Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/swap.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 */
   7
   8/*
   9 * This file contains the default values for the operation of the
  10 * Linux VM subsystem. Fine-tuning documentation can be found in
  11 * Documentation/admin-guide/sysctl/vm.rst.
  12 * Started 18.12.91
  13 * Swap aging added 23.2.95, Stephen Tweedie.
  14 * Buffermem limits added 12.3.98, Rik van Riel.
  15 */
  16
  17#include <linux/mm.h>
  18#include <linux/sched.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/swap.h>
  21#include <linux/mman.h>
  22#include <linux/pagemap.h>
  23#include <linux/pagevec.h>
  24#include <linux/init.h>
  25#include <linux/export.h>
  26#include <linux/mm_inline.h>
  27#include <linux/percpu_counter.h>
  28#include <linux/memremap.h>
  29#include <linux/percpu.h>
  30#include <linux/cpu.h>
  31#include <linux/notifier.h>
  32#include <linux/backing-dev.h>
  33#include <linux/memcontrol.h>
  34#include <linux/gfp.h>
  35#include <linux/uio.h>
  36#include <linux/hugetlb.h>
  37#include <linux/page_idle.h>
  38#include <linux/local_lock.h>
 
  39
  40#include "internal.h"
  41
  42#define CREATE_TRACE_POINTS
  43#include <trace/events/pagemap.h>
  44
  45/* How many pages do we try to swap or page in/out together? */
  46int page_cluster;
  47
  48/* Protecting only lru_rotate.pvec which requires disabling interrupts */
  49struct lru_rotate {
  50	local_lock_t lock;
  51	struct pagevec pvec;
  52};
  53static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
  54	.lock = INIT_LOCAL_LOCK(lock),
  55};
  56
  57/*
  58 * The following struct pagevec are grouped together because they are protected
  59 * by disabling preemption (and interrupts remain enabled).
  60 */
  61struct lru_pvecs {
  62	local_lock_t lock;
  63	struct pagevec lru_add;
  64	struct pagevec lru_deactivate_file;
  65	struct pagevec lru_deactivate;
  66	struct pagevec lru_lazyfree;
  67#ifdef CONFIG_SMP
  68	struct pagevec activate_page;
  69#endif
  70};
  71static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
  72	.lock = INIT_LOCAL_LOCK(lock),
  73};
  74
  75/*
  76 * This path almost never happens for VM activity - pages are normally
  77 * freed via pagevecs.  But it gets used by networking.
  78 */
  79static void __page_cache_release(struct page *page)
  80{
  81	if (PageLRU(page)) {
  82		pg_data_t *pgdat = page_pgdat(page);
  83		struct lruvec *lruvec;
  84		unsigned long flags;
  85
  86		spin_lock_irqsave(&pgdat->lru_lock, flags);
  87		lruvec = mem_cgroup_page_lruvec(page, pgdat);
  88		VM_BUG_ON_PAGE(!PageLRU(page), page);
  89		__ClearPageLRU(page);
  90		del_page_from_lru_list(page, lruvec, page_off_lru(page));
  91		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
  92	}
  93	__ClearPageWaiters(page);
  94}
  95
  96static void __put_single_page(struct page *page)
  97{
  98	__page_cache_release(page);
  99	mem_cgroup_uncharge(page);
 100	free_unref_page(page);
 101}
 102
 103static void __put_compound_page(struct page *page)
 104{
 105	/*
 106	 * __page_cache_release() is supposed to be called for thp, not for
 107	 * hugetlb. This is because hugetlb page does never have PageLRU set
 108	 * (it's never listed to any LRU lists) and no memcg routines should
 109	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
 110	 */
 111	if (!PageHuge(page))
 112		__page_cache_release(page);
 113	destroy_compound_page(page);
 114}
 115
 116void __put_page(struct page *page)
 117{
 118	if (is_zone_device_page(page)) {
 119		put_dev_pagemap(page->pgmap);
 120
 121		/*
 122		 * The page belongs to the device that created pgmap. Do
 123		 * not return it to page allocator.
 124		 */
 125		return;
 126	}
 127
 128	if (unlikely(PageCompound(page)))
 129		__put_compound_page(page);
 130	else
 131		__put_single_page(page);
 132}
 133EXPORT_SYMBOL(__put_page);
 134
 135/**
 136 * put_pages_list() - release a list of pages
 137 * @pages: list of pages threaded on page->lru
 138 *
 139 * Release a list of pages which are strung together on page.lru.  Currently
 140 * used by read_cache_pages() and related error recovery code.
 141 */
 142void put_pages_list(struct list_head *pages)
 143{
 144	while (!list_empty(pages)) {
 145		struct page *victim;
 146
 147		victim = lru_to_page(pages);
 148		list_del(&victim->lru);
 149		put_page(victim);
 150	}
 151}
 152EXPORT_SYMBOL(put_pages_list);
 153
 154/*
 155 * get_kernel_pages() - pin kernel pages in memory
 156 * @kiov:	An array of struct kvec structures
 157 * @nr_segs:	number of segments to pin
 158 * @write:	pinning for read/write, currently ignored
 159 * @pages:	array that receives pointers to the pages pinned.
 160 *		Should be at least nr_segs long.
 161 *
 162 * Returns number of pages pinned. This may be fewer than the number
 163 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 164 * were pinned, returns -errno. Each page returned must be released
 165 * with a put_page() call when it is finished with.
 166 */
 167int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
 168		struct page **pages)
 169{
 170	int seg;
 171
 172	for (seg = 0; seg < nr_segs; seg++) {
 173		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
 174			return seg;
 175
 176		pages[seg] = kmap_to_page(kiov[seg].iov_base);
 177		get_page(pages[seg]);
 178	}
 179
 180	return seg;
 181}
 182EXPORT_SYMBOL_GPL(get_kernel_pages);
 183
 184/*
 185 * get_kernel_page() - pin a kernel page in memory
 186 * @start:	starting kernel address
 187 * @write:	pinning for read/write, currently ignored
 188 * @pages:	array that receives pointer to the page pinned.
 189 *		Must be at least nr_segs long.
 190 *
 191 * Returns 1 if page is pinned. If the page was not pinned, returns
 192 * -errno. The page returned must be released with a put_page() call
 193 * when it is finished with.
 194 */
 195int get_kernel_page(unsigned long start, int write, struct page **pages)
 196{
 197	const struct kvec kiov = {
 198		.iov_base = (void *)start,
 199		.iov_len = PAGE_SIZE
 200	};
 201
 202	return get_kernel_pages(&kiov, 1, write, pages);
 203}
 204EXPORT_SYMBOL_GPL(get_kernel_page);
 205
 206static void pagevec_lru_move_fn(struct pagevec *pvec,
 207	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
 208	void *arg)
 209{
 210	int i;
 211	struct pglist_data *pgdat = NULL;
 212	struct lruvec *lruvec;
 213	unsigned long flags = 0;
 214
 215	for (i = 0; i < pagevec_count(pvec); i++) {
 216		struct page *page = pvec->pages[i];
 217		struct pglist_data *pagepgdat = page_pgdat(page);
 218
 219		if (pagepgdat != pgdat) {
 220			if (pgdat)
 221				spin_unlock_irqrestore(&pgdat->lru_lock, flags);
 222			pgdat = pagepgdat;
 223			spin_lock_irqsave(&pgdat->lru_lock, flags);
 224		}
 225
 226		lruvec = mem_cgroup_page_lruvec(page, pgdat);
 227		(*move_fn)(page, lruvec, arg);
 
 
 228	}
 229	if (pgdat)
 230		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
 231	release_pages(pvec->pages, pvec->nr);
 232	pagevec_reinit(pvec);
 233}
 234
 235static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
 236				 void *arg)
 237{
 238	int *pgmoved = arg;
 239
 240	if (PageLRU(page) && !PageUnevictable(page)) {
 241		del_page_from_lru_list(page, lruvec, page_lru(page));
 242		ClearPageActive(page);
 243		add_page_to_lru_list_tail(page, lruvec, page_lru(page));
 244		(*pgmoved) += thp_nr_pages(page);
 245	}
 246}
 247
 248/*
 249 * pagevec_move_tail() must be called with IRQ disabled.
 250 * Otherwise this may cause nasty races.
 251 */
 252static void pagevec_move_tail(struct pagevec *pvec)
 253{
 254	int pgmoved = 0;
 
 
 
 
 255
 256	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
 257	__count_vm_events(PGROTATED, pgmoved);
 258}
 259
 260/*
 261 * Writeback is about to end against a page which has been marked for immediate
 262 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 263 * inactive list.
 
