Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  Copyright 2010
  4 *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
  5 *
  6 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
  7 *
  8 * PV guests under Xen are running in an non-contiguous memory architecture.
  9 *
 10 * When PCI pass-through is utilized, this necessitates an IOMMU for
 11 * translating bus (DMA) to virtual and vice-versa and also providing a
 12 * mechanism to have contiguous pages for device drivers operations (say DMA
 13 * operations).
 14 *
 15 * Specifically, under Xen the Linux idea of pages is an illusion. It
 16 * assumes that pages start at zero and go up to the available memory. To
 17 * help with that, the Linux Xen MMU provides a lookup mechanism to
 18 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
 19 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
 20 * memory is not contiguous. Xen hypervisor stitches memory for guests
 21 * from different pools, which means there is no guarantee that PFN==MFN
 22 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
 23 * allocated in descending order (high to low), meaning the guest might
 24 * never get any MFN's under the 4GB mark.
 25 */
 26
 27#define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
 28
 29#include <linux/memblock.h>
 30#include <linux/dma-direct.h>
 31#include <linux/dma-noncoherent.h>
 32#include <linux/export.h>
 33#include <xen/swiotlb-xen.h>
 34#include <xen/page.h>
 35#include <xen/xen-ops.h>
 36#include <xen/hvc-console.h>
 37
 38#include <asm/dma-mapping.h>
 39#include <asm/xen/page-coherent.h>
 40
 41#include <trace/events/swiotlb.h>
 42#define MAX_DMA_BITS 32
 43/*
 44 * Used to do a quick range check in swiotlb_tbl_unmap_single and
 45 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
 46 * API.
 47 */
 48
 49static char *xen_io_tlb_start, *xen_io_tlb_end;
 50static unsigned long xen_io_tlb_nslabs;
 51/*
 52 * Quick lookup value of the bus address of the IOTLB.
 53 */
 54
 55static inline phys_addr_t xen_phys_to_bus(struct device *dev, phys_addr_t paddr)
 56{
 57	unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
 58	phys_addr_t baddr = (phys_addr_t)bfn << XEN_PAGE_SHIFT;
 59
 60	baddr |= paddr & ~XEN_PAGE_MASK;
 61	return baddr;
 62}
 63
 64static inline dma_addr_t xen_phys_to_dma(struct device *dev, phys_addr_t paddr)
 65{
 66	return phys_to_dma(dev, xen_phys_to_bus(dev, paddr));
 67}
 68
 69static inline phys_addr_t xen_bus_to_phys(struct device *dev,
 70					  phys_addr_t baddr)
 71{
 72	unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
 73	phys_addr_t paddr = (xen_pfn << XEN_PAGE_SHIFT) |
 74			    (baddr & ~XEN_PAGE_MASK);
 75
 76	return paddr;
 77}
 78
 79static inline phys_addr_t xen_dma_to_phys(struct device *dev,
 80					  dma_addr_t dma_addr)
 81{
 82	return xen_bus_to_phys(dev, dma_to_phys(dev, dma_addr));
 83}
 84
 85static inline dma_addr_t xen_virt_to_bus(struct device *dev, void *address)
 86{
 87	return xen_phys_to_dma(dev, virt_to_phys(address));
 88}
 89
 90static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
 91{
 92	unsigned long next_bfn, xen_pfn = XEN_PFN_DOWN(p);
 93	unsigned int i, nr_pages = XEN_PFN_UP(xen_offset_in_page(p) + size);
 94
 95	next_bfn = pfn_to_bfn(xen_pfn);
 96
 97	for (i = 1; i < nr_pages; i++)
 98		if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
 99			return 1;
100
101	return 0;
102}
103
104static int is_xen_swiotlb_buffer(struct device *dev, dma_addr_t dma_addr)
105{
106	unsigned long bfn = XEN_PFN_DOWN(dma_to_phys(dev, dma_addr));
107	unsigned long xen_pfn = bfn_to_local_pfn(bfn);
108	phys_addr_t paddr = (phys_addr_t)xen_pfn << XEN_PAGE_SHIFT;
109
110	/* If the address is outside our domain, it CAN
111	 * have the same virtual address as another address
112	 * in our domain. Therefore _only_ check address within our domain.
113	 */
114	if (pfn_valid(PFN_DOWN(paddr))) {
115		return paddr >= virt_to_phys(xen_io_tlb_start) &&
116		       paddr < virt_to_phys(xen_io_tlb_end);
117	}
118	return 0;
119}
120
121static int
122xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
123{
124	int i, rc;
125	int dma_bits;
126	dma_addr_t dma_handle;
127	phys_addr_t p = virt_to_phys(buf);
128
129	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
130
131	i = 0;
132	do {
133		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
134
135		do {
136			rc = xen_create_contiguous_region(
137				p + (i << IO_TLB_SHIFT),
138				get_order(slabs << IO_TLB_SHIFT),
139				dma_bits, &dma_handle);
140		} while (rc && dma_bits++ < MAX_DMA_BITS);
141		if (rc)
142			return rc;
143
144		i += slabs;
145	} while (i < nslabs);
146	return 0;
147}
148static unsigned long xen_set_nslabs(unsigned long nr_tbl)
149{
150	if (!nr_tbl) {
151		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
152		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
153	} else
154		xen_io_tlb_nslabs = nr_tbl;
155
156	return xen_io_tlb_nslabs << IO_TLB_SHIFT;
157}
158
159enum xen_swiotlb_err {
160	XEN_SWIOTLB_UNKNOWN = 0,
161	XEN_SWIOTLB_ENOMEM,
162	XEN_SWIOTLB_EFIXUP
163};
164
165static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
166{
167	switch (err) {
168	case XEN_SWIOTLB_ENOMEM:
169		return "Cannot allocate Xen-SWIOTLB buffer\n";
170	case XEN_SWIOTLB_EFIXUP:
171		return "Failed to get contiguous memory for DMA from Xen!\n"\
172		    "You either: don't have the permissions, do not have"\
173		    " enough free memory under 4GB, or the hypervisor memory"\
174		    " is too fragmented!";
175	default:
176		break;
177	}
178	return "";
179}
180int __ref xen_swiotlb_init(int verbose, bool early)
 
