Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  Copyright 2010
  4 *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
  5 *
  6 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
  7 *
 
 
 
 
 
 
 
 
 
  8 * PV guests under Xen are running in an non-contiguous memory architecture.
  9 *
 10 * When PCI pass-through is utilized, this necessitates an IOMMU for
 11 * translating bus (DMA) to virtual and vice-versa and also providing a
 12 * mechanism to have contiguous pages for device drivers operations (say DMA
 13 * operations).
 14 *
 15 * Specifically, under Xen the Linux idea of pages is an illusion. It
 16 * assumes that pages start at zero and go up to the available memory. To
 17 * help with that, the Linux Xen MMU provides a lookup mechanism to
 18 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
 19 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
 20 * memory is not contiguous. Xen hypervisor stitches memory for guests
 21 * from different pools, which means there is no guarantee that PFN==MFN
 22 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
 23 * allocated in descending order (high to low), meaning the guest might
 24 * never get any MFN's under the 4GB mark.
 
 25 */
 26
 27#define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
 28
 29#include <linux/memblock.h>
 30#include <linux/dma-direct.h>
 31#include <linux/dma-noncoherent.h>
 32#include <linux/export.h>
 33#include <xen/swiotlb-xen.h>
 34#include <xen/page.h>
 35#include <xen/xen-ops.h>
 36#include <xen/hvc-console.h>
 37
 38#include <asm/dma-mapping.h>
 39#include <asm/xen/page-coherent.h>
 40
 41#include <trace/events/swiotlb.h>
 42#define MAX_DMA_BITS 32
 43/*
 44 * Used to do a quick range check in swiotlb_tbl_unmap_single and
 45 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
 46 * API.
 47 */
 48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 49static char *xen_io_tlb_start, *xen_io_tlb_end;
 50static unsigned long xen_io_tlb_nslabs;
 51/*
 52 * Quick lookup value of the bus address of the IOTLB.
 53 */
 54
 55static inline phys_addr_t xen_phys_to_bus(struct device *dev, phys_addr_t paddr)
 
 
 
 
 
 
 
 56{
 57	unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
 58	phys_addr_t baddr = (phys_addr_t)bfn << XEN_PAGE_SHIFT;
 59
 60	baddr |= paddr & ~XEN_PAGE_MASK;
 61	return baddr;
 62}
 63
 64static inline dma_addr_t xen_phys_to_dma(struct device *dev, phys_addr_t paddr)
 65{
 66	return phys_to_dma(dev, xen_phys_to_bus(dev, paddr));
 67}
 68
 69static inline phys_addr_t xen_bus_to_phys(struct device *dev,
 70					  phys_addr_t baddr)
 71{
 72	unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
 73	phys_addr_t paddr = (xen_pfn << XEN_PAGE_SHIFT) |
 74			    (baddr & ~XEN_PAGE_MASK);
 75
 76	return paddr;
 77}
 78
 79static inline phys_addr_t xen_dma_to_phys(struct device *dev,
 80					  dma_addr_t dma_addr)
 81{
 82	return xen_bus_to_phys(dev, dma_to_phys(dev, dma_addr));
 83}
 84
 85static inline dma_addr_t xen_virt_to_bus(struct device *dev, void *address)
 86{
 87	return xen_phys_to_dma(dev, virt_to_phys(address));
 88}
 89
 90static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
 
 
 91{
 92	unsigned long next_bfn, xen_pfn = XEN_PFN_DOWN(p);
 93	unsigned int i, nr_pages = XEN_PFN_UP(xen_offset_in_page(p) + size);
 
 94
 95	next_bfn = pfn_to_bfn(xen_pfn);
 
 96
 97	for (i = 1; i < nr_pages; i++)
 98		if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
 99			return 1;
 
 
 
100
101	return 0;
 
 
 
 
 
 
 
 
 
