Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
   4 *  Copyright 2007-2010 Freescale Semiconductor, Inc.
   5 *
   6 *  Modified by Cort Dougan (cort@cs.nmt.edu)
   7 *  and Paul Mackerras (paulus@samba.org)
   8 */
   9
  10/*
  11 * This file handles the architecture-dependent parts of hardware exceptions
  12 */
  13
  14#include <linux/errno.h>
  15#include <linux/sched.h>
  16#include <linux/sched/debug.h>
  17#include <linux/kernel.h>
  18#include <linux/mm.h>
  19#include <linux/pkeys.h>
  20#include <linux/stddef.h>
  21#include <linux/unistd.h>
  22#include <linux/ptrace.h>
  23#include <linux/user.h>
  24#include <linux/interrupt.h>
  25#include <linux/init.h>
  26#include <linux/extable.h>
  27#include <linux/module.h>	/* print_modules */
  28#include <linux/prctl.h>
  29#include <linux/delay.h>
  30#include <linux/kprobes.h>
  31#include <linux/kexec.h>
  32#include <linux/backlight.h>
  33#include <linux/bug.h>
  34#include <linux/kdebug.h>
  35#include <linux/ratelimit.h>
  36#include <linux/context_tracking.h>
  37#include <linux/smp.h>
  38#include <linux/console.h>
  39#include <linux/kmsg_dump.h>
  40
  41#include <asm/emulated_ops.h>
 
  42#include <linux/uaccess.h>
  43#include <asm/debugfs.h>
  44#include <asm/io.h>
  45#include <asm/machdep.h>
  46#include <asm/rtas.h>
  47#include <asm/pmc.h>
  48#include <asm/reg.h>
  49#ifdef CONFIG_PMAC_BACKLIGHT
  50#include <asm/backlight.h>
  51#endif
  52#ifdef CONFIG_PPC64
  53#include <asm/firmware.h>
  54#include <asm/processor.h>
  55#include <asm/tm.h>
  56#endif
  57#include <asm/kexec.h>
  58#include <asm/ppc-opcode.h>
  59#include <asm/rio.h>
  60#include <asm/fadump.h>
  61#include <asm/switch_to.h>
  62#include <asm/tm.h>
  63#include <asm/debug.h>
  64#include <asm/asm-prototypes.h>
  65#include <asm/hmi.h>
  66#include <sysdev/fsl_pci.h>
  67#include <asm/kprobes.h>
  68#include <asm/stacktrace.h>
  69#include <asm/nmi.h>
  70
  71#if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
  72int (*__debugger)(struct pt_regs *regs) __read_mostly;
  73int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
  74int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
  75int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
  76int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
  77int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
  78int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
  79
  80EXPORT_SYMBOL(__debugger);
  81EXPORT_SYMBOL(__debugger_ipi);
  82EXPORT_SYMBOL(__debugger_bpt);
  83EXPORT_SYMBOL(__debugger_sstep);
  84EXPORT_SYMBOL(__debugger_iabr_match);
  85EXPORT_SYMBOL(__debugger_break_match);
  86EXPORT_SYMBOL(__debugger_fault_handler);
  87#endif
  88
  89/* Transactional Memory trap debug */
  90#ifdef TM_DEBUG_SW
  91#define TM_DEBUG(x...) printk(KERN_INFO x)
  92#else
  93#define TM_DEBUG(x...) do { } while(0)
  94#endif
  95
  96static const char *signame(int signr)
  97{
  98	switch (signr) {
  99	case SIGBUS:	return "bus error";
 100	case SIGFPE:	return "floating point exception";
 101	case SIGILL:	return "illegal instruction";
 102	case SIGSEGV:	return "segfault";
 103	case SIGTRAP:	return "unhandled trap";
 104	}
 105
 106	return "unknown signal";
 107}
 108
 109/*
 110 * Trap & Exception support
 111 */
 112
 113#ifdef CONFIG_PMAC_BACKLIGHT
 114static void pmac_backlight_unblank(void)
 115{
 116	mutex_lock(&pmac_backlight_mutex);
 117	if (pmac_backlight) {
 118		struct backlight_properties *props;
 119
 120		props = &pmac_backlight->props;
 121		props->brightness = props->max_brightness;
 122		props->power = FB_BLANK_UNBLANK;
 123		backlight_update_status(pmac_backlight);
 124	}
 125	mutex_unlock(&pmac_backlight_mutex);
 126}
 127#else
 128static inline void pmac_backlight_unblank(void) { }
 129#endif
 130
 131/*
 132 * If oops/die is expected to crash the machine, return true here.
 133 *
 134 * This should not be expected to be 100% accurate, there may be
 135 * notifiers registered or other unexpected conditions that may bring
 136 * down the kernel. Or if the current process in the kernel is holding
 137 * locks or has other critical state, the kernel may become effectively
 138 * unusable anyway.
 139 */
 140bool die_will_crash(void)
 141{
 142	if (should_fadump_crash())
 143		return true;
 144	if (kexec_should_crash(current))
 145		return true;
 146	if (in_interrupt() || panic_on_oops ||
 147			!current->pid || is_global_init(current))
 148		return true;
 149
 150	return false;
 151}
 152
 153static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
 154static int die_owner = -1;
 155static unsigned int die_nest_count;
 156static int die_counter;
 157
 158extern void panic_flush_kmsg_start(void)
 159{
 160	/*
 161	 * These are mostly taken from kernel/panic.c, but tries to do
 162	 * relatively minimal work. Don't use delay functions (TB may
 163	 * be broken), don't crash dump (need to set a firmware log),
 164	 * don't run notifiers. We do want to get some information to
 165	 * Linux console.
 166	 */
 167	console_verbose();
 168	bust_spinlocks(1);
 169}
 170
 171extern void panic_flush_kmsg_end(void)
 172{
 173	printk_safe_flush_on_panic();
 174	kmsg_dump(KMSG_DUMP_PANIC);
 175	bust_spinlocks(0);
 176	debug_locks_off();
 177	console_flush_on_panic(CONSOLE_FLUSH_PENDING);
 178}
 179
 180static unsigned long oops_begin(struct pt_regs *regs)
 181{
 182	int cpu;
 183	unsigned long flags;
 184
 185	oops_enter();
 186
 187	/* racy, but better than risking deadlock. */
 188	raw_local_irq_save(flags);
 189	cpu = smp_processor_id();
 190	if (!arch_spin_trylock(&die_lock)) {
 191		if (cpu == die_owner)
 192			/* nested oops. should stop eventually */;
 193		else
 194			arch_spin_lock(&die_lock);
 195	}
 196	die_nest_count++;
 197	die_owner = cpu;
 198	console_verbose();
 199	bust_spinlocks(1);
 200	if (machine_is(powermac))
 201		pmac_backlight_unblank();
 202	return flags;
 203}
 204NOKPROBE_SYMBOL(oops_begin);
 205
 206static void oops_end(unsigned long flags, struct pt_regs *regs,
 207			       int signr)
 208{
 209	bust_spinlocks(0);
 210	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
 211	die_nest_count--;
 212	oops_exit();
 213	printk("\n");
 214	if (!die_nest_count) {
 215		/* Nest count reaches zero, release the lock. */
 216		die_owner = -1;
 217		arch_spin_unlock(&die_lock);
 218	}
 219	raw_local_irq_restore(flags);
 220
 221	/*
 222	 * system_reset_excption handles debugger, crash dump, panic, for 0x100
 223	 */
 224	if (TRAP(regs) == 0x100)
 225		return;
 226
 227	crash_fadump(regs, "die oops");
 228
 229	if (kexec_should_crash(current))
 230		crash_kexec(regs);
 231
 232	if (!signr)
 233		return;
 234
 235	/*
 236	 * While our oops output is serialised by a spinlock, output
 237	 * from panic() called below can race and corrupt it. If we
 238	 * know we are going to panic, delay for 1 second so we have a
 239	 * chance to get clean backtraces from all CPUs that are oopsing.
 240	 */
 241	if (in_interrupt() || panic_on_oops || !current->pid ||
 242	    is_global_init(current)) {
 243		mdelay(MSEC_PER_SEC);
 244	}
 245
 246	if (panic_on_oops)
 247		panic("Fatal exception");
 248	do_exit(signr);
 249}
 250NOKPROBE_SYMBOL(oops_end);
 251
 252static char *get_mmu_str(void)
 253{
 254	if (early_radix_enabled())
 255		return " MMU=Radix";
 256	if (early_mmu_has_feature(MMU_FTR_HPTE_TABLE))
 257		return " MMU=Hash";
 258	return "";
 259}
 260
 261static int __die(const char *str, struct pt_regs *regs, long err)
 262{
 263	printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
 264
 265	printk("%s PAGE_SIZE=%luK%s%s%s%s%s%s %s\n",
 266	       IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) ? "LE" : "BE",
 267	       PAGE_SIZE / 1024, get_mmu_str(),
 
 
 268	       IS_ENABLED(CONFIG_PREEMPT) ? " PREEMPT" : "",
 269	       IS_ENABLED(CONFIG_SMP) ? " SMP" : "",
 270	       IS_ENABLED(CONFIG_SMP) ? (" NR_CPUS=" __stringify(NR_CPUS)) : "",
 271	       debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "",
 272	       IS_ENABLED(CONFIG_NUMA) ? " NUMA" : "",
 273	       ppc_md.name ? ppc_md.name : "");
 274
 275	if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
 276		return 1;
 277
 278	print_modules();
 279	show_regs(regs);
 280
 281	return 0;
 282}
 283NOKPROBE_SYMBOL(__die);
 284
 285void die(const char *str, struct pt_regs *regs, long err)
 286{
 287	unsigned long flags;
 288
 289	/*
 290	 * system_reset_excption handles debugger, crash dump, panic, for 0x100
 291	 */
 292	if (TRAP(regs) != 0x100) {
 293		if (debugger(regs))
 294			return;
 295	}
 296
 297	flags = oops_begin(regs);
 298	if (__die(str, regs, err))
 299		err = 0;
 300	oops_end(flags, regs, err);
 301}
 302NOKPROBE_SYMBOL(die);
 303
 304void user_single_step_report(struct pt_regs *regs)
 305{
 306	force_sig_fault(SIGTRAP, TRAP_TRACE, (void __user *)regs->nip);
 307}
 308
 309static void show_signal_msg(int signr, struct pt_regs *regs, int code,
 310			    unsigned long addr)
 311{
 312	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
 313				      DEFAULT_RATELIMIT_BURST);
 314
 315	if (!show_unhandled_signals)
 316		return;
 317
 318	if (!unhandled_signal(current, signr))
 319		return;
 320
 321	if (!__ratelimit(&rs))
 322		return;
 323
 324	pr_info("%s[%d]: %s (%d) at %lx nip %lx lr %lx code %x",
 325		current->comm, current->pid, signame(signr), signr,
 326		addr, regs->nip, regs->link, code);
 327
 328	print_vma_addr(KERN_CONT " in ", regs->nip);
 329
 330	pr_cont("\n");
 331
 332	show_user_instructions(regs);
 333}
 334
 335static bool exception_common(int signr, struct pt_regs *regs, int code,
 336			      unsigned long addr)
 337{
 338	if (!user_mode(regs)) {
 339		die("Exception in kernel mode", regs, signr);
 340		return false;
 341	}
 342
 343	show_signal_msg(signr, regs, code, addr);
 344
 345	if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
 346		local_irq_enable();
 347
 348	current->thread.trap_nr = code;
 349
 350	/*
 351	 * Save all the pkey registers AMR/IAMR/UAMOR. Eg: Core dumps need
 352	 * to capture the content, if the task gets killed.
 353	 */
 354	thread_pkey_regs_save(&current->thread);
 355
 356	return true;
 357}
 358
 359void _exception_pkey(struct pt_regs *regs, unsigned long addr, int key)
 360{
 361	if (!exception_common(SIGSEGV, regs, SEGV_PKUERR, addr))
 362		return;
 363
 364	force_sig_pkuerr((void __user *) addr, key);
 365}
 366
 367void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
 368{
 369	if (!exception_common(signr, regs, code, addr))
 370		return;
 371
 372	force_sig_fault(signr, code, (void __user *)addr);
 373}
 374
 375/*
 376 * The interrupt architecture has a quirk in that the HV interrupts excluding
 377 * the NMIs (0x100 and 0x200) do not clear MSR[RI] at entry. The first thing
 378 * that an interrupt handler must do is save off a GPR into a scratch register,
 379 * and all interrupts on POWERNV (HV=1) use the HSPRG1 register as scratch.
 380 * Therefore an NMI can clobber an HV interrupt's live HSPRG1 without noticing
 381 * that it is non-reentrant, which leads to random data corruption.
 382 *
 383 * The solution is for NMI interrupts in HV mode to check if they originated
 384 * from these critical HV interrupt regions. If so, then mark them not
 385 * recoverable.
 386 *
 387 * An alternative would be for HV NMIs to use SPRG for scratch to avoid the
 388 * HSPRG1 clobber, however this would cause guest SPRG to be clobbered. Linux
 389 * guests should always have MSR[RI]=0 when its scratch SPRG is in use, so
 390 * that would work. However any other guest OS that may have the SPRG live
 391 * and MSR[RI]=1 could encounter silent corruption.
 392 *
 393 * Builds that do not support KVM could take this second option to increase
 394 * the recoverability of NMIs.
 395 */
 396void hv_nmi_check_nonrecoverable(struct pt_regs *regs)
 397{
 398#ifdef CONFIG_PPC_POWERNV
 399	unsigned long kbase = (unsigned long)_stext;
 400	unsigned long nip = regs->nip;
 401
 402	if (!(regs->msr & MSR_RI))
 403		return;
 404	if (!(regs->msr & MSR_HV))
 405		return;
 406	if (regs->msr & MSR_PR)
 407		return;
 408
 409	/*
 410	 * Now test if the interrupt has hit a range that may be using
 411	 * HSPRG1 without having RI=0 (i.e., an HSRR interrupt). The
 412	 * problem ranges all run un-relocated. Test real and virt modes
 413	 * at the same time by droping the high bit of the nip (virt mode
 414	 * entry points still have the +0x4000 offset).
 415	 */
 416	nip &= ~0xc000000000000000ULL;
 417	if ((nip >= 0x500 && nip < 0x600) || (nip >= 0x4500 && nip < 0x4600))
 418		goto nonrecoverable;
 419	if ((nip >= 0x980 && nip < 0xa00) || (nip >= 0x4980 && nip < 0x4a00))
 420		goto nonrecoverable;
 421	if ((nip >= 0xe00 && nip < 0xec0) || (nip >= 0x4e00 && nip < 0x4ec0))
 422		goto nonrecoverable;
 423	if ((nip >= 0xf80 && nip < 0xfa0) || (nip >= 0x4f80 && nip < 0x4fa0))
 424		goto nonrecoverable;
 425
 426	/* Trampoline code runs un-relocated so subtract kbase. */
 427	if (nip >= (unsigned long)(start_real_trampolines - kbase) &&
 428			nip < (unsigned long)(end_real_trampolines - kbase))
 429		goto nonrecoverable;
 430	if (nip >= (unsigned long)(start_virt_trampolines - kbase) &&
 431			nip < (unsigned long)(end_virt_trampolines - kbase))
 432		goto nonrecoverable;
 433	return;
 434
 435nonrecoverable:
 436	regs->msr &= ~MSR_RI;
 437#endif
 438}
 439
 440void system_reset_exception(struct pt_regs *regs)
 441{
 442	unsigned long hsrr0, hsrr1;
 
 443	bool saved_hsrrs = false;
 444	u8 ftrace_enabled = this_cpu_get_ftrace_enabled();
 445
 446	this_cpu_set_ftrace_enabled(0);
 447
 448	nmi_enter();
 
 
 
 
 
