Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Common time routines among all ppc machines.
   4 *
   5 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
   6 * Paul Mackerras' version and mine for PReP and Pmac.
   7 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
   8 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
   9 *
  10 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  11 * to make clock more stable (2.4.0-test5). The only thing
  12 * that this code assumes is that the timebases have been synchronized
  13 * by firmware on SMP and are never stopped (never do sleep
  14 * on SMP then, nap and doze are OK).
  15 * 
  16 * Speeded up do_gettimeofday by getting rid of references to
  17 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  18 *
  19 * TODO (not necessarily in this file):
  20 * - improve precision and reproducibility of timebase frequency
  21 * measurement at boot time.
  22 * - for astronomical applications: add a new function to get
  23 * non ambiguous timestamps even around leap seconds. This needs
  24 * a new timestamp format and a good name.
  25 *
  26 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
  27 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
  28 */
  29
  30#include <linux/errno.h>
  31#include <linux/export.h>
  32#include <linux/sched.h>
  33#include <linux/sched/clock.h>
  34#include <linux/kernel.h>
  35#include <linux/param.h>
  36#include <linux/string.h>
  37#include <linux/mm.h>
  38#include <linux/interrupt.h>
  39#include <linux/timex.h>
  40#include <linux/kernel_stat.h>
  41#include <linux/time.h>
  42#include <linux/init.h>
  43#include <linux/profile.h>
  44#include <linux/cpu.h>
  45#include <linux/security.h>
  46#include <linux/percpu.h>
  47#include <linux/rtc.h>
  48#include <linux/jiffies.h>
  49#include <linux/posix-timers.h>
  50#include <linux/irq.h>
  51#include <linux/delay.h>
  52#include <linux/irq_work.h>
  53#include <linux/of_clk.h>
  54#include <linux/suspend.h>
  55#include <linux/sched/cputime.h>
  56#include <linux/processor.h>
  57#include <asm/trace.h>
  58
  59#include <asm/io.h>
  60#include <asm/nvram.h>
  61#include <asm/cache.h>
  62#include <asm/machdep.h>
  63#include <linux/uaccess.h>
  64#include <asm/time.h>
  65#include <asm/prom.h>
  66#include <asm/irq.h>
  67#include <asm/div64.h>
  68#include <asm/smp.h>
  69#include <asm/vdso_datapage.h>
  70#include <asm/firmware.h>
  71#include <asm/asm-prototypes.h>
  72
  73/* powerpc clocksource/clockevent code */
  74
  75#include <linux/clockchips.h>
  76#include <linux/timekeeper_internal.h>
  77
  78static u64 rtc_read(struct clocksource *);
  79static struct clocksource clocksource_rtc = {
  80	.name         = "rtc",
  81	.rating       = 400,
  82	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  83	.mask         = CLOCKSOURCE_MASK(64),
  84	.read         = rtc_read,
  85};
  86
  87static u64 timebase_read(struct clocksource *);
  88static struct clocksource clocksource_timebase = {
  89	.name         = "timebase",
  90	.rating       = 400,
  91	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  92	.mask         = CLOCKSOURCE_MASK(64),
  93	.read         = timebase_read,
  94};
  95
  96#define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
  97u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
  98
  99static int decrementer_set_next_event(unsigned long evt,
 100				      struct clock_event_device *dev);
 101static int decrementer_shutdown(struct clock_event_device *evt);
 102
 103struct clock_event_device decrementer_clockevent = {
 104	.name			= "decrementer",
 105	.rating			= 200,
 106	.irq			= 0,
 107	.set_next_event		= decrementer_set_next_event,
 108	.set_state_oneshot_stopped = decrementer_shutdown,
 109	.set_state_shutdown	= decrementer_shutdown,
 110	.tick_resume		= decrementer_shutdown,
 111	.features		= CLOCK_EVT_FEAT_ONESHOT |
 112				  CLOCK_EVT_FEAT_C3STOP,
 113};
 114EXPORT_SYMBOL(decrementer_clockevent);
 115
 116DEFINE_PER_CPU(u64, decrementers_next_tb);
 117static DEFINE_PER_CPU(struct clock_event_device, decrementers);
 118
 119#define XSEC_PER_SEC (1024*1024)
 120
 121#ifdef CONFIG_PPC64
 122#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
 123#else
 124/* compute ((xsec << 12) * max) >> 32 */
 125#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
 126#endif
 127
 128unsigned long tb_ticks_per_jiffy;
 129unsigned long tb_ticks_per_usec = 100; /* sane default */
 130EXPORT_SYMBOL(tb_ticks_per_usec);
 131unsigned long tb_ticks_per_sec;
 132EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
 133
 134DEFINE_SPINLOCK(rtc_lock);
 135EXPORT_SYMBOL_GPL(rtc_lock);
 136
 137static u64 tb_to_ns_scale __read_mostly;
 138static unsigned tb_to_ns_shift __read_mostly;
 139static u64 boot_tb __read_mostly;
 140
 141extern struct timezone sys_tz;
 142static long timezone_offset;
 143
 144unsigned long ppc_proc_freq;
 145EXPORT_SYMBOL_GPL(ppc_proc_freq);
 146unsigned long ppc_tb_freq;
 147EXPORT_SYMBOL_GPL(ppc_tb_freq);
 148
 149bool tb_invalid;
 150
 151#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 152/*
 153 * Factor for converting from cputime_t (timebase ticks) to
 154 * microseconds. This is stored as 0.64 fixed-point binary fraction.
 155 */
 156u64 __cputime_usec_factor;
 157EXPORT_SYMBOL(__cputime_usec_factor);
 158
 159#ifdef CONFIG_PPC_SPLPAR
 160void (*dtl_consumer)(struct dtl_entry *, u64);
 161#endif
 162
 163static void calc_cputime_factors(void)
 164{
 165	struct div_result res;
 166
 167	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
 168	__cputime_usec_factor = res.result_low;
 169}
 170
 171/*
 172 * Read the SPURR on systems that have it, otherwise the PURR,
 173 * or if that doesn't exist return the timebase value passed in.
 174 */
 175static inline unsigned long read_spurr(unsigned long tb)
 176{
 177	if (cpu_has_feature(CPU_FTR_SPURR))
 178		return mfspr(SPRN_SPURR);
 179	if (cpu_has_feature(CPU_FTR_PURR))
 180		return mfspr(SPRN_PURR);
 181	return tb;
 182}
 183
 184#ifdef CONFIG_PPC_SPLPAR
 185
 186#include <asm/dtl.h>
 187
 188/*
 189 * Scan the dispatch trace log and count up the stolen time.
 190 * Should be called with interrupts disabled.
 191 */
 192static u64 scan_dispatch_log(u64 stop_tb)
 193{
 194	u64 i = local_paca->dtl_ridx;
 195	struct dtl_entry *dtl = local_paca->dtl_curr;
 196	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
 197	struct lppaca *vpa = local_paca->lppaca_ptr;
 198	u64 tb_delta;
 199	u64 stolen = 0;
 200	u64 dtb;
 201
 202	if (!dtl)
 203		return 0;
 204
 205	if (i == be64_to_cpu(vpa->dtl_idx))
 206		return 0;
 207	while (i < be64_to_cpu(vpa->dtl_idx)) {
 208		dtb = be64_to_cpu(dtl->timebase);
 209		tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
 210			be32_to_cpu(dtl->ready_to_enqueue_time);
 211		barrier();
 212		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
 213			/* buffer has overflowed */
 214			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
 215			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
 216			continue;
 217		}
 218		if (dtb > stop_tb)
 219			break;
 220		if (dtl_consumer)
 221			dtl_consumer(dtl, i);
 222		stolen += tb_delta;
 223		++i;
 224		++dtl;
 225		if (dtl == dtl_end)
 226			dtl = local_paca->dispatch_log;
 227	}
 228	local_paca->dtl_ridx = i;
 229	local_paca->dtl_curr = dtl;
 230	return stolen;
 231}
 232
 233/*
 234 * Accumulate stolen time by scanning the dispatch trace log.
 235 * Called on entry from user mode.
 236 */
 237void notrace accumulate_stolen_time(void)
 238{
 239	u64 sst, ust;
 240	unsigned long save_irq_soft_mask = irq_soft_mask_return();
 241	struct cpu_accounting_data *acct = &local_paca->accounting;
 242
 243	/* We are called early in the exception entry, before
 244	 * soft/hard_enabled are sync'ed to the expected state
 245	 * for the exception. We are hard disabled but the PACA
 246	 * needs to reflect that so various debug stuff doesn't
 247	 * complain
 248	 */
 249	irq_soft_mask_set(IRQS_DISABLED);
 250
 251	sst = scan_dispatch_log(acct->starttime_user);
 252	ust = scan_dispatch_log(acct->starttime);
 253	acct->stime -= sst;
 254	acct->utime -= ust;
 255	acct->steal_time += ust + sst;
 256
 257	irq_soft_mask_set(save_irq_soft_mask);
 258}
 259
 260static inline u64 calculate_stolen_time(u64 stop_tb)
 261{
 262	if (!firmware_has_feature(FW_FEATURE_SPLPAR))
 263		return 0;
 264
 265	if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx))