 
 
181{
182	unsigned long bytes, order;
183	int rc = -ENOMEM;
184	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
185	unsigned int repeat = 3;
186
187	xen_io_tlb_nslabs = swiotlb_nr_tbl();
188retry:
189	bytes = xen_set_nslabs(xen_io_tlb_nslabs);
190	order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
191
192	/*
193	 * IO TLB memory already allocated. Just use it.
194	 */
195	if (io_tlb_start != 0) {
196		xen_io_tlb_start = phys_to_virt(io_tlb_start);
197		goto end;
198	}
199
 
 
 
 
200	/*
201	 * Get IO TLB memory from any location.
202	 */
203	if (early) {
204		xen_io_tlb_start = memblock_alloc(PAGE_ALIGN(bytes),
205						  PAGE_SIZE);
206		if (!xen_io_tlb_start)
207			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
208			      __func__, PAGE_ALIGN(bytes), PAGE_SIZE);
209	} else {
210#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
211#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
212		while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
213			xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order);
214			if (xen_io_tlb_start)
215				break;
216			order--;
217		}
218		if (order != get_order(bytes)) {
219			pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
220				(PAGE_SIZE << order) >> 20);
221			xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
222			bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
223		}
224	}
225	if (!xen_io_tlb_start) {
226		m_ret = XEN_SWIOTLB_ENOMEM;
227		goto error;
 
 
 
 
 