 449
 450	/*
 451	 * System reset can interrupt code where HSRRs are live and MSR[RI]=1.
 452	 * The system reset interrupt itself may clobber HSRRs (e.g., to call
 453	 * OPAL), so save them here and restore them before returning.
 454	 *
 455	 * Machine checks don't need to save HSRRs, as the real mode handler
 456	 * is careful to avoid them, and the regular handler is not delivered
 457	 * as an NMI.
 458	 */
 459	if (cpu_has_feature(CPU_FTR_HVMODE)) {
 460		hsrr0 = mfspr(SPRN_HSRR0);
 461		hsrr1 = mfspr(SPRN_HSRR1);
 462		saved_hsrrs = true;
 463	}
 464
 465	hv_nmi_check_nonrecoverable(regs);
 466
 467	__this_cpu_inc(irq_stat.sreset_irqs);
 468
 469	/* See if any machine dependent calls */
 470	if (ppc_md.system_reset_exception) {
 471		if (ppc_md.system_reset_exception(regs))
 472			goto out;
 473	}
 474
 475	if (debugger(regs))
 476		goto out;
 477
 478	kmsg_dump(KMSG_DUMP_OOPS);
 479	/*
 480	 * A system reset is a request to dump, so we always send
 481	 * it through the crashdump code (if fadump or kdump are
 482	 * registered).
 483	 */
 484	crash_fadump(regs, "System Reset");
 485
 486	crash_kexec(regs);
 487
 488	/*
 489	 * We aren't the primary crash CPU. We need to send it
 490	 * to a holding pattern to avoid it ending up in the panic
 491	 * code.
 492	 */
 493	crash_kexec_secondary(regs);
 494
 495	/*
 496	 * No debugger or crash dump registered, print logs then
 497	 * panic.
 498	 */
 499	die("System Reset", regs, SIGABRT);
 500
 501	mdelay(2*MSEC_PER_SEC); /* Wait a little while for others to print */
 502	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
 503	nmi_panic(regs, "System Reset");
 504
 505out:
 506#ifdef CONFIG_PPC_BOOK3S_64
 507	BUG_ON(get_paca()->in_nmi == 0);
 508	if (get_paca()->in_nmi > 1)
 509		die("Unrecoverable nested System Reset", regs, SIGABRT);
 510#endif
 511	/* Must die if the interrupt is not recoverable */
 512	if (!(regs->msr & MSR_RI))
 513		die("Unrecoverable System Reset", regs, SIGABRT);
 514
 515	if (saved_hsrrs) {
 516		mtspr(SPRN_HSRR0, hsrr0);
 517		mtspr(SPRN_HSRR1, hsrr1);
 518	}
 519
 520	nmi_exit();
 521
 522	this_cpu_set_ftrace_enabled(ftrace_enabled);
 523
 524	/* What should we do here? We could issue a shutdown or hard reset. */
 525}
 526
 527/*
 528 * I/O accesses can cause machine checks on powermacs.
 529 * Check if the NIP corresponds to the address of a sync
 530 * instruction for which there is an entry in the exception
 531 * table.
 532 * Note that the 601 only takes a machine check on TEA
 533 * (transfer error ack) signal assertion, and does not
 534 * set any of the top 16 bits of SRR1.
 535 *  -- paulus.
 536 */
 537static inline int check_io_access(struct pt_regs *regs)
 538{
 539#ifdef CONFIG_PPC32
 540	unsigned long msr = regs->msr;
 541	const struct exception_table_entry *entry;
 542	unsigned int *nip = (unsigned int *)regs->nip;
 543
 544	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
 545	    && (entry = search_exception_tables(regs->nip)) != NULL) {
 546		/*
 547		 * Check that it's a sync instruction, or somewhere
 548		 * in the twi; isync; nop sequence that inb/inw/inl uses.
 549		 * As the address is in the exception table
 550		 * we should be able to read the instr there.
 551		 * For the debug message, we look at the preceding
 552		 * load or store.
 553		 */
 554		if (*nip == PPC_INST_NOP)
 555			nip -= 2;
 556		else if (*nip == PPC_INST_ISYNC)
 557			--nip;
 558		if (*nip == PPC_INST_SYNC || (*nip >> 26) == OP_TRAP) {
 559			unsigned int rb;
 560
 561			--nip;
 562			rb = (*nip >> 11) & 0x1f;
 563			printk(KERN_DEBUG "%s bad port %lx at %p\n",
 564			       (*nip & 0x100)? "OUT to": "IN from",
 565			       regs->gpr[rb] - _IO_BASE, nip);
 566			regs->msr |= MSR_RI;
 567			regs->nip = extable_fixup(entry);
 568			return 1;
 569		}
 570	}
 571#endif /* CONFIG_PPC32 */
 572	return 0;
 573}
 574
 575#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 576/* On 4xx, the reason for the machine check or program exception
 577   is in the ESR. */
 578#define get_reason(regs)	((regs)->dsisr)
 579#define REASON_FP		ESR_FP
 580#define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
 581#define REASON_PRIVILEGED	ESR_PPR
 582#define REASON_TRAP		ESR_PTR
 583#define REASON_PREFIXED		0
 584#define REASON_BOUNDARY		0
 585
 586/* single-step stuff */
 587#define single_stepping(regs)	(current->thread.debug.dbcr0 & DBCR0_IC)
 588#define clear_single_step(regs)	(current->thread.debug.dbcr0 &= ~DBCR0_IC)
 589#define clear_br_trace(regs)	do {} while(0)
 590#else
 591/* On non-4xx, the reason for the machine check or program
 592   exception is in the MSR. */
 593#define get_reason(regs)	((regs)->msr)
 594#define REASON_TM		SRR1_PROGTM
 595#define REASON_FP		SRR1_PROGFPE
 596#define REASON_ILLEGAL		SRR1_PROGILL
 597#define REASON_PRIVILEGED	SRR1_PROGPRIV
 598#define REASON_TRAP		SRR1_PROGTRAP
 599#define REASON_PREFIXED		SRR1_PREFIXED
 600#define REASON_BOUNDARY		SRR1_BOUNDARY
 601
 602#define single_stepping(regs)	((regs)->msr & MSR_SE)
 603#define clear_single_step(regs)	((regs)->msr &= ~MSR_SE)
 604#define clear_br_trace(regs)	((regs)->msr &= ~MSR_BE)
 605#endif
 606
 607#define inst_length(reason)	(((reason) & REASON_PREFIXED) ? 8 : 4)
 608
 609#if defined(CONFIG_E500)
 610int machine_check_e500mc(struct pt_regs *regs)
 611{
 612	unsigned long mcsr = mfspr(SPRN_MCSR);
 613	unsigned long pvr = mfspr(SPRN_PVR);
 614	unsigned long reason = mcsr;
 615	int recoverable = 1;
 616
 617	if (reason & MCSR_LD) {
 618		recoverable = fsl_rio_mcheck_exception(regs);
 619		if (recoverable == 1)
 620			goto silent_out;
 621	}
 622
 623	printk("Machine check in kernel mode.\n");
 624	printk("Caused by (from MCSR=%lx): ", reason);
 625
 626	if (reason & MCSR_MCP)
 627		pr_cont("Machine Check Signal\n");
 628
 629	if (reason & MCSR_ICPERR) {
 630		pr_cont("Instruction Cache Parity Error\n");
 631
 632		/*
 633		 * This is recoverable by invalidating the i-cache.
 634		 */
 635		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
 636		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
 637			;
 638
 639		/*
 640		 * This will generally be accompanied by an instruction
 641		 * fetch error report -- only treat MCSR_IF as fatal
 642		 * if it wasn't due to an L1 parity error.
 643		 */
 644		reason &= ~MCSR_IF;
 645	}
 646
 647	if (reason & MCSR_DCPERR_MC) {
 648		pr_cont("Data Cache Parity Error\n");
 649
 650		/*
 651		 * In write shadow mode we auto-recover from the error, but it
 652		 * may still get logged and cause a machine check.  We should
 653		 * only treat the non-write shadow case as non-recoverable.
 654		 */
 655		/* On e6500 core, L1 DCWS (Data cache write shadow mode) bit
 656		 * is not implemented but L1 data cache always runs in write
 657		 * shadow mode. Hence on data cache parity errors HW will
 658		 * automatically invalidate the L1 Data Cache.
 659		 */
 660		if (PVR_VER(pvr) != PVR_VER_E6500) {
 661			if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
 662				recoverable = 0;
 663		}
 664	}
 665
 666	if (reason & MCSR_L2MMU_MHIT) {
 667		pr_cont("Hit on multiple TLB entries\n");
 668		recoverable = 0;
 669	}
 670
 671	if (reason & MCSR_NMI)
 672		pr_cont("Non-maskable interrupt\n");
 673
 674	if (reason & MCSR_IF) {
 675		pr_cont("Instruction Fetch Error Report\n");
 676		recoverable = 0;
 677	}
 678
 679	if (reason & MCSR_LD) {
 680		pr_cont("Load Error Report\n");
 681		recoverable = 0;
 682	}
 683
 684	if (reason & MCSR_ST) {
 685		pr_cont("Store Error Report\n");
 686		recoverable = 0;
 687	}
 688
 689	if (reason & MCSR_LDG) {
 690		pr_cont("Guarded Load Error Report\n");
 691		recoverable = 0;
 692	}
 693
 694	if (reason & MCSR_TLBSYNC)
 695		pr_cont("Simultaneous tlbsync operations\n");
 696
 697	if (reason & MCSR_BSL2_ERR) {
 698		pr_cont("Level 2 Cache Error\n");
 699		recoverable = 0;
 700	}
 701
 702	if (reason & MCSR_MAV) {
 703		u64 addr;
 704
 705		addr = mfspr(SPRN_MCAR);
 706		addr |= (u64)mfspr(SPRN_MCARU) << 32;
 707
 708		pr_cont("Machine Check %s Address: %#llx\n",
 709		       reason & MCSR_MEA ? "Effective" : "Physical", addr);
 710	}
 711
 712silent_out:
 713	mtspr(SPRN_MCSR, mcsr);
 714	return mfspr(SPRN_MCSR) == 0 && recoverable;
 715}
 716
 717int machine_check_e500(struct pt_regs *regs)
 718{
 719	unsigned long reason = mfspr(SPRN_MCSR);
 720
 721	if (reason & MCSR_BUS_RBERR) {
 722		if (fsl_rio_mcheck_exception(regs))
 723			return 1;
 724		if (fsl_pci_mcheck_exception(regs))
 725			return 1;
 726	}
 727
 728	printk("Machine check in kernel mode.\n");
 729	printk("Caused by (from MCSR=%lx): ", reason);
 730
 731	if (reason & MCSR_MCP)
 732		pr_cont("Machine Check Signal\n");
 733	if (reason & MCSR_ICPERR)
 734		pr_cont("Instruction Cache Parity Error\n");
 735	if (reason & MCSR_DCP_PERR)
 736		pr_cont("Data Cache Push Parity Error\n");
 737	if (reason & MCSR_DCPERR)
 738		pr_cont("Data Cache Parity Error\n");
 739	if (reason & MCSR_BUS_IAERR)
 740		pr_cont("Bus - Instruction Address Error\n");
 741	if (reason & MCSR_BUS_RAERR)
 742		pr_cont("Bus - Read Address Error\n");
 743	if (reason & MCSR_BUS_WAERR)
 744		pr_cont("Bus - Write Address Error\n");
 745	if (reason & MCSR_BUS_IBERR)
 746		pr_cont("Bus - Instruction Data Error\n");
 747	if (reason & MCSR_BUS_RBERR)
 748		pr_cont("Bus - Read Data Bus Error\n");
 749	if (reason & MCSR_BUS_WBERR)
 750		pr_cont("Bus - Write Data Bus Error\n");
 751	if (reason & MCSR_BUS_IPERR)
 752		pr_cont("Bus - Instruction Parity Error\n");
 753	if (reason & MCSR_BUS_RPERR)
 754		pr_cont("Bus - Read Parity Error\n");
 755
 756	return 0;
 757}
 758
 759int machine_check_generic(struct pt_regs *regs)
 760{
 761	return 0;
 762}
 763#elif defined(CONFIG_E200)
 764int machine_check_e200(struct pt_regs *regs)
 765{
 766	unsigned long reason = mfspr(SPRN_MCSR);
 767
 768	printk("Machine check in kernel mode.\n");
 769	printk("Caused by (from MCSR=%lx): ", reason);
 770
 771	if (reason & MCSR_MCP)
 772		pr_cont("Machine Check Signal\n");
 773	if (reason & MCSR_CP_PERR)
 774		pr_cont("Cache Push Parity Error\n");
 775	if (reason & MCSR_CPERR)
 776		pr_cont("Cache Parity Error\n");
 777	if (reason & MCSR_EXCP_ERR)
 778		pr_cont("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
 779	if (reason & MCSR_BUS_IRERR)
 780		pr_cont("Bus - Read Bus Error on instruction fetch\n");
 781	if (reason & MCSR_BUS_DRERR)
 782		pr_cont("Bus - Read Bus Error on data load\n");
 783	if (reason & MCSR_BUS_WRERR)
 784		pr_cont("Bus - Write Bus Error on buffered store or cache line push\n");
 785
 786	return 0;
 787}
 788#elif defined(CONFIG_PPC32)
 789int machine_check_generic(struct pt_regs *regs)
 790{
 791	unsigned long reason = regs->msr;
 792
 793	printk("Machine check in kernel mode.\n");
 794	printk("Caused by (from SRR1=%lx): ", reason);
 795	switch (reason & 0x601F0000) {
 796	case 0x80000:
 797		pr_cont("Machine check signal\n");
 798		break;
 799	case 0:		/* for 601 */
 800	case 0x40000:
 801	case 0x140000:	/* 7450 MSS error and TEA */
 802		pr_cont("Transfer error ack signal\n");
 803		break;
 804	case 0x20000:
 805		pr_cont("Data parity error signal\n");
 806		break;
 807	case 0x10000:
 808		pr_cont("Address parity error signal\n");
 809		break;
 810	case 0x20000000:
 811		pr_cont("L1 Data Cache error\n");
 812		break;
 813	case 0x40000000:
 814		pr_cont("L1 Instruction Cache error\n");
 815		break;
 816	case 0x00100000:
 817		pr_cont("L2 data cache parity error\n");
 818		break;
 819	default:
 820		pr_cont("Unknown values in msr\n");
 821	}
 822	return 0;
 823}
 824#endif /* everything else */
 825
 826void machine_check_exception(struct pt_regs *regs)
 827{
 828	int recover = 0;
 829
 830	/*
 831	 * BOOK3S_64 does not call this handler as a non-maskable interrupt
 832	 * (it uses its own early real-mode handler to handle the MCE proper
 833	 * and then raises irq_work to call this handler when interrupts are
 834	 * enabled).
 835	 *
 836	 * This is silly. The BOOK3S_64 should just call a different function
 837	 * rather than expecting semantics to magically change. Something
 838	 * like 'non_nmi_machine_check_exception()', perhaps?
 839	 */
 840	const bool nmi = !IS_ENABLED(CONFIG_PPC_BOOK3S_64);
 841
 842	if (nmi) nmi_enter();
 843
 844	__this_cpu_inc(irq_stat.mce_exceptions);
 845
 846	add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
 847
 848	/* See if any machine dependent calls. In theory, we would want
 849	 * to call the CPU first, and call the ppc_md. one if the CPU
 850	 * one returns a positive number. However there is existing code
 851	 * that assumes the board gets a first chance, so let's keep it
 852	 * that way for now and fix things later. --BenH.
 853	 */
 854	if (ppc_md.machine_check_exception)
 855		recover = ppc_md.machine_check_exception(regs);
 856	else if (cur_cpu_spec->machine_check)
 857		recover = cur_cpu_spec->machine_check(regs);
 858
 859	if (recover > 0)
 860		goto bail;
 861
 862	if (debugger_fault_handler(regs))
 863		goto bail;
 864
 865	if (check_io_access(regs))
 866		goto bail;
 867
 868	if (nmi) nmi_exit();
 
 869
 870	die("Machine check", regs, SIGBUS);
 871
 872	/* Must die if the interrupt is not recoverable */
 873	if (!(regs->msr & MSR_RI))
 874		die("Unrecoverable Machine check", regs, SIGBUS);
 875
 876	return;
 877
 878bail:
 879	if (nmi) nmi_exit();
 