 266		return scan_dispatch_log(stop_tb);
 267
 268	return 0;
 269}
 270
 271#else /* CONFIG_PPC_SPLPAR */
 272static inline u64 calculate_stolen_time(u64 stop_tb)
 273{
 274	return 0;
 275}
 276
 277#endif /* CONFIG_PPC_SPLPAR */
 278
 279/*
 280 * Account time for a transition between system, hard irq
 281 * or soft irq state.
 282 */
 283static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct,
 284					unsigned long now, unsigned long stime)
 285{
 286	unsigned long stime_scaled = 0;
 287#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 288	unsigned long nowscaled, deltascaled;
 289	unsigned long utime, utime_scaled;
 290
 291	nowscaled = read_spurr(now);
 292	deltascaled = nowscaled - acct->startspurr;
 293	acct->startspurr = nowscaled;
 294	utime = acct->utime - acct->utime_sspurr;
 295	acct->utime_sspurr = acct->utime;
 296
 297	/*
 298	 * Because we don't read the SPURR on every kernel entry/exit,
 299	 * deltascaled includes both user and system SPURR ticks.
 300	 * Apportion these ticks to system SPURR ticks and user
 301	 * SPURR ticks in the same ratio as the system time (delta)
 302	 * and user time (udelta) values obtained from the timebase
 303	 * over the same interval.  The system ticks get accounted here;
 304	 * the user ticks get saved up in paca->user_time_scaled to be
 305	 * used by account_process_tick.
 306	 */
 307	stime_scaled = stime;
 308	utime_scaled = utime;
 309	if (deltascaled != stime + utime) {
 310		if (utime) {
 311			stime_scaled = deltascaled * stime / (stime + utime);
 312			utime_scaled = deltascaled - stime_scaled;
 313		} else {
 314			stime_scaled = deltascaled;
 315		}
 316	}
 317	acct->utime_scaled += utime_scaled;
 318#endif
 319
 320	return stime_scaled;
 321}
 322
 323static unsigned long vtime_delta(struct task_struct *tsk,
 324				 unsigned long *stime_scaled,
 325				 unsigned long *steal_time)
 326{
 327	unsigned long now, stime;
 328	struct cpu_accounting_data *acct = get_accounting(tsk);
 329
 330	WARN_ON_ONCE(!irqs_disabled());
 331
 332	now = mftb();
 333	stime = now - acct->starttime;
 334	acct->starttime = now;
 335
 336	*stime_scaled = vtime_delta_scaled(acct, now, stime);
 337
 338	*steal_time = calculate_stolen_time(now);
 339
 340	return stime;
 341}
 342
 343void vtime_account_kernel(struct task_struct *tsk)
 344{
 345	unsigned long stime, stime_scaled, steal_time;
 346	struct cpu_accounting_data *acct = get_accounting(tsk);
 347
 348	stime = vtime_delta(tsk, &stime_scaled, &steal_time);
 349
 350	stime -= min(stime, steal_time);
 351	acct->steal_time += steal_time;
 352
 353	if ((tsk->flags & PF_VCPU) && !irq_count()) {
 354		acct->gtime += stime;
 355#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 356		acct->utime_scaled += stime_scaled;
 357#endif
 358	} else {
 359		if (hardirq_count())
 360			acct->hardirq_time += stime;
 361		else if (in_serving_softirq())
 362			acct->softirq_time += stime;
 363		else
 364			acct->stime += stime;
 365
 366#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 367		acct->stime_scaled += stime_scaled;
 368#endif
 369	}
 370}
 371EXPORT_SYMBOL_GPL(vtime_account_kernel);
 372
 373void vtime_account_idle(struct task_struct *tsk)
 374{
 375	unsigned long stime, stime_scaled, steal_time;
 376	struct cpu_accounting_data *acct = get_accounting(tsk);
 377
 378	stime = vtime_delta(tsk, &stime_scaled, &steal_time);
 379	acct->idle_time += stime + steal_time;
 380}
 381
 382static void vtime_flush_scaled(struct task_struct *tsk,
 383			       struct cpu_accounting_data *acct)
 384{
 385#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 386	if (acct->utime_scaled)
 387		tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
 388	if (acct->stime_scaled)
 389		tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
 390
 391	acct->utime_scaled = 0;
 392	acct->utime_sspurr = 0;
 393	acct->stime_scaled = 0;
 394#endif
 395}
 396
 397/*
 398 * Account the whole cputime accumulated in the paca
 399 * Must be called with interrupts disabled.
 400 * Assumes that vtime_account_kernel/idle() has been called
 401 * recently (i.e. since the last entry from usermode) so that
 402 * get_paca()->user_time_scaled is up to date.
 403 */
 404void vtime_flush(struct task_struct *tsk)
 405{
 406	struct cpu_accounting_data *acct = get_accounting(tsk);
 407
 408	if (acct->utime)
 409		account_user_time(tsk, cputime_to_nsecs(acct->utime));
 410
 411	if (acct->gtime)
 412		account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
 413
 414	if (IS_ENABLED(CONFIG_PPC_SPLPAR) && acct->steal_time) {
 415		account_steal_time(cputime_to_nsecs(acct->steal_time));
 416		acct->steal_time = 0;
 417	}
 418
 419	if (acct->idle_time)
 420		account_idle_time(cputime_to_nsecs(acct->idle_time));
 421
 422	if (acct->stime)
 423		account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
 424					  CPUTIME_SYSTEM);
 425
 426	if (acct->hardirq_time)
 427		account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
 428					  CPUTIME_IRQ);
 429	if (acct->softirq_time)
 430		account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
 431					  CPUTIME_SOFTIRQ);
 432
 433	vtime_flush_scaled(tsk, acct);
 434
 435	acct->utime = 0;
 436	acct->gtime = 0;
 437	acct->idle_time = 0;
 438	acct->stime = 0;
 439	acct->hardirq_time = 0;
 440	acct->softirq_time = 0;
 441}
 442
 443#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 444#define calc_cputime_factors()
 445#endif
 446
 447void __delay(unsigned long loops)
 448{
 449	unsigned long start;
 450	int diff;
 451
 452	spin_begin();
 453	if (__USE_RTC()) {
 454		start = get_rtcl();
 455		do {
 456			/* the RTCL register wraps at 1000000000 */
 457			diff = get_rtcl() - start;
 458			if (diff < 0)
 459				diff += 1000000000;
 460			spin_cpu_relax();
 461		} while (diff < loops);
 462	} else if (tb_invalid) {
 463		/*
 464		 * TB is in error state and isn't ticking anymore.
 465		 * HMI handler was unable to recover from TB error.
 466		 * Return immediately, so that kernel won't get stuck here.
 467		 */
 468		spin_cpu_relax();
 469	} else {
 470		start = get_tbl();
 471		while (get_tbl() - start < loops)
 472			spin_cpu_relax();
 473	}
 474	spin_end();
 475}
 476EXPORT_SYMBOL(__delay);
 477
 478void udelay(unsigned long usecs)
 479{
 480	__delay(tb_ticks_per_usec * usecs);
 481}
 482EXPORT_SYMBOL(udelay);
 483
 484#ifdef CONFIG_SMP
 485unsigned long profile_pc(struct pt_regs *regs)
 486{
 487	unsigned long pc = instruction_pointer(regs);
 488
 489	if (in_lock_functions(pc))
 490		return regs->link;
 491
 492	return pc;
 493}
 494EXPORT_SYMBOL(profile_pc);
 495#endif
 496
 497#ifdef CONFIG_IRQ_WORK
 498
 499/*
 500 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
 501 */
 502#ifdef CONFIG_PPC64
 503static inline unsigned long test_irq_work_pending(void)
 504{
 505	unsigned long x;
 506
 507	asm volatile("lbz %0,%1(13)"
 508		: "=r" (x)
 509		: "i" (offsetof(struct paca_struct, irq_work_pending)));
 510	return x;
 511}
 512
 513static inline void set_irq_work_pending_flag(void)
 514{
 515	asm volatile("stb %0,%1(13)" : :
 516		"r" (1),
 517		"i" (offsetof(struct paca_struct, irq_work_pending)));
 518}
 519
 520static inline void clear_irq_work_pending(void)
 521{
 522	asm volatile("stb %0,%1(13)" : :
 523		"r" (0),
 524		"i" (offsetof(struct paca_struct, irq_work_pending)));
 525}
 526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 527#else /* 32-bit */
 528
 529DEFINE_PER_CPU(u8, irq_work_pending);
 530
 531#define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
 532#define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
 533#define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
 534
 535#endif /* 32 vs 64 bit */
 536
 537void arch_irq_work_raise(void)
 538{
 539	/*
 540	 * 64-bit code that uses irq soft-mask can just cause an immediate
 541	 * interrupt here that gets soft masked, if this is called under
 542	 * local_irq_disable(). It might be possible to prevent that happening
 543	 * by noticing interrupts are disabled and setting decrementer pending
 544	 * to be replayed when irqs are enabled. The problem there is that
 545	 * tracing can call irq_work_raise, including in code that does low
 546	 * level manipulations of irq soft-mask state (e.g., trace_hardirqs_on)
 547	 * which could get tangled up if we're messing with the same state
 548	 * here.
 549	 */
 550	preempt_disable();
 551	set_irq_work_pending_flag();
 552	set_dec(1);
 553	preempt_enable();
 554}
 555
 
