	/* Intel Xeon Processor 7100 Series Specification Update
 612	 * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
 613	 * AL30: A Machine Check Exception (MCE) Occurring during an
 614	 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
 615	 * Both Processor Cores to Lock Up. */
 616	if (c->x86_vendor == X86_VENDOR_INTEL) {
 617		if ((c->x86 == 15) &&
 618		    (c->x86_model == 6) &&
 619		    (c->x86_stepping == 8)) {
 620			pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n");
 621			return -ENODEV;
 622		    }
 623		}
 624	return 0;
 625}
 626#endif
 627
 628static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
 629{
 630	unsigned int i;
 631	unsigned int valid_states = 0;
 632	unsigned int cpu = policy->cpu;
 633	struct acpi_cpufreq_data *data;
 634	unsigned int result = 0;
 635	struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
 636	struct acpi_processor_performance *perf;
 637	struct cpufreq_frequency_table *freq_table;
 638#ifdef CONFIG_SMP
 639	static int blacklisted;
 640#endif
 641
 642	pr_debug("%s\n", __func__);
 643
 644#ifdef CONFIG_SMP
 645	if (blacklisted)
 646		return blacklisted;
 647	blacklisted = acpi_cpufreq_blacklist(c);
 648	if (blacklisted)
 649		return blacklisted;
 650#endif
 651
 652	data = kzalloc(sizeof(*data), GFP_KERNEL);
 653	if (!data)
 654		return -ENOMEM;
 655
 656	if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
 657		result = -ENOMEM;
 658		goto err_free;
 659	}
 660
 661	perf = per_cpu_ptr(acpi_perf_data, cpu);
 662	data->acpi_perf_cpu = cpu;
 663	policy->driver_data = data;
 664
 665	if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
 666		acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
 667
 668	result = acpi_processor_register_performance(perf, cpu);
 669	if (result)
 670		goto err_free_mask;
 671
 672	policy->shared_type = perf->shared_type;
 673
 674	/*
 675	 * Will let policy->cpus know about dependency only when software
 676	 * coordination is required.
 677	 */
 678	if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
 679	    policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
 680		cpumask_copy(policy->cpus, perf->shared_cpu_map);
 681	}
 682	cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
 683
 684#ifdef CONFIG_SMP
 685	dmi_check_system(sw_any_bug_dmi_table);
 686	if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
 687		policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
 688		cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
 689	}
 690
 691	if (check_amd_hwpstate_cpu(cpu) && !acpi_pstate_strict) {
 692		cpumask_clear(policy->cpus);
 693		cpumask_set_cpu(cpu, policy->cpus);
 694		cpumask_copy(data->freqdomain_cpus,
 695			     topology_sibling_cpumask(cpu));
 696		policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
 697		pr_info_once("overriding BIOS provided _PSD data\n");
 698	}
 699#endif
 700
 701	/* capability check */
 702	if (perf->state_count <= 1) {
 703		pr_debug("No P-States\n");
 704		result = -ENODEV;
 705		goto err_unreg;
 706	}
 707
 708	if (perf->control_register.space_id != perf->status_register.space_id) {
 709		result = -ENODEV;
 710		goto err_unreg;
 711	}
 712
 713	switch (perf->control_register.space_id) {
 714	case ACPI_ADR_SPACE_SYSTEM_IO:
 715		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
 716		    boot_cpu_data.x86 == 0xf) {
 717			pr_debug("AMD K8 systems must use native drivers.\n");
 718			result = -ENODEV;
 719			goto err_unreg;
 720		}
 721		pr_debug("SYSTEM IO addr space\n");
 722		data->cpu_feature = SYSTEM_IO_CAPABLE;
 723		data->cpu_freq_read = cpu_freq_read_io;
 724		data->cpu_freq_write = cpu_freq_write_io;
 725		break;
 726	case ACPI_ADR_SPACE_FIXED_HARDWARE:
 727		pr_debug("HARDWARE addr space\n");
 728		if (check_est_cpu(cpu)) {
 729			data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
 730			data->cpu_freq_read = cpu_freq_read_intel;
 731			data->cpu_freq_write = cpu_freq_write_intel;
 732			break;
 733		}
 734		if (check_amd_hwpstate_cpu(cpu)) {
 735			data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
 736			data->cpu_freq_read = cpu_freq_read_amd;
 737			data->cpu_freq_write = cpu_freq_write_amd;
 738			break;
 739		}
 740		result = -ENODEV;
 741		goto err_unreg;
 742	default:
 743		pr_debug("Unknown addr space %d\n",
 744			(u32) (perf->control_register.space_id));
 745		result = -ENODEV;
 746		goto err_unreg;
 747	}
 748
 749	freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table),
 750			     GFP_KERNEL);
 751	if (!freq_table) {
 752		result = -ENOMEM;
 753		goto err_unreg;
 754	}
 755
 756	/* detect transition latency */
 757	policy->cpuinfo.transition_latency = 0;
 758	for (i = 0; i < perf->state_count; i++) {
 759		if ((perf->states[i].transition_latency * 1000) >
