Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
   4 *  Copyright 2007-2010 Freescale Semiconductor, Inc.
   5 *
 
 
 
 
 
   6 *  Modified by Cort Dougan (cort@cs.nmt.edu)
   7 *  and Paul Mackerras (paulus@samba.org)
   8 */
   9
  10/*
  11 * This file handles the architecture-dependent parts of hardware exceptions
  12 */
  13
  14#include <linux/errno.h>
  15#include <linux/sched.h>
  16#include <linux/sched/debug.h>
  17#include <linux/kernel.h>
  18#include <linux/mm.h>
  19#include <linux/pkeys.h>
  20#include <linux/stddef.h>
  21#include <linux/unistd.h>
  22#include <linux/ptrace.h>
  23#include <linux/user.h>
  24#include <linux/interrupt.h>
  25#include <linux/init.h>
  26#include <linux/extable.h>
  27#include <linux/module.h>	/* print_modules */
  28#include <linux/prctl.h>
  29#include <linux/delay.h>
  30#include <linux/kprobes.h>
  31#include <linux/kexec.h>
  32#include <linux/backlight.h>
  33#include <linux/bug.h>
  34#include <linux/kdebug.h>
 
  35#include <linux/ratelimit.h>
  36#include <linux/context_tracking.h>
  37#include <linux/smp.h>
  38#include <linux/console.h>
  39#include <linux/kmsg_dump.h>
  40
  41#include <asm/emulated_ops.h>
 
  42#include <linux/uaccess.h>
  43#include <asm/debugfs.h>
  44#include <asm/io.h>
  45#include <asm/machdep.h>
  46#include <asm/rtas.h>
  47#include <asm/pmc.h>
  48#include <asm/reg.h>
  49#ifdef CONFIG_PMAC_BACKLIGHT
  50#include <asm/backlight.h>
  51#endif
  52#ifdef CONFIG_PPC64
  53#include <asm/firmware.h>
  54#include <asm/processor.h>
  55#include <asm/tm.h>
  56#endif
  57#include <asm/kexec.h>
  58#include <asm/ppc-opcode.h>
  59#include <asm/rio.h>
  60#include <asm/fadump.h>
  61#include <asm/switch_to.h>
  62#include <asm/tm.h>
  63#include <asm/debug.h>
  64#include <asm/asm-prototypes.h>
  65#include <asm/hmi.h>
  66#include <sysdev/fsl_pci.h>
  67#include <asm/kprobes.h>
  68#include <asm/stacktrace.h>
  69#include <asm/nmi.h>
  70
  71#if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
  72int (*__debugger)(struct pt_regs *regs) __read_mostly;
  73int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
  74int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
  75int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
  76int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
  77int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
  78int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
  79
  80EXPORT_SYMBOL(__debugger);
  81EXPORT_SYMBOL(__debugger_ipi);
  82EXPORT_SYMBOL(__debugger_bpt);
  83EXPORT_SYMBOL(__debugger_sstep);
  84EXPORT_SYMBOL(__debugger_iabr_match);
  85EXPORT_SYMBOL(__debugger_break_match);
  86EXPORT_SYMBOL(__debugger_fault_handler);
  87#endif
  88
  89/* Transactional Memory trap debug */
  90#ifdef TM_DEBUG_SW
  91#define TM_DEBUG(x...) printk(KERN_INFO x)
  92#else
  93#define TM_DEBUG(x...) do { } while(0)
  94#endif
  95
  96static const char *signame(int signr)
  97{
  98	switch (signr) {
  99	case SIGBUS:	return "bus error";
 100	case SIGFPE:	return "floating point exception";
 101	case SIGILL:	return "illegal instruction";
 102	case SIGSEGV:	return "segfault";
 103	case SIGTRAP:	return "unhandled trap";
 104	}
 105
 106	return "unknown signal";
 107}
 108
 109/*
 110 * Trap & Exception support
 111 */
 112
 113#ifdef CONFIG_PMAC_BACKLIGHT
 114static void pmac_backlight_unblank(void)
 115{
 116	mutex_lock(&pmac_backlight_mutex);
 117	if (pmac_backlight) {
 118		struct backlight_properties *props;
 119
 120		props = &pmac_backlight->props;
 121		props->brightness = props->max_brightness;
 122		props->power = FB_BLANK_UNBLANK;
 123		backlight_update_status(pmac_backlight);
 124	}
 125	mutex_unlock(&pmac_backlight_mutex);
 126}
 127#else
 128static inline void pmac_backlight_unblank(void) { }
 129#endif
 130
 131/*
 132 * If oops/die is expected to crash the machine, return true here.
 133 *
 134 * This should not be expected to be 100% accurate, there may be
 135 * notifiers registered or other unexpected conditions that may bring
 136 * down the kernel. Or if the current process in the kernel is holding
 137 * locks or has other critical state, the kernel may become effectively
 138 * unusable anyway.
 139 */
 140bool die_will_crash(void)
 141{
 142	if (should_fadump_crash())
 143		return true;
 144	if (kexec_should_crash(current))
 145		return true;
 146	if (in_interrupt() || panic_on_oops ||
 147			!current->pid || is_global_init(current))
 148		return true;
 149
 150	return false;
 151}
 152
 153static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
 154static int die_owner = -1;
 155static unsigned int die_nest_count;
 156static int die_counter;
 157
 158extern void panic_flush_kmsg_start(void)
 159{
 160	/*
 161	 * These are mostly taken from kernel/panic.c, but tries to do
 162	 * relatively minimal work. Don't use delay functions (TB may
 163	 * be broken), don't crash dump (need to set a firmware log),
 164	 * don't run notifiers. We do want to get some information to
 165	 * Linux console.
 166	 */
 167	console_verbose();
 168	bust_spinlocks(1);
 169}
 170
 171extern void panic_flush_kmsg_end(void)
 172{
 173	printk_safe_flush_on_panic();
 174	kmsg_dump(KMSG_DUMP_PANIC);
 175	bust_spinlocks(0);
 176	debug_locks_off();
 177	console_flush_on_panic(CONSOLE_FLUSH_PENDING);
 178}
 179
 180static unsigned long oops_begin(struct pt_regs *regs)
 181{
 182	int cpu;
 183	unsigned long flags;
 184
 185	oops_enter();
 186
 187	/* racy, but better than risking deadlock. */
 188	raw_local_irq_save(flags);
 189	cpu = smp_processor_id();
 190	if (!arch_spin_trylock(&die_lock)) {
 191		if (cpu == die_owner)
 192			/* nested oops. should stop eventually */;
 193		else
 194			arch_spin_lock(&die_lock);
 195	}
 196	die_nest_count++;
 197	die_owner = cpu;
 198	console_verbose();
 199	bust_spinlocks(1);
 200	if (machine_is(powermac))
 201		pmac_backlight_unblank();
 202	return flags;
 203}
 204NOKPROBE_SYMBOL(oops_begin);
 205
 206static void oops_end(unsigned long flags, struct pt_regs *regs,
 207			       int signr)
 208{
 209	bust_spinlocks(0);
 210	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
 211	die_nest_count--;
 212	oops_exit();
 213	printk("\n");
 214	if (!die_nest_count) {
 215		/* Nest count reaches zero, release the lock. */
 216		die_owner = -1;
 217		arch_spin_unlock(&die_lock);
 218	}
 219	raw_local_irq_restore(flags);
 220
 221	/*
 222	 * system_reset_excption handles debugger, crash dump, panic, for 0x100
 223	 */
 224	if (TRAP(regs) == 0x100)
 225		return;
 226
 227	crash_fadump(regs, "die oops");
 228
 229	if (kexec_should_crash(current))
 
 
 
 
 230		crash_kexec(regs);
 231
 
 
 
 
 
 
 
 
 232	if (!signr)
 233		return;
 234
 235	/*
 236	 * While our oops output is serialised by a spinlock, output
 237	 * from panic() called below can race and corrupt it. If we
 238	 * know we are going to panic, delay for 1 second so we have a
 239	 * chance to get clean backtraces from all CPUs that are oopsing.
 240	 */
 241	if (in_interrupt() || panic_on_oops || !current->pid ||
 242	    is_global_init(current)) {
 243		mdelay(MSEC_PER_SEC);
 244	}
 245
 
 
 246	if (panic_on_oops)
 247		panic("Fatal exception");
 248	do_exit(signr);
 249}
 250NOKPROBE_SYMBOL(oops_end);
 251
 252static char *get_mmu_str(void)
 253{
 254	if (early_radix_enabled())
 255		return " MMU=Radix";
 256	if (early_mmu_has_feature(MMU_FTR_HPTE_TABLE))
 257		return " MMU=Hash";
 258	return "";
 259}
 260
 261static int __die(const char *str, struct pt_regs *regs, long err)
 262{
 263	printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
 264
 265	printk("%s PAGE_SIZE=%luK%s%s%s%s%s%s %s\n",
 266	       IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) ? "LE" : "BE",
 267	       PAGE_SIZE / 1024, get_mmu_str(),
 268	       IS_ENABLED(CONFIG_PREEMPT) ? " PREEMPT" : "",
 269	       IS_ENABLED(CONFIG_SMP) ? " SMP" : "",
 270	       IS_ENABLED(CONFIG_SMP) ? (" NR_CPUS=" __stringify(NR_CPUS)) : "",
 271	       debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "",
 272	       IS_ENABLED(CONFIG_NUMA) ? " NUMA" : "",
 273	       ppc_md.name ? ppc_md.name : "");
 
 
 274
 275	if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
 276		return 1;
 277
 278	print_modules();
 279	show_regs(regs);
 280
 281	return 0;
 282}
 283NOKPROBE_SYMBOL(__die);
 284
 285void die(const char *str, struct pt_regs *regs, long err)
 286{
 287	unsigned long flags;
 288
 289	/*
 290	 * system_reset_excption handles debugger, crash dump, panic, for 0x100
 291	 */
 292	if (TRAP(regs) != 0x100) {
 293		if (debugger(regs))
 294			return;
 295	}
 296
 297	flags = oops_begin(regs);
 298	if (__die(str, regs, err))
 299		err = 0;
 300	oops_end(flags, regs, err);
 301}
 302NOKPROBE_SYMBOL(die);
 303
 304void user_single_step_report(struct pt_regs *regs)
 
 305{
 306	force_sig_fault(SIGTRAP, TRAP_TRACE, (void __user *)regs->nip);
 
 
 
 307}
 308
 309static void show_signal_msg(int signr, struct pt_regs *regs, int code,
 310			    unsigned long addr)
 311{
 312	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
 313				      DEFAULT_RATELIMIT_BURST);
 314
 315	if (!show_unhandled_signals)
 316		return;
 317
 318	if (!unhandled_signal(current, signr))
 319		return;
 320
 321	if (!__ratelimit(&rs))
 322		return;
 323
 324	pr_info("%s[%d]: %s (%d) at %lx nip %lx lr %lx code %x",
 325		current->comm, current->pid, signame(signr), signr,
 326		addr, regs->nip, regs->link, code);
 327
 328	print_vma_addr(KERN_CONT " in ", regs->nip);
 329
 330	pr_cont("\n");
 331
 332	show_user_instructions(regs);
 333}
 334
 335static bool exception_common(int signr, struct pt_regs *regs, int code,
 336			      unsigned long addr)
 337{
 338	if (!user_mode(regs)) {
 339		die("Exception in kernel mode", regs, signr);
 340		return false;
 341	}
 342
 343	show_signal_msg(signr, regs, code, addr);
 
 
 
 
 344
 345	if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
 346		local_irq_enable();
 347
 348	current->thread.trap_nr = code;
 349
 350	/*
 351	 * Save all the pkey registers AMR/IAMR/UAMOR. Eg: Core dumps need
 352	 * to capture the content, if the task gets killed.
 353	 */
 354	thread_pkey_regs_save(&current->thread);
 355
 356	return true;
 357}
 358
 359void _exception_pkey(struct pt_regs *regs, unsigned long addr, int key)
 360{
 361	if (!exception_common(SIGSEGV, regs, SEGV_PKUERR, addr))
 362		return;
 
 
 
 363
 364	force_sig_pkuerr((void __user *) addr, key);
 365}
 366
 367void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
 368{
 369	if (!exception_common(signr, regs, code, addr))
 370		return;
 371
 372	force_sig_fault(signr, code, (void __user *)addr);
 373}
 374
 
 375/*
 376 * The interrupt architecture has a quirk in that the HV interrupts excluding
 377 * the NMIs (0x100 and 0x200) do not clear MSR[RI] at entry. The first thing
 378 * that an interrupt handler must do is save off a GPR into a scratch register,
 379 * and all interrupts on POWERNV (HV=1) use the HSPRG1 register as scratch.
 380 * Therefore an NMI can clobber an HV interrupt's live HSPRG1 without noticing
 381 * that it is non-reentrant, which leads to random data corruption.
 382 *
 383 * The solution is for NMI interrupts in HV mode to check if they originated
 384 * from these critical HV interrupt regions. If so, then mark them not
 385 * recoverable.
 386 *
 387 * An alternative would be for HV NMIs to use SPRG for scratch to avoid the
 388 * HSPRG1 clobber, however this would cause guest SPRG to be clobbered. Linux
 389 * guests should always have MSR[RI]=0 when its scratch SPRG is in use, so
 390 * that would work. However any other guest OS that may have the SPRG live
 391 * and MSR[RI]=1 could encounter silent corruption.
 392 *
 393 * Builds that do not support KVM could take this second option to increase
 394 * the recoverability of NMIs.
 395 */
 396void hv_nmi_check_nonrecoverable(struct pt_regs *regs)
 397{
 398#ifdef CONFIG_PPC_POWERNV
 399	unsigned long kbase = (unsigned long)_stext;
 400	unsigned long nip = regs->nip;
 401
 402	if (!(regs->msr & MSR_RI))
 403		return;
 404	if (!(regs->msr & MSR_HV))
 405		return;
 406	if (regs->msr & MSR_PR)
 407		return;
 408
 409	/*
 410	 * Now test if the interrupt has hit a range that may be using
 411	 * HSPRG1 without having RI=0 (i.e., an HSRR interrupt). The
 412	 * problem ranges all run un-relocated. Test real and virt modes
 413	 * at the same time by droping the high bit of the nip (virt mode
 414	 * entry points still have the +0x4000 offset).
 415	 */
 416	nip &= ~0xc000000000000000ULL;
 417	if ((nip >= 0x500 && nip < 0x600) || (nip >= 0x4500 && nip < 0x4600))
 418		goto nonrecoverable;
 419	if ((nip >= 0x980 && nip < 0xa00) || (nip >= 0x4980 && nip < 0x4a00))
 420		goto nonrecoverable;
 421	if ((nip >= 0xe00 && nip < 0xec0) || (nip >= 0x4e00 && nip < 0x4ec0))
 422		goto nonrecoverable;
 423	if ((nip >= 0xf80 && nip < 0xfa0) || (nip >= 0x4f80 && nip < 0x4fa0))
 424		goto nonrecoverable;
 425
 426	/* Trampoline code runs un-relocated so subtract kbase. */
 427	if (nip >= (unsigned long)(start_real_trampolines - kbase) &&
 428			nip < (unsigned long)(end_real_trampolines - kbase))
 429		goto nonrecoverable;
 430	if (nip >= (unsigned long)(start_virt_trampolines - kbase) &&
 431			nip < (unsigned long)(end_virt_trampolines - kbase))
 432		goto nonrecoverable;
 433	return;
 434
 435nonrecoverable:
 436	regs->msr &= ~MSR_RI;
 437#endif
 438}
 439
 440void system_reset_exception(struct pt_regs *regs)
 441{
 442	unsigned long hsrr0, hsrr1;
 443	bool saved_hsrrs = false;
 444	u8 ftrace_enabled = this_cpu_get_ftrace_enabled();
 445
 446	this_cpu_set_ftrace_enabled(0);
 447
 448	nmi_enter();
 
 449
 450	/*
 451	 * System reset can interrupt code where HSRRs are live and MSR[RI]=1.
 452	 * The system reset interrupt itself may clobber HSRRs (e.g., to call
 453	 * OPAL), so save them here and restore them before returning.
 454	 *
 455	 * Machine checks don't need to save HSRRs, as the real mode handler
 456	 * is careful to avoid them, and the regular handler is not delivered
 457	 * as an NMI.
 458	 */
 459	if (cpu_has_feature(CPU_FTR_HVMODE)) {
 460		hsrr0 = mfspr(SPRN_HSRR0);
 461		hsrr1 = mfspr(SPRN_HSRR1);
 462		saved_hsrrs = true;
 463	}
 464
 465	hv_nmi_check_nonrecoverable(regs);
 466
 467	__this_cpu_inc(irq_stat.sreset_irqs);
 468
 469	/* See if any machine dependent calls */
 470	if (ppc_md.system_reset_exception) {
 471		if (ppc_md.system_reset_exception(regs))
 472			goto out;
 473	}
 474
 475	if (debugger(regs))
 476		goto out;
 477
 478	kmsg_dump(KMSG_DUMP_OOPS);
 479	/*
 480	 * A system reset is a request to dump, so we always send
 481	 * it through the crashdump code (if fadump or kdump are
 482	 * registered).
 483	 */
 484	crash_fadump(regs, "System Reset");
 485
 486	crash_kexec(regs);
 487
 488	/*
 489	 * We aren't the primary crash CPU. We need to send it
 490	 * to a holding pattern to avoid it ending up in the panic
 491	 * code.
 492	 */
 493	crash_kexec_secondary(regs);
 494
 495	/*
 496	 * No debugger or crash dump registered, print logs then
 497	 * panic.
 498	 */
 499	die("System Reset", regs, SIGABRT);
 500
 501	mdelay(2*MSEC_PER_SEC); /* Wait a little while for others to print */
 502	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
 503	nmi_panic(regs, "System Reset");
 504
 505out:
 506#ifdef CONFIG_PPC_BOOK3S_64
 507	BUG_ON(get_paca()->in_nmi == 0);
 508	if (get_paca()->in_nmi > 1)
 509		die("Unrecoverable nested System Reset", regs, SIGABRT);
 510#endif
 511	/* Must die if the interrupt is not recoverable */
 512	if (!(regs->msr & MSR_RI))
 513		die("Unrecoverable System Reset", regs, SIGABRT);
 514
 515	if (saved_hsrrs) {
 516		mtspr(SPRN_HSRR0, hsrr0);
 517		mtspr(SPRN_HSRR1, hsrr1);
 518	}
 519
 520	nmi_exit();
 521
 522	this_cpu_set_ftrace_enabled(ftrace_enabled);
 523
 524	/* What should we do here? We could issue a shutdown or hard reset. */
 525}
 526
 527/*
 528 * I/O accesses can cause machine checks on powermacs.
 529 * Check if the NIP corresponds to the address of a sync
 530 * instruction for which there is an entry in the exception
 531 * table.
 532 * Note that the 601 only takes a machine check on TEA
 533 * (transfer error ack) signal assertion, and does not
 534 * set any of the top 16 bits of SRR1.
 535 *  -- paulus.
 536 */
 537static inline int check_io_access(struct pt_regs *regs)
 538{
 539#ifdef CONFIG_PPC32
 540	unsigned long msr = regs->msr;
 541	const struct exception_table_entry *entry;
 542	unsigned int *nip = (unsigned int *)regs->nip;
 543
 544	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
 545	    && (entry = search_exception_tables(regs->nip)) != NULL) {
 546		/*
 547		 * Check that it's a sync instruction, or somewhere
 548		 * in the twi; isync; nop sequence that inb/inw/inl uses.
 549		 * As the address is in the exception table
 550		 * we should be able to read the instr there.
 551		 * For the debug message, we look at the preceding
 552		 * load or store.
 553		 */
 554		if (*nip == PPC_INST_NOP)
 555			nip -= 2;
 556		else if (*nip == PPC_INST_ISYNC)
 557			--nip;
 558		if (*nip == PPC_INST_SYNC || (*nip >> 26) == OP_TRAP) {
 559			unsigned int rb;
 560
 561			--nip;
 562			rb = (*nip >> 11) & 0x1f;
 563			printk(KERN_DEBUG "%s bad port %lx at %p\n",
 564			       (*nip & 0x100)? "OUT to": "IN from",
 565			       regs->gpr[rb] - _IO_BASE, nip);
 566			regs->msr |= MSR_RI;
 567			regs->nip = extable_fixup(entry);
 568			return 1;
 569		}
 570	}
 571#endif /* CONFIG_PPC32 */
 572	return 0;
 573}
 574
 575#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 576/* On 4xx, the reason for the machine check or program exception
 577   is in the ESR. */
 578#define get_reason(regs)	((regs)->dsisr)
 