 
 556#else  /* CONFIG_IRQ_WORK */
 557
 558#define test_irq_work_pending()	0
 559#define clear_irq_work_pending()
 560
 561#endif /* CONFIG_IRQ_WORK */
 562
 563/*
 564 * timer_interrupt - gets called when the decrementer overflows,
 565 * with interrupts disabled.
 566 */
 567void timer_interrupt(struct pt_regs *regs)
 568{
 569	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
 570	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 571	struct pt_regs *old_regs;
 572	u64 now;
 573
 574	/* Some implementations of hotplug will get timer interrupts while
 575	 * offline, just ignore these and we also need to set
 576	 * decrementers_next_tb as MAX to make sure __check_irq_replay
 577	 * don't replay timer interrupt when return, otherwise we'll trap
 578	 * here infinitely :(
 579	 */
 580	if (unlikely(!cpu_online(smp_processor_id()))) {
 581		*next_tb = ~(u64)0;
 582		set_dec(decrementer_max);
 583		return;
 584	}
 585
 586	/* Ensure a positive value is written to the decrementer, or else
 587	 * some CPUs will continue to take decrementer exceptions. When the
 588	 * PPC_WATCHDOG (decrementer based) is configured, keep this at most
 589	 * 31 bits, which is about 4 seconds on most systems, which gives
 590	 * the watchdog a chance of catching timer interrupt hard lockups.
 591	 */
 592	if (IS_ENABLED(CONFIG_PPC_WATCHDOG))
 593		set_dec(0x7fffffff);
 594	else
 595		set_dec(decrementer_max);
 596
 597	/* Conditionally hard-enable interrupts now that the DEC has been
 598	 * bumped to its maximum value
 599	 */
 600	may_hard_irq_enable();
 601
 602
 603#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
 604	if (atomic_read(&ppc_n_lost_interrupts) != 0)
 605		do_IRQ(regs);
 606#endif
 607
 608	old_regs = set_irq_regs(regs);
 609	irq_enter();
 610	trace_timer_interrupt_entry(regs);
 611
 612	if (test_irq_work_pending()) {
 613		clear_irq_work_pending();
 614		irq_work_run();
 615	}
 616
 617	now = get_tb_or_rtc();
 618	if (now >= *next_tb) {
 619		*next_tb = ~(u64)0;
 620		if (evt->event_handler)
 621			evt->event_handler(evt);
 622		__this_cpu_inc(irq_stat.timer_irqs_event);
 623	} else {
 624		now = *next_tb - now;
 625		if (now <= decrementer_max)
 626			set_dec(now);
 627		/* We may have raced with new irq work */
 628		if (test_irq_work_pending())
 629			set_dec(1);
 630		__this_cpu_inc(irq_stat.timer_irqs_others);
 631	}
 632
 633	trace_timer_interrupt_exit(regs);
 634	irq_exit();
 635	set_irq_regs(old_regs);
 636}
 637EXPORT_SYMBOL(timer_interrupt);
 638
 639#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 640void timer_broadcast_interrupt(void)
 641{
 642	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 643
 644	*next_tb = ~(u64)0;
 645	tick_receive_broadcast();
 646	__this_cpu_inc(irq_stat.broadcast_irqs_event);
 647}
 648#endif
 649
 
