Linux Audio

Check our new training course

Loading...
v5.9
  1/*
  2 * Copyright 2014 Advanced Micro Devices, Inc.
  3 *
  4 * Permission is hereby granted, free of charge, to any person obtaining a
  5 * copy of this software and associated documentation files (the "Software"),
  6 * to deal in the Software without restriction, including without limitation
  7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8 * and/or sell copies of the Software, and to permit persons to whom the
  9 * Software is furnished to do so, subject to the following conditions:
 10 *
 11 * The above copyright notice and this permission notice shall be included in
 12 * all copies or substantial portions of the Software.
 13 *
 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 20 * OTHER DEALINGS IN THE SOFTWARE.
 21 */
 22
 
 
 
 
 23#include "amdgpu.h"
 24#include "amdgpu_amdkfd.h"
 25#include "cikd.h"
 26#include "cik_sdma.h"
 27#include "gfx_v7_0.h"
 28#include "gca/gfx_7_2_d.h"
 29#include "gca/gfx_7_2_enum.h"
 30#include "gca/gfx_7_2_sh_mask.h"
 31#include "oss/oss_2_0_d.h"
 32#include "oss/oss_2_0_sh_mask.h"
 33#include "gmc/gmc_7_1_d.h"
 34#include "gmc/gmc_7_1_sh_mask.h"
 35#include "cik_structs.h"
 36
 37enum hqd_dequeue_request_type {
 38	NO_ACTION = 0,
 39	DRAIN_PIPE,
 40	RESET_WAVES
 41};
 42
 43enum {
 44	MAX_TRAPID = 8,		/* 3 bits in the bitfield. */
 45	MAX_WATCH_ADDRESSES = 4
 46};
 47
 48enum {
 49	ADDRESS_WATCH_REG_ADDR_HI = 0,
 50	ADDRESS_WATCH_REG_ADDR_LO,
 51	ADDRESS_WATCH_REG_CNTL,
 52	ADDRESS_WATCH_REG_MAX
 53};
 54
 55/*  not defined in the CI/KV reg file  */
 56enum {
 57	ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
 58	ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
 59	ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
 60	/* extend the mask to 26 bits to match the low address field */
 61	ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
 62	ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
 63};
 64
 65static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
 66	mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
 67	mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
 68	mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
 69	mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
 70};
 71
 72union TCP_WATCH_CNTL_BITS {
 73	struct {
 74		uint32_t mask:24;
 75		uint32_t vmid:4;
 76		uint32_t atc:1;
 77		uint32_t mode:2;
 78		uint32_t valid:1;
 79	} bitfields, bits;
 80	uint32_t u32All;
 81	signed int i32All;
 82	float f32All;
 83};
 84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 85static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
 86{
 87	return (struct amdgpu_device *)kgd;
 88}
 89
 90static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
 91			uint32_t queue, uint32_t vmid)
 92{
 93	struct amdgpu_device *adev = get_amdgpu_device(kgd);
 94	uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
 95
 96	mutex_lock(&adev->srbm_mutex);
 97	WREG32(mmSRBM_GFX_CNTL, value);
 98}
 99
100static void unlock_srbm(struct kgd_dev *kgd)
101{
102	struct amdgpu_device *adev = get_amdgpu_device(kgd);
103
104	WREG32(mmSRBM_GFX_CNTL, 0);
105	mutex_unlock(&adev->srbm_mutex);
106}
107
108static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
109				uint32_t queue_id)
110{
111	struct amdgpu_device *adev = get_amdgpu_device(kgd);
112
113	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
114	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
115
116	lock_srbm(kgd, mec, pipe, queue_id, 0);
117}
118
119static void release_queue(struct kgd_dev *kgd)
120{
121	unlock_srbm(kgd);
122}
123
124static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
125					uint32_t sh_mem_config,
126					uint32_t sh_mem_ape1_base,
127					uint32_t sh_mem_ape1_limit,
128					uint32_t sh_mem_bases)
129{
130	struct amdgpu_device *adev = get_amdgpu_device(kgd);
131
132	lock_srbm(kgd, 0, 0, 0, vmid);
133
134	WREG32(mmSH_MEM_CONFIG, sh_mem_config);
135	WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
136	WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
137	WREG32(mmSH_MEM_BASES, sh_mem_bases);
138
139	unlock_srbm(kgd);
140}
141
142static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
143					unsigned int vmid)
144{
145	struct amdgpu_device *adev = get_amdgpu_device(kgd);
146
147	/*
148	 * We have to assume that there is no outstanding mapping.
149	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
150	 * a mapping is in progress or because a mapping finished and the
151	 * SW cleared it. So the protocol is to always wait & clear.
152	 */
153	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
154			ATC_VMID0_PASID_MAPPING__VALID_MASK;
155
156	WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
157