 
 
 
 
 579#define REASON_FP		ESR_FP
 580#define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
 581#define REASON_PRIVILEGED	ESR_PPR
 582#define REASON_TRAP		ESR_PTR
 583#define REASON_PREFIXED		0
 584#define REASON_BOUNDARY		0
 585
 586/* single-step stuff */
 587#define single_stepping(regs)	(current->thread.debug.dbcr0 & DBCR0_IC)
 588#define clear_single_step(regs)	(current->thread.debug.dbcr0 &= ~DBCR0_IC)
 589#define clear_br_trace(regs)	do {} while(0)
 590#else
 591/* On non-4xx, the reason for the machine check or program
 592   exception is in the MSR. */
 593#define get_reason(regs)	((regs)->msr)
 594#define REASON_TM		SRR1_PROGTM
 595#define REASON_FP		SRR1_PROGFPE
 596#define REASON_ILLEGAL		SRR1_PROGILL
 597#define REASON_PRIVILEGED	SRR1_PROGPRIV
 598#define REASON_TRAP		SRR1_PROGTRAP
 599#define REASON_PREFIXED		SRR1_PREFIXED
 600#define REASON_BOUNDARY		SRR1_BOUNDARY
 601
 602#define single_stepping(regs)	((regs)->msr & MSR_SE)
 603#define clear_single_step(regs)	((regs)->msr &= ~MSR_SE)
 604#define clear_br_trace(regs)	((regs)->msr &= ~MSR_BE)
 605#endif
 606
 607#define inst_length(reason)	(((reason) & REASON_PREFIXED) ? 8 : 4)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 608
 609#if defined(CONFIG_E500)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 610int machine_check_e500mc(struct pt_regs *regs)
 611{
 612	unsigned long mcsr = mfspr(SPRN_MCSR);
 613	unsigned long pvr = mfspr(SPRN_PVR);
 614	unsigned long reason = mcsr;
 615	int recoverable = 1;
 616
 617	if (reason & MCSR_LD) {
 618		recoverable = fsl_rio_mcheck_exception(regs);
 619		if (recoverable == 1)
 620			goto silent_out;
 621	}
 622
 623	printk("Machine check in kernel mode.\n");
 624	printk("Caused by (from MCSR=%lx): ", reason);
 625
 626	if (reason & MCSR_MCP)
 627		pr_cont("Machine Check Signal\n");
 628
 629	if (reason & MCSR_ICPERR) {
 630		pr_cont("Instruction Cache Parity Error\n");
 631
 632		/*
 633		 * This is recoverable by invalidating the i-cache.
 634		 */
 635		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
 636		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
 637			;
 638
 639		/*
 640		 * This will generally be accompanied by an instruction
 641		 * fetch error report -- only treat MCSR_IF as fatal
 642		 * if it wasn't due to an L1 parity error.
 643		 */
 644		reason &= ~MCSR_IF;
 645	}
 646
 647	if (reason & MCSR_DCPERR_MC) {
 648		pr_cont("Data Cache Parity Error\n");
 649
 650		/*
 651		 * In write shadow mode we auto-recover from the error, but it
 652		 * may still get logged and cause a machine check.  We should
 653		 * only treat the non-write shadow case as non-recoverable.
 654		 */
 655		/* On e6500 core, L1 DCWS (Data cache write shadow mode) bit
 656		 * is not implemented but L1 data cache always runs in write
 657		 * shadow mode. Hence on data cache parity errors HW will
 658		 * automatically invalidate the L1 Data Cache.
 659		 */
 660		if (PVR_VER(pvr) != PVR_VER_E6500) {
 661			if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
 662				recoverable = 0;
 663		}
 664	}
 665
 666	if (reason & MCSR_L2MMU_MHIT) {
 667		pr_cont("Hit on multiple TLB entries\n");
 668		recoverable = 0;
 669	}
 670
 671	if (reason & MCSR_NMI)
 672		pr_cont("Non-maskable interrupt\n");
 673
 674	if (reason & MCSR_IF) {
 675		pr_cont("Instruction Fetch Error Report\n");
 676		recoverable = 0;
 677	}
 678
 679	if (reason & MCSR_LD) {
 680		pr_cont("Load Error Report\n");
 681		recoverable = 0;
 682	}
 683
 684	if (reason & MCSR_ST) {
 685		pr_cont("Store Error Report\n");
 686		recoverable = 0;
 687	}
 688
 689	if (reason & MCSR_LDG) {
 690		pr_cont("Guarded Load Error Report\n");
 691		recoverable = 0;
 692	}
 693
 694	if (reason & MCSR_TLBSYNC)
 695		pr_cont("Simultaneous tlbsync operations\n");
 696
 697	if (reason & MCSR_BSL2_ERR) {
 698		pr_cont("Level 2 Cache Error\n");
 699		recoverable = 0;
 700	}
 701
 702	if (reason & MCSR_MAV) {
 703		u64 addr;
 704
 705		addr = mfspr(SPRN_MCAR);
 706		addr |= (u64)mfspr(SPRN_MCARU) << 32;
 707
 708		pr_cont("Machine Check %s Address: %#llx\n",
 709		       reason & MCSR_MEA ? "Effective" : "Physical", addr);
 710	}
 711
 712silent_out:
 713	mtspr(SPRN_MCSR, mcsr);
 714	return mfspr(SPRN_MCSR) == 0 && recoverable;
 715}
 716
 717int machine_check_e500(struct pt_regs *regs)
 718{
 719	unsigned long reason = mfspr(SPRN_MCSR);
 720
 721	if (reason & MCSR_BUS_RBERR) {
 722		if (fsl_rio_mcheck_exception(regs))
 723			return 1;
 724		if (fsl_pci_mcheck_exception(regs))
 725			return 1;
 726	}
 727
 728	printk("Machine check in kernel mode.\n");
 729	printk("Caused by (from MCSR=%lx): ", reason);
 730
 731	if (reason & MCSR_MCP)
 732		pr_cont("Machine Check Signal\n");
 733	if (reason & MCSR_ICPERR)
 734		pr_cont("Instruction Cache Parity Error\n");
 735	if (reason & MCSR_DCP_PERR)
 736		pr_cont("Data Cache Push Parity Error\n");
 737	if (reason & MCSR_DCPERR)
 738		pr_cont("Data Cache Parity Error\n");
 739	if (reason & MCSR_BUS_IAERR)
 740		pr_cont("Bus - Instruction Address Error\n");
 741	if (reason & MCSR_BUS_RAERR)
 742		pr_cont("Bus - Read Address Error\n");
 743	if (reason & MCSR_BUS_WAERR)
 744		pr_cont("Bus - Write Address Error\n");
 745	if (reason & MCSR_BUS_IBERR)
 746		pr_cont("Bus - Instruction Data Error\n");
 747	if (reason & MCSR_BUS_RBERR)
 748		pr_cont("Bus - Read Data Bus Error\n");
 749	if (reason & MCSR_BUS_WBERR)
 750		pr_cont("Bus - Write Data Bus Error\n");
 751	if (reason & MCSR_BUS_IPERR)
 752		pr_cont("Bus - Instruction Parity Error\n");
 753	if (reason & MCSR_BUS_RPERR)
 754		pr_cont("Bus - Read Parity Error\n");
 755
 756	return 0;
 757}
 758
 759int machine_check_generic(struct pt_regs *regs)
 760{
 761	return 0;
 762}
 763#elif defined(CONFIG_E200)
 764int machine_check_e200(struct pt_regs *regs)
 765{
 766	unsigned long reason = mfspr(SPRN_MCSR);
 767
 768	printk("Machine check in kernel mode.\n");
 769	printk("Caused by (from MCSR=%lx): ", reason);
 770
 771	if (reason & MCSR_MCP)
 772		pr_cont("Machine Check Signal\n");
 773	if (reason & MCSR_CP_PERR)
 774		pr_cont("Cache Push Parity Error\n");
 775	if (reason & MCSR_CPERR)
 776		pr_cont("Cache Parity Error\n");
 777	if (reason & MCSR_EXCP_ERR)
 778		pr_cont("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
 779	if (reason & MCSR_BUS_IRERR)
 780		pr_cont("Bus - Read Bus Error on instruction fetch\n");
 781	if (reason & MCSR_BUS_DRERR)
 782		pr_cont("Bus - Read Bus Error on data load\n");
 783	if (reason & MCSR_BUS_WRERR)
 784		pr_cont("Bus - Write Bus Error on buffered store or cache line push\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 785
 
 
 
 
 
 
 
 
 
 
 786	return 0;
 
 787}
 788#elif defined(CONFIG_PPC32)
 789int machine_check_generic(struct pt_regs *regs)
 790{
 791	unsigned long reason = regs->msr;
 792
 793	printk("Machine check in kernel mode.\n");
 794	printk("Caused by (from SRR1=%lx): ", reason);
 795	switch (reason & 0x601F0000) {
 796	case 0x80000:
 797		pr_cont("Machine check signal\n");
 798		break;
 799	case 0:		/* for 601 */
 800	case 0x40000:
 801	case 0x140000:	/* 7450 MSS error and TEA */
 802		pr_cont("Transfer error ack signal\n");
 803		break;
 804	case 0x20000:
 805		pr_cont("Data parity error signal\n");
 806		break;
 807	case 0x10000:
 808		pr_cont("Address parity error signal\n");
 809		break;
 810	case 0x20000000:
 811		pr_cont("L1 Data Cache error\n");
 812		break;
 813	case 0x40000000:
 814		pr_cont("L1 Instruction Cache error\n");
 815		break;
 816	case 0x00100000:
 817		pr_cont("L2 data cache parity error\n");
 818		break;
 819	default:
 820		pr_cont("Unknown values in msr\n");
 821	}
 822	return 0;
 823}
 824#endif /* everything else */
 825
 826void machine_check_exception(struct pt_regs *regs)
 827{
 