 
 
 
 
 
 
 
 
 650#ifdef CONFIG_SUSPEND
 651static void generic_suspend_disable_irqs(void)
 652{
 653	/* Disable the decrementer, so that it doesn't interfere
 654	 * with suspending.
 655	 */
 656
 657	set_dec(decrementer_max);
 658	local_irq_disable();
 659	set_dec(decrementer_max);
 660}
 661
 662static void generic_suspend_enable_irqs(void)
 663{
 664	local_irq_enable();
 665}
 666
 667/* Overrides the weak version in kernel/power/main.c */
 668void arch_suspend_disable_irqs(void)
 669{
 670	if (ppc_md.suspend_disable_irqs)
 671		ppc_md.suspend_disable_irqs();
 672	generic_suspend_disable_irqs();
 673}
 674
 675/* Overrides the weak version in kernel/power/main.c */
 676void arch_suspend_enable_irqs(void)
 677{
 678	generic_suspend_enable_irqs();
 679	if (ppc_md.suspend_enable_irqs)
 680		ppc_md.suspend_enable_irqs();
 681}
 682#endif
 683
 684unsigned long long tb_to_ns(unsigned long long ticks)
 685{
 686	return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
 687}
 688EXPORT_SYMBOL_GPL(tb_to_ns);
 689
 690/*
 691 * Scheduler clock - returns current time in nanosec units.
 692 *
 693 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 694 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 695 * are 64-bit unsigned numbers.
 696 */
 697notrace unsigned long long sched_clock(void)
 698{
 699	if (__USE_RTC())
 700		return get_rtc();
 701	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 702}
 703
 704
 705#ifdef CONFIG_PPC_PSERIES
 706
 707/*
 708 * Running clock - attempts to give a view of time passing for a virtualised
 709 * kernels.
 710 * Uses the VTB register if available otherwise a next best guess.
 711 */
 712unsigned long long running_clock(void)
 713{
 714	/*
 715	 * Don't read the VTB as a host since KVM does not switch in host
 716	 * timebase into the VTB when it takes a guest off the CPU, reading the
 717	 * VTB would result in reading 'last switched out' guest VTB.
 718	 *
 719	 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
 720	 * would be unsafe to rely only on the #ifdef above.
 721	 */
 722	if (firmware_has_feature(FW_FEATURE_LPAR) &&
 723	    cpu_has_feature(CPU_FTR_ARCH_207S))
 724		return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 725
 726	/*
 727	 * This is a next best approximation without a VTB.
 728	 * On a host which is running bare metal there should never be any stolen
 729	 * time and on a host which doesn't do any virtualisation TB *should* equal
 730	 * VTB so it makes no difference anyway.
 731	 */
 732	return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL];
 733}
 734#endif
 735
 736static int __init get_freq(char *name, int cells, unsigned long *val)
 737{
 738	struct device_node *cpu;
 739	const __be32 *fp;
 740	int found = 0;
 741
 742	/* The cpu node should have timebase and clock frequency properties */
 743	cpu = of_find_node_by_type(NULL, "cpu");
 744
 745	if (cpu) {
 746		fp = of_get_property(cpu, name, NULL);
 747		if (fp) {
 748			found = 1;
 749			*val = of_read_ulong(fp, cells);
 750		}
 751
 752		of_node_put(cpu);
 753	}
 754
 755	return found;
 756}
 757
 758static void start_cpu_decrementer(void)
 759{
 760#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
 761	unsigned int tcr;
 762
 763	/* Clear any pending timer interrupts */
 764	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
 765
 766	tcr = mfspr(SPRN_TCR);
 767	/*
 768	 * The watchdog may have already been enabled by u-boot. So leave
 769	 * TRC[WP] (Watchdog Period) alone.
 770	 */
 771	tcr &= TCR_WP_MASK;	/* Clear all bits except for TCR[WP] */
 772	tcr |= TCR_DIE;		/* Enable decrementer */
 773	mtspr(SPRN_TCR, tcr);
 774#endif
 775}
 776
 777void __init generic_calibrate_decr(void)
 778{
 779	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
 780
 781	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
 782	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
 783
 784		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
 785				"(not found)\n");
 786	}
 787
 788	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
 789
 790	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
 791	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
 792
 793		printk(KERN_ERR "WARNING: Estimating processor frequency "
 794				"(not found)\n");
 795	}
 796}
 797
 798int update_persistent_clock64(struct timespec64 now)
 799{
 800	struct rtc_time tm;
 801
 802	if (!ppc_md.set_rtc_time)
 803		return -ENODEV;
 804
 805	rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm);
 806
 807	return ppc_md.set_rtc_time(&tm);
 808}
 809
 810static void __read_persistent_clock(struct timespec64 *ts)
 811{
 812	struct rtc_time tm;
 813	static int first = 1;
 814
 815	ts->tv_nsec = 0;
 816	/* XXX this is a litle fragile but will work okay in the short term */
 817	if (first) {
 818		first = 0;
 819		if (ppc_md.time_init)
 820			timezone_offset = ppc_md.time_init();
 821
 822		/* get_boot_time() isn't guaranteed to be safe to call late */
 823		if (ppc_md.get_boot_time) {
 824			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
 825			return;
 826		}
 827	}
 828	if (!ppc_md.get_rtc_time) {
 829		ts->tv_sec = 0;
 830		return;
 831	}
 832	ppc_md.get_rtc_time(&tm);
 833
 834	ts->tv_sec = rtc_tm_to_time64(&tm);
 835}
 836
 837void read_persistent_clock64(struct timespec64 *ts)
 838{
 839	__read_persistent_clock(ts);
 840
 841	/* Sanitize it in case real time clock is set below EPOCH */
 842	if (ts->tv_sec < 0) {
 843		ts->tv_sec = 0;
 844		ts->tv_nsec = 0;
 845	}
 846		
 847}
 848
 849/* clocksource code */
 850static notrace u64 rtc_read(struct clocksource *cs)
 851{
 852	return (u64)get_rtc();
 853}
 854
 855static notrace u64 timebase_read(struct clocksource *cs)
 856{
 857	return (u64)get_tb();
 858}
 859
 860
 861void update_vsyscall(struct timekeeper *tk)
 862{
 863	struct timespec64 xt;
 864	struct clocksource *clock = tk->tkr_mono.clock;
 865	u32 mult = tk->tkr_mono.mult;
 866	u32 shift = tk->tkr_mono.shift;
 867	u64 cycle_last = tk->tkr_mono.cycle_last;
 868	u64 new_tb_to_xs, new_stamp_xsec;
 869	u64 frac_sec;
 870
 871	if (clock != &clocksource_timebase)
 872		return;
 873
 874	xt.tv_sec = tk->xtime_sec;
 875	xt.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 876
 877	/* Make userspace gettimeofday spin until we're done. */
 878	++vdso_data->tb_update_count;
 879	smp_mb();
 880
 881	/*
 882	 * This computes ((2^20 / 1e9) * mult) >> shift as a
 883	 * 0.64 fixed-point fraction.
 884	 * The computation in the else clause below won't overflow
 885	 * (as long as the timebase frequency is >= 1.049 MHz)
 886	 * but loses precision because we lose the low bits of the constant
 887	 * in the shift.  Note that 19342813113834067 ~= 2^(20+64) / 1e9.
 888	 * For a shift of 24 the error is about 0.5e-9, or about 0.5ns
 889	 * over a second.  (Shift values are usually 22, 23 or 24.)
 890	 * For high frequency clocks such as the 512MHz timebase clock
 891	 * on POWER[6789], the mult value is small (e.g. 32768000)
 892	 * and so we can shift the constant by 16 initially
 893	 * (295147905179 ~= 2^(20+64-16) / 1e9) and then do the
 894	 * remaining shifts after the multiplication, which gives a
 895	 * more accurate result (e.g. with mult = 32768000, shift = 24,
 896	 * the error is only about 1.2e-12, or 0.7ns over 10 minutes).
 897	 */
 898	if (mult <= 62500000 && clock->shift >= 16)
 899		new_tb_to_xs = ((u64) mult * 295147905179ULL) >> (clock->shift - 16);
 900	else
 901		new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
 902
 903	/*
 904	 * Compute the fractional second in units of 2^-32 seconds.
 905	 * The fractional second is tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift
 906	 * in nanoseconds, so multiplying that by 2^32 / 1e9 gives
 907	 * it in units of 2^-32 seconds.
 908	 * We assume shift <= 32 because clocks_calc_mult_shift()
 909	 * generates shift values in the range 0 - 32.
 910	 */
 911	frac_sec = tk->tkr_mono.xtime_nsec << (32 - shift);
 912	do_div(frac_sec, NSEC_PER_SEC);
 913
 914	/*
 915	 * Work out new stamp_xsec value for any legacy users of systemcfg.
 916	 * stamp_xsec is in units of 2^-20 seconds.
 917	 */
 918	new_stamp_xsec = frac_sec >> 12;
 919	new_stamp_xsec += tk->xtime_sec * XSEC_PER_SEC;
 920
 921	/*
 922	 * tb_update_count is used to allow the userspace gettimeofday code
 923	 * to assure itself that it sees a consistent view of the tb_to_xs and
 924	 * stamp_xsec variables.  It reads the tb_update_count, then reads
 925	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
 926	 * the two values of tb_update_count match and are even then the
 927	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
 928	 * loops back and reads them again until this criteria is met.
 929	 */
 930	vdso_data->tb_orig_stamp = cycle_last;
 931	vdso_data->stamp_xsec = new_stamp_xsec;
 932	vdso_data->tb_to_xs = new_tb_to_xs;
 933	vdso_data->wtom_clock_sec = tk->wall_to_monotonic.tv_sec;
 934	vdso_data->wtom_clock_nsec = tk->wall_to_monotonic.tv_nsec;
 935	vdso_data->stamp_xtime_sec = xt.tv_sec;
 936	vdso_data->stamp_xtime_nsec = xt.tv_nsec;
 937	vdso_data->stamp_sec_fraction = frac_sec;
 938	vdso_data->hrtimer_res = hrtimer_resolution;
 939	smp_wmb();
 940	++(vdso_data->tb_update_count);
 941}
 942
 943void update_vsyscall_tz(void)
 944{
 945	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
 946	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
 947}
 948
 949static void __init clocksource_init(void)
 950{
 951	struct clocksource *clock;
 952
 953	if (__USE_RTC())
 954		clock = &clocksource_rtc;
 955	else
 956		clock = &clocksource_timebase;
 957
 958	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
 959		printk(KERN_ERR "clocksource: %s is already registered\n",
 960		       clock->name);
 961		return;
 962	}
 963
 964	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
 965	       clock->name, clock->mult, clock->shift);
 966}
 967
 968static int decrementer_set_next_event(unsigned long evt,
 969				      struct clock_event_device *dev)
 970{
 971	__this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
 972	set_dec(evt);
 973
 974	/* We may have raced with new irq work */
 975	if (test_irq_work_pending())
 976		set_dec(1);
 977
 978	return 0;
 979}
 980
 981static int decrementer_shutdown(struct clock_event_device *dev)
 982{
 983	decrementer_set_next_event(decrementer_max, dev);
 984	return 0;
 985}
 986
 987static void register_decrementer_clockevent(int cpu)
 988{
 989	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
 990
 991	*dec = decrementer_clockevent;
 992	dec->cpumask = cpumask_of(cpu);
 993
 994	clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max);
 995
 996	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
 997		    dec->name, dec->mult, dec->shift, cpu);
 998
 999	/* Set values for KVM, see kvm_emulate_dec() */
1000	decrementer_clockevent.mult = dec->mult;
1001	decrementer_clockevent.shift = dec->shift;
1002}
1003
1004static void enable_large_decrementer(void)
1005{
1006	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1007		return;
1008
1009	if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
1010		return;
1011
1012	/*
1013	 * If we're running as the hypervisor we need to enable the LD manually
1014	 * otherwise firmware should have done it for us.
1015	 */
1016	if (cpu_has_feature(CPU_FTR_HVMODE))
1017		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
1018}
1019
1020static void __init set_decrementer_max(void)
1021{
1022	struct device_node *cpu;
1023	u32 bits = 32;
1024
1025	/* Prior to ISAv3 the decrementer is always 32 bit */
1026	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1027		return;
1028
1029	cpu = of_find_node_by_type(NULL, "cpu");
1030
1031	if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
1032		if (bits > 64 || bits < 32) {
1033			pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
1034			bits = 32;
1035		}
1036
1037		/* calculate the signed maximum given this many bits */
1038		decrementer_max = (1ul << (bits - 1)) - 1;
1039	}
1040
1041	of_node_put(cpu);
1042
1043	pr_info("time_init: %u bit decrementer (max: %llx)\n",
1044		bits, decrementer_max);
1045}
1046
1047static void __init init_decrementer_clockevent(void)
1048{
1049	register_decrementer_clockevent(smp_processor_id());
1050}
1051
1052void secondary_cpu_time_init(void)
1053{
1054	/* Enable and test the large decrementer for this cpu */
1055	enable_large_decrementer();
1056
1057	/* Start the decrementer on CPUs that have manual control
1058	 * such as BookE
1059	 */
1060	start_cpu_decrementer();
1061
1062	/* FIME: Should make unrelatred change to move snapshot_timebase
1063	 * call here ! */
1064	register_decrementer_clockevent(smp_processor_id());
1065}
1066
1067/* This function is only called on the boot processor */
1068void __init time_init(void)
1069{
1070	struct div_result res;
1071	u64 scale;
1072	unsigned shift;
1073
1074	if (__USE_RTC()) {
1075		/* 601 processor: dec counts down by 128 every 128ns */
1076		ppc_tb_freq = 1000000000;
1077	} else {
1078		/* Normal PowerPC with timebase register */
1079		ppc_md.calibrate_decr();
1080		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
1081		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
1082		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
1083		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
1084	}
1085
1086	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
1087	tb_ticks_per_sec = ppc_tb_freq;
1088	tb_ticks_per_usec = ppc_tb_freq / 1000000;
1089	calc_cputime_factors();
1090
1091	/*
1092	 * Compute scale factor for sched_clock.
1093	 * The calibrate_decr() function has set tb_ticks_per_sec,
1094	 * which is the timebase frequency.
1095	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1096	 * the 128-bit result as a 64.64 fixed-point number.
1097	 * We then shift that number right until it is less than 1.0,
1098	 * giving us the scale factor and shift count to use in
1099	 * sched_clock().
1100	 */
1101	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1102	scale = res.result_low;
1103	for (shift = 0; res.result_high != 0; ++shift) {
1104		scale = (scale >> 1) | (res.result_high << 63);
1105		res.result_high >>= 1;
1106	}
1107	tb_to_ns_scale = scale;
1108	tb_to_ns_shift = shift;
1109	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1110	boot_tb = get_tb_or_rtc();
1111
1112	/* If platform provided a timezone (pmac), we correct the time */
1113	if (timezone_offset) {
1114		sys_tz.tz_minuteswest = -timezone_offset / 60;
1115		sys_tz.tz_dsttime = 0;
1116	}
1117
1118	vdso_data->tb_update_count = 0;
1119	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1120
1121	/* initialise and enable the large decrementer (if we have one) */
1122	set_decrementer_max();
1123	enable_large_decrementer();
1124
1125	/* Start the decrementer on CPUs that have manual control
1126	 * such as BookE
1127	 */
1128	start_cpu_decrementer();
1129
1130	/* Register the clocksource */
1131	clocksource_init();
1132
1133	init_decrementer_clockevent();
1134	tick_setup_hrtimer_broadcast();
1135
 