158	while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
159		cpu_relax();
160	WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
161
162	/* Mapping vmid to pasid also for IH block */
163	WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
164
165	return 0;
166}
167
168static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
169{
170	struct amdgpu_device *adev = get_amdgpu_device(kgd);
171	uint32_t mec;
172	uint32_t pipe;
173
174	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
175	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
176
177	lock_srbm(kgd, mec, pipe, 0, 0);
178
179	WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
180			CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
181
182	unlock_srbm(kgd);
183
184	return 0;
185}
186
187static inline uint32_t get_sdma_rlc_reg_offset(struct cik_sdma_rlc_registers *m)
188{
189	uint32_t retval;
190
191	retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
192			m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
193
194	pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n",
195			m->sdma_engine_id, m->sdma_queue_id, retval);
196
197	return retval;
198}
199
200static inline struct cik_mqd *get_mqd(void *mqd)
201{
202	return (struct cik_mqd *)mqd;
203}
204
205static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
206{
207	return (struct cik_sdma_rlc_registers *)mqd;
208}
209
210static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
211			uint32_t queue_id, uint32_t __user *wptr,
212			uint32_t wptr_shift, uint32_t wptr_mask,
213			struct mm_struct *mm)
214{
215	struct amdgpu_device *adev = get_amdgpu_device(kgd);
216	struct cik_mqd *m;
217	uint32_t *mqd_hqd;
218	uint32_t reg, wptr_val, data;
219	bool valid_wptr = false;
220
221	m = get_mqd(mqd);
222
223	acquire_queue(kgd, pipe_id, queue_id);
224
225	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */
226	mqd_hqd = &m->cp_mqd_base_addr_lo;
227
228	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
229		WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
230
231	/* Copy userspace write pointer value to register.
232	 * Activate doorbell logic to monitor subsequent changes.
233	 */
234	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
235			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
236	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
237
238	/* read_user_ptr may take the mm->mmap_lock.
239	 * release srbm_mutex to avoid circular dependency between
240	 * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
241	 */
242	release_queue(kgd);
243	valid_wptr = read_user_wptr(mm, wptr, wptr_val);
244	acquire_queue(kgd, pipe_id, queue_id);
245	if (valid_wptr)
246		WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
247
248	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
249	WREG32(mmCP_HQD_ACTIVE, data);
250
251	release_queue(kgd);
252
253	return 0;
254}
255
256static int kgd_hqd_dump(struct kgd_dev *kgd,
257			uint32_t pipe_id, uint32_t queue_id,
258			uint32_t (**dump)[2], uint32_t *n_regs)
259{
260	struct amdgpu_device *adev = get_amdgpu_device(kgd);
261	uint32_t i = 0, reg;
262#define HQD_N_REGS (35+4)
263#define DUMP_REG(addr) do {				\
264		if (WARN_ON_ONCE(i >= HQD_N_REGS))	\
265			break;				\
266		(*dump)[i][0] = (addr) << 2;		\
267		(*dump)[i++][1] = RREG32(addr);		\
268	} while (0)
269
270	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
271	if (*dump == NULL)
272		return -ENOMEM;
273
274	acquire_queue(kgd, pipe_id, queue_id);
275
276	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
277	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
278	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
279	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
280
281	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
282		DUMP_REG(reg);
283
284	release_queue(kgd);
285
286	WARN_ON_ONCE(i != HQD_N_REGS);
287	*n_regs = i;
288
289	return 0;
290}
291
292static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
293			     uint32_t __user *wptr, struct mm_struct *mm)
294{
295	struct amdgpu_device *adev = get_amdgpu_device(kgd);
296	struct cik_sdma_rlc_registers *m;
297	unsigned long end_jiffies;
298	uint32_t sdma_rlc_reg_offset;
299	uint32_t data;
300
301	m = get_sdma_mqd(mqd);
302	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
303
304	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
305		m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
306
307	end_jiffies = msecs_to_jiffies(2000) + jiffies;
308	while (true) {
309		data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
310		if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
311			break;
312		if (time_after(jiffies, end_jiffies)) {
313			pr_err("SDMA RLC not idle in %s\n", __func__);
314			return -ETIME;
315		}
316		usleep_range(500, 1000);
317	}
 