 828	int recover = 0;
 829
 830	/*
 831	 * BOOK3S_64 does not call this handler as a non-maskable interrupt
 832	 * (it uses its own early real-mode handler to handle the MCE proper
 833	 * and then raises irq_work to call this handler when interrupts are
 834	 * enabled).
 835	 *
 836	 * This is silly. The BOOK3S_64 should just call a different function
 837	 * rather than expecting semantics to magically change. Something
 838	 * like 'non_nmi_machine_check_exception()', perhaps?
 839	 */
 840	const bool nmi = !IS_ENABLED(CONFIG_PPC_BOOK3S_64);
 841
 842	if (nmi) nmi_enter();
 843
 844	__this_cpu_inc(irq_stat.mce_exceptions);
 845
 846	add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
 847
 848	/* See if any machine dependent calls. In theory, we would want
 849	 * to call the CPU first, and call the ppc_md. one if the CPU
 850	 * one returns a positive number. However there is existing code
 851	 * that assumes the board gets a first chance, so let's keep it
 852	 * that way for now and fix things later. --BenH.
 853	 */
 854	if (ppc_md.machine_check_exception)
 855		recover = ppc_md.machine_check_exception(regs);
 856	else if (cur_cpu_spec->machine_check)
 857		recover = cur_cpu_spec->machine_check(regs);
 858
 859	if (recover > 0)
 860		goto bail;
 861
 862	if (debugger_fault_handler(regs))
 863		goto bail;
 864
 865	if (check_io_access(regs))
 866		goto bail;
 867
 868	if (nmi) nmi_exit();
 869
 870	die("Machine check", regs, SIGBUS);
 871
 872	/* Must die if the interrupt is not recoverable */
 873	if (!(regs->msr & MSR_RI))
 874		die("Unrecoverable Machine check", regs, SIGBUS);
 875
 876	return;
 877
 878bail:
 879	if (nmi) nmi_exit();
 880}
 881
 882void SMIException(struct pt_regs *regs)
 883{
 884	die("System Management Interrupt", regs, SIGABRT);
 885}
 886
 887#ifdef CONFIG_VSX
 888static void p9_hmi_special_emu(struct pt_regs *regs)
 889{
 890	unsigned int ra, rb, t, i, sel, instr, rc;
 891	const void __user *addr;
 892	u8 vbuf[16], *vdst;
 893	unsigned long ea, msr, msr_mask;
 894	bool swap;
 895
 896	if (__get_user_inatomic(instr, (unsigned int __user *)regs->nip))
 897		return;
 898
 899	/*
 900	 * lxvb16x	opcode: 0x7c0006d8
 901	 * lxvd2x	opcode: 0x7c000698
 902	 * lxvh8x	opcode: 0x7c000658
 903	 * lxvw4x	opcode: 0x7c000618
 904	 */
 905	if ((instr & 0xfc00073e) != 0x7c000618) {
 906		pr_devel("HMI vec emu: not vector CI %i:%s[%d] nip=%016lx"
 907			 " instr=%08x\n",
 908			 smp_processor_id(), current->comm, current->pid,
 909			 regs->nip, instr);
 910		return;
 911	}
 912
 913	/* Grab vector registers into the task struct */
 914	msr = regs->msr; /* Grab msr before we flush the bits */
 915	flush_vsx_to_thread(current);
 916	enable_kernel_altivec();
 917
 918	/*
 919	 * Is userspace running with a different endian (this is rare but
 920	 * not impossible)
 921	 */
 922	swap = (msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
 923
 924	/* Decode the instruction */
 925	ra = (instr >> 16) & 0x1f;
 926	rb = (instr >> 11) & 0x1f;
 927	t = (instr >> 21) & 0x1f;
 928	if (instr & 1)
 929		vdst = (u8 *)&current->thread.vr_state.vr[t];
 930	else
 931		vdst = (u8 *)&current->thread.fp_state.fpr[t][0];
 932
 933	/* Grab the vector address */
 934	ea = regs->gpr[rb] + (ra ? regs->gpr[ra] : 0);
 935	if (is_32bit_task())
 936		ea &= 0xfffffffful;
 937	addr = (__force const void __user *)ea;
 938
 939	/* Check it */
 940	if (!access_ok(addr, 16)) {
 941		pr_devel("HMI vec emu: bad access %i:%s[%d] nip=%016lx"
 942			 " instr=%08x addr=%016lx\n",
 943			 smp_processor_id(), current->comm, current->pid,
 944			 regs->nip, instr, (unsigned long)addr);
 945		return;
 946	}
 947
 948	/* Read the vector */
 949	rc = 0;
 950	if ((unsigned long)addr & 0xfUL)
 951		/* unaligned case */
 952		rc = __copy_from_user_inatomic(vbuf, addr, 16);
 953	else
 954		__get_user_atomic_128_aligned(vbuf, addr, rc);
 955	if (rc) {
 956		pr_devel("HMI vec emu: page fault %i:%s[%d] nip=%016lx"
 957			 " instr=%08x addr=%016lx\n",
 958			 smp_processor_id(), current->comm, current->pid,
 959			 regs->nip, instr, (unsigned long)addr);
 960		return;
 961	}
 962
 963	pr_devel("HMI vec emu: emulated vector CI %i:%s[%d] nip=%016lx"
 964		 " instr=%08x addr=%016lx\n",
 965		 smp_processor_id(), current->comm, current->pid, regs->nip,
 966		 instr, (unsigned long) addr);
 967
 968	/* Grab instruction "selector" */
 969	sel = (instr >> 6) & 3;
 970
 971	/*
 972	 * Check to make sure the facility is actually enabled. This
 973	 * could happen if we get a false positive hit.
 974	 *
 975	 * lxvd2x/lxvw4x always check MSR VSX sel = 0,2
 976	 * lxvh8x/lxvb16x check MSR VSX or VEC depending on VSR used sel = 1,3
 977	 */
 978	msr_mask = MSR_VSX;
 979	if ((sel & 1) && (instr & 1)) /* lxvh8x & lxvb16x + VSR >= 32 */
 980		msr_mask = MSR_VEC;
 981	if (!(msr & msr_mask)) {
 982		pr_devel("HMI vec emu: MSR fac clear %i:%s[%d] nip=%016lx"
 983			 " instr=%08x msr:%016lx\n",
 984			 smp_processor_id(), current->comm, current->pid,
 985			 regs->nip, instr, msr);
 986		return;
 987	}
 988
 989	/* Do logging here before we modify sel based on endian */
 990	switch (sel) {
 991	case 0:	/* lxvw4x */
 992		PPC_WARN_EMULATED(lxvw4x, regs);
 993		break;
 994	case 1: /* lxvh8x */
 995		PPC_WARN_EMULATED(lxvh8x, regs);
 996		break;
 997	case 2: /* lxvd2x */
 998		PPC_WARN_EMULATED(lxvd2x, regs);
 999		break;
1000	case 3: /* lxvb16x */
1001		PPC_WARN_EMULATED(lxvb16x, regs);
1002		break;
1003	}
1004
1005#ifdef __LITTLE_ENDIAN__
1006	/*
1007	 * An LE kernel stores the vector in the task struct as an LE
1008	 * byte array (effectively swapping both the components and
1009	 * the content of the components). Those instructions expect
1010	 * the components to remain in ascending address order, so we
1011	 * swap them back.
1012	 *
1013	 * If we are running a BE user space, the expectation is that
1014	 * of a simple memcpy, so forcing the emulation to look like
1015	 * a lxvb16x should do the trick.
1016	 */
1017	if (swap)
1018		sel = 3;
1019
1020	switch (sel) {
1021	case 0:	/* lxvw4x */
1022		for (i = 0; i < 4; i++)
1023			((u32 *)vdst)[i] = ((u32 *)vbuf)[3-i];
1024		break;
1025	case 1: /* lxvh8x */
1026		for (i = 0; i < 8; i++)
1027			((u16 *)vdst)[i] = ((u16 *)vbuf)[7-i];
1028		break;
1029	case 2: /* lxvd2x */
1030		for (i = 0; i < 2; i++)
1031			((u64 *)vdst)[i] = ((u64 *)vbuf)[1-i];
1032		break;
1033	case 3: /* lxvb16x */
1034		for (i = 0; i < 16; i++)
1035			vdst[i] = vbuf[15-i];
1036		break;
1037	}
1038#else /* __LITTLE_ENDIAN__ */
1039	/* On a big endian kernel, a BE userspace only needs a memcpy */
1040	if (!swap)
1041		sel = 3;
1042
1043	/* Otherwise, we need to swap the content of the components */
1044	switch (sel) {
1045	case 0:	/* lxvw4x */
1046		for (i = 0; i < 4; i++)
1047			((u32 *)vdst)[i] = cpu_to_le32(((u32 *)vbuf)[i]);
1048		break;
1049	case 1: /* lxvh8x */
1050		for (i = 0; i < 8; i++)
1051			((u16 *)vdst)[i] = cpu_to_le16(((u16 *)vbuf)[i]);
1052		break;
1053	case 2: /* lxvd2x */
1054		for (i = 0; i < 2; i++)
1055			((u64 *)vdst)[i] = cpu_to_le64(((u64 *)vbuf)[i]);
1056		break;
1057	case 3: /* lxvb16x */
1058		memcpy(vdst, vbuf, 16);
1059		break;
1060	}
1061#endif /* !__LITTLE_ENDIAN__ */
1062
1063	/* Go to next instruction */
1064	regs->nip += 4;
1065}
1066#endif /* CONFIG_VSX */
1067
1068void handle_hmi_exception(struct pt_regs *regs)
1069{
1070	struct pt_regs *old_regs;
1071
1072	old_regs = set_irq_regs(regs);
1073	irq_enter();
1074
1075#ifdef CONFIG_VSX
1076	/* Real mode flagged P9 special emu is needed */
1077	if (local_paca->hmi_p9_special_emu) {
1078		local_paca->hmi_p9_special_emu = 0;
1079
1080		/*
1081		 * We don't want to take page faults while doing the
1082		 * emulation, we just replay the instruction if necessary.
1083		 */
1084		pagefault_disable();
1085		p9_hmi_special_emu(regs);
1086		pagefault_enable();
1087	}
1088#endif /* CONFIG_VSX */
1089
1090	if (ppc_md.handle_hmi_exception)
1091		ppc_md.handle_hmi_exception(regs);
1092
1093	irq_exit();
1094	set_irq_regs(old_regs);
1095}
1096
1097void unknown_exception(struct pt_regs *regs)
1098{
1099	enum ctx_state prev_state = exception_enter();
1100
1101	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
1102	       regs->nip, regs->msr, regs->trap);
1103
1104	_exception(SIGTRAP, regs, TRAP_UNK, 0);
1105
1106	exception_exit(prev_state);
1107}
1108
1109void instruction_breakpoint_exception(struct pt_regs *regs)
1110{
1111	enum ctx_state prev_state = exception_enter();
1112
1113	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
1114					5, SIGTRAP) == NOTIFY_STOP)
1115		goto bail;
1116	if (debugger_iabr_match(regs))
1117		goto bail;
1118	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1119
1120bail:
1121	exception_exit(prev_state);
1122}
1123
1124void RunModeException(struct pt_regs *regs)
1125{
1126	_exception(SIGTRAP, regs, TRAP_UNK, 0);
1127}
1128
1129void single_step_exception(struct pt_regs *regs)
1130{
1131	enum ctx_state prev_state = exception_enter();
1132
1133	clear_single_step(regs);
1134	clear_br_trace(regs);
1135
1136	if (kprobe_post_handler(regs))
1137		return;
1138
1139	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1140					5, SIGTRAP) == NOTIFY_STOP)
1141		goto bail;
1142	if (debugger_sstep(regs))
1143		goto bail;
1144
1145	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1146
1147bail:
1148	exception_exit(prev_state);
1149}
1150NOKPROBE_SYMBOL(single_step_exception);
1151
1152/*
1153 * After we have successfully emulated an instruction, we have to
1154 * check if the instruction was being single-stepped, and if so,
1155 * pretend we got a single-step exception.  This was pointed out
1156 * by Kumar Gala.  -- paulus
1157 */
1158static void emulate_single_step(struct pt_regs *regs)
1159{
1160	if (single_stepping(regs))
1161		single_step_exception(regs);
1162}
1163
1164static inline int __parse_fpscr(unsigned long fpscr)
1165{
1166	int ret = FPE_FLTUNK;
1167
1168	/* Invalid operation */
1169	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
1170		ret = FPE_FLTINV;
1171
1172	/* Overflow */
1173	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
1174		ret = FPE_FLTOVF;
1175
1176	/* Underflow */
1177	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
1178		ret = FPE_FLTUND;
1179
1180	/* Divide by zero */
1181	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
1182		ret = FPE_FLTDIV;
1183
1184	/* Inexact result */
1185	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
1186		ret = FPE_FLTRES;
1187
1188	return ret;
1189}
1190
1191static void parse_fpe(struct pt_regs *regs)
1192{
1193	int code = 0;
1194
1195	flush_fp_to_thread(current);
1196
1197	code = __parse_fpscr(current->thread.fp_state.fpscr);
1198
1199	_exception(SIGFPE, regs, code, regs->nip);
1200}
1201
1202/*
1203 * Illegal instruction emulation support.  Originally written to
1204 * provide the PVR to user applications using the mfspr rd, PVR.
1205 * Return non-zero if we can't emulate, or -EFAULT if the associated
1206 * memory access caused an access fault.  Return zero on success.
1207 *
1208 * There are a couple of ways to do this, either "decode" the instruction
1209 * or directly match lots of bits.  In this case, matching lots of
1210 * bits is faster and easier.
1211 *
1212 */
1213static int emulate_string_inst(struct pt_regs *regs, u32 instword)
1214{
1215	u8 rT = (instword >> 21) & 0x1f;
1216	u8 rA = (instword >> 16) & 0x1f;
1217	u8 NB_RB = (instword >> 11) & 0x1f;
1218	u32 num_bytes;
1219	unsigned long EA;
1220	int pos = 0;
1221
1222	/* Early out if we are an invalid form of lswx */
1223	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
1224		if ((rT == rA) || (rT == NB_RB))
1225			return -EINVAL;
1226
1227	EA = (rA == 0) ? 0 : regs->gpr[rA];
1228
1229	switch (instword & PPC_INST_STRING_MASK) {
1230		case PPC_INST_LSWX:
1231		case PPC_INST_STSWX:
1232			EA += NB_RB;
1233			num_bytes = regs->xer & 0x7f;
1234			break;
1235		case PPC_INST_LSWI:
1236		case PPC_INST_STSWI:
1237			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
1238			break;
1239		default:
1240			return -EINVAL;
1241	}
1242
1243	while (num_bytes != 0)
1244	{
1245		u8 val;
1246		u32 shift = 8 * (3 - (pos & 0x3));
1247
1248		/* if process is 32-bit, clear upper 32 bits of EA */
1249		if ((regs->msr & MSR_64BIT) == 0)
1250			EA &= 0xFFFFFFFF;
1251
1252		switch ((instword & PPC_INST_STRING_MASK)) {
1253			case PPC_INST_LSWX:
1254			case PPC_INST_LSWI:
1255				if (get_user(val, (u8 __user *)EA))
1256					return -EFAULT;
1257				/* first time updating this reg,
1258				 * zero it out */
1259				if (pos == 0)
1260					regs->gpr[rT] = 0;
1261				regs->gpr[rT] |= val << shift;
1262				break;
1263			case PPC_INST_STSWI:
1264			case PPC_INST_STSWX:
1265				val = regs->gpr[rT] >> shift;
1266				if (put_user(val, (u8 __user *)EA))
1267					return -EFAULT;
1268				break;
1269		}
1270		/* move EA to next address */
1271		EA += 1;
1272		num_bytes--;
1273
1274		/* manage our position within the register */
1275		if (++pos == 4) {
1276			pos = 0;
1277			if (++rT == 32)
1278				rT = 0;
1279		}
1280	}
1281
1282	return 0;
1283}
1284
1285static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
1286{
1287	u32 ra,rs;
1288	unsigned long tmp;
1289
1290	ra = (instword >> 16) & 0x1f;
1291	rs = (instword >> 21) & 0x1f;
1292
1293	tmp = regs->gpr[rs];
1294	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
1295	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
1296	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1297	regs->gpr[ra] = tmp;
1298
1299	return 0;
1300}
1301
1302static int emulate_isel(struct pt_regs *regs, u32 instword)
1303{
1304	u8 rT = (instword >> 21) & 0x1f;
1305	u8 rA = (instword >> 16) & 0x1f;
1306	u8 rB = (instword >> 11) & 0x1f;
1307	u8 BC = (instword >> 6) & 0x1f;
1308	u8 bit;
1309	unsigned long tmp;
1310
1311	tmp = (rA == 0) ? 0 : regs->gpr[rA];
1312	bit = (regs->ccr >> (31 - BC)) & 0x1;
1313
1314	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
1315
1316	return 0;
1317}
1318
1319#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1320static inline bool tm_abort_check(struct pt_regs *regs, int cause)
1321{
1322        /* If we're emulating a load/store in an active transaction, we cannot
1323         * emulate it as the kernel operates in transaction suspended context.
1324         * We need to abort the transaction.  This creates a persistent TM
1325         * abort so tell the user what caused it with a new code.
1326	 */
1327	if (MSR_TM_TRANSACTIONAL(regs->msr)) {
1328		tm_enable();
1329		tm_abort(cause);
1330		return true;
1331	}
1332	return false;
1333}
1334#else
1335static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1336{
1337	return false;
1338}
1339#endif
1340
1341static int emulate_instruction(struct pt_regs *regs)
1342{
1343	u32 instword;
1344	u32 rd;
1345
1346	if (!user_mode(regs))
1347		return -EINVAL;
1348	CHECK_FULL_REGS(regs);
1349
1350	if (get_user(instword, (u32 __user *)(regs->nip)))
1351		return -EFAULT;
1352
1353	/* Emulate the mfspr rD, PVR. */
1354	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1355		PPC_WARN_EMULATED(mfpvr, regs);
1356		rd = (instword >> 21) & 0x1f;
1357		regs->gpr[rd] = mfspr(SPRN_PVR);
1358		return 0;
1359	}
1360
1361	/* Emulating the dcba insn is just a no-op.  */
1362	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1363		PPC_WARN_EMULATED(dcba, regs);
1364		return 0;
1365	}
1366
1367	/* Emulate the mcrxr insn.  */
1368	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1369		int shift = (instword >> 21) & 0x1c;
1370		unsigned long msk = 0xf0000000UL >> shift;
1371
1372		PPC_WARN_EMULATED(mcrxr, regs);
1373		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1374		regs->xer &= ~0xf0000000UL;
1375		return 0;
1376	}
1377
1378	/* Emulate load/store string insn. */
1379	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1380		if (tm_abort_check(regs,
1381				   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1382			return -EINVAL;
1383		PPC_WARN_EMULATED(string, regs);
1384		return emulate_string_inst(regs, instword);
1385	}
1386
1387	/* Emulate the popcntb (Population Count Bytes) instruction. */
1388	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1389		PPC_WARN_EMULATED(popcntb, regs);
1390		return emulate_popcntb_inst(regs, instword);
1391	}
1392
1393	/* Emulate isel (Integer Select) instruction */
1394	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1395		PPC_WARN_EMULATED(isel, regs);
1396		return emulate_isel(regs, instword);
1397	}
1398
1399	/* Emulate sync instruction variants */
1400	if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1401		PPC_WARN_EMULATED(sync, regs);
1402		asm volatile("sync");
1403		return 0;
1404	}
1405
1406#ifdef CONFIG_PPC64
1407	/* Emulate the mfspr rD, DSCR. */
1408	if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1409		PPC_INST_MFSPR_DSCR_USER) ||
1410	     ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1411		PPC_INST_MFSPR_DSCR)) &&
1412			cpu_has_feature(CPU_FTR_DSCR)) {
1413		PPC_WARN_EMULATED(mfdscr, regs);
1414		rd = (instword >> 21) & 0x1f;
1415		regs->gpr[rd] = mfspr(SPRN_DSCR);
1416		return 0;
1417	}
1418	/* Emulate the mtspr DSCR, rD. */
1419	if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1420		PPC_INST_MTSPR_DSCR_USER) ||
1421	     ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1422		PPC_INST_MTSPR_DSCR)) &&
1423			cpu_has_feature(CPU_FTR_DSCR)) {
1424		PPC_WARN_EMULATED(mtdscr, regs);
1425		rd = (instword >> 21) & 0x1f;
1426		current->thread.dscr = regs->gpr[rd];
1427		current->thread.dscr_inherit = 1;
1428		mtspr(SPRN_DSCR, current->thread.dscr);
1429		return 0;
1430	}
1431#endif
1432
1433	return -EINVAL;
1434}
1435
1436int is_valid_bugaddr(unsigned long addr)
1437{
1438	return is_kernel_addr(addr);
1439}
1440
1441#ifdef CONFIG_MATH_EMULATION
1442static int emulate_math(struct pt_regs *regs)
1443{
1444	int ret;
1445	extern int do_mathemu(struct pt_regs *regs);
1446
1447	ret = do_mathemu(regs);
1448	if (ret >= 0)
1449		PPC_WARN_EMULATED(math, regs);
1450
1451	switch (ret) {
1452	case 0:
1453		emulate_single_step(regs);
1454		return 0;
1455	case 1: {
1456			int code = 0;
1457			code = __parse_fpscr(current->thread.fp_state.fpscr);
1458			_exception(SIGFPE, regs, code, regs->nip);
1459			return 0;
1460		}
1461	case -EFAULT:
1462		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1463		return 0;
1464	}
1465
1466	return -1;
1467}
1468#else
1469static inline int emulate_math(struct pt_regs *regs) { return -1; }
1470#endif
1471
1472void program_check_exception(struct pt_regs *regs)
1473{
1474	enum ctx_state prev_state = exception_enter();
1475	unsigned int reason = get_reason(regs);
1476
1477	/* We can now get here via a FP Unavailable exception if the core
1478	 * has no FPU, in that case the reason flags will be 0 */
1479
1480	if (reason & REASON_FP) {
1481		/* IEEE FP exception */
1482		parse_fpe(regs);
1483		goto bail;
1484	}
1485	if (reason & REASON_TRAP) {
1486		unsigned long bugaddr;
1487		/* Debugger is first in line to stop recursive faults in
1488		 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1489		if (debugger_bpt(regs))
1490			goto bail;
1491
1492		if (kprobe_handler(regs))
1493			goto bail;
1494
1495		/* trap exception */
1496		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1497				== NOTIFY_STOP)
1498			goto bail;
1499
1500		bugaddr = regs->nip;
1501		/*
1502		 * Fixup bugaddr for BUG_ON() in real mode
1503		 */
1504		if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1505			bugaddr += PAGE_OFFSET;
1506
1507		if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1508		    report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1509			regs->nip += 4;
1510			goto bail;
1511		}
1512		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1513		goto bail;
1514	}
1515#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1516	if (reason & REASON_TM) {
1517		/* This is a TM "Bad Thing Exception" program check.
1518		 * This occurs when:
1519		 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1520		 *    transition in TM states.
1521		 * -  A trechkpt is attempted when transactional.
1522		 * -  A treclaim is attempted when non transactional.
1523		 * -  A tend is illegally attempted.
1524		 * -  writing a TM SPR when transactional.
1525		 *
1526		 * If usermode caused this, it's done something illegal and
 
 
 
 
 