1136	of_clk_init(NULL);
 
1137}
1138
1139/*
1140 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1141 * result.
1142 */
1143void div128_by_32(u64 dividend_high, u64 dividend_low,
1144		  unsigned divisor, struct div_result *dr)
1145{
1146	unsigned long a, b, c, d;
1147	unsigned long w, x, y, z;
1148	u64 ra, rb, rc;
1149
1150	a = dividend_high >> 32;
1151	b = dividend_high & 0xffffffff;
1152	c = dividend_low >> 32;
1153	d = dividend_low & 0xffffffff;
1154
1155	w = a / divisor;
1156	ra = ((u64)(a - (w * divisor)) << 32) + b;
1157
1158	rb = ((u64) do_div(ra, divisor) << 32) + c;
1159	x = ra;
1160
1161	rc = ((u64) do_div(rb, divisor) << 32) + d;
1162	y = rb;
1163
1164	do_div(rc, divisor);
1165	z = rc;
1166
1167	dr->result_high = ((u64)w << 32) + x;
1168	dr->result_low  = ((u64)y << 32) + z;
1169
1170}
1171
1172/* We don't need to calibrate delay, we use the CPU timebase for that */
1173void calibrate_delay(void)
1174{
1175	/* Some generic code (such as spinlock debug) use loops_per_jiffy
1176	 * as the number of __delay(1) in a jiffy, so make it so
1177	 */
1178	loops_per_jiffy = tb_ticks_per_jiffy;
1179}
1180
1181#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
1182static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
1183{
1184	ppc_md.get_rtc_time(tm);
1185	return 0;
1186}
1187
1188static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
1189{
1190	if (!ppc_md.set_rtc_time)
1191		return -EOPNOTSUPP;
1192
1193	if (ppc_md.set_rtc_time(tm) < 0)
1194		return -EOPNOTSUPP;
1195
1196	return 0;
1197}
1198
1199static const struct rtc_class_ops rtc_generic_ops = {
1200	.read_time = rtc_generic_get_time,
1201	.set_time = rtc_generic_set_time,
1202};
1203
1204static int __init rtc_init(void)
1205{
1206	struct platform_device *pdev;
1207
1208	if (!ppc_md.get_rtc_time)
1209		return -ENODEV;
1210
1211	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
1212					     &rtc_generic_ops,
1213					     sizeof(rtc_generic_ops));
1214
1215	return PTR_ERR_OR_ZERO(pdev);
1216}
1217
1218device_initcall(rtc_init);
1219#endif
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Common time routines among all ppc machines.
   4 *
   5 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
   6 * Paul Mackerras' version and mine for PReP and Pmac.
   7 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
   8 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
   9 *
  10 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  11 * to make clock more stable (2.4.0-test5). The only thing
  12 * that this code assumes is that the timebases have been synchronized
  13 * by firmware on SMP and are never stopped (never do sleep
  14 * on SMP then, nap and doze are OK).
  15 * 
  16 * Speeded up do_gettimeofday by getting rid of references to
  17 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  18 *
  19 * TODO (not necessarily in this file):
  20 * - improve precision and reproducibility of timebase frequency
  21 * measurement at boot time.
  22 * - for astronomical applications: add a new function to get
  23 * non ambiguous timestamps even around leap seconds. This needs
  24 * a new timestamp format and a good name.
  25 *
  26 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
  27 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
  28 */
  29
  30#include <linux/errno.h>
  31#include <linux/export.h>
  32#include <linux/sched.h>
  33#include <linux/sched/clock.h>
  34#include <linux/kernel.h>
  35#include <linux/param.h>
  36#include <linux/string.h>
  37#include <linux/mm.h>
  38#include <linux/interrupt.h>
  39#include <linux/timex.h>
  40#include <linux/kernel_stat.h>
  41#include <linux/time.h>
  42#include <linux/init.h>
  43#include <linux/profile.h>
  44#include <linux/cpu.h>
  45#include <linux/security.h>
  46#include <linux/percpu.h>
  47#include <linux/rtc.h>
  48#include <linux/jiffies.h>
  49#include <linux/posix-timers.h>
  50#include <linux/irq.h>
  51#include <linux/delay.h>
  52#include <linux/irq_work.h>
  53#include <linux/clk-provider.h>
  54#include <linux/suspend.h>
  55#include <linux/sched/cputime.h>
  56#include <linux/processor.h>
  57#include <asm/trace.h>
  58
  59#include <asm/io.h>
  60#include <asm/nvram.h>
  61#include <asm/cache.h>
  62#include <asm/machdep.h>
  63#include <linux/uaccess.h>
  64#include <asm/time.h>
  65#include <asm/prom.h>
  66#include <asm/irq.h>
  67#include <asm/div64.h>
  68#include <asm/smp.h>
  69#include <asm/vdso_datapage.h>
  70#include <asm/firmware.h>
  71#include <asm/asm-prototypes.h>
  72
  73/* powerpc clocksource/clockevent code */
  74
  75#include <linux/clockchips.h>
  76#include <linux/timekeeper_internal.h>
  77
  78static u64 rtc_read(struct clocksource *);
  79static struct clocksource clocksource_rtc = {
  80	.name         = "rtc",
  81	.rating       = 400,
  82	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  83	.mask         = CLOCKSOURCE_MASK(64),
  84	.read         = rtc_read,
  85};
  86
  87static u64 timebase_read(struct clocksource *);
  88static struct clocksource clocksource_timebase = {
  89	.name         = "timebase",
  90	.rating       = 400,
  91	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  92	.mask         = CLOCKSOURCE_MASK(64),
  93	.read         = timebase_read,
  94};
  95
  96#define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
  97u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
  98
  99static int decrementer_set_next_event(unsigned long evt,
 100				      struct clock_event_device *dev);
 101static int decrementer_shutdown(struct clock_event_device *evt);
 102
 103struct clock_event_device decrementer_clockevent = {
 104	.name			= "decrementer",
 105	.rating			= 200,
 106	.irq			= 0,
 107	.set_next_event		= decrementer_set_next_event,
 108	.set_state_oneshot_stopped = decrementer_shutdown,
 109	.set_state_shutdown	= decrementer_shutdown,
 110	.tick_resume		= decrementer_shutdown,
 111	.features		= CLOCK_EVT_FEAT_ONESHOT |
 112				  CLOCK_EVT_FEAT_C3STOP,
 113};
 114EXPORT_SYMBOL(decrementer_clockevent);
 115
 116DEFINE_PER_CPU(u64, decrementers_next_tb);
 117static DEFINE_PER_CPU(struct clock_event_device, decrementers);
 118
 119#define XSEC_PER_SEC (1024*1024)
 120
 121#ifdef CONFIG_PPC64
 122#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
 123#else
 124/* compute ((xsec << 12) * max) >> 32 */
 125#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
 126#endif
 127
 128unsigned long tb_ticks_per_jiffy;
 129unsigned long tb_ticks_per_usec = 100; /* sane default */
 130EXPORT_SYMBOL(tb_ticks_per_usec);
 131unsigned long tb_ticks_per_sec;
 132EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
 133
 134DEFINE_SPINLOCK(rtc_lock);
 135EXPORT_SYMBOL_GPL(rtc_lock);
 136
 137static u64 tb_to_ns_scale __read_mostly;
 138static unsigned tb_to_ns_shift __read_mostly;
 139static u64 boot_tb __read_mostly;
 140
 141extern struct timezone sys_tz;
 142static long timezone_offset;
 143
 144unsigned long ppc_proc_freq;
 145EXPORT_SYMBOL_GPL(ppc_proc_freq);
 146unsigned long ppc_tb_freq;
 147EXPORT_SYMBOL_GPL(ppc_tb_freq);
 148
 149bool tb_invalid;
 150
 151#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 152/*
 153 * Factor for converting from cputime_t (timebase ticks) to
 154 * microseconds. This is stored as 0.64 fixed-point binary fraction.
 155 */
 156u64 __cputime_usec_factor;
 157EXPORT_SYMBOL(__cputime_usec_factor);
 158
 159#ifdef CONFIG_PPC_SPLPAR
 160void (*dtl_consumer)(struct dtl_entry *, u64);
 161#endif
 162
 163static void calc_cputime_factors(void)
 164{
 165	struct div_result res;
 166
 167	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
 168	__cputime_usec_factor = res.result_low;
 169}
 170
 171/*
 172 * Read the SPURR on systems that have it, otherwise the PURR,
 173 * or if that doesn't exist return the timebase value passed in.
 174 */
 175static inline unsigned long read_spurr(unsigned long tb)
 176{
 177	if (cpu_has_feature(CPU_FTR_SPURR))
 178		return mfspr(SPRN_SPURR);
 179	if (cpu_has_feature(CPU_FTR_PURR))
 180		return mfspr(SPRN_PURR);
 181	return tb;
 182}
 183
 184#ifdef CONFIG_PPC_SPLPAR
 185
 
