Linux Audio

Check our new training course

Loading...
v5.9
  1/*
  2 * Copyright 2014 Advanced Micro Devices, Inc.
  3 *
  4 * Permission is hereby granted, free of charge, to any person obtaining a
  5 * copy of this software and associated documentation files (the "Software"),
  6 * to deal in the Software without restriction, including without limitation
  7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8 * and/or sell copies of the Software, and to permit persons to whom the
  9 * Software is furnished to do so, subject to the following conditions:
 10 *
 11 * The above copyright notice and this permission notice shall be included in
 12 * all copies or substantial portions of the Software.
 13 *
 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 20 * OTHER DEALINGS IN THE SOFTWARE.
 21 */
 22
 
 
 
 
 23#include "amdgpu.h"
 24#include "amdgpu_amdkfd.h"
 25#include "cikd.h"
 26#include "cik_sdma.h"
 27#include "gfx_v7_0.h"
 28#include "gca/gfx_7_2_d.h"
 29#include "gca/gfx_7_2_enum.h"
 30#include "gca/gfx_7_2_sh_mask.h"
 31#include "oss/oss_2_0_d.h"
 32#include "oss/oss_2_0_sh_mask.h"
 33#include "gmc/gmc_7_1_d.h"
 34#include "gmc/gmc_7_1_sh_mask.h"
 35#include "cik_structs.h"
 36
 37enum hqd_dequeue_request_type {
 38	NO_ACTION = 0,
 39	DRAIN_PIPE,
 40	RESET_WAVES
 41};
 42
 43enum {
 44	MAX_TRAPID = 8,		/* 3 bits in the bitfield. */
 45	MAX_WATCH_ADDRESSES = 4
 46};
 47
 48enum {
 49	ADDRESS_WATCH_REG_ADDR_HI = 0,
 50	ADDRESS_WATCH_REG_ADDR_LO,
 51	ADDRESS_WATCH_REG_CNTL,
 52	ADDRESS_WATCH_REG_MAX
 53};
 54
 55/*  not defined in the CI/KV reg file  */
 56enum {
 57	ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
 58	ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
 59	ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
 60	/* extend the mask to 26 bits to match the low address field */
 61	ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
 62	ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
 63};
 64
 65static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
 66	mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
 67	mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
 68	mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
 69	mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
 70};
 71
 72union TCP_WATCH_CNTL_BITS {
 73	struct {
 74		uint32_t mask:24;
 75		uint32_t vmid:4;
 76		uint32_t atc:1;
 77		uint32_t mode:2;
 78		uint32_t valid:1;
 79	} bitfields, bits;
 80	uint32_t u32All;
 81	signed int i32All;
 82	float f32All;
 83};
 84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 85static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
 86{
 87	return (struct amdgpu_device *)kgd;
 88}
 89
 90static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
 91			uint32_t queue, uint32_t vmid)
 92{
 93	struct amdgpu_device *adev = get_amdgpu_device(kgd);
 94	uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
 95
 96	mutex_lock(&adev->srbm_mutex);
 97	WREG32(mmSRBM_GFX_CNTL, value);
 98}
 99
100static void unlock_srbm(struct kgd_dev *kgd)
101{
102	struct amdgpu_device *adev = get_amdgpu_device(kgd);
103
104	WREG32(mmSRBM_GFX_CNTL, 0);
105	mutex_unlock(&adev->srbm_mutex);
106}
107
108static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
109				uint32_t queue_id)
110{
111	struct amdgpu_device *adev = get_amdgpu_device(kgd);
112
113	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
114	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
115
116	lock_srbm(kgd, mec, pipe, queue_id, 0);
117}
118
119static void release_queue(struct kgd_dev *kgd)
120{
121	unlock_srbm(kgd);
122}
123
124static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
125					uint32_t sh_mem_config,
126					uint32_t sh_mem_ape1_base,
127					uint32_t sh_mem_ape1_limit,
128					uint32_t sh_mem_bases)
129{
130	struct amdgpu_device *adev = get_amdgpu_device(kgd);
131
132	lock_srbm(kgd, 0, 0, 0, vmid);
133
134	WREG32(mmSH_MEM_CONFIG, sh_mem_config);
135	WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
136	WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
137	WREG32(mmSH_MEM_BASES, sh_mem_bases);
138
139	unlock_srbm(kgd);
140}
141
142static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
143					unsigned int vmid)
144{
145	struct amdgpu_device *adev = get_amdgpu_device(kgd);
146
147	/*
148	 * We have to assume that there is no outstanding mapping.
149	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
150	 * a mapping is in progress or because a mapping finished and the
151	 * SW cleared it. So the protocol is to always wait & clear.
152	 */
153	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
154			ATC_VMID0_PASID_MAPPING__VALID_MASK;
155
156	WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
157
158	while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
159		cpu_relax();
160	WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
161
162	/* Mapping vmid to pasid also for IH block */
163	WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
164
165	return 0;
166}
167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
169{
170	struct amdgpu_device *adev = get_amdgpu_device(kgd);
171	uint32_t mec;
172	uint32_t pipe;
173
174	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
175	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
176
177	lock_srbm(kgd, mec, pipe, 0, 0);
178
179	WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
180			CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
181
182	unlock_srbm(kgd);
183
184	return 0;
185}
186
187static inline uint32_t get_sdma_rlc_reg_offset(struct cik_sdma_rlc_registers *m)
188{
189	uint32_t retval;
190
191	retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
192			m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
193
194	pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n",
195			m->sdma_engine_id, m->sdma_queue_id, retval);
196
197	return retval;
198}
199
200static inline struct cik_mqd *get_mqd(void *mqd)
201{
202	return (struct cik_mqd *)mqd;
203}
204
205static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
206{
207	return (struct cik_sdma_rlc_registers *)mqd;
208}
209
210static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
211			uint32_t queue_id, uint32_t __user *wptr,
212			uint32_t wptr_shift, uint32_t wptr_mask,
213			struct mm_struct *mm)
214{
215	struct amdgpu_device *adev = get_amdgpu_device(kgd);
 