1527		 * gets a SIGILL slap on the wrist.  We call it an illegal
1528		 * operand to distinguish from the instruction just being bad
1529		 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1530		 * illegal /placement/ of a valid instruction.
1531		 */
1532		if (user_mode(regs)) {
1533			_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1534			goto bail;
1535		} else {
1536			printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1537			       "at %lx (msr 0x%lx) tm_scratch=%llx\n",
1538			       regs->nip, regs->msr, get_paca()->tm_scratch);
1539			die("Unrecoverable exception", regs, SIGABRT);
1540		}
1541	}
1542#endif
1543
1544	/*
1545	 * If we took the program check in the kernel skip down to sending a
1546	 * SIGILL. The subsequent cases all relate to emulating instructions
1547	 * which we should only do for userspace. We also do not want to enable
1548	 * interrupts for kernel faults because that might lead to further
1549	 * faults, and loose the context of the original exception.
1550	 */
1551	if (!user_mode(regs))
1552		goto sigill;
1553
1554	/* We restore the interrupt state now */
1555	if (!arch_irq_disabled_regs(regs))
1556		local_irq_enable();
1557
1558	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
1559	 * but there seems to be a hardware bug on the 405GP (RevD)
1560	 * that means ESR is sometimes set incorrectly - either to
1561	 * ESR_DST (!?) or 0.  In the process of chasing this with the
1562	 * hardware people - not sure if it can happen on any illegal
1563	 * instruction or only on FP instructions, whether there is a
1564	 * pattern to occurrences etc. -dgibson 31/Mar/2003
1565	 */
1566	if (!emulate_math(regs))
1567		goto bail;
1568
1569	/* Try to emulate it if we should. */
1570	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1571		switch (emulate_instruction(regs)) {
1572		case 0:
1573			regs->nip += 4;
1574			emulate_single_step(regs);
1575			goto bail;
1576		case -EFAULT:
1577			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1578			goto bail;
1579		}
1580	}
1581
1582sigill:
1583	if (reason & REASON_PRIVILEGED)
1584		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1585	else
1586		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1587
1588bail:
1589	exception_exit(prev_state);
1590}
1591NOKPROBE_SYMBOL(program_check_exception);
1592
1593/*
1594 * This occurs when running in hypervisor mode on POWER6 or later
1595 * and an illegal instruction is encountered.
1596 */
1597void emulation_assist_interrupt(struct pt_regs *regs)
1598{
1599	regs->msr |= REASON_ILLEGAL;
1600	program_check_exception(regs);
1601}
1602NOKPROBE_SYMBOL(emulation_assist_interrupt);
1603
1604void alignment_exception(struct pt_regs *regs)
1605{
1606	enum ctx_state prev_state = exception_enter();
1607	int sig, code, fixed = 0;
1608	unsigned long  reason;
1609
1610	/* We restore the interrupt state now */
1611	if (!arch_irq_disabled_regs(regs))
1612		local_irq_enable();
1613
1614	reason = get_reason(regs);
1615
1616	if (reason & REASON_BOUNDARY) {
1617		sig = SIGBUS;
1618		code = BUS_ADRALN;
1619		goto bad;
1620	}
1621
1622	if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1623		goto bail;
1624
1625	/* we don't implement logging of alignment exceptions */
1626	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1627		fixed = fix_alignment(regs);
1628
1629	if (fixed == 1) {
1630		/* skip over emulated instruction */
1631		regs->nip += inst_length(reason);
1632		emulate_single_step(regs);
1633		goto bail;
1634	}
1635
1636	/* Operand address was bad */
1637	if (fixed == -EFAULT) {
1638		sig = SIGSEGV;
1639		code = SEGV_ACCERR;
1640	} else {
1641		sig = SIGBUS;
1642		code = BUS_ADRALN;
1643	}
1644bad:
1645	if (user_mode(regs))
1646		_exception(sig, regs, code, regs->dar);
1647	else
1648		bad_page_fault(regs, regs->dar, sig);
1649
1650bail:
1651	exception_exit(prev_state);
1652}
1653
 
 
 
 
 
 
 
 
 
 
 
 
1654void StackOverflow(struct pt_regs *regs)
1655{
1656	pr_crit("Kernel stack overflow in process %s[%d], r1=%lx\n",
1657		current->comm, task_pid_nr(current), regs->gpr[1]);
1658	debugger(regs);
1659	show_regs(regs);
1660	panic("kernel stack overflow");
1661}
1662
1663void stack_overflow_exception(struct pt_regs *regs)
1664{
1665	enum ctx_state prev_state = exception_enter();
1666
1667	die("Kernel stack overflow", regs, SIGSEGV);
1668
1669	exception_exit(prev_state);
1670}
1671
1672void kernel_fp_unavailable_exception(struct pt_regs *regs)
1673{
1674	enum ctx_state prev_state = exception_enter();
1675
1676	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1677			  "%lx at %lx\n", regs->trap, regs->nip);
1678	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1679
1680	exception_exit(prev_state);
1681}
1682
1683void altivec_unavailable_exception(struct pt_regs *regs)
1684{
1685	enum ctx_state prev_state = exception_enter();
1686
1687	if (user_mode(regs)) {
1688		/* A user program has executed an altivec instruction,
1689		   but this kernel doesn't support altivec. */
1690		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1691		goto bail;
1692	}
1693
1694	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1695			"%lx at %lx\n", regs->trap, regs->nip);
1696	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1697
1698bail:
1699	exception_exit(prev_state);
1700}
1701
1702void vsx_unavailable_exception(struct pt_regs *regs)
1703{
1704	if (user_mode(regs)) {
1705		/* A user program has executed an vsx instruction,
1706		   but this kernel doesn't support vsx. */
1707		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1708		return;
1709	}
1710
1711	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1712			"%lx at %lx\n", regs->trap, regs->nip);
1713	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1714}
1715
1716#ifdef CONFIG_PPC64
1717static void tm_unavailable(struct pt_regs *regs)
1718{
1719#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1720	if (user_mode(regs)) {
1721		current->thread.load_tm++;
1722		regs->msr |= MSR_TM;
1723		tm_enable();
1724		tm_restore_sprs(&current->thread);
1725		return;
1726	}
1727#endif
1728	pr_emerg("Unrecoverable TM Unavailable Exception "
1729			"%lx at %lx\n", regs->trap, regs->nip);
1730	die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
1731}
1732
1733void facility_unavailable_exception(struct pt_regs *regs)
1734{
1735	static char *facility_strings[] = {
1736		[FSCR_FP_LG] = "FPU",
1737		[FSCR_VECVSX_LG] = "VMX/VSX",
1738		[FSCR_DSCR_LG] = "DSCR",
1739		[FSCR_PM_LG] = "PMU SPRs",
1740		[FSCR_BHRB_LG] = "BHRB",
1741		[FSCR_TM_LG] = "TM",
1742		[FSCR_EBB_LG] = "EBB",
1743		[FSCR_TAR_LG] = "TAR",
1744		[FSCR_MSGP_LG] = "MSGP",
1745		[FSCR_SCV_LG] = "SCV",
1746		[FSCR_PREFIX_LG] = "PREFIX",
1747	};
1748	char *facility = "unknown";
1749	u64 value;
1750	u32 instword, rd;
1751	u8 status;
1752	bool hv;
1753
1754	hv = (TRAP(regs) == 0xf80);
1755	if (hv)
1756		value = mfspr(SPRN_HFSCR);
1757	else
1758		value = mfspr(SPRN_FSCR);
1759
1760	status = value >> 56;
1761	if ((hv || status >= 2) &&
1762	    (status < ARRAY_SIZE(facility_strings)) &&
1763	    facility_strings[status])
1764		facility = facility_strings[status];
1765
1766	/* We should not have taken this interrupt in kernel */
1767	if (!user_mode(regs)) {
1768		pr_emerg("Facility '%s' unavailable (%d) exception in kernel mode at %lx\n",
1769			 facility, status, regs->nip);
1770		die("Unexpected facility unavailable exception", regs, SIGABRT);
1771	}
1772
1773	/* We restore the interrupt state now */
1774	if (!arch_irq_disabled_regs(regs))
1775		local_irq_enable();
1776
1777	if (status == FSCR_DSCR_LG) {
1778		/*
1779		 * User is accessing the DSCR register using the problem
1780		 * state only SPR number (0x03) either through a mfspr or
1781		 * a mtspr instruction. If it is a write attempt through
1782		 * a mtspr, then we set the inherit bit. This also allows
1783		 * the user to write or read the register directly in the
1784		 * future by setting via the FSCR DSCR bit. But in case it
1785		 * is a read DSCR attempt through a mfspr instruction, we
1786		 * just emulate the instruction instead. This code path will
1787		 * always emulate all the mfspr instructions till the user
1788		 * has attempted at least one mtspr instruction. This way it
1789		 * preserves the same behaviour when the user is accessing
1790		 * the DSCR through privilege level only SPR number (0x11)
1791		 * which is emulated through illegal instruction exception.
1792		 * We always leave HFSCR DSCR set.
1793		 */
1794		if (get_user(instword, (u32 __user *)(regs->nip))) {
1795			pr_err("Failed to fetch the user instruction\n");
1796			return;
1797		}
1798
1799		/* Write into DSCR (mtspr 0x03, RS) */
1800		if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1801				== PPC_INST_MTSPR_DSCR_USER) {
1802			rd = (instword >> 21) & 0x1f;
1803			current->thread.dscr = regs->gpr[rd];
1804			current->thread.dscr_inherit = 1;
1805			current->thread.fscr |= FSCR_DSCR;
1806			mtspr(SPRN_FSCR, current->thread.fscr);
1807		}
1808
1809		/* Read from DSCR (mfspr RT, 0x03) */
1810		if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1811				== PPC_INST_MFSPR_DSCR_USER) {
1812			if (emulate_instruction(regs)) {
1813				pr_err("DSCR based mfspr emulation failed\n");
1814				return;
1815			}
1816			regs->nip += 4;
1817			emulate_single_step(regs);
1818		}
1819		return;
1820	}
1821
1822	if (status == FSCR_TM_LG) {
1823		/*
1824		 * If we're here then the hardware is TM aware because it
1825		 * generated an exception with FSRM_TM set.
1826		 *
1827		 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1828		 * told us not to do TM, or the kernel is not built with TM
1829		 * support.
1830		 *
1831		 * If both of those things are true, then userspace can spam the
1832		 * console by triggering the printk() below just by continually
1833		 * doing tbegin (or any TM instruction). So in that case just
1834		 * send the process a SIGILL immediately.
1835		 */
1836		if (!cpu_has_feature(CPU_FTR_TM))
1837			goto out;
1838
1839		tm_unavailable(regs);
1840		return;
1841	}
1842
 
 
 
 
 
 
 
 
 
1843	pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1844		hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
1845
1846out:
1847	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
 
 
 
 
 
1848}
1849#endif
1850
1851#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1852
1853void fp_unavailable_tm(struct pt_regs *regs)
1854{
1855	/* Note:  This does not handle any kind of FP laziness. */
1856
1857	TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1858		 regs->nip, regs->msr);
1859
1860        /* We can only have got here if the task started using FP after
1861         * beginning the transaction.  So, the transactional regs are just a
1862         * copy of the checkpointed ones.  But, we still need to recheckpoint
1863         * as we're enabling FP for the process; it will return, abort the
1864         * transaction, and probably retry but now with FP enabled.  So the
1865         * checkpointed FP registers need to be loaded.
1866	 */
1867	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1868
1869	/*
1870	 * Reclaim initially saved out bogus (lazy) FPRs to ckfp_state, and
1871	 * then it was overwrite by the thr->fp_state by tm_reclaim_thread().
1872	 *
1873	 * At this point, ck{fp,vr}_state contains the exact values we want to
1874	 * recheckpoint.
1875	 */
1876
1877	/* Enable FP for the task: */
1878	current->thread.load_fp = 1;
1879
1880	/*
1881	 * Recheckpoint all the checkpointed ckpt, ck{fp, vr}_state registers.
1882	 */
1883	tm_recheckpoint(&current->thread);
 
 
 
 
 
 
 
 
 
 
 
1884}
1885
1886void altivec_unavailable_tm(struct pt_regs *regs)
1887{
1888	/* See the comments in fp_unavailable_tm().  This function operates
1889	 * the same way.
1890	 */
1891
1892	TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1893		 "MSR=%lx\n",
1894		 regs->nip, regs->msr);
1895	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1896	current->thread.load_vec = 1;
1897	tm_recheckpoint(&current->thread);
1898	current->thread.used_vr = 1;
 
 
 
 
 
 
1899}
1900
1901void vsx_unavailable_tm(struct pt_regs *regs)
1902{
 
 
1903	/* See the comments in fp_unavailable_tm().  This works similarly,
1904	 * though we're loading both FP and VEC registers in here.
1905	 *
1906	 * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1907	 * regs.  Either way, set MSR_VSX.
1908	 */
1909
1910	TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1911		 "MSR=%lx\n",
1912		 regs->nip, regs->msr);
1913
1914	current->thread.used_vsr = 1;
1915
 
 
 
 
 
 
1916	/* This reclaims FP and/or VR regs if they're already enabled */
1917	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1918
1919	current->thread.load_vec = 1;
1920	current->thread.load_fp = 1;
 
 
 
 
 
 
 
1921
1922	tm_recheckpoint(&current->thread);
 
 
 
1923}
1924#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1925
1926void performance_monitor_exception(struct pt_regs *regs)
1927{
1928	__this_cpu_inc(irq_stat.pmu_irqs);
1929
1930	perf_irq(regs);
1931}
1932
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1933#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1934static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1935{
1936	int changed = 0;
1937	/*
1938	 * Determine the cause of the debug event, clear the
1939	 * event flags and send a trap to the handler. Torez
1940	 */
1941	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1942		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1943#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1944		current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1945#endif
1946		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status,
1947			     5);
1948		changed |= 0x01;
1949	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1950		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1951		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status,
1952			     6);
1953		changed |= 0x01;
1954	}  else if (debug_status & DBSR_IAC1) {
1955		current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1956		dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1957		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status,
1958			     1);
1959		changed |= 0x01;
1960	}  else if (debug_status & DBSR_IAC2) {
1961		current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1962		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status,
1963			     2);
1964		changed |= 0x01;
1965	}  else if (debug_status & DBSR_IAC3) {
1966		current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1967		dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1968		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status,
1969			     3);
1970		changed |= 0x01;
1971	}  else if (debug_status & DBSR_IAC4) {
1972		current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1973		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status,
1974			     4);
1975		changed |= 0x01;
1976	}
1977	/*
1978	 * At the point this routine was called, the MSR(DE) was turned off.
1979	 * Check all other debug flags and see if that bit needs to be turned
1980	 * back on or not.
1981	 */
1982	if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1983			       current->thread.debug.dbcr1))
1984		regs->msr |= MSR_DE;
1985	else
1986		/* Make sure the IDM flag is off */
1987		current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1988
1989	if (changed & 0x01)
1990		mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1991}
1992
1993void DebugException(struct pt_regs *regs, unsigned long debug_status)
1994{
1995	current->thread.debug.dbsr = debug_status;
1996
1997	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1998	 * on server, it stops on the target of the branch. In order to simulate
1999	 * the server behaviour, we thus restart right away with a single step
2000	 * instead of stopping here when hitting a BT
2001	 */
2002	if (debug_status & DBSR_BT) {
2003		regs->msr &= ~MSR_DE;
2004
2005		/* Disable BT */
2006		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
2007		/* Clear the BT event */
2008		mtspr(SPRN_DBSR, DBSR_BT);
2009
2010		/* Do the single step trick only when coming from userspace */
2011		if (user_mode(regs)) {
2012			current->thread.debug.dbcr0 &= ~DBCR0_BT;
2013			current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
2014			regs->msr |= MSR_DE;
2015			return;
2016		}
2017
2018		if (kprobe_post_handler(regs))
2019			return;
2020
2021		if (notify_die(DIE_SSTEP, "block_step", regs, 5,
2022			       5, SIGTRAP) == NOTIFY_STOP) {
2023			return;
2024		}
2025		if (debugger_sstep(regs))
2026			return;
2027	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */
2028		regs->msr &= ~MSR_DE;
2029
2030		/* Disable instruction completion */
2031		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
2032		/* Clear the instruction completion event */
2033		mtspr(SPRN_DBSR, DBSR_IC);
2034
2035		if (kprobe_post_handler(regs))
2036			return;
2037
2038		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
2039			       5, SIGTRAP) == NOTIFY_STOP) {
2040			return;
2041		}
2042
2043		if (debugger_sstep(regs))
2044			return;
2045
2046		if (user_mode(regs)) {
2047			current->thread.debug.dbcr0 &= ~DBCR0_IC;
2048			if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
2049					       current->thread.debug.dbcr1))
2050				regs->msr |= MSR_DE;
2051			else
2052				/* Make sure the IDM bit is off */
2053				current->thread.debug.dbcr0 &= ~DBCR0_IDM;
2054		}
2055
2056		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
2057	} else
2058		handle_debug(regs, debug_status);
2059}
2060NOKPROBE_SYMBOL(DebugException);
2061#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2062
 
 
 
 
 
 
 