 760		    policy->cpuinfo.transition_latency)
 761			policy->cpuinfo.transition_latency =
 762			    perf->states[i].transition_latency * 1000;
 763	}
 764
 765	/* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
 766	if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
 767	    policy->cpuinfo.transition_latency > 20 * 1000) {
 768		policy->cpuinfo.transition_latency = 20 * 1000;
 769		pr_info_once("P-state transition latency capped at 20 uS\n");
 770	}
 771
 772	/* table init */
 773	for (i = 0; i < perf->state_count; i++) {
 774		if (i > 0 && perf->states[i].core_frequency >=
 775		    freq_table[valid_states-1].frequency / 1000)
 776			continue;
 777
 778		freq_table[valid_states].driver_data = i;
 779		freq_table[valid_states].frequency =
 780		    perf->states[i].core_frequency * 1000;
 781		valid_states++;
 782	}
 783	freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
 784	policy->freq_table = freq_table;
 785	perf->state = 0;
 786
 787	switch (perf->control_register.space_id) {
 788	case ACPI_ADR_SPACE_SYSTEM_IO:
 789		/*
 790		 * The core will not set policy->cur, because
 791		 * cpufreq_driver->get is NULL, so we need to set it here.
 792		 * However, we have to guess it, because the current speed is
 793		 * unknown and not detectable via IO ports.
 794		 */
 795		policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
 796		break;
 797	case ACPI_ADR_SPACE_FIXED_HARDWARE:
 798		acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
 799		break;
 800	default:
 801		break;
 802	}
 803
 804	/* notify BIOS that we exist */
 805	acpi_processor_notify_smm(THIS_MODULE);
 806
 807	pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
 808	for (i = 0; i < perf->state_count; i++)
 809		pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
 810			(i == perf->state ? '*' : ' '), i,
 811			(u32) perf->states[i].core_frequency,
 812			(u32) perf->states[i].power,
 813			(u32) perf->states[i].transition_latency);
 814
 815	/*
 816	 * the first call to ->target() should result in us actually
 817	 * writing something to the appropriate registers.
 818	 */
 819	data->resume = 1;
 820
 821	policy->fast_switch_possible = !acpi_pstate_strict &&
 822		!(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY);
 823
 824	return result;
 825
 826err_unreg:
 827	acpi_processor_unregister_performance(cpu);
 828err_free_mask:
 829	free_cpumask_var(data->freqdomain_cpus);
 830err_free:
 831	kfree(data);
 832	policy->driver_data = NULL;
 833
 834	return result;
 835}
 836
 837static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
 838{
 839	struct acpi_cpufreq_data *data = policy->driver_data;
 840
 841	pr_debug("%s\n", __func__);
 842
 843	policy->fast_switch_possible = false;
 844	policy->driver_data = NULL;
 845	acpi_processor_unregister_performance(data->acpi_perf_cpu);
 846	free_cpumask_var(data->freqdomain_cpus);
 847	kfree(policy->freq_table);
 848	kfree(data);
 849
 850	return 0;
 851}
 852
 853static void acpi_cpufreq_cpu_ready(struct cpufreq_policy *policy)
 854{
 855	struct acpi_processor_performance *perf = per_cpu_ptr(acpi_perf_data,
 856							      policy->cpu);
 857
 858	if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
 859		pr_warn(FW_WARN "P-state 0 is not max freq\n");
 860}
 861
 862static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
 863{
 864	struct acpi_cpufreq_data *data = policy->driver_data;
 865
 866	pr_debug("%s\n", __func__);
 867
 868	data->resume = 1;
 869
 870	return 0;
 871}
 872
 873static struct freq_attr *acpi_cpufreq_attr[] = {
 874	&cpufreq_freq_attr_scaling_available_freqs,
 875	&freqdomain_cpus,
 876#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
 877	&cpb,
 878#endif
 879	NULL,
 880};
 881
 882static struct cpufreq_driver acpi_cpufreq_driver = {
 883	.verify		= cpufreq_generic_frequency_table_verify,
 884	.target_index	= acpi_cpufreq_target,
 885	.fast_switch	= acpi_cpufreq_fast_switch,
 886	.bios_limit	= acpi_processor_get_bios_limit,
 887	.init		= acpi_cpufreq_cpu_init,
 888	.exit		= acpi_cpufreq_cpu_exit,
 889	.ready		= acpi_cpufreq_cpu_ready,
 890	.resume		= acpi_cpufreq_resume,
 891	.name		= "acpi-cpufreq",
 892	.attr		= acpi_cpufreq_attr,
 893};
 894
 895static enum cpuhp_state acpi_cpufreq_online;
 896
 897static void __init acpi_cpufreq_boost_init(void)
 898{
 899	int ret;
 900
 901	if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) {
 902		pr_debug("Boost capabilities not present in the processor\n");
 903		return;
 904	}
 905
 906	acpi_cpufreq_driver.set_boost = set_boost;
 907	acpi_cpufreq_driver.boost_enabled = boost_state(0);
 908
 909	/*
 910	 * This calls the online callback on all online cpu and forces all
 911	 * MSRs to the same value.