216	struct cik_mqd *m;
217	uint32_t *mqd_hqd;
218	uint32_t reg, wptr_val, data;
219	bool valid_wptr = false;
220
221	m = get_mqd(mqd);
222
 
 
223	acquire_queue(kgd, pipe_id, queue_id);
 
 
 
224
225	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */
226	mqd_hqd = &m->cp_mqd_base_addr_lo;
 
227
228	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
229		WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
 
230
231	/* Copy userspace write pointer value to register.
232	 * Activate doorbell logic to monitor subsequent changes.
233	 */
234	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
235			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
236	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
237
238	/* read_user_ptr may take the mm->mmap_lock.
239	 * release srbm_mutex to avoid circular dependency between
240	 * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
241	 */
242	release_queue(kgd);
243	valid_wptr = read_user_wptr(mm, wptr, wptr_val);
244	acquire_queue(kgd, pipe_id, queue_id);
245	if (valid_wptr)
246		WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
247
248	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
249	WREG32(mmCP_HQD_ACTIVE, data);
 
250
251	release_queue(kgd);
 
 
 
252
253	return 0;
254}
 
255
256static int kgd_hqd_dump(struct kgd_dev *kgd,
257			uint32_t pipe_id, uint32_t queue_id,
258			uint32_t (**dump)[2], uint32_t *n_regs)
259{
260	struct amdgpu_device *adev = get_amdgpu_device(kgd);
261	uint32_t i = 0, reg;
262#define HQD_N_REGS (35+4)
263#define DUMP_REG(addr) do {				\
264		if (WARN_ON_ONCE(i >= HQD_N_REGS))	\
265			break;				\
266		(*dump)[i][0] = (addr) << 2;		\
267		(*dump)[i++][1] = RREG32(addr);		\
268	} while (0)
269
270	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
271	if (*dump == NULL)
272		return -ENOMEM;
273
274	acquire_queue(kgd, pipe_id, queue_id);
 
275
276	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
277	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
278	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
279	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
280
281	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
282		DUMP_REG(reg);
283
284	release_queue(kgd);
 
 
 
285
286	WARN_ON_ONCE(i != HQD_N_REGS);
287	*n_regs = i;
 
 
 
 
 