 
 264 */
 265void rotate_reclaimable_page(struct page *page)
 266{
 267	if (!PageLocked(page) && !PageDirty(page) &&
 268	    !PageUnevictable(page) && PageLRU(page)) {
 269		struct pagevec *pvec;
 270		unsigned long flags;
 271
 272		get_page(page);
 273		local_lock_irqsave(&lru_rotate.lock, flags);
 274		pvec = this_cpu_ptr(&lru_rotate.pvec);
 275		if (!pagevec_add(pvec, page) || PageCompound(page))
 276			pagevec_move_tail(pvec);
 277		local_unlock_irqrestore(&lru_rotate.lock, flags);
 278	}
 279}
 280
 281void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
 282{
 283	do {
 284		unsigned long lrusize;
 285
 
 
 
 
 
 
 
 
 286		/* Record cost event */
 287		if (file)
 288			lruvec->file_cost += nr_pages;
 289		else
 290			lruvec->anon_cost += nr_pages;
 291
 292		/*
 293		 * Decay previous events
 294		 *
 295		 * Because workloads change over time (and to avoid
 296		 * overflow) we keep these statistics as a floating
 297		 * average, which ends up weighing recent refaults
 298		 * more than old ones.
 299		 */
 300		lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
 301			  lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
 302			  lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
 303			  lruvec_page_state(lruvec, NR_ACTIVE_FILE);
 304
 305		if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
 306			lruvec->file_cost /= 2;
 307			lruvec->anon_cost /= 2;
 308		}
 
 309	} while ((lruvec = parent_lruvec(lruvec)));
 310}
 311
 312void lru_note_cost_page(struct page *page)
 313{
 314	lru_note_cost(mem_cgroup_page_lruvec(page, page_pgdat(page)),
 315		      page_is_file_lru(page), thp_nr_pages(page));
 316}
 317
 318static void __activate_page(struct page *page, struct lruvec *lruvec,
 319			    void *arg)
 320{
 321	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
 322		int lru = page_lru_base_type(page);
 323		int nr_pages = thp_nr_pages(page);
 324
 325		del_page_from_lru_list(page, lruvec, lru);
 326		SetPageActive(page);
 327		lru += LRU_ACTIVE;
 328		add_page_to_lru_list(page, lruvec, lru);
 329		trace_mm_lru_activate(page);
 330
 331		__count_vm_events(PGACTIVATE, nr_pages);
 332		__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
 333				     nr_pages);
 334	}
 335}
 336
 337#ifdef CONFIG_SMP
 338static void activate_page_drain(int cpu)
 339{
 340	struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
 341
 342	if (pagevec_count(pvec))
 343		pagevec_lru_move_fn(pvec, __activate_page, NULL);
 344}
 345
 346static bool need_activate_page_drain(int cpu)
 347{
 348	return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
 349}
 350
 351void activate_page(struct page *page)
 352{
 353	page = compound_head(page);
 354	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
 355		struct pagevec *pvec;
 356
 357		local_lock(&lru_pvecs.lock);
 358		pvec = this_cpu_ptr(&lru_pvecs.activate_page);
 359		get_page(page);
 360		if (!pagevec_add(pvec, page) || PageCompound(page))
 361			pagevec_lru_move_fn(pvec, __activate_page, NULL);
 362		local_unlock(&lru_pvecs.lock);
 363	}
 364}
 365
 366#else
 367static inline void activate_page_drain(int cpu)
 368{
 369}
 370
 371void activate_page(struct page *page)
 372{
 373	pg_data_t *pgdat = page_pgdat(page);
 374
 375	page = compound_head(page);
 376	spin_lock_irq(&pgdat->lru_lock);
 377	__activate_page(page, mem_cgroup_page_lruvec(page, pgdat), NULL);
 378	spin_unlock_irq(&pgdat->lru_lock);
 
 
 
 379}
 380#endif
 381
 382static void __lru_cache_activate_page(struct page *page)
 383{
 384	struct pagevec *pvec;
 385	int i;
 386
 387	local_lock(&lru_pvecs.lock);
 388	pvec = this_cpu_ptr(&lru_pvecs.lru_add);
 389
 390	/*
 391	 * Search backwards on the optimistic assumption that the page being
 392	 * activated has just been added to this pagevec. Note that only
 393	 * the local pagevec is examined as a !PageLRU page could be in the
 394	 * process of being released, reclaimed, migrated or on a remote
 395	 * pagevec that is currently being drained. Furthermore, marking
 396	 * a remote pagevec's page PageActive potentially hits a race where
 397	 * a page is marked PageActive just after it is added to the inactive
 398	 * list causing accounting errors and BUG_ON checks to trigger.
 399	 */
 400	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
 401		struct page *pagevec_page = pvec->pages[i];
 402
 403		if (pagevec_page == page) {
 404			SetPageActive(page);
 405			break;
 406		}
 407	}
 408
 409	local_unlock(&lru_pvecs.lock);
 410}
 411
 412/*
 413 * Mark a page as having seen activity.
 414 *
 415 * inactive,unreferenced	->	inactive,referenced
 416 * inactive,referenced		->	active,unreferenced
 417 * active,unreferenced		->	active,referenced
 418 *
 419 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
 420 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
 421 */
 422void mark_page_accessed(struct page *page)
 423{
 424	page = compound_head(page);
 425
 426	if (!PageReferenced(page)) {
 427		SetPageReferenced(page);
 428	} else if (PageUnevictable(page)) {
 429		/*
 430		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
 431		 * this list is never rotated or maintained, so marking an
 432		 * evictable page accessed has no effect.
 433		 */
 434	} else if (!PageActive(page)) {
 435		/*
 436		 * If the page is on the LRU, queue it for activation via
 437		 * lru_pvecs.activate_page. Otherwise, assume the page is on a
 438		 * pagevec, mark it active and it'll be moved to the active
 439		 * LRU on the next drain.
 440		 */
 441		if (PageLRU(page))
 442			activate_page(page);
 443		else
 444			__lru_cache_activate_page(page);
 445		ClearPageReferenced(page);
 446		workingset_activation(page);
 447	}
 448	if (page_is_idle(page))
 449		clear_page_idle(page);
 450}
 451EXPORT_SYMBOL(mark_page_accessed);
 452
 453/**
 454 * lru_cache_add - add a page to a page list
 455 * @page: the page to be added to the LRU.
 456 *
 457 * Queue the page for addition to the LRU via pagevec. The decision on whether
 458 * to add the page to the [in]active [file|anon] list is deferred until the
 459 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
 460 * have the page added to the active list using mark_page_accessed().
 461 */
 462void lru_cache_add(struct page *page)
 463{
 464	struct pagevec *pvec;
 465
 466	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
 467	VM_BUG_ON_PAGE(PageLRU(page), page);
 468
 469	get_page(page);
 470	local_lock(&lru_pvecs.lock);
 471	pvec = this_cpu_ptr(&lru_pvecs.lru_add);
 472	if (!pagevec_add(pvec, page) || PageCompound(page))
 473		__pagevec_lru_add(pvec);
 474	local_unlock(&lru_pvecs.lock);
 475}
 476EXPORT_SYMBOL(lru_cache_add);
 477
 478/**
 479 * lru_cache_add_inactive_or_unevictable
 480 * @page:  the page to be added to LRU
 481 * @vma:   vma in which page is mapped for determining reclaimability
 482 *
 483 * Place @page on the inactive or unevictable LRU list, depending on its
 484 * evictability.  Note that if the page is not evictable, it goes
 485 * directly back onto it's zone's unevictable list, it does NOT use a
 486 * per cpu pagevec.
 487 */
 488void lru_cache_add_inactive_or_unevictable(struct page *page,
 489					 struct vm_area_struct *vma)
 490{
 491	bool unevictable;
 492
 493	VM_BUG_ON_PAGE(PageLRU(page), page);
 494
 495	unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
 496	if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
 497		int nr_pages = thp_nr_pages(page);
 498		/*
 499		 * We use the irq-unsafe __mod_zone_page_stat because this
 500		 * counter is not modified from interrupt context, and the pte
 501		 * lock is held(spinlock), which implies preemption disabled.
 502		 */
 503		__mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
 504		count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
 505	}
 506	lru_cache_add(page);
 507}
 508
 509/*
 510 * If the page can not be invalidated, it is moved to the
 511 * inactive list to speed up its reclaim.  It is moved to the
 512 * head of the list, rather than the tail, to give the flusher
 513 * threads some time to write it out, as this is much more
 514 * effective than the single-page writeout from reclaim.
 515 *
 516 * If the page isn't page_mapped and dirty/writeback, the page
 517 * could reclaim asap using PG_reclaim.
 518 *
 519 * 1. active, mapped page -> none
 520 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
 521 * 3. inactive, mapped page -> none
 522 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
 523 * 5. inactive, clean -> inactive, tail
 524 * 6. Others -> none
 525 *
 526 * In 4, why it moves inactive's head, the VM expects the page would
 527 * be write it out by flusher threads as this is much more effective
 528 * than the single-page writeout from reclaim.
 529 */
 530static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
 531			      void *arg)
 532{
 533	int lru;
 534	bool active;
 535	int nr_pages = thp_nr_pages(page);
 536
 537	if (!PageLRU(page))
 538		return;
 539
 540	if (PageUnevictable(page))
 541		return;
 542
 543	/* Some processes are using the page */
 544	if (page_mapped(page))
 545		return;
 546
 547	active = PageActive(page);
 548	lru = page_lru_base_type(page);
 549
 550	del_page_from_lru_list(page, lruvec, lru + active);
 551	ClearPageActive(page);
 552	ClearPageReferenced(page);
 553
 554	if (PageWriteback(page) || PageDirty(page)) {
 555		/*
 556		 * PG_reclaim could be raced with end_page_writeback
 557		 * It can make readahead confusing.  But race window
 558		 * is _really_ small and  it's non-critical problem.
 559		 */
 560		add_page_to_lru_list(page, lruvec, lru);
 561		SetPageReclaim(page);
 562	} else {
 563		/*
 564		 * The page's writeback ends up during pagevec
 565		 * We moves tha page into tail of inactive.
 566		 */
 567		add_page_to_lru_list_tail(page, lruvec, lru);
 568		__count_vm_events(PGROTATED, nr_pages);
 569	}
 570
 571	if (active) {
 572		__count_vm_events(PGDEACTIVATE, nr_pages);
 573		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
 574				     nr_pages);
 575	}
 576}
 577
 578static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
 579			    void *arg)
 580{
 581	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
 582		int lru = page_lru_base_type(page);
 583		int nr_pages = thp_nr_pages(page);
 584
 585		del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE);
 586		ClearPageActive(page);
 587		ClearPageReferenced(page);
 588		add_page_to_lru_list(page, lruvec, lru);
 589
 590		__count_vm_events(PGDEACTIVATE, nr_pages);
 591		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
 592				     nr_pages);
 593	}
 594}
 595
 596static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
 597			    void *arg)
 598{
 599	if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
 600	    !PageSwapCache(page) && !PageUnevictable(page)) {
 601		bool active = PageActive(page);
 602		int nr_pages = thp_nr_pages(page);
 603
 604		del_page_from_lru_list(page, lruvec,
 605				       LRU_INACTIVE_ANON + active);
 606		ClearPageActive(page);
 607		ClearPageReferenced(page);
 608		/*
 609		 * Lazyfree pages are clean anonymous pages.  They have
 610		 * PG_swapbacked flag cleared, to distinguish them from normal
 611		 * anonymous pages
 612		 */
 613		ClearPageSwapBacked(page);
 614		add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
 615
 616		__count_vm_events(PGLAZYFREE, nr_pages);
 617		__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
 618				     nr_pages);
 619	}
 620}
 621
 622/*
 623 * Drain pages out of the cpu's pagevecs.
 624 * Either "cpu" is the current CPU, and preemption has already been
 625 * disabled; or "cpu" is being hot-unplugged, and is already dead.
 626 */
 627void lru_add_drain_cpu(int cpu)
 628{
 629	struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
 630
 631	if (pagevec_count(pvec))
 632		__pagevec_lru_add(pvec);
 633
 634	pvec = &per_cpu(lru_rotate.pvec, cpu);
 635	/* Disabling interrupts below acts as a compiler barrier. */
 636	if (data_race(pagevec_count(pvec))) {
 637		unsigned long flags;
 638
 639		/* No harm done if a racing interrupt already did this */
 640		local_lock_irqsave(&lru_rotate.lock, flags);
 641		pagevec_move_tail(pvec);
 642		local_unlock_irqrestore(&lru_rotate.lock, flags);
 643	}
 644
 645	pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
 646	if (pagevec_count(pvec))
 647		pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
 648
 649	pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
 650	if (pagevec_count(pvec))
 651		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
 652
 653	pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
 654	if (pagevec_count(pvec))
 655		pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
 656
 657	activate_page_drain(cpu);
 
