Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * acpi-cpufreq.c - ACPI Processor P-States Driver
   4 *
   5 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   6 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   7 *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
   8 *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/kernel.h>
  14#include <linux/module.h>
  15#include <linux/init.h>
  16#include <linux/smp.h>
  17#include <linux/sched.h>
  18#include <linux/cpufreq.h>
  19#include <linux/compiler.h>
  20#include <linux/dmi.h>
  21#include <linux/slab.h>
  22
  23#include <linux/acpi.h>
  24#include <linux/io.h>
  25#include <linux/delay.h>
  26#include <linux/uaccess.h>
  27
  28#include <acpi/processor.h>
  29
  30#include <asm/msr.h>
  31#include <asm/processor.h>
  32#include <asm/cpufeature.h>
  33#include <asm/cpu_device_id.h>
  34
  35MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
  36MODULE_DESCRIPTION("ACPI Processor P-States Driver");
  37MODULE_LICENSE("GPL");
  38
 
 
  39enum {
  40	UNDEFINED_CAPABLE = 0,
  41	SYSTEM_INTEL_MSR_CAPABLE,
  42	SYSTEM_AMD_MSR_CAPABLE,
  43	SYSTEM_IO_CAPABLE,
  44};
  45
  46#define INTEL_MSR_RANGE		(0xffff)
  47#define AMD_MSR_RANGE		(0x7)
  48#define HYGON_MSR_RANGE		(0x7)
  49
  50#define MSR_K7_HWCR_CPB_DIS	(1ULL << 25)
  51
  52struct acpi_cpufreq_data {
 
  53	unsigned int resume;
  54	unsigned int cpu_feature;
  55	unsigned int acpi_perf_cpu;
  56	cpumask_var_t freqdomain_cpus;
  57	void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
  58	u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
  59};
  60
  61/* acpi_perf_data is a pointer to percpu data. */
  62static struct acpi_processor_performance __percpu *acpi_perf_data;
  63
  64static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
  65{
  66	return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
  67}
  68
  69static struct cpufreq_driver acpi_cpufreq_driver;
  70
  71static unsigned int acpi_pstate_strict;
 
  72
  73static bool boost_state(unsigned int cpu)
  74{
  75	u32 lo, hi;
  76	u64 msr;
  77
  78	switch (boot_cpu_data.x86_vendor) {
  79	case X86_VENDOR_INTEL:
  80		rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
  81		msr = lo | ((u64)hi << 32);
  82		return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
  83	case X86_VENDOR_HYGON:
  84	case X86_VENDOR_AMD:
  85		rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
  86		msr = lo | ((u64)hi << 32);
  87		return !(msr & MSR_K7_HWCR_CPB_DIS);
  88	}
  89	return false;
  90}
  91
  92static int boost_set_msr(bool enable)
  93{
 
  94	u32 msr_addr;
  95	u64 msr_mask, val;
  96
  97	switch (boot_cpu_data.x86_vendor) {
  98	case X86_VENDOR_INTEL:
  99		msr_addr = MSR_IA32_MISC_ENABLE;
 100		msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
 101		break;
 102	case X86_VENDOR_HYGON:
 103	case X86_VENDOR_AMD:
 104		msr_addr = MSR_K7_HWCR;
 105		msr_mask = MSR_K7_HWCR_CPB_DIS;
 106		break;
 107	default:
 108		return -EINVAL;
 109	}
 110
 111	rdmsrl(msr_addr, val);
 112
 113	if (enable)
 114		val &= ~msr_mask;
 115	else
 116		val |= msr_mask;
 117
 118	wrmsrl(msr_addr, val);
 119	return 0;
 120}
 121
 122static void boost_set_msr_each(void *p_en)
 123{
 124	bool enable = (bool) p_en;
 
 
 