288
289	return 0;
290}
291
292static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
293			     uint32_t __user *wptr, struct mm_struct *mm)
294{
295	struct amdgpu_device *adev = get_amdgpu_device(kgd);
296	struct cik_sdma_rlc_registers *m;
297	unsigned long end_jiffies;
298	uint32_t sdma_rlc_reg_offset;
299	uint32_t data;
300
301	m = get_sdma_mqd(mqd);
302	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
303
304	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
305		m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
306
307	end_jiffies = msecs_to_jiffies(2000) + jiffies;
308	while (true) {
309		data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
310		if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
311			break;
312		if (time_after(jiffies, end_jiffies)) {
313			pr_err("SDMA RLC not idle in %s\n", __func__);
314			return -ETIME;
315		}
316		usleep_range(500, 1000);
317	}
318
319	data = REG_SET_FIELD(m->sdma_rlc_doorbell, SDMA0_RLC0_DOORBELL,
320			     ENABLE, 1);
321	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
322	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
323				m->sdma_rlc_rb_rptr);
324
325	if (read_user_wptr(mm, wptr, data))
326		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, data);
327	else
328		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
329		       m->sdma_rlc_rb_rptr);
330
331	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_VIRTUAL_ADDR,
332				m->sdma_rlc_virtual_addr);
333	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base);
334	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
335			m->sdma_rlc_rb_base_hi);
336	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
337			m->sdma_rlc_rb_rptr_addr_lo);
338	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
339			m->sdma_rlc_rb_rptr_addr_hi);
340
341	data = REG_SET_FIELD(m->sdma_rlc_rb_cntl, SDMA0_RLC0_RB_CNTL,
342			     RB_ENABLE, 1);
343	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
344
345	return 0;
346}
347
348static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
349			     uint32_t engine_id, uint32_t queue_id,
350			     uint32_t (**dump)[2], uint32_t *n_regs)
351{
352	struct amdgpu_device *adev = get_amdgpu_device(kgd);
353	uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
354		queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
355	uint32_t i = 0, reg;
356#undef HQD_N_REGS
357#define HQD_N_REGS (19+4)
358
359	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
360	if (*dump == NULL)
361		return -ENOMEM;
362
363	for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
364		DUMP_REG(sdma_offset + reg);
365	for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
366	     reg++)
367		DUMP_REG(sdma_offset + reg);
368
369	WARN_ON_ONCE(i != HQD_N_REGS);
370	*n_regs = i;
371
372	return 0;
373}
374
375static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
376				uint32_t pipe_id, uint32_t queue_id)
377{
378	struct amdgpu_device *adev = get_amdgpu_device(kgd);
379	uint32_t act;
380	bool retval = false;
381	uint32_t low, high;
382
383	acquire_queue(kgd, pipe_id, queue_id);
384	act = RREG32(mmCP_HQD_ACTIVE);
385	if (act) {
386		low = lower_32_bits(queue_address >> 8);
387		high = upper_32_bits(queue_address >> 8);
388
389		if (low == RREG32(mmCP_HQD_PQ_BASE) &&
390				high == RREG32(mmCP_HQD_PQ_BASE_HI))
391			retval = true;
392	}
393	release_queue(kgd);
394	return retval;
395}
396
397static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
398{
399	struct amdgpu_device *adev = get_amdgpu_device(kgd);
400	struct cik_sdma_rlc_registers *m;
401	uint32_t sdma_rlc_reg_offset;
402	uint32_t sdma_rlc_rb_cntl;
403
404	m = get_sdma_mqd(mqd);
405	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
406
407	sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
408
409	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
410		return true;
411
412	return false;
413}
414
415static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
416				enum kfd_preempt_type reset_type,
417				unsigned int utimeout, uint32_t pipe_id,
418				uint32_t queue_id)
419{
420	struct amdgpu_device *adev = get_amdgpu_device(kgd);
421	uint32_t temp;
422	enum hqd_dequeue_request_type type;
423	unsigned long flags, end_jiffies;
424	int retry;
425
426	if (adev->in_gpu_reset)
427		return -EIO;
428
429	acquire_queue(kgd, pipe_id, queue_id);
430	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
431
432	switch (reset_type) {
433	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
434		type = DRAIN_PIPE;
435		break;
436	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
437		type = RESET_WAVES;
438		break;
439	default:
440		type = DRAIN_PIPE;
441		break;
442	}
443
444	/* Workaround: If IQ timer is active and the wait time is close to or
445	 * equal to 0, dequeueing is not safe. Wait until either the wait time
446	 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
447	 * cleared before continuing. Also, ensure wait times are set to at
448	 * least 0x3.
449	 */
450	local_irq_save(flags);
451	preempt_disable();
452	retry = 5000; /* wait for 500 usecs at maximum */
453	while (true) {
454		temp = RREG32(mmCP_HQD_IQ_TIMER);
455		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
456			pr_debug("HW is processing IQ\n");
457			goto loop;
458		}
459		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
460			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
461					== 3) /* SEM-rearm is safe */
462				break;
463			/* Wait time 3 is safe for CP, but our MMIO read/write
464			 * time is close to 1 microsecond, so check for 10 to
465			 * leave more buffer room
466			 */
467			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
468					>= 10)
469				break;
470			pr_debug("IQ timer is active\n");
471		} else
472			break;
473loop:
474		if (!retry) {
475			pr_err("CP HQD IQ timer status time out\n");
476			break;
477		}
478		ndelay(100);
479		--retry;
480	}
481	retry = 1000;
482	while (true) {
483		temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
484		if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
485			break;
486		pr_debug("Dequeue request is pending\n");
487
488		if (!retry) {
489			pr_err("CP HQD dequeue request time out\n");
490			break;
491		}
492		ndelay(100);
493		--retry;
494	}
495	local_irq_restore(flags);
496	preempt_enable();
497
498	WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
499
500	end_jiffies = (utimeout * HZ / 1000) + jiffies;
501	while (true) {
502		temp = RREG32(mmCP_HQD_ACTIVE);
503		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
504			break;
505		if (time_after(jiffies, end_jiffies)) {
506			pr_err("cp queue preemption time out\n");
 
507			release_queue(kgd);
508			return -ETIME;
509		}
510		usleep_range(500, 1000);
 