 658}
 659
 660/**
 661 * deactivate_file_page - forcefully deactivate a file page
 662 * @page: page to deactivate
 663 *
 664 * This function hints the VM that @page is a good reclaim candidate,
 665 * for example if its invalidation fails due to the page being dirty
 666 * or under writeback.
 667 */
 668void deactivate_file_page(struct page *page)
 669{
 670	/*
 671	 * In a workload with many unevictable page such as mprotect,
 672	 * unevictable page deactivation for accelerating reclaim is pointless.
 673	 */
 674	if (PageUnevictable(page))
 675		return;
 676
 677	if (likely(get_page_unless_zero(page))) {
 678		struct pagevec *pvec;
 679
 680		local_lock(&lru_pvecs.lock);
 681		pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
 682
 683		if (!pagevec_add(pvec, page) || PageCompound(page))
 684			pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
 685		local_unlock(&lru_pvecs.lock);
 686	}
 687}
 688
 689/*
 690 * deactivate_page - deactivate a page
 691 * @page: page to deactivate
 692 *
 693 * deactivate_page() moves @page to the inactive list if @page was on the active
 694 * list and was not an unevictable page.  This is done to accelerate the reclaim
 695 * of @page.
 696 */
 697void deactivate_page(struct page *page)
 698{
 699	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
 700		struct pagevec *pvec;
 701
 702		local_lock(&lru_pvecs.lock);
 703		pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
 704		get_page(page);
 705		if (!pagevec_add(pvec, page) || PageCompound(page))
 706			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
 707		local_unlock(&lru_pvecs.lock);
 708	}
 709}
 710
 711/**
 712 * mark_page_lazyfree - make an anon page lazyfree
 713 * @page: page to deactivate
 714 *
 715 * mark_page_lazyfree() moves @page to the inactive file list.
 716 * This is done to accelerate the reclaim of @page.
 717 */
 718void mark_page_lazyfree(struct page *page)
 719{
 720	if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
 721	    !PageSwapCache(page) && !PageUnevictable(page)) {
 722		struct pagevec *pvec;
 723
 724		local_lock(&lru_pvecs.lock);
 725		pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
 726		get_page(page);
 727		if (!pagevec_add(pvec, page) || PageCompound(page))
 728			pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
 729		local_unlock(&lru_pvecs.lock);
 730	}
 731}
 732
 733void lru_add_drain(void)
 734{
 735	local_lock(&lru_pvecs.lock);
 736	lru_add_drain_cpu(smp_processor_id());
 737	local_unlock(&lru_pvecs.lock);
 738}
 739
 740void lru_add_drain_cpu_zone(struct zone *zone)
 741{
 742	local_lock(&lru_pvecs.lock);
 743	lru_add_drain_cpu(smp_processor_id());
 744	drain_local_pages(zone);
 745	local_unlock(&lru_pvecs.lock);
 746}
 747
 748#ifdef CONFIG_SMP
 749
 750static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
 751
 752static void lru_add_drain_per_cpu(struct work_struct *dummy)
 753{
 754	lru_add_drain();
 755}
 756
 757/*
 758 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
 759 * kworkers being shut down before our page_alloc_cpu_dead callback is
 760 * executed on the offlined cpu.
 761 * Calling this function with cpu hotplug locks held can actually lead
 762 * to obscure indirect dependencies via WQ context.
 763 */
 764void lru_add_drain_all(void)
 765{
 766	static seqcount_t seqcount = SEQCNT_ZERO(seqcount);
 767	static DEFINE_MUTEX(lock);
 
 
 
 
 
 
 
 
 
 768	static struct cpumask has_work;
 769	int cpu, seq;
 
 770
 771	/*
 772	 * Make sure nobody triggers this path before mm_percpu_wq is fully
 773	 * initialized.
 774	 */
 775	if (WARN_ON(!mm_percpu_wq))
 776		return;
 777
 778	seq = raw_read_seqcount_latch(&seqcount);
 
 
 
 
 
 
 
 
 
 
 
 
 
 779
 780	mutex_lock(&lock);
 781
 782	/*
 783	 * Piggyback on drain started and finished while we waited for lock:
 784	 * all pages pended at the time of our enter were drained from vectors.
 785	 */
 786	if (__read_seqcount_retry(&seqcount, seq))
 787		goto done;
 788
 789	raw_write_seqcount_latch(&seqcount);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 790
 791	cpumask_clear(&has_work);
 792
 793	for_each_online_cpu(cpu) {
 794		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
 795
 796		if (pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
 
 797		    data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
 798		    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
 799		    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
 800		    pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
 801		    need_activate_page_drain(cpu)) {
 
 802			INIT_WORK(work, lru_add_drain_per_cpu);
 803			queue_work_on(cpu, mm_percpu_wq, work);
 804			cpumask_set_cpu(cpu, &has_work);
 805		}
 806	}
 807
 808	for_each_cpu(cpu, &has_work)
 809		flush_work(&per_cpu(lru_add_drain_work, cpu));
 810
 811done:
 812	mutex_unlock(&lock);
 813}
 
 
 
 
 
 814#else
 815void lru_add_drain_all(void)
 816{
 817	lru_add_drain();
 818}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 819#endif
 
 820
 821/**
 822 * release_pages - batched put_page()
 823 * @pages: array of pages to release
 824 * @nr: number of pages
 825 *
 826 * Decrement the reference count on all the pages in @pages.  If it
 827 * fell to zero, remove the page from the LRU and free it.
 828 */
 829void release_pages(struct page **pages, int nr)
 830{
 831	int i;
 832	LIST_HEAD(pages_to_free);
 833	struct pglist_data *locked_pgdat = NULL;
 834	struct lruvec *lruvec;
 835	unsigned long flags;
 836	unsigned int lock_batch;
 837
 838	for (i = 0; i < nr; i++) {
 839		struct page *page = pages[i];
 840
 841		/*
 842		 * Make sure the IRQ-safe lock-holding time does not get
 843		 * excessive with a continuous string of pages from the
 844		 * same pgdat. The lock is held only if pgdat != NULL.
 845		 */
 846		if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
 847			spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
 848			locked_pgdat = NULL;
 849		}
 850
 
 851		if (is_huge_zero_page(page))
 852			continue;
 853
 854		if (is_zone_device_page(page)) {
 855			if (locked_pgdat) {
 856				spin_unlock_irqrestore(&locked_pgdat->lru_lock,
 857						       flags);
 858				locked_pgdat = NULL;
 859			}
 860			/*
 861			 * ZONE_DEVICE pages that return 'false' from
 862			 * put_devmap_managed_page() do not require special
 863			 * processing, and instead, expect a call to
 864			 * put_page_testzero().
 865			 */
 866			if (page_is_devmap_managed(page)) {
 867				put_devmap_managed_page(page);
 868				continue;
 869			}
 
 
 