 
 125
 126	boost_set_msr(enable);
 127}
 128
 129static int set_boost(struct cpufreq_policy *policy, int val)
 130{
 131	on_each_cpu_mask(policy->cpus, boost_set_msr_each,
 132			 (void *)(long)val, 1);
 133	pr_debug("CPU %*pbl: Core Boosting %sabled.\n",
 134		 cpumask_pr_args(policy->cpus), val ? "en" : "dis");
 135
 136	return 0;
 137}
 138
 139static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
 140{
 141	struct acpi_cpufreq_data *data = policy->driver_data;
 142
 143	if (unlikely(!data))
 144		return -ENODEV;
 145
 146	return cpufreq_show_cpus(data->freqdomain_cpus, buf);
 147}
 148
 149cpufreq_freq_attr_ro(freqdomain_cpus);
 150
 151#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
 152static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
 153			 size_t count)
 154{
 155	int ret;
 156	unsigned int val = 0;
 157
 158	if (!acpi_cpufreq_driver.set_boost)
 159		return -EINVAL;
 160
 161	ret = kstrtouint(buf, 10, &val);
 162	if (ret || val > 1)
 163		return -EINVAL;
 164
 165	get_online_cpus();
 166	set_boost(policy, val);
 167	put_online_cpus();
 168
 169	return count;
 170}
 171
 172static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
 173{
 174	return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
 175}
 176
 177cpufreq_freq_attr_rw(cpb);
 178#endif
 179
 180static int check_est_cpu(unsigned int cpuid)
 181{
 182	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
 183
 184	return cpu_has(cpu, X86_FEATURE_EST);
 185}
 186
 187static int check_amd_hwpstate_cpu(unsigned int cpuid)
 188{
 189	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
 190
 191	return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
 192}
 193
 194static unsigned extract_io(struct cpufreq_policy *policy, u32 value)
 195{
 196	struct acpi_cpufreq_data *data = policy->driver_data;
 197	struct acpi_processor_performance *perf;
 198	int i;
 199
 200	perf = to_perf_data(data);
 201
 202	for (i = 0; i < perf->state_count; i++) {
 203		if (value == perf->states[i].status)
 204			return policy->freq_table[i].frequency;
 205	}
 206	return 0;
 207}
 208
 209static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr)
 210{
 211	struct acpi_cpufreq_data *data = policy->driver_data;
 212	struct cpufreq_frequency_table *pos;
 213	struct acpi_processor_performance *perf;
 214
 215	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
 216		msr &= AMD_MSR_RANGE;
 217	else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
 218		msr &= HYGON_MSR_RANGE;
 219	else
 220		msr &= INTEL_MSR_RANGE;
 221
 222	perf = to_perf_data(data);
 223
 224	cpufreq_for_each_entry(pos, policy->freq_table)
 225		if (msr == perf->states[pos->driver_data].status)
 226			return pos->frequency;
 227	return policy->freq_table[0].frequency;
 228}
 229
 230static unsigned extract_freq(struct cpufreq_policy *policy, u32 val)
 231{
 232	struct acpi_cpufreq_data *data = policy->driver_data;
 233
 234	switch (data->cpu_feature) {
 235	case SYSTEM_INTEL_MSR_CAPABLE:
 236	case SYSTEM_AMD_MSR_CAPABLE:
 237		return extract_msr(policy, val);
 238	case SYSTEM_IO_CAPABLE:
 239		return extract_io(policy, val);
 240	default:
 241		return 0;
 242	}
 243}
 244
 245static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
 246{
 247	u32 val, dummy __always_unused;
 248
 249	rdmsr(MSR_IA32_PERF_CTL, val, dummy);
 250	return val;
 251}
 252
 253static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
 254{
 255	u32 lo, hi;
 256
 257	rdmsr(MSR_IA32_PERF_CTL, lo, hi);
 258	lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
 259	wrmsr(MSR_IA32_PERF_CTL, lo, hi);
 260}
 261
 262static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
 263{
 264	u32 val, dummy __always_unused;
 265
 266	rdmsr(MSR_AMD_PERF_CTL, val, dummy);
 267	return val;
 268}
 269
 270static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
 271{
 272	wrmsr(MSR_AMD_PERF_CTL, val, 0);
 273}
 274
 275static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
 276{
 277	u32 val;
 278
 279	acpi_os_read_port(reg->address, &val, reg->bit_width);
 280	return val;
 281}
 282
 283static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
 284{
 285	acpi_os_write_port(reg->address, val, reg->bit_width);
 286}
 287
 288struct drv_cmd {
 289	struct acpi_pct_register *reg;
 290	u32 val;
 291	union {
 292		void (*write)(struct acpi_pct_register *reg, u32 val);
 293		u32 (*read)(struct acpi_pct_register *reg);
 294	} func;
 295};
 296
 297/* Called via smp_call_function_single(), on the target CPU */
 298static void do_drv_read(void *_cmd)
 299{
 300	struct drv_cmd *cmd = _cmd;
 301
 302	cmd->val = cmd->func.read(cmd->reg);
 303}
 304
 305static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
 306{
 307	struct acpi_processor_performance *perf = to_perf_data(data);
 308	struct drv_cmd cmd = {
 309		.reg = &perf->control_register,
 310		.func.read = data->cpu_freq_read,
 311	};
 312	int err;
 313
 314	err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
 315	WARN_ON_ONCE(err);	/* smp_call_function_any() was buggy? */
 316	return cmd.val;
 317}
 318
 319/* Called via smp_call_function_many(), on the target CPUs */
 320static void do_drv_write(void *_cmd)
 321{
 322	struct drv_cmd *cmd = _cmd;
 323
 324	cmd->func.write(cmd->reg, cmd->val);
 325}
 326
 327static void drv_write(struct acpi_cpufreq_data *data,
 328		      const struct cpumask *mask, u32 val)
 329{
 330	struct acpi_processor_performance *perf = to_perf_data(data);
 331	struct drv_cmd cmd = {
 332		.reg = &perf->control_register,
 333		.val = val,
 334		.func.write = data->cpu_freq_write,
 335	};
 336	int this_cpu;
 337
 338	this_cpu = get_cpu();
 339	if (cpumask_test_cpu(this_cpu, mask))
 340		do_drv_write(&cmd);
 341
 342	smp_call_function_many(mask, do_drv_write, &cmd, 1);
 343	put_cpu();
 344}
 345
 346static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
 347{
 348	u32 val;
 349
 350	if (unlikely(cpumask_empty(mask)))
 351		return 0;
 352
 353	val = drv_read(data, mask);
 354
 355	pr_debug("%s = %u\n", __func__, val);
 356
 357	return val;
 358}
 359
 360static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
 361{
 362	struct acpi_cpufreq_data *data;
 363	struct cpufreq_policy *policy;
 364	unsigned int freq;
 365	unsigned int cached_freq;
 366
 367	pr_debug("%s (%d)\n", __func__, cpu);
 368
 369	policy = cpufreq_cpu_get_raw(cpu);
 370	if (unlikely(!policy))
 371		return 0;
 372
 373	data = policy->driver_data;
 374	if (unlikely(!data || !policy->freq_table))
 375		return 0;
 376
 377	cached_freq = policy->freq_table[to_perf_data(data)->state].frequency;
 378	freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data));
 379	if (freq != cached_freq) {
 380		/*
 381		 * The dreaded BIOS frequency change behind our back.
 382		 * Force set the frequency on next target call.
 383		 */
 384		data->resume = 1;
 385	}
 386
 387	pr_debug("cur freq = %u\n", freq);
 388
 389	return freq;
 390}
 391
 392static unsigned int check_freqs(struct cpufreq_policy *policy,
 393				const struct cpumask *mask, unsigned int freq)
 394{
 395	struct acpi_cpufreq_data *data = policy->driver_data;
 396	unsigned int cur_freq;
 397	unsigned int i;
 398
 399	for (i = 0; i < 100; i++) {
 400		cur_freq = extract_freq(policy, get_cur_val(mask, data));
 401		if (cur_freq == freq)
 402			return 1;
 403		udelay(10);
 404	}
 405	return 0;
 406}
 407
 408static int acpi_cpufreq_target(struct cpufreq_policy *policy,
 409			       unsigned int index)
 410{
 411	struct acpi_cpufreq_data *data = policy->driver_data;
 412	struct acpi_processor_performance *perf;
 413	const struct cpumask *mask;
 414	unsigned int next_perf_state = 0; /* Index into perf table */
 415	int result = 0;
 416
 417	if (unlikely(!data)) {
 418		return -ENODEV;
 419	}
 420
 421	perf = to_perf_data(data);
 422	next_perf_state = policy->freq_table[index].driver_data;
 423	if (perf->state == next_perf_state) {
 424		if (unlikely(data->resume)) {
 425			pr_debug("Called after resume, resetting to P%d\n",
 426				next_perf_state);
 427			data->resume = 0;
 428		} else {
 429			pr_debug("Already at target state (P%d)\n",
 430				next_perf_state);
 431			return 0;
 432		}
 433	}
 434
 435	/*
 436	 * The core won't allow CPUs to go away until the governor has been
 437	 * stopped, so we can rely on the stability of policy->cpus.
 438	 */
 439	mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
 440		cpumask_of(policy->cpu) : policy->cpus;
 441
 442	drv_write(data, mask, perf->states[next_perf_state].control);
 443
 444	if (acpi_pstate_strict) {
 445		if (!check_freqs(policy, mask,
 446				 policy->freq_table[index].frequency)) {
 447			pr_debug("%s (%d)\n", __func__, policy->cpu);
 
 448			result = -EAGAIN;
 449		}
 450	}
 451
 452	if (!result)
 453		perf->state = next_perf_state;
 454
 455	return result;
 456}
 457
 458static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy,
 459					     unsigned int target_freq)
 460{
 461	struct acpi_cpufreq_data *data = policy->driver_data;
 462	struct acpi_processor_performance *perf;
 463	struct cpufreq_frequency_table *entry;
 464	unsigned int next_perf_state, next_freq, index;
 465
 466	/*
 467	 * Find the closest frequency above target_freq.
 468	 */
 469	if (policy->cached_target_freq == target_freq)
 470		index = policy->cached_resolved_idx;
 471	else
 472		index = cpufreq_table_find_index_dl(policy, target_freq);
 473
 474	entry = &policy->freq_table[index];
 475	next_freq = entry->frequency;
 476	next_perf_state = entry->driver_data;
 477
 478	perf = to_perf_data(data);
 479	if (perf->state == next_perf_state) {
 480		if (unlikely(data->resume))
 481			data->resume = 0;
 482		else
 483			return next_freq;
 484	}
 485
 486	data->cpu_freq_write(&perf->control_register,
 487			     perf->states[next_perf_state].control);
 488	perf->state = next_perf_state;
 489	return next_freq;
 490}
 491
 492static unsigned long
 493acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
 494{
 495	struct acpi_processor_performance *perf;
 496
 497	perf = to_perf_data(data);
 498	if (cpu_khz) {
 499		/* search the closest match to cpu_khz */
 500		unsigned int i;
 501		unsigned long freq;
 502		unsigned long freqn = perf->states[0].core_frequency * 1000;
 503
 504		for (i = 0; i < (perf->state_count-1); i++) {
 505			freq = freqn;
 506			freqn = perf->states[i+1].core_frequency * 1000;
 507			if ((2 * cpu_khz) > (freqn + freq)) {
 508				perf->state = i;
 509				return freq;
 510			}
 511		}
 512		perf->state = perf->state_count-1;
 513		return freqn;
 514	} else {
 515		/* assume CPU is at P0... */
 516		perf->state = 0;
 517		return perf->states[0].core_frequency * 1000;
 518	}
 519}
 520
 521static void free_acpi_perf_data(void)
 522{
 523	unsigned int i;
 524
 525	/* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
 526	for_each_possible_cpu(i)
 527		free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
 528				 ->shared_cpu_map);
 529	free_percpu(acpi_perf_data);
 530}
 531
 532static int cpufreq_boost_online(unsigned int cpu)
 
 533{
 534	/*
 535	 * On the CPU_UP path we simply keep the boost-disable flag
 536	 * in sync with the current global state.
 537	 */
 538	return boost_set_msr(acpi_cpufreq_driver.boost_enabled);
 539}
 540
 541static int cpufreq_boost_down_prep(unsigned int cpu)
 542{
 543	/*
 544	 * Clear the boost-disable bit on the CPU_DOWN path so that
 545	 * this cpu cannot block the remaining ones from boosting.
 