511	}
512
513	release_queue(kgd);
514	return 0;
515}
516
517static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
518				unsigned int utimeout)
519{
520	struct amdgpu_device *adev = get_amdgpu_device(kgd);
521	struct cik_sdma_rlc_registers *m;
522	uint32_t sdma_rlc_reg_offset;
523	uint32_t temp;
524	unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
525
526	m = get_sdma_mqd(mqd);
527	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
528
529	temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
530	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
531	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
532
533	while (true) {
534		temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
535		if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
536			break;
537		if (time_after(jiffies, end_jiffies)) {
538			pr_err("SDMA RLC not idle in %s\n", __func__);
539			return -ETIME;
540		}
541		usleep_range(500, 1000);
542	}
543
544	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
545	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
546		RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
547		SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
548
549	m->sdma_rlc_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
550
551	return 0;
552}
553
554static int kgd_address_watch_disable(struct kgd_dev *kgd)
555{
556	struct amdgpu_device *adev = get_amdgpu_device(kgd);
557	union TCP_WATCH_CNTL_BITS cntl;
558	unsigned int i;
559
560	cntl.u32All = 0;
561
562	cntl.bitfields.valid = 0;
563	cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
564	cntl.bitfields.atc = 1;
565
566	/* Turning off this address until we set all the registers */
567	for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
568		WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
569			ADDRESS_WATCH_REG_CNTL], cntl.u32All);
570
571	return 0;
572}
573
574static int kgd_address_watch_execute(struct kgd_dev *kgd,
575					unsigned int watch_point_id,
576					uint32_t cntl_val,
577					uint32_t addr_hi,
578					uint32_t addr_lo)
579{
580	struct amdgpu_device *adev = get_amdgpu_device(kgd);
581	union TCP_WATCH_CNTL_BITS cntl;
582
583	cntl.u32All = cntl_val;
584
585	/* Turning off this watch point until we set all the registers */
586	cntl.bitfields.valid = 0;
587	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
588		ADDRESS_WATCH_REG_CNTL], cntl.u32All);
589
590	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
591		ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
592
593	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
594		ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
595
596	/* Enable the watch point */
597	cntl.bitfields.valid = 1;
598
599	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
600		ADDRESS_WATCH_REG_CNTL], cntl.u32All);
601
602	return 0;
603}
604
605static int kgd_wave_control_execute(struct kgd_dev *kgd,
606					uint32_t gfx_index_val,
607					uint32_t sq_cmd)
608{
609	struct amdgpu_device *adev = get_amdgpu_device(kgd);
610	uint32_t data;
611
612	mutex_lock(&adev->grbm_idx_mutex);
613
614	WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
615	WREG32(mmSQ_CMD, sq_cmd);
616
617	/*  Restore the GRBM_GFX_INDEX register  */
618
619	data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
620		GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
621		GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
622
623	WREG32(mmGRBM_GFX_INDEX, data);
624
625	mutex_unlock(&adev->grbm_idx_mutex);
626
627	return 0;
628}
629
630static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
631					unsigned int watch_point_id,
632					unsigned int reg_offset)
633{
634	return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
635}
636
637static bool get_atc_vmid_pasid_mapping_info(struct kgd_dev *kgd,
638					uint8_t vmid, uint16_t *p_pasid)
639{
640	uint32_t value;
641	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
642
643	value = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
644	*p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
645
646	return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
647}
648
649static void set_scratch_backing_va(struct kgd_dev *kgd,
650					uint64_t va, uint32_t vmid)
651{
 
652	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
653
654	lock_srbm(kgd, 0, 0, 0, vmid);
655	WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
656	unlock_srbm(kgd);
657}
658
659static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
660			uint64_t page_table_base)
661{
662	struct amdgpu_device *adev = get_amdgpu_device(kgd);
663
664	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
665		pr_err("trying to set page table base for wrong VMID\n");
666		return;
667	}
668	WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8,
669		lower_32_bits(page_table_base));
670}
671
672 /**
673  * read_vmid_from_vmfault_reg - read vmid from register
674  *
675  * adev: amdgpu_device pointer
676  * @vmid: vmid pointer
677  * read vmid from register (CIK).
678  */
679static uint32_t read_vmid_from_vmfault_reg(struct kgd_dev *kgd)
680{
681	struct amdgpu_device *adev = get_amdgpu_device(kgd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
682
683	uint32_t status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
 
 
 
684
685	return REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
686}
687
688const struct kfd2kgd_calls gfx_v7_kfd2kgd = {
689	.program_sh_mem_settings = kgd_program_sh_mem_settings,
690	.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
691	.init_interrupts = kgd_init_interrupts,
692	.hqd_load = kgd_hqd_load,
693	.hqd_sdma_load = kgd_hqd_sdma_load,
694	.hqd_dump = kgd_hqd_dump,
695	.hqd_sdma_dump = kgd_hqd_sdma_dump,
696	.hqd_is_occupied = kgd_hqd_is_occupied,
697	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
698	.hqd_destroy = kgd_hqd_destroy,
699	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
700	.address_watch_disable = kgd_address_watch_disable,
701	.address_watch_execute = kgd_address_watch_execute,
702	.wave_control_execute = kgd_wave_control_execute,
703	.address_watch_get_offset = kgd_address_watch_get_offset,
704	.get_atc_vmid_pasid_mapping_info = get_atc_vmid_pasid_mapping_info,
705	.set_scratch_backing_va = set_scratch_backing_va,
706	.set_vm_context_page_table_base = set_vm_context_page_table_base,
707	.read_vmid_from_vmfault_reg = read_vmid_from_vmfault_reg,
708};
v4.6
  1/*
  2 * Copyright 2014 Advanced Micro Devices, Inc.
  3 *
  4 * Permission is hereby granted, free of charge, to any person obtaining a
  5 * copy of this software and associated documentation files (the "Software"),
  6 * to deal in the Software without restriction, including without limitation
  7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8 * and/or sell copies of the Software, and to permit persons to whom the
  9 * Software is furnished to do so, subject to the following conditions:
 10 *
 11 * The above copyright notice and this permission notice shall be included in
 12 * all copies or substantial portions of the Software.
 13 *
 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 20 * OTHER DEALINGS IN THE SOFTWARE.
 21 */
 22
 23#include <linux/fdtable.h>
 24#include <linux/uaccess.h>
 25#include <linux/firmware.h>
 26#include <drm/drmP.h>
 27#include "amdgpu.h"
 28#include "amdgpu_amdkfd.h"
 29#include "cikd.h"
 30#include "cik_sdma.h"
 31#include "amdgpu_ucode.h"
 32#include "gca/gfx_7_2_d.h"
 33#include "gca/gfx_7_2_enum.h"
 34#include "gca/gfx_7_2_sh_mask.h"
 35#include "oss/oss_2_0_d.h"
 36#include "oss/oss_2_0_sh_mask.h"
 37#include "gmc/gmc_7_1_d.h"
 38#include "gmc/gmc_7_1_sh_mask.h"
 39#include "cik_structs.h"
 40
 41#define CIK_PIPE_PER_MEC	(4)
 