 880}
 881
 882void SMIException(struct pt_regs *regs)
 883{
 884	die("System Management Interrupt", regs, SIGABRT);
 885}
 886
 887#ifdef CONFIG_VSX
 888static void p9_hmi_special_emu(struct pt_regs *regs)
 889{
 890	unsigned int ra, rb, t, i, sel, instr, rc;
 891	const void __user *addr;
 892	u8 vbuf[16], *vdst;
 893	unsigned long ea, msr, msr_mask;
 894	bool swap;
 895
 896	if (__get_user_inatomic(instr, (unsigned int __user *)regs->nip))
 897		return;
 898
 899	/*
 900	 * lxvb16x	opcode: 0x7c0006d8
 901	 * lxvd2x	opcode: 0x7c000698
 902	 * lxvh8x	opcode: 0x7c000658
 903	 * lxvw4x	opcode: 0x7c000618
 904	 */
 905	if ((instr & 0xfc00073e) != 0x7c000618) {
 906		pr_devel("HMI vec emu: not vector CI %i:%s[%d] nip=%016lx"
 907			 " instr=%08x\n",
 908			 smp_processor_id(), current->comm, current->pid,
 909			 regs->nip, instr);
 910		return;
 911	}
 912
 913	/* Grab vector registers into the task struct */
 914	msr = regs->msr; /* Grab msr before we flush the bits */
 915	flush_vsx_to_thread(current);
 916	enable_kernel_altivec();
 917
 918	/*
 919	 * Is userspace running with a different endian (this is rare but
 920	 * not impossible)
 921	 */
 922	swap = (msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
 923
 924	/* Decode the instruction */
 925	ra = (instr >> 16) & 0x1f;
 926	rb = (instr >> 11) & 0x1f;
 927	t = (instr >> 21) & 0x1f;
 928	if (instr & 1)
 929		vdst = (u8 *)&current->thread.vr_state.vr[t];
 930	else
 931		vdst = (u8 *)&current->thread.fp_state.fpr[t][0];
 932
 933	/* Grab the vector address */
 934	ea = regs->gpr[rb] + (ra ? regs->gpr[ra] : 0);
 935	if (is_32bit_task())
 936		ea &= 0xfffffffful;
 937	addr = (__force const void __user *)ea;
 938
 939	/* Check it */
 940	if (!access_ok(addr, 16)) {
 941		pr_devel("HMI vec emu: bad access %i:%s[%d] nip=%016lx"
 942			 " instr=%08x addr=%016lx\n",
 943			 smp_processor_id(), current->comm, current->pid,
 944			 regs->nip, instr, (unsigned long)addr);
 945		return;
 946	}
 947
 948	/* Read the vector */
 949	rc = 0;
 950	if ((unsigned long)addr & 0xfUL)
 951		/* unaligned case */
 952		rc = __copy_from_user_inatomic(vbuf, addr, 16);
 953	else
 954		__get_user_atomic_128_aligned(vbuf, addr, rc);
 955	if (rc) {
 956		pr_devel("HMI vec emu: page fault %i:%s[%d] nip=%016lx"
 957			 " instr=%08x addr=%016lx\n",
 958			 smp_processor_id(), current->comm, current->pid,
 959			 regs->nip, instr, (unsigned long)addr);
 960		return;
 961	}
 962
 963	pr_devel("HMI vec emu: emulated vector CI %i:%s[%d] nip=%016lx"
 964		 " instr=%08x addr=%016lx\n",
 965		 smp_processor_id(), current->comm, current->pid, regs->nip,
 966		 instr, (unsigned long) addr);
 967
 968	/* Grab instruction "selector" */
 969	sel = (instr >> 6) & 3;
 970
 971	/*
 972	 * Check to make sure the facility is actually enabled. This
 973	 * could happen if we get a false positive hit.
 974	 *
 975	 * lxvd2x/lxvw4x always check MSR VSX sel = 0,2
 976	 * lxvh8x/lxvb16x check MSR VSX or VEC depending on VSR used sel = 1,3
 977	 */
 978	msr_mask = MSR_VSX;
 979	if ((sel & 1) && (instr & 1)) /* lxvh8x & lxvb16x + VSR >= 32 */
 980		msr_mask = MSR_VEC;
 981	if (!(msr & msr_mask)) {
 982		pr_devel("HMI vec emu: MSR fac clear %i:%s[%d] nip=%016lx"
 983			 " instr=%08x msr:%016lx\n",
 984			 smp_processor_id(), current->comm, current->pid,
 985			 regs->nip, instr, msr);
 986		return;
 987	}
 988
 989	/* Do logging here before we modify sel based on endian */
 990	switch (sel) {
 991	case 0:	/* lxvw4x */
 992		PPC_WARN_EMULATED(lxvw4x, regs);
 993		break;
 994	case 1: /* lxvh8x */
 995		PPC_WARN_EMULATED(lxvh8x, regs);
 996		break;
 997	case 2: /* lxvd2x */
 998		PPC_WARN_EMULATED(lxvd2x, regs);
 999		break;
1000	case 3: /* lxvb16x */
1001		PPC_WARN_EMULATED(lxvb16x, regs);
1002		break;
1003	}
1004
1005#ifdef __LITTLE_ENDIAN__
1006	/*
1007	 * An LE kernel stores the vector in the task struct as an LE
1008	 * byte array (effectively swapping both the components and
1009	 * the content of the components). Those instructions expect
1010	 * the components to remain in ascending address order, so we
1011	 * swap them back.
1012	 *
1013	 * If we are running a BE user space, the expectation is that
1014	 * of a simple memcpy, so forcing the emulation to look like
1015	 * a lxvb16x should do the trick.
1016	 */
1017	if (swap)
1018		sel = 3;
1019
1020	switch (sel) {
1021	case 0:	/* lxvw4x */
1022		for (i = 0; i < 4; i++)
1023			((u32 *)vdst)[i] = ((u32 *)vbuf)[3-i];
1024		break;
1025	case 1: /* lxvh8x */
1026		for (i = 0; i < 8; i++)
1027			((u16 *)vdst)[i] = ((u16 *)vbuf)[7-i];
1028		break;
1029	case 2: /* lxvd2x */
1030		for (i = 0; i < 2; i++)
1031			((u64 *)vdst)[i] = ((u64 *)vbuf)[1-i];
1032		break;
1033	case 3: /* lxvb16x */
1034		for (i = 0; i < 16; i++)
1035			vdst[i] = vbuf[15-i];
1036		break;
1037	}
1038#else /* __LITTLE_ENDIAN__ */
1039	/* On a big endian kernel, a BE userspace only needs a memcpy */
1040	if (!swap)
1041		sel = 3;
1042
1043	/* Otherwise, we need to swap the content of the components */
1044	switch (sel) {
1045	case 0:	/* lxvw4x */
1046		for (i = 0; i < 4; i++)
1047			((u32 *)vdst)[i] = cpu_to_le32(((u32 *)vbuf)[i]);
1048		break;
1049	case 1: /* lxvh8x */
1050		for (i = 0; i < 8; i++)
1051			((u16 *)vdst)[i] = cpu_to_le16(((u16 *)vbuf)[i]);
1052		break;
1053	case 2: /* lxvd2x */
1054		for (i = 0; i < 2; i++)
1055			((u64 *)vdst)[i] = cpu_to_le64(((u64 *)vbuf)[i]);
1056		break;
1057	case 3: /* lxvb16x */
1058		memcpy(vdst, vbuf, 16);
1059		break;
1060	}
1061#endif /* !__LITTLE_ENDIAN__ */
1062
1063	/* Go to next instruction */
1064	regs->nip += 4;
1065}
1066#endif /* CONFIG_VSX */
1067
1068void handle_hmi_exception(struct pt_regs *regs)
1069{
1070	struct pt_regs *old_regs;
1071
1072	old_regs = set_irq_regs(regs);
1073	irq_enter();
1074
1075#ifdef CONFIG_VSX
1076	/* Real mode flagged P9 special emu is needed */
1077	if (local_paca->hmi_p9_special_emu) {
1078		local_paca->hmi_p9_special_emu = 0;
1079
1080		/*
1081		 * We don't want to take page faults while doing the
1082		 * emulation, we just replay the instruction if necessary.
1083		 */
1084		pagefault_disable();
1085		p9_hmi_special_emu(regs);
1086		pagefault_enable();
1087	}
1088#endif /* CONFIG_VSX */
1089
1090	if (ppc_md.handle_hmi_exception)
1091		ppc_md.handle_hmi_exception(regs);
1092
1093	irq_exit();
1094	set_irq_regs(old_regs);
1095}
1096
1097void unknown_exception(struct pt_regs *regs)
1098{
1099	enum ctx_state prev_state = exception_enter();
1100
1101	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
1102	       regs->nip, regs->msr, regs->trap);
1103
1104	_exception(SIGTRAP, regs, TRAP_UNK, 0);
1105
1106	exception_exit(prev_state);
1107}
1108
1109void instruction_breakpoint_exception(struct pt_regs *regs)
1110{
1111	enum ctx_state prev_state = exception_enter();
1112
1113	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
1114					5, SIGTRAP) == NOTIFY_STOP)
1115		goto bail;
1116	if (debugger_iabr_match(regs))
1117		goto bail;
1118	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1119
1120bail:
1121	exception_exit(prev_state);
1122}
1123
1124void RunModeException(struct pt_regs *regs)
1125{
1126	_exception(SIGTRAP, regs, TRAP_UNK, 0);
1127}
1128
1129void single_step_exception(struct pt_regs *regs)
1130{
1131	enum ctx_state prev_state = exception_enter();
1132
1133	clear_single_step(regs);
1134	clear_br_trace(regs);
1135
1136	if (kprobe_post_handler(regs))
1137		return;
1138
1139	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1140					5, SIGTRAP) == NOTIFY_STOP)
1141		goto bail;
1142	if (debugger_sstep(regs))
1143		goto bail;
1144
1145	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1146
1147bail:
1148	exception_exit(prev_state);
1149}
1150NOKPROBE_SYMBOL(single_step_exception);
1151
1152/*
1153 * After we have successfully emulated an instruction, we have to
1154 * check if the instruction was being single-stepped, and if so,
1155 * pretend we got a single-step exception.  This was pointed out
1156 * by Kumar Gala.  -- paulus
1157 */
1158static void emulate_single_step(struct pt_regs *regs)
1159{
1160	if (single_stepping(regs))
1161		single_step_exception(regs);
1162}
1163
1164static inline int __parse_fpscr(unsigned long fpscr)
1165{
1166	int ret = FPE_FLTUNK;
1167
1168	/* Invalid operation */
1169	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
1170		ret = FPE_FLTINV;
1171
1172	/* Overflow */
1173	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
1174		ret = FPE_FLTOVF;
1175
1176	/* Underflow */
1177	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
1178		ret = FPE_FLTUND;
1179
1180	/* Divide by zero */
1181	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
1182		ret = FPE_FLTDIV;
1183
1184	/* Inexact result */
1185	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
1186		ret = FPE_FLTRES;
1187
1188	return ret;
1189}
1190
1191static void parse_fpe(struct pt_regs *regs)
1192{
1193	int code = 0;
1194
1195	flush_fp_to_thread(current);
1196
1197	code = __parse_fpscr(current->thread.fp_state.fpscr);
1198
1199	_exception(SIGFPE, regs, code, regs->nip);
1200}
1201
1202/*
1203 * Illegal instruction emulation support.  Originally written to
1204 * provide the PVR to user applications using the mfspr rd, PVR.
1205 * Return non-zero if we can't emulate, or -EFAULT if the associated
1206 * memory access caused an access fault.  Return zero on success.
1207 *
1208 * There are a couple of ways to do this, either "decode" the instruction
1209 * or directly match lots of bits.  In this case, matching lots of
1210 * bits is faster and easier.
1211 *
1212 */
1213static int emulate_string_inst(struct pt_regs *regs, u32 instword)
1214{
1215	u8 rT = (instword >> 21) & 0x1f;
1216	u8 rA = (instword >> 16) & 0x1f;
1217	u8 NB_RB = (instword >> 11) & 0x1f;
1218	u32 num_bytes;
1219	unsigned long EA;
1220	int pos = 0;
1221
1222	/* Early out if we are an invalid form of lswx */
1223	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
1224		if ((rT == rA) || (rT == NB_RB))
1225			return -EINVAL;
1226
1227	EA = (rA == 0) ? 0 : regs->gpr[rA];
1228
1229	switch (instword & PPC_INST_STRING_MASK) {
1230		case PPC_INST_LSWX:
1231		case PPC_INST_STSWX:
1232			EA += NB_RB;
1233			num_bytes = regs->xer & 0x7f;
1234			break;
1235		case PPC_INST_LSWI:
1236		case PPC_INST_STSWI:
1237			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
1238			break;
1239		default:
1240			return -EINVAL;
1241	}
1242
1243	while (num_bytes != 0)
1244	{
1245		u8 val;
1246		u32 shift = 8 * (3 - (pos & 0x3));
1247
1248		/* if process is 32-bit, clear upper 32 bits of EA */
1249		if ((regs->msr & MSR_64BIT) == 0)
1250			EA &= 0xFFFFFFFF;
1251
1252		switch ((instword & PPC_INST_STRING_MASK)) {
1253			case PPC_INST_LSWX:
1254			case PPC_INST_LSWI:
1255				if (get_user(val, (u8 __user *)EA))
1256					return -EFAULT;
1257				/* first time updating this reg,
1258				 * zero it out */
1259				if (pos == 0)
1260					regs->gpr[rT] = 0;
1261				regs->gpr[rT] |= val << shift;
1262				break;
1263			case PPC_INST_STSWI:
1264			case PPC_INST_STSWX:
1265				val = regs->gpr[rT] >> shift;
1266				if (put_user(val, (u8 __user *)EA))
1267					return -EFAULT;
1268				break;
1269		}
1270		/* move EA to next address */
1271		EA += 1;
1272		num_bytes--;
1273
1274		/* manage our position within the register */
1275		if (++pos == 4) {
1276			pos = 0;
1277			if (++rT == 32)
1278				rT = 0;
1279		}
1280	}
1281
1282	return 0;
1283}
1284
1285static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
1286{
1287	u32 ra,rs;
1288	unsigned long tmp;
1289
1290	ra = (instword >> 16) & 0x1f;
1291	rs = (instword >> 21) & 0x1f;
1292
1293	tmp = regs->gpr[rs];
1294	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
1295	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
1296	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1297	regs->gpr[ra] = tmp;
1298
1299	return 0;
1300}
1301
1302static int emulate_isel(struct pt_regs *regs, u32 instword)
1303{
1304	u8 rT = (instword >> 21) & 0x1f;
1305	u8 rA = (instword >> 16) & 0x1f;
1306	u8 rB = (instword >> 11) & 0x1f;
1307	u8 BC = (instword >> 6) & 0x1f;
1308	u8 bit;
1309	unsigned long tmp;
1310
1311	tmp = (rA == 0) ? 0 : regs->gpr[rA];
1312	bit = (regs->ccr >> (31 - BC)) & 0x1;
1313
1314	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
1315
1316	return 0;
1317}
1318
1319#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1320static inline bool tm_abort_check(struct pt_regs *regs, int cause)
1321{
1322        /* If we're emulating a load/store in an active transaction, we cannot
1323         * emulate it as the kernel operates in transaction suspended context.
1324         * We need to abort the transaction.  This creates a persistent TM
1325         * abort so tell the user what caused it with a new code.
1326	 */
1327	if (MSR_TM_TRANSACTIONAL(regs->msr)) {
1328		tm_enable();
1329		tm_abort(cause);
1330		return true;
1331	}
1332	return false;
1333}
1334#else
1335static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1336{
1337	return false;
1338}
1339#endif
1340
1341static int emulate_instruction(struct pt_regs *regs)
1342{
1343	u32 instword;
1344	u32 rd;
1345
1346	if (!user_mode(regs))
1347		return -EINVAL;
1348	CHECK_FULL_REGS(regs);
1349
1350	if (get_user(instword, (u32 __user *)(regs->nip)))
1351		return -EFAULT;
1352
1353	/* Emulate the mfspr rD, PVR. */
1354	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1355		PPC_WARN_EMULATED(mfpvr, regs);
1356		rd = (instword >> 21) & 0x1f;
1357		regs->gpr[rd] = mfspr(SPRN_PVR);
1358		return 0;
1359	}
1360
1361	/* Emulating the dcba insn is just a no-op.  */
1362	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1363		PPC_WARN_EMULATED(dcba, regs);
1364		return 0;
1365	}
1366
1367	/* Emulate the mcrxr insn.  */
1368	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1369		int shift = (instword >> 21) & 0x1c;
1370		unsigned long msk = 0xf0000000UL >> shift;
1371
1372		PPC_WARN_EMULATED(mcrxr, regs);
1373		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1374		regs->xer &= ~0xf0000000UL;
1375		return 0;
1376	}
1377
1378	/* Emulate load/store string insn. */
1379	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1380		if (tm_abort_check(regs,
1381				   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1382			return -EINVAL;
1383		PPC_WARN_EMULATED(string, regs);
1384		return emulate_string_inst(regs, instword);
1385	}
1386
1387	/* Emulate the popcntb (Population Count Bytes) instruction. */
1388	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1389		PPC_WARN_EMULATED(popcntb, regs);
1390		return emulate_popcntb_inst(regs, instword);
1391	}
1392
1393	/* Emulate isel (Integer Select) instruction */
1394	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1395		PPC_WARN_EMULATED(isel, regs);
1396		return emulate_isel(regs, instword);
1397	}
1398
1399	/* Emulate sync instruction variants */
1400	if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1401		PPC_WARN_EMULATED(sync, regs);
1402		asm volatile("sync");
1403		return 0;
1404	}
1405
1406#ifdef CONFIG_PPC64
1407	/* Emulate the mfspr rD, DSCR. */
1408	if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1409		PPC_INST_MFSPR_DSCR_USER) ||
1410	     ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1411		PPC_INST_MFSPR_DSCR)) &&
1412			cpu_has_feature(CPU_FTR_DSCR)) {
1413		PPC_WARN_EMULATED(mfdscr, regs);
1414		rd = (instword >> 21) & 0x1f;
1415		regs->gpr[rd] = mfspr(SPRN_DSCR);
1416		return 0;
1417	}
1418	/* Emulate the mtspr DSCR, rD. */
1419	if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1420		PPC_INST_MTSPR_DSCR_USER) ||
1421	     ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1422		PPC_INST_MTSPR_DSCR)) &&
1423			cpu_has_feature(CPU_FTR_DSCR)) {
1424		PPC_WARN_EMULATED(mtdscr, regs);
1425		rd = (instword >> 21) & 0x1f;
1426		current->thread.dscr = regs->gpr[rd];
1427		current->thread.dscr_inherit = 1;
1428		mtspr(SPRN_DSCR, current->thread.dscr);
1429		return 0;
1430	}
1431#endif
1432
1433	return -EINVAL;
1434}
1435
1436int is_valid_bugaddr(unsigned long addr)
1437{
1438	return is_kernel_addr(addr);
1439}
1440
1441#ifdef CONFIG_MATH_EMULATION
1442static int emulate_math(struct pt_regs *regs)
1443{
1444	int ret;
1445	extern int do_mathemu(struct pt_regs *regs);
1446
1447	ret = do_mathemu(regs);
1448	if (ret >= 0)
1449		PPC_WARN_EMULATED(math, regs);
1450
1451	switch (ret) {
1452	case 0:
1453		emulate_single_step(regs);
1454		return 0;
1455	case 1: {
1456			int code = 0;
1457			code = __parse_fpscr(current->thread.fp_state.fpscr);
1458			_exception(SIGFPE, regs, code, regs->nip);
1459			return 0;
1460		}
1461	case -EFAULT:
1462		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1463		return 0;
1464	}
1465
1466	return -1;
1467}
1468#else
1469static inline int emulate_math(struct pt_regs *regs) { return -1; }
1470#endif
1471
1472void program_check_exception(struct pt_regs *regs)
1473{
1474	enum ctx_state prev_state = exception_enter();
1475	unsigned int reason = get_reason(regs);
1476
1477	/* We can now get here via a FP Unavailable exception if the core
1478	 * has no FPU, in that case the reason flags will be 0 */
1479
1480	if (reason & REASON_FP) {
1481		/* IEEE FP exception */
1482		parse_fpe(regs);
1483		goto bail;
1484	}
1485	if (reason & REASON_TRAP) {
1486		unsigned long bugaddr;
1487		/* Debugger is first in line to stop recursive faults in
1488		 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1489		if (debugger_bpt(regs))
1490			goto bail;
1491
1492		if (kprobe_handler(regs))
1493			goto bail;
1494
1495		/* trap exception */
1496		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1497				== NOTIFY_STOP)
1498			goto bail;
1499
1500		bugaddr = regs->nip;
1501		/*
1502		 * Fixup bugaddr for BUG_ON() in real mode
1503		 */
1504		if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1505			bugaddr += PAGE_OFFSET;
1506
1507		if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1508		    report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1509			regs->nip += 4;
1510			goto bail;
1511		}
1512		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1513		goto bail;
1514	}
1515#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1516	if (reason & REASON_TM) {
1517		/* This is a TM "Bad Thing Exception" program check.
1518		 * This occurs when:
1519		 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1520		 *    transition in TM states.
1521		 * -  A trechkpt is attempted when transactional.
1522		 * -  A treclaim is attempted when non transactional.
1523		 * -  A tend is illegally attempted.
1524		 * -  writing a TM SPR when transactional.
1525		 *
1526		 * If usermode caused this, it's done something illegal and
1527		 * gets a SIGILL slap on the wrist.  We call it an illegal
1528		 * operand to distinguish from the instruction just being bad
1529		 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1530		 * illegal /placement/ of a valid instruction.
1531		 */
1532		if (user_mode(regs)) {
1533			_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1534			goto bail;
1535		} else {
1536			printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1537			       "at %lx (msr 0x%lx) tm_scratch=%llx\n",
1538			       regs->nip, regs->msr, get_paca()->tm_scratch);
1539			die("Unrecoverable exception", regs, SIGABRT);
1540		}
1541	}
1542#endif
1543
1544	/*
1545	 * If we took the program check in the kernel skip down to sending a
1546	 * SIGILL. The subsequent cases all relate to emulating instructions
1547	 * which we should only do for userspace. We also do not want to enable
1548	 * interrupts for kernel faults because that might lead to further
1549	 * faults, and loose the context of the original exception.
1550	 */
1551	if (!user_mode(regs))
1552		goto sigill;
1553
1554	/* We restore the interrupt state now */
1555	if (!arch_irq_disabled_regs(regs))
1556		local_irq_enable();
1557
1558	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
1559	 * but there seems to be a hardware bug on the 405GP (RevD)
1560	 * that means ESR is sometimes set incorrectly - either to
1561	 * ESR_DST (!?) or 0.  In the process of chasing this with the
1562	 * hardware people - not sure if it can happen on any illegal
1563	 * instruction or only on FP instructions, whether there is a
1564	 * pattern to occurrences etc. -dgibson 31/Mar/2003
1565	 */
1566	if (!emulate_math(regs))
1567		goto bail;
1568
1569	/* Try to emulate it if we should. */
1570	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1571		switch (emulate_instruction(regs)) {
1572		case 0:
1573			regs->nip += 4;
1574			emulate_single_step(regs);
1575			goto bail;
1576		case -EFAULT:
1577			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1578			goto bail;
1579		}
1580	}
1581
1582sigill:
1583	if (reason & REASON_PRIVILEGED)
1584		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1585	else
1586		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1587
1588bail:
1589	exception_exit(prev_state);
1590}
1591NOKPROBE_SYMBOL(program_check_exception);
1592
1593/*
1594 * This occurs when running in hypervisor mode on POWER6 or later
1595 * and an illegal instruction is encountered.
1596 */
1597void emulation_assist_interrupt(struct pt_regs *regs)
1598{
1599	regs->msr |= REASON_ILLEGAL;
1600	program_check_exception(regs);
1601}
1602NOKPROBE_SYMBOL(emulation_assist_interrupt);
1603
1604void alignment_exception(struct pt_regs *regs)
1605{
1606	enum ctx_state prev_state = exception_enter();
1607	int sig, code, fixed = 0;
1608	unsigned long  reason;
1609
1610	/* We restore the interrupt state now */
1611	if (!arch_irq_disabled_regs(regs))
1612		local_irq_enable();
1613
1614	reason = get_reason(regs);
1615
1616	if (reason & REASON_BOUNDARY) {
1617		sig = SIGBUS;
1618		code = BUS_ADRALN;
1619		goto bad;
1620	}
1621
1622	if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1623		goto bail;
1624
1625	/* we don't implement logging of alignment exceptions */
1626	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1627		fixed = fix_alignment(regs);
1628
1629	if (fixed == 1) {
1630		/* skip over emulated instruction */
1631		regs->nip += inst_length(reason);
1632		emulate_single_step(regs);
1633		goto bail;
1634	}
1635
1636	/* Operand address was bad */
1637	if (fixed == -EFAULT) {
1638		sig = SIGSEGV;
1639		code = SEGV_ACCERR;
1640	} else {
1641		sig = SIGBUS;
1642		code = BUS_ADRALN;
1643	}
1644bad:
1645	if (user_mode(regs))
1646		_exception(sig, regs, code, regs->dar);
1647	else
1648		bad_page_fault(regs, regs->dar, sig);
1649
1650bail:
1651	exception_exit(prev_state);
1652}
1653
1654void StackOverflow(struct pt_regs *regs)
1655{
1656	pr_crit("Kernel stack overflow in process %s[%d], r1=%lx\n",
1657		current->comm, task_pid_nr(current), regs->gpr[1]);
1658	debugger(regs);
1659	show_regs(regs);
1660	panic("kernel stack overflow");
1661}
1662
1663void stack_overflow_exception(struct pt_regs *regs)
1664{
1665	enum ctx_state prev_state = exception_enter();
1666
1667	die("Kernel stack overflow", regs, SIGSEGV);
1668
1669	exception_exit(prev_state);
1670}
1671
1672void kernel_fp_unavailable_exception(struct pt_regs *regs)
1673{
1674	enum ctx_state prev_state = exception_enter();
1675
1676	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1677			  "%lx at %lx\n", regs->trap, regs->nip);
1678	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1679
1680	exception_exit(prev_state);
1681}
1682
1683void altivec_unavailable_exception(struct pt_regs *regs)
1684{
1685	enum ctx_state prev_state = exception_enter();
1686
1687	if (user_mode(regs)) {
1688		/* A user program has executed an altivec instruction,
1689		   but this kernel doesn't support altivec. */
1690		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1691		goto bail;
1692	}
1693
1694	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1695			"%lx at %lx\n", regs->trap, regs->nip);
1696	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1697
1698bail:
1699	exception_exit(prev_state);
1700}
1701
1702void vsx_unavailable_exception(struct pt_regs *regs)
1703{
1704	if (user_mode(regs)) {
1705		/* A user program has executed an vsx instruction,
1706		   but this kernel doesn't support vsx. */
1707		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1708		return;
1709	}
1710
1711	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1712			"%lx at %lx\n", regs->trap, regs->nip);
1713	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1714}
1715
1716#ifdef CONFIG_PPC64
1717static void tm_unavailable(struct pt_regs *regs)
1718{
1719#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1720	if (user_mode(regs)) {
1721		current->thread.load_tm++;
1722		regs->msr |= MSR_TM;
1723		tm_enable();
1724		tm_restore_sprs(&current->thread);
1725		return;
1726	}
1727#endif
1728	pr_emerg("Unrecoverable TM Unavailable Exception "
1729			"%lx at %lx\n", regs->trap, regs->nip);
1730	die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
1731}
1732
1733void facility_unavailable_exception(struct pt_regs *regs)
1734{
1735	static char *facility_strings[] = {
1736		[FSCR_FP_LG] = "FPU",
1737		[FSCR_VECVSX_LG] = "VMX/VSX",
1738		[FSCR_DSCR_LG] = "DSCR",
1739		[FSCR_PM_LG] = "PMU SPRs",
1740		[FSCR_BHRB_LG] = "BHRB",
1741		[FSCR_TM_LG] = "TM",
1742		[FSCR_EBB_LG] = "EBB",
1743		[FSCR_TAR_LG] = "TAR",
1744		[FSCR_MSGP_LG] = "MSGP",
1745		[FSCR_SCV_LG] = "SCV",
1746		[FSCR_PREFIX_LG] = "PREFIX",
1747	};
1748	char *facility = "unknown";
1749	u64 value;
1750	u32 instword, rd;
1751	u8 status;
1752	bool hv;
1753
1754	hv = (TRAP(regs) == 0xf80);
1755	if (hv)
1756		value = mfspr(SPRN_HFSCR);
1757	else
1758		value = mfspr(SPRN_FSCR);
1759
1760	status = value >> 56;
1761	if ((hv || status >= 2) &&
1762	    (status < ARRAY_SIZE(facility_strings)) &&
1763	    facility_strings[status])
1764		facility = facility_strings[status];
1765
1766	/* We should not have taken this interrupt in kernel */
1767	if (!user_mode(regs)) {
1768		pr_emerg("Facility '%s' unavailable (%d) exception in kernel mode at %lx\n",
1769			 facility, status, regs->nip);
1770		die("Unexpected facility unavailable exception", regs, SIGABRT);
1771	}
1772
1773	/* We restore the interrupt state now */
1774	if (!arch_irq_disabled_regs(regs))
1775		local_irq_enable();
1776
1777	if (status == FSCR_DSCR_LG) {
1778		/*
1779		 * User is accessing the DSCR register using the problem
1780		 * state only SPR number (0x03) either through a mfspr or
1781		 * a mtspr instruction. If it is a write attempt through
1782		 * a mtspr, then we set the inherit bit. This also allows
1783		 * the user to write or read the register directly in the
1784		 * future by setting via the FSCR DSCR bit. But in case it
1785		 * is a read DSCR attempt through a mfspr instruction, we
1786		 * just emulate the instruction instead. This code path will
1787		 * always emulate all the mfspr instructions till the user
1788		 * has attempted at least one mtspr instruction. This way it
1789		 * preserves the same behaviour when the user is accessing
1790		 * the DSCR through privilege level only SPR number (0x11)
1791		 * which is emulated through illegal instruction exception.
1792		 * We always leave HFSCR DSCR set.
1793		 */
1794		if (get_user(instword, (u32 __user *)(regs->nip))) {
1795			pr_err("Failed to fetch the user instruction\n");
1796			return;
1797		}
1798
1799		/* Write into DSCR (mtspr 0x03, RS) */
1800		if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1801				== PPC_INST_MTSPR_DSCR_USER) {
1802			rd = (instword >> 21) & 0x1f;
1803			current->thread.dscr = regs->gpr[rd];
1804			current->thread.dscr_inherit = 1;
1805			current->thread.fscr |= FSCR_DSCR;
1806			mtspr(SPRN_FSCR, current->thread.fscr);
1807		}
1808
1809		/* Read from DSCR (mfspr RT, 0x03) */
1810		if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1811				== PPC_INST_MFSPR_DSCR_USER) {
1812			if (emulate_instruction(regs)) {
1813				pr_err("DSCR based mfspr emulation failed\n");
1814				return;
1815			}
1816			regs->nip += 4;
1817			emulate_single_step(regs);
1818		}
1819		return;
1820	}
1821
1822	if (status == FSCR_TM_LG) {
1823		/*
1824		 * If we're here then the hardware is TM aware because it
1825		 * generated an exception with FSRM_TM set.
1826		 *
1827		 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1828		 * told us not to do TM, or the kernel is not built with TM
1829		 * support.
1830		 *
1831		 * If both of those things are true, then userspace can spam the
1832		 * console by triggering the printk() below just by continually
1833		 * doing tbegin (or any TM instruction). So in that case just
1834		 * send the process a SIGILL immediately.
1835		 */
1836		if (!cpu_has_feature(CPU_FTR_TM))
1837			goto out;
1838
1839		tm_unavailable(regs);
1840		return;
1841	}
1842
1843	pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1844		hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
1845
1846out:
1847	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1848}
1849#endif
1850
1851#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1852
1853void fp_unavailable_tm(struct pt_regs *regs)
1854{
1855	/* Note:  This does not handle any kind of FP laziness. */
1856
1857	TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1858		 regs->nip, regs->msr);
1859
1860        /* We can only have got here if the task started using FP after
1861         * beginning the transaction.  So, the transactional regs are just a
1862         * copy of the checkpointed ones.  But, we still need to recheckpoint
1863         * as we're enabling FP for the process; it will return, abort the
1864         * transaction, and probably retry but now with FP enabled.  So the
1865         * checkpointed FP registers need to be loaded.
1866	 */
1867	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1868
1869	/*
1870	 * Reclaim initially saved out bogus (lazy) FPRs to ckfp_state, and
1871	 * then it was overwrite by the thr->fp_state by tm_reclaim_thread().
1872	 *
1873	 * At this point, ck{fp,vr}_state contains the exact values we want to
1874	 * recheckpoint.
1875	 */
1876
1877	/* Enable FP for the task: */
1878	current->thread.load_fp = 1;
1879
1880	/*
1881	 * Recheckpoint all the checkpointed ckpt, ck{fp, vr}_state registers.
1882	 */
1883	tm_recheckpoint(&current->thread);
1884}
1885
1886void altivec_unavailable_tm(struct pt_regs *regs)
1887{
1888	/* See the comments in fp_unavailable_tm().  This function operates
1889	 * the same way.
1890	 */
1891
1892	TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1893		 "MSR=%lx\n",
1894		 regs->nip, regs->msr);
1895	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1896	current->thread.load_vec = 1;
1897	tm_recheckpoint(&current->thread);
1898	current->thread.used_vr = 1;
1899}
1900
1901void vsx_unavailable_tm(struct pt_regs *regs)
1902{
1903	/* See the comments in fp_unavailable_tm().  This works similarly,
1904	 * though we're loading both FP and VEC registers in here.
1905	 *
1906	 * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1907	 * regs.  Either way, set MSR_VSX.
1908	 */
1909
1910	TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1911		 "MSR=%lx\n",
1912		 regs->nip, regs->msr);
1913
1914	current->thread.used_vsr = 1;
1915
1916	/* This reclaims FP and/or VR regs if they're already enabled */
1917	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1918
1919	current->thread.load_vec = 1;
1920	current->thread.load_fp = 1;
1921
1922	tm_recheckpoint(&current->thread);
1923}
1924#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1925
1926void performance_monitor_exception(struct pt_regs *regs)
1927{
1928	__this_cpu_inc(irq_stat.pmu_irqs);
1929
1930	perf_irq(regs);
1931}
1932
1933#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1934static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1935{
1936	int changed = 0;
1937	/*
1938	 * Determine the cause of the debug event, clear the
1939	 * event flags and send a trap to the handler. Torez
1940	 */
1941	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1942		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1943#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1944		current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1945#endif
1946		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status,
1947			     5);
1948		changed |= 0x01;
1949	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1950		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1951		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status,
1952			     6);
1953		changed |= 0x01;
1954	}  else if (debug_status & DBSR_IAC1) {
1955		current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1956		dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1957		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status,
1958			     1);
1959		changed |= 0x01;
1960	}  else if (debug_status & DBSR_IAC2) {
1961		current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1962		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status,
1963			     2);
1964		changed |= 0x01;
1965	}  else if (debug_status & DBSR_IAC3) {
1966		current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1967		dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1968		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status,
1969			     3);
1970		changed |= 0x01;
1971	}  else if (debug_status & DBSR_IAC4) {
1972		current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1973		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status,
1974			     4);
1975		changed |= 0x01;
1976	}
1977	/*
1978	 * At the point this routine was called, the MSR(DE) was turned off.
1979	 * Check all other debug flags and see if that bit needs to be turned
1980	 * back on or not.
1981	 */
1982	if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1983			       current->thread.debug.dbcr1))
1984		regs->msr |= MSR_DE;
1985	else
1986		/* Make sure the IDM flag is off */
1987		current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1988
1989	if (changed & 0x01)
1990		mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1991}
1992
1993void DebugException(struct pt_regs *regs, unsigned long debug_status)
1994{
1995	current->thread.debug.dbsr = debug_status;
1996
1997	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1998	 * on server, it stops on the target of the branch. In order to simulate
1999	 * the server behaviour, we thus restart right away with a single step
2000	 * instead of stopping here when hitting a BT
2001	 */
2002	if (debug_status & DBSR_BT) {
2003		regs->msr &= ~MSR_DE;
2004
2005		/* Disable BT */
2006		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
2007		/* Clear the BT event */
2008		mtspr(SPRN_DBSR, DBSR_BT);
2009
2010		/* Do the single step trick only when coming from userspace */
2011		if (user_mode(regs)) {
2012			current->thread.debug.dbcr0 &= ~DBCR0_BT;
2013			current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
2014			regs->msr |= MSR_DE;
2015			return;
2016		}
2017
2018		if (kprobe_post_handler(regs))
2019			return;
2020
2021		if (notify_die(DIE_SSTEP, "block_step", regs, 5,
2022			       5, SIGTRAP) == NOTIFY_STOP) {
2023			return;
2024		}
2025		if (debugger_sstep(regs))
2026			return;
2027	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */
2028		regs->msr &= ~MSR_DE;
2029
2030		/* Disable instruction completion */
2031		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
2032		/* Clear the instruction completion event */
2033		mtspr(SPRN_DBSR, DBSR_IC);
2034
2035		if (kprobe_post_handler(regs))
2036			return;
2037
2038		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
2039			       5, SIGTRAP) == NOTIFY_STOP) {
2040			return;
2041		}
2042
2043		if (debugger_sstep(regs))
2044			return;
2045
2046		if (user_mode(regs)) {
2047			current->thread.debug.dbcr0 &= ~DBCR0_IC;
2048			if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
2049					       current->thread.debug.dbcr1))
2050				regs->msr |= MSR_DE;
2051			else
2052				/* Make sure the IDM bit is off */
2053				current->thread.debug.dbcr0 &= ~DBCR0_IDM;
2054		}
2055
2056		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
2057	} else
2058		handle_debug(regs, debug_status);
2059}
2060NOKPROBE_SYMBOL(DebugException);
2061#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2062
 