 
 546	 */
 547	return boost_set_msr(1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 548}
 549
 
 
 
 
 
 550/*
 551 * acpi_cpufreq_early_init - initialize ACPI P-States library
 552 *
 553 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
 554 * in order to determine correct frequency and voltage pairings. We can
 555 * do _PDC and _PSD and find out the processor dependency for the
 556 * actual init that will happen later...
 557 */
 558static int __init acpi_cpufreq_early_init(void)
 559{
 560	unsigned int i;
 561	pr_debug("%s\n", __func__);
 562
 563	acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
 564	if (!acpi_perf_data) {
 565		pr_debug("Memory allocation error for acpi_perf_data.\n");
 566		return -ENOMEM;
 567	}
 568	for_each_possible_cpu(i) {
 569		if (!zalloc_cpumask_var_node(
 570			&per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
 571			GFP_KERNEL, cpu_to_node(i))) {
 572
 573			/* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
 574			free_acpi_perf_data();
 575			return -ENOMEM;
 576		}
 577	}
 578
 579	/* Do initialization in ACPI core */
 580	acpi_processor_preregister_performance(acpi_perf_data);
 581	return 0;
 582}
 583
 584#ifdef CONFIG_SMP
 585/*
 586 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
 587 * or do it in BIOS firmware and won't inform about it to OS. If not
 588 * detected, this has a side effect of making CPU run at a different speed
 589 * than OS intended it to run at. Detect it and handle it cleanly.
 590 */
 591static int bios_with_sw_any_bug;
 592
 593static int sw_any_bug_found(const struct dmi_system_id *d)
 594{
 595	bios_with_sw_any_bug = 1;
 596	return 0;
 597}
 598
 599static const struct dmi_system_id sw_any_bug_dmi_table[] = {
 600	{
 601		.callback = sw_any_bug_found,
 602		.ident = "Supermicro Server X6DLP",
 603		.matches = {
 604			DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
 605			DMI_MATCH(DMI_BIOS_VERSION, "080010"),
 606			DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
 607		},
 608	},
 609	{ }
 610};
 611
 612static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
 613{
 614	/* Intel Xeon Processor 7100 Series Specification Update
 615	 * https://www.intel.com/Assets/PDF/specupdate/314554.pdf
 616	 * AL30: A Machine Check Exception (MCE) Occurring during an
 617	 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
 618	 * Both Processor Cores to Lock Up. */
 619	if (c->x86_vendor == X86_VENDOR_INTEL) {
 620		if ((c->x86 == 15) &&
 621		    (c->x86_model == 6) &&
 622		    (c->x86_stepping == 8)) {
 623			pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n");
 
 
 
 624			return -ENODEV;
 625		    }
 626		}
 627	return 0;
 628}
 629#endif
 630
 631static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
 632{
 633	unsigned int i;
 634	unsigned int valid_states = 0;
 635	unsigned int cpu = policy->cpu;
 636	struct acpi_cpufreq_data *data;
 637	unsigned int result = 0;
 638	struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
 639	struct acpi_processor_performance *perf;
 640	struct cpufreq_frequency_table *freq_table;
 641#ifdef CONFIG_SMP
 642	static int blacklisted;
 643#endif
 644
 645	pr_debug("%s\n", __func__);
 646
 647#ifdef CONFIG_SMP
 648	if (blacklisted)
 649		return blacklisted;
 650	blacklisted = acpi_cpufreq_blacklist(c);
 651	if (blacklisted)
 652		return blacklisted;
 653#endif
 654
 655	data = kzalloc(sizeof(*data), GFP_KERNEL);
 656	if (!data)
 657		return -ENOMEM;
 658
 659	if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
 660		result = -ENOMEM;
 661		goto err_free;
 662	}
 663
 664	perf = per_cpu_ptr(acpi_perf_data, cpu);
 665	data->acpi_perf_cpu = cpu;
 666	policy->driver_data = data;
 667
 668	if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
 669		acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
 670
 671	result = acpi_processor_register_performance(perf, cpu);
 672	if (result)
 673		goto err_free_mask;
 674
 675	policy->shared_type = perf->shared_type;
 676
 677	/*
 678	 * Will let policy->cpus know about dependency only when software
 679	 * coordination is required.
 680	 */
 681	if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
 682	    policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
 683		cpumask_copy(policy->cpus, perf->shared_cpu_map);
 684	}
 685	cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
 686
 687#ifdef CONFIG_SMP
 688	dmi_check_system(sw_any_bug_dmi_table);
 689	if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
 690		policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
 691		cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
 692	}
 693
 694	if (check_amd_hwpstate_cpu(cpu) && !acpi_pstate_strict) {
 695		cpumask_clear(policy->cpus);
 696		cpumask_set_cpu(cpu, policy->cpus);
 697		cpumask_copy(data->freqdomain_cpus,
 698			     topology_sibling_cpumask(cpu));
 699		policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
 700		pr_info_once("overriding BIOS provided _PSD data\n");
 701	}
 702#endif
 703
 704	/* capability check */
 705	if (perf->state_count <= 1) {
 706		pr_debug("No P-States\n");
 707		result = -ENODEV;
 708		goto err_unreg;
 709	}
 710
 711	if (perf->control_register.space_id != perf->status_register.space_id) {
 712		result = -ENODEV;
 713		goto err_unreg;
 714	}
 715
 716	switch (perf->control_register.space_id) {
 717	case ACPI_ADR_SPACE_SYSTEM_IO:
 718		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
 719		    boot_cpu_data.x86 == 0xf) {
 720			pr_debug("AMD K8 systems must use native drivers.\n");
 721			result = -ENODEV;
 722			goto err_unreg;
 723		}
 724		pr_debug("SYSTEM IO addr space\n");
 725		data->cpu_feature = SYSTEM_IO_CAPABLE;
 726		data->cpu_freq_read = cpu_freq_read_io;
 727		data->cpu_freq_write = cpu_freq_write_io;
 728		break;
 729	case ACPI_ADR_SPACE_FIXED_HARDWARE:
 730		pr_debug("HARDWARE addr space\n");
 731		if (check_est_cpu(cpu)) {
 732			data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
 733			data->cpu_freq_read = cpu_freq_read_intel;
 734			data->cpu_freq_write = cpu_freq_write_intel;
 735			break;
 736		}
 737		if (check_amd_hwpstate_cpu(cpu)) {
 738			data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
 739			data->cpu_freq_read = cpu_freq_read_amd;
 740			data->cpu_freq_write = cpu_freq_write_amd;
 741			break;
 742		}
 743		result = -ENODEV;
 744		goto err_unreg;
 745	default:
 746		pr_debug("Unknown addr space %d\n",
 747			(u32) (perf->control_register.space_id));
 748		result = -ENODEV;
 749		goto err_unreg;
 750	}
 751
 752	freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table),
 753			     GFP_KERNEL);
 754	if (!freq_table) {
 755		result = -ENOMEM;
 756		goto err_unreg;
 757	}
 758
 759	/* detect transition latency */
 760	policy->cpuinfo.transition_latency = 0;
 761	for (i = 0; i < perf->state_count; i++) {
 762		if ((perf->states[i].transition_latency * 1000) >
 763		    policy->cpuinfo.transition_latency)
 764			policy->cpuinfo.transition_latency =
 765			    perf->states[i].transition_latency * 1000;
 766	}
 767
 768	/* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
 769	if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
 770	    policy->cpuinfo.transition_latency > 20 * 1000) {
 771		policy->cpuinfo.transition_latency = 20 * 1000;
 772		pr_info_once("P-state transition latency capped at 20 uS\n");
 