 
 
 
 42
 43enum {
 44	MAX_TRAPID = 8,		/* 3 bits in the bitfield. */
 45	MAX_WATCH_ADDRESSES = 4
 46};
 47
 48enum {
 49	ADDRESS_WATCH_REG_ADDR_HI = 0,
 50	ADDRESS_WATCH_REG_ADDR_LO,
 51	ADDRESS_WATCH_REG_CNTL,
 52	ADDRESS_WATCH_REG_MAX
 53};
 54
 55/*  not defined in the CI/KV reg file  */
 56enum {
 57	ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
 58	ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
 59	ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
 60	/* extend the mask to 26 bits to match the low address field */
 61	ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
 62	ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
 63};
 64
 65static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
 66	mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
 67	mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
 68	mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
 69	mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
 70};
 71
 72union TCP_WATCH_CNTL_BITS {
 73	struct {
 74		uint32_t mask:24;
 75		uint32_t vmid:4;
 76		uint32_t atc:1;
 77		uint32_t mode:2;
 78		uint32_t valid:1;
 79	} bitfields, bits;
 80	uint32_t u32All;
 81	signed int i32All;
 82	float f32All;
 83};
 84
 85/*
 86 * Register access functions
 87 */
 88
 89static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
 90		uint32_t sh_mem_config,	uint32_t sh_mem_ape1_base,
 91		uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);
 92
 93static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
 94					unsigned int vmid);
 95
 96static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
 97				uint32_t hpd_size, uint64_t hpd_gpu_addr);
 98static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
 99static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
100			uint32_t queue_id, uint32_t __user *wptr);
101static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd);
102static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
103				uint32_t pipe_id, uint32_t queue_id);
104
105static int kgd_hqd_destroy(struct kgd_dev *kgd, uint32_t reset_type,
106				unsigned int timeout, uint32_t pipe_id,
107				uint32_t queue_id);
108static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
109static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
110				unsigned int timeout);
111static int kgd_address_watch_disable(struct kgd_dev *kgd);
112static int kgd_address_watch_execute(struct kgd_dev *kgd,
113					unsigned int watch_point_id,
114					uint32_t cntl_val,
115					uint32_t addr_hi,
116					uint32_t addr_lo);
117static int kgd_wave_control_execute(struct kgd_dev *kgd,
118					uint32_t gfx_index_val,
119					uint32_t sq_cmd);
120static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
121					unsigned int watch_point_id,
122					unsigned int reg_offset);
123
124static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid);
125static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
126							uint8_t vmid);
127static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid);
128
129static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
130
131static const struct kfd2kgd_calls kfd2kgd = {
132	.init_gtt_mem_allocation = alloc_gtt_mem,
133	.free_gtt_mem = free_gtt_mem,
134	.get_vmem_size = get_vmem_size,
135	.get_gpu_clock_counter = get_gpu_clock_counter,
136	.get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
137	.program_sh_mem_settings = kgd_program_sh_mem_settings,
138	.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
139	.init_pipeline = kgd_init_pipeline,
140	.init_interrupts = kgd_init_interrupts,
141	.hqd_load = kgd_hqd_load,
142	.hqd_sdma_load = kgd_hqd_sdma_load,
143	.hqd_is_occupied = kgd_hqd_is_occupied,
144	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
145	.hqd_destroy = kgd_hqd_destroy,
146	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
147	.address_watch_disable = kgd_address_watch_disable,
148	.address_watch_execute = kgd_address_watch_execute,
149	.wave_control_execute = kgd_wave_control_execute,
150	.address_watch_get_offset = kgd_address_watch_get_offset,
151	.get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid,
152	.get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid,
153	.write_vmid_invalidate_request = write_vmid_invalidate_request,
154	.get_fw_version = get_fw_version
155};
156
157struct kfd2kgd_calls *amdgpu_amdkfd_gfx_7_get_functions(void)
158{
159	return (struct kfd2kgd_calls *)&kfd2kgd;
160}
161
162static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
163{
164	return (struct amdgpu_device *)kgd;
165}
166
167static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
168			uint32_t queue, uint32_t vmid)
169{
170	struct amdgpu_device *adev = get_amdgpu_device(kgd);
171	uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
172
173	mutex_lock(&adev->srbm_mutex);
174	WREG32(mmSRBM_GFX_CNTL, value);
175}
176
177static void unlock_srbm(struct kgd_dev *kgd)
178{
179	struct amdgpu_device *adev = get_amdgpu_device(kgd);
180
181	WREG32(mmSRBM_GFX_CNTL, 0);
182	mutex_unlock(&adev->srbm_mutex);
183}
184
185static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
186				uint32_t queue_id)
187{
188	uint32_t mec = (++pipe_id / CIK_PIPE_PER_MEC) + 1;
189	uint32_t pipe = (pipe_id % CIK_PIPE_PER_MEC);
 