102}
103
104static int is_xen_swiotlb_buffer(struct device *dev, dma_addr_t dma_addr)
105{
106	unsigned long bfn = XEN_PFN_DOWN(dma_to_phys(dev, dma_addr));
107	unsigned long xen_pfn = bfn_to_local_pfn(bfn);
108	phys_addr_t paddr = (phys_addr_t)xen_pfn << XEN_PAGE_SHIFT;
109
110	/* If the address is outside our domain, it CAN
111	 * have the same virtual address as another address
112	 * in our domain. Therefore _only_ check address within our domain.
113	 */
114	if (pfn_valid(PFN_DOWN(paddr))) {
115		return paddr >= virt_to_phys(xen_io_tlb_start) &&
116		       paddr < virt_to_phys(xen_io_tlb_end);
117	}
118	return 0;
119}
120
 
 
121static int
122xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
123{
124	int i, rc;
125	int dma_bits;
126	dma_addr_t dma_handle;
127	phys_addr_t p = virt_to_phys(buf);
128
129	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
130
131	i = 0;
132	do {
133		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
134
135		do {
136			rc = xen_create_contiguous_region(
137				p + (i << IO_TLB_SHIFT),
138				get_order(slabs << IO_TLB_SHIFT),
139				dma_bits, &dma_handle);
140		} while (rc && dma_bits++ < MAX_DMA_BITS);
141		if (rc)
142			return rc;
143
144		i += slabs;
145	} while (i < nslabs);
146	return 0;
147}
148static unsigned long xen_set_nslabs(unsigned long nr_tbl)
149{
150	if (!nr_tbl) {
151		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
152		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
153	} else
154		xen_io_tlb_nslabs = nr_tbl;
155
156	return xen_io_tlb_nslabs << IO_TLB_SHIFT;
157}
158
159enum xen_swiotlb_err {
160	XEN_SWIOTLB_UNKNOWN = 0,
161	XEN_SWIOTLB_ENOMEM,
162	XEN_SWIOTLB_EFIXUP
163};
164
165static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
166{
167	switch (err) {
168	case XEN_SWIOTLB_ENOMEM:
169		return "Cannot allocate Xen-SWIOTLB buffer\n";
170	case XEN_SWIOTLB_EFIXUP:
171		return "Failed to get contiguous memory for DMA from Xen!\n"\
172		    "You either: don't have the permissions, do not have"\
173		    " enough free memory under 4GB, or the hypervisor memory"\
174		    " is too fragmented!";
175	default:
176		break;
177	}
178	return "";
179}
180int __ref xen_swiotlb_init(int verbose, bool early)
181{
182	unsigned long bytes, order;
183	int rc = -ENOMEM;
184	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
185	unsigned int repeat = 3;
186
187	xen_io_tlb_nslabs = swiotlb_nr_tbl();
188retry:
189	bytes = xen_set_nslabs(xen_io_tlb_nslabs);
190	order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
191
192	/*
193	 * IO TLB memory already allocated. Just use it.
194	 */
195	if (io_tlb_start != 0) {
196		xen_io_tlb_start = phys_to_virt(io_tlb_start);
197		goto end;
198	}
199
200	/*
201	 * Get IO TLB memory from any location.
202	 */
203	if (early) {
204		xen_io_tlb_start = memblock_alloc(PAGE_ALIGN(bytes),
205						  PAGE_SIZE);
206		if (!xen_io_tlb_start)
207			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
208			      __func__, PAGE_ALIGN(bytes), PAGE_SIZE);
209	} else {
210#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
211#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
212		while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
213			xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order);
214			if (xen_io_tlb_start)
215				break;
216			order--;
217		}
218		if (order != get_order(bytes)) {
219			pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
220				(PAGE_SIZE << order) >> 20);
221			xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
222			bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
223		}
224	}
225	if (!xen_io_tlb_start) {
226		m_ret = XEN_SWIOTLB_ENOMEM;
227		goto error;
228	}
 
229	/*
230	 * And replace that memory with pages under 4GB.
231	 */
232	rc = xen_swiotlb_fixup(xen_io_tlb_start,
233			       bytes,
234			       xen_io_tlb_nslabs);
235	if (rc) {
236		if (early)
237			memblock_free(__pa(xen_io_tlb_start),
238				      PAGE_ALIGN(bytes));
239		else {
240			free_pages((unsigned long)xen_io_tlb_start, order);
241			xen_io_tlb_start = NULL;
242		}
243		m_ret = XEN_SWIOTLB_EFIXUP;
244		goto error;
245	}
 