228	}
 
229	/*
230	 * And replace that memory with pages under 4GB.
231	 */
232	rc = xen_swiotlb_fixup(xen_io_tlb_start,
233			       bytes,
234			       xen_io_tlb_nslabs);
235	if (rc) {
236		if (early)
237			memblock_free(__pa(xen_io_tlb_start),
238				      PAGE_ALIGN(bytes));
239		else {
240			free_pages((unsigned long)xen_io_tlb_start, order);
241			xen_io_tlb_start = NULL;
242		}
243		m_ret = XEN_SWIOTLB_EFIXUP;
244		goto error;
245	}
246	if (early) {
247		if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
248			 verbose))
249			panic("Cannot allocate SWIOTLB buffer");
250		rc = 0;
251	} else
252		rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
253
254end:
255	xen_io_tlb_end = xen_io_tlb_start + bytes;
256	if (!rc)
257		swiotlb_set_max_segment(PAGE_SIZE);
258
259	return rc;
260error:
261	if (repeat--) {
262		xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
263					(xen_io_tlb_nslabs >> 1));
264		pr_info("Lowering to %luMB\n",
265			(xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
266		goto retry;
267	}
268	pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
269	if (early)
270		panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
271	else
272		free_pages((unsigned long)xen_io_tlb_start, order);
273	return rc;
274}
275
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
276static void *
277xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
278			   dma_addr_t *dma_handle, gfp_t flags,
279			   unsigned long attrs)
280{
281	void *ret;
282	int order = get_order(size);
283	u64 dma_mask = DMA_BIT_MASK(32);
284	phys_addr_t phys;
285	dma_addr_t dev_addr;
286
287	/*
288	* Ignore region specifiers - the kernel's ideas of
289	* pseudo-phys memory layout has nothing to do with the
290	* machine physical layout.  We can't allocate highmem
291	* because we can't return a pointer to it.
292	*/
293	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
294
295	/* Convert the size to actually allocated. */
296	size = 1UL << (order + XEN_PAGE_SHIFT);
297
298	/* On ARM this function returns an ioremap'ped virtual address for
299	 * which virt_to_phys doesn't return the corresponding physical
300	 * address. In fact on ARM virt_to_phys only works for kernel direct
301	 * mapped RAM memory. Also see comment below.
302	 */
303	ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
304
305	if (!ret)
306		return ret;
307
308	if (hwdev && hwdev->coherent_dma_mask)
309		dma_mask = hwdev->coherent_dma_mask;
310
311	/* At this point dma_handle is the dma address, next we are
312	 * going to set it to the machine address.
313	 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
314	 * to *dma_handle. */
315	phys = dma_to_phys(hwdev, *dma_handle);
316	dev_addr = xen_phys_to_dma(hwdev, phys);
317	if (((dev_addr + size - 1 <= dma_mask)) &&
318	    !range_straddles_page_boundary(phys, size))
319		*dma_handle = dev_addr;
320	else {
321		if (xen_create_contiguous_region(phys, order,
322						 fls64(dma_mask), dma_handle) != 0) {
323			xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
324			return NULL;
325		}
326		*dma_handle = phys_to_dma(hwdev, *dma_handle);
327		SetPageXenRemapped(virt_to_page(ret));
328	}
329	memset(ret, 0, size);
330	return ret;
331}
332
333static void
334xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
335			  dma_addr_t dev_addr, unsigned long attrs)
336{
337	int order = get_order(size);
338	phys_addr_t phys;
339	u64 dma_mask = DMA_BIT_MASK(32);
340	struct page *page;
341
342	if (hwdev && hwdev->coherent_dma_mask)
343		dma_mask = hwdev->coherent_dma_mask;
344
345	/* do not use virt_to_phys because on ARM it doesn't return you the
346	 * physical address */
347	phys = xen_dma_to_phys(hwdev, dev_addr);
348
349	/* Convert the size to actually allocated. */
350	size = 1UL << (order + XEN_PAGE_SHIFT);
351
352	if (is_vmalloc_addr(vaddr))
353		page = vmalloc_to_page(vaddr);
354	else
355		page = virt_to_page(vaddr);
356
357	if (!WARN_ON((dev_addr + size - 1 > dma_mask) ||
358		     range_straddles_page_boundary(phys, size)) &&
359	    TestClearPageXenRemapped(page))
360		xen_destroy_contiguous_region(phys, order);
361
362	xen_free_coherent_pages(hwdev, size, vaddr, phys_to_dma(hwdev, phys),
363				attrs);
364}
365
366/*
367 * Map a single buffer of the indicated size for DMA in streaming mode.  The
368 * physical address to use is returned.
369 *
370 * Once the device is given the dma address, the device owns this memory until
371 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
372 */
373static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
374				unsigned long offset, size_t size,
375				enum dma_data_direction dir,
376				unsigned long attrs)
377{
378	phys_addr_t map, phys = page_to_phys(page) + offset;
379	dma_addr_t dev_addr = xen_phys_to_dma(dev, phys);
380
381	BUG_ON(dir == DMA_NONE);
382	/*
383	 * If the address happens to be in the device's DMA window,
384	 * we can safely return the device addr and not worry about bounce
385	 * buffering it.
386	 */
387	if (dma_capable(dev, dev_addr, size, true) &&
388	    !range_straddles_page_boundary(phys, size) &&
389		!xen_arch_need_swiotlb(dev, phys, dev_addr) &&
390		swiotlb_force != SWIOTLB_FORCE)
391		goto done;
392
393	/*
394	 * Oh well, have to allocate and map a bounce buffer.
395	 */
396	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
397
398	map = swiotlb_tbl_map_single(dev, virt_to_phys(xen_io_tlb_start),
399				     phys, size, size, dir, attrs);
400	if (map == (phys_addr_t)DMA_MAPPING_ERROR)
401		return DMA_MAPPING_ERROR;
402
403	phys = map;
404	dev_addr = xen_phys_to_dma(dev, map);
405
406	/*
407	 * Ensure that the address returned is DMA'ble
408	 */
409	if (unlikely(!dma_capable(dev, dev_addr, size, true))) {
410		swiotlb_tbl_unmap_single(dev, map, size, size, dir,
411				attrs | DMA_ATTR_SKIP_CPU_SYNC);
412		return DMA_MAPPING_ERROR;
413	}
414
415done:
416	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
417		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dev_addr))))
418			arch_sync_dma_for_device(phys, size, dir);
419		else
420			xen_dma_sync_for_device(dev, dev_addr, size, dir);
421	}
422	return dev_addr;
423}
424
425/*
426 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
427 * match what was provided for in a previous xen_swiotlb_map_page call.  All
428 * other usages are undefined.
429 *
430 * After this call, reads by the cpu to the buffer are guaranteed to see
431 * whatever the device wrote there.
432 */
433static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
434		size_t size, enum dma_data_direction dir, unsigned long attrs)
435{
436	phys_addr_t paddr = xen_dma_to_phys(hwdev, dev_addr);
437
438	BUG_ON(dir == DMA_NONE);
439
440	if (!dev_is_dma_coherent(hwdev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
441		if (pfn_valid(PFN_DOWN(dma_to_phys(hwdev, dev_addr))))
442			arch_sync_dma_for_cpu(paddr, size, dir);
443		else
444			xen_dma_sync_for_cpu(hwdev, dev_addr, size, dir);
445	}
446
447	/* NOTE: We use dev_addr here, not paddr! */
448	if (is_xen_swiotlb_buffer(hwdev, dev_addr))
449		swiotlb_tbl_unmap_single(hwdev, paddr, size, size, dir, attrs);
450}
451
452static void
453xen_swiotlb_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr,
454		size_t size, enum dma_data_direction dir)
455{
456	phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr);
457
458	if (!dev_is_dma_coherent(dev)) {
459		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr))))
460			arch_sync_dma_for_cpu(paddr, size, dir);
461		else
462			xen_dma_sync_for_cpu(dev, dma_addr, size, dir);
463	}
464
465	if (is_xen_swiotlb_buffer(dev, dma_addr))
466		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
467}
468
469static void
470xen_swiotlb_sync_single_for_device(struct device *dev, dma_addr_t dma_addr,
471		size_t size, enum dma_data_direction dir)
472{
473	phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr);
474
475	if (is_xen_swiotlb_buffer(dev, dma_addr))
476		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
477
478	if (!dev_is_dma_coherent(dev)) {
479		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr))))
480			arch_sync_dma_for_device(paddr, size, dir);
481		else
482			xen_dma_sync_for_device(dev, dma_addr, size, dir);
483	}
484}
485
486/*
487 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
488 * concerning calls here are the same as for swiotlb_unmap_page() above.
489 */
490static void
491xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
492		enum dma_data_direction dir, unsigned long attrs)
493{
494	struct scatterlist *sg;
495	int i;
496
497	BUG_ON(dir == DMA_NONE);
498
499	for_each_sg(sgl, sg, nelems, i)
500		xen_swiotlb_unmap_page(hwdev, sg->dma_address, sg_dma_len(sg),
501				dir, attrs);
502
503}
504
505static int
506xen_swiotlb_map_sg(struct device *dev, struct scatterlist *sgl, int nelems,
507		enum dma_data_direction dir, unsigned long attrs)
508{
509	struct scatterlist *sg;
510	int i;
511
512	BUG_ON(dir == DMA_NONE);
513
514	for_each_sg(sgl, sg, nelems, i) {
515		sg->dma_address = xen_swiotlb_map_page(dev, sg_page(sg),
516				sg->offset, sg->length, dir, attrs);
517		if (sg->dma_address == DMA_MAPPING_ERROR)
518			goto out_unmap;
519		sg_dma_len(sg) = sg->length;
520	}
521
522	return nelems;
523out_unmap:
524	xen_swiotlb_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
525	sg_dma_len(sgl) = 0;
526	return 0;
527}
528
529static void
530xen_swiotlb_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
531			    int nelems, enum dma_data_direction dir)
532{
533	struct scatterlist *sg;
534	int i;
535
536	for_each_sg(sgl, sg, nelems, i) {
537		xen_swiotlb_sync_single_for_cpu(dev, sg->dma_address,
538				sg->length, dir);
539	}
540}
541
542static void
543xen_swiotlb_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
544			       int nelems, enum dma_data_direction dir)
545{
546	struct scatterlist *sg;
547	int i;
548
549	for_each_sg(sgl, sg, nelems, i) {
550		xen_swiotlb_sync_single_for_device(dev, sg->dma_address,
551				sg->length, dir);
552	}
553}
554
555/*
556 * Return whether the given device DMA address mask can be supported
557 * properly.  For example, if your device can only drive the low 24-bits
558 * during bus mastering, then you would pass 0x00ffffff as the mask to
559 * this function.
560 */
561static int
562xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
563{
564	return xen_virt_to_bus(hwdev, xen_io_tlb_end - 1) <= mask;
565}
566
567const struct dma_map_ops xen_swiotlb_dma_ops = {
568	.alloc = xen_swiotlb_alloc_coherent,
569	.free = xen_swiotlb_free_coherent,
570	.sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu,
571	.sync_single_for_device = xen_swiotlb_sync_single_for_device,
572	.sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu,
573	.sync_sg_for_device = xen_swiotlb_sync_sg_for_device,
574	.map_sg = xen_swiotlb_map_sg,
575	.unmap_sg = xen_swiotlb_unmap_sg,
576	.map_page = xen_swiotlb_map_page,
577	.unmap_page = xen_swiotlb_unmap_page,
578	.dma_supported = xen_swiotlb_dma_supported,
579	.mmap = dma_common_mmap,
580	.get_sgtable = dma_common_get_sgtable,
 