 
 
 
 
 
 
 
2063#ifdef CONFIG_ALTIVEC
2064void altivec_assist_exception(struct pt_regs *regs)
2065{
2066	int err;
2067
2068	if (!user_mode(regs)) {
2069		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
2070		       " at %lx\n", regs->nip);
2071		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
2072	}
2073
2074	flush_altivec_to_thread(current);
2075
2076	PPC_WARN_EMULATED(altivec, regs);
2077	err = emulate_altivec(regs);
2078	if (err == 0) {
2079		regs->nip += 4;		/* skip emulated instruction */
2080		emulate_single_step(regs);
2081		return;
2082	}
2083
2084	if (err == -EFAULT) {
2085		/* got an error reading the instruction */
2086		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2087	} else {
2088		/* didn't recognize the instruction */
2089		/* XXX quick hack for now: set the non-Java bit in the VSCR */
2090		printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
2091				   "in %s at %lx\n", current->comm, regs->nip);
2092		current->thread.vr_state.vscr.u[3] |= 0x10000;
2093	}
2094}
2095#endif /* CONFIG_ALTIVEC */
2096
2097#ifdef CONFIG_FSL_BOOKE
2098void CacheLockingException(struct pt_regs *regs, unsigned long address,
2099			   unsigned long error_code)
2100{
2101	/* We treat cache locking instructions from the user
2102	 * as priv ops, in the future we could try to do
2103	 * something smarter
2104	 */
2105	if (error_code & (ESR_DLK|ESR_ILK))
2106		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
2107	return;
2108}
2109#endif /* CONFIG_FSL_BOOKE */
2110
2111#ifdef CONFIG_SPE
2112void SPEFloatingPointException(struct pt_regs *regs)
2113{
2114	extern int do_spe_mathemu(struct pt_regs *regs);
2115	unsigned long spefscr;
2116	int fpexc_mode;
2117	int code = FPE_FLTUNK;
2118	int err;
2119
2120	/* We restore the interrupt state now */
2121	if (!arch_irq_disabled_regs(regs))
2122		local_irq_enable();
2123
2124	flush_spe_to_thread(current);
2125
2126	spefscr = current->thread.spefscr;
2127	fpexc_mode = current->thread.fpexc_mode;
2128
2129	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
2130		code = FPE_FLTOVF;
2131	}
2132	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
2133		code = FPE_FLTUND;
2134	}
2135	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
2136		code = FPE_FLTDIV;
2137	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
2138		code = FPE_FLTINV;
2139	}
2140	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
2141		code = FPE_FLTRES;
2142
2143	err = do_spe_mathemu(regs);
2144	if (err == 0) {
2145		regs->nip += 4;		/* skip emulated instruction */
2146		emulate_single_step(regs);
2147		return;
2148	}
2149
2150	if (err == -EFAULT) {
2151		/* got an error reading the instruction */
2152		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2153	} else if (err == -EINVAL) {
2154		/* didn't recognize the instruction */
2155		printk(KERN_ERR "unrecognized spe instruction "
2156		       "in %s at %lx\n", current->comm, regs->nip);
2157	} else {
2158		_exception(SIGFPE, regs, code, regs->nip);
2159	}
2160
2161	return;
2162}
2163
2164void SPEFloatingPointRoundException(struct pt_regs *regs)
2165{
2166	extern int speround_handler(struct pt_regs *regs);
2167	int err;
2168
2169	/* We restore the interrupt state now */
2170	if (!arch_irq_disabled_regs(regs))
2171		local_irq_enable();
2172
2173	preempt_disable();
2174	if (regs->msr & MSR_SPE)
2175		giveup_spe(current);
2176	preempt_enable();
2177
2178	regs->nip -= 4;
2179	err = speround_handler(regs);
2180	if (err == 0) {
2181		regs->nip += 4;		/* skip emulated instruction */
2182		emulate_single_step(regs);
2183		return;
2184	}
2185
2186	if (err == -EFAULT) {
2187		/* got an error reading the instruction */
2188		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2189	} else if (err == -EINVAL) {
2190		/* didn't recognize the instruction */
2191		printk(KERN_ERR "unrecognized spe instruction "
2192		       "in %s at %lx\n", current->comm, regs->nip);
2193	} else {
2194		_exception(SIGFPE, regs, FPE_FLTUNK, regs->nip);
2195		return;
2196	}
2197}
2198#endif
2199
2200/*
2201 * We enter here if we get an unrecoverable exception, that is, one
2202 * that happened at a point where the RI (recoverable interrupt) bit
2203 * in the MSR is 0.  This indicates that SRR0/1 are live, and that
2204 * we therefore lost state by taking this exception.
2205 */
2206void unrecoverable_exception(struct pt_regs *regs)
2207{
2208	pr_emerg("Unrecoverable exception %lx at %lx (msr=%lx)\n",
2209		 regs->trap, regs->nip, regs->msr);
2210	die("Unrecoverable exception", regs, SIGABRT);
2211}
2212NOKPROBE_SYMBOL(unrecoverable_exception);
2213
2214#if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
2215/*
2216 * Default handler for a Watchdog exception,
2217 * spins until a reboot occurs
2218 */
2219void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
2220{
2221	/* Generic WatchdogHandler, implement your own */
2222	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
2223	return;
2224}
2225
2226void WatchdogException(struct pt_regs *regs)
2227{
2228	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
2229	WatchdogHandler(regs);
2230}
2231#endif
2232
2233/*
2234 * We enter here if we discover during exception entry that we are
2235 * running in supervisor mode with a userspace value in the stack pointer.
2236 */
2237void kernel_bad_stack(struct pt_regs *regs)
2238{
2239	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
2240	       regs->gpr[1], regs->nip);
2241	die("Bad kernel stack pointer", regs, SIGABRT);
2242}
2243NOKPROBE_SYMBOL(kernel_bad_stack);
2244
2245void __init trap_init(void)
2246{
2247}
2248
2249
2250#ifdef CONFIG_PPC_EMULATED_STATS
2251
2252#define WARN_EMULATED_SETUP(type)	.type = { .name = #type }
2253
2254struct ppc_emulated ppc_emulated = {
2255#ifdef CONFIG_ALTIVEC
2256	WARN_EMULATED_SETUP(altivec),
2257#endif
2258	WARN_EMULATED_SETUP(dcba),
2259	WARN_EMULATED_SETUP(dcbz),
2260	WARN_EMULATED_SETUP(fp_pair),
2261	WARN_EMULATED_SETUP(isel),
2262	WARN_EMULATED_SETUP(mcrxr),
2263	WARN_EMULATED_SETUP(mfpvr),
2264	WARN_EMULATED_SETUP(multiple),
2265	WARN_EMULATED_SETUP(popcntb),
2266	WARN_EMULATED_SETUP(spe),
2267	WARN_EMULATED_SETUP(string),
2268	WARN_EMULATED_SETUP(sync),
2269	WARN_EMULATED_SETUP(unaligned),
2270#ifdef CONFIG_MATH_EMULATION
2271	WARN_EMULATED_SETUP(math),
2272#endif
2273#ifdef CONFIG_VSX
2274	WARN_EMULATED_SETUP(vsx),
2275#endif
2276#ifdef CONFIG_PPC64
2277	WARN_EMULATED_SETUP(mfdscr),
2278	WARN_EMULATED_SETUP(mtdscr),
2279	WARN_EMULATED_SETUP(lq_stq),
2280	WARN_EMULATED_SETUP(lxvw4x),
2281	WARN_EMULATED_SETUP(lxvh8x),
2282	WARN_EMULATED_SETUP(lxvd2x),
2283	WARN_EMULATED_SETUP(lxvb16x),
2284#endif
2285};
2286
2287u32 ppc_warn_emulated;
2288
2289void ppc_warn_emulated_print(const char *type)
2290{
2291	pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
2292			    type);
2293}
2294
2295static int __init ppc_warn_emulated_init(void)
2296{
2297	struct dentry *dir;
2298	unsigned int i;
2299	struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
2300
 
 
 
2301	dir = debugfs_create_dir("emulated_instructions",
2302				 powerpc_debugfs_root);
 