 870		}
 871
 872		page = compound_head(page);
 873		if (!put_page_testzero(page))
 874			continue;
 875
 876		if (PageCompound(page)) {
 877			if (locked_pgdat) {
 878				spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
 879				locked_pgdat = NULL;
 880			}
 881			__put_compound_page(page);
 882			continue;
 883		}
 884
 885		if (PageLRU(page)) {
 886			struct pglist_data *pgdat = page_pgdat(page);
 887
 888			if (pgdat != locked_pgdat) {
 889				if (locked_pgdat)
 890					spin_unlock_irqrestore(&locked_pgdat->lru_lock,
 891									flags);
 892				lock_batch = 0;
 893				locked_pgdat = pgdat;
 894				spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
 895			}
 896
 897			lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
 898			VM_BUG_ON_PAGE(!PageLRU(page), page);
 899			__ClearPageLRU(page);
 900			del_page_from_lru_list(page, lruvec, page_off_lru(page));
 901		}
 902
 903		/* Clear Active bit in case of parallel mark_page_accessed */
 904		__ClearPageActive(page);
 905		__ClearPageWaiters(page);
 906
 907		list_add(&page->lru, &pages_to_free);
 908	}
 909	if (locked_pgdat)
 910		spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
 911
 912	mem_cgroup_uncharge_list(&pages_to_free);
 913	free_unref_page_list(&pages_to_free);
 914}
 915EXPORT_SYMBOL(release_pages);
 916
 917/*
 918 * The pages which we're about to release may be in the deferred lru-addition
 919 * queues.  That would prevent them from really being freed right now.  That's
 920 * OK from a correctness point of view but is inefficient - those pages may be
 921 * cache-warm and we want to give them back to the page allocator ASAP.
 922 *
 923 * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
 924 * and __pagevec_lru_add_active() call release_pages() directly to avoid
 925 * mutual recursion.
 926 */
 927void __pagevec_release(struct pagevec *pvec)
 928{
 929	if (!pvec->percpu_pvec_drained) {
 930		lru_add_drain();
 931		pvec->percpu_pvec_drained = true;
 932	}
 933	release_pages(pvec->pages, pagevec_count(pvec));
 934	pagevec_reinit(pvec);
 935}
 936EXPORT_SYMBOL(__pagevec_release);
 937
 938#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 939/* used by __split_huge_page_refcount() */
 940void lru_add_page_tail(struct page *page, struct page *page_tail,
 941		       struct lruvec *lruvec, struct list_head *list)
 942{
 943	VM_BUG_ON_PAGE(!PageHead(page), page);
 944	VM_BUG_ON_PAGE(PageCompound(page_tail), page);
 945	VM_BUG_ON_PAGE(PageLRU(page_tail), page);
 946	lockdep_assert_held(&lruvec_pgdat(lruvec)->lru_lock);
 947
 948	if (!list)
 949		SetPageLRU(page_tail);
 950
 951	if (likely(PageLRU(page)))
 952		list_add_tail(&page_tail->lru, &page->lru);
 953	else if (list) {
 954		/* page reclaim is reclaiming a huge page */
 955		get_page(page_tail);
 956		list_add_tail(&page_tail->lru, list);
 957	} else {
 958		/*
 959		 * Head page has not yet been counted, as an hpage,
 960		 * so we must account for each subpage individually.
 961		 *
 962		 * Put page_tail on the list at the correct position
 963		 * so they all end up in order.
 964		 */
 965		add_page_to_lru_list_tail(page_tail, lruvec,
 966					  page_lru(page_tail));
 967	}
 968}
 969#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 970
 971static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
 972				 void *arg)
 973{
 974	enum lru_list lru;
 975	int was_unevictable = TestClearPageUnevictable(page);
 976	int nr_pages = thp_nr_pages(page);
 977
 978	VM_BUG_ON_PAGE(PageLRU(page), page);
 979
 980	/*
 981	 * Page becomes evictable in two ways:
 982	 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
 983	 * 2) Before acquiring LRU lock to put the page to correct LRU and then
 984	 *   a) do PageLRU check with lock [check_move_unevictable_pages]
 985	 *   b) do PageLRU check before lock [clear_page_mlock]
 986	 *
 987	 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
 988	 * following strict ordering:
 989	 *
 990	 * #0: __pagevec_lru_add_fn		#1: clear_page_mlock
 991	 *
 992	 * SetPageLRU()				TestClearPageMlocked()
 993	 * smp_mb() // explicit ordering	// above provides strict
 994	 *					// ordering
 995	 * PageMlocked()			PageLRU()
 996	 *
 997	 *
 998	 * if '#1' does not observe setting of PG_lru by '#0' and fails
 999	 * isolation, the explicit barrier will make sure that page_evictable
1000	 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
1001	 * can be reordered after PageMlocked check and can make '#1' to fail
1002	 * the isolation of the page whose Mlocked bit is cleared (#0 is also
1003	 * looking at the same page) and the evictable page will be stranded
1004	 * in an unevictable LRU.
1005	 */
1006	SetPageLRU(page);
1007	smp_mb__after_atomic();
1008
1009	if (page_evictable(page)) {
1010		lru = page_lru(page);
1011		if (was_unevictable)
1012			__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
1013	} else {
1014		lru = LRU_UNEVICTABLE;
1015		ClearPageActive(page);
1016		SetPageUnevictable(page);
1017		if (!was_unevictable)
1018			__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
1019	}
1020
1021	add_page_to_lru_list(page, lruvec, lru);
1022	trace_mm_lru_insertion(page, lru);
1023}
1024
1025/*
1026 * Add the passed pages to the LRU, then drop the caller's refcount
1027 * on them.  Reinitialises the caller's pagevec.
1028 */
1029void __pagevec_lru_add(struct pagevec *pvec)
1030{
1031	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1032}
 
1033
1034/**
1035 * pagevec_lookup_entries - gang pagecache lookup
1036 * @pvec:	Where the resulting entries are placed
1037 * @mapping:	The address_space to search
1038 * @start:	The starting entry index
1039 * @nr_entries:	The maximum number of pages
1040 * @indices:	The cache indices corresponding to the entries in @pvec
1041 *
1042 * pagevec_lookup_entries() will search for and return a group of up
1043 * to @nr_pages pages and shadow entries in the mapping.  All
1044 * entries are placed in @pvec.  pagevec_lookup_entries() takes a
1045 * reference against actual pages in @pvec.
1046 *
1047 * The search returns a group of mapping-contiguous entries with
1048 * ascending indexes.  There may be holes in the indices due to
1049 * not-present entries.
1050 *
1051 * Only one subpage of a Transparent Huge Page is returned in one call:
1052 * allowing truncate_inode_pages_range() to evict the whole THP without
1053 * cycling through a pagevec of extra references.
1054 *
1055 * pagevec_lookup_entries() returns the number of entries which were
1056 * found.
1057 */
1058unsigned pagevec_lookup_entries(struct pagevec *pvec,
1059				struct address_space *mapping,
1060				pgoff_t start, unsigned nr_entries,
1061				pgoff_t *indices)
1062{
1063	pvec->nr = find_get_entries(mapping, start, nr_entries,
1064				    pvec->pages, indices);
1065	return pagevec_count(pvec);
1066}
1067
1068/**
1069 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1070 * @pvec:	The pagevec to prune
1071 *
1072 * pagevec_lookup_entries() fills both pages and exceptional radix
1073 * tree entries into the pagevec.  This function prunes all
1074 * exceptionals from @pvec without leaving holes, so that it can be
1075 * passed on to page-only pagevec operations.
1076 */
1077void pagevec_remove_exceptionals(struct pagevec *pvec)
1078{
1079	int i, j;
1080
1081	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1082		struct page *page = pvec->pages[i];
1083		if (!xa_is_value(page))
1084			pvec->pages[j++] = page;
1085	}
1086	pvec->nr = j;
1087}
1088
1089/**
1090 * pagevec_lookup_range - gang pagecache lookup
1091 * @pvec:	Where the resulting pages are placed
1092 * @mapping:	The address_space to search
1093 * @start:	The starting page index
1094 * @end:	The final page index
1095 *
1096 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1097 * pages in the mapping starting from index @start and upto index @end
1098 * (inclusive).  The pages are placed in @pvec.  pagevec_lookup() takes a
1099 * reference against the pages in @pvec.
1100 *
1101 * The search returns a group of mapping-contiguous pages with ascending
1102 * indexes.  There may be holes in the indices due to not-present pages. We
1103 * also update @start to index the next page for the traversal.
1104 *
1105 * pagevec_lookup_range() returns the number of pages which were found. If this
1106 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1107 * reached.
1108 */
1109unsigned pagevec_lookup_range(struct pagevec *pvec,
1110		struct address_space *mapping, pgoff_t *start, pgoff_t end)
1111{
1112	pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1113					pvec->pages);
1114	return pagevec_count(pvec);
1115}
1116EXPORT_SYMBOL(pagevec_lookup_range);
1117
1118unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1119		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1120		xa_mark_t tag)
1121{
1122	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1123					PAGEVEC_SIZE, pvec->pages);
1124	return pagevec_count(pvec);
1125}
1126EXPORT_SYMBOL(pagevec_lookup_range_tag);
1127
1128unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec,
1129		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1130		xa_mark_t tag, unsigned max_pages)
1131{
1132	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1133		min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages);
1134	return pagevec_count(pvec);
1135}
1136EXPORT_SYMBOL(pagevec_lookup_range_nr_tag);
1137/*
1138 * Perform any setup for the swap system
1139 */
1140void __init swap_setup(void)
1141{
1142	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1143
1144	/* Use a smaller cluster for small-memory machines */
1145	if (megs < 16)
1146		page_cluster = 2;
1147	else
1148		page_cluster = 3;
1149	/*
1150	 * Right now other parts of the system means that we
1151	 * _really_ don't want to cluster much more
1152	 */
1153}
1154
1155#ifdef CONFIG_DEV_PAGEMAP_OPS
1156void put_devmap_managed_page(struct page *page)
1157{
1158	int count;
1159
1160	if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1161		return;
1162
1163	count = page_ref_dec_return(page);
1164
1165	/*
1166	 * devmap page refcounts are 1-based, rather than 0-based: if
1167	 * refcount is 1, then the page is free and the refcount is
1168	 * stable because nobody holds a reference on the page.
1169	 */
1170	if (count == 1)
1171		free_devmap_managed_page(page);
1172	else if (!count)
1173		__put_page(page);
1174}
1175EXPORT_SYMBOL(put_devmap_managed_page);
1176#endif
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/swap.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 */
   7
   8/*
   9 * This file contains the default values for the operation of the
  10 * Linux VM subsystem. Fine-tuning documentation can be found in
  11 * Documentation/admin-guide/sysctl/vm.rst.
  12 * Started 18.12.91
  13 * Swap aging added 23.2.95, Stephen Tweedie.
  14 * Buffermem limits added 12.3.98, Rik van Riel.
  15 */
  16
  17#include <linux/mm.h>
  18#include <linux/sched.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/swap.h>
  21#include <linux/mman.h>
  22#include <linux/pagemap.h>
  23#include <linux/pagevec.h>
  24#include <linux/init.h>
  25#include <linux/export.h>
  26#include <linux/mm_inline.h>
  27#include <linux/percpu_counter.h>
  28#include <linux/memremap.h>
  29#include <linux/percpu.h>
  30#include <linux/cpu.h>
  31#include <linux/notifier.h>
  32#include <linux/backing-dev.h>
  33#include <linux/memcontrol.h>
  34#include <linux/gfp.h>
  35#include <linux/uio.h>
  36#include <linux/hugetlb.h>
  37#include <linux/page_idle.h>
  38#include <linux/local_lock.h>
  39#include <linux/buffer_head.h>
  40
  41#include "internal.h"
  42
  43#define CREATE_TRACE_POINTS
  44#include <trace/events/pagemap.h>
  45
  46/* How many pages do we try to swap or page in/out together? */
  47int page_cluster;
  48
  49/* Protecting only lru_rotate.pvec which requires disabling interrupts */
  50struct lru_rotate {
  51	local_lock_t lock;
  52	struct pagevec pvec;
  53};
  54static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
  55	.lock = INIT_LOCAL_LOCK(lock),
  56};
  57
  58/*
  59 * The following struct pagevec are grouped together because they are protected
  60 * by disabling preemption (and interrupts remain enabled).
  61 */
  62struct lru_pvecs {
  63	local_lock_t lock;
  64	struct pagevec lru_add;
  65	struct pagevec lru_deactivate_file;
  66	struct pagevec lru_deactivate;
  67	struct pagevec lru_lazyfree;
  68#ifdef CONFIG_SMP
  69	struct pagevec activate_page;
  70#endif
  71};
  72static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
  73	.lock = INIT_LOCAL_LOCK(lock),
  74};
  75
  76/*
  77 * This path almost never happens for VM activity - pages are normally
  78 * freed via pagevecs.  But it gets used by networking.
  79 */
  80static void __page_cache_release(struct page *page)
  81{
  82	if (PageLRU(page)) {
 
