Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Common time routines among all ppc machines.
   4 *
   5 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
   6 * Paul Mackerras' version and mine for PReP and Pmac.
   7 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
   8 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
   9 *
  10 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  11 * to make clock more stable (2.4.0-test5). The only thing
  12 * that this code assumes is that the timebases have been synchronized
  13 * by firmware on SMP and are never stopped (never do sleep
  14 * on SMP then, nap and doze are OK).
  15 * 
  16 * Speeded up do_gettimeofday by getting rid of references to
  17 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  18 *
  19 * TODO (not necessarily in this file):
  20 * - improve precision and reproducibility of timebase frequency
  21 * measurement at boot time.
  22 * - for astronomical applications: add a new function to get
  23 * non ambiguous timestamps even around leap seconds. This needs
  24 * a new timestamp format and a good name.
  25 *
  26 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
  27 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 
 
 
 
 
  28 */
  29
  30#include <linux/errno.h>
  31#include <linux/export.h>
  32#include <linux/sched.h>
  33#include <linux/sched/clock.h>
  34#include <linux/kernel.h>
  35#include <linux/param.h>
  36#include <linux/string.h>
  37#include <linux/mm.h>
  38#include <linux/interrupt.h>
  39#include <linux/timex.h>
  40#include <linux/kernel_stat.h>
  41#include <linux/time.h>
 
  42#include <linux/init.h>
  43#include <linux/profile.h>
  44#include <linux/cpu.h>
  45#include <linux/security.h>
  46#include <linux/percpu.h>
  47#include <linux/rtc.h>
  48#include <linux/jiffies.h>
  49#include <linux/posix-timers.h>
  50#include <linux/irq.h>
  51#include <linux/delay.h>
  52#include <linux/irq_work.h>
  53#include <linux/of_clk.h>
  54#include <linux/suspend.h>
  55#include <linux/sched/cputime.h>
  56#include <linux/processor.h>
  57#include <asm/trace.h>
  58
  59#include <asm/io.h>
 
  60#include <asm/nvram.h>
  61#include <asm/cache.h>
  62#include <asm/machdep.h>
  63#include <linux/uaccess.h>
  64#include <asm/time.h>
  65#include <asm/prom.h>
  66#include <asm/irq.h>
  67#include <asm/div64.h>
  68#include <asm/smp.h>
  69#include <asm/vdso_datapage.h>
  70#include <asm/firmware.h>
 
  71#include <asm/asm-prototypes.h>
  72
  73/* powerpc clocksource/clockevent code */
  74
  75#include <linux/clockchips.h>
  76#include <linux/timekeeper_internal.h>
  77
  78static u64 rtc_read(struct clocksource *);
  79static struct clocksource clocksource_rtc = {
  80	.name         = "rtc",
  81	.rating       = 400,
  82	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  83	.mask         = CLOCKSOURCE_MASK(64),
  84	.read         = rtc_read,
  85};
  86
  87static u64 timebase_read(struct clocksource *);
  88static struct clocksource clocksource_timebase = {
  89	.name         = "timebase",
  90	.rating       = 400,
  91	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  92	.mask         = CLOCKSOURCE_MASK(64),
  93	.read         = timebase_read,
  94};
  95
  96#define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
  97u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
  98
  99static int decrementer_set_next_event(unsigned long evt,
 100				      struct clock_event_device *dev);
 101static int decrementer_shutdown(struct clock_event_device *evt);
 102
 103struct clock_event_device decrementer_clockevent = {
 104	.name			= "decrementer",
 105	.rating			= 200,
 106	.irq			= 0,
 107	.set_next_event		= decrementer_set_next_event,
 108	.set_state_oneshot_stopped = decrementer_shutdown,
 109	.set_state_shutdown	= decrementer_shutdown,
 110	.tick_resume		= decrementer_shutdown,
 111	.features		= CLOCK_EVT_FEAT_ONESHOT |
 112				  CLOCK_EVT_FEAT_C3STOP,
 113};
 114EXPORT_SYMBOL(decrementer_clockevent);
 115
 116DEFINE_PER_CPU(u64, decrementers_next_tb);
 117static DEFINE_PER_CPU(struct clock_event_device, decrementers);
 118
 119#define XSEC_PER_SEC (1024*1024)
 120
 121#ifdef CONFIG_PPC64
 122#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
 123#else
 124/* compute ((xsec << 12) * max) >> 32 */
 125#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
 126#endif
 127
 128unsigned long tb_ticks_per_jiffy;
 129unsigned long tb_ticks_per_usec = 100; /* sane default */
 130EXPORT_SYMBOL(tb_ticks_per_usec);
 131unsigned long tb_ticks_per_sec;
 132EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
 133
 134DEFINE_SPINLOCK(rtc_lock);
 135EXPORT_SYMBOL_GPL(rtc_lock);
 136
 137static u64 tb_to_ns_scale __read_mostly;
 138static unsigned tb_to_ns_shift __read_mostly;
 139static u64 boot_tb __read_mostly;
 140
 141extern struct timezone sys_tz;
 142static long timezone_offset;
 143
 144unsigned long ppc_proc_freq;
 145EXPORT_SYMBOL_GPL(ppc_proc_freq);
 146unsigned long ppc_tb_freq;
 147EXPORT_SYMBOL_GPL(ppc_tb_freq);
 148
 149bool tb_invalid;
 150
 151#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 152/*
 153 * Factor for converting from cputime_t (timebase ticks) to
 154 * microseconds. This is stored as 0.64 fixed-point binary fraction.
 
 155 */
 
 
 156u64 __cputime_usec_factor;
 157EXPORT_SYMBOL(__cputime_usec_factor);
 
 
 
 
 
 
 158
 159#ifdef CONFIG_PPC_SPLPAR
 160void (*dtl_consumer)(struct dtl_entry *, u64);
 161#endif
 162
 
 
 
 
 
 
 163static void calc_cputime_factors(void)
 164{
 165	struct div_result res;
 166
 
 
 167	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
 168	__cputime_usec_factor = res.result_low;
 
 
 
 
 169}
 170
 171/*
 172 * Read the SPURR on systems that have it, otherwise the PURR,
 173 * or if that doesn't exist return the timebase value passed in.
 174 */
 175static inline unsigned long read_spurr(unsigned long tb)
 176{
 177	if (cpu_has_feature(CPU_FTR_SPURR))
 178		return mfspr(SPRN_SPURR);
 179	if (cpu_has_feature(CPU_FTR_PURR))
 180		return mfspr(SPRN_PURR);
 181	return tb;
 182}
 183
 184#ifdef CONFIG_PPC_SPLPAR
 185
 186#include <asm/dtl.h>
 187
 188/*
 189 * Scan the dispatch trace log and count up the stolen time.
 190 * Should be called with interrupts disabled.
 191 */
 192static u64 scan_dispatch_log(u64 stop_tb)
 193{
 194	u64 i = local_paca->dtl_ridx;
 195	struct dtl_entry *dtl = local_paca->dtl_curr;
 196	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
 197	struct lppaca *vpa = local_paca->lppaca_ptr;
 198	u64 tb_delta;
 199	u64 stolen = 0;
 200	u64 dtb;
 201
 202	if (!dtl)
 203		return 0;
 204
 205	if (i == be64_to_cpu(vpa->dtl_idx))
 206		return 0;
 207	while (i < be64_to_cpu(vpa->dtl_idx)) {
 208		dtb = be64_to_cpu(dtl->timebase);
 209		tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
 210			be32_to_cpu(dtl->ready_to_enqueue_time);
 211		barrier();
 212		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
 213			/* buffer has overflowed */
 214			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
 215			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
 216			continue;
 217		}
 218		if (dtb > stop_tb)
 219			break;
 220		if (dtl_consumer)
 221			dtl_consumer(dtl, i);
 222		stolen += tb_delta;
 223		++i;
 224		++dtl;
 225		if (dtl == dtl_end)
 226			dtl = local_paca->dispatch_log;
 227	}
 228	local_paca->dtl_ridx = i;
 229	local_paca->dtl_curr = dtl;
 230	return stolen;
 231}
 232
 233/*
 234 * Accumulate stolen time by scanning the dispatch trace log.
 235 * Called on entry from user mode.
 236 */
 237void notrace accumulate_stolen_time(void)
 238{
 239	u64 sst, ust;
 240	unsigned long save_irq_soft_mask = irq_soft_mask_return();
 241	struct cpu_accounting_data *acct = &local_paca->accounting;
 242
 243	/* We are called early in the exception entry, before
 244	 * soft/hard_enabled are sync'ed to the expected state
 245	 * for the exception. We are hard disabled but the PACA
 246	 * needs to reflect that so various debug stuff doesn't
 247	 * complain
 248	 */
 249	irq_soft_mask_set(IRQS_DISABLED);
 250
 251	sst = scan_dispatch_log(acct->starttime_user);
 252	ust = scan_dispatch_log(acct->starttime);
 253	acct->stime -= sst;
 254	acct->utime -= ust;
 255	acct->steal_time += ust + sst;
 256
 257	irq_soft_mask_set(save_irq_soft_mask);
 258}
 259
 260static inline u64 calculate_stolen_time(u64 stop_tb)
 261{
 262	if (!firmware_has_feature(FW_FEATURE_SPLPAR))
 263		return 0;
 264
 265	if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx))
 266		return scan_dispatch_log(stop_tb);
 
 
 267
 268	return 0;
 
 
 269}
 270
 271#else /* CONFIG_PPC_SPLPAR */
 272static inline u64 calculate_stolen_time(u64 stop_tb)
 273{
 274	return 0;
 275}
 276
 277#endif /* CONFIG_PPC_SPLPAR */
 278
 279/*
 280 * Account time for a transition between system, hard irq
 281 * or soft irq state.
 282 */
 283static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct,
 284					unsigned long now, unsigned long stime)
 