 
 186/*
 187 * Scan the dispatch trace log and count up the stolen time.
 188 * Should be called with interrupts disabled.
 189 */
 190static u64 scan_dispatch_log(u64 stop_tb)
 191{
 192	u64 i = local_paca->dtl_ridx;
 193	struct dtl_entry *dtl = local_paca->dtl_curr;
 194	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
 195	struct lppaca *vpa = local_paca->lppaca_ptr;
 196	u64 tb_delta;
 197	u64 stolen = 0;
 198	u64 dtb;
 199
 200	if (!dtl)
 201		return 0;
 202
 203	if (i == be64_to_cpu(vpa->dtl_idx))
 204		return 0;
 205	while (i < be64_to_cpu(vpa->dtl_idx)) {
 206		dtb = be64_to_cpu(dtl->timebase);
 207		tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
 208			be32_to_cpu(dtl->ready_to_enqueue_time);
 209		barrier();
 210		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
 211			/* buffer has overflowed */
 212			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
 213			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
 214			continue;
 215		}
 216		if (dtb > stop_tb)
 217			break;
 218		if (dtl_consumer)
 219			dtl_consumer(dtl, i);
 220		stolen += tb_delta;
 221		++i;
 222		++dtl;
 223		if (dtl == dtl_end)
 224			dtl = local_paca->dispatch_log;
 225	}
 226	local_paca->dtl_ridx = i;
 227	local_paca->dtl_curr = dtl;
 228	return stolen;
 229}
 230
 231/*
 232 * Accumulate stolen time by scanning the dispatch trace log.
 233 * Called on entry from user mode.
 234 */
 235void accumulate_stolen_time(void)
 236{
 237	u64 sst, ust;
 238	unsigned long save_irq_soft_mask = irq_soft_mask_return();
 239	struct cpu_accounting_data *acct = &local_paca->accounting;
 240
 241	/* We are called early in the exception entry, before
 242	 * soft/hard_enabled are sync'ed to the expected state
 243	 * for the exception. We are hard disabled but the PACA
 244	 * needs to reflect that so various debug stuff doesn't
 245	 * complain
 246	 */
 247	irq_soft_mask_set(IRQS_DISABLED);
 248
 249	sst = scan_dispatch_log(acct->starttime_user);
 250	ust = scan_dispatch_log(acct->starttime);
 251	acct->stime -= sst;
 252	acct->utime -= ust;
 253	acct->steal_time += ust + sst;
 254
 255	irq_soft_mask_set(save_irq_soft_mask);
 256}
 257
 258static inline u64 calculate_stolen_time(u64 stop_tb)
 259{
 260	if (!firmware_has_feature(FW_FEATURE_SPLPAR))
 261		return 0;
 262
 263	if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx))
 264		return scan_dispatch_log(stop_tb);
 265
 266	return 0;
 267}
 268
 269#else /* CONFIG_PPC_SPLPAR */
 270static inline u64 calculate_stolen_time(u64 stop_tb)
 271{
 272	return 0;
 273}
 274
 275#endif /* CONFIG_PPC_SPLPAR */
 276
 277/*
 278 * Account time for a transition between system, hard irq
 279 * or soft irq state.
 280 */
 281static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct,
 282					unsigned long now, unsigned long stime)
 283{
 284	unsigned long stime_scaled = 0;
 285#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 286	unsigned long nowscaled, deltascaled;
 287	unsigned long utime, utime_scaled;
 288
 289	nowscaled = read_spurr(now);
 290	deltascaled = nowscaled - acct->startspurr;
 291	acct->startspurr = nowscaled;
 292	utime = acct->utime - acct->utime_sspurr;
 293	acct->utime_sspurr = acct->utime;
 294
 295	/*
 296	 * Because we don't read the SPURR on every kernel entry/exit,
 297	 * deltascaled includes both user and system SPURR ticks.
 298	 * Apportion these ticks to system SPURR ticks and user
 299	 * SPURR ticks in the same ratio as the system time (delta)
 300	 * and user time (udelta) values obtained from the timebase
 301	 * over the same interval.  The system ticks get accounted here;
 302	 * the user ticks get saved up in paca->user_time_scaled to be
 303	 * used by account_process_tick.
 304	 */
 305	stime_scaled = stime;
 306	utime_scaled = utime;
 307	if (deltascaled != stime + utime) {
 308		if (utime) {
 309			stime_scaled = deltascaled * stime / (stime + utime);
 310			utime_scaled = deltascaled - stime_scaled;
 311		} else {
 312			stime_scaled = deltascaled;
 313		}
 314	}
 315	acct->utime_scaled += utime_scaled;
 316#endif
 317
 318	return stime_scaled;
 319}
 320
 321static unsigned long vtime_delta(struct task_struct *tsk,
 322				 unsigned long *stime_scaled,
 323				 unsigned long *steal_time)
 324{
 325	unsigned long now, stime;
 326	struct cpu_accounting_data *acct = get_accounting(tsk);
 327
 328	WARN_ON_ONCE(!irqs_disabled());
 329
 330	now = mftb();
 331	stime = now - acct->starttime;
 332	acct->starttime = now;
 333
 334	*stime_scaled = vtime_delta_scaled(acct, now, stime);
 335
 336	*steal_time = calculate_stolen_time(now);
 337
 338	return stime;
 339}
 340
 341void vtime_account_system(struct task_struct *tsk)
 342{
 343	unsigned long stime, stime_scaled, steal_time;
 344	struct cpu_accounting_data *acct = get_accounting(tsk);
 345
 346	stime = vtime_delta(tsk, &stime_scaled, &steal_time);
 347
 348	stime -= min(stime, steal_time);
 349	acct->steal_time += steal_time;
 350
 351	if ((tsk->flags & PF_VCPU) && !irq_count()) {
 352		acct->gtime += stime;
 353#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 354		acct->utime_scaled += stime_scaled;
 355#endif
 356	} else {
 357		if (hardirq_count())
 358			acct->hardirq_time += stime;
 359		else if (in_serving_softirq())
 360			acct->softirq_time += stime;
 361		else
 362			acct->stime += stime;
 363
 364#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 365		acct->stime_scaled += stime_scaled;
 366#endif
 367	}
 368}
 369EXPORT_SYMBOL_GPL(vtime_account_system);
 370
 371void vtime_account_idle(struct task_struct *tsk)
 372{
 373	unsigned long stime, stime_scaled, steal_time;
 374	struct cpu_accounting_data *acct = get_accounting(tsk);
 375
 376	stime = vtime_delta(tsk, &stime_scaled, &steal_time);
 377	acct->idle_time += stime + steal_time;
 378}
 379
 380static void vtime_flush_scaled(struct task_struct *tsk,
 381			       struct cpu_accounting_data *acct)
 382{
 383#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 384	if (acct->utime_scaled)
 385		tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
 386	if (acct->stime_scaled)
 387		tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
 388
 389	acct->utime_scaled = 0;
 390	acct->utime_sspurr = 0;
 391	acct->stime_scaled = 0;
 392#endif
 393}
 394
 395/*
 396 * Account the whole cputime accumulated in the paca
 397 * Must be called with interrupts disabled.
 398 * Assumes that vtime_account_system/idle() has been called
 399 * recently (i.e. since the last entry from usermode) so that
 400 * get_paca()->user_time_scaled is up to date.
 401 */
 402void vtime_flush(struct task_struct *tsk)
 403{
 404	struct cpu_accounting_data *acct = get_accounting(tsk);
 405
 406	if (acct->utime)
 407		account_user_time(tsk, cputime_to_nsecs(acct->utime));
 408
 409	if (acct->gtime)
 410		account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
 411
 412	if (IS_ENABLED(CONFIG_PPC_SPLPAR) && acct->steal_time) {
 413		account_steal_time(cputime_to_nsecs(acct->steal_time));
 414		acct->steal_time = 0;
 415	}
 416
 417	if (acct->idle_time)
 418		account_idle_time(cputime_to_nsecs(acct->idle_time));
 419
 420	if (acct->stime)
 421		account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
 422					  CPUTIME_SYSTEM);
 423
 424	if (acct->hardirq_time)
 425		account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
 426					  CPUTIME_IRQ);
 427	if (acct->softirq_time)
 428		account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
 429					  CPUTIME_SOFTIRQ);
 430
 431	vtime_flush_scaled(tsk, acct);
 432
 433	acct->utime = 0;
 434	acct->gtime = 0;
 435	acct->idle_time = 0;
 436	acct->stime = 0;
 437	acct->hardirq_time = 0;
 438	acct->softirq_time = 0;
 439}
 440
 441#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 442#define calc_cputime_factors()
 443#endif
 444
 445void __delay(unsigned long loops)
 446{
 447	unsigned long start;
 448	int diff;
 449
 450	spin_begin();
 451	if (__USE_RTC()) {
 452		start = get_rtcl();
 453		do {
 454			/* the RTCL register wraps at 1000000000 */
 455			diff = get_rtcl() - start;
 456			if (diff < 0)
 457				diff += 1000000000;
 458			spin_cpu_relax();
 459		} while (diff < loops);
 460	} else if (tb_invalid) {
 461		/*
 462		 * TB is in error state and isn't ticking anymore.
 463		 * HMI handler was unable to recover from TB error.
 464		 * Return immediately, so that kernel won't get stuck here.
 465		 */
 466		spin_cpu_relax();
 467	} else {
 468		start = get_tbl();
 469		while (get_tbl() - start < loops)
 470			spin_cpu_relax();
 471	}
 472	spin_end();
 473}
 474EXPORT_SYMBOL(__delay);
 475
 476void udelay(unsigned long usecs)
 477{
 478	__delay(tb_ticks_per_usec * usecs);
 479}
 480EXPORT_SYMBOL(udelay);
 481
 482#ifdef CONFIG_SMP
 483unsigned long profile_pc(struct pt_regs *regs)
 484{
 485	unsigned long pc = instruction_pointer(regs);
 486
 487	if (in_lock_functions(pc))
 488		return regs->link;
 489
 490	return pc;
 491}
 492EXPORT_SYMBOL(profile_pc);
 493#endif
 494
 495#ifdef CONFIG_IRQ_WORK
 496
 497/*
 498 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
 499 */
 500#ifdef CONFIG_PPC64
 501static inline unsigned long test_irq_work_pending(void)
 502{
 503	unsigned long x;
 504
 505	asm volatile("lbz %0,%1(13)"
 506		: "=r" (x)
 507		: "i" (offsetof(struct paca_struct, irq_work_pending)));
 508	return x;
 509}
 510
 511static inline void set_irq_work_pending_flag(void)
 512{
 513	asm volatile("stb %0,%1(13)" : :
 514		"r" (1),
 515		"i" (offsetof(struct paca_struct, irq_work_pending)));
 516}
 517
 518static inline void clear_irq_work_pending(void)
 519{
 520	asm volatile("stb %0,%1(13)" : :
 521		"r" (0),
 522		"i" (offsetof(struct paca_struct, irq_work_pending)));
 523}
 524
 525void arch_irq_work_raise(void)
 526{
 527	preempt_disable();
 528	set_irq_work_pending_flag();
 529	/*
 530	 * Non-nmi code running with interrupts disabled will replay
 531	 * irq_happened before it re-enables interrupts, so setthe
 532	 * decrementer there instead of causing a hardware exception
 533	 * which would immediately hit the masked interrupt handler
 534	 * and have the net effect of setting the decrementer in
 535	 * irq_happened.
 536	 *
 537	 * NMI interrupts can not check this when they return, so the
 538	 * decrementer hardware exception is raised, which will fire
 539	 * when interrupts are next enabled.
 540	 *
 541	 * BookE does not support this yet, it must audit all NMI
 542	 * interrupt handlers to ensure they call nmi_enter() so this
 543	 * check would be correct.
 544	 */
 545	if (IS_ENABLED(CONFIG_BOOKE) || !irqs_disabled() || in_nmi()) {
 546		set_dec(1);
 547	} else {
 548		hard_irq_disable();
 549		local_paca->irq_happened |= PACA_IRQ_DEC;
 550	}
 551	preempt_enable();
 552}
 553
 554#else /* 32-bit */
 555
 556DEFINE_PER_CPU(u8, irq_work_pending);
 557
 558#define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
 559#define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
 560#define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
 561
 
 
 562void arch_irq_work_raise(void)
 563{
 
 
 
 
 
 
 
 
 
 
 