  83		struct lruvec *lruvec;
  84		unsigned long flags;
  85
  86		lruvec = lock_page_lruvec_irqsave(page, &flags);
  87		del_page_from_lru_list(page, lruvec);
  88		__clear_page_lru_flags(page);
  89		unlock_page_lruvec_irqrestore(lruvec, flags);
 
 
  90	}
  91	__ClearPageWaiters(page);
  92}
  93
  94static void __put_single_page(struct page *page)
  95{
  96	__page_cache_release(page);
  97	mem_cgroup_uncharge(page);
  98	free_unref_page(page, 0);
  99}
 100
 101static void __put_compound_page(struct page *page)
 102{
 103	/*
 104	 * __page_cache_release() is supposed to be called for thp, not for
 105	 * hugetlb. This is because hugetlb page does never have PageLRU set
 106	 * (it's never listed to any LRU lists) and no memcg routines should
 107	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
 108	 */
 109	if (!PageHuge(page))
 110		__page_cache_release(page);
 111	destroy_compound_page(page);
 112}
 113
 114void __put_page(struct page *page)
 115{
 116	if (is_zone_device_page(page)) {
 117		put_dev_pagemap(page->pgmap);
 118
 119		/*
 120		 * The page belongs to the device that created pgmap. Do
 121		 * not return it to page allocator.
 122		 */
 123		return;
 124	}
 125
 126	if (unlikely(PageCompound(page)))
 127		__put_compound_page(page);
 128	else
 129		__put_single_page(page);
 130}
 131EXPORT_SYMBOL(__put_page);
 132
 133/**
 134 * put_pages_list() - release a list of pages
 135 * @pages: list of pages threaded on page->lru
 136 *
 137 * Release a list of pages which are strung together on page.lru.  Currently
 138 * used by read_cache_pages() and related error recovery code.
 139 */
 140void put_pages_list(struct list_head *pages)
 141{
 142	while (!list_empty(pages)) {
 143		struct page *victim;
 144
 145		victim = lru_to_page(pages);
 146		list_del(&victim->lru);
 147		put_page(victim);
 148	}
 149}
 150EXPORT_SYMBOL(put_pages_list);
 151
 152/*
 153 * get_kernel_pages() - pin kernel pages in memory
 154 * @kiov:	An array of struct kvec structures
 155 * @nr_segs:	number of segments to pin
 156 * @write:	pinning for read/write, currently ignored
 157 * @pages:	array that receives pointers to the pages pinned.
 158 *		Should be at least nr_segs long.
 159 *
 160 * Returns number of pages pinned. This may be fewer than the number
 161 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 162 * were pinned, returns -errno. Each page returned must be released
 163 * with a put_page() call when it is finished with.
 164 */
 165int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
 166		struct page **pages)
 167{
 168	int seg;
 169
 170	for (seg = 0; seg < nr_segs; seg++) {
 171		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
 172			return seg;
 173
 174		pages[seg] = kmap_to_page(kiov[seg].iov_base);
 175		get_page(pages[seg]);
 176	}
 177
 178	return seg;
 179}
 180EXPORT_SYMBOL_GPL(get_kernel_pages);
 181
 182/*
 183 * get_kernel_page() - pin a kernel page in memory
 184 * @start:	starting kernel address
 185 * @write:	pinning for read/write, currently ignored
 186 * @pages:	array that receives pointer to the page pinned.
 187 *		Must be at least nr_segs long.
 188 *
 189 * Returns 1 if page is pinned. If the page was not pinned, returns
 190 * -errno. The page returned must be released with a put_page() call
 191 * when it is finished with.
 192 */
 193int get_kernel_page(unsigned long start, int write, struct page **pages)
 194{
 195	const struct kvec kiov = {
 196		.iov_base = (void *)start,
 197		.iov_len = PAGE_SIZE
 198	};
 199
 200	return get_kernel_pages(&kiov, 1, write, pages);
 201}
 202EXPORT_SYMBOL_GPL(get_kernel_page);
 203
 204static void pagevec_lru_move_fn(struct pagevec *pvec,
 205	void (*move_fn)(struct page *page, struct lruvec *lruvec))
 
 206{
 207	int i;
 208	struct lruvec *lruvec = NULL;
 
 209	unsigned long flags = 0;
 210
 211	for (i = 0; i < pagevec_count(pvec); i++) {
 212		struct page *page = pvec->pages[i];
 
 213
 214		/* block memcg migration during page moving between lru */
 215		if (!TestClearPageLRU(page))
 216			continue;
 
 
 
 217
 218		lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
 219		(*move_fn)(page, lruvec);
 220
 221		SetPageLRU(page);
 222	}
 223	if (lruvec)
 224		unlock_page_lruvec_irqrestore(lruvec, flags);
 225	release_pages(pvec->pages, pvec->nr);
 226	pagevec_reinit(pvec);
 227}
 228
 229static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec)
 
 230{
 231	if (!PageUnevictable(page)) {
 232		del_page_from_lru_list(page, lruvec);
 
 
 233		ClearPageActive(page);
 234		add_page_to_lru_list_tail(page, lruvec);
 235		__count_vm_events(PGROTATED, thp_nr_pages(page));
 236	}
 237}
 238
 239/* return true if pagevec needs to drain */
 240static bool pagevec_add_and_need_flush(struct pagevec *pvec, struct page *page)
 
 
 
 241{
 242	bool ret = false;
 243
 244	if (!pagevec_add(pvec, page) || PageCompound(page) ||
 245			lru_cache_disabled())
 246		ret = true;
 247
 248	return ret;
 
 249}
 250
 251/*
 252 * Writeback is about to end against a page which has been marked for immediate
 253 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 254 * inactive list.
 255 *
 256 * rotate_reclaimable_page() must disable IRQs, to prevent nasty races.
 257 */
 258void rotate_reclaimable_page(struct page *page)
 259{
 260	if (!PageLocked(page) && !PageDirty(page) &&
 261	    !PageUnevictable(page) && PageLRU(page)) {
 262		struct pagevec *pvec;
 263		unsigned long flags;
 264
 265		get_page(page);
 266		local_lock_irqsave(&lru_rotate.lock, flags);
 267		pvec = this_cpu_ptr(&lru_rotate.pvec);
 268		if (pagevec_add_and_need_flush(pvec, page))
 269			pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
 270		local_unlock_irqrestore(&lru_rotate.lock, flags);
 271	}
 272}
 273
 274void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
 275{
 276	do {
 277		unsigned long lrusize;
 278
 279		/*
 280		 * Hold lruvec->lru_lock is safe here, since
 281		 * 1) The pinned lruvec in reclaim, or
 282		 * 2) From a pre-LRU page during refault (which also holds the
 283		 *    rcu lock, so would be safe even if the page was on the LRU
 284		 *    and could move simultaneously to a new lruvec).
 285		 */
 286		spin_lock_irq(&lruvec->lru_lock);
 287		/* Record cost event */
 288		if (file)
 289			lruvec->file_cost += nr_pages;
 290		else
 291			lruvec->anon_cost += nr_pages;
 292
 293		/*
 294		 * Decay previous events
 295		 *
 296		 * Because workloads change over time (and to avoid
 297		 * overflow) we keep these statistics as a floating
 298		 * average, which ends up weighing recent refaults
 299		 * more than old ones.
 300		 */
 301		lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
 302			  lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
 303			  lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
 304			  lruvec_page_state(lruvec, NR_ACTIVE_FILE);
 305
 306		if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
 307			lruvec->file_cost /= 2;
 308			lruvec->anon_cost /= 2;
 309		}
 310		spin_unlock_irq(&lruvec->lru_lock);
 311	} while ((lruvec = parent_lruvec(lruvec)));
 312}
 313
 314void lru_note_cost_page(struct page *page)
 315{
 316	lru_note_cost(mem_cgroup_page_lruvec(page),
 317		      page_is_file_lru(page), thp_nr_pages(page));
 318}
 319
 320static void __activate_page(struct page *page, struct lruvec *lruvec)
 