 
 
 
 
 
 
 
 
 
 
318
319	data = REG_SET_FIELD(m->sdma_rlc_doorbell, SDMA0_RLC0_DOORBELL,
320			     ENABLE, 1);
321	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
322	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
323				m->sdma_rlc_rb_rptr);
324
325	if (read_user_wptr(mm, wptr, data))
326		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, data);
327	else
328		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
329		       m->sdma_rlc_rb_rptr);
330
331	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_VIRTUAL_ADDR,
332				m->sdma_rlc_virtual_addr);
333	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base);
334	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
335			m->sdma_rlc_rb_base_hi);
336	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
337			m->sdma_rlc_rb_rptr_addr_lo);
338	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
339			m->sdma_rlc_rb_rptr_addr_hi);
340
341	data = REG_SET_FIELD(m->sdma_rlc_rb_cntl, SDMA0_RLC0_RB_CNTL,
342			     RB_ENABLE, 1);
343	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
344
345	return 0;
346}
347
348static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
349			     uint32_t engine_id, uint32_t queue_id,
350			     uint32_t (**dump)[2], uint32_t *n_regs)
351{
352	struct amdgpu_device *adev = get_amdgpu_device(kgd);
353	uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
354		queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
355	uint32_t i = 0, reg;
356#undef HQD_N_REGS
357#define HQD_N_REGS (19+4)
358
359	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
360	if (*dump == NULL)
361		return -ENOMEM;
362
363	for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
364		DUMP_REG(sdma_offset + reg);
365	for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
366	     reg++)
367		DUMP_REG(sdma_offset + reg);
368
369	WARN_ON_ONCE(i != HQD_N_REGS);
370	*n_regs = i;
371
372	return 0;
373}
374
375static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
376				uint32_t pipe_id, uint32_t queue_id)
377{
378	struct amdgpu_device *adev = get_amdgpu_device(kgd);
379	uint32_t act;
380	bool retval = false;
381	uint32_t low, high;
382
383	acquire_queue(kgd, pipe_id, queue_id);
384	act = RREG32(mmCP_HQD_ACTIVE);
385	if (act) {
386		low = lower_32_bits(queue_address >> 8);
387		high = upper_32_bits(queue_address >> 8);
388
389		if (low == RREG32(mmCP_HQD_PQ_BASE) &&
390				high == RREG32(mmCP_HQD_PQ_BASE_HI))
391			retval = true;
392	}
393	release_queue(kgd);
394	return retval;
395}
396
397static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
398{
399	struct amdgpu_device *adev = get_amdgpu_device(kgd);
400	struct cik_sdma_rlc_registers *m;
401	uint32_t sdma_rlc_reg_offset;
402	uint32_t sdma_rlc_rb_cntl;
403
404	m = get_sdma_mqd(mqd);
405	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
406
407	sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
408
409	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
410		return true;
411
412	return false;
413}
414
415static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
416				enum kfd_preempt_type reset_type,
417				unsigned int utimeout, uint32_t pipe_id,
418				uint32_t queue_id)
419{
420	struct amdgpu_device *adev = get_amdgpu_device(kgd);
421	uint32_t temp;
422	enum hqd_dequeue_request_type type;
423	unsigned long flags, end_jiffies;
424	int retry;
425
426	if (adev->in_gpu_reset)
427		return -EIO;
428
429	acquire_queue(kgd, pipe_id, queue_id);
430	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
431
432	switch (reset_type) {
433	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
434		type = DRAIN_PIPE;
435		break;
436	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
437		type = RESET_WAVES;
438		break;
439	default:
440		type = DRAIN_PIPE;
441		break;
442	}
443
444	/* Workaround: If IQ timer is active and the wait time is close to or
445	 * equal to 0, dequeueing is not safe. Wait until either the wait time
446	 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
447	 * cleared before continuing. Also, ensure wait times are set to at
448	 * least 0x3.
449	 */
450	local_irq_save(flags);
451	preempt_disable();
452	retry = 5000; /* wait for 500 usecs at maximum */
453	while (true) {
454		temp = RREG32(mmCP_HQD_IQ_TIMER);
455		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
456			pr_debug("HW is processing IQ\n");
457			goto loop;
458		}
459		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
460			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
461					== 3) /* SEM-rearm is safe */
462				break;
463			/* Wait time 3 is safe for CP, but our MMIO read/write
464			 * time is close to 1 microsecond, so check for 10 to
465			 * leave more buffer room
466			 */
467			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
468					>= 10)
469				break;
470			pr_debug("IQ timer is active\n");
471		} else
472			break;
473loop:
474		if (!retry) {
475			pr_err("CP HQD IQ timer status time out\n");
476			break;
477		}
478		ndelay(100);
479		--retry;
480	}
481	retry = 1000;
482	while (true) {
483		temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
484		if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
485			break;
486		pr_debug("Dequeue request is pending\n");
487
488		if (!retry) {
489			pr_err("CP HQD dequeue request time out\n");
490			break;
491		}
492		ndelay(100);
493		--retry;
494	}
495	local_irq_restore(flags);
496	preempt_enable();
497
498	WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
499
500	end_jiffies = (utimeout * HZ / 1000) + jiffies;
501	while (true) {
502		temp = RREG32(mmCP_HQD_ACTIVE);
503		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
504			break;
505		if (time_after(jiffies, end_jiffies)) {
506			pr_err("cp queue preemption time out\n");
507			release_queue(kgd);
508			return -ETIME;
509		}
510		usleep_range(500, 1000);
511	}
512
513	release_queue(kgd);
514	return 0;
515}
516
517static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
518				unsigned int utimeout)
519{
520	struct amdgpu_device *adev = get_amdgpu_device(kgd);
521	struct cik_sdma_rlc_registers *m;
522	uint32_t sdma_rlc_reg_offset;
523	uint32_t temp;
524	unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
525
526	m = get_sdma_mqd(mqd);
527	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
528
529	temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
530	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
531	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
532
533	while (true) {
534		temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
535		if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
536			break;
537		if (time_after(jiffies, end_jiffies)) {
538			pr_err("SDMA RLC not idle in %s\n", __func__);
539			return -ETIME;
540		}
541		usleep_range(500, 1000);
542	}
543
544	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
545	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
546		RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
547		SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
548
549	m->sdma_rlc_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
550
551	return 0;
552}
553
554static int kgd_address_watch_disable(struct kgd_dev *kgd)
555{
556	struct amdgpu_device *adev = get_amdgpu_device(kgd);
557	union TCP_WATCH_CNTL_BITS cntl;
558	unsigned int i;
559
560	cntl.u32All = 0;
561
562	cntl.bitfields.valid = 0;
563	cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
564	cntl.bitfields.atc = 1;
565
566	/* Turning off this address until we set all the registers */
567	for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
568		WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
569			ADDRESS_WATCH_REG_CNTL], cntl.u32All);
570
571	return 0;
572}
573
574static int kgd_address_watch_execute(struct kgd_dev *kgd,
575					unsigned int watch_point_id,
576					uint32_t cntl_val,
577					uint32_t addr_hi,
578					uint32_t addr_lo)
579{
580	struct amdgpu_device *adev = get_amdgpu_device(kgd);
581	union TCP_WATCH_CNTL_BITS cntl;
582
583	cntl.u32All = cntl_val;
584
585	/* Turning off this watch point until we set all the registers */
586	cntl.bitfields.valid = 0;
587	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
588		ADDRESS_WATCH_REG_CNTL], cntl.u32All);
589
590	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
591		ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
592
593	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
594		ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
595
596	/* Enable the watch point */
597	cntl.bitfields.valid = 1;
598
599	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
600		ADDRESS_WATCH_REG_CNTL], cntl.u32All);
601
602	return 0;
603}
604
605static int kgd_wave_control_execute(struct kgd_dev *kgd,
606					uint32_t gfx_index_val,
607					uint32_t sq_cmd)
608{
609	struct amdgpu_device *adev = get_amdgpu_device(kgd);
610	uint32_t data;
611
612	mutex_lock(&adev->grbm_idx_mutex);
613
614	WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
615	WREG32(mmSQ_CMD, sq_cmd);
616
617	/*  Restore the GRBM_GFX_INDEX register  */
618
619	data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
620		GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
621		GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
622
623	WREG32(mmGRBM_GFX_INDEX, data);
624
625	mutex_unlock(&adev->grbm_idx_mutex);
626
627	return 0;
628}
629
630static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
631					unsigned int watch_point_id,
632					unsigned int reg_offset)
633{
634	return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
635}
636
637static bool get_atc_vmid_pasid_mapping_info(struct kgd_dev *kgd,
638					uint8_t vmid, uint16_t *p_pasid)
639{
640	uint32_t value;
641	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
642
643	value = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
644	*p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
 