 
2303
2304	debugfs_create_u32("do_warn", 0644, dir, &ppc_warn_emulated);
2305
2306	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++)
2307		debugfs_create_u32(entries[i].name, 0644, dir,
2308				   (u32 *)&entries[i].val.counter);
 
 
 
 
 
 
2309
2310	return 0;
 
 
 
 
2311}
2312
2313device_initcall(ppc_warn_emulated_init);
2314
2315#endif /* CONFIG_PPC_EMULATED_STATS */
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
   4 *  Copyright 2007-2010 Freescale Semiconductor, Inc.
   5 *
   6 *  Modified by Cort Dougan (cort@cs.nmt.edu)
   7 *  and Paul Mackerras (paulus@samba.org)
   8 */
   9
  10/*
  11 * This file handles the architecture-dependent parts of hardware exceptions
  12 */
  13
  14#include <linux/errno.h>
  15#include <linux/sched.h>
  16#include <linux/sched/debug.h>
  17#include <linux/kernel.h>
  18#include <linux/mm.h>
  19#include <linux/pkeys.h>
  20#include <linux/stddef.h>
  21#include <linux/unistd.h>
  22#include <linux/ptrace.h>
  23#include <linux/user.h>
  24#include <linux/interrupt.h>
  25#include <linux/init.h>
  26#include <linux/extable.h>
  27#include <linux/module.h>	/* print_modules */
  28#include <linux/prctl.h>
  29#include <linux/delay.h>
  30#include <linux/kprobes.h>
  31#include <linux/kexec.h>
  32#include <linux/backlight.h>
  33#include <linux/bug.h>
  34#include <linux/kdebug.h>
  35#include <linux/ratelimit.h>
  36#include <linux/context_tracking.h>
  37#include <linux/smp.h>
  38#include <linux/console.h>
  39#include <linux/kmsg_dump.h>
  40
  41#include <asm/emulated_ops.h>
  42#include <asm/pgtable.h>
  43#include <linux/uaccess.h>
  44#include <asm/debugfs.h>
  45#include <asm/io.h>
  46#include <asm/machdep.h>
  47#include <asm/rtas.h>
  48#include <asm/pmc.h>
  49#include <asm/reg.h>
  50#ifdef CONFIG_PMAC_BACKLIGHT
  51#include <asm/backlight.h>
  52#endif
  53#ifdef CONFIG_PPC64
  54#include <asm/firmware.h>
  55#include <asm/processor.h>
  56#include <asm/tm.h>
  57#endif
  58#include <asm/kexec.h>
  59#include <asm/ppc-opcode.h>
  60#include <asm/rio.h>
  61#include <asm/fadump.h>
  62#include <asm/switch_to.h>
  63#include <asm/tm.h>
  64#include <asm/debug.h>
  65#include <asm/asm-prototypes.h>
  66#include <asm/hmi.h>
  67#include <sysdev/fsl_pci.h>
  68#include <asm/kprobes.h>
  69#include <asm/stacktrace.h>
  70#include <asm/nmi.h>
  71
  72#if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
  73int (*__debugger)(struct pt_regs *regs) __read_mostly;
  74int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
  75int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
  76int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
  77int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
  78int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
  79int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
  80
  81EXPORT_SYMBOL(__debugger);
  82EXPORT_SYMBOL(__debugger_ipi);
  83EXPORT_SYMBOL(__debugger_bpt);
  84EXPORT_SYMBOL(__debugger_sstep);
  85EXPORT_SYMBOL(__debugger_iabr_match);
  86EXPORT_SYMBOL(__debugger_break_match);
  87EXPORT_SYMBOL(__debugger_fault_handler);
  88#endif
  89
  90/* Transactional Memory trap debug */
  91#ifdef TM_DEBUG_SW
  92#define TM_DEBUG(x...) printk(KERN_INFO x)
  93#else
  94#define TM_DEBUG(x...) do { } while(0)
  95#endif
  96
  97static const char *signame(int signr)
  98{
  99	switch (signr) {
 100	case SIGBUS:	return "bus error";
 101	case SIGFPE:	return "floating point exception";
 102	case SIGILL:	return "illegal instruction";
 103	case SIGSEGV:	return "segfault";
 104	case SIGTRAP:	return "unhandled trap";
 105	}
 106
 107	return "unknown signal";
 108}
 109
 110/*
 111 * Trap & Exception support
 112 */
 113
 114#ifdef CONFIG_PMAC_BACKLIGHT
 115static void pmac_backlight_unblank(void)
 116{
 117	mutex_lock(&pmac_backlight_mutex);
 118	if (pmac_backlight) {
 119		struct backlight_properties *props;
 120
 121		props = &pmac_backlight->props;
 122		props->brightness = props->max_brightness;
 123		props->power = FB_BLANK_UNBLANK;
 124		backlight_update_status(pmac_backlight);
 125	}
 126	mutex_unlock(&pmac_backlight_mutex);
 127}
 128#else
 129static inline void pmac_backlight_unblank(void) { }
 130#endif
 131
 132/*
 133 * If oops/die is expected to crash the machine, return true here.
 134 *
 135 * This should not be expected to be 100% accurate, there may be
 136 * notifiers registered or other unexpected conditions that may bring
 137 * down the kernel. Or if the current process in the kernel is holding
 138 * locks or has other critical state, the kernel may become effectively
 139 * unusable anyway.
 140 */
 141bool die_will_crash(void)
 142{
 143	if (should_fadump_crash())
 144		return true;
 145	if (kexec_should_crash(current))
 146		return true;
 147	if (in_interrupt() || panic_on_oops ||
 148			!current->pid || is_global_init(current))
 149		return true;
 150
 151	return false;
 152}
 153
 154static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
 155static int die_owner = -1;
 156static unsigned int die_nest_count;
 157static int die_counter;
 158
 159extern void panic_flush_kmsg_start(void)
 160{
 161	/*
 162	 * These are mostly taken from kernel/panic.c, but tries to do
 163	 * relatively minimal work. Don't use delay functions (TB may
 164	 * be broken), don't crash dump (need to set a firmware log),
 165	 * don't run notifiers. We do want to get some information to
 166	 * Linux console.
 167	 */
 168	console_verbose();
 169	bust_spinlocks(1);
 170}
 171
 172extern void panic_flush_kmsg_end(void)
 173{
 174	printk_safe_flush_on_panic();
 175	kmsg_dump(KMSG_DUMP_PANIC);
 176	bust_spinlocks(0);
 177	debug_locks_off();
 178	console_flush_on_panic(CONSOLE_FLUSH_PENDING);
 179}
 180
 181static unsigned long oops_begin(struct pt_regs *regs)
 182{
 183	int cpu;
 184	unsigned long flags;
 185
 186	oops_enter();
 187
 188	/* racy, but better than risking deadlock. */
 189	raw_local_irq_save(flags);
 190	cpu = smp_processor_id();
 191	if (!arch_spin_trylock(&die_lock)) {
 192		if (cpu == die_owner)
 193			/* nested oops. should stop eventually */;
 194		else
 195			arch_spin_lock(&die_lock);
 196	}
 197	die_nest_count++;
 198	die_owner = cpu;
 199	console_verbose();
 200	bust_spinlocks(1);
 201	if (machine_is(powermac))
 202		pmac_backlight_unblank();
 203	return flags;
 204}
 205NOKPROBE_SYMBOL(oops_begin);
 206
 207static void oops_end(unsigned long flags, struct pt_regs *regs,
 208			       int signr)
 209{
 210	bust_spinlocks(0);
 211	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
 212	die_nest_count--;
 213	oops_exit();
 214	printk("\n");
 215	if (!die_nest_count) {
 216		/* Nest count reaches zero, release the lock. */
 217		die_owner = -1;
 218		arch_spin_unlock(&die_lock);
 219	}
 220	raw_local_irq_restore(flags);
 221
 222	/*
 223	 * system_reset_excption handles debugger, crash dump, panic, for 0x100
 224	 */
 225	if (TRAP(regs) == 0x100)
 226		return;
 227
 228	crash_fadump(regs, "die oops");
 229
 230	if (kexec_should_crash(current))
 231		crash_kexec(regs);
 232
 233	if (!signr)
 234		return;
 235
 236	/*
 237	 * While our oops output is serialised by a spinlock, output
 238	 * from panic() called below can race and corrupt it. If we
 239	 * know we are going to panic, delay for 1 second so we have a
 240	 * chance to get clean backtraces from all CPUs that are oopsing.
 241	 */
 242	if (in_interrupt() || panic_on_oops || !current->pid ||
 243	    is_global_init(current)) {
 244		mdelay(MSEC_PER_SEC);
 245	}
 246
 247	if (panic_on_oops)
 248		panic("Fatal exception");
 249	do_exit(signr);
 250}
 251NOKPROBE_SYMBOL(oops_end);
 252
 
 
 
 
 
 
 
 
 
 253static int __die(const char *str, struct pt_regs *regs, long err)
 254{
 255	printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
 256
 257	printk("%s PAGE_SIZE=%luK%s%s%s%s%s%s%s %s\n",
 258	       IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) ? "LE" : "BE",
 259	       PAGE_SIZE / 1024,
 260	       early_radix_enabled() ? " MMU=Radix" : "",
 261	       early_mmu_has_feature(MMU_FTR_HPTE_TABLE) ? " MMU=Hash" : "",
 262	       IS_ENABLED(CONFIG_PREEMPT) ? " PREEMPT" : "",
 263	       IS_ENABLED(CONFIG_SMP) ? " SMP" : "",
 264	       IS_ENABLED(CONFIG_SMP) ? (" NR_CPUS=" __stringify(NR_CPUS)) : "",
 265	       debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "",
 266	       IS_ENABLED(CONFIG_NUMA) ? " NUMA" : "",
 267	       ppc_md.name ? ppc_md.name : "");
 268
 269	if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
 270		return 1;
 271
 272	print_modules();
 273	show_regs(regs);
 274
 275	return 0;
 276}
 277NOKPROBE_SYMBOL(__die);
 278
 279void die(const char *str, struct pt_regs *regs, long err)
 280{
 281	unsigned long flags;
 282
 283	/*
 284	 * system_reset_excption handles debugger, crash dump, panic, for 0x100
 285	 */
 286	if (TRAP(regs) != 0x100) {
 287		if (debugger(regs))
 288			return;
 289	}
 290
 291	flags = oops_begin(regs);
 292	if (__die(str, regs, err))
 293		err = 0;
 294	oops_end(flags, regs, err);
 295}
 296NOKPROBE_SYMBOL(die);
 297
 298void user_single_step_report(struct pt_regs *regs)
 299{
 300	force_sig_fault(SIGTRAP, TRAP_TRACE, (void __user *)regs->nip);
 301}
 302
 303static void show_signal_msg(int signr, struct pt_regs *regs, int code,
 304			    unsigned long addr)
 305{
 306	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
 307				      DEFAULT_RATELIMIT_BURST);
 308
 309	if (!show_unhandled_signals)
 310		return;
 311
 312	if (!unhandled_signal(current, signr))
 313		return;
 314
 315	if (!__ratelimit(&rs))
 316		return;
 317
 318	pr_info("%s[%d]: %s (%d) at %lx nip %lx lr %lx code %x",
 319		current->comm, current->pid, signame(signr), signr,
 320		addr, regs->nip, regs->link, code);
 321
 322	print_vma_addr(KERN_CONT " in ", regs->nip);
 323
 324	pr_cont("\n");
 325
 326	show_user_instructions(regs);
 327}
 328
 329static bool exception_common(int signr, struct pt_regs *regs, int code,
 330			      unsigned long addr)
 331{
 332	if (!user_mode(regs)) {
 333		die("Exception in kernel mode", regs, signr);
 334		return false;
 335	}
 336
 337	show_signal_msg(signr, regs, code, addr);
 338
 339	if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
 340		local_irq_enable();
 341
 342	current->thread.trap_nr = code;
 343
 344	/*
 345	 * Save all the pkey registers AMR/IAMR/UAMOR. Eg: Core dumps need
 346	 * to capture the content, if the task gets killed.
 347	 */
 348	thread_pkey_regs_save(&current->thread);
 349
 350	return true;
 351}
 352
 353void _exception_pkey(struct pt_regs *regs, unsigned long addr, int key)
 354{
 355	if (!exception_common(SIGSEGV, regs, SEGV_PKUERR, addr))
 356		return;
 357
 358	force_sig_pkuerr((void __user *) addr, key);
 359}
 360
 361void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
 362{
 363	if (!exception_common(signr, regs, code, addr))
 364		return;
 365
 366	force_sig_fault(signr, code, (void __user *)addr);
 367}
 368
 369/*
 370 * The interrupt architecture has a quirk in that the HV interrupts excluding
 371 * the NMIs (0x100 and 0x200) do not clear MSR[RI] at entry. The first thing
 372 * that an interrupt handler must do is save off a GPR into a scratch register,
 373 * and all interrupts on POWERNV (HV=1) use the HSPRG1 register as scratch.
 374 * Therefore an NMI can clobber an HV interrupt's live HSPRG1 without noticing
 375 * that it is non-reentrant, which leads to random data corruption.
 376 *
 377 * The solution is for NMI interrupts in HV mode to check if they originated
 378 * from these critical HV interrupt regions. If so, then mark them not
 379 * recoverable.
 380 *
 381 * An alternative would be for HV NMIs to use SPRG for scratch to avoid the
 382 * HSPRG1 clobber, however this would cause guest SPRG to be clobbered. Linux
 383 * guests should always have MSR[RI]=0 when its scratch SPRG is in use, so
 384 * that would work. However any other guest OS that may have the SPRG live
 385 * and MSR[RI]=1 could encounter silent corruption.
 386 *
 387 * Builds that do not support KVM could take this second option to increase
 388 * the recoverability of NMIs.
 389 */
 390void hv_nmi_check_nonrecoverable(struct pt_regs *regs)
 391{
 392#ifdef CONFIG_PPC_POWERNV
 393	unsigned long kbase = (unsigned long)_stext;
 394	unsigned long nip = regs->nip;
 395
 396	if (!(regs->msr & MSR_RI))
 397		return;
 398	if (!(regs->msr & MSR_HV))
 399		return;
 400	if (regs->msr & MSR_PR)
 401		return;
 402
 403	/*
 404	 * Now test if the interrupt has hit a range that may be using
 405	 * HSPRG1 without having RI=0 (i.e., an HSRR interrupt). The
 406	 * problem ranges all run un-relocated. Test real and virt modes
 407	 * at the same time by droping the high bit of the nip (virt mode
 408	 * entry points still have the +0x4000 offset).
 409	 */
 410	nip &= ~0xc000000000000000ULL;
 411	if ((nip >= 0x500 && nip < 0x600) || (nip >= 0x4500 && nip < 0x4600))
 412		goto nonrecoverable;
 413	if ((nip >= 0x980 && nip < 0xa00) || (nip >= 0x4980 && nip < 0x4a00))
 414		goto nonrecoverable;
 415	if ((nip >= 0xe00 && nip < 0xec0) || (nip >= 0x4e00 && nip < 0x4ec0))
 416		goto nonrecoverable;
 417	if ((nip >= 0xf80 && nip < 0xfa0) || (nip >= 0x4f80 && nip < 0x4fa0))
 418		goto nonrecoverable;
 419
 420	/* Trampoline code runs un-relocated so subtract kbase. */
 421	if (nip >= (unsigned long)(start_real_trampolines - kbase) &&
 422			nip < (unsigned long)(end_real_trampolines - kbase))
 423		goto nonrecoverable;
 424	if (nip >= (unsigned long)(start_virt_trampolines - kbase) &&
 425			nip < (unsigned long)(end_virt_trampolines - kbase))
 426		goto nonrecoverable;
 427	return;
 428
 429nonrecoverable:
 430	regs->msr &= ~MSR_RI;
 431#endif
 432}
 433
 434void system_reset_exception(struct pt_regs *regs)
 435{
 436	unsigned long hsrr0, hsrr1;
 437	bool nested = in_nmi();
 438	bool saved_hsrrs = false;
 
 
 
 439
 440	/*
 441	 * Avoid crashes in case of nested NMI exceptions. Recoverability
 442	 * is determined by RI and in_nmi
 443	 */
 444	if (!nested)
 445		nmi_enter();
 446
 447	/*
 448	 * System reset can interrupt code where HSRRs are live and MSR[RI]=1.
 449	 * The system reset interrupt itself may clobber HSRRs (e.g., to call
 450	 * OPAL), so save them here and restore them before returning.
 451	 *
 452	 * Machine checks don't need to save HSRRs, as the real mode handler
 453	 * is careful to avoid them, and the regular handler is not delivered
 454	 * as an NMI.
 455	 */
 456	if (cpu_has_feature(CPU_FTR_HVMODE)) {
 457		hsrr0 = mfspr(SPRN_HSRR0);
 458		hsrr1 = mfspr(SPRN_HSRR1);
 459		saved_hsrrs = true;
 460	}
 461
 462	hv_nmi_check_nonrecoverable(regs);
 463
 464	__this_cpu_inc(irq_stat.sreset_irqs);
 465
 466	/* See if any machine dependent calls */
 467	if (ppc_md.system_reset_exception) {
 468		if (ppc_md.system_reset_exception(regs))
 469			goto out;
 470	}
 471
 472	if (debugger(regs))
 473		goto out;
 474
 475	kmsg_dump(KMSG_DUMP_OOPS);
 476	/*
 477	 * A system reset is a request to dump, so we always send
 478	 * it through the crashdump code (if fadump or kdump are
 479	 * registered).
 480	 */
 481	crash_fadump(regs, "System Reset");
 482
 483	crash_kexec(regs);
 484
 485	/*
 486	 * We aren't the primary crash CPU. We need to send it
 487	 * to a holding pattern to avoid it ending up in the panic
 488	 * code.
 489	 */
 490	crash_kexec_secondary(regs);
 491
 492	/*
 493	 * No debugger or crash dump registered, print logs then
 494	 * panic.
 495	 */
 496	die("System Reset", regs, SIGABRT);
 497
 498	mdelay(2*MSEC_PER_SEC); /* Wait a little while for others to print */
 499	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
 500	nmi_panic(regs, "System Reset");
 501
 502out:
 503#ifdef CONFIG_PPC_BOOK3S_64
 504	BUG_ON(get_paca()->in_nmi == 0);
 505	if (get_paca()->in_nmi > 1)
 506		nmi_panic(regs, "Unrecoverable nested System Reset");
 507#endif
 508	/* Must die if the interrupt is not recoverable */
 509	if (!(regs->msr & MSR_RI))
 510		nmi_panic(regs, "Unrecoverable System Reset");
 511
 512	if (saved_hsrrs) {
 513		mtspr(SPRN_HSRR0, hsrr0);
 514		mtspr(SPRN_HSRR1, hsrr1);
 515	}
 516
 517	if (!nested)
 518		nmi_exit();
 