 
2063#ifdef CONFIG_ALTIVEC
2064void altivec_assist_exception(struct pt_regs *regs)
2065{
2066	int err;
2067
2068	if (!user_mode(regs)) {
2069		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
2070		       " at %lx\n", regs->nip);
2071		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
2072	}
2073
2074	flush_altivec_to_thread(current);
2075
2076	PPC_WARN_EMULATED(altivec, regs);
2077	err = emulate_altivec(regs);
2078	if (err == 0) {
2079		regs->nip += 4;		/* skip emulated instruction */
2080		emulate_single_step(regs);
2081		return;
2082	}
2083
2084	if (err == -EFAULT) {
2085		/* got an error reading the instruction */
2086		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2087	} else {
2088		/* didn't recognize the instruction */
2089		/* XXX quick hack for now: set the non-Java bit in the VSCR */
2090		printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
2091				   "in %s at %lx\n", current->comm, regs->nip);
2092		current->thread.vr_state.vscr.u[3] |= 0x10000;
2093	}
2094}
2095#endif /* CONFIG_ALTIVEC */
2096
2097#ifdef CONFIG_FSL_BOOKE
2098void CacheLockingException(struct pt_regs *regs, unsigned long address,
2099			   unsigned long error_code)
2100{
2101	/* We treat cache locking instructions from the user
2102	 * as priv ops, in the future we could try to do
2103	 * something smarter
2104	 */
2105	if (error_code & (ESR_DLK|ESR_ILK))
2106		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
2107	return;
2108}
2109#endif /* CONFIG_FSL_BOOKE */
2110
2111#ifdef CONFIG_SPE
2112void SPEFloatingPointException(struct pt_regs *regs)
2113{
2114	extern int do_spe_mathemu(struct pt_regs *regs);
2115	unsigned long spefscr;
2116	int fpexc_mode;
2117	int code = FPE_FLTUNK;
2118	int err;
2119
2120	/* We restore the interrupt state now */
2121	if (!arch_irq_disabled_regs(regs))
2122		local_irq_enable();
2123
2124	flush_spe_to_thread(current);
2125
2126	spefscr = current->thread.spefscr;
2127	fpexc_mode = current->thread.fpexc_mode;
2128
2129	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
2130		code = FPE_FLTOVF;
2131	}
2132	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
2133		code = FPE_FLTUND;
2134	}
2135	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
2136		code = FPE_FLTDIV;
2137	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
2138		code = FPE_FLTINV;
2139	}
2140	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
2141		code = FPE_FLTRES;
2142
2143	err = do_spe_mathemu(regs);
2144	if (err == 0) {
2145		regs->nip += 4;		/* skip emulated instruction */
2146		emulate_single_step(regs);
2147		return;
2148	}
2149
2150	if (err == -EFAULT) {
2151		/* got an error reading the instruction */
2152		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2153	} else if (err == -EINVAL) {
2154		/* didn't recognize the instruction */
2155		printk(KERN_ERR "unrecognized spe instruction "
2156		       "in %s at %lx\n", current->comm, regs->nip);
2157	} else {
2158		_exception(SIGFPE, regs, code, regs->nip);
2159	}
2160
2161	return;
2162}
2163
2164void SPEFloatingPointRoundException(struct pt_regs *regs)
2165{
2166	extern int speround_handler(struct pt_regs *regs);
2167	int err;
2168
2169	/* We restore the interrupt state now */
2170	if (!arch_irq_disabled_regs(regs))
2171		local_irq_enable();
2172
2173	preempt_disable();
2174	if (regs->msr & MSR_SPE)
2175		giveup_spe(current);
2176	preempt_enable();
2177
2178	regs->nip -= 4;
2179	err = speround_handler(regs);
2180	if (err == 0) {
2181		regs->nip += 4;		/* skip emulated instruction */
2182		emulate_single_step(regs);
2183		return;
2184	}
2185
2186	if (err == -EFAULT) {
2187		/* got an error reading the instruction */
2188		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2189	} else if (err == -EINVAL) {
2190		/* didn't recognize the instruction */
2191		printk(KERN_ERR "unrecognized spe instruction "
2192		       "in %s at %lx\n", current->comm, regs->nip);
2193	} else {
2194		_exception(SIGFPE, regs, FPE_FLTUNK, regs->nip);
2195		return;
2196	}
2197}
2198#endif
2199
2200/*
2201 * We enter here if we get an unrecoverable exception, that is, one
2202 * that happened at a point where the RI (recoverable interrupt) bit
2203 * in the MSR is 0.  This indicates that SRR0/1 are live, and that
2204 * we therefore lost state by taking this exception.
2205 */
2206void unrecoverable_exception(struct pt_regs *regs)
2207{
2208	pr_emerg("Unrecoverable exception %lx at %lx (msr=%lx)\n",
2209		 regs->trap, regs->nip, regs->msr);
2210	die("Unrecoverable exception", regs, SIGABRT);
2211}
2212NOKPROBE_SYMBOL(unrecoverable_exception);
2213
2214#if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
2215/*
2216 * Default handler for a Watchdog exception,
2217 * spins until a reboot occurs
2218 */
2219void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
2220{
2221	/* Generic WatchdogHandler, implement your own */
2222	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
2223	return;
2224}
2225
2226void WatchdogException(struct pt_regs *regs)
2227{
2228	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
2229	WatchdogHandler(regs);
2230}
2231#endif
2232
2233/*
2234 * We enter here if we discover during exception entry that we are
2235 * running in supervisor mode with a userspace value in the stack pointer.
2236 */
2237void kernel_bad_stack(struct pt_regs *regs)
2238{
2239	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
2240	       regs->gpr[1], regs->nip);
2241	die("Bad kernel stack pointer", regs, SIGABRT);
2242}
2243NOKPROBE_SYMBOL(kernel_bad_stack);
2244
2245void __init trap_init(void)
2246{
2247}
2248
2249
2250#ifdef CONFIG_PPC_EMULATED_STATS
2251
2252#define WARN_EMULATED_SETUP(type)	.type = { .name = #type }
2253
2254struct ppc_emulated ppc_emulated = {
2255#ifdef CONFIG_ALTIVEC
2256	WARN_EMULATED_SETUP(altivec),
2257#endif
2258	WARN_EMULATED_SETUP(dcba),
2259	WARN_EMULATED_SETUP(dcbz),
2260	WARN_EMULATED_SETUP(fp_pair),
2261	WARN_EMULATED_SETUP(isel),
2262	WARN_EMULATED_SETUP(mcrxr),
2263	WARN_EMULATED_SETUP(mfpvr),
2264	WARN_EMULATED_SETUP(multiple),
2265	WARN_EMULATED_SETUP(popcntb),
2266	WARN_EMULATED_SETUP(spe),
2267	WARN_EMULATED_SETUP(string),
2268	WARN_EMULATED_SETUP(sync),
2269	WARN_EMULATED_SETUP(unaligned),
2270#ifdef CONFIG_MATH_EMULATION
2271	WARN_EMULATED_SETUP(math),
2272#endif
2273#ifdef CONFIG_VSX
2274	WARN_EMULATED_SETUP(vsx),
2275#endif
2276#ifdef CONFIG_PPC64
2277	WARN_EMULATED_SETUP(mfdscr),
2278	WARN_EMULATED_SETUP(mtdscr),
2279	WARN_EMULATED_SETUP(lq_stq),
2280	WARN_EMULATED_SETUP(lxvw4x),
2281	WARN_EMULATED_SETUP(lxvh8x),
2282	WARN_EMULATED_SETUP(lxvd2x),
2283	WARN_EMULATED_SETUP(lxvb16x),
2284#endif
2285};
2286
2287u32 ppc_warn_emulated;
2288
2289void ppc_warn_emulated_print(const char *type)
2290{
2291	pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
2292			    type);
2293}
2294
2295static int __init ppc_warn_emulated_init(void)
2296{
2297	struct dentry *dir;
2298	unsigned int i;
2299	struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
2300
 
 
 
2301	dir = debugfs_create_dir("emulated_instructions",
2302				 powerpc_debugfs_root);
 
 
2303
2304	debugfs_create_u32("do_warn", 0644, dir, &ppc_warn_emulated);
2305
2306	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++)
2307		debugfs_create_u32(entries[i].name, 0644, dir,
2308				   (u32 *)&entries[i].val.counter);
 
 
 
 
 
 
2309
2310	return 0;
 
 
 
 
2311}
2312
2313device_initcall(ppc_warn_emulated_init);
2314
2315#endif /* CONFIG_PPC_EMULATED_STATS */
v4.10.11
 
   1/*
   2 *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
   3 *  Copyright 2007-2010 Freescale Semiconductor, Inc.
   4 *
   5 *  This program is free software; you can redistribute it and/or
   6 *  modify it under the terms of the GNU General Public License
   7 *  as published by the Free Software Foundation; either version
   8 *  2 of the License, or (at your option) any later version.
   9 *
  10 *  Modified by Cort Dougan (cort@cs.nmt.edu)
  11 *  and Paul Mackerras (paulus@samba.org)
  12 */
  13
  14/*
  15 * This file handles the architecture-dependent parts of hardware exceptions
  16 */
  17
  18#include <linux/errno.h>
  19#include <linux/sched.h>
 
  20#include <linux/kernel.h>
  21#include <linux/mm.h>
 
  22#include <linux/stddef.h>
  23#include <linux/unistd.h>
  24#include <linux/ptrace.h>
  25#include <linux/user.h>
  26#include <linux/interrupt.h>
  27#include <linux/init.h>
  28#include <linux/extable.h>
  29#include <linux/module.h>	/* print_modules */
  30#include <linux/prctl.h>
  31#include <linux/delay.h>
  32#include <linux/kprobes.h>
  33#include <linux/kexec.h>
  34#include <linux/backlight.h>
  35#include <linux/bug.h>
  36#include <linux/kdebug.h>
  37#include <linux/debugfs.h>
  38#include <linux/ratelimit.h>
  39#include <linux/context_tracking.h>
 
 
 
  40
  41#include <asm/emulated_ops.h>
  42#include <asm/pgtable.h>
  43#include <linux/uaccess.h>
 
  44#include <asm/io.h>
  45#include <asm/machdep.h>
  46#include <asm/rtas.h>
  47#include <asm/pmc.h>
  48#include <asm/reg.h>
  49#ifdef CONFIG_PMAC_BACKLIGHT
  50#include <asm/backlight.h>
  51#endif
  52#ifdef CONFIG_PPC64
  53#include <asm/firmware.h>
  54#include <asm/processor.h>
  55#include <asm/tm.h>
  56#endif
  57#include <asm/kexec.h>
  58#include <asm/ppc-opcode.h>
  59#include <asm/rio.h>
  60#include <asm/fadump.h>
  61#include <asm/switch_to.h>
  62#include <asm/tm.h>
  63#include <asm/debug.h>
  64#include <asm/asm-prototypes.h>
  65#include <asm/hmi.h>
  66#include <sysdev/fsl_pci.h>
  67#include <asm/kprobes.h>
 
 
  68
  69#if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
  70int (*__debugger)(struct pt_regs *regs) __read_mostly;
  71int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
  72int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
  73int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
  74int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
  75int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
  76int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
  77
  78EXPORT_SYMBOL(__debugger);
  79EXPORT_SYMBOL(__debugger_ipi);
  80EXPORT_SYMBOL(__debugger_bpt);
  81EXPORT_SYMBOL(__debugger_sstep);
  82EXPORT_SYMBOL(__debugger_iabr_match);
  83EXPORT_SYMBOL(__debugger_break_match);
  84EXPORT_SYMBOL(__debugger_fault_handler);
  85#endif
  86
  87/* Transactional Memory trap debug */
  88#ifdef TM_DEBUG_SW
  89#define TM_DEBUG(x...) printk(KERN_INFO x)
  90#else
  91#define TM_DEBUG(x...) do { } while(0)
  92#endif
  93
 
 
 
 
 
 
 
 
 
 
 
 
 
  94/*
  95 * Trap & Exception support
  96 */
  97
  98#ifdef CONFIG_PMAC_BACKLIGHT
  99static void pmac_backlight_unblank(void)
 100{
 101	mutex_lock(&pmac_backlight_mutex);
 102	if (pmac_backlight) {
 103		struct backlight_properties *props;
 104
 105		props = &pmac_backlight->props;
 106		props->brightness = props->max_brightness;
 107		props->power = FB_BLANK_UNBLANK;
 108		backlight_update_status(pmac_backlight);
 109	}
 110	mutex_unlock(&pmac_backlight_mutex);
 111}
 112#else
 113static inline void pmac_backlight_unblank(void) { }
 114#endif
 115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 116static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
 117static int die_owner = -1;
 118static unsigned int die_nest_count;
 119static int die_counter;
 120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 121static unsigned long oops_begin(struct pt_regs *regs)
 122{
 123	int cpu;
 124	unsigned long flags;
 125
 126	oops_enter();
 127
 128	/* racy, but better than risking deadlock. */
 129	raw_local_irq_save(flags);
 130	cpu = smp_processor_id();
 131	if (!arch_spin_trylock(&die_lock)) {
 132		if (cpu == die_owner)
 133			/* nested oops. should stop eventually */;
 134		else
 135			arch_spin_lock(&die_lock);
 136	}
 137	die_nest_count++;
 138	die_owner = cpu;
 139	console_verbose();
 140	bust_spinlocks(1);
 141	if (machine_is(powermac))
 142		pmac_backlight_unblank();
 143	return flags;
 144}
 145NOKPROBE_SYMBOL(oops_begin);
 146
 147static void oops_end(unsigned long flags, struct pt_regs *regs,
 148			       int signr)
 149{
 150	bust_spinlocks(0);
 151	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
 152	die_nest_count--;
 153	oops_exit();
 154	printk("\n");
 155	if (!die_nest_count) {
 156		/* Nest count reaches zero, release the lock. */
 157		die_owner = -1;
 158		arch_spin_unlock(&die_lock);
 159	}
 160	raw_local_irq_restore(flags);
 161
 
 
 
 
 
 
 162	crash_fadump(regs, "die oops");
 163
 164	/*
 165	 * A system reset (0x100) is a request to dump, so we always send
 166	 * it through the crashdump code.
 167	 */
 168	if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
 169		crash_kexec(regs);
 170
 171		/*
 172		 * We aren't the primary crash CPU. We need to send it
 173		 * to a holding pattern to avoid it ending up in the panic
 174		 * code.
 175		 */
 176		crash_kexec_secondary(regs);
 177	}
 178
 179	if (!signr)
 180		return;
 181
 182	/*
 183	 * While our oops output is serialised by a spinlock, output
 184	 * from panic() called below can race and corrupt it. If we
 185	 * know we are going to panic, delay for 1 second so we have a
 186	 * chance to get clean backtraces from all CPUs that are oopsing.
 187	 */
 188	if (in_interrupt() || panic_on_oops || !current->pid ||
 189	    is_global_init(current)) {
 190		mdelay(MSEC_PER_SEC);
 191	}
 192
 193	if (in_interrupt())
 194		panic("Fatal exception in interrupt");
 195	if (panic_on_oops)
 196		panic("Fatal exception");
 197	do_exit(signr);
 198}
 199NOKPROBE_SYMBOL(oops_end);
 200
 
 
 
 
 
 
 
 
 
 201static int __die(const char *str, struct pt_regs *regs, long err)
 202{
 203	printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
 204#ifdef CONFIG_PREEMPT
 205	printk("PREEMPT ");
 206#endif
 207#ifdef CONFIG_SMP
 208	printk("SMP NR_CPUS=%d ", NR_CPUS);
 209#endif
 210	if (debug_pagealloc_enabled())
 211		printk("DEBUG_PAGEALLOC ");
 212#ifdef CONFIG_NUMA
 213	printk("NUMA ");
 214#endif
 215	printk("%s\n", ppc_md.name ? ppc_md.name : "");
 216
 217	if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
 218		return 1;
 219
 220	print_modules();
 221	show_regs(regs);
 222
 223	return 0;
 224}
 225NOKPROBE_SYMBOL(__die);
 226
 227void die(const char *str, struct pt_regs *regs, long err)
 228{
 229	unsigned long flags;
 230
 231	if (debugger(regs))
 232		return;
 
 
 
 
 
 233
 234	flags = oops_begin(regs);
 235	if (__die(str, regs, err))
 236		err = 0;
 237	oops_end(flags, regs, err);
 238}
 
 239
 240void user_single_step_siginfo(struct task_struct *tsk,
 241				struct pt_regs *regs, siginfo_t *info)
 242{
 243	memset(info, 0, sizeof(*info));
 244	info->si_signo = SIGTRAP;
 245	info->si_code = TRAP_TRACE;
 246	info->si_addr = (void __user *)regs->nip;
 247}
 248
 249void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
 
 250{
 251	siginfo_t info;
 252	const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
 253			"at %08lx nip %08lx lr %08lx code %x\n";
 254	const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
 255			"at %016lx nip %016lx lr %016lx code %x\n";
 256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 257	if (!user_mode(regs)) {
 258		die("Exception in kernel mode", regs, signr);
 259		return;
 260	}
 261
 262	if (show_unhandled_signals && unhandled_signal(current, signr)) {
 263		printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
 264				   current->comm, current->pid, signr,
 265				   addr, regs->nip, regs->link, code);
 266	}
 267
 268	if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
 269		local_irq_enable();
 270
 271	current->thread.trap_nr = code;
 272	memset(&info, 0, sizeof(info));
 273	info.si_signo = signr;
 274	info.si_code = code;
 275	info.si_addr = (void __user *) addr;
 276	force_sig_info(signr, &info, current);
 
 
 
 277}
 278
 279void system_reset_exception(struct pt_regs *regs)
 280{
 281	/* See if any machine dependent calls */
 282	if (ppc_md.system_reset_exception) {
 283		if (ppc_md.system_reset_exception(regs))
 284			return;
 285	}
 286
 287	die("System Reset", regs, SIGABRT);
 
 288
 289	/* Must die if the interrupt is not recoverable */
 290	if (!(regs->msr & MSR_RI))
 291		panic("Unrecoverable System Reset");
 
 292
 293	/* What should we do here? We could issue a shutdown or hard reset. */
 294}
 295
 296#ifdef CONFIG_PPC64
 297/*
 298 * This function is called in real mode. Strictly no printk's please.
 
 
 
 
 
 299 *
 300 * regs->nip and regs->msr contains srr0 and ssr1.
 