 285{
 286	unsigned long stime_scaled = 0;
 287#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 288	unsigned long nowscaled, deltascaled;
 289	unsigned long utime, utime_scaled;
 290
 
 
 
 291	nowscaled = read_spurr(now);
 
 
 292	deltascaled = nowscaled - acct->startspurr;
 293	acct->startspurr = nowscaled;
 294	utime = acct->utime - acct->utime_sspurr;
 295	acct->utime_sspurr = acct->utime;
 
 
 
 
 
 296
 297	/*
 298	 * Because we don't read the SPURR on every kernel entry/exit,
 299	 * deltascaled includes both user and system SPURR ticks.
 300	 * Apportion these ticks to system SPURR ticks and user
 301	 * SPURR ticks in the same ratio as the system time (delta)
 302	 * and user time (udelta) values obtained from the timebase
 303	 * over the same interval.  The system ticks get accounted here;
 304	 * the user ticks get saved up in paca->user_time_scaled to be
 305	 * used by account_process_tick.
 306	 */
 307	stime_scaled = stime;
 308	utime_scaled = utime;
 309	if (deltascaled != stime + utime) {
 310		if (utime) {
 311			stime_scaled = deltascaled * stime / (stime + utime);
 312			utime_scaled = deltascaled - stime_scaled;
 313		} else {
 314			stime_scaled = deltascaled;
 315		}
 316	}
 317	acct->utime_scaled += utime_scaled;
 318#endif
 319
 320	return stime_scaled;
 321}
 322
 323static unsigned long vtime_delta(struct task_struct *tsk,
 324				 unsigned long *stime_scaled,
 325				 unsigned long *steal_time)
 326{
 327	unsigned long now, stime;
 328	struct cpu_accounting_data *acct = get_accounting(tsk);
 329
 330	WARN_ON_ONCE(!irqs_disabled());
 331
 332	now = mftb();
 333	stime = now - acct->starttime;
 334	acct->starttime = now;
 335
 336	*stime_scaled = vtime_delta_scaled(acct, now, stime);
 337
 338	*steal_time = calculate_stolen_time(now);
 339
 340	return stime;
 341}
 342
 343void vtime_account_kernel(struct task_struct *tsk)
 344{
 345	unsigned long stime, stime_scaled, steal_time;
 346	struct cpu_accounting_data *acct = get_accounting(tsk);
 347
 348	stime = vtime_delta(tsk, &stime_scaled, &steal_time);
 349
 350	stime -= min(stime, steal_time);
 351	acct->steal_time += steal_time;
 352
 353	if ((tsk->flags & PF_VCPU) && !irq_count()) {
 354		acct->gtime += stime;
 355#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 356		acct->utime_scaled += stime_scaled;
 357#endif
 358	} else {
 359		if (hardirq_count())
 360			acct->hardirq_time += stime;
 361		else if (in_serving_softirq())
 362			acct->softirq_time += stime;
 363		else
 364			acct->stime += stime;
 365
 366#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 367		acct->stime_scaled += stime_scaled;
 368#endif
 369	}
 370}
 371EXPORT_SYMBOL_GPL(vtime_account_kernel);
 372
 373void vtime_account_idle(struct task_struct *tsk)
 374{
 375	unsigned long stime, stime_scaled, steal_time;
 376	struct cpu_accounting_data *acct = get_accounting(tsk);
 377
 378	stime = vtime_delta(tsk, &stime_scaled, &steal_time);
 379	acct->idle_time += stime + steal_time;
 380}
 381
 382static void vtime_flush_scaled(struct task_struct *tsk,
 383			       struct cpu_accounting_data *acct)
 384{
 385#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 386	if (acct->utime_scaled)
 387		tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
 388	if (acct->stime_scaled)
 389		tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
 390
 391	acct->utime_scaled = 0;
 392	acct->utime_sspurr = 0;
 393	acct->stime_scaled = 0;
 394#endif
 395}
 396
 397/*
 398 * Account the whole cputime accumulated in the paca
 
 
 399 * Must be called with interrupts disabled.
 400 * Assumes that vtime_account_kernel/idle() has been called
 401 * recently (i.e. since the last entry from usermode) so that
 402 * get_paca()->user_time_scaled is up to date.
 403 */
 404void vtime_flush(struct task_struct *tsk)
 405{
 
 406	struct cpu_accounting_data *acct = get_accounting(tsk);
 407
 408	if (acct->utime)
 409		account_user_time(tsk, cputime_to_nsecs(acct->utime));
 410
 411	if (acct->gtime)
 412		account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
 413
 414	if (IS_ENABLED(CONFIG_PPC_SPLPAR) && acct->steal_time) {
 415		account_steal_time(cputime_to_nsecs(acct->steal_time));
 416		acct->steal_time = 0;
 417	}
 418
 419	if (acct->idle_time)
 420		account_idle_time(cputime_to_nsecs(acct->idle_time));
 
 
 
 
 
 
 
 421
 422	if (acct->stime)
 423		account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
 424					  CPUTIME_SYSTEM);
 425
 426	if (acct->hardirq_time)
 427		account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
 428					  CPUTIME_IRQ);
 429	if (acct->softirq_time)
 430		account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
 431					  CPUTIME_SOFTIRQ);
 432
 433	vtime_flush_scaled(tsk, acct);
 434
 435	acct->utime = 0;
 436	acct->gtime = 0;
 437	acct->idle_time = 0;
 438	acct->stime = 0;
 439	acct->hardirq_time = 0;
 440	acct->softirq_time = 0;
 441}
 
 442
 443#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 444#define calc_cputime_factors()
 445#endif
 446
 447void __delay(unsigned long loops)
 448{
 449	unsigned long start;
 450	int diff;
 451
 452	spin_begin();
 453	if (__USE_RTC()) {
 454		start = get_rtcl();
 455		do {
 456			/* the RTCL register wraps at 1000000000 */
 457			diff = get_rtcl() - start;
 458			if (diff < 0)
 459				diff += 1000000000;
 460			spin_cpu_relax();
 461		} while (diff < loops);
 462	} else if (tb_invalid) {
 463		/*
 464		 * TB is in error state and isn't ticking anymore.
 465		 * HMI handler was unable to recover from TB error.
 466		 * Return immediately, so that kernel won't get stuck here.
 467		 */
 468		spin_cpu_relax();
 469	} else {
 470		start = get_tbl();
 471		while (get_tbl() - start < loops)
 472			spin_cpu_relax();
 
 473	}
 474	spin_end();
 475}
 476EXPORT_SYMBOL(__delay);
 477
 478void udelay(unsigned long usecs)
 479{
 480	__delay(tb_ticks_per_usec * usecs);
 481}
 482EXPORT_SYMBOL(udelay);
 483
 484#ifdef CONFIG_SMP
 485unsigned long profile_pc(struct pt_regs *regs)
 486{
 487	unsigned long pc = instruction_pointer(regs);
 488
 489	if (in_lock_functions(pc))
 490		return regs->link;
 491
 492	return pc;
 493}
 494EXPORT_SYMBOL(profile_pc);
 495#endif
 496
 497#ifdef CONFIG_IRQ_WORK
 498
 499/*
 500 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
 501 */
 502#ifdef CONFIG_PPC64
 503static inline unsigned long test_irq_work_pending(void)
 504{
 505	unsigned long x;
 506
 507	asm volatile("lbz %0,%1(13)"
 508		: "=r" (x)
 509		: "i" (offsetof(struct paca_struct, irq_work_pending)));
 510	return x;
 511}
 512
 513static inline void set_irq_work_pending_flag(void)
 514{
 515	asm volatile("stb %0,%1(13)" : :
 516		"r" (1),
 517		"i" (offsetof(struct paca_struct, irq_work_pending)));
 518}
 519
 520static inline void clear_irq_work_pending(void)
 521{
 522	asm volatile("stb %0,%1(13)" : :
 523		"r" (0),
 524		"i" (offsetof(struct paca_struct, irq_work_pending)));
 525}
 526
 527#else /* 32-bit */
 528
 529DEFINE_PER_CPU(u8, irq_work_pending);
 530
 531#define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
 532#define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
 533#define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
 534
 535#endif /* 32 vs 64 bit */
 536
 537void arch_irq_work_raise(void)
 538{
 539	/*
 540	 * 64-bit code that uses irq soft-mask can just cause an immediate
 541	 * interrupt here that gets soft masked, if this is called under
 542	 * local_irq_disable(). It might be possible to prevent that happening
 543	 * by noticing interrupts are disabled and setting decrementer pending
 544	 * to be replayed when irqs are enabled. The problem there is that
 545	 * tracing can call irq_work_raise, including in code that does low
 546	 * level manipulations of irq soft-mask state (e.g., trace_hardirqs_on)
 547	 * which could get tangled up if we're messing with the same state
 548	 * here.
 549	 */
 550	preempt_disable();
 551	set_irq_work_pending_flag();
 552	set_dec(1);
 553	preempt_enable();
 554}
 555
 556#else  /* CONFIG_IRQ_WORK */
 557
 558#define test_irq_work_pending()	0
 559#define clear_irq_work_pending()
 560
 561#endif /* CONFIG_IRQ_WORK */
 562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 563/*
 564 * timer_interrupt - gets called when the decrementer overflows,
 565 * with interrupts disabled.
 566 */
 567void timer_interrupt(struct pt_regs *regs)
 568{
 569	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
 570	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 571	struct pt_regs *old_regs;
 572	u64 now;
 
 
 
 
 