 
581};
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  Copyright 2010
  4 *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
  5 *
  6 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
  7 *
  8 * PV guests under Xen are running in an non-contiguous memory architecture.
  9 *
 10 * When PCI pass-through is utilized, this necessitates an IOMMU for
 11 * translating bus (DMA) to virtual and vice-versa and also providing a
 12 * mechanism to have contiguous pages for device drivers operations (say DMA
 13 * operations).
 14 *
 15 * Specifically, under Xen the Linux idea of pages is an illusion. It
 16 * assumes that pages start at zero and go up to the available memory. To
 17 * help with that, the Linux Xen MMU provides a lookup mechanism to
 18 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
 19 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
 20 * memory is not contiguous. Xen hypervisor stitches memory for guests
 21 * from different pools, which means there is no guarantee that PFN==MFN
 22 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
 23 * allocated in descending order (high to low), meaning the guest might
 24 * never get any MFN's under the 4GB mark.
 25 */
 26
 27#define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
 28
 29#include <linux/memblock.h>
 30#include <linux/dma-direct.h>
 31#include <linux/dma-map-ops.h>
 32#include <linux/export.h>
 33#include <xen/swiotlb-xen.h>
 34#include <xen/page.h>
 35#include <xen/xen-ops.h>
 36#include <xen/hvc-console.h>
 37
 38#include <asm/dma-mapping.h>
 39#include <asm/xen/page-coherent.h>
 40
 41#include <trace/events/swiotlb.h>
 42#define MAX_DMA_BITS 32
 