 519
 520	/* What should we do here? We could issue a shutdown or hard reset. */
 521}
 522
 523/*
 524 * I/O accesses can cause machine checks on powermacs.
 525 * Check if the NIP corresponds to the address of a sync
 526 * instruction for which there is an entry in the exception
 527 * table.
 528 * Note that the 601 only takes a machine check on TEA
 529 * (transfer error ack) signal assertion, and does not
 530 * set any of the top 16 bits of SRR1.
 531 *  -- paulus.
 532 */
 533static inline int check_io_access(struct pt_regs *regs)
 534{
 535#ifdef CONFIG_PPC32
 536	unsigned long msr = regs->msr;
 537	const struct exception_table_entry *entry;
 538	unsigned int *nip = (unsigned int *)regs->nip;
 539
 540	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
 541	    && (entry = search_exception_tables(regs->nip)) != NULL) {
 542		/*
 543		 * Check that it's a sync instruction, or somewhere
 544		 * in the twi; isync; nop sequence that inb/inw/inl uses.
 545		 * As the address is in the exception table
 546		 * we should be able to read the instr there.
 547		 * For the debug message, we look at the preceding
 548		 * load or store.
 549		 */
 550		if (*nip == PPC_INST_NOP)
 551			nip -= 2;
 552		else if (*nip == PPC_INST_ISYNC)
 553			--nip;
 554		if (*nip == PPC_INST_SYNC || (*nip >> 26) == OP_TRAP) {
 555			unsigned int rb;
 556
 557			--nip;
 558			rb = (*nip >> 11) & 0x1f;
 559			printk(KERN_DEBUG "%s bad port %lx at %p\n",
 560			       (*nip & 0x100)? "OUT to": "IN from",
 561			       regs->gpr[rb] - _IO_BASE, nip);
 562			regs->msr |= MSR_RI;
 563			regs->nip = extable_fixup(entry);
 564			return 1;
 565		}
 566	}
 567#endif /* CONFIG_PPC32 */
 568	return 0;
 569}
 570
 571#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 572/* On 4xx, the reason for the machine check or program exception
 573   is in the ESR. */
 574#define get_reason(regs)	((regs)->dsisr)
 575#define REASON_FP		ESR_FP
 576#define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
 577#define REASON_PRIVILEGED	ESR_PPR
 578#define REASON_TRAP		ESR_PTR
 
 
 579
 580/* single-step stuff */
 581#define single_stepping(regs)	(current->thread.debug.dbcr0 & DBCR0_IC)
 582#define clear_single_step(regs)	(current->thread.debug.dbcr0 &= ~DBCR0_IC)
 583#define clear_br_trace(regs)	do {} while(0)
 584#else
 585/* On non-4xx, the reason for the machine check or program
 586   exception is in the MSR. */
 587#define get_reason(regs)	((regs)->msr)
 588#define REASON_TM		SRR1_PROGTM
 589#define REASON_FP		SRR1_PROGFPE
 590#define REASON_ILLEGAL		SRR1_PROGILL
 591#define REASON_PRIVILEGED	SRR1_PROGPRIV
 592#define REASON_TRAP		SRR1_PROGTRAP
 
 
 593
 594#define single_stepping(regs)	((regs)->msr & MSR_SE)
 595#define clear_single_step(regs)	((regs)->msr &= ~MSR_SE)
 596#define clear_br_trace(regs)	((regs)->msr &= ~MSR_BE)
 597#endif
 598
 
 
 599#if defined(CONFIG_E500)
 600int machine_check_e500mc(struct pt_regs *regs)
 601{
 602	unsigned long mcsr = mfspr(SPRN_MCSR);
 603	unsigned long pvr = mfspr(SPRN_PVR);
 604	unsigned long reason = mcsr;
 605	int recoverable = 1;
 606
 607	if (reason & MCSR_LD) {
 608		recoverable = fsl_rio_mcheck_exception(regs);
 609		if (recoverable == 1)
 610			goto silent_out;
 611	}
 612
 613	printk("Machine check in kernel mode.\n");
 614	printk("Caused by (from MCSR=%lx): ", reason);
 615
 616	if (reason & MCSR_MCP)
 617		pr_cont("Machine Check Signal\n");
 618
 619	if (reason & MCSR_ICPERR) {
 620		pr_cont("Instruction Cache Parity Error\n");
 621
 622		/*
 623		 * This is recoverable by invalidating the i-cache.
 624		 */
 625		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
 626		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
 627			;
 628
 629		/*
 630		 * This will generally be accompanied by an instruction
 631		 * fetch error report -- only treat MCSR_IF as fatal
 632		 * if it wasn't due to an L1 parity error.
 633		 */
 634		reason &= ~MCSR_IF;
 635	}
 636
 637	if (reason & MCSR_DCPERR_MC) {
 638		pr_cont("Data Cache Parity Error\n");
 639
 640		/*
 641		 * In write shadow mode we auto-recover from the error, but it
 642		 * may still get logged and cause a machine check.  We should
 643		 * only treat the non-write shadow case as non-recoverable.
 644		 */
 645		/* On e6500 core, L1 DCWS (Data cache write shadow mode) bit
 646		 * is not implemented but L1 data cache always runs in write
 647		 * shadow mode. Hence on data cache parity errors HW will
 648		 * automatically invalidate the L1 Data Cache.
 649		 */
 650		if (PVR_VER(pvr) != PVR_VER_E6500) {
 651			if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
 652				recoverable = 0;
 653		}
 654	}
 655
 656	if (reason & MCSR_L2MMU_MHIT) {
 657		pr_cont("Hit on multiple TLB entries\n");
 658		recoverable = 0;
 659	}
 660
 661	if (reason & MCSR_NMI)
 662		pr_cont("Non-maskable interrupt\n");
 663
 664	if (reason & MCSR_IF) {
 665		pr_cont("Instruction Fetch Error Report\n");
 666		recoverable = 0;
 667	}
 668
 669	if (reason & MCSR_LD) {
 670		pr_cont("Load Error Report\n");
 671		recoverable = 0;
 672	}
 673
 674	if (reason & MCSR_ST) {
 675		pr_cont("Store Error Report\n");
 676		recoverable = 0;
 677	}
 678
 679	if (reason & MCSR_LDG) {
 680		pr_cont("Guarded Load Error Report\n");
 681		recoverable = 0;
 682	}
 683
 684	if (reason & MCSR_TLBSYNC)
 685		pr_cont("Simultaneous tlbsync operations\n");
 686
 687	if (reason & MCSR_BSL2_ERR) {
 688		pr_cont("Level 2 Cache Error\n");
 689		recoverable = 0;
 690	}
 691
 692	if (reason & MCSR_MAV) {
 693		u64 addr;
 694
 695		addr = mfspr(SPRN_MCAR);
 696		addr |= (u64)mfspr(SPRN_MCARU) << 32;
 697
 698		pr_cont("Machine Check %s Address: %#llx\n",
 699		       reason & MCSR_MEA ? "Effective" : "Physical", addr);
 700	}
 701
 702silent_out:
 703	mtspr(SPRN_MCSR, mcsr);
 704	return mfspr(SPRN_MCSR) == 0 && recoverable;
 705}
 706
 707int machine_check_e500(struct pt_regs *regs)
 708{
 709	unsigned long reason = mfspr(SPRN_MCSR);
 710
 711	if (reason & MCSR_BUS_RBERR) {
 712		if (fsl_rio_mcheck_exception(regs))
 713			return 1;
 714		if (fsl_pci_mcheck_exception(regs))
 715			return 1;
 716	}
 717
 718	printk("Machine check in kernel mode.\n");
 719	printk("Caused by (from MCSR=%lx): ", reason);
 720
 721	if (reason & MCSR_MCP)
 722		pr_cont("Machine Check Signal\n");
 723	if (reason & MCSR_ICPERR)
 724		pr_cont("Instruction Cache Parity Error\n");
 725	if (reason & MCSR_DCP_PERR)
 726		pr_cont("Data Cache Push Parity Error\n");
 727	if (reason & MCSR_DCPERR)
 728		pr_cont("Data Cache Parity Error\n");
 729	if (reason & MCSR_BUS_IAERR)
 730		pr_cont("Bus - Instruction Address Error\n");
 731	if (reason & MCSR_BUS_RAERR)
 732		pr_cont("Bus - Read Address Error\n");
 733	if (reason & MCSR_BUS_WAERR)
 734		pr_cont("Bus - Write Address Error\n");
 735	if (reason & MCSR_BUS_IBERR)
 736		pr_cont("Bus - Instruction Data Error\n");
 737	if (reason & MCSR_BUS_RBERR)
 738		pr_cont("Bus - Read Data Bus Error\n");
 739	if (reason & MCSR_BUS_WBERR)
 740		pr_cont("Bus - Write Data Bus Error\n");
 741	if (reason & MCSR_BUS_IPERR)
 742		pr_cont("Bus - Instruction Parity Error\n");
 743	if (reason & MCSR_BUS_RPERR)
 744		pr_cont("Bus - Read Parity Error\n");
 745
 746	return 0;
 747}
 748
 749int machine_check_generic(struct pt_regs *regs)
 750{
 751	return 0;
 752}
 753#elif defined(CONFIG_E200)
 754int machine_check_e200(struct pt_regs *regs)
 755{
 756	unsigned long reason = mfspr(SPRN_MCSR);
 757
 758	printk("Machine check in kernel mode.\n");
 759	printk("Caused by (from MCSR=%lx): ", reason);
 760
 761	if (reason & MCSR_MCP)
 762		pr_cont("Machine Check Signal\n");
 763	if (reason & MCSR_CP_PERR)
 764		pr_cont("Cache Push Parity Error\n");
 765	if (reason & MCSR_CPERR)
 766		pr_cont("Cache Parity Error\n");
 767	if (reason & MCSR_EXCP_ERR)
 768		pr_cont("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
 769	if (reason & MCSR_BUS_IRERR)
 770		pr_cont("Bus - Read Bus Error on instruction fetch\n");
 771	if (reason & MCSR_BUS_DRERR)
 772		pr_cont("Bus - Read Bus Error on data load\n");
 773	if (reason & MCSR_BUS_WRERR)
 774		pr_cont("Bus - Write Bus Error on buffered store or cache line push\n");
 775
 776	return 0;
 777}
 778#elif defined(CONFIG_PPC32)
 779int machine_check_generic(struct pt_regs *regs)
 780{
 781	unsigned long reason = regs->msr;
 782
 783	printk("Machine check in kernel mode.\n");
 784	printk("Caused by (from SRR1=%lx): ", reason);
 785	switch (reason & 0x601F0000) {
 786	case 0x80000:
 787		pr_cont("Machine check signal\n");
 788		break;
 789	case 0:		/* for 601 */
 790	case 0x40000:
 791	case 0x140000:	/* 7450 MSS error and TEA */
 792		pr_cont("Transfer error ack signal\n");
 793		break;
 794	case 0x20000:
 795		pr_cont("Data parity error signal\n");
 796		break;
 797	case 0x10000:
 798		pr_cont("Address parity error signal\n");
 799		break;
 800	case 0x20000000:
 801		pr_cont("L1 Data Cache error\n");
 802		break;
 803	case 0x40000000:
 804		pr_cont("L1 Instruction Cache error\n");
 805		break;
 806	case 0x00100000:
 807		pr_cont("L2 data cache parity error\n");
 808		break;
 809	default:
 810		pr_cont("Unknown values in msr\n");
 811	}
 812	return 0;
 813}
 814#endif /* everything else */
 815
 816void machine_check_exception(struct pt_regs *regs)
 817{
 818	int recover = 0;
 819	bool nested = in_nmi();
 820	if (!nested)
 821		nmi_enter();
 
 
 
 
 
 
 
 
 
 
 