 321{
 322	if (!PageActive(page) && !PageUnevictable(page)) {
 
 323		int nr_pages = thp_nr_pages(page);
 324
 325		del_page_from_lru_list(page, lruvec);
 326		SetPageActive(page);
 327		add_page_to_lru_list(page, lruvec);
 
 328		trace_mm_lru_activate(page);
 329
 330		__count_vm_events(PGACTIVATE, nr_pages);
 331		__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
 332				     nr_pages);
 333	}
 334}
 335
 336#ifdef CONFIG_SMP
 337static void activate_page_drain(int cpu)
 338{
 339	struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
 340
 341	if (pagevec_count(pvec))
 342		pagevec_lru_move_fn(pvec, __activate_page);
 343}
 344
 345static bool need_activate_page_drain(int cpu)
 346{
 347	return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
 348}
 349
 350static void activate_page(struct page *page)
 351{
 352	page = compound_head(page);
 353	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
 354		struct pagevec *pvec;
 355
 356		local_lock(&lru_pvecs.lock);
 357		pvec = this_cpu_ptr(&lru_pvecs.activate_page);
 358		get_page(page);
 359		if (pagevec_add_and_need_flush(pvec, page))
 360			pagevec_lru_move_fn(pvec, __activate_page);
 361		local_unlock(&lru_pvecs.lock);
 362	}
 363}
 364
 365#else
 366static inline void activate_page_drain(int cpu)
 367{
 368}
 369
 370static void activate_page(struct page *page)
 371{
 372	struct lruvec *lruvec;
 373
 374	page = compound_head(page);
 375	if (TestClearPageLRU(page)) {
 376		lruvec = lock_page_lruvec_irq(page);
 377		__activate_page(page, lruvec);
 378		unlock_page_lruvec_irq(lruvec);
 379		SetPageLRU(page);
 380	}
 381}
 382#endif
 383
 384static void __lru_cache_activate_page(struct page *page)
 385{
 386	struct pagevec *pvec;
 387	int i;
 388
 389	local_lock(&lru_pvecs.lock);
 390	pvec = this_cpu_ptr(&lru_pvecs.lru_add);
 391
 392	/*
 393	 * Search backwards on the optimistic assumption that the page being
 394	 * activated has just been added to this pagevec. Note that only
 395	 * the local pagevec is examined as a !PageLRU page could be in the
 396	 * process of being released, reclaimed, migrated or on a remote
 397	 * pagevec that is currently being drained. Furthermore, marking
 398	 * a remote pagevec's page PageActive potentially hits a race where
 399	 * a page is marked PageActive just after it is added to the inactive
 400	 * list causing accounting errors and BUG_ON checks to trigger.
 401	 */
 402	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
 403		struct page *pagevec_page = pvec->pages[i];
 404
 405		if (pagevec_page == page) {
 406			SetPageActive(page);
 407			break;
 408		}
 409	}
 410
 411	local_unlock(&lru_pvecs.lock);
 412}
 413
 414/*
 415 * Mark a page as having seen activity.
 416 *
 417 * inactive,unreferenced	->	inactive,referenced
 418 * inactive,referenced		->	active,unreferenced
 419 * active,unreferenced		->	active,referenced
 420 *
 421 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
 422 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
 423 */
 424void mark_page_accessed(struct page *page)
 425{
 426	page = compound_head(page);
 427
 428	if (!PageReferenced(page)) {
 429		SetPageReferenced(page);
 430	} else if (PageUnevictable(page)) {
 431		/*
 432		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
 433		 * this list is never rotated or maintained, so marking an
 434		 * evictable page accessed has no effect.
 435		 */
 436	} else if (!PageActive(page)) {
 437		/*
 438		 * If the page is on the LRU, queue it for activation via
 439		 * lru_pvecs.activate_page. Otherwise, assume the page is on a
 440		 * pagevec, mark it active and it'll be moved to the active
 441		 * LRU on the next drain.
 442		 */
 443		if (PageLRU(page))
 444			activate_page(page);
 445		else
 446			__lru_cache_activate_page(page);
 447		ClearPageReferenced(page);
 448		workingset_activation(page);
 449	}
 450	if (page_is_idle(page))
 451		clear_page_idle(page);
 452}
 453EXPORT_SYMBOL(mark_page_accessed);
 454
 455/**
 456 * lru_cache_add - add a page to a page list
 457 * @page: the page to be added to the LRU.
 458 *
 459 * Queue the page for addition to the LRU via pagevec. The decision on whether
 460 * to add the page to the [in]active [file|anon] list is deferred until the
 461 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
 462 * have the page added to the active list using mark_page_accessed().
 463 */
 464void lru_cache_add(struct page *page)
 465{
 466	struct pagevec *pvec;
 467
 468	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
 469	VM_BUG_ON_PAGE(PageLRU(page), page);
 470
 471	get_page(page);
 472	local_lock(&lru_pvecs.lock);
 473	pvec = this_cpu_ptr(&lru_pvecs.lru_add);
 474	if (pagevec_add_and_need_flush(pvec, page))
 475		__pagevec_lru_add(pvec);
 476	local_unlock(&lru_pvecs.lock);
 477}
 478EXPORT_SYMBOL(lru_cache_add);
 479
 480/**
 481 * lru_cache_add_inactive_or_unevictable
 482 * @page:  the page to be added to LRU
 483 * @vma:   vma in which page is mapped for determining reclaimability
 484 *
 485 * Place @page on the inactive or unevictable LRU list, depending on its
 486 * evictability.
 
 
 487 */
 488void lru_cache_add_inactive_or_unevictable(struct page *page,
 489					 struct vm_area_struct *vma)
 490{
 491	bool unevictable;
 492
 493	VM_BUG_ON_PAGE(PageLRU(page), page);
 494
 495	unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
 496	if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
 497		int nr_pages = thp_nr_pages(page);
 498		/*
 499		 * We use the irq-unsafe __mod_zone_page_state because this
 500		 * counter is not modified from interrupt context, and the pte
 501		 * lock is held(spinlock), which implies preemption disabled.
 502		 */
 503		__mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
 504		count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
 505	}
 506	lru_cache_add(page);
 507}
 508
 509/*
 510 * If the page can not be invalidated, it is moved to the
 511 * inactive list to speed up its reclaim.  It is moved to the
 512 * head of the list, rather than the tail, to give the flusher
 513 * threads some time to write it out, as this is much more
 514 * effective than the single-page writeout from reclaim.
 515 *
 516 * If the page isn't page_mapped and dirty/writeback, the page
 517 * could reclaim asap using PG_reclaim.
 518 *
 519 * 1. active, mapped page -> none
 520 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
 521 * 3. inactive, mapped page -> none
 522 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
 523 * 5. inactive, clean -> inactive, tail
 524 * 6. Others -> none
 525 *
 526 * In 4, why it moves inactive's head, the VM expects the page would
 527 * be write it out by flusher threads as this is much more effective
 528 * than the single-page writeout from reclaim.
 529 */
 530static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec)
 
 531{
 532	bool active = PageActive(page);
 
 533	int nr_pages = thp_nr_pages(page);
 534
 
 
 
 535	if (PageUnevictable(page))
 536		return;
 537
 538	/* Some processes are using the page */
 539	if (page_mapped(page))
 540		return;
 541
 542	del_page_from_lru_list(page, lruvec);
 
 
 
 543	ClearPageActive(page);
 544	ClearPageReferenced(page);
 545
 546	if (PageWriteback(page) || PageDirty(page)) {
 547		/*
 548		 * PG_reclaim could be raced with end_page_writeback
 549		 * It can make readahead confusing.  But race window
 550		 * is _really_ small and  it's non-critical problem.
 551		 */
 552		add_page_to_lru_list(page, lruvec);
 553		SetPageReclaim(page);
 554	} else {
 555		/*
 556		 * The page's writeback ends up during pagevec
 557		 * We move that page into tail of inactive.
 558		 */
 559		add_page_to_lru_list_tail(page, lruvec);
 560		__count_vm_events(PGROTATED, nr_pages);
 561	}
 562
 563	if (active) {
 564		__count_vm_events(PGDEACTIVATE, nr_pages);
 565		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
 566				     nr_pages);
 567	}
 568}
 569
 570static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec)
 
 571{
 572	if (PageActive(page) && !PageUnevictable(page)) {
 
 573		int nr_pages = thp_nr_pages(page);
 574
 575		del_page_from_lru_list(page, lruvec);
 576		ClearPageActive(page);
 577		ClearPageReferenced(page);
 578		add_page_to_lru_list(page, lruvec);
 579
 580		__count_vm_events(PGDEACTIVATE, nr_pages);
 581		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
 582				     nr_pages);
 583	}
 584}
 585
 586static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec)
 
 587{
 588	if (PageAnon(page) && PageSwapBacked(page) &&
 589	    !PageSwapCache(page) && !PageUnevictable(page)) {
 