 573
 574	/* Some implementations of hotplug will get timer interrupts while
 575	 * offline, just ignore these and we also need to set
 576	 * decrementers_next_tb as MAX to make sure __check_irq_replay
 577	 * don't replay timer interrupt when return, otherwise we'll trap
 578	 * here infinitely :(
 579	 */
 580	if (unlikely(!cpu_online(smp_processor_id()))) {
 581		*next_tb = ~(u64)0;
 582		set_dec(decrementer_max);
 583		return;
 584	}
 585
 586	/* Ensure a positive value is written to the decrementer, or else
 587	 * some CPUs will continue to take decrementer exceptions. When the
 588	 * PPC_WATCHDOG (decrementer based) is configured, keep this at most
 589	 * 31 bits, which is about 4 seconds on most systems, which gives
 590	 * the watchdog a chance of catching timer interrupt hard lockups.
 591	 */
 592	if (IS_ENABLED(CONFIG_PPC_WATCHDOG))
 593		set_dec(0x7fffffff);
 594	else
 595		set_dec(decrementer_max);
 596
 597	/* Conditionally hard-enable interrupts now that the DEC has been
 598	 * bumped to its maximum value
 599	 */
 600	may_hard_irq_enable();
 601
 602
 603#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
 604	if (atomic_read(&ppc_n_lost_interrupts) != 0)
 605		do_IRQ(regs);
 606#endif
 607
 608	old_regs = set_irq_regs(regs);
 609	irq_enter();
 610	trace_timer_interrupt_entry(regs);
 611
 612	if (test_irq_work_pending()) {
 613		clear_irq_work_pending();
 614		irq_work_run();
 615	}
 616
 617	now = get_tb_or_rtc();
 618	if (now >= *next_tb) {
 619		*next_tb = ~(u64)0;
 620		if (evt->event_handler)
 621			evt->event_handler(evt);
 622		__this_cpu_inc(irq_stat.timer_irqs_event);
 623	} else {
 624		now = *next_tb - now;
 625		if (now <= decrementer_max)
 626			set_dec(now);
 627		/* We may have raced with new irq work */
 628		if (test_irq_work_pending())
 629			set_dec(1);
 630		__this_cpu_inc(irq_stat.timer_irqs_others);
 631	}
 632
 633	trace_timer_interrupt_exit(regs);
 634	irq_exit();
 635	set_irq_regs(old_regs);
 636}
 637EXPORT_SYMBOL(timer_interrupt);
 638
 639#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 640void timer_broadcast_interrupt(void)
 
 
 
 
 641{
 642	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 643
 644	*next_tb = ~(u64)0;
 645	tick_receive_broadcast();
 646	__this_cpu_inc(irq_stat.broadcast_irqs_event);
 647}
 648#endif
 649
 650#ifdef CONFIG_SUSPEND
 651static void generic_suspend_disable_irqs(void)
 652{
 653	/* Disable the decrementer, so that it doesn't interfere
 654	 * with suspending.
 655	 */
 656
 657	set_dec(decrementer_max);
 658	local_irq_disable();
 659	set_dec(decrementer_max);
 660}
 661
 662static void generic_suspend_enable_irqs(void)
 663{
 664	local_irq_enable();
 665}
 666
 667/* Overrides the weak version in kernel/power/main.c */
 668void arch_suspend_disable_irqs(void)
 669{
 670	if (ppc_md.suspend_disable_irqs)
 671		ppc_md.suspend_disable_irqs();
 672	generic_suspend_disable_irqs();
 673}
 674
 675/* Overrides the weak version in kernel/power/main.c */
 676void arch_suspend_enable_irqs(void)
 677{
 678	generic_suspend_enable_irqs();
 679	if (ppc_md.suspend_enable_irqs)
 680		ppc_md.suspend_enable_irqs();
 681}
 682#endif
 683
 684unsigned long long tb_to_ns(unsigned long long ticks)
 685{
 686	return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
 687}
 688EXPORT_SYMBOL_GPL(tb_to_ns);
 689
 690/*
 691 * Scheduler clock - returns current time in nanosec units.
 692 *
 693 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 694 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 695 * are 64-bit unsigned numbers.
 696 */
 697notrace unsigned long long sched_clock(void)
 698{
 699	if (__USE_RTC())
 700		return get_rtc();
 701	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 702}
 703
 704
 705#ifdef CONFIG_PPC_PSERIES
 706
 707/*
 708 * Running clock - attempts to give a view of time passing for a virtualised
 709 * kernels.
 710 * Uses the VTB register if available otherwise a next best guess.
 711 */
 712unsigned long long running_clock(void)
 713{
 714	/*
 715	 * Don't read the VTB as a host since KVM does not switch in host
 716	 * timebase into the VTB when it takes a guest off the CPU, reading the
 717	 * VTB would result in reading 'last switched out' guest VTB.
 718	 *
 719	 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
 720	 * would be unsafe to rely only on the #ifdef above.
 721	 */
 722	if (firmware_has_feature(FW_FEATURE_LPAR) &&
 723	    cpu_has_feature(CPU_FTR_ARCH_207S))
 724		return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 725
 726	/*
 727	 * This is a next best approximation without a VTB.
 728	 * On a host which is running bare metal there should never be any stolen
 729	 * time and on a host which doesn't do any virtualisation TB *should* equal
 730	 * VTB so it makes no difference anyway.
 731	 */
 732	return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL];
 733}
 734#endif
 735
 736static int __init get_freq(char *name, int cells, unsigned long *val)
 737{
 738	struct device_node *cpu;
 739	const __be32 *fp;
 740	int found = 0;
 741
 742	/* The cpu node should have timebase and clock frequency properties */
 743	cpu = of_find_node_by_type(NULL, "cpu");
 744
 745	if (cpu) {
 746		fp = of_get_property(cpu, name, NULL);
 747		if (fp) {
 748			found = 1;
 749			*val = of_read_ulong(fp, cells);
 750		}
 751
 752		of_node_put(cpu);
 753	}
 754
 755	return found;
 756}
 757
 758static void start_cpu_decrementer(void)
 759{
 760#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
 761	unsigned int tcr;
 762
 763	/* Clear any pending timer interrupts */
 764	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
 765
 766	tcr = mfspr(SPRN_TCR);
 767	/*
 768	 * The watchdog may have already been enabled by u-boot. So leave
 769	 * TRC[WP] (Watchdog Period) alone.
 770	 */
 771	tcr &= TCR_WP_MASK;	/* Clear all bits except for TCR[WP] */
 772	tcr |= TCR_DIE;		/* Enable decrementer */
 773	mtspr(SPRN_TCR, tcr);
 774#endif
 775}
 776
 777void __init generic_calibrate_decr(void)
 778{
 779	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
 780
 781	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
 782	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
 783
 784		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
 785				"(not found)\n");
 786	}
 787
 788	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
 789
 790	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
 791	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
 792
 793		printk(KERN_ERR "WARNING: Estimating processor frequency "
 794				"(not found)\n");
 795	}
 796}
 797
 798int update_persistent_clock64(struct timespec64 now)
 799{
 800	struct rtc_time tm;
 801
 802	if (!ppc_md.set_rtc_time)
 803		return -ENODEV;
 804
 805	rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm);
 
 
 806
 807	return ppc_md.set_rtc_time(&tm);
 808}
 809
 810static void __read_persistent_clock(struct timespec64 *ts)
 811{
 812	struct rtc_time tm;
 813	static int first = 1;
 814
 815	ts->tv_nsec = 0;
 816	/* XXX this is a litle fragile but will work okay in the short term */
 817	if (first) {
 818		first = 0;
 819		if (ppc_md.time_init)
 820			timezone_offset = ppc_md.time_init();
 821
 822		/* get_boot_time() isn't guaranteed to be safe to call late */
 823		if (ppc_md.get_boot_time) {
 824			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
 825			return;
 826		}
 827	}
 828	if (!ppc_md.get_rtc_time) {
 829		ts->tv_sec = 0;
 830		return;
 831	}
 832	ppc_md.get_rtc_time(&tm);
 833
 834	ts->tv_sec = rtc_tm_to_time64(&tm);
 
 835}
 836
 837void read_persistent_clock64(struct timespec64 *ts)
 838{
 839	__read_persistent_clock(ts);
 840
 841	/* Sanitize it in case real time clock is set below EPOCH */
 842	if (ts->tv_sec < 0) {
 843		ts->tv_sec = 0;
 844		ts->tv_nsec = 0;
 845	}
 846		
 847}
 848
 849/* clocksource code */
 850static notrace u64 rtc_read(struct clocksource *cs)
 851{
 852	return (u64)get_rtc();
 853}
 854
 855static notrace u64 timebase_read(struct clocksource *cs)
 856{
 857	return (u64)get_tb();
 858}
 859
 860
 861void update_vsyscall(struct timekeeper *tk)
 862{
 863	struct timespec64 xt;
 864	struct clocksource *clock = tk->tkr_mono.clock;
 865	u32 mult = tk->tkr_mono.mult;
 866	u32 shift = tk->tkr_mono.shift;
 867	u64 cycle_last = tk->tkr_mono.cycle_last;
 868	u64 new_tb_to_xs, new_stamp_xsec;
 869	u64 frac_sec;
 870
 871	if (clock != &clocksource_timebase)
 872		return;
 873
 874	xt.tv_sec = tk->xtime_sec;
 875	xt.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 876
 877	/* Make userspace gettimeofday spin until we're done. */
 878	++vdso_data->tb_update_count;
 879	smp_mb();
 880
 881	/*
 882	 * This computes ((2^20 / 1e9) * mult) >> shift as a
 883	 * 0.64 fixed-point fraction.
 884	 * The computation in the else clause below won't overflow
 885	 * (as long as the timebase frequency is >= 1.049 MHz)
 886	 * but loses precision because we lose the low bits of the constant
 887	 * in the shift.  Note that 19342813113834067 ~= 2^(20+64) / 1e9.
 888	 * For a shift of 24 the error is about 0.5e-9, or about 0.5ns
 889	 * over a second.  (Shift values are usually 22, 23 or 24.)
 890	 * For high frequency clocks such as the 512MHz timebase clock
 891	 * on POWER[6789], the mult value is small (e.g. 32768000)
 892	 * and so we can shift the constant by 16 initially
 893	 * (295147905179 ~= 2^(20+64-16) / 1e9) and then do the
 894	 * remaining shifts after the multiplication, which gives a
 895	 * more accurate result (e.g. with mult = 32768000, shift = 24,
 896	 * the error is only about 1.2e-12, or 0.7ns over 10 minutes).
 897	 */
 898	if (mult <= 62500000 && clock->shift >= 16)
 899		new_tb_to_xs = ((u64) mult * 295147905179ULL) >> (clock->shift - 16);
 900	else
 901		new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
 902
 903	/*
 904	 * Compute the fractional second in units of 2^-32 seconds.
 905	 * The fractional second is tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift
 906	 * in nanoseconds, so multiplying that by 2^32 / 1e9 gives
 907	 * it in units of 2^-32 seconds.
 908	 * We assume shift <= 32 because clocks_calc_mult_shift()
 909	 * generates shift values in the range 0 - 32.
 910	 */
 911	frac_sec = tk->tkr_mono.xtime_nsec << (32 - shift);
 912	do_div(frac_sec, NSEC_PER_SEC);
 913
 914	/*
 915	 * Work out new stamp_xsec value for any legacy users of systemcfg.
 916	 * stamp_xsec is in units of 2^-20 seconds.
 917	 */
 918	new_stamp_xsec = frac_sec >> 12;
 919	new_stamp_xsec += tk->xtime_sec * XSEC_PER_SEC;
 920
 921	/*
 922	 * tb_update_count is used to allow the userspace gettimeofday code
 923	 * to assure itself that it sees a consistent view of the tb_to_xs and
 924	 * stamp_xsec variables.  It reads the tb_update_count, then reads
 925	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
 926	 * the two values of tb_update_count match and are even then the
 927	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
 928	 * loops back and reads them again until this criteria is met.
 