 
 
 
 
 43
 
 
 44/*
 45 * Quick lookup value of the bus address of the IOTLB.
 46 */
 47
 48static inline phys_addr_t xen_phys_to_bus(struct device *dev, phys_addr_t paddr)
 49{
 50	unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
 51	phys_addr_t baddr = (phys_addr_t)bfn << XEN_PAGE_SHIFT;
 52
 53	baddr |= paddr & ~XEN_PAGE_MASK;
 54	return baddr;
 55}
 56
 57static inline dma_addr_t xen_phys_to_dma(struct device *dev, phys_addr_t paddr)
 58{
 59	return phys_to_dma(dev, xen_phys_to_bus(dev, paddr));
 60}
 61
 62static inline phys_addr_t xen_bus_to_phys(struct device *dev,
 63					  phys_addr_t baddr)
 64{
 65	unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
 66	phys_addr_t paddr = (xen_pfn << XEN_PAGE_SHIFT) |
 67			    (baddr & ~XEN_PAGE_MASK);
 68
 69	return paddr;
 70}
 71
 72static inline phys_addr_t xen_dma_to_phys(struct device *dev,
 73					  dma_addr_t dma_addr)
 74{
 75	return xen_bus_to_phys(dev, dma_to_phys(dev, dma_addr));
 76}
 77
 
 
 
 
 
 78static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
 79{
 80	unsigned long next_bfn, xen_pfn = XEN_PFN_DOWN(p);
 81	unsigned int i, nr_pages = XEN_PFN_UP(xen_offset_in_page(p) + size);
 82
 83	next_bfn = pfn_to_bfn(xen_pfn);
 84
 85	for (i = 1; i < nr_pages; i++)
 86		if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
 87			return 1;
 88
 89	return 0;
 90}
 91
 92static int is_xen_swiotlb_buffer(struct device *dev, dma_addr_t dma_addr)
 93{
 94	unsigned long bfn = XEN_PFN_DOWN(dma_to_phys(dev, dma_addr));
 95	unsigned long xen_pfn = bfn_to_local_pfn(bfn);
 96	phys_addr_t paddr = (phys_addr_t)xen_pfn << XEN_PAGE_SHIFT;
 97
 98	/* If the address is outside our domain, it CAN
 99	 * have the same virtual address as another address
100	 * in our domain. Therefore _only_ check address within our domain.
101	 */
102	if (pfn_valid(PFN_DOWN(paddr)))
103		return is_swiotlb_buffer(paddr);
 
 
104	return 0;
105}
106
107static int xen_swiotlb_fixup(void *buf, unsigned long nslabs)
 
108{
109	int i, rc;
110	int dma_bits;
111	dma_addr_t dma_handle;
112	phys_addr_t p = virt_to_phys(buf);
113
114	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
115
116	i = 0;
117	do {
118		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
119
120		do {
121			rc = xen_create_contiguous_region(
122				p + (i << IO_TLB_SHIFT),
123				get_order(slabs << IO_TLB_SHIFT),
124				dma_bits, &dma_handle);
125		} while (rc && dma_bits++ < MAX_DMA_BITS);
126		if (rc)
127			return rc;
128
129		i += slabs;
130	} while (i < nslabs);
131	return 0;
132}
 
 
 
 
 
 
 
 
 