 822
 823	__this_cpu_inc(irq_stat.mce_exceptions);
 824
 825	add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
 826
 827	/* See if any machine dependent calls. In theory, we would want
 828	 * to call the CPU first, and call the ppc_md. one if the CPU
 829	 * one returns a positive number. However there is existing code
 830	 * that assumes the board gets a first chance, so let's keep it
 831	 * that way for now and fix things later. --BenH.
 832	 */
 833	if (ppc_md.machine_check_exception)
 834		recover = ppc_md.machine_check_exception(regs);
 835	else if (cur_cpu_spec->machine_check)
 836		recover = cur_cpu_spec->machine_check(regs);
 837
 838	if (recover > 0)
 839		goto bail;
 840
 841	if (debugger_fault_handler(regs))
 842		goto bail;
 843
 844	if (check_io_access(regs))
 845		goto bail;
 846
 847	if (!nested)
 848		nmi_exit();
 849
 850	die("Machine check", regs, SIGBUS);
 851
 852	/* Must die if the interrupt is not recoverable */
 853	if (!(regs->msr & MSR_RI))
 854		nmi_panic(regs, "Unrecoverable Machine check");
 855
 856	return;
 857
 858bail:
 859	if (!nested)
 860		nmi_exit();
 861}
 862
 863void SMIException(struct pt_regs *regs)
 864{
 865	die("System Management Interrupt", regs, SIGABRT);
 866}
 867
 868#ifdef CONFIG_VSX
 869static void p9_hmi_special_emu(struct pt_regs *regs)
 870{
 871	unsigned int ra, rb, t, i, sel, instr, rc;
 872	const void __user *addr;
 873	u8 vbuf[16], *vdst;
 874	unsigned long ea, msr, msr_mask;
 875	bool swap;
 876
 877	if (__get_user_inatomic(instr, (unsigned int __user *)regs->nip))
 878		return;
 879
 880	/*
 881	 * lxvb16x	opcode: 0x7c0006d8
 882	 * lxvd2x	opcode: 0x7c000698
 883	 * lxvh8x	opcode: 0x7c000658
 884	 * lxvw4x	opcode: 0x7c000618
 885	 */
 886	if ((instr & 0xfc00073e) != 0x7c000618) {
 887		pr_devel("HMI vec emu: not vector CI %i:%s[%d] nip=%016lx"
 888			 " instr=%08x\n",
 889			 smp_processor_id(), current->comm, current->pid,
 890			 regs->nip, instr);
 891		return;
 892	}
 893
 894	/* Grab vector registers into the task struct */
 895	msr = regs->msr; /* Grab msr before we flush the bits */
 896	flush_vsx_to_thread(current);
 897	enable_kernel_altivec();
 898
 899	/*
 900	 * Is userspace running with a different endian (this is rare but
 901	 * not impossible)
 902	 */
 903	swap = (msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
 904
 905	/* Decode the instruction */
 906	ra = (instr >> 16) & 0x1f;
 907	rb = (instr >> 11) & 0x1f;
 908	t = (instr >> 21) & 0x1f;
 909	if (instr & 1)
 910		vdst = (u8 *)&current->thread.vr_state.vr[t];
 911	else
 912		vdst = (u8 *)&current->thread.fp_state.fpr[t][0];
 913
 914	/* Grab the vector address */
 915	ea = regs->gpr[rb] + (ra ? regs->gpr[ra] : 0);
 916	if (is_32bit_task())
 917		ea &= 0xfffffffful;
 918	addr = (__force const void __user *)ea;
 919
 920	/* Check it */
 921	if (!access_ok(addr, 16)) {
 922		pr_devel("HMI vec emu: bad access %i:%s[%d] nip=%016lx"
 923			 " instr=%08x addr=%016lx\n",
 924			 smp_processor_id(), current->comm, current->pid,
 925			 regs->nip, instr, (unsigned long)addr);
 926		return;
 927	}
 928
 929	/* Read the vector */
 930	rc = 0;
 931	if ((unsigned long)addr & 0xfUL)
 932		/* unaligned case */
 933		rc = __copy_from_user_inatomic(vbuf, addr, 16);
 934	else
 935		__get_user_atomic_128_aligned(vbuf, addr, rc);
 936	if (rc) {
 937		pr_devel("HMI vec emu: page fault %i:%s[%d] nip=%016lx"
 938			 " instr=%08x addr=%016lx\n",
 939			 smp_processor_id(), current->comm, current->pid,
 940			 regs->nip, instr, (unsigned long)addr);
 941		return;
 942	}
 943
 944	pr_devel("HMI vec emu: emulated vector CI %i:%s[%d] nip=%016lx"
 945		 " instr=%08x addr=%016lx\n",
 946		 smp_processor_id(), current->comm, current->pid, regs->nip,
 947		 instr, (unsigned long) addr);
 948
 949	/* Grab instruction "selector" */
 950	sel = (instr >> 6) & 3;
 951
 952	/*
 953	 * Check to make sure the facility is actually enabled. This
 954	 * could happen if we get a false positive hit.
 955	 *
 956	 * lxvd2x/lxvw4x always check MSR VSX sel = 0,2
 957	 * lxvh8x/lxvb16x check MSR VSX or VEC depending on VSR used sel = 1,3
 958	 */
 959	msr_mask = MSR_VSX;
 960	if ((sel & 1) && (instr & 1)) /* lxvh8x & lxvb16x + VSR >= 32 */
 961		msr_mask = MSR_VEC;
 962	if (!(msr & msr_mask)) {
 963		pr_devel("HMI vec emu: MSR fac clear %i:%s[%d] nip=%016lx"
 964			 " instr=%08x msr:%016lx\n",
 965			 smp_processor_id(), current->comm, current->pid,
 966			 regs->nip, instr, msr);
 967		return;
 968	}
 969
 970	/* Do logging here before we modify sel based on endian */
 971	switch (sel) {
 972	case 0:	/* lxvw4x */
 973		PPC_WARN_EMULATED(lxvw4x, regs);
 974		break;
 975	case 1: /* lxvh8x */
 976		PPC_WARN_EMULATED(lxvh8x, regs);
 977		break;
 978	case 2: /* lxvd2x */
 979		PPC_WARN_EMULATED(lxvd2x, regs);
 980		break;
 981	case 3: /* lxvb16x */
 982		PPC_WARN_EMULATED(lxvb16x, regs);
 983		break;
 984	}
 985
 986#ifdef __LITTLE_ENDIAN__
 987	/*
 988	 * An LE kernel stores the vector in the task struct as an LE
 989	 * byte array (effectively swapping both the components and
 990	 * the content of the components). Those instructions expect
 991	 * the components to remain in ascending address order, so we
 992	 * swap them back.
 993	 *
 994	 * If we are running a BE user space, the expectation is that
 995	 * of a simple memcpy, so forcing the emulation to look like
 996	 * a lxvb16x should do the trick.
 997	 */
 998	if (swap)
 999		sel = 3;
1000
1001	switch (sel) {
1002	case 0:	/* lxvw4x */
1003		for (i = 0; i < 4; i++)
1004			((u32 *)vdst)[i] = ((u32 *)vbuf)[3-i];
1005		break;
1006	case 1: /* lxvh8x */
1007		for (i = 0; i < 8; i++)
1008			((u16 *)vdst)[i] = ((u16 *)vbuf)[7-i];
1009		break;
1010	case 2: /* lxvd2x */
1011		for (i = 0; i < 2; i++)
1012			((u64 *)vdst)[i] = ((u64 *)vbuf)[1-i];
1013		break;
1014	case 3: /* lxvb16x */
1015		for (i = 0; i < 16; i++)
1016			vdst[i] = vbuf[15-i];
1017		break;
1018	}
1019#else /* __LITTLE_ENDIAN__ */
1020	/* On a big endian kernel, a BE userspace only needs a memcpy */
1021	if (!swap)
1022		sel = 3;
1023
1024	/* Otherwise, we need to swap the content of the components */
1025	switch (sel) {
1026	case 0:	/* lxvw4x */
1027		for (i = 0; i < 4; i++)
1028			((u32 *)vdst)[i] = cpu_to_le32(((u32 *)vbuf)[i]);
1029		break;
1030	case 1: /* lxvh8x */
1031		for (i = 0; i < 8; i++)
1032			((u16 *)vdst)[i] = cpu_to_le16(((u16 *)vbuf)[i]);
1033		break;
1034	case 2: /* lxvd2x */
1035		for (i = 0; i < 2; i++)
1036			((u64 *)vdst)[i] = cpu_to_le64(((u64 *)vbuf)[i]);
1037		break;
1038	case 3: /* lxvb16x */
1039		memcpy(vdst, vbuf, 16);
1040		break;
1041	}
1042#endif /* !__LITTLE_ENDIAN__ */
1043
1044	/* Go to next instruction */
1045	regs->nip += 4;
1046}
1047#endif /* CONFIG_VSX */
1048
1049void handle_hmi_exception(struct pt_regs *regs)
1050{
1051	struct pt_regs *old_regs;
1052
1053	old_regs = set_irq_regs(regs);
1054	irq_enter();
1055
1056#ifdef CONFIG_VSX
1057	/* Real mode flagged P9 special emu is needed */
1058	if (local_paca->hmi_p9_special_emu) {
1059		local_paca->hmi_p9_special_emu = 0;
1060
1061		/*
1062		 * We don't want to take page faults while doing the
1063		 * emulation, we just replay the instruction if necessary.
1064		 */
1065		pagefault_disable();
1066		p9_hmi_special_emu(regs);
1067		pagefault_enable();
1068	}
1069#endif /* CONFIG_VSX */
1070
1071	if (ppc_md.handle_hmi_exception)
1072		ppc_md.handle_hmi_exception(regs);
1073
1074	irq_exit();
1075	set_irq_regs(old_regs);
1076}
1077
1078void unknown_exception(struct pt_regs *regs)
1079{
1080	enum ctx_state prev_state = exception_enter();
1081
1082	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
1083	       regs->nip, regs->msr, regs->trap);
1084
1085	_exception(SIGTRAP, regs, TRAP_UNK, 0);
1086
1087	exception_exit(prev_state);
1088}
1089
1090void instruction_breakpoint_exception(struct pt_regs *regs)
1091{
1092	enum ctx_state prev_state = exception_enter();
1093
1094	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
1095					5, SIGTRAP) == NOTIFY_STOP)
1096		goto bail;
1097	if (debugger_iabr_match(regs))
1098		goto bail;
1099	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1100
1101bail:
1102	exception_exit(prev_state);
1103}
1104
1105void RunModeException(struct pt_regs *regs)
1106{
1107	_exception(SIGTRAP, regs, TRAP_UNK, 0);
1108}
1109
1110void single_step_exception(struct pt_regs *regs)
1111{
1112	enum ctx_state prev_state = exception_enter();
1113
1114	clear_single_step(regs);
1115	clear_br_trace(regs);
1116
1117	if (kprobe_post_handler(regs))
1118		return;
1119
1120	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1121					5, SIGTRAP) == NOTIFY_STOP)
1122		goto bail;
1123	if (debugger_sstep(regs))
1124		goto bail;
1125
1126	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1127
1128bail:
1129	exception_exit(prev_state);
1130}
1131NOKPROBE_SYMBOL(single_step_exception);
1132
1133/*
1134 * After we have successfully emulated an instruction, we have to
1135 * check if the instruction was being single-stepped, and if so,
1136 * pretend we got a single-step exception.  This was pointed out
1137 * by Kumar Gala.  -- paulus
1138 */
1139static void emulate_single_step(struct pt_regs *regs)
1140{
1141	if (single_stepping(regs))
1142		single_step_exception(regs);
1143}
1144
1145static inline int __parse_fpscr(unsigned long fpscr)
1146{
1147	int ret = FPE_FLTUNK;
1148
1149	/* Invalid operation */
1150	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
1151		ret = FPE_FLTINV;
1152
1153	/* Overflow */
1154	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
1155		ret = FPE_FLTOVF;
1156
1157	/* Underflow */
1158	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
1159		ret = FPE_FLTUND;
1160
1161	/* Divide by zero */
1162	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
1163		ret = FPE_FLTDIV;
1164
1165	/* Inexact result */
1166	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
1167		ret = FPE_FLTRES;
1168
1169	return ret;
1170}
1171
1172static void parse_fpe(struct pt_regs *regs)
1173{
1174	int code = 0;
1175
1176	flush_fp_to_thread(current);
1177
1178	code = __parse_fpscr(current->thread.fp_state.fpscr);
1179
1180	_exception(SIGFPE, regs, code, regs->nip);
1181}
1182
1183/*
1184 * Illegal instruction emulation support.  Originally written to
1185 * provide the PVR to user applications using the mfspr rd, PVR.
1186 * Return non-zero if we can't emulate, or -EFAULT if the associated
1187 * memory access caused an access fault.  Return zero on success.
1188 *
1189 * There are a couple of ways to do this, either "decode" the instruction
1190 * or directly match lots of bits.  In this case, matching lots of
1191 * bits is faster and easier.
1192 *
1193 */
1194static int emulate_string_inst(struct pt_regs *regs, u32 instword)
1195{
1196	u8 rT = (instword >> 21) & 0x1f;
1197	u8 rA = (instword >> 16) & 0x1f;
1198	u8 NB_RB = (instword >> 11) & 0x1f;
1199	u32 num_bytes;
1200	unsigned long EA;
1201	int pos = 0;
1202
1203	/* Early out if we are an invalid form of lswx */
1204	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
1205		if ((rT == rA) || (rT == NB_RB))
1206			return -EINVAL;
1207
1208	EA = (rA == 0) ? 0 : regs->gpr[rA];
1209
1210	switch (instword & PPC_INST_STRING_MASK) {
1211		case PPC_INST_LSWX:
1212		case PPC_INST_STSWX:
1213			EA += NB_RB;
1214			num_bytes = regs->xer & 0x7f;
1215			break;
1216		case PPC_INST_LSWI:
1217		case PPC_INST_STSWI:
1218			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
1219			break;
1220		default:
1221			return -EINVAL;
1222	}
1223
1224	while (num_bytes != 0)
1225	{
1226		u8 val;
1227		u32 shift = 8 * (3 - (pos & 0x3));
1228
1229		/* if process is 32-bit, clear upper 32 bits of EA */
1230		if ((regs->msr & MSR_64BIT) == 0)
1231			EA &= 0xFFFFFFFF;
1232
1233		switch ((instword & PPC_INST_STRING_MASK)) {
1234			case PPC_INST_LSWX:
1235			case PPC_INST_LSWI:
1236				if (get_user(val, (u8 __user *)EA))
1237					return -EFAULT;
1238				/* first time updating this reg,
1239				 * zero it out */
1240				if (pos == 0)
1241					regs->gpr[rT] = 0;
1242				regs->gpr[rT] |= val << shift;
1243				break;
1244			case PPC_INST_STSWI:
1245			case PPC_INST_STSWX:
1246				val = regs->gpr[rT] >> shift;
1247				if (put_user(val, (u8 __user *)EA))
1248					return -EFAULT;
1249				break;
1250		}
1251		/* move EA to next address */
1252		EA += 1;
1253		num_bytes--;
1254
1255		/* manage our position within the register */
1256		if (++pos == 4) {
1257			pos = 0;
1258			if (++rT == 32)
1259				rT = 0;
1260		}
1261	}
1262
1263	return 0;
1264}
1265
1266static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
1267{
1268	u32 ra,rs;
1269	unsigned long tmp;
1270
1271	ra = (instword >> 16) & 0x1f;
1272	rs = (instword >> 21) & 0x1f;
1273
1274	tmp = regs->gpr[rs];
1275	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
1276	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
1277	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1278	regs->gpr[ra] = tmp;
1279
1280	return 0;
1281}
1282
1283static int emulate_isel(struct pt_regs *regs, u32 instword)
1284{
1285	u8 rT = (instword >> 21) & 0x1f;
1286	u8 rA = (instword >> 16) & 0x1f;
1287	u8 rB = (instword >> 11) & 0x1f;
1288	u8 BC = (instword >> 6) & 0x1f;
1289	u8 bit;
1290	unsigned long tmp;
1291
1292	tmp = (rA == 0) ? 0 : regs->gpr[rA];
1293	bit = (regs->ccr >> (31 - BC)) & 0x1;
1294
1295	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
1296
1297	return 0;
1298}
1299
1300#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1301static inline bool tm_abort_check(struct pt_regs *regs, int cause)
1302{
1303        /* If we're emulating a load/store in an active transaction, we cannot
1304         * emulate it as the kernel operates in transaction suspended context.
1305         * We need to abort the transaction.  This creates a persistent TM
1306         * abort so tell the user what caused it with a new code.
1307	 */
1308	if (MSR_TM_TRANSACTIONAL(regs->msr)) {
1309		tm_enable();
1310		tm_abort(cause);
1311		return true;
1312	}
1313	return false;
1314}
1315#else
1316static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1317{
1318	return false;
1319}
1320#endif
1321
1322static int emulate_instruction(struct pt_regs *regs)
1323{
1324	u32 instword;
1325	u32 rd;
1326
1327	if (!user_mode(regs))
1328		return -EINVAL;
1329	CHECK_FULL_REGS(regs);
1330
1331	if (get_user(instword, (u32 __user *)(regs->nip)))
1332		return -EFAULT;
1333
1334	/* Emulate the mfspr rD, PVR. */
1335	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1336		PPC_WARN_EMULATED(mfpvr, regs);
1337		rd = (instword >> 21) & 0x1f;
1338		regs->gpr[rd] = mfspr(SPRN_PVR);
1339		return 0;
1340	}
1341
1342	/* Emulating the dcba insn is just a no-op.  */
1343	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1344		PPC_WARN_EMULATED(dcba, regs);
1345		return 0;
1346	}
1347
1348	/* Emulate the mcrxr insn.  */
1349	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1350		int shift = (instword >> 21) & 0x1c;
1351		unsigned long msk = 0xf0000000UL >> shift;
1352
1353		PPC_WARN_EMULATED(mcrxr, regs);
1354		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1355		regs->xer &= ~0xf0000000UL;
1356		return 0;
1357	}
1358
1359	/* Emulate load/store string insn. */
1360	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1361		if (tm_abort_check(regs,
1362				   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1363			return -EINVAL;
1364		PPC_WARN_EMULATED(string, regs);
1365		return emulate_string_inst(regs, instword);
1366	}
1367
1368	/* Emulate the popcntb (Population Count Bytes) instruction. */
1369	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1370		PPC_WARN_EMULATED(popcntb, regs);
1371		return emulate_popcntb_inst(regs, instword);
1372	}
1373
1374	/* Emulate isel (Integer Select) instruction */
1375	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1376		PPC_WARN_EMULATED(isel, regs);
1377		return emulate_isel(regs, instword);
1378	}
1379
1380	/* Emulate sync instruction variants */
1381	if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1382		PPC_WARN_EMULATED(sync, regs);
1383		asm volatile("sync");
1384		return 0;
1385	}
1386
1387#ifdef CONFIG_PPC64
1388	/* Emulate the mfspr rD, DSCR. */
1389	if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1390		PPC_INST_MFSPR_DSCR_USER) ||
1391	     ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1392		PPC_INST_MFSPR_DSCR)) &&
1393			cpu_has_feature(CPU_FTR_DSCR)) {
1394		PPC_WARN_EMULATED(mfdscr, regs);
1395		rd = (instword >> 21) & 0x1f;
1396		regs->gpr[rd] = mfspr(SPRN_DSCR);
1397		return 0;
1398	}
1399	/* Emulate the mtspr DSCR, rD. */
1400	if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1401		PPC_INST_MTSPR_DSCR_USER) ||
1402	     ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1403		PPC_INST_MTSPR_DSCR)) &&
1404			cpu_has_feature(CPU_FTR_DSCR)) {
1405		PPC_WARN_EMULATED(mtdscr, regs);
1406		rd = (instword >> 21) & 0x1f;
1407		current->thread.dscr = regs->gpr[rd];
1408		current->thread.dscr_inherit = 1;
1409		mtspr(SPRN_DSCR, current->thread.dscr);
1410		return 0;
1411	}
1412#endif
1413
1414	return -EINVAL;
1415}
1416
1417int is_valid_bugaddr(unsigned long addr)
1418{
1419	return is_kernel_addr(addr);
1420}
1421
1422#ifdef CONFIG_MATH_EMULATION
1423static int emulate_math(struct pt_regs *regs)
1424{
1425	int ret;
1426	extern int do_mathemu(struct pt_regs *regs);
1427
1428	ret = do_mathemu(regs);
1429	if (ret >= 0)
1430		PPC_WARN_EMULATED(math, regs);
1431
1432	switch (ret) {
1433	case 0:
1434		emulate_single_step(regs);
1435		return 0;
1436	case 1: {
1437			int code = 0;
1438			code = __parse_fpscr(current->thread.fp_state.fpscr);
1439			_exception(SIGFPE, regs, code, regs->nip);
1440			return 0;
1441		}
1442	case -EFAULT:
1443		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1444		return 0;
1445	}
1446
1447	return -1;
1448}
1449#else
1450static inline int emulate_math(struct pt_regs *regs) { return -1; }
1451#endif
1452
1453void program_check_exception(struct pt_regs *regs)
1454{
1455	enum ctx_state prev_state = exception_enter();
1456	unsigned int reason = get_reason(regs);
1457
1458	/* We can now get here via a FP Unavailable exception if the core
1459	 * has no FPU, in that case the reason flags will be 0 */
1460
1461	if (reason & REASON_FP) {
1462		/* IEEE FP exception */
1463		parse_fpe(regs);
1464		goto bail;
1465	}
1466	if (reason & REASON_TRAP) {
1467		unsigned long bugaddr;
1468		/* Debugger is first in line to stop recursive faults in
1469		 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1470		if (debugger_bpt(regs))
1471			goto bail;
1472
1473		if (kprobe_handler(regs))
1474			goto bail;
1475
1476		/* trap exception */
1477		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1478				== NOTIFY_STOP)
1479			goto bail;
1480
1481		bugaddr = regs->nip;
1482		/*
1483		 * Fixup bugaddr for BUG_ON() in real mode
1484		 */
1485		if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1486			bugaddr += PAGE_OFFSET;
1487
1488		if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1489		    report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1490			regs->nip += 4;
1491			goto bail;
1492		}
1493		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1494		goto bail;
1495	}
1496#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1497	if (reason & REASON_TM) {
1498		/* This is a TM "Bad Thing Exception" program check.
1499		 * This occurs when:
1500		 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1501		 *    transition in TM states.
1502		 * -  A trechkpt is attempted when transactional.
1503		 * -  A treclaim is attempted when non transactional.
1504		 * -  A tend is illegally attempted.
1505		 * -  writing a TM SPR when transactional.
1506		 *
1507		 * If usermode caused this, it's done something illegal and
1508		 * gets a SIGILL slap on the wrist.  We call it an illegal
1509		 * operand to distinguish from the instruction just being bad
1510		 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1511		 * illegal /placement/ of a valid instruction.
1512		 */
1513		if (user_mode(regs)) {
1514			_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1515			goto bail;
1516		} else {
1517			printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1518			       "at %lx (msr 0x%lx) tm_scratch=%llx\n",
1519			       regs->nip, regs->msr, get_paca()->tm_scratch);
1520			die("Unrecoverable exception", regs, SIGABRT);
1521		}
1522	}
1523#endif
1524
1525	/*
1526	 * If we took the program check in the kernel skip down to sending a
1527	 * SIGILL. The subsequent cases all relate to emulating instructions
1528	 * which we should only do for userspace. We also do not want to enable
1529	 * interrupts for kernel faults because that might lead to further
1530	 * faults, and loose the context of the original exception.
1531	 */
1532	if (!user_mode(regs))
1533		goto sigill;
1534
1535	/* We restore the interrupt state now */
1536	if (!arch_irq_disabled_regs(regs))
1537		local_irq_enable();
1538
1539	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
1540	 * but there seems to be a hardware bug on the 405GP (RevD)
1541	 * that means ESR is sometimes set incorrectly - either to
1542	 * ESR_DST (!?) or 0.  In the process of chasing this with the
1543	 * hardware people - not sure if it can happen on any illegal
1544	 * instruction or only on FP instructions, whether there is a
1545	 * pattern to occurrences etc. -dgibson 31/Mar/2003
1546	 */
1547	if (!emulate_math(regs))
1548		goto bail;
1549
1550	/* Try to emulate it if we should. */
1551	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1552		switch (emulate_instruction(regs)) {
1553		case 0:
1554			regs->nip += 4;
1555			emulate_single_step(regs);
1556			goto bail;
1557		case -EFAULT:
1558			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1559			goto bail;
1560		}
1561	}
1562
1563sigill:
1564	if (reason & REASON_PRIVILEGED)
1565		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1566	else
1567		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1568
1569bail:
1570	exception_exit(prev_state);
1571}
1572NOKPROBE_SYMBOL(program_check_exception);
1573
1574/*
1575 * This occurs when running in hypervisor mode on POWER6 or later
1576 * and an illegal instruction is encountered.
1577 */
1578void emulation_assist_interrupt(struct pt_regs *regs)
1579{
1580	regs->msr |= REASON_ILLEGAL;
1581	program_check_exception(regs);
1582}
1583NOKPROBE_SYMBOL(emulation_assist_interrupt);
1584
1585void alignment_exception(struct pt_regs *regs)
1586{
1587	enum ctx_state prev_state = exception_enter();
1588	int sig, code, fixed = 0;
 
1589
1590	/* We restore the interrupt state now */
1591	if (!arch_irq_disabled_regs(regs))
1592		local_irq_enable();
1593
 
 
 
 
 
 
 
 
1594	if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1595		goto bail;
1596
1597	/* we don't implement logging of alignment exceptions */
1598	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1599		fixed = fix_alignment(regs);
1600
1601	if (fixed == 1) {
1602		regs->nip += 4;	/* skip over emulated instruction */
 
1603		emulate_single_step(regs);
1604		goto bail;
1605	}
1606
1607	/* Operand address was bad */
1608	if (fixed == -EFAULT) {
1609		sig = SIGSEGV;
1610		code = SEGV_ACCERR;
1611	} else {
1612		sig = SIGBUS;
1613		code = BUS_ADRALN;
1614	}
 
1615	if (user_mode(regs))
1616		_exception(sig, regs, code, regs->dar);
1617	else
1618		bad_page_fault(regs, regs->dar, sig);
1619
1620bail:
1621	exception_exit(prev_state);
1622}
1623
1624void StackOverflow(struct pt_regs *regs)
1625{
1626	pr_crit("Kernel stack overflow in process %s[%d], r1=%lx\n",
1627		current->comm, task_pid_nr(current), regs->gpr[1]);
1628	debugger(regs);
1629	show_regs(regs);
1630	panic("kernel stack overflow");
1631}
1632
 
 
 
 
 
 
 
 
 
1633void kernel_fp_unavailable_exception(struct pt_regs *regs)
1634{
1635	enum ctx_state prev_state = exception_enter();
1636
1637	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1638			  "%lx at %lx\n", regs->trap, regs->nip);
1639	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1640
1641	exception_exit(prev_state);
1642}
1643
1644void altivec_unavailable_exception(struct pt_regs *regs)
1645{
1646	enum ctx_state prev_state = exception_enter();
1647
1648	if (user_mode(regs)) {
1649		/* A user program has executed an altivec instruction,
1650		   but this kernel doesn't support altivec. */
1651		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1652		goto bail;
1653	}
1654
1655	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1656			"%lx at %lx\n", regs->trap, regs->nip);
1657	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1658
1659bail:
1660	exception_exit(prev_state);
1661}
1662
1663void vsx_unavailable_exception(struct pt_regs *regs)
1664{
1665	if (user_mode(regs)) {
1666		/* A user program has executed an vsx instruction,
1667		   but this kernel doesn't support vsx. */
1668		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1669		return;
1670	}
1671
1672	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1673			"%lx at %lx\n", regs->trap, regs->nip);
1674	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1675}
1676
1677#ifdef CONFIG_PPC64
1678static void tm_unavailable(struct pt_regs *regs)
1679{
1680#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1681	if (user_mode(regs)) {
1682		current->thread.load_tm++;
1683		regs->msr |= MSR_TM;
1684		tm_enable();
1685		tm_restore_sprs(&current->thread);
1686		return;
1687	}
1688#endif
1689	pr_emerg("Unrecoverable TM Unavailable Exception "
1690			"%lx at %lx\n", regs->trap, regs->nip);
1691	die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
1692}
1693
1694void facility_unavailable_exception(struct pt_regs *regs)
1695{
1696	static char *facility_strings[] = {
1697		[FSCR_FP_LG] = "FPU",
1698		[FSCR_VECVSX_LG] = "VMX/VSX",
1699		[FSCR_DSCR_LG] = "DSCR",
1700		[FSCR_PM_LG] = "PMU SPRs",
1701		[FSCR_BHRB_LG] = "BHRB",
1702		[FSCR_TM_LG] = "TM",
1703		[FSCR_EBB_LG] = "EBB",
1704		[FSCR_TAR_LG] = "TAR",
1705		[FSCR_MSGP_LG] = "MSGP",
1706		[FSCR_SCV_LG] = "SCV",
 