 
 929	 */
 930	vdso_data->tb_orig_stamp = cycle_last;
 931	vdso_data->stamp_xsec = new_stamp_xsec;
 932	vdso_data->tb_to_xs = new_tb_to_xs;
 933	vdso_data->wtom_clock_sec = tk->wall_to_monotonic.tv_sec;
 934	vdso_data->wtom_clock_nsec = tk->wall_to_monotonic.tv_nsec;
 935	vdso_data->stamp_xtime_sec = xt.tv_sec;
 936	vdso_data->stamp_xtime_nsec = xt.tv_nsec;
 937	vdso_data->stamp_sec_fraction = frac_sec;
 938	vdso_data->hrtimer_res = hrtimer_resolution;
 939	smp_wmb();
 940	++(vdso_data->tb_update_count);
 941}
 942
 943void update_vsyscall_tz(void)
 944{
 945	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
 946	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
 947}
 948
 949static void __init clocksource_init(void)
 950{
 951	struct clocksource *clock;
 952
 953	if (__USE_RTC())
 954		clock = &clocksource_rtc;
 955	else
 956		clock = &clocksource_timebase;
 957
 958	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
 959		printk(KERN_ERR "clocksource: %s is already registered\n",
 960		       clock->name);
 961		return;
 962	}
 963
 964	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
 965	       clock->name, clock->mult, clock->shift);
 966}
 967
 968static int decrementer_set_next_event(unsigned long evt,
 969				      struct clock_event_device *dev)
 970{
 971	__this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
 972	set_dec(evt);
 973
 974	/* We may have raced with new irq work */
 975	if (test_irq_work_pending())
 976		set_dec(1);
 977
 978	return 0;
 979}
 980
 981static int decrementer_shutdown(struct clock_event_device *dev)
 982{
 983	decrementer_set_next_event(decrementer_max, dev);
 984	return 0;
 985}
 986
 
 
 
 
 
 
 
 
 
 987static void register_decrementer_clockevent(int cpu)
 988{
 989	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
 990
 991	*dec = decrementer_clockevent;
 992	dec->cpumask = cpumask_of(cpu);
 993
 994	clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max);
 995
 996	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
 997		    dec->name, dec->mult, dec->shift, cpu);
 998
 999	/* Set values for KVM, see kvm_emulate_dec() */
1000	decrementer_clockevent.mult = dec->mult;
1001	decrementer_clockevent.shift = dec->shift;
1002}
1003
1004static void enable_large_decrementer(void)
1005{
1006	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1007		return;
1008
1009	if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
1010		return;
1011
1012	/*
1013	 * If we're running as the hypervisor we need to enable the LD manually
1014	 * otherwise firmware should have done it for us.
1015	 */
1016	if (cpu_has_feature(CPU_FTR_HVMODE))
1017		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
1018}
1019
1020static void __init set_decrementer_max(void)
1021{
1022	struct device_node *cpu;
1023	u32 bits = 32;
1024
1025	/* Prior to ISAv3 the decrementer is always 32 bit */
1026	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1027		return;
1028
1029	cpu = of_find_node_by_type(NULL, "cpu");
1030
1031	if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
1032		if (bits > 64 || bits < 32) {
1033			pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
1034			bits = 32;
1035		}
1036
1037		/* calculate the signed maximum given this many bits */
1038		decrementer_max = (1ul << (bits - 1)) - 1;
1039	}
1040
1041	of_node_put(cpu);
1042
1043	pr_info("time_init: %u bit decrementer (max: %llx)\n",
1044		bits, decrementer_max);
1045}
1046
1047static void __init init_decrementer_clockevent(void)
1048{
1049	register_decrementer_clockevent(smp_processor_id());
 
 
 
 
 
 
 
 
 
1050}
1051
1052void secondary_cpu_time_init(void)
1053{
1054	/* Enable and test the large decrementer for this cpu */
1055	enable_large_decrementer();
1056
1057	/* Start the decrementer on CPUs that have manual control
1058	 * such as BookE
1059	 */
1060	start_cpu_decrementer();
1061
1062	/* FIME: Should make unrelatred change to move snapshot_timebase
1063	 * call here ! */
1064	register_decrementer_clockevent(smp_processor_id());
1065}
1066
1067/* This function is only called on the boot processor */
1068void __init time_init(void)
1069{
1070	struct div_result res;
1071	u64 scale;
1072	unsigned shift;
1073
1074	if (__USE_RTC()) {
1075		/* 601 processor: dec counts down by 128 every 128ns */
1076		ppc_tb_freq = 1000000000;
1077	} else {
1078		/* Normal PowerPC with timebase register */
1079		ppc_md.calibrate_decr();
1080		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
1081		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
1082		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
1083		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
1084	}
1085
1086	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
1087	tb_ticks_per_sec = ppc_tb_freq;
1088	tb_ticks_per_usec = ppc_tb_freq / 1000000;
1089	calc_cputime_factors();
 
1090
1091	/*
1092	 * Compute scale factor for sched_clock.
1093	 * The calibrate_decr() function has set tb_ticks_per_sec,
1094	 * which is the timebase frequency.
1095	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1096	 * the 128-bit result as a 64.64 fixed-point number.
1097	 * We then shift that number right until it is less than 1.0,
1098	 * giving us the scale factor and shift count to use in
1099	 * sched_clock().
1100	 */
1101	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1102	scale = res.result_low;
1103	for (shift = 0; res.result_high != 0; ++shift) {
1104		scale = (scale >> 1) | (res.result_high << 63);
1105		res.result_high >>= 1;
1106	}
1107	tb_to_ns_scale = scale;
1108	tb_to_ns_shift = shift;
1109	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1110	boot_tb = get_tb_or_rtc();
1111
1112	/* If platform provided a timezone (pmac), we correct the time */
1113	if (timezone_offset) {
1114		sys_tz.tz_minuteswest = -timezone_offset / 60;
1115		sys_tz.tz_dsttime = 0;
1116	}
1117
1118	vdso_data->tb_update_count = 0;
1119	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1120
1121	/* initialise and enable the large decrementer (if we have one) */
1122	set_decrementer_max();
1123	enable_large_decrementer();
1124
1125	/* Start the decrementer on CPUs that have manual control
1126	 * such as BookE
1127	 */
1128	start_cpu_decrementer();
1129
1130	/* Register the clocksource */
1131	clocksource_init();
1132
1133	init_decrementer_clockevent();
1134	tick_setup_hrtimer_broadcast();
1135
 
1136	of_clk_init(NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1137}
 
1138
1139/*
1140 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1141 * result.
1142 */
1143void div128_by_32(u64 dividend_high, u64 dividend_low,
1144		  unsigned divisor, struct div_result *dr)
1145{
1146	unsigned long a, b, c, d;
1147	unsigned long w, x, y, z;
1148	u64 ra, rb, rc;
1149
1150	a = dividend_high >> 32;
1151	b = dividend_high & 0xffffffff;
1152	c = dividend_low >> 32;
1153	d = dividend_low & 0xffffffff;
1154
1155	w = a / divisor;
1156	ra = ((u64)(a - (w * divisor)) << 32) + b;
1157
1158	rb = ((u64) do_div(ra, divisor) << 32) + c;
1159	x = ra;
1160
1161	rc = ((u64) do_div(rb, divisor) << 32) + d;
1162	y = rb;
1163
1164	do_div(rc, divisor);
1165	z = rc;
1166
1167	dr->result_high = ((u64)w << 32) + x;
1168	dr->result_low  = ((u64)y << 32) + z;
1169
1170}
1171
1172/* We don't need to calibrate delay, we use the CPU timebase for that */
1173void calibrate_delay(void)
1174{
1175	/* Some generic code (such as spinlock debug) use loops_per_jiffy
1176	 * as the number of __delay(1) in a jiffy, so make it so
1177	 */
1178	loops_per_jiffy = tb_ticks_per_jiffy;
1179}
1180
1181#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
1182static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
1183{
1184	ppc_md.get_rtc_time(tm);
1185	return 0;
1186}
1187
1188static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
1189{
1190	if (!ppc_md.set_rtc_time)
1191		return -EOPNOTSUPP;
1192
1193	if (ppc_md.set_rtc_time(tm) < 0)
1194		return -EOPNOTSUPP;
1195
1196	return 0;
1197}
1198
1199static const struct rtc_class_ops rtc_generic_ops = {
1200	.read_time = rtc_generic_get_time,
1201	.set_time = rtc_generic_set_time,
1202};
1203
1204static int __init rtc_init(void)
1205{
1206	struct platform_device *pdev;
1207
1208	if (!ppc_md.get_rtc_time)
1209		return -ENODEV;
1210
1211	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
1212					     &rtc_generic_ops,
1213					     sizeof(rtc_generic_ops));
1214
1215	return PTR_ERR_OR_ZERO(pdev);
1216}
1217
1218device_initcall(rtc_init);
1219#endif
v4.10.11
 