246	if (early) {
247		if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
248			 verbose))
249			panic("Cannot allocate SWIOTLB buffer");
250		rc = 0;
251	} else
252		rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
253
254end:
255	xen_io_tlb_end = xen_io_tlb_start + bytes;
256	if (!rc)
257		swiotlb_set_max_segment(PAGE_SIZE);
258
259	return rc;
260error:
261	if (repeat--) {
262		xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
263					(xen_io_tlb_nslabs >> 1));
264		pr_info("Lowering to %luMB\n",
265			(xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
266		goto retry;
267	}
268	pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
269	if (early)
270		panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
271	else
272		free_pages((unsigned long)xen_io_tlb_start, order);
273	return rc;
274}
275
276static void *
277xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
278			   dma_addr_t *dma_handle, gfp_t flags,
279			   unsigned long attrs)
280{
281	void *ret;
282	int order = get_order(size);
283	u64 dma_mask = DMA_BIT_MASK(32);
284	phys_addr_t phys;
285	dma_addr_t dev_addr;
286
287	/*
288	* Ignore region specifiers - the kernel's ideas of
289	* pseudo-phys memory layout has nothing to do with the
290	* machine physical layout.  We can't allocate highmem
291	* because we can't return a pointer to it.
292	*/
293	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
294
295	/* Convert the size to actually allocated. */
296	size = 1UL << (order + XEN_PAGE_SHIFT);
297
298	/* On ARM this function returns an ioremap'ped virtual address for
299	 * which virt_to_phys doesn't return the corresponding physical
300	 * address. In fact on ARM virt_to_phys only works for kernel direct
301	 * mapped RAM memory. Also see comment below.
302	 */
303	ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
304
305	if (!ret)
306		return ret;
307
308	if (hwdev && hwdev->coherent_dma_mask)
309		dma_mask = hwdev->coherent_dma_mask;
310
311	/* At this point dma_handle is the dma address, next we are
312	 * going to set it to the machine address.
313	 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
314	 * to *dma_handle. */
315	phys = dma_to_phys(hwdev, *dma_handle);
316	dev_addr = xen_phys_to_dma(hwdev, phys);
317	if (((dev_addr + size - 1 <= dma_mask)) &&
318	    !range_straddles_page_boundary(phys, size))
319		*dma_handle = dev_addr;
320	else {
321		if (xen_create_contiguous_region(phys, order,
322						 fls64(dma_mask), dma_handle) != 0) {
323			xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
324			return NULL;
325		}
326		*dma_handle = phys_to_dma(hwdev, *dma_handle);
327		SetPageXenRemapped(virt_to_page(ret));
328	}
329	memset(ret, 0, size);
330	return ret;
331}
 
332
333static void
334xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
335			  dma_addr_t dev_addr, unsigned long attrs)
336{
337	int order = get_order(size);
338	phys_addr_t phys;
339	u64 dma_mask = DMA_BIT_MASK(32);
340	struct page *page;
341
342	if (hwdev && hwdev->coherent_dma_mask)
343		dma_mask = hwdev->coherent_dma_mask;
344
345	/* do not use virt_to_phys because on ARM it doesn't return you the
346	 * physical address */
347	phys = xen_dma_to_phys(hwdev, dev_addr);
348
349	/* Convert the size to actually allocated. */
350	size = 1UL << (order + XEN_PAGE_SHIFT);
351
352	if (is_vmalloc_addr(vaddr))
353		page = vmalloc_to_page(vaddr);
354	else
355		page = virt_to_page(vaddr);
356
357	if (!WARN_ON((dev_addr + size - 1 > dma_mask) ||
358		     range_straddles_page_boundary(phys, size)) &&
359	    TestClearPageXenRemapped(page))
360		xen_destroy_contiguous_region(phys, order);
361
362	xen_free_coherent_pages(hwdev, size, vaddr, phys_to_dma(hwdev, phys),
363				attrs);
364}
 