 
 
 
 
 
 
645
646	return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
 
647}
648
649static void set_scratch_backing_va(struct kgd_dev *kgd,
650					uint64_t va, uint32_t vmid)
651{
652	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
653
654	lock_srbm(kgd, 0, 0, 0, vmid);
655	WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
656	unlock_srbm(kgd);
657}
658
659static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
660			uint64_t page_table_base)
661{
662	struct amdgpu_device *adev = get_amdgpu_device(kgd);
663
664	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
665		pr_err("trying to set page table base for wrong VMID\n");
666		return;
667	}
668	WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8,
669		lower_32_bits(page_table_base));
670}
671
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
672 /**
673  * read_vmid_from_vmfault_reg - read vmid from register
674  *
675  * adev: amdgpu_device pointer
676  * @vmid: vmid pointer
677  * read vmid from register (CIK).
678  */
679static uint32_t read_vmid_from_vmfault_reg(struct kgd_dev *kgd)
680{
681	struct amdgpu_device *adev = get_amdgpu_device(kgd);
682
683	uint32_t status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
684
685	return REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);
686}
687
688const struct kfd2kgd_calls gfx_v7_kfd2kgd = {
689	.program_sh_mem_settings = kgd_program_sh_mem_settings,
690	.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
691	.init_interrupts = kgd_init_interrupts,
692	.hqd_load = kgd_hqd_load,
693	.hqd_sdma_load = kgd_hqd_sdma_load,
694	.hqd_dump = kgd_hqd_dump,
695	.hqd_sdma_dump = kgd_hqd_sdma_dump,
696	.hqd_is_occupied = kgd_hqd_is_occupied,
697	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
698	.hqd_destroy = kgd_hqd_destroy,
699	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
700	.address_watch_disable = kgd_address_watch_disable,
701	.address_watch_execute = kgd_address_watch_execute,
702	.wave_control_execute = kgd_wave_control_execute,
703	.address_watch_get_offset = kgd_address_watch_get_offset,
704	.get_atc_vmid_pasid_mapping_info = get_atc_vmid_pasid_mapping_info,
705	.set_scratch_backing_va = set_scratch_backing_va,
706	.set_vm_context_page_table_base = set_vm_context_page_table_base,
707	.read_vmid_from_vmfault_reg = read_vmid_from_vmfault_reg,
708};
v5.4
  1/*
  2 * Copyright 2014 Advanced Micro Devices, Inc.
  3 *
  4 * Permission is hereby granted, free of charge, to any person obtaining a
  5 * copy of this software and associated documentation files (the "Software"),
  6 * to deal in the Software without restriction, including without limitation
  7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8 * and/or sell copies of the Software, and to permit persons to whom the
  9 * Software is furnished to do so, subject to the following conditions:
 10 *
 11 * The above copyright notice and this permission notice shall be included in
 12 * all copies or substantial portions of the Software.
 13 *
 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 20 * OTHER DEALINGS IN THE SOFTWARE.
 21 */
 22
 23#include <linux/fdtable.h>
 24#include <linux/uaccess.h>
 25#include <linux/mmu_context.h>
 26
 27#include "amdgpu.h"
 28#include "amdgpu_amdkfd.h"
 29#include "cikd.h"
 30#include "cik_sdma.h"
 31#include "gfx_v7_0.h"
 32#include "gca/gfx_7_2_d.h"
 33#include "gca/gfx_7_2_enum.h"
 34#include "gca/gfx_7_2_sh_mask.h"
 35#include "oss/oss_2_0_d.h"
 36#include "oss/oss_2_0_sh_mask.h"
 37#include "gmc/gmc_7_1_d.h"
 38#include "gmc/gmc_7_1_sh_mask.h"
 39#include "cik_structs.h"
 40
 41enum hqd_dequeue_request_type {
 42	NO_ACTION = 0,
 43	DRAIN_PIPE,
 44	RESET_WAVES
 45};
 46
 47enum {
 48	MAX_TRAPID = 8,		/* 3 bits in the bitfield. */
 49	MAX_WATCH_ADDRESSES = 4
 50};
 51
 52enum {
 53	ADDRESS_WATCH_REG_ADDR_HI = 0,
 54	ADDRESS_WATCH_REG_ADDR_LO,
 55	ADDRESS_WATCH_REG_CNTL,
 56	ADDRESS_WATCH_REG_MAX
 57};
 58
 59/*  not defined in the CI/KV reg file  */
 60enum {
 61	ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
 62	ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
 63	ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
 64	/* extend the mask to 26 bits to match the low address field */
 65	ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
 66	ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
 67};
 68
 69static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
 70	mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
 71	mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
 72	mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
 73	mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
 74};
 75
 76union TCP_WATCH_CNTL_BITS {
 77	struct {
 78		uint32_t mask:24;
 79		uint32_t vmid:4;
 80		uint32_t atc:1;
 81		uint32_t mode:2;
 82		uint32_t valid:1;
 83	} bitfields, bits;
 84	uint32_t u32All;
 85	signed int i32All;
 86	float f32All;
 87};
 88
 89/*
 90 * Register access functions
 91 */
 92
 93static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
 94		uint32_t sh_mem_config,	uint32_t sh_mem_ape1_base,
 95		uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);
 96
 97static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
 98					unsigned int vmid);
 99
100static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
101static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
102			uint32_t queue_id, uint32_t __user *wptr,
103			uint32_t wptr_shift, uint32_t wptr_mask,
104			struct mm_struct *mm);
105static int kgd_hqd_dump(struct kgd_dev *kgd,
106			uint32_t pipe_id, uint32_t queue_id,
107			uint32_t (**dump)[2], uint32_t *n_regs);
108static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
109			     uint32_t __user *wptr, struct mm_struct *mm);
110static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
111			     uint32_t engine_id, uint32_t queue_id,
112			     uint32_t (**dump)[2], uint32_t *n_regs);
113static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
114				uint32_t pipe_id, uint32_t queue_id);
115
116static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
117				enum kfd_preempt_type reset_type,
118				unsigned int utimeout, uint32_t pipe_id,
119				uint32_t queue_id);
120static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
121static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
122				unsigned int utimeout);
123static int kgd_address_watch_disable(struct kgd_dev *kgd);