   1/*
   2 * Common time routines among all ppc machines.
   3 *
   4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
   5 * Paul Mackerras' version and mine for PReP and Pmac.
   6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
   7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
   8 *
   9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10 * to make clock more stable (2.4.0-test5). The only thing
  11 * that this code assumes is that the timebases have been synchronized
  12 * by firmware on SMP and are never stopped (never do sleep
  13 * on SMP then, nap and doze are OK).
  14 * 
  15 * Speeded up do_gettimeofday by getting rid of references to
  16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17 *
  18 * TODO (not necessarily in this file):
  19 * - improve precision and reproducibility of timebase frequency
  20 * measurement at boot time.
  21 * - for astronomical applications: add a new function to get
  22 * non ambiguous timestamps even around leap seconds. This needs
  23 * a new timestamp format and a good name.
  24 *
  25 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
  26 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
  27 *
  28 *      This program is free software; you can redistribute it and/or
  29 *      modify it under the terms of the GNU General Public License
  30 *      as published by the Free Software Foundation; either version
  31 *      2 of the License, or (at your option) any later version.
  32 */
  33
  34#include <linux/errno.h>
  35#include <linux/export.h>
  36#include <linux/sched.h>
 
  37#include <linux/kernel.h>
  38#include <linux/param.h>
  39#include <linux/string.h>
  40#include <linux/mm.h>
  41#include <linux/interrupt.h>
  42#include <linux/timex.h>
  43#include <linux/kernel_stat.h>
  44#include <linux/time.h>
  45#include <linux/clockchips.h>
  46#include <linux/init.h>
  47#include <linux/profile.h>
  48#include <linux/cpu.h>
  49#include <linux/security.h>
  50#include <linux/percpu.h>
  51#include <linux/rtc.h>
  52#include <linux/jiffies.h>
  53#include <linux/posix-timers.h>
  54#include <linux/irq.h>
  55#include <linux/delay.h>
  56#include <linux/irq_work.h>
  57#include <linux/clk-provider.h>
  58#include <linux/suspend.h>
  59#include <linux/rtc.h>
 
  60#include <asm/trace.h>
  61
  62#include <asm/io.h>
  63#include <asm/processor.h>
  64#include <asm/nvram.h>
  65#include <asm/cache.h>
  66#include <asm/machdep.h>
  67#include <linux/uaccess.h>
  68#include <asm/time.h>
  69#include <asm/prom.h>
  70#include <asm/irq.h>
  71#include <asm/div64.h>
  72#include <asm/smp.h>
  73#include <asm/vdso_datapage.h>
  74#include <asm/firmware.h>
  75#include <asm/cputime.h>
  76#include <asm/asm-prototypes.h>
  77
  78/* powerpc clocksource/clockevent code */
  79
  80#include <linux/clockchips.h>
  81#include <linux/timekeeper_internal.h>
  82
  83static u64 rtc_read(struct clocksource *);
  84static struct clocksource clocksource_rtc = {
  85	.name         = "rtc",
  86	.rating       = 400,
  87	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  88	.mask         = CLOCKSOURCE_MASK(64),
  89	.read         = rtc_read,
  90};
  91
  92static u64 timebase_read(struct clocksource *);
  93static struct clocksource clocksource_timebase = {
  94	.name         = "timebase",
  95	.rating       = 400,
  96	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  97	.mask         = CLOCKSOURCE_MASK(64),
  98	.read         = timebase_read,
  99};
 100
 101#define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
 102u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
 103
 104static int decrementer_set_next_event(unsigned long evt,
 105				      struct clock_event_device *dev);
 106static int decrementer_shutdown(struct clock_event_device *evt);
 107
 108struct clock_event_device decrementer_clockevent = {
 109	.name			= "decrementer",
 110	.rating			= 200,
 111	.irq			= 0,
 112	.set_next_event		= decrementer_set_next_event,
 
 113	.set_state_shutdown	= decrementer_shutdown,
 114	.tick_resume		= decrementer_shutdown,
 115	.features		= CLOCK_EVT_FEAT_ONESHOT |
 116				  CLOCK_EVT_FEAT_C3STOP,
 117};
 118EXPORT_SYMBOL(decrementer_clockevent);
 119
 120DEFINE_PER_CPU(u64, decrementers_next_tb);
 121static DEFINE_PER_CPU(struct clock_event_device, decrementers);
 122
 123#define XSEC_PER_SEC (1024*1024)
 124
 125#ifdef CONFIG_PPC64
 126#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
 127#else
 128/* compute ((xsec << 12) * max) >> 32 */
 129#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
 130#endif
 131
 132unsigned long tb_ticks_per_jiffy;
 133unsigned long tb_ticks_per_usec = 100; /* sane default */
 134EXPORT_SYMBOL(tb_ticks_per_usec);
 135unsigned long tb_ticks_per_sec;
 136EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
 137
 138DEFINE_SPINLOCK(rtc_lock);
 139EXPORT_SYMBOL_GPL(rtc_lock);
 140
 141static u64 tb_to_ns_scale __read_mostly;
 142static unsigned tb_to_ns_shift __read_mostly;
 143static u64 boot_tb __read_mostly;
 144
 145extern struct timezone sys_tz;
 146static long timezone_offset;
 147
 148unsigned long ppc_proc_freq;
 149EXPORT_SYMBOL_GPL(ppc_proc_freq);
 150unsigned long ppc_tb_freq;
 151EXPORT_SYMBOL_GPL(ppc_tb_freq);
 152
 
 
 153#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 154/*
 155 * Factors for converting from cputime_t (timebase ticks) to
 156 * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
 157 * These are all stored as 0.64 fixed-point binary fractions.
 158 */
 159u64 __cputime_jiffies_factor;
 160EXPORT_SYMBOL(__cputime_jiffies_factor);
 161u64 __cputime_usec_factor;
 162EXPORT_SYMBOL(__cputime_usec_factor);
 163u64 __cputime_sec_factor;
 164EXPORT_SYMBOL(__cputime_sec_factor);
 165u64 __cputime_clockt_factor;
 166EXPORT_SYMBOL(__cputime_clockt_factor);
 167
 168cputime_t cputime_one_jiffy;
 169
 170#ifdef CONFIG_PPC_SPLPAR
 171void (*dtl_consumer)(struct dtl_entry *, u64);
 172#endif
 173
 174#ifdef CONFIG_PPC64
 175#define get_accounting(tsk)	(&get_paca()->accounting)
 176#else
 177#define get_accounting(tsk)	(&task_thread_info(tsk)->accounting)
 178#endif
 179
 180static void calc_cputime_factors(void)
 181{
 182	struct div_result res;
 183
 184	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
 185	__cputime_jiffies_factor = res.result_low;
 186	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
 187	__cputime_usec_factor = res.result_low;
 188	div128_by_32(1, 0, tb_ticks_per_sec, &res);
 189	__cputime_sec_factor = res.result_low;
 190	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
 191	__cputime_clockt_factor = res.result_low;
 192}
 193
 194/*
 195 * Read the SPURR on systems that have it, otherwise the PURR,
 196 * or if that doesn't exist return the timebase value passed in.
 197 */
 198static unsigned long read_spurr(unsigned long tb)
 199{
 200	if (cpu_has_feature(CPU_FTR_SPURR))
 201		return mfspr(SPRN_SPURR);
 202	if (cpu_has_feature(CPU_FTR_PURR))
 203		return mfspr(SPRN_PURR);
 204	return tb;
 205}
 206
 207#ifdef CONFIG_PPC_SPLPAR
 208
 
 
 209/*
 210 * Scan the dispatch trace log and count up the stolen time.
 211 * Should be called with interrupts disabled.
 212 */
 213static u64 scan_dispatch_log(u64 stop_tb)
 214{
 215	u64 i = local_paca->dtl_ridx;
 216	struct dtl_entry *dtl = local_paca->dtl_curr;
 217	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
 218	struct lppaca *vpa = local_paca->lppaca_ptr;
 219	u64 tb_delta;
 220	u64 stolen = 0;
 221	u64 dtb;
 222
 223	if (!dtl)
 224		return 0;
 225
 226	if (i == be64_to_cpu(vpa->dtl_idx))
 227		return 0;
 228	while (i < be64_to_cpu(vpa->dtl_idx)) {
 229		dtb = be64_to_cpu(dtl->timebase);
 230		tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
 231			be32_to_cpu(dtl->ready_to_enqueue_time);
 232		barrier();
 233		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
 234			/* buffer has overflowed */
 235			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
 236			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
 237			continue;
 238		}
 239		if (dtb > stop_tb)
 240			break;
 241		if (dtl_consumer)
 242			dtl_consumer(dtl, i);
 243		stolen += tb_delta;
 244		++i;
 245		++dtl;
 246		if (dtl == dtl_end)
 247			dtl = local_paca->dispatch_log;
 248	}
 249	local_paca->dtl_ridx = i;
 250	local_paca->dtl_curr = dtl;
 251	return stolen;
 252}
 253
 254/*
 255 * Accumulate stolen time by scanning the dispatch trace log.
 256 * Called on entry from user mode.
 257 */
 258void accumulate_stolen_time(void)
 259{
 260	u64 sst, ust;
 261	u8 save_soft_enabled = local_paca->soft_enabled;
 262	struct cpu_accounting_data *acct = &local_paca->accounting;
 263
 264	/* We are called early in the exception entry, before
 265	 * soft/hard_enabled are sync'ed to the expected state
 266	 * for the exception. We are hard disabled but the PACA
 267	 * needs to reflect that so various debug stuff doesn't
 268	 * complain
 269	 */
 270	local_paca->soft_enabled = 0;
 271
 272	sst = scan_dispatch_log(acct->starttime_user);
 273	ust = scan_dispatch_log(acct->starttime);
 274	acct->system_time -= sst;
 275	acct->user_time -= ust;
 276	local_paca->stolen_time += ust + sst;
 277
 278	local_paca->soft_enabled = save_soft_enabled;
 279}
 280
 281static inline u64 calculate_stolen_time(u64 stop_tb)
 282{
 283	u64 stolen = 0;
 