 
190
191	lock_srbm(kgd, mec, pipe, queue_id, 0);
192}
193
194static void release_queue(struct kgd_dev *kgd)
195{
196	unlock_srbm(kgd);
197}
198
199static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
200					uint32_t sh_mem_config,
201					uint32_t sh_mem_ape1_base,
202					uint32_t sh_mem_ape1_limit,
203					uint32_t sh_mem_bases)
204{
205	struct amdgpu_device *adev = get_amdgpu_device(kgd);
206
207	lock_srbm(kgd, 0, 0, 0, vmid);
208
209	WREG32(mmSH_MEM_CONFIG, sh_mem_config);
210	WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
211	WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
212	WREG32(mmSH_MEM_BASES, sh_mem_bases);
213
214	unlock_srbm(kgd);
215}
216
217static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
218					unsigned int vmid)
219{
220	struct amdgpu_device *adev = get_amdgpu_device(kgd);
221
222	/*
223	 * We have to assume that there is no outstanding mapping.
224	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
225	 * a mapping is in progress or because a mapping finished and the
226	 * SW cleared it. So the protocol is to always wait & clear.
227	 */
228	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
229			ATC_VMID0_PASID_MAPPING__VALID_MASK;
230
231	WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
232
233	while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
234		cpu_relax();
235	WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
236
237	/* Mapping vmid to pasid also for IH block */
238	WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
239
240	return 0;
241}
242
243static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
244				uint32_t hpd_size, uint64_t hpd_gpu_addr)
245{
246	struct amdgpu_device *adev = get_amdgpu_device(kgd);
247
248	uint32_t mec = (++pipe_id / CIK_PIPE_PER_MEC) + 1;
249	uint32_t pipe = (pipe_id % CIK_PIPE_PER_MEC);
250
251	lock_srbm(kgd, mec, pipe, 0, 0);
252	WREG32(mmCP_HPD_EOP_BASE_ADDR, lower_32_bits(hpd_gpu_addr >> 8));
253	WREG32(mmCP_HPD_EOP_BASE_ADDR_HI, upper_32_bits(hpd_gpu_addr >> 8));
254	WREG32(mmCP_HPD_EOP_VMID, 0);
255	WREG32(mmCP_HPD_EOP_CONTROL, hpd_size);
256	unlock_srbm(kgd);
257
258	return 0;
259}
260
261static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
262{
263	struct amdgpu_device *adev = get_amdgpu_device(kgd);
264	uint32_t mec;
265	uint32_t pipe;
266
267	mec = (pipe_id / CIK_PIPE_PER_MEC) + 1;
268	pipe = (pipe_id % CIK_PIPE_PER_MEC);
269
270	lock_srbm(kgd, mec, pipe, 0, 0);
271
272	WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
273			CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
274
275	unlock_srbm(kgd);
276
277	return 0;
278}
279
280static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
281{
282	uint32_t retval;
283
284	retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
285			m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
286
287	pr_debug("kfd: sdma base address: 0x%x\n", retval);
 
288
289	return retval;
290}
291
292static inline struct cik_mqd *get_mqd(void *mqd)
293{
294	return (struct cik_mqd *)mqd;
295}
296
297static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
298{
299	return (struct cik_sdma_rlc_registers *)mqd;
300}
301
302static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
303			uint32_t queue_id, uint32_t __user *wptr)
 
 
304{
305	struct amdgpu_device *adev = get_amdgpu_device(kgd);
306	uint32_t wptr_shadow, is_wptr_shadow_valid;
307	struct cik_mqd *m;
 
 
 
308
309	m = get_mqd(mqd);
310
311	is_wptr_shadow_valid = !get_user(wptr_shadow, wptr);
312
313	acquire_queue(kgd, pipe_id, queue_id);
314	WREG32(mmCP_MQD_BASE_ADDR, m->cp_mqd_base_addr_lo);
315	WREG32(mmCP_MQD_BASE_ADDR_HI, m->cp_mqd_base_addr_hi);
316	WREG32(mmCP_MQD_CONTROL, m->cp_mqd_control);
317
318	WREG32(mmCP_HQD_PQ_BASE, m->cp_hqd_pq_base_lo);
319	WREG32(mmCP_HQD_PQ_BASE_HI, m->cp_hqd_pq_base_hi);
320	WREG32(mmCP_HQD_PQ_CONTROL, m->cp_hqd_pq_control);
321
322	WREG32(mmCP_HQD_IB_CONTROL, m->cp_hqd_ib_control);
323	WREG32(mmCP_HQD_IB_BASE_ADDR, m->cp_hqd_ib_base_addr_lo);
324	WREG32(mmCP_HQD_IB_BASE_ADDR_HI, m->cp_hqd_ib_base_addr_hi);
325
326	WREG32(mmCP_HQD_IB_RPTR, m->cp_hqd_ib_rptr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
327
328	WREG32(mmCP_HQD_PERSISTENT_STATE, m->cp_hqd_persistent_state);
329	WREG32(mmCP_HQD_SEMA_CMD, m->cp_hqd_sema_cmd);
330	WREG32(mmCP_HQD_MSG_TYPE, m->cp_hqd_msg_type);
331
332	WREG32(mmCP_HQD_ATOMIC0_PREOP_LO, m->cp_hqd_atomic0_preop_lo);
333	WREG32(mmCP_HQD_ATOMIC0_PREOP_HI, m->cp_hqd_atomic0_preop_hi);
334	WREG32(mmCP_HQD_ATOMIC1_PREOP_LO, m->cp_hqd_atomic1_preop_lo);
335	WREG32(mmCP_HQD_ATOMIC1_PREOP_HI, m->cp_hqd_atomic1_preop_hi);
336
337	WREG32(mmCP_HQD_PQ_RPTR_REPORT_ADDR, m->cp_hqd_pq_rptr_report_addr_lo);
338	WREG32(mmCP_HQD_PQ_RPTR_REPORT_ADDR_HI,
339			m->cp_hqd_pq_rptr_report_addr_hi);
340
341	WREG32(mmCP_HQD_PQ_RPTR, m->cp_hqd_pq_rptr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342
343	WREG32(mmCP_HQD_PQ_WPTR_POLL_ADDR, m->cp_hqd_pq_wptr_poll_addr_lo);
344	WREG32(mmCP_HQD_PQ_WPTR_POLL_ADDR_HI, m->cp_hqd_pq_wptr_poll_addr_hi);
345
346	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, m->cp_hqd_pq_doorbell_control);
 