 912	 */
 913	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "cpufreq/acpi:online",
 914				cpufreq_boost_online, cpufreq_boost_down_prep);
 915	if (ret < 0) {
 916		pr_err("acpi_cpufreq: failed to register hotplug callbacks\n");
 917		return;
 918	}
 919	acpi_cpufreq_online = ret;
 920}
 921
 922static void acpi_cpufreq_boost_exit(void)
 923{
 924	if (acpi_cpufreq_online > 0)
 925		cpuhp_remove_state_nocalls(acpi_cpufreq_online);
 926}
 927
 928static int __init acpi_cpufreq_init(void)
 929{
 930	int ret;
 931
 932	if (acpi_disabled)
 933		return -ENODEV;
 934
 935	/* don't keep reloading if cpufreq_driver exists */
 936	if (cpufreq_get_current_driver())
 937		return -EEXIST;
 938
 939	pr_debug("%s\n", __func__);
 940
 941	ret = acpi_cpufreq_early_init();
 942	if (ret)
 943		return ret;
 944
 945#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
 946	/* this is a sysfs file with a strange name and an even stranger
 947	 * semantic - per CPU instantiation, but system global effect.
 948	 * Lets enable it only on AMD CPUs for compatibility reasons and
 949	 * only if configured. This is considered legacy code, which
 950	 * will probably be removed at some point in the future.
 951	 */
 952	if (!check_amd_hwpstate_cpu(0)) {
 953		struct freq_attr **attr;
 954
 955		pr_debug("CPB unsupported, do not expose it\n");
 956
 957		for (attr = acpi_cpufreq_attr; *attr; attr++)
 958			if (*attr == &cpb) {
 959				*attr = NULL;
 960				break;
 961			}
 962	}
 963#endif
 964	acpi_cpufreq_boost_init();
 965
 966	ret = cpufreq_register_driver(&acpi_cpufreq_driver);
 967	if (ret) {
 968		free_acpi_perf_data();
 969		acpi_cpufreq_boost_exit();
 970	}
 971	return ret;
 972}
 973
 974static void __exit acpi_cpufreq_exit(void)
 975{
 976	pr_debug("%s\n", __func__);
 977
 978	acpi_cpufreq_boost_exit();
 979
 980	cpufreq_unregister_driver(&acpi_cpufreq_driver);
 981
 982	free_acpi_perf_data();
 983}
 984
 985module_param(acpi_pstate_strict, uint, 0644);
 986MODULE_PARM_DESC(acpi_pstate_strict,
 987	"value 0 or non-zero. non-zero -> strict ACPI checks are "
 988	"performed during frequency changes.");
 989
 990late_initcall(acpi_cpufreq_init);
 991module_exit(acpi_cpufreq_exit);
 992
 993static const struct x86_cpu_id acpi_cpufreq_ids[] = {
 994	X86_FEATURE_MATCH(X86_FEATURE_ACPI),
 995	X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
 996	{}
 997};
 998MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
 999
1000static const struct acpi_device_id processor_device_ids[] = {
1001	{ACPI_PROCESSOR_OBJECT_HID, },
1002	{ACPI_PROCESSOR_DEVICE_HID, },
1003	{},
1004};
1005MODULE_DEVICE_TABLE(acpi, processor_device_ids);
1006
1007MODULE_ALIAS("acpi");