 284
 285	if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) {
 286		stolen = scan_dispatch_log(stop_tb);
 287		get_paca()->accounting.system_time -= stolen;
 288	}
 289
 290	stolen += get_paca()->stolen_time;
 291	get_paca()->stolen_time = 0;
 292	return stolen;
 293}
 294
 295#else /* CONFIG_PPC_SPLPAR */
 296static inline u64 calculate_stolen_time(u64 stop_tb)
 297{
 298	return 0;
 299}
 300
 301#endif /* CONFIG_PPC_SPLPAR */
 302
 303/*
 304 * Account time for a transition between system, hard irq
 305 * or soft irq state.
 306 */
 307static unsigned long vtime_delta(struct task_struct *tsk,
 308				 unsigned long *sys_scaled,
 309				 unsigned long *stolen)
 310{
 311	unsigned long now, nowscaled, deltascaled;
 312	unsigned long udelta, delta, user_scaled;
 313	struct cpu_accounting_data *acct = get_accounting(tsk);
 
 314
 315	WARN_ON_ONCE(!irqs_disabled());
 316
 317	now = mftb();
 318	nowscaled = read_spurr(now);
 319	acct->system_time += now - acct->starttime;
 320	acct->starttime = now;
 321	deltascaled = nowscaled - acct->startspurr;
 322	acct->startspurr = nowscaled;
 323
 324	*stolen = calculate_stolen_time(now);
 325
 326	delta = acct->system_time;
 327	acct->system_time = 0;
 328	udelta = acct->user_time - acct->utime_sspurr;
 329	acct->utime_sspurr = acct->user_time;
 330
 331	/*
 332	 * Because we don't read the SPURR on every kernel entry/exit,
 333	 * deltascaled includes both user and system SPURR ticks.
 334	 * Apportion these ticks to system SPURR ticks and user
 335	 * SPURR ticks in the same ratio as the system time (delta)
 336	 * and user time (udelta) values obtained from the timebase
 337	 * over the same interval.  The system ticks get accounted here;
 338	 * the user ticks get saved up in paca->user_time_scaled to be
 339	 * used by account_process_tick.
 340	 */
 341	*sys_scaled = delta;
 342	user_scaled = udelta;
 343	if (deltascaled != delta + udelta) {
 344		if (udelta) {
 345			*sys_scaled = deltascaled * delta / (delta + udelta);
 346			user_scaled = deltascaled - *sys_scaled;
 347		} else {
 348			*sys_scaled = deltascaled;
 349		}
 350	}
 351	acct->user_time_scaled += user_scaled;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 352
 353	return delta;
 354}
 355
 356void vtime_account_system(struct task_struct *tsk)
 357{
 358	unsigned long delta, sys_scaled, stolen;
 
 
 
 
 
 
 359
 360	delta = vtime_delta(tsk, &sys_scaled, &stolen);
 361	account_system_time(tsk, 0, delta);
 362	tsk->stimescaled += sys_scaled;
 363	if (stolen)
 364		account_steal_time(stolen);
 
 
 
 
 
 
 
 
 
 
 
 
 365}
 366EXPORT_SYMBOL_GPL(vtime_account_system);
 367
 368void vtime_account_idle(struct task_struct *tsk)
 369{
 370	unsigned long delta, sys_scaled, stolen;
 
 371
 372	delta = vtime_delta(tsk, &sys_scaled, &stolen);
 373	account_idle_time(delta + stolen);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 374}
 375
 376/*
 377 * Transfer the user time accumulated in the paca
 378 * by the exception entry and exit code to the generic
 379 * process user time records.
 380 * Must be called with interrupts disabled.
 381 * Assumes that vtime_account_system/idle() has been called
 382 * recently (i.e. since the last entry from usermode) so that
 383 * get_paca()->user_time_scaled is up to date.
 384 */
 385void vtime_account_user(struct task_struct *tsk)
 386{
 387	cputime_t utime, utimescaled;
 388	struct cpu_accounting_data *acct = get_accounting(tsk);
 389
 390	utime = acct->user_time;
 391	utimescaled = acct->user_time_scaled;
 392	acct->user_time = 0;
 393	acct->user_time_scaled = 0;
 394	acct->utime_sspurr = 0;
 395	account_user_time(tsk, utime);
 396	tsk->utimescaled += utimescaled;
 397}
 
 
 398
 399#ifdef CONFIG_PPC32
 400/*
 401 * Called from the context switch with interrupts disabled, to charge all
 402 * accumulated times to the current process, and to prepare accounting on
 403 * the next process.
 404 */
 405void arch_vtime_task_switch(struct task_struct *prev)
 406{
 407	struct cpu_accounting_data *acct = get_accounting(current);
 408
 409	acct->starttime = get_accounting(prev)->starttime;
 410	acct->system_time = 0;
 411	acct->user_time = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 412}
 413#endif /* CONFIG_PPC32 */
 414
 415#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 416#define calc_cputime_factors()
 417#endif
 418
 419void __delay(unsigned long loops)
 420{
 421	unsigned long start;
 422	int diff;
 423
 
 424	if (__USE_RTC()) {
 425		start = get_rtcl();
 426		do {
 427			/* the RTCL register wraps at 1000000000 */
 428			diff = get_rtcl() - start;
 429			if (diff < 0)
 430				diff += 1000000000;
 
 431		} while (diff < loops);
 
 
 
 
 
 
 
 432	} else {
 433		start = get_tbl();
 434		while (get_tbl() - start < loops)
 435			HMT_low();
 436		HMT_medium();
 437	}
 
 438}
 439EXPORT_SYMBOL(__delay);
 440
 441void udelay(unsigned long usecs)
 442{
 443	__delay(tb_ticks_per_usec * usecs);
 444}
 445EXPORT_SYMBOL(udelay);
 446
 447#ifdef CONFIG_SMP
 448unsigned long profile_pc(struct pt_regs *regs)
 449{
 450	unsigned long pc = instruction_pointer(regs);
 451
 452	if (in_lock_functions(pc))
 453		return regs->link;
 454
 455	return pc;
 456}
 457EXPORT_SYMBOL(profile_pc);
 458#endif
 459
 460#ifdef CONFIG_IRQ_WORK
 461
 462/*
 463 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
 464 */
 465#ifdef CONFIG_PPC64
 466static inline unsigned long test_irq_work_pending(void)
 467{
 468	unsigned long x;
 469
 470	asm volatile("lbz %0,%1(13)"
 471		: "=r" (x)
 472		: "i" (offsetof(struct paca_struct, irq_work_pending)));
 473	return x;
 474}
 475
 476static inline void set_irq_work_pending_flag(void)
 477{
 478	asm volatile("stb %0,%1(13)" : :
 479		"r" (1),
 480		"i" (offsetof(struct paca_struct, irq_work_pending)));
 481}
 482
 483static inline void clear_irq_work_pending(void)
 484{
 485	asm volatile("stb %0,%1(13)" : :
 486		"r" (0),
 487		"i" (offsetof(struct paca_struct, irq_work_pending)));
 488}
 489
 490#else /* 32-bit */
 491
 492DEFINE_PER_CPU(u8, irq_work_pending);
 493
 494#define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
 495#define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
 496#define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
 497
 498#endif /* 32 vs 64 bit */
 499
 500void arch_irq_work_raise(void)
 501{
 
 
 
 
 
 
 
 
 
 
 
 502	preempt_disable();
 503	set_irq_work_pending_flag();
 504	set_dec(1);
 505	preempt_enable();
 506}
 507
 508#else  /* CONFIG_IRQ_WORK */
 509
 510#define test_irq_work_pending()	0
 511#define clear_irq_work_pending()
 512
 513#endif /* CONFIG_IRQ_WORK */
 514
 515static void __timer_interrupt(void)
 516{
 517	struct pt_regs *regs = get_irq_regs();
 518	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 519	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
 520	u64 now;
 521
 522	trace_timer_interrupt_entry(regs);
 523
 524	if (test_irq_work_pending()) {
 525		clear_irq_work_pending();
 526		irq_work_run();
 527	}
 528
 529	now = get_tb_or_rtc();
 530	if (now >= *next_tb) {
 531		*next_tb = ~(u64)0;
 532		if (evt->event_handler)
 533			evt->event_handler(evt);
 534		__this_cpu_inc(irq_stat.timer_irqs_event);
 535	} else {
 536		now = *next_tb - now;
 537		if (now <= decrementer_max)
 538			set_dec(now);
 539		/* We may have raced with new irq work */
 540		if (test_irq_work_pending())
 541			set_dec(1);
 542		__this_cpu_inc(irq_stat.timer_irqs_others);
 543	}
 544
 545#ifdef CONFIG_PPC64
 546	/* collect purr register values often, for accurate calculations */
 547	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
 548		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
 549		cu->current_tb = mfspr(SPRN_PURR);
 550	}
 551#endif
 552
 553	trace_timer_interrupt_exit(regs);
 554}
 555
 556/*
 557 * timer_interrupt - gets called when the decrementer overflows,
 558 * with interrupts disabled.
 559 */
 560void timer_interrupt(struct pt_regs * regs)
 561{
 