 
 
347
348	WREG32(mmCP_HQD_VMID, m->cp_hqd_vmid);
 
349
350	WREG32(mmCP_HQD_QUANTUM, m->cp_hqd_quantum);
351
352	WREG32(mmCP_HQD_PIPE_PRIORITY, m->cp_hqd_pipe_priority);
353	WREG32(mmCP_HQD_QUEUE_PRIORITY, m->cp_hqd_queue_priority);
354
355	WREG32(mmCP_HQD_IQ_RPTR, m->cp_hqd_iq_rptr);
356
357	if (is_wptr_shadow_valid)
358		WREG32(mmCP_HQD_PQ_WPTR, wptr_shadow);
359
360	WREG32(mmCP_HQD_ACTIVE, m->cp_hqd_active);
361	release_queue(kgd);
362
363	return 0;
364}
365
366static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd)
 
367{
368	struct amdgpu_device *adev = get_amdgpu_device(kgd);
369	struct cik_sdma_rlc_registers *m;
370	uint32_t sdma_base_addr;
 
 
371
372	m = get_sdma_mqd(mqd);
373	sdma_base_addr = get_sdma_base_addr(m);
374
375	WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
376			m->sdma_rlc_virtual_addr);
377
378	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE,
379			m->sdma_rlc_rb_base);
 
 
 
 
 
 
 
 
 
380
381	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
382			m->sdma_rlc_rb_base_hi);
 
 
 
 
383
384	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
385			m->sdma_rlc_rb_rptr_addr_lo);
 
386
387	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
388			m->sdma_rlc_rb_rptr_addr_hi);
389
390	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL,
391			m->sdma_rlc_doorbell);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
392
393	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
394			m->sdma_rlc_rb_cntl);
395
396	return 0;
397}
398
399static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
400				uint32_t pipe_id, uint32_t queue_id)
401{
402	struct amdgpu_device *adev = get_amdgpu_device(kgd);
403	uint32_t act;
404	bool retval = false;
405	uint32_t low, high;
406
407	acquire_queue(kgd, pipe_id, queue_id);
408	act = RREG32(mmCP_HQD_ACTIVE);
409	if (act) {
410		low = lower_32_bits(queue_address >> 8);
411		high = upper_32_bits(queue_address >> 8);
412
413		if (low == RREG32(mmCP_HQD_PQ_BASE) &&
414				high == RREG32(mmCP_HQD_PQ_BASE_HI))
415			retval = true;
416	}
417	release_queue(kgd);
418	return retval;
419}
420
421static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
422{
423	struct amdgpu_device *adev = get_amdgpu_device(kgd);
424	struct cik_sdma_rlc_registers *m;
425	uint32_t sdma_base_addr;
426	uint32_t sdma_rlc_rb_cntl;
427
428	m = get_sdma_mqd(mqd);
429	sdma_base_addr = get_sdma_base_addr(m);
430
431	sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
432
433	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
434		return true;
435
436	return false;
437}
438
439static int kgd_hqd_destroy(struct kgd_dev *kgd, uint32_t reset_type,
440				unsigned int timeout, uint32_t pipe_id,
 
441				uint32_t queue_id)
442{
443	struct amdgpu_device *adev = get_amdgpu_device(kgd);
444	uint32_t temp;
 
 
 
 
 
 
445
446	acquire_queue(kgd, pipe_id, queue_id);
447	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
448
449	WREG32(mmCP_HQD_DEQUEUE_REQUEST, reset_type);
 
 
 
 
 
 
 
 
 