 
 
 
 
 
 
 
 
 
 
 301 */
 302long machine_check_early(struct pt_regs *regs)
 303{
 304	long handled = 0;
 
 
 305
 306	__this_cpu_inc(irq_stat.mce_exceptions);
 
 
 
 
 
 307
 308	add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 309
 310	if (cur_cpu_spec && cur_cpu_spec->machine_check_early)
 311		handled = cur_cpu_spec->machine_check_early(regs);
 312	return handled;
 313}
 314
 315long hmi_exception_realmode(struct pt_regs *regs)
 316{
 317	__this_cpu_inc(irq_stat.hmi_exceptions);
 
 
 318
 319	wait_for_subcore_guest_exit();
 320
 321	if (ppc_md.hmi_exception_early)
 322		ppc_md.hmi_exception_early(regs);
 323
 324	wait_for_tb_resync();
 
 
 
 
 
 
 
 
 
 
 
 
 
 325
 326	return 0;
 327}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 328
 
 
 
 
 
 329#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 330
 331/*
 332 * I/O accesses can cause machine checks on powermacs.
 333 * Check if the NIP corresponds to the address of a sync
 334 * instruction for which there is an entry in the exception
 335 * table.
 336 * Note that the 601 only takes a machine check on TEA
 337 * (transfer error ack) signal assertion, and does not
 338 * set any of the top 16 bits of SRR1.
 339 *  -- paulus.
 340 */
 341static inline int check_io_access(struct pt_regs *regs)
 342{
 343#ifdef CONFIG_PPC32
 344	unsigned long msr = regs->msr;
 345	const struct exception_table_entry *entry;
 346	unsigned int *nip = (unsigned int *)regs->nip;
 347
 348	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
 349	    && (entry = search_exception_tables(regs->nip)) != NULL) {
 350		/*
 351		 * Check that it's a sync instruction, or somewhere
 352		 * in the twi; isync; nop sequence that inb/inw/inl uses.
 353		 * As the address is in the exception table
 354		 * we should be able to read the instr there.
 355		 * For the debug message, we look at the preceding
 356		 * load or store.
 357		 */
 358		if (*nip == PPC_INST_NOP)
 359			nip -= 2;
 360		else if (*nip == PPC_INST_ISYNC)
 361			--nip;
 362		if (*nip == PPC_INST_SYNC || (*nip >> 26) == OP_TRAP) {
 363			unsigned int rb;
 364
 365			--nip;
 366			rb = (*nip >> 11) & 0x1f;
 367			printk(KERN_DEBUG "%s bad port %lx at %p\n",
 368			       (*nip & 0x100)? "OUT to": "IN from",
 369			       regs->gpr[rb] - _IO_BASE, nip);
 370			regs->msr |= MSR_RI;
 371			regs->nip = extable_fixup(entry);
 372			return 1;
 373		}
 374	}
 375#endif /* CONFIG_PPC32 */
 376	return 0;
 377}
 378
 379#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 380/* On 4xx, the reason for the machine check or program exception
 381   is in the ESR. */
 382#define get_reason(regs)	((regs)->dsisr)
 383#ifndef CONFIG_FSL_BOOKE
 384#define get_mc_reason(regs)	((regs)->dsisr)
 385#else
 386#define get_mc_reason(regs)	(mfspr(SPRN_MCSR))
 387#endif
 388#define REASON_FP		ESR_FP
 389#define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
 390#define REASON_PRIVILEGED	ESR_PPR
 391#define REASON_TRAP		ESR_PTR
 
 
 392
 393/* single-step stuff */
 394#define single_stepping(regs)	(current->thread.debug.dbcr0 & DBCR0_IC)
 395#define clear_single_step(regs)	(current->thread.debug.dbcr0 &= ~DBCR0_IC)
 396
 397#else
 398/* On non-4xx, the reason for the machine check or program
 399   exception is in the MSR. */
 400#define get_reason(regs)	((regs)->msr)
 401#define get_mc_reason(regs)	((regs)->msr)
 402#define REASON_TM		0x200000
 403#define REASON_FP		0x100000
 404#define REASON_ILLEGAL		0x80000
 405#define REASON_PRIVILEGED	0x40000
 406#define REASON_TRAP		0x20000
 
 407
 408#define single_stepping(regs)	((regs)->msr & MSR_SE)
 409#define clear_single_step(regs)	((regs)->msr &= ~MSR_SE)
 
 410#endif
 411
 412#if defined(CONFIG_4xx)
 413int machine_check_4xx(struct pt_regs *regs)
 414{
 415	unsigned long reason = get_mc_reason(regs);
 416
 417	if (reason & ESR_IMCP) {
 418		printk("Instruction");
 419		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
 420	} else
 421		printk("Data");
 422	printk(" machine check in kernel mode.\n");
 423
 424	return 0;
 425}
 426
 427int machine_check_440A(struct pt_regs *regs)
 428{
 429	unsigned long reason = get_mc_reason(regs);
 430
 431	printk("Machine check in kernel mode.\n");
 432	if (reason & ESR_IMCP){
 433		printk("Instruction Synchronous Machine Check exception\n");
 434		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
 435	}
 436	else {
 437		u32 mcsr = mfspr(SPRN_MCSR);
 438		if (mcsr & MCSR_IB)
 439			printk("Instruction Read PLB Error\n");
 440		if (mcsr & MCSR_DRB)
 441			printk("Data Read PLB Error\n");
 442		if (mcsr & MCSR_DWB)
 443			printk("Data Write PLB Error\n");
 444		if (mcsr & MCSR_TLBP)
 445			printk("TLB Parity Error\n");
 446		if (mcsr & MCSR_ICP){
 447			flush_instruction_cache();
 448			printk("I-Cache Parity Error\n");
 449		}
 450		if (mcsr & MCSR_DCSP)
 451			printk("D-Cache Search Parity Error\n");
 452		if (mcsr & MCSR_DCFP)
 453			printk("D-Cache Flush Parity Error\n");
 454		if (mcsr & MCSR_IMPE)
 455			printk("Machine Check exception is imprecise\n");
 456
 457		/* Clear MCSR */
 458		mtspr(SPRN_MCSR, mcsr);
 459	}
 460	return 0;
 461}
 462
 463int machine_check_47x(struct pt_regs *regs)
 464{
 465	unsigned long reason = get_mc_reason(regs);
 466	u32 mcsr;
 467
 468	printk(KERN_ERR "Machine check in kernel mode.\n");
 469	if (reason & ESR_IMCP) {
 470		printk(KERN_ERR
 471		       "Instruction Synchronous Machine Check exception\n");
 472		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
 473		return 0;
 474	}
 475	mcsr = mfspr(SPRN_MCSR);
 476	if (mcsr & MCSR_IB)
 477		printk(KERN_ERR "Instruction Read PLB Error\n");
 478	if (mcsr & MCSR_DRB)
 479		printk(KERN_ERR "Data Read PLB Error\n");
 480	if (mcsr & MCSR_DWB)
 481		printk(KERN_ERR "Data Write PLB Error\n");
 482	if (mcsr & MCSR_TLBP)
 483		printk(KERN_ERR "TLB Parity Error\n");
 484	if (mcsr & MCSR_ICP) {
 485		flush_instruction_cache();
 486		printk(KERN_ERR "I-Cache Parity Error\n");
 487	}
 488	if (mcsr & MCSR_DCSP)
 489		printk(KERN_ERR "D-Cache Search Parity Error\n");
 490	if (mcsr & PPC47x_MCSR_GPR)
 491		printk(KERN_ERR "GPR Parity Error\n");
 492	if (mcsr & PPC47x_MCSR_FPR)
 493		printk(KERN_ERR "FPR Parity Error\n");
 494	if (mcsr & PPC47x_MCSR_IPR)
 495		printk(KERN_ERR "Machine Check exception is imprecise\n");
 496
 497	/* Clear MCSR */
 498	mtspr(SPRN_MCSR, mcsr);
 499
 500	return 0;
 501}
 502#elif defined(CONFIG_E500)
 503int machine_check_e500mc(struct pt_regs *regs)
 504{
 505	unsigned long mcsr = mfspr(SPRN_MCSR);
 
 506	unsigned long reason = mcsr;
 507	int recoverable = 1;
 508
 509	if (reason & MCSR_LD) {
 510		recoverable = fsl_rio_mcheck_exception(regs);
 511		if (recoverable == 1)
 512			goto silent_out;
 513	}
 514
 515	printk("Machine check in kernel mode.\n");
 516	printk("Caused by (from MCSR=%lx): ", reason);
 517
 518	if (reason & MCSR_MCP)
 519		printk("Machine Check Signal\n");
 520
 521	if (reason & MCSR_ICPERR) {
 522		printk("Instruction Cache Parity Error\n");
 523
 524		/*
 525		 * This is recoverable by invalidating the i-cache.
 526		 */
 527		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
 528		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
 529			;
 530
 531		/*
 532		 * This will generally be accompanied by an instruction
 533		 * fetch error report -- only treat MCSR_IF as fatal
 534		 * if it wasn't due to an L1 parity error.
 535		 */
 536		reason &= ~MCSR_IF;
 537	}
 538
 539	if (reason & MCSR_DCPERR_MC) {
 540		printk("Data Cache Parity Error\n");
 541
 542		/*
 543		 * In write shadow mode we auto-recover from the error, but it
 544		 * may still get logged and cause a machine check.  We should
 545		 * only treat the non-write shadow case as non-recoverable.
 546		 */
 547		if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
 548			recoverable = 0;
 
 
 
 
 
 
 
 549	}
 550
 551	if (reason & MCSR_L2MMU_MHIT) {
 552		printk("Hit on multiple TLB entries\n");
 553		recoverable = 0;
 554	}
 555
 556	if (reason & MCSR_NMI)
 557		printk("Non-maskable interrupt\n");
 558
 559	if (reason & MCSR_IF) {
 560		printk("Instruction Fetch Error Report\n");
 561		recoverable = 0;
 562	}
 563
 564	if (reason & MCSR_LD) {
 565		printk("Load Error Report\n");
 566		recoverable = 0;
 567	}
 568
 569	if (reason & MCSR_ST) {
 570		printk("Store Error Report\n");
 571		recoverable = 0;
 572	}
 573
 574	if (reason & MCSR_LDG) {
 575		printk("Guarded Load Error Report\n");
 576		recoverable = 0;
 577	}
 578
 579	if (reason & MCSR_TLBSYNC)
 580		printk("Simultaneous tlbsync operations\n");
 581
 582	if (reason & MCSR_BSL2_ERR) {
 583		printk("Level 2 Cache Error\n");
 584		recoverable = 0;
 585	}
 586
 587	if (reason & MCSR_MAV) {
 588		u64 addr;
 589
 590		addr = mfspr(SPRN_MCAR);
 591		addr |= (u64)mfspr(SPRN_MCARU) << 32;
 592
 593		printk("Machine Check %s Address: %#llx\n",
 594		       reason & MCSR_MEA ? "Effective" : "Physical", addr);
 595	}
 596
 597silent_out:
 598	mtspr(SPRN_MCSR, mcsr);
 599	return mfspr(SPRN_MCSR) == 0 && recoverable;
 600}
 601
 602int machine_check_e500(struct pt_regs *regs)
 603{
 604	unsigned long reason = get_mc_reason(regs);
 605
 606	if (reason & MCSR_BUS_RBERR) {
 607		if (fsl_rio_mcheck_exception(regs))
 608			return 1;
 609		if (fsl_pci_mcheck_exception(regs))
 610			return 1;
 611	}
 612
 613	printk("Machine check in kernel mode.\n");
 614	printk("Caused by (from MCSR=%lx): ", reason);
 615
 616	if (reason & MCSR_MCP)
 617		printk("Machine Check Signal\n");
 618	if (reason & MCSR_ICPERR)
 619		printk("Instruction Cache Parity Error\n");
 620	if (reason & MCSR_DCP_PERR)
 621		printk("Data Cache Push Parity Error\n");
 622	if (reason & MCSR_DCPERR)
 623		printk("Data Cache Parity Error\n");
 624	if (reason & MCSR_BUS_IAERR)
 625		printk("Bus - Instruction Address Error\n");
 626	if (reason & MCSR_BUS_RAERR)
 627		printk("Bus - Read Address Error\n");
 628	if (reason & MCSR_BUS_WAERR)
 629		printk("Bus - Write Address Error\n");
 630	if (reason & MCSR_BUS_IBERR)
 631		printk("Bus - Instruction Data Error\n");
 632	if (reason & MCSR_BUS_RBERR)
 633		printk("Bus - Read Data Bus Error\n");
 634	if (reason & MCSR_BUS_WBERR)
 635		printk("Bus - Write Data Bus Error\n");
 636	if (reason & MCSR_BUS_IPERR)
 637		printk("Bus - Instruction Parity Error\n");
 638	if (reason & MCSR_BUS_RPERR)
 639		printk("Bus - Read Parity Error\n");
 640
 641	return 0;
 642}
 643
 644int machine_check_generic(struct pt_regs *regs)
 645{
 646	return 0;
 647}
 648#elif defined(CONFIG_E200)
 649int machine_check_e200(struct pt_regs *regs)
 650{
 651	unsigned long reason = get_mc_reason(regs);
 652
 653	printk("Machine check in kernel mode.\n");
 654	printk("Caused by (from MCSR=%lx): ", reason);
 655
 656	if (reason & MCSR_MCP)
 657		printk("Machine Check Signal\n");
 658	if (reason & MCSR_CP_PERR)
 659		printk("Cache Push Parity Error\n");
 660	if (reason & MCSR_CPERR)
 661		printk("Cache Parity Error\n");
 662	if (reason & MCSR_EXCP_ERR)
 663		printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
 664	if (reason & MCSR_BUS_IRERR)
 665		printk("Bus - Read Bus Error on instruction fetch\n");
 666	if (reason & MCSR_BUS_DRERR)
 667		printk("Bus - Read Bus Error on data load\n");
 668	if (reason & MCSR_BUS_WRERR)
 669		printk("Bus - Write Bus Error on buffered store or cache line push\n");
 670
 671	return 0;
 672}
 673#elif defined(CONFIG_PPC_8xx)
 674int machine_check_8xx(struct pt_regs *regs)
 675{
 676	unsigned long reason = get_mc_reason(regs);
 677
 678	pr_err("Machine check in kernel mode.\n");
 679	pr_err("Caused by (from SRR1=%lx): ", reason);
 680	if (reason & 0x40000000)
 681		pr_err("Fetch error at address %lx\n", regs->nip);
 682	else
 683		pr_err("Data access error at address %lx\n", regs->dar);
 684
 685#ifdef CONFIG_PCI
 686	/* the qspan pci read routines can cause machine checks -- Cort
 687	 *
 688	 * yuck !!! that totally needs to go away ! There are better ways
 689	 * to deal with that than having a wart in the mcheck handler.
 690	 * -- BenH
 691	 */
 692	bad_page_fault(regs, regs->dar, SIGBUS);
 693	return 1;
 694#else
 695	return 0;
 696#endif
 697}
 698#else
 699int machine_check_generic(struct pt_regs *regs)
 700{
 701	unsigned long reason = get_mc_reason(regs);
 702
 703	printk("Machine check in kernel mode.\n");
 704	printk("Caused by (from SRR1=%lx): ", reason);
 705	switch (reason & 0x601F0000) {
 706	case 0x80000:
 707		printk("Machine check signal\n");
 708		break;
 709	case 0:		/* for 601 */
 710	case 0x40000:
 711	case 0x140000:	/* 7450 MSS error and TEA */
 712		printk("Transfer error ack signal\n");
 713		break;
 714	case 0x20000:
 715		printk("Data parity error signal\n");
 716		break;
 717	case 0x10000:
 718		printk("Address parity error signal\n");
 719		break;
 720	case 0x20000000:
 721		printk("L1 Data Cache error\n");
 722		break;
 723	case 0x40000000:
 724		printk("L1 Instruction Cache error\n");
 725		break;
 726	case 0x00100000:
 727		printk("L2 data cache parity error\n");
 728		break;
 729	default:
 730		printk("Unknown values in msr\n");
 731	}
 732	return 0;
 733}
 734#endif /* everything else */
 735
 736void machine_check_exception(struct pt_regs *regs)
 737{
 738	enum ctx_state prev_state = exception_enter();
 739	int recover = 0;
 740
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 741	__this_cpu_inc(irq_stat.mce_exceptions);
 742
 
 
 743	/* See if any machine dependent calls. In theory, we would want
 744	 * to call the CPU first, and call the ppc_md. one if the CPU
 745	 * one returns a positive number. However there is existing code
 746	 * that assumes the board gets a first chance, so let's keep it
 747	 * that way for now and fix things later. --BenH.
 748	 */
 749	if (ppc_md.machine_check_exception)
 750		recover = ppc_md.machine_check_exception(regs);
 751	else if (cur_cpu_spec->machine_check)
 752		recover = cur_cpu_spec->machine_check(regs);
 753
 754	if (recover > 0)
 755		goto bail;
 756
 757	if (debugger_fault_handler(regs))
 758		goto bail;
 759
 760	if (check_io_access(regs))
 761		goto bail;
 762
 
 
 763	die("Machine check", regs, SIGBUS);
 764
 765	/* Must die if the interrupt is not recoverable */
 766	if (!(regs->msr & MSR_RI))
 767		panic("Unrecoverable Machine check");
 
 
 768
 769bail:
 770	exception_exit(prev_state);
 771}
 772
 773void SMIException(struct pt_regs *regs)
 774{
 775	die("System Management Interrupt", regs, SIGABRT);
 776}
 777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 778void handle_hmi_exception(struct pt_regs *regs)
 779{
 780	struct pt_regs *old_regs;
 781
 782	old_regs = set_irq_regs(regs);
 783	irq_enter();
 784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 785	if (ppc_md.handle_hmi_exception)
 786		ppc_md.handle_hmi_exception(regs);
 787
 788	irq_exit();
 789	set_irq_regs(old_regs);
 790}
 791
 792void unknown_exception(struct pt_regs *regs)
 793{
 794	enum ctx_state prev_state = exception_enter();
 795
 796	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
 797	       regs->nip, regs->msr, regs->trap);
 798
 799	_exception(SIGTRAP, regs, 0, 0);
 800
 801	exception_exit(prev_state);
 802}
 803
 804void instruction_breakpoint_exception(struct pt_regs *regs)
 805{
 806	enum ctx_state prev_state = exception_enter();
 807
 808	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
 809					5, SIGTRAP) == NOTIFY_STOP)
 810		goto bail;
 811	if (debugger_iabr_match(regs))
 812		goto bail;
 813	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
 814
 815bail:
 816	exception_exit(prev_state);
 817}
 818
 819void RunModeException(struct pt_regs *regs)
 820{
 821	_exception(SIGTRAP, regs, 0, 0);
 822}
 823
 824void single_step_exception(struct pt_regs *regs)
 825{
 826	enum ctx_state prev_state = exception_enter();
 827
 828	clear_single_step(regs);
 