 
 562	struct pt_regs *old_regs;
 563	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 564
 565	/* Ensure a positive value is written to the decrementer, or else
 566	 * some CPUs will continue to take decrementer exceptions.
 567	 */
 568	set_dec(decrementer_max);
 569
 570	/* Some implementations of hotplug will get timer interrupts while
 571	 * offline, just ignore these and we also need to set
 572	 * decrementers_next_tb as MAX to make sure __check_irq_replay
 573	 * don't replay timer interrupt when return, otherwise we'll trap
 574	 * here infinitely :(
 575	 */
 576	if (!cpu_online(smp_processor_id())) {
 577		*next_tb = ~(u64)0;
 
 578		return;
 579	}
 580
 
 
 
 
 
 
 
 
 
 
 
 581	/* Conditionally hard-enable interrupts now that the DEC has been
 582	 * bumped to its maximum value
 583	 */
 584	may_hard_irq_enable();
 585
 586
 587#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
 588	if (atomic_read(&ppc_n_lost_interrupts) != 0)
 589		do_IRQ(regs);
 590#endif
 591
 592	old_regs = set_irq_regs(regs);
 593	irq_enter();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 594
 595	__timer_interrupt();
 596	irq_exit();
 597	set_irq_regs(old_regs);
 598}
 599EXPORT_SYMBOL(timer_interrupt);
 600
 601/*
 602 * Hypervisor decrementer interrupts shouldn't occur but are sometimes
 603 * left pending on exit from a KVM guest.  We don't need to do anything
 604 * to clear them, as they are edge-triggered.
 605 */
 606void hdec_interrupt(struct pt_regs *regs)
 607{
 
 
 
 
 
 608}
 
 609
 610#ifdef CONFIG_SUSPEND
 611static void generic_suspend_disable_irqs(void)
 612{
 613	/* Disable the decrementer, so that it doesn't interfere
 614	 * with suspending.
 615	 */
 616
 617	set_dec(decrementer_max);
 618	local_irq_disable();
 619	set_dec(decrementer_max);
 620}
 621
 622static void generic_suspend_enable_irqs(void)
 623{
 624	local_irq_enable();
 625}
 626
 627/* Overrides the weak version in kernel/power/main.c */
 628void arch_suspend_disable_irqs(void)
 629{
 630	if (ppc_md.suspend_disable_irqs)
 631		ppc_md.suspend_disable_irqs();
 632	generic_suspend_disable_irqs();
 633}
 634
 635/* Overrides the weak version in kernel/power/main.c */
 636void arch_suspend_enable_irqs(void)
 637{
 638	generic_suspend_enable_irqs();
 639	if (ppc_md.suspend_enable_irqs)
 640		ppc_md.suspend_enable_irqs();
 641}
 642#endif
 643
 644unsigned long long tb_to_ns(unsigned long long ticks)
 645{
 646	return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
 647}
 648EXPORT_SYMBOL_GPL(tb_to_ns);
 649
 650/*
 651 * Scheduler clock - returns current time in nanosec units.
 652 *
 653 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 654 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 655 * are 64-bit unsigned numbers.
 656 */
 657unsigned long long sched_clock(void)
 658{
 659	if (__USE_RTC())
 660		return get_rtc();
 661	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 662}
 663
 664
 665#ifdef CONFIG_PPC_PSERIES
 666
 667/*
 668 * Running clock - attempts to give a view of time passing for a virtualised
 669 * kernels.
 670 * Uses the VTB register if available otherwise a next best guess.
 671 */
 672unsigned long long running_clock(void)
 673{
 674	/*
 675	 * Don't read the VTB as a host since KVM does not switch in host
 676	 * timebase into the VTB when it takes a guest off the CPU, reading the
 677	 * VTB would result in reading 'last switched out' guest VTB.
 678	 *
 679	 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
 680	 * would be unsafe to rely only on the #ifdef above.
 681	 */
 682	if (firmware_has_feature(FW_FEATURE_LPAR) &&
 683	    cpu_has_feature(CPU_FTR_ARCH_207S))
 684		return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 685
 686	/*
 687	 * This is a next best approximation without a VTB.
 688	 * On a host which is running bare metal there should never be any stolen
 689	 * time and on a host which doesn't do any virtualisation TB *should* equal
 690	 * VTB so it makes no difference anyway.
 691	 */
 692	return local_clock() - cputime_to_nsecs(kcpustat_this_cpu->cpustat[CPUTIME_STEAL]);
 693}
 694#endif
 695
 696static int __init get_freq(char *name, int cells, unsigned long *val)
 697{
 698	struct device_node *cpu;
 699	const __be32 *fp;
 700	int found = 0;
 701
 702	/* The cpu node should have timebase and clock frequency properties */
 703	cpu = of_find_node_by_type(NULL, "cpu");
 704
 705	if (cpu) {
 706		fp = of_get_property(cpu, name, NULL);
 707		if (fp) {
 708			found = 1;
 709			*val = of_read_ulong(fp, cells);
 710		}
 711
 712		of_node_put(cpu);
 713	}
 714
 715	return found;
 716}
 717
 718static void start_cpu_decrementer(void)
 719{
 720#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
 
 
 721	/* Clear any pending timer interrupts */
 722	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
 723
 724	/* Enable decrementer interrupt */
 725	mtspr(SPRN_TCR, TCR_DIE);
 726#endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
 
 
 
 
 
 
 727}
 728
 729void __init generic_calibrate_decr(void)
 730{
 731	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
 732
 733	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
 734	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
 735
 736		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
 737				"(not found)\n");
 738	}
 739
 740	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
 741
 742	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
 743	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
 744
 745		printk(KERN_ERR "WARNING: Estimating processor frequency "
 746				"(not found)\n");
 747	}
 748}
 749
 750int update_persistent_clock(struct timespec now)
 751{
 752	struct rtc_time tm;
 753
 754	if (!ppc_md.set_rtc_time)
 755		return -ENODEV;
 756
 757	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
 758	tm.tm_year -= 1900;
 759	tm.tm_mon -= 1;
 760
 761	return ppc_md.set_rtc_time(&tm);
 762}
 763
 764static void __read_persistent_clock(struct timespec *ts)
 765{
 766	struct rtc_time tm;
 767	static int first = 1;
 768
 769	ts->tv_nsec = 0;
 770	/* XXX this is a litle fragile but will work okay in the short term */
 771	if (first) {
 772		first = 0;
 773		if (ppc_md.time_init)
 774			timezone_offset = ppc_md.time_init();
 775
 776		/* get_boot_time() isn't guaranteed to be safe to call late */
 777		if (ppc_md.get_boot_time) {
 778			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
 779			return;
 780		}
 781	}
 782	if (!ppc_md.get_rtc_time) {
 783		ts->tv_sec = 0;
 784		return;
 785	}
 786	ppc_md.get_rtc_time(&tm);
 787
 788	ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
 789			    tm.tm_hour, tm.tm_min, tm.tm_sec);
 790}
 791
 792void read_persistent_clock(struct timespec *ts)
 793{
 794	__read_persistent_clock(ts);
 795
 796	/* Sanitize it in case real time clock is set below EPOCH */
 797	if (ts->tv_sec < 0) {
 798		ts->tv_sec = 0;
 799		ts->tv_nsec = 0;
 800	}
 801		
 802}
 803
 804/* clocksource code */
 805static u64 rtc_read(struct clocksource *cs)
 806{
 807	return (u64)get_rtc();
 808}
 809
 810static u64 timebase_read(struct clocksource *cs)
 811{
 812	return (u64)get_tb();
 813}
 814
 815void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm,
 816			 struct clocksource *clock, u32 mult, u64 cycle_last)
 817{
 
 
 
 
 
 818	u64 new_tb_to_xs, new_stamp_xsec;
 819	u32 frac_sec;
 820
 821	if (clock != &clocksource_timebase)
 822		return;
 823
 
 
 
 824	/* Make userspace gettimeofday spin until we're done. */
 825	++vdso_data->tb_update_count;
 826	smp_mb();
 827
 828	/* 19342813113834067 ~= 2^(20+64) / 1e9 */
 829	new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
 830	new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
 831	do_div(new_stamp_xsec, 1000000000);
 832	new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
 833
 834	BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
 835	/* this is tv_nsec / 1e9 as a 0.32 fraction */
 836	frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 837
 838	/*
 839	 * tb_update_count is used to allow the userspace gettimeofday code
 840	 * to assure itself that it sees a consistent view of the tb_to_xs and
 841	 * stamp_xsec variables.  It reads the tb_update_count, then reads
 842	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
 843	 * the two values of tb_update_count match and are even then the
 844	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
 845	 * loops back and reads them again until this criteria is met.
 846	 * We expect the caller to have done the first increment of
 847	 * vdso_data->tb_update_count already.
 848	 */
 849	vdso_data->tb_orig_stamp = cycle_last;
 850	vdso_data->stamp_xsec = new_stamp_xsec;
 851	vdso_data->tb_to_xs = new_tb_to_xs;
 852	vdso_data->wtom_clock_sec = wtm->tv_sec;
 853	vdso_data->wtom_clock_nsec = wtm->tv_nsec;
 854	vdso_data->stamp_xtime = *wall_time;
 
 855	vdso_data->stamp_sec_fraction = frac_sec;
 