 590		int nr_pages = thp_nr_pages(page);
 591
 592		del_page_from_lru_list(page, lruvec);
 
 593		ClearPageActive(page);
 594		ClearPageReferenced(page);
 595		/*
 596		 * Lazyfree pages are clean anonymous pages.  They have
 597		 * PG_swapbacked flag cleared, to distinguish them from normal
 598		 * anonymous pages
 599		 */
 600		ClearPageSwapBacked(page);
 601		add_page_to_lru_list(page, lruvec);
 602
 603		__count_vm_events(PGLAZYFREE, nr_pages);
 604		__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
 605				     nr_pages);
 606	}
 607}
 608
 609/*
 610 * Drain pages out of the cpu's pagevecs.
 611 * Either "cpu" is the current CPU, and preemption has already been
 612 * disabled; or "cpu" is being hot-unplugged, and is already dead.
 613 */
 614void lru_add_drain_cpu(int cpu)
 615{
 616	struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
 617
 618	if (pagevec_count(pvec))
 619		__pagevec_lru_add(pvec);
 620
 621	pvec = &per_cpu(lru_rotate.pvec, cpu);
 622	/* Disabling interrupts below acts as a compiler barrier. */
 623	if (data_race(pagevec_count(pvec))) {
 624		unsigned long flags;
 625
 626		/* No harm done if a racing interrupt already did this */
 627		local_lock_irqsave(&lru_rotate.lock, flags);
 628		pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
 629		local_unlock_irqrestore(&lru_rotate.lock, flags);
 630	}
 631
 632	pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
 633	if (pagevec_count(pvec))
 634		pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
 635
 636	pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
 637	if (pagevec_count(pvec))
 638		pagevec_lru_move_fn(pvec, lru_deactivate_fn);
 639
 640	pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
 641	if (pagevec_count(pvec))
 642		pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
 643
 644	activate_page_drain(cpu);
 645	invalidate_bh_lrus_cpu(cpu);
 646}
 647
 648/**
 649 * deactivate_file_page - forcefully deactivate a file page
 650 * @page: page to deactivate
 651 *
 652 * This function hints the VM that @page is a good reclaim candidate,
 653 * for example if its invalidation fails due to the page being dirty
 654 * or under writeback.
 655 */
 656void deactivate_file_page(struct page *page)
 657{
 658	/*
 659	 * In a workload with many unevictable page such as mprotect,
 660	 * unevictable page deactivation for accelerating reclaim is pointless.
 661	 */
 662	if (PageUnevictable(page))
 663		return;
 664
 665	if (likely(get_page_unless_zero(page))) {
 666		struct pagevec *pvec;
 667
 668		local_lock(&lru_pvecs.lock);
 669		pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
 670
 671		if (pagevec_add_and_need_flush(pvec, page))
 672			pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
 673		local_unlock(&lru_pvecs.lock);
 674	}
 675}
 676
 677/*
 678 * deactivate_page - deactivate a page
 679 * @page: page to deactivate
 680 *
 681 * deactivate_page() moves @page to the inactive list if @page was on the active
 682 * list and was not an unevictable page.  This is done to accelerate the reclaim
 683 * of @page.
 684 */
 685void deactivate_page(struct page *page)
 686{
 687	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
 688		struct pagevec *pvec;
 689
 690		local_lock(&lru_pvecs.lock);
 691		pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
 692		get_page(page);
 693		if (pagevec_add_and_need_flush(pvec, page))
 694			pagevec_lru_move_fn(pvec, lru_deactivate_fn);
 695		local_unlock(&lru_pvecs.lock);
 696	}
 697}
 698
 699/**
 700 * mark_page_lazyfree - make an anon page lazyfree
 701 * @page: page to deactivate
 702 *
 703 * mark_page_lazyfree() moves @page to the inactive file list.
 704 * This is done to accelerate the reclaim of @page.
 705 */
 706void mark_page_lazyfree(struct page *page)
 707{
 708	if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
 709	    !PageSwapCache(page) && !PageUnevictable(page)) {
 710		struct pagevec *pvec;
 711
 712		local_lock(&lru_pvecs.lock);
 713		pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
 714		get_page(page);
 715		if (pagevec_add_and_need_flush(pvec, page))
 716			pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
 717		local_unlock(&lru_pvecs.lock);
 718	}
 719}
 720
 721void lru_add_drain(void)
 722{
 723	local_lock(&lru_pvecs.lock);
 724	lru_add_drain_cpu(smp_processor_id());
 725	local_unlock(&lru_pvecs.lock);
 726}
 727
 728void lru_add_drain_cpu_zone(struct zone *zone)
 729{
 730	local_lock(&lru_pvecs.lock);
 731	lru_add_drain_cpu(smp_processor_id());
 732	drain_local_pages(zone);
 733	local_unlock(&lru_pvecs.lock);
 734}
 735
 736#ifdef CONFIG_SMP
 737
 738static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
 739
 740static void lru_add_drain_per_cpu(struct work_struct *dummy)
 741{
 742	lru_add_drain();
 743}
 744
 745/*
 746 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
 747 * kworkers being shut down before our page_alloc_cpu_dead callback is
 748 * executed on the offlined cpu.
 749 * Calling this function with cpu hotplug locks held can actually lead
 750 * to obscure indirect dependencies via WQ context.
 751 */
 752inline void __lru_add_drain_all(bool force_all_cpus)
 753{
 754	/*
 755	 * lru_drain_gen - Global pages generation number
 756	 *
 757	 * (A) Definition: global lru_drain_gen = x implies that all generations
 758	 *     0 < n <= x are already *scheduled* for draining.
 759	 *
 760	 * This is an optimization for the highly-contended use case where a
 761	 * user space workload keeps constantly generating a flow of pages for
 762	 * each CPU.
 763	 */
 764	static unsigned int lru_drain_gen;
 765	static struct cpumask has_work;
 766	static DEFINE_MUTEX(lock);
 767	unsigned cpu, this_gen;
 768
 769	/*
 770	 * Make sure nobody triggers this path before mm_percpu_wq is fully
 771	 * initialized.
 772	 */
 773	if (WARN_ON(!mm_percpu_wq))
 774		return;
 775
 776	/*
 777	 * Guarantee pagevec counter stores visible by this CPU are visible to
 778	 * other CPUs before loading the current drain generation.
 779	 */
 780	smp_mb();
 781
 782	/*
 783	 * (B) Locally cache global LRU draining generation number
 784	 *
 785	 * The read barrier ensures that the counter is loaded before the mutex
 786	 * is taken. It pairs with smp_mb() inside the mutex critical section
 787	 * at (D).
 788	 */
 789	this_gen = smp_load_acquire(&lru_drain_gen);
 790
 791	mutex_lock(&lock);
 792
 793	/*
 794	 * (C) Exit the draining operation if a newer generation, from another
 795	 * lru_add_drain_all(), was already scheduled for draining. Check (A).
 796	 */
 797	if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
 798		goto done;
 799
 800	/*
 801	 * (D) Increment global generation number
 802	 *
 803	 * Pairs with smp_load_acquire() at (B), outside of the critical
 804	 * section. Use a full memory barrier to guarantee that the new global
 805	 * drain generation number is stored before loading pagevec counters.
 806	 *
 807	 * This pairing must be done here, before the for_each_online_cpu loop
 808	 * below which drains the page vectors.
 809	 *
 810	 * Let x, y, and z represent some system CPU numbers, where x < y < z.
 811	 * Assume CPU #z is in the middle of the for_each_online_cpu loop
 812	 * below and has already reached CPU #y's per-cpu data. CPU #x comes
 813	 * along, adds some pages to its per-cpu vectors, then calls
 814	 * lru_add_drain_all().
 815	 *
 816	 * If the paired barrier is done at any later step, e.g. after the
 817	 * loop, CPU #x will just exit at (C) and miss flushing out all of its
 818	 * added pages.
 819	 */
 820	WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
 821	smp_mb();
 822
 823	cpumask_clear(&has_work);
 
 824	for_each_online_cpu(cpu) {
 825		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
 826
 827		if (force_all_cpus ||
 828		    pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
 829		    data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
 830		    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
 831		    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
 832		    pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
 833		    need_activate_page_drain(cpu) ||
 834		    has_bh_in_lru(cpu, NULL)) {
 835			INIT_WORK(work, lru_add_drain_per_cpu);
 836			queue_work_on(cpu, mm_percpu_wq, work);
 837			__cpumask_set_cpu(cpu, &has_work);
 838		}
 839	}
 840
 841	for_each_cpu(cpu, &has_work)
 842		flush_work(&per_cpu(lru_add_drain_work, cpu));
 843
 844done:
 845	mutex_unlock(&lock);
 846}
 847
 848void lru_add_drain_all(void)
 849{
 850	__lru_add_drain_all(false);
 851}
 852#else
 853void lru_add_drain_all(void)
 854{
 855	lru_add_drain();
 856}
 857#endif /* CONFIG_SMP */
 858
 859atomic_t lru_disable_count = ATOMIC_INIT(0);
 860
 861/*
 862 * lru_cache_disable() needs to be called before we start compiling
 863 * a list of pages to be migrated using isolate_lru_page().
 864 * It drains pages on LRU cache and then disable on all cpus until
 865 * lru_cache_enable is called.
 866 *
 867 * Must be paired with a call to lru_cache_enable().
 868 */
 869void lru_cache_disable(void)
 870{
 871	atomic_inc(&lru_disable_count);
 872#ifdef CONFIG_SMP
 873	/*
 874	 * lru_add_drain_all in the force mode will schedule draining on
 875	 * all online CPUs so any calls of lru_cache_disabled wrapped by
 876	 * local_lock or preemption disabled would be ordered by that.
 877	 * The atomic operation doesn't need to have stronger ordering
 878	 * requirements because that is enforeced by the scheduling
 879	 * guarantees.
 880	 */
 881	__lru_add_drain_all(true);
 882#else
 883	lru_add_drain();
 884#endif
 885}
 886
 887/**
 888 * release_pages - batched put_page()
 889 * @pages: array of pages to release
 890 * @nr: number of pages
 891 *
 892 * Decrement the reference count on all the pages in @pages.  If it
 893 * fell to zero, remove the page from the LRU and free it.
 894 */
 895void release_pages(struct page **pages, int nr)
 896{
 897	int i;
 898	LIST_HEAD(pages_to_free);
 899	struct lruvec *lruvec = NULL;
 