 
450
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
451	while (true) {
452		temp = RREG32(mmCP_HQD_ACTIVE);
453		if (temp & CP_HQD_ACTIVE__ACTIVE_MASK)
454			break;
455		if (timeout == 0) {
456			pr_err("kfd: cp queue preemption time out (%dms)\n",
457				temp);
458			release_queue(kgd);
459			return -ETIME;
460		}
461		msleep(20);
462		timeout -= 20;
463	}
464
465	release_queue(kgd);
466	return 0;
467}
468
469static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
470				unsigned int timeout)
471{
472	struct amdgpu_device *adev = get_amdgpu_device(kgd);
473	struct cik_sdma_rlc_registers *m;
474	uint32_t sdma_base_addr;
475	uint32_t temp;
 
476
477	m = get_sdma_mqd(mqd);
478	sdma_base_addr = get_sdma_base_addr(m);
479
480	temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
481	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
482	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
483
484	while (true) {
485		temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
486		if (temp & SDMA0_STATUS_REG__RB_CMD_IDLE__SHIFT)
487			break;
488		if (timeout == 0)
 
489			return -ETIME;
490		msleep(20);
491		timeout -= 20;
492	}
493
494	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
495	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, 0);
496	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, 0);
497	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, 0);
 
 
498
499	return 0;
500}
501
502static int kgd_address_watch_disable(struct kgd_dev *kgd)
503{
504	struct amdgpu_device *adev = get_amdgpu_device(kgd);
505	union TCP_WATCH_CNTL_BITS cntl;
506	unsigned int i;
507
508	cntl.u32All = 0;
509
510	cntl.bitfields.valid = 0;
511	cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
512	cntl.bitfields.atc = 1;
513
514	/* Turning off this address until we set all the registers */
515	for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
516		WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
517			ADDRESS_WATCH_REG_CNTL], cntl.u32All);
518
519	return 0;
520}
521
522static int kgd_address_watch_execute(struct kgd_dev *kgd,
523					unsigned int watch_point_id,
524					uint32_t cntl_val,
525					uint32_t addr_hi,
526					uint32_t addr_lo)
527{
528	struct amdgpu_device *adev = get_amdgpu_device(kgd);
529	union TCP_WATCH_CNTL_BITS cntl;
530
531	cntl.u32All = cntl_val;
532
533	/* Turning off this watch point until we set all the registers */
534	cntl.bitfields.valid = 0;
535	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
536		ADDRESS_WATCH_REG_CNTL], cntl.u32All);
537
538	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
539		ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
540
541	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
542		ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
543
544	/* Enable the watch point */
545	cntl.bitfields.valid = 1;
546
547	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
548		ADDRESS_WATCH_REG_CNTL], cntl.u32All);
549
550	return 0;
551}
552
553static int kgd_wave_control_execute(struct kgd_dev *kgd,
554					uint32_t gfx_index_val,
555					uint32_t sq_cmd)
556{
557	struct amdgpu_device *adev = get_amdgpu_device(kgd);
558	uint32_t data;
559
560	mutex_lock(&adev->grbm_idx_mutex);
561
562	WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
563	WREG32(mmSQ_CMD, sq_cmd);
564
565	/*  Restore the GRBM_GFX_INDEX register  */
566
567	data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
568		GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
569		GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
570
571	WREG32(mmGRBM_GFX_INDEX, data);
572
573	mutex_unlock(&adev->grbm_idx_mutex);
574
575	return 0;
576}
577
578static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
579					unsigned int watch_point_id,
580					unsigned int reg_offset)
581{
582	return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
583}
584
585static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
586							uint8_t vmid)
587{
588	uint32_t reg;
589	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
590
591	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
592	return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
 
 
593}
594
595static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
596								uint8_t vmid)
597{
598	uint32_t reg;
599	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
600
601	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
602	return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
 
603}
604
605static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid)
 
606{
607	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
608
609	WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
 
 
 
 
 
610}
611
612static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
 
 
 
 
 
 
 
613{
614	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
615	const union amdgpu_firmware_header *hdr;
616
617	BUG_ON(kgd == NULL);
618
619	switch (type) {
620	case KGD_ENGINE_PFP:
621		hdr = (const union amdgpu_firmware_header *)
622							adev->gfx.pfp_fw->data;
623		break;
624
625	case KGD_ENGINE_ME:
626		hdr = (const union amdgpu_firmware_header *)
627							adev->gfx.me_fw->data;
628		break;
629
630	case KGD_ENGINE_CE:
631		hdr = (const union amdgpu_firmware_header *)
632							adev->gfx.ce_fw->data;
633		break;
634
635	case KGD_ENGINE_MEC1:
636		hdr = (const union amdgpu_firmware_header *)
637							adev->gfx.mec_fw->data;
638		break;
639
640	case KGD_ENGINE_MEC2:
641		hdr = (const union amdgpu_firmware_header *)
642							adev->gfx.mec2_fw->data;
643		break;
644
645	case KGD_ENGINE_RLC:
646		hdr = (const union amdgpu_firmware_header *)
647							adev->gfx.rlc_fw->data;
648		break;
649
650	case KGD_ENGINE_SDMA1:
651		hdr = (const union amdgpu_firmware_header *)
652							adev->sdma.instance[0].fw->data;
653		break;
654
655	case KGD_ENGINE_SDMA2:
656		hdr = (const union amdgpu_firmware_header *)
657							adev->sdma.instance[1].fw->data;
658		break;
659
660	default:
661		return 0;
662	}
663
664	if (hdr == NULL)
665		return 0;
666
667	/* Only 12 bit in use*/
668	return hdr->common.ucode_version;
669}
670