124static int kgd_address_watch_execute(struct kgd_dev *kgd,
125					unsigned int watch_point_id,
126					uint32_t cntl_val,
127					uint32_t addr_hi,
128					uint32_t addr_lo);
129static int kgd_wave_control_execute(struct kgd_dev *kgd,
130					uint32_t gfx_index_val,
131					uint32_t sq_cmd);
132static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
133					unsigned int watch_point_id,
134					unsigned int reg_offset);
135
136static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid);
137static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
138							uint8_t vmid);
139
140static void set_scratch_backing_va(struct kgd_dev *kgd,
141					uint64_t va, uint32_t vmid);
142static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
143		uint64_t page_table_base);
144static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid);
145static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid);
146static uint32_t read_vmid_from_vmfault_reg(struct kgd_dev *kgd);
147
148/* Because of REG_GET_FIELD() being used, we put this function in the
149 * asic specific file.
150 */
151static int get_tile_config(struct kgd_dev *kgd,
152		struct tile_config *config)
153{
154	struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
155
156	config->gb_addr_config = adev->gfx.config.gb_addr_config;
157	config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
158				MC_ARB_RAMCFG, NOOFBANK);
159	config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
160				MC_ARB_RAMCFG, NOOFRANKS);
161
162	config->tile_config_ptr = adev->gfx.config.tile_mode_array;
163	config->num_tile_configs =
164			ARRAY_SIZE(adev->gfx.config.tile_mode_array);
165	config->macro_tile_config_ptr =
166			adev->gfx.config.macrotile_mode_array;
167	config->num_macro_tile_configs =
168			ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
169
170	return 0;
171}
172
173static const struct kfd2kgd_calls kfd2kgd = {
174	.program_sh_mem_settings = kgd_program_sh_mem_settings,
175	.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
176	.init_interrupts = kgd_init_interrupts,
177	.hqd_load = kgd_hqd_load,
178	.hqd_sdma_load = kgd_hqd_sdma_load,
179	.hqd_dump = kgd_hqd_dump,
180	.hqd_sdma_dump = kgd_hqd_sdma_dump,
181	.hqd_is_occupied = kgd_hqd_is_occupied,
182	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
183	.hqd_destroy = kgd_hqd_destroy,
184	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
185	.address_watch_disable = kgd_address_watch_disable,
186	.address_watch_execute = kgd_address_watch_execute,
187	.wave_control_execute = kgd_wave_control_execute,
188	.address_watch_get_offset = kgd_address_watch_get_offset,
189	.get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid,
190	.get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid,
191	.set_scratch_backing_va = set_scratch_backing_va,
192	.get_tile_config = get_tile_config,
193	.set_vm_context_page_table_base = set_vm_context_page_table_base,
194	.invalidate_tlbs = invalidate_tlbs,
195	.invalidate_tlbs_vmid = invalidate_tlbs_vmid,
196	.read_vmid_from_vmfault_reg = read_vmid_from_vmfault_reg,
197};
198
199struct kfd2kgd_calls *amdgpu_amdkfd_gfx_7_get_functions(void)
200{
201	return (struct kfd2kgd_calls *)&kfd2kgd;
202}
203
204static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
205{
206	return (struct amdgpu_device *)kgd;
207}
208
209static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
210			uint32_t queue, uint32_t vmid)
211{
212	struct amdgpu_device *adev = get_amdgpu_device(kgd);
213	uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
214
215	mutex_lock(&adev->srbm_mutex);
216	WREG32(mmSRBM_GFX_CNTL, value);
217}
218
219static void unlock_srbm(struct kgd_dev *kgd)
220{
221	struct amdgpu_device *adev = get_amdgpu_device(kgd);
222
223	WREG32(mmSRBM_GFX_CNTL, 0);
224	mutex_unlock(&adev->srbm_mutex);
225}
226
227static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
228				uint32_t queue_id)
229{
230	struct amdgpu_device *adev = get_amdgpu_device(kgd);
231
232	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
233	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
234
235	lock_srbm(kgd, mec, pipe, queue_id, 0);
236}
237
238static void release_queue(struct kgd_dev *kgd)
239{
240	unlock_srbm(kgd);
241}
242
243static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
244					uint32_t sh_mem_config,
245					uint32_t sh_mem_ape1_base,
246					uint32_t sh_mem_ape1_limit,
247					uint32_t sh_mem_bases)
248{
249	struct amdgpu_device *adev = get_amdgpu_device(kgd);
250
251	lock_srbm(kgd, 0, 0, 0, vmid);
252
253	WREG32(mmSH_MEM_CONFIG, sh_mem_config);
254	WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
255	WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
256	WREG32(mmSH_MEM_BASES, sh_mem_bases);
257
258	unlock_srbm(kgd);
259}
260
261static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
262					unsigned int vmid)
263{
264	struct amdgpu_device *adev = get_amdgpu_device(kgd);
265
266	/*
267	 * We have to assume that there is no outstanding mapping.
268	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
269	 * a mapping is in progress or because a mapping finished and the
270	 * SW cleared it. So the protocol is to always wait & clear.
271	 */
272	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
273			ATC_VMID0_PASID_MAPPING__VALID_MASK;
274
275	WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
276
277	while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
278		cpu_relax();
279	WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
280
281	/* Mapping vmid to pasid also for IH block */
282	WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
283
284	return 0;
285}
286
287static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
288{
289	struct amdgpu_device *adev = get_amdgpu_device(kgd);
290	uint32_t mec;
291	uint32_t pipe;
292
293	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
294	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
295
296	lock_srbm(kgd, mec, pipe, 0, 0);
297
298	WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
299			CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
300
301	unlock_srbm(kgd);
302
303	return 0;
304}
305
306static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
307{
308	uint32_t retval;
309
310	retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
311			m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
312
313	pr_debug("sdma base address: 0x%x\n", retval);
 