 900	unsigned long flags;
 901	unsigned int lock_batch;
 902
 903	for (i = 0; i < nr; i++) {
 904		struct page *page = pages[i];
 905
 906		/*
 907		 * Make sure the IRQ-safe lock-holding time does not get
 908		 * excessive with a continuous string of pages from the
 909		 * same lruvec. The lock is held only if lruvec != NULL.
 910		 */
 911		if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
 912			unlock_page_lruvec_irqrestore(lruvec, flags);
 913			lruvec = NULL;
 914		}
 915
 916		page = compound_head(page);
 917		if (is_huge_zero_page(page))
 918			continue;
 919
 920		if (is_zone_device_page(page)) {
 921			if (lruvec) {
 922				unlock_page_lruvec_irqrestore(lruvec, flags);
 923				lruvec = NULL;
 
 924			}
 925			/*
 926			 * ZONE_DEVICE pages that return 'false' from
 927			 * page_is_devmap_managed() do not require special
 928			 * processing, and instead, expect a call to
 929			 * put_page_testzero().
 930			 */
 931			if (page_is_devmap_managed(page)) {
 932				put_devmap_managed_page(page);
 933				continue;
 934			}
 935			if (put_page_testzero(page))
 936				put_dev_pagemap(page->pgmap);
 937			continue;
 938		}
 939
 
 940		if (!put_page_testzero(page))
 941			continue;
 942
 943		if (PageCompound(page)) {
 944			if (lruvec) {
 945				unlock_page_lruvec_irqrestore(lruvec, flags);
 946				lruvec = NULL;
 947			}
 948			__put_compound_page(page);
 949			continue;
 950		}
 951
 952		if (PageLRU(page)) {
 953			struct lruvec *prev_lruvec = lruvec;
 954
 955			lruvec = relock_page_lruvec_irqsave(page, lruvec,
 956									&flags);
 957			if (prev_lruvec != lruvec)
 
 958				lock_batch = 0;
 
 
 
 959
 960			del_page_from_lru_list(page, lruvec);
 961			__clear_page_lru_flags(page);
 
 
 962		}
 963
 
 
 964		__ClearPageWaiters(page);
 965
 966		list_add(&page->lru, &pages_to_free);
 967	}
 968	if (lruvec)
 969		unlock_page_lruvec_irqrestore(lruvec, flags);
 970
 971	mem_cgroup_uncharge_list(&pages_to_free);
 972	free_unref_page_list(&pages_to_free);
 973}
 974EXPORT_SYMBOL(release_pages);
 975
 976/*
 977 * The pages which we're about to release may be in the deferred lru-addition
 978 * queues.  That would prevent them from really being freed right now.  That's
 979 * OK from a correctness point of view but is inefficient - those pages may be
 980 * cache-warm and we want to give them back to the page allocator ASAP.
 981 *
 982 * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
 983 * and __pagevec_lru_add_active() call release_pages() directly to avoid
 984 * mutual recursion.
 985 */
 986void __pagevec_release(struct pagevec *pvec)
 987{
 988	if (!pvec->percpu_pvec_drained) {
 989		lru_add_drain();
 990		pvec->percpu_pvec_drained = true;
 991	}
 992	release_pages(pvec->pages, pagevec_count(pvec));
 993	pagevec_reinit(pvec);
 994}
 995EXPORT_SYMBOL(__pagevec_release);
 996
 997static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 998{
 
 999	int was_unevictable = TestClearPageUnevictable(page);
1000	int nr_pages = thp_nr_pages(page);
1001
1002	VM_BUG_ON_PAGE(PageLRU(page), page);
1003
1004	/*
1005	 * Page becomes evictable in two ways:
1006	 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
1007	 * 2) Before acquiring LRU lock to put the page to correct LRU and then
1008	 *   a) do PageLRU check with lock [check_move_unevictable_pages]
1009	 *   b) do PageLRU check before lock [clear_page_mlock]
1010	 *
1011	 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
1012	 * following strict ordering:
1013	 *
1014	 * #0: __pagevec_lru_add_fn		#1: clear_page_mlock
1015	 *
1016	 * SetPageLRU()				TestClearPageMlocked()
1017	 * smp_mb() // explicit ordering	// above provides strict
1018	 *					// ordering
1019	 * PageMlocked()			PageLRU()
1020	 *
1021	 *
1022	 * if '#1' does not observe setting of PG_lru by '#0' and fails
1023	 * isolation, the explicit barrier will make sure that page_evictable
1024	 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
1025	 * can be reordered after PageMlocked check and can make '#1' to fail
1026	 * the isolation of the page whose Mlocked bit is cleared (#0 is also
1027	 * looking at the same page) and the evictable page will be stranded
1028	 * in an unevictable LRU.
1029	 */
1030	SetPageLRU(page);
1031	smp_mb__after_atomic();
1032
1033	if (page_evictable(page)) {
 
1034		if (was_unevictable)
1035			__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
1036	} else {
 
1037		ClearPageActive(page);
1038		SetPageUnevictable(page);
1039		if (!was_unevictable)
1040			__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
1041	}
1042
1043	add_page_to_lru_list(page, lruvec);
1044	trace_mm_lru_insertion(page);
1045}
1046
1047/*
1048 * Add the passed pages to the LRU, then drop the caller's refcount
1049 * on them.  Reinitialises the caller's pagevec.
1050 */
1051void __pagevec_lru_add(struct pagevec *pvec)
1052{
1053	int i;
1054	struct lruvec *lruvec = NULL;
1055	unsigned long flags = 0;
1056
1057	for (i = 0; i < pagevec_count(pvec); i++) {
1058		struct page *page = pvec->pages[i];
1059
1060		lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
1061		__pagevec_lru_add_fn(page, lruvec);
1062	}
1063	if (lruvec)
1064		unlock_page_lruvec_irqrestore(lruvec, flags);
1065	release_pages(pvec->pages, pvec->nr);
1066	pagevec_reinit(pvec);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1067}
1068
1069/**
1070 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1071 * @pvec:	The pagevec to prune
1072 *
1073 * find_get_entries() fills both pages and XArray value entries (aka
1074 * exceptional entries) into the pagevec.  This function prunes all
1075 * exceptionals from @pvec without leaving holes, so that it can be
1076 * passed on to page-only pagevec operations.
1077 */
1078void pagevec_remove_exceptionals(struct pagevec *pvec)
1079{
1080	int i, j;
1081
1082	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1083		struct page *page = pvec->pages[i];
1084		if (!xa_is_value(page))
1085			pvec->pages[j++] = page;
1086	}
1087	pvec->nr = j;
1088}
1089
1090/**
1091 * pagevec_lookup_range - gang pagecache lookup
1092 * @pvec:	Where the resulting pages are placed
1093 * @mapping:	The address_space to search
1094 * @start:	The starting page index
1095 * @end:	The final page index
1096 *
1097 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1098 * pages in the mapping starting from index @start and upto index @end
1099 * (inclusive).  The pages are placed in @pvec.  pagevec_lookup() takes a
1100 * reference against the pages in @pvec.
1101 *
1102 * The search returns a group of mapping-contiguous pages with ascending
1103 * indexes.  There may be holes in the indices due to not-present pages. We
1104 * also update @start to index the next page for the traversal.
1105 *
1106 * pagevec_lookup_range() returns the number of pages which were found. If this
1107 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1108 * reached.
1109 */
1110unsigned pagevec_lookup_range(struct pagevec *pvec,
1111		struct address_space *mapping, pgoff_t *start, pgoff_t end)
1112{
1113	pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1114					pvec->pages);
1115	return pagevec_count(pvec);
1116}
1117EXPORT_SYMBOL(pagevec_lookup_range);
1118
1119unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1120		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1121		xa_mark_t tag)
1122{
1123	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1124					PAGEVEC_SIZE, pvec->pages);
1125	return pagevec_count(pvec);
1126}
1127EXPORT_SYMBOL(pagevec_lookup_range_tag);
1128
 
 
 
 
 
 
 
 
 
1129/*
1130 * Perform any setup for the swap system
1131 */
1132void __init swap_setup(void)
1133{
1134	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1135
1136	/* Use a smaller cluster for small-memory machines */
1137	if (megs < 16)
1138		page_cluster = 2;
1139	else
1140		page_cluster = 3;
1141	/*
1142	 * Right now other parts of the system means that we
1143	 * _really_ don't want to cluster much more
1144	 */
1145}
1146
1147#ifdef CONFIG_DEV_PAGEMAP_OPS
1148void put_devmap_managed_page(struct page *page)
1149{
1150	int count;
1151
1152	if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1153		return;
1154
1155	count = page_ref_dec_return(page);
1156
1157	/*
1158	 * devmap page refcounts are 1-based, rather than 0-based: if
1159	 * refcount is 1, then the page is free and the refcount is
1160	 * stable because nobody holds a reference on the page.
1161	 */
1162	if (count == 1)
1163		free_devmap_managed_page(page);
1164	else if (!count)
1165		__put_page(page);
1166}
1167EXPORT_SYMBOL(put_devmap_managed_page);
1168#endif