 773	}
 774
 775	/* table init */
 776	for (i = 0; i < perf->state_count; i++) {
 777		if (i > 0 && perf->states[i].core_frequency >=
 778		    freq_table[valid_states-1].frequency / 1000)
 779			continue;
 780
 781		freq_table[valid_states].driver_data = i;
 782		freq_table[valid_states].frequency =
 783		    perf->states[i].core_frequency * 1000;
 784		valid_states++;
 785	}
 786	freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
 787	policy->freq_table = freq_table;
 788	perf->state = 0;
 789
 
 
 
 
 
 
 
 790	switch (perf->control_register.space_id) {
 791	case ACPI_ADR_SPACE_SYSTEM_IO:
 792		/*
 793		 * The core will not set policy->cur, because
 794		 * cpufreq_driver->get is NULL, so we need to set it here.
 795		 * However, we have to guess it, because the current speed is
 796		 * unknown and not detectable via IO ports.
 797		 */
 798		policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
 799		break;
 800	case ACPI_ADR_SPACE_FIXED_HARDWARE:
 801		acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
 802		break;
 803	default:
 804		break;
 805	}
 806
 807	/* notify BIOS that we exist */
 808	acpi_processor_notify_smm(THIS_MODULE);
 809
 810	pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
 811	for (i = 0; i < perf->state_count; i++)
 812		pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
 813			(i == perf->state ? '*' : ' '), i,
 814			(u32) perf->states[i].core_frequency,
 815			(u32) perf->states[i].power,
 816			(u32) perf->states[i].transition_latency);
 817
 818	/*
 819	 * the first call to ->target() should result in us actually
 820	 * writing something to the appropriate registers.
 821	 */
 822	data->resume = 1;
 823
 824	policy->fast_switch_possible = !acpi_pstate_strict &&
 825		!(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY);
 826
 827	return result;
 828
 
 
 829err_unreg:
 830	acpi_processor_unregister_performance(cpu);
 831err_free_mask:
 832	free_cpumask_var(data->freqdomain_cpus);
 833err_free:
 834	kfree(data);
 835	policy->driver_data = NULL;
 836
 837	return result;
 838}
 839
 840static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
 841{
 842	struct acpi_cpufreq_data *data = policy->driver_data;
 843
 844	pr_debug("%s\n", __func__);
 845
 846	policy->fast_switch_possible = false;
 847	policy->driver_data = NULL;
 848	acpi_processor_unregister_performance(data->acpi_perf_cpu);
 849	free_cpumask_var(data->freqdomain_cpus);
 850	kfree(policy->freq_table);
 851	kfree(data);
 
 852
 853	return 0;
 854}
 855
 856static void acpi_cpufreq_cpu_ready(struct cpufreq_policy *policy)
 857{
 858	struct acpi_processor_performance *perf = per_cpu_ptr(acpi_perf_data,
 859							      policy->cpu);
 860
 861	if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
 862		pr_warn(FW_WARN "P-state 0 is not max freq\n");
 863}
 864
 865static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
 866{
 867	struct acpi_cpufreq_data *data = policy->driver_data;
 868
 869	pr_debug("%s\n", __func__);
 870
 871	data->resume = 1;
 872
 873	return 0;
 874}
 875
 876static struct freq_attr *acpi_cpufreq_attr[] = {
 877	&cpufreq_freq_attr_scaling_available_freqs,
 878	&freqdomain_cpus,
 879#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
 880	&cpb,
 881#endif
 882	NULL,
 883};
 884
 885static struct cpufreq_driver acpi_cpufreq_driver = {
 886	.verify		= cpufreq_generic_frequency_table_verify,
 887	.target_index	= acpi_cpufreq_target,
 888	.fast_switch	= acpi_cpufreq_fast_switch,
 889	.bios_limit	= acpi_processor_get_bios_limit,
 890	.init		= acpi_cpufreq_cpu_init,
 891	.exit		= acpi_cpufreq_cpu_exit,
 892	.ready		= acpi_cpufreq_cpu_ready,
 893	.resume		= acpi_cpufreq_resume,
 894	.name		= "acpi-cpufreq",
 895	.attr		= acpi_cpufreq_attr,
 896};
 897
 898static enum cpuhp_state acpi_cpufreq_online;
 899
 900static void __init acpi_cpufreq_boost_init(void)
 901{
 902	int ret;
 
 903
 904	if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) {
 905		pr_debug("Boost capabilities not present in the processor\n");
 906		return;
 907	}
 908
 909	acpi_cpufreq_driver.set_boost = set_boost;
 910	acpi_cpufreq_driver.boost_enabled = boost_state(0);
 911
 912	/*
 913	 * This calls the online callback on all online cpu and forces all
 914	 * MSRs to the same value.
 915	 */
 916	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "cpufreq/acpi:online",
 917				cpufreq_boost_online, cpufreq_boost_down_prep);
 918	if (ret < 0) {
 919		pr_err("acpi_cpufreq: failed to register hotplug callbacks\n");
 920		return;
 921	}
 922	acpi_cpufreq_online = ret;
 923}
 924
 925static void acpi_cpufreq_boost_exit(void)
 926{
 927	if (acpi_cpufreq_online > 0)
 928		cpuhp_remove_state_nocalls(acpi_cpufreq_online);
 
 
 