 829
 830	if (kprobe_post_handler(regs))
 831		return;
 832
 833	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
 834					5, SIGTRAP) == NOTIFY_STOP)
 835		goto bail;
 836	if (debugger_sstep(regs))
 837		goto bail;
 838
 839	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
 840
 841bail:
 842	exception_exit(prev_state);
 843}
 844NOKPROBE_SYMBOL(single_step_exception);
 845
 846/*
 847 * After we have successfully emulated an instruction, we have to
 848 * check if the instruction was being single-stepped, and if so,
 849 * pretend we got a single-step exception.  This was pointed out
 850 * by Kumar Gala.  -- paulus
 851 */
 852static void emulate_single_step(struct pt_regs *regs)
 853{
 854	if (single_stepping(regs))
 855		single_step_exception(regs);
 856}
 857
 858static inline int __parse_fpscr(unsigned long fpscr)
 859{
 860	int ret = 0;
 861
 862	/* Invalid operation */
 863	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
 864		ret = FPE_FLTINV;
 865
 866	/* Overflow */
 867	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
 868		ret = FPE_FLTOVF;
 869
 870	/* Underflow */
 871	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
 872		ret = FPE_FLTUND;
 873
 874	/* Divide by zero */
 875	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
 876		ret = FPE_FLTDIV;
 877
 878	/* Inexact result */
 879	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
 880		ret = FPE_FLTRES;
 881
 882	return ret;
 883}
 884
 885static void parse_fpe(struct pt_regs *regs)
 886{
 887	int code = 0;
 888
 889	flush_fp_to_thread(current);
 890
 891	code = __parse_fpscr(current->thread.fp_state.fpscr);
 892
 893	_exception(SIGFPE, regs, code, regs->nip);
 894}
 895
 896/*
 897 * Illegal instruction emulation support.  Originally written to
 898 * provide the PVR to user applications using the mfspr rd, PVR.
 899 * Return non-zero if we can't emulate, or -EFAULT if the associated
 900 * memory access caused an access fault.  Return zero on success.
 901 *
 902 * There are a couple of ways to do this, either "decode" the instruction
 903 * or directly match lots of bits.  In this case, matching lots of
 904 * bits is faster and easier.
 905 *
 906 */
 907static int emulate_string_inst(struct pt_regs *regs, u32 instword)
 908{
 909	u8 rT = (instword >> 21) & 0x1f;
 910	u8 rA = (instword >> 16) & 0x1f;
 911	u8 NB_RB = (instword >> 11) & 0x1f;
 912	u32 num_bytes;
 913	unsigned long EA;
 914	int pos = 0;
 915
 916	/* Early out if we are an invalid form of lswx */
 917	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
 918		if ((rT == rA) || (rT == NB_RB))
 919			return -EINVAL;
 920
 921	EA = (rA == 0) ? 0 : regs->gpr[rA];
 922
 923	switch (instword & PPC_INST_STRING_MASK) {
 924		case PPC_INST_LSWX:
 925		case PPC_INST_STSWX:
 926			EA += NB_RB;
 927			num_bytes = regs->xer & 0x7f;
 928			break;
 929		case PPC_INST_LSWI:
 930		case PPC_INST_STSWI:
 931			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
 932			break;
 933		default:
 934			return -EINVAL;
 935	}
 936
 937	while (num_bytes != 0)
 938	{
 939		u8 val;
 940		u32 shift = 8 * (3 - (pos & 0x3));
 941
 942		/* if process is 32-bit, clear upper 32 bits of EA */
 943		if ((regs->msr & MSR_64BIT) == 0)
 944			EA &= 0xFFFFFFFF;
 945
 946		switch ((instword & PPC_INST_STRING_MASK)) {
 947			case PPC_INST_LSWX:
 948			case PPC_INST_LSWI:
 949				if (get_user(val, (u8 __user *)EA))
 950					return -EFAULT;
 951				/* first time updating this reg,
 952				 * zero it out */
 953				if (pos == 0)
 954					regs->gpr[rT] = 0;
 955				regs->gpr[rT] |= val << shift;
 956				break;
 957			case PPC_INST_STSWI:
 958			case PPC_INST_STSWX:
 959				val = regs->gpr[rT] >> shift;
 960				if (put_user(val, (u8 __user *)EA))
 961					return -EFAULT;
 962				break;
 963		}
 964		/* move EA to next address */
 965		EA += 1;
 966		num_bytes--;
 967
 968		/* manage our position within the register */
 969		if (++pos == 4) {
 970			pos = 0;
 971			if (++rT == 32)
 972				rT = 0;
 973		}
 974	}
 975
 976	return 0;
 977}
 978
 979static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
 980{
 981	u32 ra,rs;
 982	unsigned long tmp;
 983
 984	ra = (instword >> 16) & 0x1f;
 985	rs = (instword >> 21) & 0x1f;
 986
 987	tmp = regs->gpr[rs];
 988	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
 989	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
 990	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
 991	regs->gpr[ra] = tmp;
 992
 993	return 0;
 994}
 995
 996static int emulate_isel(struct pt_regs *regs, u32 instword)
 997{
 998	u8 rT = (instword >> 21) & 0x1f;
 999	u8 rA = (instword >> 16) & 0x1f;
1000	u8 rB = (instword >> 11) & 0x1f;
1001	u8 BC = (instword >> 6) & 0x1f;
1002	u8 bit;
1003	unsigned long tmp;
1004
1005	tmp = (rA == 0) ? 0 : regs->gpr[rA];
1006	bit = (regs->ccr >> (31 - BC)) & 0x1;
1007
1008	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
1009
1010	return 0;
1011}
1012
1013#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1014static inline bool tm_abort_check(struct pt_regs *regs, int cause)
1015{
1016        /* If we're emulating a load/store in an active transaction, we cannot
1017         * emulate it as the kernel operates in transaction suspended context.
1018         * We need to abort the transaction.  This creates a persistent TM
1019         * abort so tell the user what caused it with a new code.
1020	 */
1021	if (MSR_TM_TRANSACTIONAL(regs->msr)) {
1022		tm_enable();
1023		tm_abort(cause);
1024		return true;
1025	}
1026	return false;
1027}
1028#else
1029static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1030{
1031	return false;
1032}
1033#endif
1034
1035static int emulate_instruction(struct pt_regs *regs)
1036{
1037	u32 instword;
1038	u32 rd;
1039
1040	if (!user_mode(regs))
1041		return -EINVAL;
1042	CHECK_FULL_REGS(regs);
1043
1044	if (get_user(instword, (u32 __user *)(regs->nip)))
1045		return -EFAULT;
1046
1047	/* Emulate the mfspr rD, PVR. */
1048	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1049		PPC_WARN_EMULATED(mfpvr, regs);
1050		rd = (instword >> 21) & 0x1f;
1051		regs->gpr[rd] = mfspr(SPRN_PVR);
1052		return 0;
1053	}
1054
1055	/* Emulating the dcba insn is just a no-op.  */
1056	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1057		PPC_WARN_EMULATED(dcba, regs);
1058		return 0;
1059	}
1060
1061	/* Emulate the mcrxr insn.  */
1062	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1063		int shift = (instword >> 21) & 0x1c;
1064		unsigned long msk = 0xf0000000UL >> shift;
1065
1066		PPC_WARN_EMULATED(mcrxr, regs);
1067		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1068		regs->xer &= ~0xf0000000UL;
1069		return 0;
1070	}
1071
1072	/* Emulate load/store string insn. */
1073	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1074		if (tm_abort_check(regs,
1075				   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1076			return -EINVAL;
1077		PPC_WARN_EMULATED(string, regs);
1078		return emulate_string_inst(regs, instword);
1079	}
1080
1081	/* Emulate the popcntb (Population Count Bytes) instruction. */
1082	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1083		PPC_WARN_EMULATED(popcntb, regs);
1084		return emulate_popcntb_inst(regs, instword);
1085	}
1086
1087	/* Emulate isel (Integer Select) instruction */
1088	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1089		PPC_WARN_EMULATED(isel, regs);
1090		return emulate_isel(regs, instword);
1091	}
1092
1093	/* Emulate sync instruction variants */
1094	if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1095		PPC_WARN_EMULATED(sync, regs);
1096		asm volatile("sync");
1097		return 0;
1098	}
1099
1100#ifdef CONFIG_PPC64
1101	/* Emulate the mfspr rD, DSCR. */
1102	if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1103		PPC_INST_MFSPR_DSCR_USER) ||
1104	     ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1105		PPC_INST_MFSPR_DSCR)) &&
1106			cpu_has_feature(CPU_FTR_DSCR)) {
1107		PPC_WARN_EMULATED(mfdscr, regs);
1108		rd = (instword >> 21) & 0x1f;
1109		regs->gpr[rd] = mfspr(SPRN_DSCR);
1110		return 0;
1111	}
1112	/* Emulate the mtspr DSCR, rD. */
1113	if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1114		PPC_INST_MTSPR_DSCR_USER) ||
1115	     ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1116		PPC_INST_MTSPR_DSCR)) &&
1117			cpu_has_feature(CPU_FTR_DSCR)) {
1118		PPC_WARN_EMULATED(mtdscr, regs);
1119		rd = (instword >> 21) & 0x1f;
1120		current->thread.dscr = regs->gpr[rd];
1121		current->thread.dscr_inherit = 1;
1122		mtspr(SPRN_DSCR, current->thread.dscr);
1123		return 0;
1124	}
1125#endif
1126
1127	return -EINVAL;
1128}
1129
1130int is_valid_bugaddr(unsigned long addr)
1131{
1132	return is_kernel_addr(addr);
1133}
1134
1135#ifdef CONFIG_MATH_EMULATION
1136static int emulate_math(struct pt_regs *regs)
1137{
1138	int ret;
1139	extern int do_mathemu(struct pt_regs *regs);
1140
1141	ret = do_mathemu(regs);
1142	if (ret >= 0)
1143		PPC_WARN_EMULATED(math, regs);
1144
1145	switch (ret) {
1146	case 0:
1147		emulate_single_step(regs);
1148		return 0;
1149	case 1: {
1150			int code = 0;
1151			code = __parse_fpscr(current->thread.fp_state.fpscr);
1152			_exception(SIGFPE, regs, code, regs->nip);
1153			return 0;
1154		}
1155	case -EFAULT:
1156		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1157		return 0;
1158	}
1159
1160	return -1;
1161}
1162#else
1163static inline int emulate_math(struct pt_regs *regs) { return -1; }
1164#endif
1165
1166void program_check_exception(struct pt_regs *regs)
1167{
1168	enum ctx_state prev_state = exception_enter();
1169	unsigned int reason = get_reason(regs);
1170
1171	/* We can now get here via a FP Unavailable exception if the core
1172	 * has no FPU, in that case the reason flags will be 0 */
1173
1174	if (reason & REASON_FP) {
1175		/* IEEE FP exception */
1176		parse_fpe(regs);
1177		goto bail;
1178	}
1179	if (reason & REASON_TRAP) {
1180		unsigned long bugaddr;
1181		/* Debugger is first in line to stop recursive faults in
1182		 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1183		if (debugger_bpt(regs))
1184			goto bail;
1185
1186		if (kprobe_handler(regs))
1187			goto bail;
1188
1189		/* trap exception */
1190		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1191				== NOTIFY_STOP)
1192			goto bail;
1193
1194		bugaddr = regs->nip;
1195		/*
1196		 * Fixup bugaddr for BUG_ON() in real mode
1197		 */
1198		if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1199			bugaddr += PAGE_OFFSET;
1200
1201		if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1202		    report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1203			regs->nip += 4;
1204			goto bail;
1205		}
1206		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1207		goto bail;
1208	}
1209#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1210	if (reason & REASON_TM) {
1211		/* This is a TM "Bad Thing Exception" program check.
1212		 * This occurs when:
1213		 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1214		 *    transition in TM states.
1215		 * -  A trechkpt is attempted when transactional.
1216		 * -  A treclaim is attempted when non transactional.
1217		 * -  A tend is illegally attempted.
1218		 * -  writing a TM SPR when transactional.
1219		 */
1220		if (!user_mode(regs) &&
1221		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1222			regs->nip += 4;
1223			goto bail;
1224		}
1225		/* If usermode caused this, it's done something illegal and
1226		 * gets a SIGILL slap on the wrist.  We call it an illegal
1227		 * operand to distinguish from the instruction just being bad
1228		 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1229		 * illegal /placement/ of a valid instruction.
1230		 */
1231		if (user_mode(regs)) {
1232			_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1233			goto bail;
1234		} else {
1235			printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1236			       "at %lx (msr 0x%x)\n", regs->nip, reason);
 
1237			die("Unrecoverable exception", regs, SIGABRT);
1238		}
1239	}
1240#endif
1241
1242	/*
1243	 * If we took the program check in the kernel skip down to sending a
1244	 * SIGILL. The subsequent cases all relate to emulating instructions
1245	 * which we should only do for userspace. We also do not want to enable
1246	 * interrupts for kernel faults because that might lead to further
1247	 * faults, and loose the context of the original exception.
1248	 */
1249	if (!user_mode(regs))
1250		goto sigill;
1251
1252	/* We restore the interrupt state now */
1253	if (!arch_irq_disabled_regs(regs))
1254		local_irq_enable();
1255
1256	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
1257	 * but there seems to be a hardware bug on the 405GP (RevD)
1258	 * that means ESR is sometimes set incorrectly - either to
1259	 * ESR_DST (!?) or 0.  In the process of chasing this with the
1260	 * hardware people - not sure if it can happen on any illegal
1261	 * instruction or only on FP instructions, whether there is a
1262	 * pattern to occurrences etc. -dgibson 31/Mar/2003
1263	 */
1264	if (!emulate_math(regs))
1265		goto bail;
1266
1267	/* Try to emulate it if we should. */
1268	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1269		switch (emulate_instruction(regs)) {
1270		case 0:
1271			regs->nip += 4;
1272			emulate_single_step(regs);
1273			goto bail;
1274		case -EFAULT:
1275			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1276			goto bail;
1277		}
1278	}
1279
1280sigill:
1281	if (reason & REASON_PRIVILEGED)
1282		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1283	else
1284		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1285
1286bail:
1287	exception_exit(prev_state);
1288}
1289NOKPROBE_SYMBOL(program_check_exception);
1290
1291/*
1292 * This occurs when running in hypervisor mode on POWER6 or later
1293 * and an illegal instruction is encountered.
1294 */
1295void emulation_assist_interrupt(struct pt_regs *regs)
1296{
1297	regs->msr |= REASON_ILLEGAL;
1298	program_check_exception(regs);
1299}
1300NOKPROBE_SYMBOL(emulation_assist_interrupt);
1301
1302void alignment_exception(struct pt_regs *regs)
1303{
1304	enum ctx_state prev_state = exception_enter();
1305	int sig, code, fixed = 0;
 
1306
1307	/* We restore the interrupt state now */
1308	if (!arch_irq_disabled_regs(regs))
1309		local_irq_enable();
1310
 
 
 
 
 
 
 
 
1311	if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1312		goto bail;
1313
1314	/* we don't implement logging of alignment exceptions */
1315	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1316		fixed = fix_alignment(regs);
1317
1318	if (fixed == 1) {
1319		regs->nip += 4;	/* skip over emulated instruction */
 
1320		emulate_single_step(regs);
1321		goto bail;
1322	}
1323
1324	/* Operand address was bad */
1325	if (fixed == -EFAULT) {
1326		sig = SIGSEGV;
1327		code = SEGV_ACCERR;
1328	} else {
1329		sig = SIGBUS;
1330		code = BUS_ADRALN;
1331	}
 
1332	if (user_mode(regs))
1333		_exception(sig, regs, code, regs->dar);
1334	else
1335		bad_page_fault(regs, regs->dar, sig);
1336
1337bail:
1338	exception_exit(prev_state);
1339}
1340
1341void slb_miss_bad_addr(struct pt_regs *regs)
1342{
1343	enum ctx_state prev_state = exception_enter();
1344
1345	if (user_mode(regs))
1346		_exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
1347	else
1348		bad_page_fault(regs, regs->dar, SIGSEGV);
1349
1350	exception_exit(prev_state);
1351}
1352
1353void StackOverflow(struct pt_regs *regs)
1354{
1355	printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1356	       current, regs->gpr[1]);
1357	debugger(regs);
1358	show_regs(regs);
1359	panic("kernel stack overflow");
1360}
1361
1362void nonrecoverable_exception(struct pt_regs *regs)
1363{
1364	printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1365	       regs->nip, regs->msr);
1366	debugger(regs);
1367	die("nonrecoverable exception", regs, SIGKILL);
 
1368}
1369
1370void kernel_fp_unavailable_exception(struct pt_regs *regs)
1371{
1372	enum ctx_state prev_state = exception_enter();
1373
1374	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1375			  "%lx at %lx\n", regs->trap, regs->nip);
1376	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1377
1378	exception_exit(prev_state);
1379}
1380
1381void altivec_unavailable_exception(struct pt_regs *regs)
1382{
1383	enum ctx_state prev_state = exception_enter();
1384
1385	if (user_mode(regs)) {
1386		/* A user program has executed an altivec instruction,
1387		   but this kernel doesn't support altivec. */
1388		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1389		goto bail;
1390	}
1391
1392	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1393			"%lx at %lx\n", regs->trap, regs->nip);
1394	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1395
1396bail:
1397	exception_exit(prev_state);
1398}
1399
1400void vsx_unavailable_exception(struct pt_regs *regs)
1401{
1402	if (user_mode(regs)) {
1403		/* A user program has executed an vsx instruction,
1404		   but this kernel doesn't support vsx. */
1405		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1406		return;
1407	}
1408
1409	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1410			"%lx at %lx\n", regs->trap, regs->nip);
1411	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1412}
1413
1414#ifdef CONFIG_PPC64
1415static void tm_unavailable(struct pt_regs *regs)
1416{
1417#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1418	if (user_mode(regs)) {
1419		current->thread.load_tm++;
1420		regs->msr |= MSR_TM;
1421		tm_enable();
1422		tm_restore_sprs(&current->thread);
1423		return;
1424	}
1425#endif
1426	pr_emerg("Unrecoverable TM Unavailable Exception "
1427			"%lx at %lx\n", regs->trap, regs->nip);
1428	die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
1429}
1430
1431void facility_unavailable_exception(struct pt_regs *regs)
1432{
1433	static char *facility_strings[] = {
1434		[FSCR_FP_LG] = "FPU",
1435		[FSCR_VECVSX_LG] = "VMX/VSX",
1436		[FSCR_DSCR_LG] = "DSCR",
1437		[FSCR_PM_LG] = "PMU SPRs",
1438		[FSCR_BHRB_LG] = "BHRB",
1439		[FSCR_TM_LG] = "TM",
1440		[FSCR_EBB_LG] = "EBB",
1441		[FSCR_TAR_LG] = "TAR",
 
 
 