 
365
366/*
367 * Map a single buffer of the indicated size for DMA in streaming mode.  The
368 * physical address to use is returned.
369 *
370 * Once the device is given the dma address, the device owns this memory until
371 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
372 */
373static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
374				unsigned long offset, size_t size,
375				enum dma_data_direction dir,
376				unsigned long attrs)
377{
378	phys_addr_t map, phys = page_to_phys(page) + offset;
379	dma_addr_t dev_addr = xen_phys_to_dma(dev, phys);
380
381	BUG_ON(dir == DMA_NONE);
382	/*
383	 * If the address happens to be in the device's DMA window,
384	 * we can safely return the device addr and not worry about bounce
385	 * buffering it.
386	 */
387	if (dma_capable(dev, dev_addr, size, true) &&
388	    !range_straddles_page_boundary(phys, size) &&
389		!xen_arch_need_swiotlb(dev, phys, dev_addr) &&
390		swiotlb_force != SWIOTLB_FORCE)
391		goto done;
 
 
 
 
 
392
393	/*
394	 * Oh well, have to allocate and map a bounce buffer.
395	 */
396	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
397
398	map = swiotlb_tbl_map_single(dev, virt_to_phys(xen_io_tlb_start),
399				     phys, size, size, dir, attrs);
400	if (map == (phys_addr_t)DMA_MAPPING_ERROR)
401		return DMA_MAPPING_ERROR;
402
403	phys = map;
404	dev_addr = xen_phys_to_dma(dev, map);
405
406	/*
407	 * Ensure that the address returned is DMA'ble
408	 */
409	if (unlikely(!dma_capable(dev, dev_addr, size, true))) {
410		swiotlb_tbl_unmap_single(dev, map, size, size, dir,
411				attrs | DMA_ATTR_SKIP_CPU_SYNC);
412		return DMA_MAPPING_ERROR;
413	}
414
415done:
416	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
417		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dev_addr))))
418			arch_sync_dma_for_device(phys, size, dir);
419		else
420			xen_dma_sync_for_device(dev, dev_addr, size, dir);
421	}
422	return dev_addr;
423}
 
424
425/*
426 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
427 * match what was provided for in a previous xen_swiotlb_map_page call.  All
428 * other usages are undefined.
429 *
430 * After this call, reads by the cpu to the buffer are guaranteed to see
431 * whatever the device wrote there.
432 */
433static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
434		size_t size, enum dma_data_direction dir, unsigned long attrs)
 
435{
436	phys_addr_t paddr = xen_dma_to_phys(hwdev, dev_addr);
437
438	BUG_ON(dir == DMA_NONE);
439
440	if (!dev_is_dma_coherent(hwdev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
441		if (pfn_valid(PFN_DOWN(dma_to_phys(hwdev, dev_addr))))
442			arch_sync_dma_for_cpu(paddr, size, dir);
443		else
444			xen_dma_sync_for_cpu(hwdev, dev_addr, size, dir);
445	}
446
447	/* NOTE: We use dev_addr here, not paddr! */
448	if (is_xen_swiotlb_buffer(hwdev, dev_addr))
449		swiotlb_tbl_unmap_single(hwdev, paddr, size, size, dir, attrs);
 
 
 
 
 
 
 
 
 
 
 
 
 
450}
451
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
452static void
453xen_swiotlb_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr,
454		size_t size, enum dma_data_direction dir)
 
455{
456	phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr);
457
458	if (!dev_is_dma_coherent(dev)) {
459		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr))))
460			arch_sync_dma_for_cpu(paddr, size, dir);
461		else
462			xen_dma_sync_for_cpu(dev, dma_addr, size, dir);
463	}
 
 
 
 
 
 
 
 
464
465	if (is_xen_swiotlb_buffer(dev, dma_addr))
466		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
467}
468
469static void
470xen_swiotlb_sync_single_for_device(struct device *dev, dma_addr_t dma_addr,
471		size_t size, enum dma_data_direction dir)
472{
473	phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr);
474
475	if (is_xen_swiotlb_buffer(dev, dma_addr))
476		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
477
478	if (!dev_is_dma_coherent(dev)) {
479		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr))))
480			arch_sync_dma_for_device(paddr, size, dir);
481		else
482			xen_dma_sync_for_device(dev, dma_addr, size, dir);
483	}
484}
 
485
486/*
487 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
488 * concerning calls here are the same as for swiotlb_unmap_page() above.
 