 
 929}
 930
 931static int __init acpi_cpufreq_init(void)
 932{
 933	int ret;
 934
 935	if (acpi_disabled)
 936		return -ENODEV;
 937
 938	/* don't keep reloading if cpufreq_driver exists */
 939	if (cpufreq_get_current_driver())
 940		return -EEXIST;
 941
 942	pr_debug("%s\n", __func__);
 943
 944	ret = acpi_cpufreq_early_init();
 945	if (ret)
 946		return ret;
 947
 948#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
 949	/* this is a sysfs file with a strange name and an even stranger
 950	 * semantic - per CPU instantiation, but system global effect.
 951	 * Lets enable it only on AMD CPUs for compatibility reasons and
 952	 * only if configured. This is considered legacy code, which
 953	 * will probably be removed at some point in the future.
 954	 */
 955	if (!check_amd_hwpstate_cpu(0)) {
 956		struct freq_attr **attr;
 957
 958		pr_debug("CPB unsupported, do not expose it\n");
 959
 960		for (attr = acpi_cpufreq_attr; *attr; attr++)
 961			if (*attr == &cpb) {
 962				*attr = NULL;
 963				break;
 964			}
 965	}
 966#endif
 967	acpi_cpufreq_boost_init();
 968
 969	ret = cpufreq_register_driver(&acpi_cpufreq_driver);
 970	if (ret) {
 971		free_acpi_perf_data();
 972		acpi_cpufreq_boost_exit();
 973	}
 974	return ret;
 975}
 976
 977static void __exit acpi_cpufreq_exit(void)
 978{
 979	pr_debug("%s\n", __func__);
 980
 981	acpi_cpufreq_boost_exit();
 982
 983	cpufreq_unregister_driver(&acpi_cpufreq_driver);
 984
 985	free_acpi_perf_data();
 986}
 987
 988module_param(acpi_pstate_strict, uint, 0644);
 989MODULE_PARM_DESC(acpi_pstate_strict,
 990	"value 0 or non-zero. non-zero -> strict ACPI checks are "
 991	"performed during frequency changes.");
 992
 993late_initcall(acpi_cpufreq_init);
 994module_exit(acpi_cpufreq_exit);
 995
 996static const struct x86_cpu_id __maybe_unused acpi_cpufreq_ids[] = {
 997	X86_MATCH_FEATURE(X86_FEATURE_ACPI, NULL),
 998	X86_MATCH_FEATURE(X86_FEATURE_HW_PSTATE, NULL),
 999	{}
1000};
1001MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
1002
1003static const struct acpi_device_id __maybe_unused processor_device_ids[] = {
1004	{ACPI_PROCESSOR_OBJECT_HID, },
1005	{ACPI_PROCESSOR_DEVICE_HID, },
1006	{},
1007};
1008MODULE_DEVICE_TABLE(acpi, processor_device_ids);
1009
1010MODULE_ALIAS("acpi");
v4.6
 
  1/*
  2 * acpi-cpufreq.c - ACPI Processor P-States Driver
  3 *
  4 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
  5 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
  6 *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
  7 *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
  8 *
  9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 10 *
 11 *  This program is free software; you can redistribute it and/or modify
 12 *  it under the terms of the GNU General Public License as published by
 13 *  the Free Software Foundation; either version 2 of the License, or (at
 14 *  your option) any later version.
 15 *
 16 *  This program is distributed in the hope that it will be useful, but
 17 *  WITHOUT ANY WARRANTY; without even the implied warranty of
 18 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 19 *  General Public License for more details.
 20 *
 21 *  You should have received a copy of the GNU General Public License along
 22 *  with this program; if not, write to the Free Software Foundation, Inc.,
 23 *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
 24 *
 25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 26 */
 27
 
 
 28#include <linux/kernel.h>
 29#include <linux/module.h>
 30#include <linux/init.h>
 31#include <linux/smp.h>
 32#include <linux/sched.h>
 33#include <linux/cpufreq.h>
 34#include <linux/compiler.h>
 35#include <linux/dmi.h>
 36#include <linux/slab.h>
 37
 38#include <linux/acpi.h>
 39#include <linux/io.h>
 40#include <linux/delay.h>
 41#include <linux/uaccess.h>
 42
 43#include <acpi/processor.h>
 44
 45#include <asm/msr.h>
 46#include <asm/processor.h>
 47#include <asm/cpufeature.h>
 
 48
 49MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
 50MODULE_DESCRIPTION("ACPI Processor P-States Driver");
 51MODULE_LICENSE("GPL");
 52
 53#define PFX "acpi-cpufreq: "
 54
 55enum {
 56	UNDEFINED_CAPABLE = 0,
 57	SYSTEM_INTEL_MSR_CAPABLE,
 58	SYSTEM_AMD_MSR_CAPABLE,
 59	SYSTEM_IO_CAPABLE,
 60};
 61
 62#define INTEL_MSR_RANGE		(0xffff)
 63#define AMD_MSR_RANGE		(0x7)
 
 64
 65#define MSR_K7_HWCR_CPB_DIS	(1ULL << 25)
 66
 67struct acpi_cpufreq_data {
 68	struct cpufreq_frequency_table *freq_table;
 69	unsigned int resume;
 70	unsigned int cpu_feature;
 71	unsigned int acpi_perf_cpu;
 72	cpumask_var_t freqdomain_cpus;
 73	void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
 74	u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
 75};
 76
 77/* acpi_perf_data is a pointer to percpu data. */
 78static struct acpi_processor_performance __percpu *acpi_perf_data;
 79
 80static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
 81{
 82	return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
 83}
 84
 85static struct cpufreq_driver acpi_cpufreq_driver;
 86
 87static unsigned int acpi_pstate_strict;
 88static struct msr __percpu *msrs;
 89
 90static bool boost_state(unsigned int cpu)
 91{
 92	u32 lo, hi;
 93	u64 msr;
 94
 95	switch (boot_cpu_data.x86_vendor) {
 96	case X86_VENDOR_INTEL:
 97		rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
 98		msr = lo | ((u64)hi << 32);
 99		return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
 
100	case X86_VENDOR_AMD:
101		rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
102		msr = lo | ((u64)hi << 32);
103		return !(msr & MSR_K7_HWCR_CPB_DIS);
104	}
105	return false;
106}
107
108static void boost_set_msrs(bool enable, const struct cpumask *cpumask)
109{
110	u32 cpu;
111	u32 msr_addr;
112	u64 msr_mask;
113
114	switch (boot_cpu_data.x86_vendor) {
115	case X86_VENDOR_INTEL:
116		msr_addr = MSR_IA32_MISC_ENABLE;
117		msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
118		break;
 
119	case X86_VENDOR_AMD:
120		msr_addr = MSR_K7_HWCR;
121		msr_mask = MSR_K7_HWCR_CPB_DIS;
122		break;
123	default:
124		return;
125	}
126
127	rdmsr_on_cpus(cpumask, msr_addr, msrs);
 
 
 
 
 
 
 
 
 
128
129	for_each_cpu(cpu, cpumask) {
130		struct msr *reg = per_cpu_ptr(msrs, cpu);
131		if (enable)
132			reg->q &= ~msr_mask;
133		else
134			reg->q |= msr_mask;
135	}
136
137	wrmsr_on_cpus(cpumask, msr_addr, msrs);
138}
139
140static int set_boost(int val)
141{
142	get_online_cpus();
143	boost_set_msrs(val, cpu_online_mask);
144	put_online_cpus();
145	pr_debug("Core Boosting %sabled.\n", val ? "en" : "dis");
146
147	return 0;
148}
149
150static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
151{
152	struct acpi_cpufreq_data *data = policy->driver_data;
153
154	if (unlikely(!data))
155		return -ENODEV;
156
157	return cpufreq_show_cpus(data->freqdomain_cpus, buf);
158}
159
160cpufreq_freq_attr_ro(freqdomain_cpus);
161
162#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
163static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
164			 size_t count)
165{
166	int ret;
167	unsigned int val = 0;
168
169	if (!acpi_cpufreq_driver.set_boost)
170		return -EINVAL;
171
172	ret = kstrtouint(buf, 10, &val);
173	if (ret || val > 1)
174		return -EINVAL;
175
176	set_boost(val);
 
 
177
178	return count;
179}
180
181static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
182{
183	return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
184}
185
186cpufreq_freq_attr_rw(cpb);
187#endif
188
189static int check_est_cpu(unsigned int cpuid)
190{
191	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
192
193	return cpu_has(cpu, X86_FEATURE_EST);
194}
195
196static int check_amd_hwpstate_cpu(unsigned int cpuid)
197{
198	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
199
200	return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
201}
202
203static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
204{
 
205	struct acpi_processor_performance *perf;
206	int i;
207
208	perf = to_perf_data(data);
209
210	for (i = 0; i < perf->state_count; i++) {
211		if (value == perf->states[i].status)
212			return data->freq_table[i].frequency;
213	}
214	return 0;
215}
216
217static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
218{
 
219	struct cpufreq_frequency_table *pos;
220	struct acpi_processor_performance *perf;
221
222	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
223		msr &= AMD_MSR_RANGE;
 