 
133
134enum xen_swiotlb_err {
135	XEN_SWIOTLB_UNKNOWN = 0,
136	XEN_SWIOTLB_ENOMEM,
137	XEN_SWIOTLB_EFIXUP
138};
139
140static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
141{
142	switch (err) {
143	case XEN_SWIOTLB_ENOMEM:
144		return "Cannot allocate Xen-SWIOTLB buffer\n";
145	case XEN_SWIOTLB_EFIXUP:
146		return "Failed to get contiguous memory for DMA from Xen!\n"\
147		    "You either: don't have the permissions, do not have"\
148		    " enough free memory under 4GB, or the hypervisor memory"\
149		    " is too fragmented!";
150	default:
151		break;
152	}
153	return "";
154}
155
156#define DEFAULT_NSLABS		ALIGN(SZ_64M >> IO_TLB_SHIFT, IO_TLB_SEGSIZE)
157
158int __ref xen_swiotlb_init(void)
159{
 
 
160	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
161	unsigned long bytes = swiotlb_size_or_default();
162	unsigned long nslabs = bytes >> IO_TLB_SHIFT;
163	unsigned int order, repeat = 3;
164	int rc = -ENOMEM;
165	char *start;
 
166
167	if (io_tlb_default_mem != NULL) {
168		pr_warn("swiotlb buffer already initialized\n");
169		return -EEXIST;
 
 
 
170	}
171
172retry:
173	m_ret = XEN_SWIOTLB_ENOMEM;
174	order = get_order(bytes);
175
176	/*
177	 * Get IO TLB memory from any location.
178	 */
 
 
 
 
 
 
 
179#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
180#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
181	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
182		start = (void *)xen_get_swiotlb_free_pages(order);
183		if (start)
184			break;
185		order--;
 
 
 
 
 
 
 
186	}
187	if (!start)
 
188		goto error;
189	if (order != get_order(bytes)) {
190		pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
191			(PAGE_SIZE << order) >> 20);
192		nslabs = SLABS_PER_PAGE << order;
193		bytes = nslabs << IO_TLB_SHIFT;
194	}
195
196	/*
197	 * And replace that memory with pages under 4GB.
198	 */
199	rc = xen_swiotlb_fixup(start, nslabs);
 
 
200	if (rc) {
201		free_pages((unsigned long)start, order);
 
 
 
 
 
 
202		m_ret = XEN_SWIOTLB_EFIXUP;
203		goto error;
204	}
205	rc = swiotlb_late_init_with_tbl(start, nslabs);
206	if (rc)
207		return rc;
208	swiotlb_set_max_segment(PAGE_SIZE);
209	return 0;
 
 
 
 
 
 
 
 
 
210error:
211	if (repeat--) {
212		/* Min is 2MB */
213		nslabs = max(1024UL, (nslabs >> 1));
214		bytes = nslabs << IO_TLB_SHIFT;
215		pr_info("Lowering to %luMB\n", bytes >> 20);
216		goto retry;
217	}
218	pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
 
 
 