314
315	return retval;
316}
317
318static inline struct cik_mqd *get_mqd(void *mqd)
319{
320	return (struct cik_mqd *)mqd;
321}
322
323static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
324{
325	return (struct cik_sdma_rlc_registers *)mqd;
326}
327
328static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
329			uint32_t queue_id, uint32_t __user *wptr,
330			uint32_t wptr_shift, uint32_t wptr_mask,
331			struct mm_struct *mm)
332{
333	struct amdgpu_device *adev = get_amdgpu_device(kgd);
334	struct cik_mqd *m;
335	uint32_t *mqd_hqd;
336	uint32_t reg, wptr_val, data;
337	bool valid_wptr = false;
338
339	m = get_mqd(mqd);
340
341	acquire_queue(kgd, pipe_id, queue_id);
342
343	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */
344	mqd_hqd = &m->cp_mqd_base_addr_lo;
345
346	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
347		WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
348
349	/* Copy userspace write pointer value to register.
350	 * Activate doorbell logic to monitor subsequent changes.
351	 */
352	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
353			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
354	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
355
356	/* read_user_ptr may take the mm->mmap_sem.
357	 * release srbm_mutex to avoid circular dependency between
358	 * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
359	 */
360	release_queue(kgd);
361	valid_wptr = read_user_wptr(mm, wptr, wptr_val);
362	acquire_queue(kgd, pipe_id, queue_id);
363	if (valid_wptr)
364		WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
365
366	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
367	WREG32(mmCP_HQD_ACTIVE, data);
368
369	release_queue(kgd);
370
371	return 0;
372}
373
374static int kgd_hqd_dump(struct kgd_dev *kgd,
375			uint32_t pipe_id, uint32_t queue_id,
376			uint32_t (**dump)[2], uint32_t *n_regs)
377{
378	struct amdgpu_device *adev = get_amdgpu_device(kgd);
379	uint32_t i = 0, reg;
380#define HQD_N_REGS (35+4)
381#define DUMP_REG(addr) do {				\
382		if (WARN_ON_ONCE(i >= HQD_N_REGS))	\
383			break;				\
384		(*dump)[i][0] = (addr) << 2;		\
385		(*dump)[i++][1] = RREG32(addr);		\
386	} while (0)
387
388	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
389	if (*dump == NULL)
390		return -ENOMEM;
391
392	acquire_queue(kgd, pipe_id, queue_id);
393
394	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
395	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
396	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
397	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
398
399	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
400		DUMP_REG(reg);
401
402	release_queue(kgd);
403
404	WARN_ON_ONCE(i != HQD_N_REGS);
405	*n_regs = i;
406
407	return 0;
408}
409
410static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
411			     uint32_t __user *wptr, struct mm_struct *mm)
412{
413	struct amdgpu_device *adev = get_amdgpu_device(kgd);
414	struct cik_sdma_rlc_registers *m;
415	unsigned long end_jiffies;
416	uint32_t sdma_base_addr;
417	uint32_t data;
418
419	m = get_sdma_mqd(mqd);
420	sdma_base_addr = get_sdma_base_addr(m);
421
422	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
423		m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
424
425	end_jiffies = msecs_to_jiffies(2000) + jiffies;
426	while (true) {
427		data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
428		if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
429			break;
430		if (time_after(jiffies, end_jiffies))
 
431			return -ETIME;
 