 
224	else
225		msr &= INTEL_MSR_RANGE;
226
227	perf = to_perf_data(data);
228
229	cpufreq_for_each_entry(pos, data->freq_table)
230		if (msr == perf->states[pos->driver_data].status)
231			return pos->frequency;
232	return data->freq_table[0].frequency;
233}
234
235static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
236{
 
 
237	switch (data->cpu_feature) {
238	case SYSTEM_INTEL_MSR_CAPABLE:
239	case SYSTEM_AMD_MSR_CAPABLE:
240		return extract_msr(val, data);
241	case SYSTEM_IO_CAPABLE:
242		return extract_io(val, data);
243	default:
244		return 0;
245	}
246}
247
248static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
249{
250	u32 val, dummy;
251
252	rdmsr(MSR_IA32_PERF_CTL, val, dummy);
253	return val;
254}
255
256static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
257{
258	u32 lo, hi;
259
260	rdmsr(MSR_IA32_PERF_CTL, lo, hi);
261	lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
262	wrmsr(MSR_IA32_PERF_CTL, lo, hi);
263}
264
265static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
266{
267	u32 val, dummy;
268
269	rdmsr(MSR_AMD_PERF_CTL, val, dummy);
270	return val;
271}
272
273static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
274{
275	wrmsr(MSR_AMD_PERF_CTL, val, 0);
276}
277
278static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
279{
280	u32 val;
281
282	acpi_os_read_port(reg->address, &val, reg->bit_width);
283	return val;
284}
285
286static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
287{
288	acpi_os_write_port(reg->address, val, reg->bit_width);
289}
290
291struct drv_cmd {
292	struct acpi_pct_register *reg;
293	u32 val;
294	union {
295		void (*write)(struct acpi_pct_register *reg, u32 val);
296		u32 (*read)(struct acpi_pct_register *reg);
297	} func;
298};
299
300/* Called via smp_call_function_single(), on the target CPU */
301static void do_drv_read(void *_cmd)
302{
303	struct drv_cmd *cmd = _cmd;
304
305	cmd->val = cmd->func.read(cmd->reg);
306}
307
308static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
309{
310	struct acpi_processor_performance *perf = to_perf_data(data);
311	struct drv_cmd cmd = {
312		.reg = &perf->control_register,
313		.func.read = data->cpu_freq_read,
314	};
315	int err;
316
317	err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
318	WARN_ON_ONCE(err);	/* smp_call_function_any() was buggy? */
319	return cmd.val;
320}
321
322/* Called via smp_call_function_many(), on the target CPUs */
323static void do_drv_write(void *_cmd)
324{
325	struct drv_cmd *cmd = _cmd;
326
327	cmd->func.write(cmd->reg, cmd->val);
328}
329
330static void drv_write(struct acpi_cpufreq_data *data,
331		      const struct cpumask *mask, u32 val)
332{
333	struct acpi_processor_performance *perf = to_perf_data(data);
334	struct drv_cmd cmd = {
335		.reg = &perf->control_register,
336		.val = val,
337		.func.write = data->cpu_freq_write,
338	};
339	int this_cpu;
340
341	this_cpu = get_cpu();
342	if (cpumask_test_cpu(this_cpu, mask))
343		do_drv_write(&cmd);
344
345	smp_call_function_many(mask, do_drv_write, &cmd, 1);
346	put_cpu();
347}
348
349static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
350{
351	u32 val;
352
353	if (unlikely(cpumask_empty(mask)))
354		return 0;
355
356	val = drv_read(data, mask);
357
358	pr_debug("get_cur_val = %u\n", val);
359
360	return val;
361}
362
363static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
364{
365	struct acpi_cpufreq_data *data;
366	struct cpufreq_policy *policy;
367	unsigned int freq;
368	unsigned int cached_freq;
369
370	pr_debug("get_cur_freq_on_cpu (%d)\n", cpu);
371
372	policy = cpufreq_cpu_get_raw(cpu);
373	if (unlikely(!policy))
374		return 0;
375
376	data = policy->driver_data;
377	if (unlikely(!data || !data->freq_table))
378		return 0;
379
380	cached_freq = data->freq_table[to_perf_data(data)->state].frequency;
381	freq = extract_freq(get_cur_val(cpumask_of(cpu), data), data);
382	if (freq != cached_freq) {
383		/*
384		 * The dreaded BIOS frequency change behind our back.
385		 * Force set the frequency on next target call.
386		 */
387		data->resume = 1;
388	}
389
390	pr_debug("cur freq = %u\n", freq);
391
392	return freq;
393}
394
395static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
396				struct acpi_cpufreq_data *data)
397{
 
398	unsigned int cur_freq;
399	unsigned int i;
400
401	for (i = 0; i < 100; i++) {
402		cur_freq = extract_freq(get_cur_val(mask, data), data);
403		if (cur_freq == freq)
404			return 1;
405		udelay(10);
406	}
407	return 0;
408}
409
410static int acpi_cpufreq_target(struct cpufreq_policy *policy,
411			       unsigned int index)
412{
413	struct acpi_cpufreq_data *data = policy->driver_data;
414	struct acpi_processor_performance *perf;
415	const struct cpumask *mask;
416	unsigned int next_perf_state = 0; /* Index into perf table */
417	int result = 0;
418
419	if (unlikely(data == NULL || data->freq_table == NULL)) {
420		return -ENODEV;
421	}
422
423	perf = to_perf_data(data);
424	next_perf_state = data->freq_table[index].driver_data;
425	if (perf->state == next_perf_state) {
426		if (unlikely(data->resume)) {
427			pr_debug("Called after resume, resetting to P%d\n",
428				next_perf_state);
429			data->resume = 0;
430		} else {
431			pr_debug("Already at target state (P%d)\n",
432				next_perf_state);
433			return 0;
434		}
435	}
436
437	/*
438	 * The core won't allow CPUs to go away until the governor has been
439	 * stopped, so we can rely on the stability of policy->cpus.
440	 */
441	mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
442		cpumask_of(policy->cpu) : policy->cpus;
443
444	drv_write(data, mask, perf->states[next_perf_state].control);
445
446	if (acpi_pstate_strict) {
447		if (!check_freqs(mask, data->freq_table[index].frequency,
448					data)) {
449			pr_debug("acpi_cpufreq_target failed (%d)\n",
450				policy->cpu);
451			result = -EAGAIN;
452		}
453	}
454
455	if (!result)
456		perf->state = next_perf_state;
457
458	return result;
459}
460
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
461static unsigned long
462acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
463{
464	struct acpi_processor_performance *perf;
465
466	perf = to_perf_data(data);
467	if (cpu_khz) {
468		/* search the closest match to cpu_khz */
469		unsigned int i;
470		unsigned long freq;
471		unsigned long freqn = perf->states[0].core_frequency * 1000;
472
473		for (i = 0; i < (perf->state_count-1); i++) {
474			freq = freqn;
475			freqn = perf->states[i+1].core_frequency * 1000;
476			if ((2 * cpu_khz) > (freqn + freq)) {
477				perf->state = i;
478				return freq;
479			}
480		}
481		perf->state = perf->state_count-1;
482		return freqn;
483	} else {
484		/* assume CPU is at P0... */
485		perf->state = 0;
486		return perf->states[0].core_frequency * 1000;
487	}
488}
489
490static void free_acpi_perf_data(void)
491{
492	unsigned int i;
493
494	/* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
495	for_each_possible_cpu(i)
496		free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
497				 ->shared_cpu_map);
498	free_percpu(acpi_perf_data);
499}
500
501static int boost_notify(struct notifier_block *nb, unsigned long action,
502		      void *hcpu)
503{
504	unsigned cpu = (long)hcpu;
505	const struct cpumask *cpumask;
506
507	cpumask = get_cpu_mask(cpu);
 