1442	};
1443	char *facility = "unknown";
1444	u64 value;
1445	u32 instword, rd;
1446	u8 status;
1447	bool hv;
1448
1449	hv = (regs->trap == 0xf80);
1450	if (hv)
1451		value = mfspr(SPRN_HFSCR);
1452	else
1453		value = mfspr(SPRN_FSCR);
1454
1455	status = value >> 56;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1456	if (status == FSCR_DSCR_LG) {
1457		/*
1458		 * User is accessing the DSCR register using the problem
1459		 * state only SPR number (0x03) either through a mfspr or
1460		 * a mtspr instruction. If it is a write attempt through
1461		 * a mtspr, then we set the inherit bit. This also allows
1462		 * the user to write or read the register directly in the
1463		 * future by setting via the FSCR DSCR bit. But in case it
1464		 * is a read DSCR attempt through a mfspr instruction, we
1465		 * just emulate the instruction instead. This code path will
1466		 * always emulate all the mfspr instructions till the user
1467		 * has attempted at least one mtspr instruction. This way it
1468		 * preserves the same behaviour when the user is accessing
1469		 * the DSCR through privilege level only SPR number (0x11)
1470		 * which is emulated through illegal instruction exception.
1471		 * We always leave HFSCR DSCR set.
1472		 */
1473		if (get_user(instword, (u32 __user *)(regs->nip))) {
1474			pr_err("Failed to fetch the user instruction\n");
1475			return;
1476		}
1477
1478		/* Write into DSCR (mtspr 0x03, RS) */
1479		if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1480				== PPC_INST_MTSPR_DSCR_USER) {
1481			rd = (instword >> 21) & 0x1f;
1482			current->thread.dscr = regs->gpr[rd];
1483			current->thread.dscr_inherit = 1;
1484			current->thread.fscr |= FSCR_DSCR;
1485			mtspr(SPRN_FSCR, current->thread.fscr);
1486		}
1487
1488		/* Read from DSCR (mfspr RT, 0x03) */
1489		if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1490				== PPC_INST_MFSPR_DSCR_USER) {
1491			if (emulate_instruction(regs)) {
1492				pr_err("DSCR based mfspr emulation failed\n");
1493				return;
1494			}
1495			regs->nip += 4;
1496			emulate_single_step(regs);
1497		}
1498		return;
1499	}
1500
1501	if (status == FSCR_TM_LG) {
1502		/*
1503		 * If we're here then the hardware is TM aware because it
1504		 * generated an exception with FSRM_TM set.
1505		 *
1506		 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1507		 * told us not to do TM, or the kernel is not built with TM
1508		 * support.
1509		 *
1510		 * If both of those things are true, then userspace can spam the
1511		 * console by triggering the printk() below just by continually
1512		 * doing tbegin (or any TM instruction). So in that case just
1513		 * send the process a SIGILL immediately.
1514		 */
1515		if (!cpu_has_feature(CPU_FTR_TM))
1516			goto out;
1517
1518		tm_unavailable(regs);
1519		return;
1520	}
1521
1522	if ((hv || status >= 2) &&
1523	    (status < ARRAY_SIZE(facility_strings)) &&
1524	    facility_strings[status])
1525		facility = facility_strings[status];
1526
1527	/* We restore the interrupt state now */
1528	if (!arch_irq_disabled_regs(regs))
1529		local_irq_enable();
1530
1531	pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1532		hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
1533
1534out:
1535	if (user_mode(regs)) {
1536		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1537		return;
1538	}
1539
1540	die("Unexpected facility unavailable exception", regs, SIGABRT);
1541}
1542#endif
1543
1544#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1545
1546void fp_unavailable_tm(struct pt_regs *regs)
1547{
1548	/* Note:  This does not handle any kind of FP laziness. */
1549
1550	TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1551		 regs->nip, regs->msr);
1552
1553        /* We can only have got here if the task started using FP after
1554         * beginning the transaction.  So, the transactional regs are just a
1555         * copy of the checkpointed ones.  But, we still need to recheckpoint
1556         * as we're enabling FP for the process; it will return, abort the
1557         * transaction, and probably retry but now with FP enabled.  So the
1558         * checkpointed FP registers need to be loaded.
1559	 */
1560	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1561	/* Reclaim didn't save out any FPRs to transact_fprs. */
 
 
 
 
 
 
 
1562
1563	/* Enable FP for the task: */
1564	regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1565
1566	/* This loads and recheckpoints the FP registers from
1567	 * thread.fpr[].  They will remain in registers after the
1568	 * checkpoint so we don't need to reload them after.
1569	 * If VMX is in use, the VRs now hold checkpointed values,
1570	 * so we don't want to load the VRs from the thread_struct.
1571	 */
1572	tm_recheckpoint(&current->thread, MSR_FP);
1573
1574	/* If VMX is in use, get the transactional values back */
1575	if (regs->msr & MSR_VEC) {
1576		msr_check_and_set(MSR_VEC);
1577		load_vr_state(&current->thread.vr_state);
1578		/* At this point all the VSX state is loaded, so enable it */
1579		regs->msr |= MSR_VSX;
1580	}
1581}
1582
1583void altivec_unavailable_tm(struct pt_regs *regs)
1584{
1585	/* See the comments in fp_unavailable_tm().  This function operates
1586	 * the same way.
1587	 */
1588
1589	TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1590		 "MSR=%lx\n",
1591		 regs->nip, regs->msr);
1592	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1593	regs->msr |= MSR_VEC;
1594	tm_recheckpoint(&current->thread, MSR_VEC);
1595	current->thread.used_vr = 1;
1596
1597	if (regs->msr & MSR_FP) {
1598		msr_check_and_set(MSR_FP);
1599		load_fp_state(&current->thread.fp_state);
1600		regs->msr |= MSR_VSX;
1601	}
1602}
1603
1604void vsx_unavailable_tm(struct pt_regs *regs)
1605{
1606	unsigned long orig_msr = regs->msr;
1607
1608	/* See the comments in fp_unavailable_tm().  This works similarly,
1609	 * though we're loading both FP and VEC registers in here.
1610	 *
1611	 * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1612	 * regs.  Either way, set MSR_VSX.
1613	 */
1614
1615	TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1616		 "MSR=%lx\n",
1617		 regs->nip, regs->msr);
1618
1619	current->thread.used_vsr = 1;
1620
1621	/* If FP and VMX are already loaded, we have all the state we need */
1622	if ((orig_msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) {
1623		regs->msr |= MSR_VSX;
1624		return;
1625	}
1626
1627	/* This reclaims FP and/or VR regs if they're already enabled */
1628	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1629
1630	regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1631		MSR_VSX;
1632
1633	/* This loads & recheckpoints FP and VRs; but we have
1634	 * to be sure not to overwrite previously-valid state.
1635	 */
1636	tm_recheckpoint(&current->thread, regs->msr & ~orig_msr);
1637
1638	msr_check_and_set(orig_msr & (MSR_FP | MSR_VEC));
1639
1640	if (orig_msr & MSR_FP)
1641		load_fp_state(&current->thread.fp_state);
1642	if (orig_msr & MSR_VEC)
1643		load_vr_state(&current->thread.vr_state);
1644}
1645#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1646
1647void performance_monitor_exception(struct pt_regs *regs)
1648{
1649	__this_cpu_inc(irq_stat.pmu_irqs);
1650
1651	perf_irq(regs);
1652}
1653
1654#ifdef CONFIG_8xx
1655void SoftwareEmulation(struct pt_regs *regs)
1656{
1657	CHECK_FULL_REGS(regs);
1658
1659	if (!user_mode(regs)) {
1660		debugger(regs);
1661		die("Kernel Mode Unimplemented Instruction or SW FPU Emulation",
1662			regs, SIGFPE);
1663	}
1664
1665	if (!emulate_math(regs))
1666		return;
1667
1668	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1669}
1670#endif /* CONFIG_8xx */
1671
1672#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1673static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1674{
1675	int changed = 0;
1676	/*
1677	 * Determine the cause of the debug event, clear the
1678	 * event flags and send a trap to the handler. Torez
1679	 */
1680	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1681		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1682#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1683		current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1684#endif
1685		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1686			     5);
1687		changed |= 0x01;
1688	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1689		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1690		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1691			     6);
1692		changed |= 0x01;
1693	}  else if (debug_status & DBSR_IAC1) {
1694		current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1695		dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1696		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1697			     1);
1698		changed |= 0x01;
1699	}  else if (debug_status & DBSR_IAC2) {
1700		current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1701		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1702			     2);
1703		changed |= 0x01;
1704	}  else if (debug_status & DBSR_IAC3) {
1705		current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1706		dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1707		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1708			     3);
1709		changed |= 0x01;
1710	}  else if (debug_status & DBSR_IAC4) {
1711		current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1712		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1713			     4);
1714		changed |= 0x01;
1715	}
1716	/*
1717	 * At the point this routine was called, the MSR(DE) was turned off.
1718	 * Check all other debug flags and see if that bit needs to be turned
1719	 * back on or not.
1720	 */
1721	if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1722			       current->thread.debug.dbcr1))
1723		regs->msr |= MSR_DE;
1724	else
1725		/* Make sure the IDM flag is off */
1726		current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1727
1728	if (changed & 0x01)
1729		mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1730}
1731
1732void DebugException(struct pt_regs *regs, unsigned long debug_status)
1733{
1734	current->thread.debug.dbsr = debug_status;
1735
1736	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1737	 * on server, it stops on the target of the branch. In order to simulate
1738	 * the server behaviour, we thus restart right away with a single step
1739	 * instead of stopping here when hitting a BT
1740	 */
1741	if (debug_status & DBSR_BT) {
1742		regs->msr &= ~MSR_DE;
1743
1744		/* Disable BT */
1745		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1746		/* Clear the BT event */
1747		mtspr(SPRN_DBSR, DBSR_BT);
1748
1749		/* Do the single step trick only when coming from userspace */
1750		if (user_mode(regs)) {
1751			current->thread.debug.dbcr0 &= ~DBCR0_BT;
1752			current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1753			regs->msr |= MSR_DE;
1754			return;
1755		}
1756
1757		if (kprobe_post_handler(regs))
1758			return;
1759
1760		if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1761			       5, SIGTRAP) == NOTIFY_STOP) {
1762			return;
1763		}
1764		if (debugger_sstep(regs))
1765			return;
1766	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */
1767		regs->msr &= ~MSR_DE;
1768
1769		/* Disable instruction completion */
1770		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1771		/* Clear the instruction completion event */
1772		mtspr(SPRN_DBSR, DBSR_IC);
1773
1774		if (kprobe_post_handler(regs))
1775			return;
1776
1777		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1778			       5, SIGTRAP) == NOTIFY_STOP) {
1779			return;
1780		}
1781
1782		if (debugger_sstep(regs))
1783			return;
1784
1785		if (user_mode(regs)) {
1786			current->thread.debug.dbcr0 &= ~DBCR0_IC;
1787			if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1788					       current->thread.debug.dbcr1))
1789				regs->msr |= MSR_DE;
1790			else
1791				/* Make sure the IDM bit is off */
1792				current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1793		}
1794
1795		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1796	} else
1797		handle_debug(regs, debug_status);
1798}
1799NOKPROBE_SYMBOL(DebugException);
1800#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1801
1802#if !defined(CONFIG_TAU_INT)
1803void TAUException(struct pt_regs *regs)
1804{
1805	printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
1806	       regs->nip, regs->msr, regs->trap, print_tainted());
1807}
1808#endif /* CONFIG_INT_TAU */
1809
1810#ifdef CONFIG_ALTIVEC
1811void altivec_assist_exception(struct pt_regs *regs)
1812{
1813	int err;
1814
1815	if (!user_mode(regs)) {
1816		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1817		       " at %lx\n", regs->nip);
1818		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1819	}
1820
1821	flush_altivec_to_thread(current);
1822
1823	PPC_WARN_EMULATED(altivec, regs);
1824	err = emulate_altivec(regs);
1825	if (err == 0) {
1826		regs->nip += 4;		/* skip emulated instruction */
1827		emulate_single_step(regs);
1828		return;
1829	}
1830
1831	if (err == -EFAULT) {
1832		/* got an error reading the instruction */
1833		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1834	} else {
1835		/* didn't recognize the instruction */
1836		/* XXX quick hack for now: set the non-Java bit in the VSCR */
1837		printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1838				   "in %s at %lx\n", current->comm, regs->nip);
1839		current->thread.vr_state.vscr.u[3] |= 0x10000;
1840	}
1841}
1842#endif /* CONFIG_ALTIVEC */
1843
1844#ifdef CONFIG_FSL_BOOKE
1845void CacheLockingException(struct pt_regs *regs, unsigned long address,
1846			   unsigned long error_code)
1847{
1848	/* We treat cache locking instructions from the user
1849	 * as priv ops, in the future we could try to do
1850	 * something smarter
1851	 */
1852	if (error_code & (ESR_DLK|ESR_ILK))
1853		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1854	return;
1855}
1856#endif /* CONFIG_FSL_BOOKE */
1857
1858#ifdef CONFIG_SPE
1859void SPEFloatingPointException(struct pt_regs *regs)
1860{
1861	extern int do_spe_mathemu(struct pt_regs *regs);
1862	unsigned long spefscr;
1863	int fpexc_mode;
1864	int code = 0;
1865	int err;
1866
 
 
 
 
1867	flush_spe_to_thread(current);
1868
1869	spefscr = current->thread.spefscr;
1870	fpexc_mode = current->thread.fpexc_mode;
1871
1872	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1873		code = FPE_FLTOVF;
1874	}
1875	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1876		code = FPE_FLTUND;
1877	}
1878	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1879		code = FPE_FLTDIV;
1880	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1881		code = FPE_FLTINV;
1882	}
1883	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1884		code = FPE_FLTRES;
1885
1886	err = do_spe_mathemu(regs);
1887	if (err == 0) {
1888		regs->nip += 4;		/* skip emulated instruction */
1889		emulate_single_step(regs);
1890		return;
1891	}
1892
1893	if (err == -EFAULT) {
1894		/* got an error reading the instruction */
1895		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1896	} else if (err == -EINVAL) {
1897		/* didn't recognize the instruction */
1898		printk(KERN_ERR "unrecognized spe instruction "
1899		       "in %s at %lx\n", current->comm, regs->nip);
1900	} else {
1901		_exception(SIGFPE, regs, code, regs->nip);
1902	}
1903
1904	return;
1905}
1906
1907void SPEFloatingPointRoundException(struct pt_regs *regs)
1908{
1909	extern int speround_handler(struct pt_regs *regs);
1910	int err;
1911
 
 
 
 
1912	preempt_disable();
1913	if (regs->msr & MSR_SPE)
1914		giveup_spe(current);
1915	preempt_enable();
1916
1917	regs->nip -= 4;
1918	err = speround_handler(regs);
1919	if (err == 0) {
1920		regs->nip += 4;		/* skip emulated instruction */
1921		emulate_single_step(regs);
1922		return;
1923	}
1924
1925	if (err == -EFAULT) {
1926		/* got an error reading the instruction */
1927		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1928	} else if (err == -EINVAL) {
1929		/* didn't recognize the instruction */
1930		printk(KERN_ERR "unrecognized spe instruction "
1931		       "in %s at %lx\n", current->comm, regs->nip);
1932	} else {
1933		_exception(SIGFPE, regs, 0, regs->nip);
1934		return;
1935	}
1936}
1937#endif
1938
1939/*
1940 * We enter here if we get an unrecoverable exception, that is, one
1941 * that happened at a point where the RI (recoverable interrupt) bit
1942 * in the MSR is 0.  This indicates that SRR0/1 are live, and that
1943 * we therefore lost state by taking this exception.
1944 */
1945void unrecoverable_exception(struct pt_regs *regs)
1946{
1947	printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1948	       regs->trap, regs->nip);
1949	die("Unrecoverable exception", regs, SIGABRT);
1950}
 
1951
1952#if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1953/*
1954 * Default handler for a Watchdog exception,
1955 * spins until a reboot occurs
1956 */
1957void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1958{
1959	/* Generic WatchdogHandler, implement your own */
1960	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1961	return;
1962}
1963
1964void WatchdogException(struct pt_regs *regs)
1965{
1966	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1967	WatchdogHandler(regs);
1968}
1969#endif
1970
1971/*
1972 * We enter here if we discover during exception entry that we are
1973 * running in supervisor mode with a userspace value in the stack pointer.
1974 */
1975void kernel_bad_stack(struct pt_regs *regs)
1976{
1977	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1978	       regs->gpr[1], regs->nip);
1979	die("Bad kernel stack pointer", regs, SIGABRT);
1980}
 
1981
1982void __init trap_init(void)
1983{
1984}
1985
1986
1987#ifdef CONFIG_PPC_EMULATED_STATS
1988
1989#define WARN_EMULATED_SETUP(type)	.type = { .name = #type }
1990
1991struct ppc_emulated ppc_emulated = {
1992#ifdef CONFIG_ALTIVEC
1993	WARN_EMULATED_SETUP(altivec),
1994#endif
1995	WARN_EMULATED_SETUP(dcba),
1996	WARN_EMULATED_SETUP(dcbz),
1997	WARN_EMULATED_SETUP(fp_pair),
1998	WARN_EMULATED_SETUP(isel),
1999	WARN_EMULATED_SETUP(mcrxr),
2000	WARN_EMULATED_SETUP(mfpvr),
2001	WARN_EMULATED_SETUP(multiple),
2002	WARN_EMULATED_SETUP(popcntb),
2003	WARN_EMULATED_SETUP(spe),
2004	WARN_EMULATED_SETUP(string),
2005	WARN_EMULATED_SETUP(sync),
2006	WARN_EMULATED_SETUP(unaligned),
2007#ifdef CONFIG_MATH_EMULATION
2008	WARN_EMULATED_SETUP(math),
2009#endif
2010#ifdef CONFIG_VSX
2011	WARN_EMULATED_SETUP(vsx),
2012#endif
2013#ifdef CONFIG_PPC64
2014	WARN_EMULATED_SETUP(mfdscr),
2015	WARN_EMULATED_SETUP(mtdscr),
2016	WARN_EMULATED_SETUP(lq_stq),
 
 
 
 
2017#endif
2018};
2019
2020u32 ppc_warn_emulated;
2021
2022void ppc_warn_emulated_print(const char *type)
2023{
2024	pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
2025			    type);
2026}
2027
2028static int __init ppc_warn_emulated_init(void)
2029{
2030	struct dentry *dir, *d;
2031	unsigned int i;
2032	struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
2033
2034	if (!powerpc_debugfs_root)
2035		return -ENODEV;
2036
2037	dir = debugfs_create_dir("emulated_instructions",
2038				 powerpc_debugfs_root);
2039	if (!dir)
2040		return -ENOMEM;
2041
2042	d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
2043			       &ppc_warn_emulated);
2044	if (!d)
2045		goto fail;
2046
2047	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
2048		d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
2049				       (u32 *)&entries[i].val.counter);
2050		if (!d)
2051			goto fail;
2052	}
2053
2054	return 0;
2055
2056fail:
2057	debugfs_remove_recursive(dir);
2058	return -ENOMEM;
2059}
2060
2061device_initcall(ppc_warn_emulated_init);
2062
2063#endif /* CONFIG_PPC_EMULATED_STATS */