432		usleep_range(500, 1000);
433	}
434	if (m->sdma_engine_id) {
435		data = RREG32(mmSDMA1_GFX_CONTEXT_CNTL);
436		data = REG_SET_FIELD(data, SDMA1_GFX_CONTEXT_CNTL,
437				RESUME_CTX, 0);
438		WREG32(mmSDMA1_GFX_CONTEXT_CNTL, data);
439	} else {
440		data = RREG32(mmSDMA0_GFX_CONTEXT_CNTL);
441		data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL,
442				RESUME_CTX, 0);
443		WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data);
444	}
445
446	data = REG_SET_FIELD(m->sdma_rlc_doorbell, SDMA0_RLC0_DOORBELL,
447			     ENABLE, 1);
448	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data);
449	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdma_rlc_rb_rptr);
 
450
451	if (read_user_wptr(mm, wptr, data))
452		WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, data);
453	else
454		WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
455		       m->sdma_rlc_rb_rptr);
456
457	WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
458				m->sdma_rlc_virtual_addr);
459	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base);
460	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
461			m->sdma_rlc_rb_base_hi);
462	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
463			m->sdma_rlc_rb_rptr_addr_lo);
464	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
465			m->sdma_rlc_rb_rptr_addr_hi);
466
467	data = REG_SET_FIELD(m->sdma_rlc_rb_cntl, SDMA0_RLC0_RB_CNTL,
468			     RB_ENABLE, 1);
469	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data);
470
471	return 0;
472}
473
474static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
475			     uint32_t engine_id, uint32_t queue_id,
476			     uint32_t (**dump)[2], uint32_t *n_regs)
477{
478	struct amdgpu_device *adev = get_amdgpu_device(kgd);
479	uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
480		queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
481	uint32_t i = 0, reg;
482#undef HQD_N_REGS
483#define HQD_N_REGS (19+4)
484
485	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
486	if (*dump == NULL)
487		return -ENOMEM;
488
489	for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
490		DUMP_REG(sdma_offset + reg);
491	for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
492	     reg++)
493		DUMP_REG(sdma_offset + reg);
494
495	WARN_ON_ONCE(i != HQD_N_REGS);
496	*n_regs = i;
497
498	return 0;
499}
500
501static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
502				uint32_t pipe_id, uint32_t queue_id)
503{
504	struct amdgpu_device *adev = get_amdgpu_device(kgd);
505	uint32_t act;
506	bool retval = false;
507	uint32_t low, high;
508
509	acquire_queue(kgd, pipe_id, queue_id);
510	act = RREG32(mmCP_HQD_ACTIVE);
511	if (act) {
512		low = lower_32_bits(queue_address >> 8);
513		high = upper_32_bits(queue_address >> 8);
514
515		if (low == RREG32(mmCP_HQD_PQ_BASE) &&
516				high == RREG32(mmCP_HQD_PQ_BASE_HI))
517			retval = true;
518	}
519	release_queue(kgd);
520	return retval;
521}
522
523static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
524{
525	struct amdgpu_device *adev = get_amdgpu_device(kgd);
526	struct cik_sdma_rlc_registers *m;
527	uint32_t sdma_base_addr;
528	uint32_t sdma_rlc_rb_cntl;
529
530	m = get_sdma_mqd(mqd);
531	sdma_base_addr = get_sdma_base_addr(m);
532
533	sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
534
535	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
536		return true;
537
538	return false;
539}
540
541static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
542				enum kfd_preempt_type reset_type,
543				unsigned int utimeout, uint32_t pipe_id,
544				uint32_t queue_id)
545{
546	struct amdgpu_device *adev = get_amdgpu_device(kgd);
547	uint32_t temp;
548	enum hqd_dequeue_request_type type;
549	unsigned long flags, end_jiffies;
550	int retry;
551
552	if (adev->in_gpu_reset)
553		return -EIO;
554
555	acquire_queue(kgd, pipe_id, queue_id);
556	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
557
558	switch (reset_type) {
559	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
560		type = DRAIN_PIPE;
561		break;
562	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
563		type = RESET_WAVES;
564		break;
565	default:
566		type = DRAIN_PIPE;
567		break;
568	}
569
570	/* Workaround: If IQ timer is active and the wait time is close to or
571	 * equal to 0, dequeueing is not safe. Wait until either the wait time
572	 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
573	 * cleared before continuing. Also, ensure wait times are set to at
574	 * least 0x3.
575	 */
576	local_irq_save(flags);
577	preempt_disable();
578	retry = 5000; /* wait for 500 usecs at maximum */
579	while (true) {
580		temp = RREG32(mmCP_HQD_IQ_TIMER);
581		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
582			pr_debug("HW is processing IQ\n");
583			goto loop;
584		}
585		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
586			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
587					== 3) /* SEM-rearm is safe */
588				break;
589			/* Wait time 3 is safe for CP, but our MMIO read/write
590			 * time is close to 1 microsecond, so check for 10 to
591			 * leave more buffer room
592			 */
593			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
594					>= 10)
595				break;
596			pr_debug("IQ timer is active\n");
597		} else
598			break;
599loop:
600		if (!retry) {
601			pr_err("CP HQD IQ timer status time out\n");
602			break;
603		}
604		ndelay(100);
605		--retry;
606	}
607	retry = 1000;
608	while (true) {
609		temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
610		if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
611			break;
612		pr_debug("Dequeue request is pending\n");
613
614		if (!retry) {
615			pr_err("CP HQD dequeue request time out\n");
616			break;
617		}
618		ndelay(100);
619		--retry;
620	}
621	local_irq_restore(flags);
622	preempt_enable();
623
624	WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
625
626	end_jiffies = (utimeout * HZ / 1000) + jiffies;
627	while (true) {
628		temp = RREG32(mmCP_HQD_ACTIVE);
629		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
630			break;
631		if (time_after(jiffies, end_jiffies)) {
632			pr_err("cp queue preemption time out\n");
633			release_queue(kgd);
634			return -ETIME;
635		}
636		usleep_range(500, 1000);
637	}
638
639	release_queue(kgd);
640	return 0;
641}
642
643static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
644				unsigned int utimeout)
645{
646	struct amdgpu_device *adev = get_amdgpu_device(kgd);
647	struct cik_sdma_rlc_registers *m;
648	uint32_t sdma_base_addr;
649	uint32_t temp;
650	unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
651
652	m = get_sdma_mqd(mqd);
653	sdma_base_addr = get_sdma_base_addr(m);
654
655	temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
656	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
657	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
658
659	while (true) {
660		temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
661		if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
662			break;
663		if (time_after(jiffies, end_jiffies))
 