 
508
 
 
509	/*
510	 * Clear the boost-disable bit on the CPU_DOWN path so that
511	 * this cpu cannot block the remaining ones from boosting. On
512	 * the CPU_UP path we simply keep the boost-disable flag in
513	 * sync with the current global state.
514	 */
515
516	switch (action) {
517	case CPU_DOWN_FAILED:
518	case CPU_DOWN_FAILED_FROZEN:
519	case CPU_ONLINE:
520	case CPU_ONLINE_FROZEN:
521		boost_set_msrs(acpi_cpufreq_driver.boost_enabled, cpumask);
522		break;
523
524	case CPU_DOWN_PREPARE:
525	case CPU_DOWN_PREPARE_FROZEN:
526		boost_set_msrs(1, cpumask);
527		break;
528
529	default:
530		break;
531	}
532
533	return NOTIFY_OK;
534}
535
536
537static struct notifier_block boost_nb = {
538	.notifier_call          = boost_notify,
539};
540
541/*
542 * acpi_cpufreq_early_init - initialize ACPI P-States library
543 *
544 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
545 * in order to determine correct frequency and voltage pairings. We can
546 * do _PDC and _PSD and find out the processor dependency for the
547 * actual init that will happen later...
548 */
549static int __init acpi_cpufreq_early_init(void)
550{
551	unsigned int i;
552	pr_debug("acpi_cpufreq_early_init\n");
553
554	acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
555	if (!acpi_perf_data) {
556		pr_debug("Memory allocation error for acpi_perf_data.\n");
557		return -ENOMEM;
558	}
559	for_each_possible_cpu(i) {
560		if (!zalloc_cpumask_var_node(
561			&per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
562			GFP_KERNEL, cpu_to_node(i))) {
563
564			/* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
565			free_acpi_perf_data();
566			return -ENOMEM;
567		}
568	}
569
570	/* Do initialization in ACPI core */
571	acpi_processor_preregister_performance(acpi_perf_data);
572	return 0;
573}
574
575#ifdef CONFIG_SMP
576/*
577 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
578 * or do it in BIOS firmware and won't inform about it to OS. If not
579 * detected, this has a side effect of making CPU run at a different speed
580 * than OS intended it to run at. Detect it and handle it cleanly.
581 */
582static int bios_with_sw_any_bug;
583
584static int sw_any_bug_found(const struct dmi_system_id *d)
585{
586	bios_with_sw_any_bug = 1;
587	return 0;
588}
589
590static const struct dmi_system_id sw_any_bug_dmi_table[] = {
591	{
592		.callback = sw_any_bug_found,
593		.ident = "Supermicro Server X6DLP",
594		.matches = {
595			DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
596			DMI_MATCH(DMI_BIOS_VERSION, "080010"),
597			DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
598		},
599	},
600	{ }
601};
602
603static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
604{
605	/* Intel Xeon Processor 7100 Series Specification Update
606	 * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
607	 * AL30: A Machine Check Exception (MCE) Occurring during an
608	 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
609	 * Both Processor Cores to Lock Up. */
610	if (c->x86_vendor == X86_VENDOR_INTEL) {
611		if ((c->x86 == 15) &&
612		    (c->x86_model == 6) &&
613		    (c->x86_mask == 8)) {
614			printk(KERN_INFO "acpi-cpufreq: Intel(R) "
615			    "Xeon(R) 7100 Errata AL30, processors may "
616			    "lock up on frequency changes: disabling "
617			    "acpi-cpufreq.\n");
618			return -ENODEV;
619		    }
620		}
621	return 0;
622}
623#endif
624
625static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
626{
627	unsigned int i;
628	unsigned int valid_states = 0;
629	unsigned int cpu = policy->cpu;
630	struct acpi_cpufreq_data *data;
631	unsigned int result = 0;
632	struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
633	struct acpi_processor_performance *perf;
 
634#ifdef CONFIG_SMP
635	static int blacklisted;
636#endif
637
638	pr_debug("acpi_cpufreq_cpu_init\n");
639
640#ifdef CONFIG_SMP
641	if (blacklisted)
642		return blacklisted;
643	blacklisted = acpi_cpufreq_blacklist(c);
644	if (blacklisted)
645		return blacklisted;
646#endif
647
648	data = kzalloc(sizeof(*data), GFP_KERNEL);
649	if (!data)
650		return -ENOMEM;
651
652	if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
653		result = -ENOMEM;
654		goto err_free;
655	}
656
657	perf = per_cpu_ptr(acpi_perf_data, cpu);
658	data->acpi_perf_cpu = cpu;
659	policy->driver_data = data;
660
661	if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
662		acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
663
664	result = acpi_processor_register_performance(perf, cpu);
665	if (result)
666		goto err_free_mask;
667
668	policy->shared_type = perf->shared_type;
669
670	/*
671	 * Will let policy->cpus know about dependency only when software
672	 * coordination is required.
673	 */
674	if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
675	    policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
676		cpumask_copy(policy->cpus, perf->shared_cpu_map);
677	}
678	cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
679
680#ifdef CONFIG_SMP
681	dmi_check_system(sw_any_bug_dmi_table);
682	if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
683		policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
684		cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
685	}
686
687	if (check_amd_hwpstate_cpu(cpu) && !acpi_pstate_strict) {
688		cpumask_clear(policy->cpus);
689		cpumask_set_cpu(cpu, policy->cpus);
690		cpumask_copy(data->freqdomain_cpus,
691			     topology_sibling_cpumask(cpu));
692		policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
693		pr_info_once(PFX "overriding BIOS provided _PSD data\n");
694	}
695#endif
696
697	/* capability check */
698	if (perf->state_count <= 1) {
699		pr_debug("No P-States\n");
700		result = -ENODEV;
701		goto err_unreg;
702	}
703
704	if (perf->control_register.space_id != perf->status_register.space_id) {
705		result = -ENODEV;
706		goto err_unreg;
707	}
708
709	switch (perf->control_register.space_id) {
710	case ACPI_ADR_SPACE_SYSTEM_IO:
711		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
712		    boot_cpu_data.x86 == 0xf) {
713			pr_debug("AMD K8 systems must use native drivers.\n");
714			result = -ENODEV;
715			goto err_unreg;
716		}
717		pr_debug("SYSTEM IO addr space\n");
718		data->cpu_feature = SYSTEM_IO_CAPABLE;
719		data->cpu_freq_read = cpu_freq_read_io;
720		data->cpu_freq_write = cpu_freq_write_io;
721		break;
722	case ACPI_ADR_SPACE_FIXED_HARDWARE:
723		pr_debug("HARDWARE addr space\n");
724		if (check_est_cpu(cpu)) {
725			data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
726			data->cpu_freq_read = cpu_freq_read_intel;
727			data->cpu_freq_write = cpu_freq_write_intel;
728			break;
729		}
730		if (check_amd_hwpstate_cpu(cpu)) {
731			data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
732			data->cpu_freq_read = cpu_freq_read_amd;
733			data->cpu_freq_write = cpu_freq_write_amd;
734			break;
735		}
736		result = -ENODEV;
737		goto err_unreg;
738	default:
739		pr_debug("Unknown addr space %d\n",
740			(u32) (perf->control_register.space_id));
741		result = -ENODEV;
742		goto err_unreg;
743	}
744
745	data->freq_table = kzalloc(sizeof(*data->freq_table) *
746		    (perf->state_count+1), GFP_KERNEL);
747	if (!data->freq_table) {
748		result = -ENOMEM;
749		goto err_unreg;
750	}
751
752	/* detect transition latency */
753	policy->cpuinfo.transition_latency = 0;
754	for (i = 0; i < perf->state_count; i++) {
755		if ((perf->states[i].transition_latency * 1000) >
756		    policy->cpuinfo.transition_latency)
757			policy->cpuinfo.transition_latency =
758			    perf->states[i].transition_latency * 1000;
759	}
760
761	/* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
762	if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
763	    policy->cpuinfo.transition_latency > 20 * 1000) {
764		policy->cpuinfo.transition_latency = 20 * 1000;
765		printk_once(KERN_INFO
766			    "P-state transition latency capped at 20 uS\n");
767	}
768
769	/* table init */
770	for (i = 0; i < perf->state_count; i++) {
771		if (i > 0 && perf->states[i].core_frequency >=
772		    data->freq_table[valid_states-1].frequency / 1000)
773			continue;
774
775		data->freq_table[valid_states].driver_data = i;
776		data->freq_table[valid_states].frequency =
777		    perf->states[i].core_frequency * 1000;
778		valid_states++;
779	}
780	data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
 