 564	preempt_disable();
 565	set_irq_work_pending_flag();
 566	set_dec(1);
 567	preempt_enable();
 568}
 569
 570#endif /* 32 vs 64 bit */
 571
 572#else  /* CONFIG_IRQ_WORK */
 573
 574#define test_irq_work_pending()	0
 575#define clear_irq_work_pending()
 576
 577#endif /* CONFIG_IRQ_WORK */
 578
 579/*
 580 * timer_interrupt - gets called when the decrementer overflows,
 581 * with interrupts disabled.
 582 */
 583void timer_interrupt(struct pt_regs *regs)
 584{
 585	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
 586	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 587	struct pt_regs *old_regs;
 588	u64 now;
 589
 590	/* Some implementations of hotplug will get timer interrupts while
 591	 * offline, just ignore these and we also need to set
 592	 * decrementers_next_tb as MAX to make sure __check_irq_replay
 593	 * don't replay timer interrupt when return, otherwise we'll trap
 594	 * here infinitely :(
 595	 */
 596	if (unlikely(!cpu_online(smp_processor_id()))) {
 597		*next_tb = ~(u64)0;
 598		set_dec(decrementer_max);
 599		return;
 600	}
 601
 602	/* Ensure a positive value is written to the decrementer, or else
 603	 * some CPUs will continue to take decrementer exceptions. When the
 604	 * PPC_WATCHDOG (decrementer based) is configured, keep this at most
 605	 * 31 bits, which is about 4 seconds on most systems, which gives
 606	 * the watchdog a chance of catching timer interrupt hard lockups.
 607	 */
 608	if (IS_ENABLED(CONFIG_PPC_WATCHDOG))
 609		set_dec(0x7fffffff);
 610	else
 611		set_dec(decrementer_max);
 612
 613	/* Conditionally hard-enable interrupts now that the DEC has been
 614	 * bumped to its maximum value
 615	 */
 616	may_hard_irq_enable();
 617
 618
 619#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
 620	if (atomic_read(&ppc_n_lost_interrupts) != 0)
 621		do_IRQ(regs);
 622#endif
 623
 624	old_regs = set_irq_regs(regs);
 625	irq_enter();
 626	trace_timer_interrupt_entry(regs);
 627
 628	if (test_irq_work_pending()) {
 629		clear_irq_work_pending();
 630		irq_work_run();
 631	}
 632
 633	now = get_tb_or_rtc();
 634	if (now >= *next_tb) {
 635		*next_tb = ~(u64)0;
 636		if (evt->event_handler)
 637			evt->event_handler(evt);
 638		__this_cpu_inc(irq_stat.timer_irqs_event);
 639	} else {
 640		now = *next_tb - now;
 641		if (now <= decrementer_max)
 642			set_dec(now);
 643		/* We may have raced with new irq work */
 644		if (test_irq_work_pending())
 645			set_dec(1);
 646		__this_cpu_inc(irq_stat.timer_irqs_others);
 647	}
 648
 649	trace_timer_interrupt_exit(regs);
 650	irq_exit();
 651	set_irq_regs(old_regs);
 652}
 653EXPORT_SYMBOL(timer_interrupt);
 654
 655#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 656void timer_broadcast_interrupt(void)
 657{
 658	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 659
 660	*next_tb = ~(u64)0;
 661	tick_receive_broadcast();
 662	__this_cpu_inc(irq_stat.broadcast_irqs_event);
 663}
 664#endif
 665
 666/*
 667 * Hypervisor decrementer interrupts shouldn't occur but are sometimes
 668 * left pending on exit from a KVM guest.  We don't need to do anything
 669 * to clear them, as they are edge-triggered.
 670 */
 671void hdec_interrupt(struct pt_regs *regs)
 672{
 673}
 674
 675#ifdef CONFIG_SUSPEND
 676static void generic_suspend_disable_irqs(void)
 677{
 678	/* Disable the decrementer, so that it doesn't interfere
 679	 * with suspending.
 680	 */
 681
 682	set_dec(decrementer_max);
 683	local_irq_disable();
 684	set_dec(decrementer_max);
 685}
 686
 687static void generic_suspend_enable_irqs(void)
 688{
 689	local_irq_enable();
 690}
 691
 692/* Overrides the weak version in kernel/power/main.c */
 693void arch_suspend_disable_irqs(void)
 694{
 695	if (ppc_md.suspend_disable_irqs)
 696		ppc_md.suspend_disable_irqs();
 697	generic_suspend_disable_irqs();
 698}
 699
 700/* Overrides the weak version in kernel/power/main.c */
 701void arch_suspend_enable_irqs(void)
 702{
 703	generic_suspend_enable_irqs();
 704	if (ppc_md.suspend_enable_irqs)
 705		ppc_md.suspend_enable_irqs();
 706}
 707#endif
 708
 709unsigned long long tb_to_ns(unsigned long long ticks)
 710{
 711	return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
 712}
 713EXPORT_SYMBOL_GPL(tb_to_ns);
 714
 715/*
 716 * Scheduler clock - returns current time in nanosec units.
 717 *
 718 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 719 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 720 * are 64-bit unsigned numbers.
 721 */
 722notrace unsigned long long sched_clock(void)
 723{
 724	if (__USE_RTC())
 725		return get_rtc();
 726	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 727}
 728
 729
 730#ifdef CONFIG_PPC_PSERIES
 731
 732/*
 733 * Running clock - attempts to give a view of time passing for a virtualised
 734 * kernels.
 735 * Uses the VTB register if available otherwise a next best guess.
 736 */
 737unsigned long long running_clock(void)
 738{
 739	/*
 740	 * Don't read the VTB as a host since KVM does not switch in host
 741	 * timebase into the VTB when it takes a guest off the CPU, reading the
 742	 * VTB would result in reading 'last switched out' guest VTB.
 743	 *
 744	 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
 745	 * would be unsafe to rely only on the #ifdef above.
 746	 */
 747	if (firmware_has_feature(FW_FEATURE_LPAR) &&
 748	    cpu_has_feature(CPU_FTR_ARCH_207S))
 749		return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 750
 751	/*
 752	 * This is a next best approximation without a VTB.
 753	 * On a host which is running bare metal there should never be any stolen
 754	 * time and on a host which doesn't do any virtualisation TB *should* equal
 755	 * VTB so it makes no difference anyway.
 756	 */
 757	return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL];
 758}
 759#endif
 760
 761static int __init get_freq(char *name, int cells, unsigned long *val)
 762{
 763	struct device_node *cpu;
 764	const __be32 *fp;
 765	int found = 0;
 766
 767	/* The cpu node should have timebase and clock frequency properties */
 768	cpu = of_find_node_by_type(NULL, "cpu");
 769
 770	if (cpu) {
 771		fp = of_get_property(cpu, name, NULL);
 772		if (fp) {
 773			found = 1;
 774			*val = of_read_ulong(fp, cells);
 775		}
 776
 777		of_node_put(cpu);
 778	}
 779
 780	return found;
 781}
 782
 783static void start_cpu_decrementer(void)
 784{
 785#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
 786	unsigned int tcr;
 787
 788	/* Clear any pending timer interrupts */
 789	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
 790
 791	tcr = mfspr(SPRN_TCR);
 792	/*
 793	 * The watchdog may have already been enabled by u-boot. So leave
 794	 * TRC[WP] (Watchdog Period) alone.
 795	 */
 796	tcr &= TCR_WP_MASK;	/* Clear all bits except for TCR[WP] */
 797	tcr |= TCR_DIE;		/* Enable decrementer */
 798	mtspr(SPRN_TCR, tcr);
 799#endif
 800}
 801
 802void __init generic_calibrate_decr(void)
 803{
 804	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
 805
 806	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
 807	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
 808
 809		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
 810				"(not found)\n");
 811	}
 812
 813	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
 814
 815	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
 816	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
 817
 818		printk(KERN_ERR "WARNING: Estimating processor frequency "
 819				"(not found)\n");
 820	}
 821}
 822
 823int update_persistent_clock64(struct timespec64 now)
 824{
 825	struct rtc_time tm;
 826
 827	if (!ppc_md.set_rtc_time)
 828		return -ENODEV;
 829
 830	rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm);
 831
 832	return ppc_md.set_rtc_time(&tm);
 833}
 834
 835static void __read_persistent_clock(struct timespec64 *ts)
 836{
 837	struct rtc_time tm;
 838	static int first = 1;
 839
 840	ts->tv_nsec = 0;
 841	/* XXX this is a litle fragile but will work okay in the short term */
 842	if (first) {
 843		first = 0;
 844		if (ppc_md.time_init)
 845			timezone_offset = ppc_md.time_init();
 846
 847		/* get_boot_time() isn't guaranteed to be safe to call late */
 848		if (ppc_md.get_boot_time) {
 849			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
 850			return;
 851		}
 852	}
 853	if (!ppc_md.get_rtc_time) {
 854		ts->tv_sec = 0;
 855		return;
 856	}
 857	ppc_md.get_rtc_time(&tm);
 858
 859	ts->tv_sec = rtc_tm_to_time64(&tm);
 860}
 861
 862void read_persistent_clock64(struct timespec64 *ts)
 863{
 864	__read_persistent_clock(ts);
 865
 866	/* Sanitize it in case real time clock is set below EPOCH */
 867	if (ts->tv_sec < 0) {
 868		ts->tv_sec = 0;
 869		ts->tv_nsec = 0;
 870	}
 871		
 872}
 873
 874/* clocksource code */
 875static notrace u64 rtc_read(struct clocksource *cs)
 876{
 877	return (u64)get_rtc();
 878}
 879
 880static notrace u64 timebase_read(struct clocksource *cs)
 881{
 882	return (u64)get_tb();
 883}
 884
 885
 886void update_vsyscall(struct timekeeper *tk)
 887{
 888	struct timespec xt;
 889	struct clocksource *clock = tk->tkr_mono.clock;
 890	u32 mult = tk->tkr_mono.mult;
 891	u32 shift = tk->tkr_mono.shift;
 892	u64 cycle_last = tk->tkr_mono.cycle_last;
 893	u64 new_tb_to_xs, new_stamp_xsec;
 894	u64 frac_sec;
 895
 896	if (clock != &clocksource_timebase)
 897		return;
 898
 899	xt.tv_sec = tk->xtime_sec;
 900	xt.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 901
 902	/* Make userspace gettimeofday spin until we're done. */
 903	++vdso_data->tb_update_count;
 904	smp_mb();
 905
 906	/*
 907	 * This computes ((2^20 / 1e9) * mult) >> shift as a
 908	 * 0.64 fixed-point fraction.
 909	 * The computation in the else clause below won't overflow
 910	 * (as long as the timebase frequency is >= 1.049 MHz)
 911	 * but loses precision because we lose the low bits of the constant
 912	 * in the shift.  Note that 19342813113834067 ~= 2^(20+64) / 1e9.
 913	 * For a shift of 24 the error is about 0.5e-9, or about 0.5ns
 914	 * over a second.  (Shift values are usually 22, 23 or 24.)
 915	 * For high frequency clocks such as the 512MHz timebase clock
 916	 * on POWER[6789], the mult value is small (e.g. 32768000)
 917	 * and so we can shift the constant by 16 initially
 918	 * (295147905179 ~= 2^(20+64-16) / 1e9) and then do the
 919	 * remaining shifts after the multiplication, which gives a
 920	 * more accurate result (e.g. with mult = 32768000, shift = 24,
 921	 * the error is only about 1.2e-12, or 0.7ns over 10 minutes).
 922	 */
 923	if (mult <= 62500000 && clock->shift >= 16)
 924		new_tb_to_xs = ((u64) mult * 295147905179ULL) >> (clock->shift - 16);
 925	else
 926		new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
 927
 928	/*
 929	 * Compute the fractional second in units of 2^-32 seconds.
 930	 * The fractional second is tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift
 931	 * in nanoseconds, so multiplying that by 2^32 / 1e9 gives
 932	 * it in units of 2^-32 seconds.
 933	 * We assume shift <= 32 because clocks_calc_mult_shift()
 934	 * generates shift values in the range 0 - 32.
 935	 */
 936	frac_sec = tk->tkr_mono.xtime_nsec << (32 - shift);
 937	do_div(frac_sec, NSEC_PER_SEC);
 938
 939	/*
 940	 * Work out new stamp_xsec value for any legacy users of systemcfg.
 941	 * stamp_xsec is in units of 2^-20 seconds.
 942	 */
 943	new_stamp_xsec = frac_sec >> 12;
 944	new_stamp_xsec += tk->xtime_sec * XSEC_PER_SEC;
 945
 946	/*
 947	 * tb_update_count is used to allow the userspace gettimeofday code
 948	 * to assure itself that it sees a consistent view of the tb_to_xs and
 949	 * stamp_xsec variables.  It reads the tb_update_count, then reads
 950	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
 951	 * the two values of tb_update_count match and are even then the
 952	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
 953	 * loops back and reads them again until this criteria is met.
 954	 */
 955	vdso_data->tb_orig_stamp = cycle_last;
 956	vdso_data->stamp_xsec = new_stamp_xsec;
 957	vdso_data->tb_to_xs = new_tb_to_xs;
 958	vdso_data->wtom_clock_sec = tk->wall_to_monotonic.tv_sec;
 959	vdso_data->wtom_clock_nsec = tk->wall_to_monotonic.tv_nsec;
 960	vdso_data->stamp_xtime = xt;
 