664			return -ETIME;
 
665		usleep_range(500, 1000);
666	}
667
668	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
669	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
670		RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
671		SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
672
673	m->sdma_rlc_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR);
674
675	return 0;
676}
677
678static int kgd_address_watch_disable(struct kgd_dev *kgd)
679{
680	struct amdgpu_device *adev = get_amdgpu_device(kgd);
681	union TCP_WATCH_CNTL_BITS cntl;
682	unsigned int i;
683
684	cntl.u32All = 0;
685
686	cntl.bitfields.valid = 0;
687	cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
688	cntl.bitfields.atc = 1;
689
690	/* Turning off this address until we set all the registers */
691	for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
692		WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
693			ADDRESS_WATCH_REG_CNTL], cntl.u32All);
694
695	return 0;
696}
697
698static int kgd_address_watch_execute(struct kgd_dev *kgd,
699					unsigned int watch_point_id,
700					uint32_t cntl_val,
701					uint32_t addr_hi,
702					uint32_t addr_lo)
703{
704	struct amdgpu_device *adev = get_amdgpu_device(kgd);
705	union TCP_WATCH_CNTL_BITS cntl;
706
707	cntl.u32All = cntl_val;
708
709	/* Turning off this watch point until we set all the registers */
710	cntl.bitfields.valid = 0;
711	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
712		ADDRESS_WATCH_REG_CNTL], cntl.u32All);
713
714	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
715		ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
716
717	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
718		ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
719
720	/* Enable the watch point */
721	cntl.bitfields.valid = 1;
722
723	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
724		ADDRESS_WATCH_REG_CNTL], cntl.u32All);
725
726	return 0;
727}
728
729static int kgd_wave_control_execute(struct kgd_dev *kgd,
730					uint32_t gfx_index_val,
731					uint32_t sq_cmd)
732{
733	struct amdgpu_device *adev = get_amdgpu_device(kgd);
734	uint32_t data;
735
736	mutex_lock(&adev->grbm_idx_mutex);
737
738	WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
739	WREG32(mmSQ_CMD, sq_cmd);
740
741	/*  Restore the GRBM_GFX_INDEX register  */
742
743	data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
744		GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
745		GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
746
747	WREG32(mmGRBM_GFX_INDEX, data);
748
749	mutex_unlock(&adev->grbm_idx_mutex);
750
751	return 0;
752}
753
754static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
755					unsigned int watch_point_id,
756					unsigned int reg_offset)
757{
758	return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
759}
760
761static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
762							uint8_t vmid)
763{
764	uint32_t reg;
765	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
766
767	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
768	return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
769}
770
771static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
772								uint8_t vmid)
773{
774	uint32_t reg;
775	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
776
777	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
778	return reg & ATC_VMID0_PASID_MAPPING__PASID_MASK;
779}
780
781static void set_scratch_backing_va(struct kgd_dev *kgd,
782					uint64_t va, uint32_t vmid)
783{
784	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
785
786	lock_srbm(kgd, 0, 0, 0, vmid);
787	WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
788	unlock_srbm(kgd);
789}
790
791static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
792			uint64_t page_table_base)
793{
794	struct amdgpu_device *adev = get_amdgpu_device(kgd);
795
796	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
797		pr_err("trying to set page table base for wrong VMID\n");
798		return;
799	}
800	WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8,
801		lower_32_bits(page_table_base));
802}
803
804static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid)
805{
806	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
807	int vmid;
808	unsigned int tmp;
809
810	if (adev->in_gpu_reset)
811		return -EIO;
812
813	for (vmid = 0; vmid < 16; vmid++) {
814		if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid))
815			continue;
816
817		tmp = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
818		if ((tmp & ATC_VMID0_PASID_MAPPING__VALID_MASK) &&
819			(tmp & ATC_VMID0_PASID_MAPPING__PASID_MASK) == pasid) {
820			WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
821			RREG32(mmVM_INVALIDATE_RESPONSE);
822			break;
823		}
824	}
825
826	return 0;
827}
828
829static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid)
830{
831	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
832
833	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
834		pr_err("non kfd vmid\n");
835		return 0;
836	}
837
838	WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
839	RREG32(mmVM_INVALIDATE_RESPONSE);
840	return 0;
841}
842
843 /**
844  * read_vmid_from_vmfault_reg - read vmid from register
845  *
846  * adev: amdgpu_device pointer
847  * @vmid: vmid pointer
848  * read vmid from register (CIK).
849  */
850static uint32_t read_vmid_from_vmfault_reg(struct kgd_dev *kgd)
851{
852	struct amdgpu_device *adev = get_amdgpu_device(kgd);
853
854	uint32_t status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
855
856	return REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);
857}