781	perf->state = 0;
782
783	result = cpufreq_table_validate_and_show(policy, data->freq_table);
784	if (result)
785		goto err_freqfree;
786
787	if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
788		printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
789
790	switch (perf->control_register.space_id) {
791	case ACPI_ADR_SPACE_SYSTEM_IO:
792		/*
793		 * The core will not set policy->cur, because
794		 * cpufreq_driver->get is NULL, so we need to set it here.
795		 * However, we have to guess it, because the current speed is
796		 * unknown and not detectable via IO ports.
797		 */
798		policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
799		break;
800	case ACPI_ADR_SPACE_FIXED_HARDWARE:
801		acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
802		break;
803	default:
804		break;
805	}
806
807	/* notify BIOS that we exist */
808	acpi_processor_notify_smm(THIS_MODULE);
809
810	pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
811	for (i = 0; i < perf->state_count; i++)
812		pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
813			(i == perf->state ? '*' : ' '), i,
814			(u32) perf->states[i].core_frequency,
815			(u32) perf->states[i].power,
816			(u32) perf->states[i].transition_latency);
817
818	/*
819	 * the first call to ->target() should result in us actually
820	 * writing something to the appropriate registers.
821	 */
822	data->resume = 1;
823
 
 
 
824	return result;
825
826err_freqfree:
827	kfree(data->freq_table);
828err_unreg:
829	acpi_processor_unregister_performance(cpu);
830err_free_mask:
831	free_cpumask_var(data->freqdomain_cpus);
832err_free:
833	kfree(data);
834	policy->driver_data = NULL;
835
836	return result;
837}
838
839static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
840{
841	struct acpi_cpufreq_data *data = policy->driver_data;
842
843	pr_debug("acpi_cpufreq_cpu_exit\n");
844
845	if (data) {
846		policy->driver_data = NULL;
847		acpi_processor_unregister_performance(data->acpi_perf_cpu);
848		free_cpumask_var(data->freqdomain_cpus);
849		kfree(data->freq_table);
850		kfree(data);
851	}
852
853	return 0;
854}
855
 
 
 
 
 
 
 
 
 
856static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
857{
858	struct acpi_cpufreq_data *data = policy->driver_data;
859
860	pr_debug("acpi_cpufreq_resume\n");
861
862	data->resume = 1;
863
864	return 0;
865}
866
867static struct freq_attr *acpi_cpufreq_attr[] = {
868	&cpufreq_freq_attr_scaling_available_freqs,
869	&freqdomain_cpus,
870#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
871	&cpb,
872#endif
873	NULL,
874};
875
876static struct cpufreq_driver acpi_cpufreq_driver = {
877	.verify		= cpufreq_generic_frequency_table_verify,
878	.target_index	= acpi_cpufreq_target,
 
879	.bios_limit	= acpi_processor_get_bios_limit,
880	.init		= acpi_cpufreq_cpu_init,
881	.exit		= acpi_cpufreq_cpu_exit,
 
882	.resume		= acpi_cpufreq_resume,
883	.name		= "acpi-cpufreq",
884	.attr		= acpi_cpufreq_attr,
885};
886
 
 
887static void __init acpi_cpufreq_boost_init(void)
888{
889	if (boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA)) {
890		msrs = msrs_alloc();
891
892		if (!msrs)
893			return;
 
 
894
895		acpi_cpufreq_driver.set_boost = set_boost;
896		acpi_cpufreq_driver.boost_enabled = boost_state(0);
897
898		cpu_notifier_register_begin();
899
900		/* Force all MSRs to the same value */
901		boost_set_msrs(acpi_cpufreq_driver.boost_enabled,
902			       cpu_online_mask);
903
904		__register_cpu_notifier(&boost_nb);
905
906		cpu_notifier_register_done();
907	}
 
908}
909
910static void acpi_cpufreq_boost_exit(void)
911{
912	if (msrs) {
913		unregister_cpu_notifier(&boost_nb);
914
915		msrs_free(msrs);
916		msrs = NULL;
917	}
918}
919
920static int __init acpi_cpufreq_init(void)
921{
922	int ret;
923
924	if (acpi_disabled)
925		return -ENODEV;
926
927	/* don't keep reloading if cpufreq_driver exists */
928	if (cpufreq_get_current_driver())
929		return -EEXIST;
930
931	pr_debug("acpi_cpufreq_init\n");
932
933	ret = acpi_cpufreq_early_init();
934	if (ret)
935		return ret;
936
937#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
938	/* this is a sysfs file with a strange name and an even stranger
939	 * semantic - per CPU instantiation, but system global effect.
940	 * Lets enable it only on AMD CPUs for compatibility reasons and
941	 * only if configured. This is considered legacy code, which
942	 * will probably be removed at some point in the future.
943	 */
944	if (!check_amd_hwpstate_cpu(0)) {
945		struct freq_attr **attr;
946
947		pr_debug("CPB unsupported, do not expose it\n");
948
949		for (attr = acpi_cpufreq_attr; *attr; attr++)
950			if (*attr == &cpb) {
951				*attr = NULL;
952				break;
953			}
954	}
955#endif
956	acpi_cpufreq_boost_init();
957
958	ret = cpufreq_register_driver(&acpi_cpufreq_driver);
959	if (ret) {
960		free_acpi_perf_data();
961		acpi_cpufreq_boost_exit();
962	}
963	return ret;
964}
965
966static void __exit acpi_cpufreq_exit(void)
967{
968	pr_debug("acpi_cpufreq_exit\n");
969
970	acpi_cpufreq_boost_exit();
971
972	cpufreq_unregister_driver(&acpi_cpufreq_driver);
973
974	free_acpi_perf_data();
975}
976
977module_param(acpi_pstate_strict, uint, 0644);
978MODULE_PARM_DESC(acpi_pstate_strict,
979	"value 0 or non-zero. non-zero -> strict ACPI checks are "
980	"performed during frequency changes.");
981
982late_initcall(acpi_cpufreq_init);
983module_exit(acpi_cpufreq_exit);
984
985static const struct x86_cpu_id acpi_cpufreq_ids[] = {
986	X86_FEATURE_MATCH(X86_FEATURE_ACPI),
987	X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
988	{}
989};
990MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
991
992static const struct acpi_device_id processor_device_ids[] = {
993	{ACPI_PROCESSOR_OBJECT_HID, },
994	{ACPI_PROCESSOR_DEVICE_HID, },
995	{},
996};
997MODULE_DEVICE_TABLE(acpi, processor_device_ids);
998
999MODULE_ALIAS("acpi");