 961	vdso_data->stamp_sec_fraction = frac_sec;
 
 962	smp_wmb();
 963	++(vdso_data->tb_update_count);
 964}
 965
 966void update_vsyscall_tz(void)
 967{
 968	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
 969	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
 970}
 971
 972static void __init clocksource_init(void)
 973{
 974	struct clocksource *clock;
 975
 976	if (__USE_RTC())
 977		clock = &clocksource_rtc;
 978	else
 979		clock = &clocksource_timebase;
 980
 981	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
 982		printk(KERN_ERR "clocksource: %s is already registered\n",
 983		       clock->name);
 984		return;
 985	}
 986
 987	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
 988	       clock->name, clock->mult, clock->shift);
 989}
 990
 991static int decrementer_set_next_event(unsigned long evt,
 992				      struct clock_event_device *dev)
 993{
 994	__this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
 995	set_dec(evt);
 996
 997	/* We may have raced with new irq work */
 998	if (test_irq_work_pending())
 999		set_dec(1);
1000
1001	return 0;
1002}
1003
1004static int decrementer_shutdown(struct clock_event_device *dev)
1005{
1006	decrementer_set_next_event(decrementer_max, dev);
1007	return 0;
1008}
1009
1010static void register_decrementer_clockevent(int cpu)
1011{
1012	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
1013
1014	*dec = decrementer_clockevent;
1015	dec->cpumask = cpumask_of(cpu);
1016
1017	clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max);
1018
1019	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
1020		    dec->name, dec->mult, dec->shift, cpu);
1021
1022	/* Set values for KVM, see kvm_emulate_dec() */
1023	decrementer_clockevent.mult = dec->mult;
1024	decrementer_clockevent.shift = dec->shift;
1025}
1026
1027static void enable_large_decrementer(void)
1028{
1029	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1030		return;
1031
1032	if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
1033		return;
1034
1035	/*
1036	 * If we're running as the hypervisor we need to enable the LD manually
1037	 * otherwise firmware should have done it for us.
1038	 */
1039	if (cpu_has_feature(CPU_FTR_HVMODE))
1040		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
1041}
1042
1043static void __init set_decrementer_max(void)
1044{
1045	struct device_node *cpu;
1046	u32 bits = 32;
1047
1048	/* Prior to ISAv3 the decrementer is always 32 bit */
1049	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1050		return;
1051
1052	cpu = of_find_node_by_type(NULL, "cpu");
1053
1054	if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
1055		if (bits > 64 || bits < 32) {
1056			pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
1057			bits = 32;
1058		}
1059
1060		/* calculate the signed maximum given this many bits */
1061		decrementer_max = (1ul << (bits - 1)) - 1;
1062	}
1063
1064	of_node_put(cpu);
1065
1066	pr_info("time_init: %u bit decrementer (max: %llx)\n",
1067		bits, decrementer_max);
1068}
1069
1070static void __init init_decrementer_clockevent(void)
1071{
1072	register_decrementer_clockevent(smp_processor_id());
1073}
1074
1075void secondary_cpu_time_init(void)
1076{
1077	/* Enable and test the large decrementer for this cpu */
1078	enable_large_decrementer();
1079
1080	/* Start the decrementer on CPUs that have manual control
1081	 * such as BookE
1082	 */
1083	start_cpu_decrementer();
1084
1085	/* FIME: Should make unrelatred change to move snapshot_timebase
1086	 * call here ! */
1087	register_decrementer_clockevent(smp_processor_id());
1088}
1089
1090/* This function is only called on the boot processor */
1091void __init time_init(void)
1092{
1093	struct div_result res;
1094	u64 scale;
1095	unsigned shift;
1096
1097	if (__USE_RTC()) {
1098		/* 601 processor: dec counts down by 128 every 128ns */
1099		ppc_tb_freq = 1000000000;
1100	} else {
1101		/* Normal PowerPC with timebase register */
1102		ppc_md.calibrate_decr();
1103		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
1104		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
1105		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
1106		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
1107	}
1108
1109	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
1110	tb_ticks_per_sec = ppc_tb_freq;
1111	tb_ticks_per_usec = ppc_tb_freq / 1000000;
1112	calc_cputime_factors();
1113
1114	/*
1115	 * Compute scale factor for sched_clock.
1116	 * The calibrate_decr() function has set tb_ticks_per_sec,
1117	 * which is the timebase frequency.
1118	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1119	 * the 128-bit result as a 64.64 fixed-point number.
1120	 * We then shift that number right until it is less than 1.0,
1121	 * giving us the scale factor and shift count to use in
1122	 * sched_clock().
1123	 */
1124	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1125	scale = res.result_low;
1126	for (shift = 0; res.result_high != 0; ++shift) {
1127		scale = (scale >> 1) | (res.result_high << 63);
1128		res.result_high >>= 1;
1129	}
1130	tb_to_ns_scale = scale;
1131	tb_to_ns_shift = shift;
1132	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1133	boot_tb = get_tb_or_rtc();
1134
1135	/* If platform provided a timezone (pmac), we correct the time */
1136	if (timezone_offset) {
1137		sys_tz.tz_minuteswest = -timezone_offset / 60;
1138		sys_tz.tz_dsttime = 0;
1139	}
1140
1141	vdso_data->tb_update_count = 0;
1142	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1143
1144	/* initialise and enable the large decrementer (if we have one) */
1145	set_decrementer_max();
1146	enable_large_decrementer();
1147
1148	/* Start the decrementer on CPUs that have manual control
1149	 * such as BookE
1150	 */
1151	start_cpu_decrementer();
1152
1153	/* Register the clocksource */
1154	clocksource_init();
1155
1156	init_decrementer_clockevent();
1157	tick_setup_hrtimer_broadcast();
1158
1159#ifdef CONFIG_COMMON_CLK
1160	of_clk_init(NULL);
1161#endif
1162}
1163
1164/*
1165 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1166 * result.
1167 */
1168void div128_by_32(u64 dividend_high, u64 dividend_low,
1169		  unsigned divisor, struct div_result *dr)
1170{
1171	unsigned long a, b, c, d;
1172	unsigned long w, x, y, z;
1173	u64 ra, rb, rc;
1174
1175	a = dividend_high >> 32;
1176	b = dividend_high & 0xffffffff;
1177	c = dividend_low >> 32;
1178	d = dividend_low & 0xffffffff;
1179
1180	w = a / divisor;
1181	ra = ((u64)(a - (w * divisor)) << 32) + b;
1182
1183	rb = ((u64) do_div(ra, divisor) << 32) + c;
1184	x = ra;
1185
1186	rc = ((u64) do_div(rb, divisor) << 32) + d;
1187	y = rb;
1188
1189	do_div(rc, divisor);
1190	z = rc;
1191
1192	dr->result_high = ((u64)w << 32) + x;
1193	dr->result_low  = ((u64)y << 32) + z;
1194
1195}
1196
1197/* We don't need to calibrate delay, we use the CPU timebase for that */
1198void calibrate_delay(void)
1199{
1200	/* Some generic code (such as spinlock debug) use loops_per_jiffy
1201	 * as the number of __delay(1) in a jiffy, so make it so
1202	 */
1203	loops_per_jiffy = tb_ticks_per_jiffy;
1204}
1205
1206#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
1207static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
1208{
1209	ppc_md.get_rtc_time(tm);
1210	return 0;
1211}
1212
1213static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
1214{
1215	if (!ppc_md.set_rtc_time)
1216		return -EOPNOTSUPP;
1217
1218	if (ppc_md.set_rtc_time(tm) < 0)
1219		return -EOPNOTSUPP;
1220
1221	return 0;
1222}
1223
1224static const struct rtc_class_ops rtc_generic_ops = {
1225	.read_time = rtc_generic_get_time,
1226	.set_time = rtc_generic_set_time,
1227};
1228
1229static int __init rtc_init(void)
1230{
1231	struct platform_device *pdev;
1232
1233	if (!ppc_md.get_rtc_time)
1234		return -ENODEV;
1235
1236	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
1237					     &rtc_generic_ops,
1238					     sizeof(rtc_generic_ops));
1239
1240	return PTR_ERR_OR_ZERO(pdev);
1241}
1242
1243device_initcall(rtc_init);
1244#endif