 856	smp_wmb();
 857	++(vdso_data->tb_update_count);
 858}
 859
 860void update_vsyscall_tz(void)
 861{
 862	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
 863	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
 864}
 865
 866static void __init clocksource_init(void)
 867{
 868	struct clocksource *clock;
 869
 870	if (__USE_RTC())
 871		clock = &clocksource_rtc;
 872	else
 873		clock = &clocksource_timebase;
 874
 875	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
 876		printk(KERN_ERR "clocksource: %s is already registered\n",
 877		       clock->name);
 878		return;
 879	}
 880
 881	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
 882	       clock->name, clock->mult, clock->shift);
 883}
 884
 885static int decrementer_set_next_event(unsigned long evt,
 886				      struct clock_event_device *dev)
 887{
 888	__this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
 889	set_dec(evt);
 890
 891	/* We may have raced with new irq work */
 892	if (test_irq_work_pending())
 893		set_dec(1);
 894
 895	return 0;
 896}
 897
 898static int decrementer_shutdown(struct clock_event_device *dev)
 899{
 900	decrementer_set_next_event(decrementer_max, dev);
 901	return 0;
 902}
 903
 904/* Interrupt handler for the timer broadcast IPI */
 905void tick_broadcast_ipi_handler(void)
 906{
 907	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 908
 909	*next_tb = get_tb_or_rtc();
 910	__timer_interrupt();
 911}
 912
 913static void register_decrementer_clockevent(int cpu)
 914{
 915	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
 916
 917	*dec = decrementer_clockevent;
 918	dec->cpumask = cpumask_of(cpu);
 919
 
 
 920	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
 921		    dec->name, dec->mult, dec->shift, cpu);
 922
 923	clockevents_register_device(dec);
 
 
 924}
 925
 926static void enable_large_decrementer(void)
 927{
 928	if (!cpu_has_feature(CPU_FTR_ARCH_300))
 929		return;
 930
 931	if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
 932		return;
 933
 934	/*
 935	 * If we're running as the hypervisor we need to enable the LD manually
 936	 * otherwise firmware should have done it for us.
 937	 */
 938	if (cpu_has_feature(CPU_FTR_HVMODE))
 939		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
 940}
 941
 942static void __init set_decrementer_max(void)
 943{
 944	struct device_node *cpu;
 945	u32 bits = 32;
 946
 947	/* Prior to ISAv3 the decrementer is always 32 bit */
 948	if (!cpu_has_feature(CPU_FTR_ARCH_300))
 949		return;
 950
 951	cpu = of_find_node_by_type(NULL, "cpu");
 952
 953	if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
 954		if (bits > 64 || bits < 32) {
 955			pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
 956			bits = 32;
 957		}
 958
 959		/* calculate the signed maximum given this many bits */
 960		decrementer_max = (1ul << (bits - 1)) - 1;
 961	}
 962
 963	of_node_put(cpu);
 964
 965	pr_info("time_init: %u bit decrementer (max: %llx)\n",
 966		bits, decrementer_max);
 967}
 968
 969static void __init init_decrementer_clockevent(void)
 970{
 971	int cpu = smp_processor_id();
 972
 973	clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
 974
 975	decrementer_clockevent.max_delta_ns =
 976		clockevent_delta2ns(decrementer_max, &decrementer_clockevent);
 977	decrementer_clockevent.min_delta_ns =
 978		clockevent_delta2ns(2, &decrementer_clockevent);
 979
 980	register_decrementer_clockevent(cpu);
 981}
 982
 983void secondary_cpu_time_init(void)
 984{
 985	/* Enable and test the large decrementer for this cpu */
 986	enable_large_decrementer();
 987
 988	/* Start the decrementer on CPUs that have manual control
 989	 * such as BookE
 990	 */
 991	start_cpu_decrementer();
 992
 993	/* FIME: Should make unrelatred change to move snapshot_timebase
 994	 * call here ! */
 995	register_decrementer_clockevent(smp_processor_id());
 996}
 997
 998/* This function is only called on the boot processor */
 999void __init time_init(void)
1000{
1001	struct div_result res;
1002	u64 scale;
1003	unsigned shift;
1004
1005	if (__USE_RTC()) {
1006		/* 601 processor: dec counts down by 128 every 128ns */
1007		ppc_tb_freq = 1000000000;
1008	} else {
1009		/* Normal PowerPC with timebase register */
1010		ppc_md.calibrate_decr();
1011		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
1012		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
1013		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
1014		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
1015	}
1016
1017	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
1018	tb_ticks_per_sec = ppc_tb_freq;
1019	tb_ticks_per_usec = ppc_tb_freq / 1000000;
1020	calc_cputime_factors();
1021	setup_cputime_one_jiffy();
1022
1023	/*
1024	 * Compute scale factor for sched_clock.
1025	 * The calibrate_decr() function has set tb_ticks_per_sec,
1026	 * which is the timebase frequency.
1027	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1028	 * the 128-bit result as a 64.64 fixed-point number.
1029	 * We then shift that number right until it is less than 1.0,
1030	 * giving us the scale factor and shift count to use in
1031	 * sched_clock().
1032	 */
1033	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1034	scale = res.result_low;
1035	for (shift = 0; res.result_high != 0; ++shift) {
1036		scale = (scale >> 1) | (res.result_high << 63);
1037		res.result_high >>= 1;
1038	}
1039	tb_to_ns_scale = scale;
1040	tb_to_ns_shift = shift;
1041	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1042	boot_tb = get_tb_or_rtc();
1043
1044	/* If platform provided a timezone (pmac), we correct the time */
1045	if (timezone_offset) {
1046		sys_tz.tz_minuteswest = -timezone_offset / 60;
1047		sys_tz.tz_dsttime = 0;
1048	}
1049
1050	vdso_data->tb_update_count = 0;
1051	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1052
1053	/* initialise and enable the large decrementer (if we have one) */
1054	set_decrementer_max();
1055	enable_large_decrementer();
1056
1057	/* Start the decrementer on CPUs that have manual control
1058	 * such as BookE
1059	 */
1060	start_cpu_decrementer();
1061
1062	/* Register the clocksource */
1063	clocksource_init();
1064
1065	init_decrementer_clockevent();
1066	tick_setup_hrtimer_broadcast();
1067
1068#ifdef CONFIG_COMMON_CLK
1069	of_clk_init(NULL);
1070#endif
1071}
1072
1073
1074#define FEBRUARY	2
1075#define	STARTOFTIME	1970
1076#define SECDAY		86400L
1077#define SECYR		(SECDAY * 365)
1078#define	leapyear(year)		((year) % 4 == 0 && \
1079				 ((year) % 100 != 0 || (year) % 400 == 0))
1080#define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
1081#define	days_in_month(a) 	(month_days[(a) - 1])
1082
1083static int month_days[12] = {
1084	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1085};
1086
1087void to_tm(int tim, struct rtc_time * tm)
1088{
1089	register int    i;
1090	register long   hms, day;
1091
1092	day = tim / SECDAY;
1093	hms = tim % SECDAY;
1094
1095	/* Hours, minutes, seconds are easy */
1096	tm->tm_hour = hms / 3600;
1097	tm->tm_min = (hms % 3600) / 60;
1098	tm->tm_sec = (hms % 3600) % 60;
1099
1100	/* Number of years in days */
1101	for (i = STARTOFTIME; day >= days_in_year(i); i++)
1102		day -= days_in_year(i);
1103	tm->tm_year = i;
1104
1105	/* Number of months in days left */
1106	if (leapyear(tm->tm_year))
1107		days_in_month(FEBRUARY) = 29;
1108	for (i = 1; day >= days_in_month(i); i++)
1109		day -= days_in_month(i);
1110	days_in_month(FEBRUARY) = 28;
1111	tm->tm_mon = i;
1112
1113	/* Days are what is left over (+1) from all that. */
1114	tm->tm_mday = day + 1;
1115
1116	/*
1117	 * No-one uses the day of the week.
1118	 */
1119	tm->tm_wday = -1;
1120}
1121EXPORT_SYMBOL(to_tm);
1122
1123/*
1124 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1125 * result.
1126 */
1127void div128_by_32(u64 dividend_high, u64 dividend_low,
1128		  unsigned divisor, struct div_result *dr)
1129{
1130	unsigned long a, b, c, d;
1131	unsigned long w, x, y, z;
1132	u64 ra, rb, rc;
1133
1134	a = dividend_high >> 32;
1135	b = dividend_high & 0xffffffff;
1136	c = dividend_low >> 32;
1137	d = dividend_low & 0xffffffff;
1138
1139	w = a / divisor;
1140	ra = ((u64)(a - (w * divisor)) << 32) + b;
1141
1142	rb = ((u64) do_div(ra, divisor) << 32) + c;
1143	x = ra;
1144
1145	rc = ((u64) do_div(rb, divisor) << 32) + d;
1146	y = rb;
1147
1148	do_div(rc, divisor);
1149	z = rc;
1150
1151	dr->result_high = ((u64)w << 32) + x;
1152	dr->result_low  = ((u64)y << 32) + z;
1153
1154}
1155
1156/* We don't need to calibrate delay, we use the CPU timebase for that */
1157void calibrate_delay(void)
1158{
1159	/* Some generic code (such as spinlock debug) use loops_per_jiffy
1160	 * as the number of __delay(1) in a jiffy, so make it so
1161	 */
1162	loops_per_jiffy = tb_ticks_per_jiffy;
1163}
1164
1165#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
1166static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
1167{
1168	ppc_md.get_rtc_time(tm);
1169	return rtc_valid_tm(tm);
1170}
1171
1172static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
1173{
1174	if (!ppc_md.set_rtc_time)
1175		return -EOPNOTSUPP;
1176
1177	if (ppc_md.set_rtc_time(tm) < 0)
1178		return -EOPNOTSUPP;
1179
1180	return 0;
1181}
1182
1183static const struct rtc_class_ops rtc_generic_ops = {
1184	.read_time = rtc_generic_get_time,
1185	.set_time = rtc_generic_set_time,
1186};
1187
1188static int __init rtc_init(void)
1189{
1190	struct platform_device *pdev;
1191
1192	if (!ppc_md.get_rtc_time)
1193		return -ENODEV;
1194
1195	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
1196					     &rtc_generic_ops,
1197					     sizeof(rtc_generic_ops));
1198
1199	return PTR_ERR_OR_ZERO(pdev);
1200}
1201
1202device_initcall(rtc_init);
1203#endif