 
219	return rc;
220}
221
222#ifdef CONFIG_X86
223void __init xen_swiotlb_init_early(void)
224{
225	unsigned long bytes = swiotlb_size_or_default();
226	unsigned long nslabs = bytes >> IO_TLB_SHIFT;
227	unsigned int repeat = 3;
228	char *start;
229	int rc;
230
231retry:
232	/*
233	 * Get IO TLB memory from any location.
234	 */
235	start = memblock_alloc(PAGE_ALIGN(bytes),
236			       IO_TLB_SEGSIZE << IO_TLB_SHIFT);
237	if (!start)
238		panic("%s: Failed to allocate %lu bytes\n",
239		      __func__, PAGE_ALIGN(bytes));
240
241	/*
242	 * And replace that memory with pages under 4GB.
243	 */
244	rc = xen_swiotlb_fixup(start, nslabs);
245	if (rc) {
246		memblock_free(__pa(start), PAGE_ALIGN(bytes));
247		if (repeat--) {
248			/* Min is 2MB */
249			nslabs = max(1024UL, (nslabs >> 1));
250			bytes = nslabs << IO_TLB_SHIFT;
251			pr_info("Lowering to %luMB\n", bytes >> 20);
252			goto retry;
253		}
254		panic("%s (rc:%d)", xen_swiotlb_error(XEN_SWIOTLB_EFIXUP), rc);
255	}
256
257	if (swiotlb_init_with_tbl(start, nslabs, false))
258		panic("Cannot allocate SWIOTLB buffer");
259	swiotlb_set_max_segment(PAGE_SIZE);
260}
261#endif /* CONFIG_X86 */
262
263static void *
264xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
265			   dma_addr_t *dma_handle, gfp_t flags,
266			   unsigned long attrs)
267{
268	void *ret;
269	int order = get_order(size);
270	u64 dma_mask = DMA_BIT_MASK(32);
271	phys_addr_t phys;
272	dma_addr_t dev_addr;
273
274	/*
275	* Ignore region specifiers - the kernel's ideas of
276	* pseudo-phys memory layout has nothing to do with the
277	* machine physical layout.  We can't allocate highmem
278	* because we can't return a pointer to it.
279	*/
280	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
281
282	/* Convert the size to actually allocated. */
283	size = 1UL << (order + XEN_PAGE_SHIFT);
284
285	/* On ARM this function returns an ioremap'ped virtual address for
286	 * which virt_to_phys doesn't return the corresponding physical
287	 * address. In fact on ARM virt_to_phys only works for kernel direct
288	 * mapped RAM memory. Also see comment below.
289	 */
290	ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
291
292	if (!ret)
293		return ret;
294
295	if (hwdev && hwdev->coherent_dma_mask)
296		dma_mask = hwdev->coherent_dma_mask;
297
298	/* At this point dma_handle is the dma address, next we are
299	 * going to set it to the machine address.
300	 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
301	 * to *dma_handle. */
302	phys = dma_to_phys(hwdev, *dma_handle);
303	dev_addr = xen_phys_to_dma(hwdev, phys);
304	if (((dev_addr + size - 1 <= dma_mask)) &&
305	    !range_straddles_page_boundary(phys, size))
306		*dma_handle = dev_addr;
307	else {
308		if (xen_create_contiguous_region(phys, order,
309						 fls64(dma_mask), dma_handle) != 0) {
310			xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
311			return NULL;
312		}
313		*dma_handle = phys_to_dma(hwdev, *dma_handle);
314		SetPageXenRemapped(virt_to_page(ret));
315	}
316	memset(ret, 0, size);
317	return ret;
318}
319
320static void
321xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
322			  dma_addr_t dev_addr, unsigned long attrs)
323{
324	int order = get_order(size);
325	phys_addr_t phys;
326	u64 dma_mask = DMA_BIT_MASK(32);
327	struct page *page;
328
329	if (hwdev && hwdev->coherent_dma_mask)
330		dma_mask = hwdev->coherent_dma_mask;
331
332	/* do not use virt_to_phys because on ARM it doesn't return you the
333	 * physical address */
334	phys = xen_dma_to_phys(hwdev, dev_addr);
335
336	/* Convert the size to actually allocated. */
337	size = 1UL << (order + XEN_PAGE_SHIFT);
338
339	if (is_vmalloc_addr(vaddr))
340		page = vmalloc_to_page(vaddr);
341	else
342		page = virt_to_page(vaddr);
343
344	if (!WARN_ON((dev_addr + size - 1 > dma_mask) ||
345		     range_straddles_page_boundary(phys, size)) &&
346	    TestClearPageXenRemapped(page))
347		xen_destroy_contiguous_region(phys, order);
348
349	xen_free_coherent_pages(hwdev, size, vaddr, phys_to_dma(hwdev, phys),
350				attrs);
351}
352
353/*
354 * Map a single buffer of the indicated size for DMA in streaming mode.  The
355 * physical address to use is returned.
356 *
357 * Once the device is given the dma address, the device owns this memory until
358 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
359 */
360static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
361				unsigned long offset, size_t size,
362				enum dma_data_direction dir,
363				unsigned long attrs)
364{
365	phys_addr_t map, phys = page_to_phys(page) + offset;
366	dma_addr_t dev_addr = xen_phys_to_dma(dev, phys);
367
368	BUG_ON(dir == DMA_NONE);
369	/*
370	 * If the address happens to be in the device's DMA window,
371	 * we can safely return the device addr and not worry about bounce
372	 * buffering it.
373	 */
374	if (dma_capable(dev, dev_addr, size, true) &&
375	    !range_straddles_page_boundary(phys, size) &&
376		!xen_arch_need_swiotlb(dev, phys, dev_addr) &&
377		swiotlb_force != SWIOTLB_FORCE)
378		goto done;
379
380	/*
381	 * Oh well, have to allocate and map a bounce buffer.
382	 */
383	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
384
385	map = swiotlb_tbl_map_single(dev, phys, size, size, dir, attrs);
 