1707	};
1708	char *facility = "unknown";
1709	u64 value;
1710	u32 instword, rd;
1711	u8 status;
1712	bool hv;
1713
1714	hv = (TRAP(regs) == 0xf80);
1715	if (hv)
1716		value = mfspr(SPRN_HFSCR);
1717	else
1718		value = mfspr(SPRN_FSCR);
1719
1720	status = value >> 56;
1721	if ((hv || status >= 2) &&
1722	    (status < ARRAY_SIZE(facility_strings)) &&
1723	    facility_strings[status])
1724		facility = facility_strings[status];
1725
1726	/* We should not have taken this interrupt in kernel */
1727	if (!user_mode(regs)) {
1728		pr_emerg("Facility '%s' unavailable (%d) exception in kernel mode at %lx\n",
1729			 facility, status, regs->nip);
1730		die("Unexpected facility unavailable exception", regs, SIGABRT);
1731	}
1732
1733	/* We restore the interrupt state now */
1734	if (!arch_irq_disabled_regs(regs))
1735		local_irq_enable();
1736
1737	if (status == FSCR_DSCR_LG) {
1738		/*
1739		 * User is accessing the DSCR register using the problem
1740		 * state only SPR number (0x03) either through a mfspr or
1741		 * a mtspr instruction. If it is a write attempt through
1742		 * a mtspr, then we set the inherit bit. This also allows
1743		 * the user to write or read the register directly in the
1744		 * future by setting via the FSCR DSCR bit. But in case it
1745		 * is a read DSCR attempt through a mfspr instruction, we
1746		 * just emulate the instruction instead. This code path will
1747		 * always emulate all the mfspr instructions till the user
1748		 * has attempted at least one mtspr instruction. This way it
1749		 * preserves the same behaviour when the user is accessing
1750		 * the DSCR through privilege level only SPR number (0x11)
1751		 * which is emulated through illegal instruction exception.
1752		 * We always leave HFSCR DSCR set.
1753		 */
1754		if (get_user(instword, (u32 __user *)(regs->nip))) {
1755			pr_err("Failed to fetch the user instruction\n");
1756			return;
1757		}
1758
1759		/* Write into DSCR (mtspr 0x03, RS) */
1760		if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1761				== PPC_INST_MTSPR_DSCR_USER) {
1762			rd = (instword >> 21) & 0x1f;
1763			current->thread.dscr = regs->gpr[rd];
1764			current->thread.dscr_inherit = 1;
1765			current->thread.fscr |= FSCR_DSCR;
1766			mtspr(SPRN_FSCR, current->thread.fscr);
1767		}
1768
1769		/* Read from DSCR (mfspr RT, 0x03) */
1770		if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1771				== PPC_INST_MFSPR_DSCR_USER) {
1772			if (emulate_instruction(regs)) {
1773				pr_err("DSCR based mfspr emulation failed\n");
1774				return;
1775			}
1776			regs->nip += 4;
1777			emulate_single_step(regs);
1778		}
1779		return;
1780	}
1781
1782	if (status == FSCR_TM_LG) {
1783		/*
1784		 * If we're here then the hardware is TM aware because it
1785		 * generated an exception with FSRM_TM set.
1786		 *
1787		 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1788		 * told us not to do TM, or the kernel is not built with TM
1789		 * support.
1790		 *
1791		 * If both of those things are true, then userspace can spam the
1792		 * console by triggering the printk() below just by continually
1793		 * doing tbegin (or any TM instruction). So in that case just
1794		 * send the process a SIGILL immediately.
1795		 */
1796		if (!cpu_has_feature(CPU_FTR_TM))
1797			goto out;
1798
1799		tm_unavailable(regs);
1800		return;
1801	}
1802
1803	pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1804		hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
1805
1806out:
1807	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1808}
1809#endif
1810
1811#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1812
1813void fp_unavailable_tm(struct pt_regs *regs)
1814{
1815	/* Note:  This does not handle any kind of FP laziness. */
1816
1817	TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1818		 regs->nip, regs->msr);
1819
1820        /* We can only have got here if the task started using FP after
1821         * beginning the transaction.  So, the transactional regs are just a
1822         * copy of the checkpointed ones.  But, we still need to recheckpoint
1823         * as we're enabling FP for the process; it will return, abort the
1824         * transaction, and probably retry but now with FP enabled.  So the
1825         * checkpointed FP registers need to be loaded.
1826	 */
1827	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1828
1829	/*
1830	 * Reclaim initially saved out bogus (lazy) FPRs to ckfp_state, and
1831	 * then it was overwrite by the thr->fp_state by tm_reclaim_thread().
1832	 *
1833	 * At this point, ck{fp,vr}_state contains the exact values we want to
1834	 * recheckpoint.
1835	 */
1836
1837	/* Enable FP for the task: */
1838	current->thread.load_fp = 1;
1839
1840	/*
1841	 * Recheckpoint all the checkpointed ckpt, ck{fp, vr}_state registers.
1842	 */
1843	tm_recheckpoint(&current->thread);
1844}
1845
1846void altivec_unavailable_tm(struct pt_regs *regs)
1847{
1848	/* See the comments in fp_unavailable_tm().  This function operates
1849	 * the same way.
1850	 */
1851
1852	TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1853		 "MSR=%lx\n",
1854		 regs->nip, regs->msr);
1855	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1856	current->thread.load_vec = 1;
1857	tm_recheckpoint(&current->thread);
1858	current->thread.used_vr = 1;
1859}
1860
1861void vsx_unavailable_tm(struct pt_regs *regs)
1862{
1863	/* See the comments in fp_unavailable_tm().  This works similarly,
1864	 * though we're loading both FP and VEC registers in here.
1865	 *
1866	 * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1867	 * regs.  Either way, set MSR_VSX.
1868	 */
1869
1870	TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1871		 "MSR=%lx\n",
1872		 regs->nip, regs->msr);
1873
1874	current->thread.used_vsr = 1;
1875
1876	/* This reclaims FP and/or VR regs if they're already enabled */
1877	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1878
1879	current->thread.load_vec = 1;
1880	current->thread.load_fp = 1;
1881
1882	tm_recheckpoint(&current->thread);
1883}
1884#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1885
1886void performance_monitor_exception(struct pt_regs *regs)
1887{
1888	__this_cpu_inc(irq_stat.pmu_irqs);
1889
1890	perf_irq(regs);
1891}
1892
1893#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1894static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1895{
1896	int changed = 0;
1897	/*
1898	 * Determine the cause of the debug event, clear the
1899	 * event flags and send a trap to the handler. Torez
1900	 */
1901	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1902		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1903#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1904		current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1905#endif
1906		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status,
1907			     5);
1908		changed |= 0x01;
1909	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1910		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1911		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status,
1912			     6);
1913		changed |= 0x01;
1914	}  else if (debug_status & DBSR_IAC1) {
1915		current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1916		dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1917		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status,
1918			     1);
1919		changed |= 0x01;
1920	}  else if (debug_status & DBSR_IAC2) {
1921		current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1922		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status,
1923			     2);
1924		changed |= 0x01;
1925	}  else if (debug_status & DBSR_IAC3) {
1926		current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1927		dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1928		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status,
1929			     3);
1930		changed |= 0x01;
1931	}  else if (debug_status & DBSR_IAC4) {
1932		current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1933		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status,
1934			     4);
1935		changed |= 0x01;
1936	}
1937	/*
1938	 * At the point this routine was called, the MSR(DE) was turned off.
1939	 * Check all other debug flags and see if that bit needs to be turned
1940	 * back on or not.
1941	 */
1942	if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1943			       current->thread.debug.dbcr1))
1944		regs->msr |= MSR_DE;
1945	else
1946		/* Make sure the IDM flag is off */
1947		current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1948
1949	if (changed & 0x01)
1950		mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1951}
1952
1953void DebugException(struct pt_regs *regs, unsigned long debug_status)
1954{
1955	current->thread.debug.dbsr = debug_status;
1956
1957	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1958	 * on server, it stops on the target of the branch. In order to simulate
1959	 * the server behaviour, we thus restart right away with a single step
1960	 * instead of stopping here when hitting a BT
1961	 */
1962	if (debug_status & DBSR_BT) {
1963		regs->msr &= ~MSR_DE;
1964
1965		/* Disable BT */
1966		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1967		/* Clear the BT event */
1968		mtspr(SPRN_DBSR, DBSR_BT);
1969
1970		/* Do the single step trick only when coming from userspace */
1971		if (user_mode(regs)) {
1972			current->thread.debug.dbcr0 &= ~DBCR0_BT;
1973			current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1974			regs->msr |= MSR_DE;
1975			return;
1976		}
1977
1978		if (kprobe_post_handler(regs))
1979			return;
1980
1981		if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1982			       5, SIGTRAP) == NOTIFY_STOP) {
1983			return;
1984		}
1985		if (debugger_sstep(regs))
1986			return;
1987	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */
1988		regs->msr &= ~MSR_DE;
1989
1990		/* Disable instruction completion */
1991		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1992		/* Clear the instruction completion event */
1993		mtspr(SPRN_DBSR, DBSR_IC);
1994
1995		if (kprobe_post_handler(regs))
1996			return;
1997
1998		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1999			       5, SIGTRAP) == NOTIFY_STOP) {
2000			return;
2001		}
2002
2003		if (debugger_sstep(regs))
2004			return;
2005
2006		if (user_mode(regs)) {
2007			current->thread.debug.dbcr0 &= ~DBCR0_IC;
2008			if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
2009					       current->thread.debug.dbcr1))
2010				regs->msr |= MSR_DE;
2011			else
2012				/* Make sure the IDM bit is off */
2013				current->thread.debug.dbcr0 &= ~DBCR0_IDM;
2014		}
2015
2016		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
2017	} else
2018		handle_debug(regs, debug_status);
2019}
2020NOKPROBE_SYMBOL(DebugException);
2021#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2022
2023#if !defined(CONFIG_TAU_INT)
2024void TAUException(struct pt_regs *regs)
2025{
2026	printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
2027	       regs->nip, regs->msr, regs->trap, print_tainted());
2028}
2029#endif /* CONFIG_INT_TAU */
2030
2031#ifdef CONFIG_ALTIVEC
2032void altivec_assist_exception(struct pt_regs *regs)
2033{
2034	int err;
2035
2036	if (!user_mode(regs)) {
2037		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
2038		       " at %lx\n", regs->nip);
2039		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
2040	}
2041
2042	flush_altivec_to_thread(current);
2043
2044	PPC_WARN_EMULATED(altivec, regs);
2045	err = emulate_altivec(regs);
2046	if (err == 0) {
2047		regs->nip += 4;		/* skip emulated instruction */
2048		emulate_single_step(regs);
2049		return;
2050	}
2051
2052	if (err == -EFAULT) {
2053		/* got an error reading the instruction */
2054		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2055	} else {
2056		/* didn't recognize the instruction */
2057		/* XXX quick hack for now: set the non-Java bit in the VSCR */
2058		printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
2059				   "in %s at %lx\n", current->comm, regs->nip);
2060		current->thread.vr_state.vscr.u[3] |= 0x10000;
2061	}
2062}
2063#endif /* CONFIG_ALTIVEC */
2064
2065#ifdef CONFIG_FSL_BOOKE
2066void CacheLockingException(struct pt_regs *regs, unsigned long address,
2067			   unsigned long error_code)
2068{
2069	/* We treat cache locking instructions from the user
2070	 * as priv ops, in the future we could try to do
2071	 * something smarter
2072	 */
2073	if (error_code & (ESR_DLK|ESR_ILK))
2074		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
2075	return;
2076}
2077#endif /* CONFIG_FSL_BOOKE */
2078
2079#ifdef CONFIG_SPE
2080void SPEFloatingPointException(struct pt_regs *regs)
2081{
2082	extern int do_spe_mathemu(struct pt_regs *regs);
2083	unsigned long spefscr;
2084	int fpexc_mode;
2085	int code = FPE_FLTUNK;
2086	int err;
2087
2088	/* We restore the interrupt state now */
2089	if (!arch_irq_disabled_regs(regs))
2090		local_irq_enable();
2091
2092	flush_spe_to_thread(current);
2093
2094	spefscr = current->thread.spefscr;
2095	fpexc_mode = current->thread.fpexc_mode;
2096
2097	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
2098		code = FPE_FLTOVF;
2099	}
2100	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
2101		code = FPE_FLTUND;
2102	}
2103	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
2104		code = FPE_FLTDIV;
2105	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
2106		code = FPE_FLTINV;
2107	}
2108	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
2109		code = FPE_FLTRES;
2110
2111	err = do_spe_mathemu(regs);
2112	if (err == 0) {
2113		regs->nip += 4;		/* skip emulated instruction */
2114		emulate_single_step(regs);
2115		return;
2116	}
2117
2118	if (err == -EFAULT) {
2119		/* got an error reading the instruction */
2120		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2121	} else if (err == -EINVAL) {
2122		/* didn't recognize the instruction */
2123		printk(KERN_ERR "unrecognized spe instruction "
2124		       "in %s at %lx\n", current->comm, regs->nip);
2125	} else {
2126		_exception(SIGFPE, regs, code, regs->nip);
2127	}
2128
2129	return;
2130}
2131
2132void SPEFloatingPointRoundException(struct pt_regs *regs)
2133{
2134	extern int speround_handler(struct pt_regs *regs);
2135	int err;
2136
2137	/* We restore the interrupt state now */
2138	if (!arch_irq_disabled_regs(regs))
2139		local_irq_enable();
2140
2141	preempt_disable();
2142	if (regs->msr & MSR_SPE)
2143		giveup_spe(current);
2144	preempt_enable();
2145
2146	regs->nip -= 4;
2147	err = speround_handler(regs);
2148	if (err == 0) {
2149		regs->nip += 4;		/* skip emulated instruction */
2150		emulate_single_step(regs);
2151		return;
2152	}
2153
2154	if (err == -EFAULT) {
2155		/* got an error reading the instruction */
2156		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2157	} else if (err == -EINVAL) {
2158		/* didn't recognize the instruction */
2159		printk(KERN_ERR "unrecognized spe instruction "
2160		       "in %s at %lx\n", current->comm, regs->nip);
2161	} else {
2162		_exception(SIGFPE, regs, FPE_FLTUNK, regs->nip);
2163		return;
2164	}
2165}
2166#endif
2167
2168/*
2169 * We enter here if we get an unrecoverable exception, that is, one
2170 * that happened at a point where the RI (recoverable interrupt) bit
2171 * in the MSR is 0.  This indicates that SRR0/1 are live, and that
2172 * we therefore lost state by taking this exception.
2173 */
2174void unrecoverable_exception(struct pt_regs *regs)
2175{
2176	pr_emerg("Unrecoverable exception %lx at %lx (msr=%lx)\n",
2177		 regs->trap, regs->nip, regs->msr);
2178	die("Unrecoverable exception", regs, SIGABRT);
2179}
2180NOKPROBE_SYMBOL(unrecoverable_exception);
2181
2182#if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
2183/*
2184 * Default handler for a Watchdog exception,
2185 * spins until a reboot occurs
2186 */
2187void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
2188{
2189	/* Generic WatchdogHandler, implement your own */
2190	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
2191	return;
2192}
2193
2194void WatchdogException(struct pt_regs *regs)
2195{
2196	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
2197	WatchdogHandler(regs);
2198}
2199#endif
2200
2201/*
2202 * We enter here if we discover during exception entry that we are
2203 * running in supervisor mode with a userspace value in the stack pointer.
2204 */
2205void kernel_bad_stack(struct pt_regs *regs)
2206{
2207	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
2208	       regs->gpr[1], regs->nip);
2209	die("Bad kernel stack pointer", regs, SIGABRT);
2210}
2211NOKPROBE_SYMBOL(kernel_bad_stack);
2212
2213void __init trap_init(void)
2214{
2215}
2216
2217
2218#ifdef CONFIG_PPC_EMULATED_STATS
2219
2220#define WARN_EMULATED_SETUP(type)	.type = { .name = #type }
2221
2222struct ppc_emulated ppc_emulated = {
2223#ifdef CONFIG_ALTIVEC
2224	WARN_EMULATED_SETUP(altivec),
2225#endif
2226	WARN_EMULATED_SETUP(dcba),
2227	WARN_EMULATED_SETUP(dcbz),
2228	WARN_EMULATED_SETUP(fp_pair),
2229	WARN_EMULATED_SETUP(isel),
2230	WARN_EMULATED_SETUP(mcrxr),
2231	WARN_EMULATED_SETUP(mfpvr),
2232	WARN_EMULATED_SETUP(multiple),
2233	WARN_EMULATED_SETUP(popcntb),
2234	WARN_EMULATED_SETUP(spe),
2235	WARN_EMULATED_SETUP(string),
2236	WARN_EMULATED_SETUP(sync),
2237	WARN_EMULATED_SETUP(unaligned),
2238#ifdef CONFIG_MATH_EMULATION
2239	WARN_EMULATED_SETUP(math),
2240#endif
2241#ifdef CONFIG_VSX
2242	WARN_EMULATED_SETUP(vsx),
2243#endif
2244#ifdef CONFIG_PPC64
2245	WARN_EMULATED_SETUP(mfdscr),
2246	WARN_EMULATED_SETUP(mtdscr),
2247	WARN_EMULATED_SETUP(lq_stq),
2248	WARN_EMULATED_SETUP(lxvw4x),
2249	WARN_EMULATED_SETUP(lxvh8x),
2250	WARN_EMULATED_SETUP(lxvd2x),
2251	WARN_EMULATED_SETUP(lxvb16x),
2252#endif
2253};
2254
2255u32 ppc_warn_emulated;
2256
2257void ppc_warn_emulated_print(const char *type)
2258{
2259	pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
2260			    type);
2261}
2262
2263static int __init ppc_warn_emulated_init(void)
2264{
2265	struct dentry *dir, *d;
2266	unsigned int i;
2267	struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
2268
2269	if (!powerpc_debugfs_root)
2270		return -ENODEV;
2271
2272	dir = debugfs_create_dir("emulated_instructions",
2273				 powerpc_debugfs_root);
2274	if (!dir)
2275		return -ENOMEM;
2276
2277	d = debugfs_create_u32("do_warn", 0644, dir,
2278			       &ppc_warn_emulated);
2279	if (!d)
2280		goto fail;
2281
2282	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
2283		d = debugfs_create_u32(entries[i].name, 0644, dir,
2284				       (u32 *)&entries[i].val.counter);
2285		if (!d)
2286			goto fail;
2287	}
2288
2289	return 0;
2290
2291fail:
2292	debugfs_remove_recursive(dir);
2293	return -ENOMEM;
2294}
2295
2296device_initcall(ppc_warn_emulated_init);
2297
2298#endif /* CONFIG_PPC_EMULATED_STATS */