386	if (map == (phys_addr_t)DMA_MAPPING_ERROR)
387		return DMA_MAPPING_ERROR;
388
389	phys = map;
390	dev_addr = xen_phys_to_dma(dev, map);
391
392	/*
393	 * Ensure that the address returned is DMA'ble
394	 */
395	if (unlikely(!dma_capable(dev, dev_addr, size, true))) {
396		swiotlb_tbl_unmap_single(dev, map, size, dir,
397				attrs | DMA_ATTR_SKIP_CPU_SYNC);
398		return DMA_MAPPING_ERROR;
399	}
400
401done:
402	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
403		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dev_addr))))
404			arch_sync_dma_for_device(phys, size, dir);
405		else
406			xen_dma_sync_for_device(dev, dev_addr, size, dir);
407	}
408	return dev_addr;
409}
410
411/*
412 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
413 * match what was provided for in a previous xen_swiotlb_map_page call.  All
414 * other usages are undefined.
415 *
416 * After this call, reads by the cpu to the buffer are guaranteed to see
417 * whatever the device wrote there.
418 */
419static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
420		size_t size, enum dma_data_direction dir, unsigned long attrs)
421{
422	phys_addr_t paddr = xen_dma_to_phys(hwdev, dev_addr);
423
424	BUG_ON(dir == DMA_NONE);
425
426	if (!dev_is_dma_coherent(hwdev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
427		if (pfn_valid(PFN_DOWN(dma_to_phys(hwdev, dev_addr))))
428			arch_sync_dma_for_cpu(paddr, size, dir);
429		else
430			xen_dma_sync_for_cpu(hwdev, dev_addr, size, dir);
431	}
432
433	/* NOTE: We use dev_addr here, not paddr! */
434	if (is_xen_swiotlb_buffer(hwdev, dev_addr))
435		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
436}
437
438static void
439xen_swiotlb_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr,
440		size_t size, enum dma_data_direction dir)
441{
442	phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr);
443
444	if (!dev_is_dma_coherent(dev)) {
445		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr))))
446			arch_sync_dma_for_cpu(paddr, size, dir);
447		else
448			xen_dma_sync_for_cpu(dev, dma_addr, size, dir);
449	}
450
451	if (is_xen_swiotlb_buffer(dev, dma_addr))
452		swiotlb_sync_single_for_cpu(dev, paddr, size, dir);
453}
454
455static void
456xen_swiotlb_sync_single_for_device(struct device *dev, dma_addr_t dma_addr,
457		size_t size, enum dma_data_direction dir)
458{
459	phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr);
460
461	if (is_xen_swiotlb_buffer(dev, dma_addr))
462		swiotlb_sync_single_for_device(dev, paddr, size, dir);
463
464	if (!dev_is_dma_coherent(dev)) {
465		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr))))
466			arch_sync_dma_for_device(paddr, size, dir);
467		else
468			xen_dma_sync_for_device(dev, dma_addr, size, dir);
469	}
470}
471
472/*
473 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
474 * concerning calls here are the same as for swiotlb_unmap_page() above.
475 */
476static void
477xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
478		enum dma_data_direction dir, unsigned long attrs)
479{
480	struct scatterlist *sg;
481	int i;
482
483	BUG_ON(dir == DMA_NONE);
484
485	for_each_sg(sgl, sg, nelems, i)
486		xen_swiotlb_unmap_page(hwdev, sg->dma_address, sg_dma_len(sg),
487				dir, attrs);
488
489}
490
491static int
492xen_swiotlb_map_sg(struct device *dev, struct scatterlist *sgl, int nelems,
493		enum dma_data_direction dir, unsigned long attrs)
494{
495	struct scatterlist *sg;
496	int i;
497
498	BUG_ON(dir == DMA_NONE);
499
500	for_each_sg(sgl, sg, nelems, i) {
501		sg->dma_address = xen_swiotlb_map_page(dev, sg_page(sg),
502				sg->offset, sg->length, dir, attrs);
503		if (sg->dma_address == DMA_MAPPING_ERROR)
504			goto out_unmap;
505		sg_dma_len(sg) = sg->length;
506	}
507
508	return nelems;
509out_unmap:
510	xen_swiotlb_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
511	sg_dma_len(sgl) = 0;
512	return 0;
513}
514
515static void
516xen_swiotlb_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
517			    int nelems, enum dma_data_direction dir)
518{
519	struct scatterlist *sg;
520	int i;
521
522	for_each_sg(sgl, sg, nelems, i) {
523		xen_swiotlb_sync_single_for_cpu(dev, sg->dma_address,
524				sg->length, dir);
525	}
526}
527
528static void
529xen_swiotlb_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
530			       int nelems, enum dma_data_direction dir)
531{
532	struct scatterlist *sg;
533	int i;
534
535	for_each_sg(sgl, sg, nelems, i) {
536		xen_swiotlb_sync_single_for_device(dev, sg->dma_address,
537				sg->length, dir);
538	}
539}
540
541/*
542 * Return whether the given device DMA address mask can be supported
543 * properly.  For example, if your device can only drive the low 24-bits
544 * during bus mastering, then you would pass 0x00ffffff as the mask to
545 * this function.
546 */
547static int
548xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
549{
550	return xen_phys_to_dma(hwdev, io_tlb_default_mem->end - 1) <= mask;
551}
552
553const struct dma_map_ops xen_swiotlb_dma_ops = {
554	.alloc = xen_swiotlb_alloc_coherent,
555	.free = xen_swiotlb_free_coherent,
556	.sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu,
557	.sync_single_for_device = xen_swiotlb_sync_single_for_device,
558	.sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu,
559	.sync_sg_for_device = xen_swiotlb_sync_sg_for_device,
560	.map_sg = xen_swiotlb_map_sg,
561	.unmap_sg = xen_swiotlb_unmap_sg,
562	.map_page = xen_swiotlb_map_page,
563	.unmap_page = xen_swiotlb_unmap_page,
564	.dma_supported = xen_swiotlb_dma_supported,
565	.mmap = dma_common_mmap,
566	.get_sgtable = dma_common_get_sgtable,
567	.alloc_pages = dma_common_alloc_pages,
568	.free_pages = dma_common_free_pages,
569};