 
 
 
 
 
 
 
 
 
 
 
489 */
490static void
491xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
492		enum dma_data_direction dir, unsigned long attrs)
 
493{
494	struct scatterlist *sg;
495	int i;
496
497	BUG_ON(dir == DMA_NONE);
498
499	for_each_sg(sgl, sg, nelems, i)
500		xen_swiotlb_unmap_page(hwdev, sg->dma_address, sg_dma_len(sg),
501				dir, attrs);
502
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
503}
 
504
505static int
506xen_swiotlb_map_sg(struct device *dev, struct scatterlist *sgl, int nelems,
507		enum dma_data_direction dir, unsigned long attrs)
 
 
 
 
 
508{
509	struct scatterlist *sg;
510	int i;
511
512	BUG_ON(dir == DMA_NONE);
513
514	for_each_sg(sgl, sg, nelems, i) {
515		sg->dma_address = xen_swiotlb_map_page(dev, sg_page(sg),
516				sg->offset, sg->length, dir, attrs);
517		if (sg->dma_address == DMA_MAPPING_ERROR)
518			goto out_unmap;
519		sg_dma_len(sg) = sg->length;
520	}
521
522	return nelems;
523out_unmap:
524	xen_swiotlb_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
525	sg_dma_len(sgl) = 0;
526	return 0;
527}
 
528
 
 
 
 
 
 
 
529static void
530xen_swiotlb_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
531			    int nelems, enum dma_data_direction dir)
 
532{
533	struct scatterlist *sg;
534	int i;
535
536	for_each_sg(sgl, sg, nelems, i) {
537		xen_swiotlb_sync_single_for_cpu(dev, sg->dma_address,
538				sg->length, dir);
539	}
540}
541
542static void
543xen_swiotlb_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
 
 
 
 
 
 
 
 
544			       int nelems, enum dma_data_direction dir)
545{
546	struct scatterlist *sg;
547	int i;
 
548
549	for_each_sg(sgl, sg, nelems, i) {
550		xen_swiotlb_sync_single_for_device(dev, sg->dma_address,
551				sg->length, dir);
552	}
553}
 
554
555/*
556 * Return whether the given device DMA address mask can be supported
557 * properly.  For example, if your device can only drive the low 24-bits
558 * during bus mastering, then you would pass 0x00ffffff as the mask to
559 * this function.
560 */
561static int
562xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
563{
564	return xen_virt_to_bus(hwdev, xen_io_tlb_end - 1) <= mask;
565}
 
566
567const struct dma_map_ops xen_swiotlb_dma_ops = {
568	.alloc = xen_swiotlb_alloc_coherent,
569	.free = xen_swiotlb_free_coherent,
570	.sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu,
571	.sync_single_for_device = xen_swiotlb_sync_single_for_device,
572	.sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu,
573	.sync_sg_for_device = xen_swiotlb_sync_sg_for_device,
574	.map_sg = xen_swiotlb_map_sg,
575	.unmap_sg = xen_swiotlb_unmap_sg,
576	.map_page = xen_swiotlb_map_page,
577	.unmap_page = xen_swiotlb_unmap_page,
578	.dma_supported = xen_swiotlb_dma_supported,
579	.mmap = dma_common_mmap,
580	.get_sgtable = dma_common_get_sgtable,
581};
v4.6
 
  1/*
  2 *  Copyright 2010
  3 *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
  4 *
  5 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License v2.0 as published by
  9 * the Free Software Foundation
 10 *
 11 * This program is distributed in the hope that it will be useful,
 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 14 * GNU General Public License for more details.
 15 *
 16 * PV guests under Xen are running in an non-contiguous memory architecture.
 17 *
 18 * When PCI pass-through is utilized, this necessitates an IOMMU for
 19 * translating bus (DMA) to virtual and vice-versa and also providing a
 20 * mechanism to have contiguous pages for device drivers operations (say DMA
 21 * operations).
 22 *
 23 * Specifically, under Xen the Linux idea of pages is an illusion. It
 24 * assumes that pages start at zero and go up to the available memory. To
 25 * help with that, the Linux Xen MMU provides a lookup mechanism to
 26 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
 27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
 28 * memory is not contiguous. Xen hypervisor stitches memory for guests
 29 * from different pools, which means there is no guarantee that PFN==MFN
 30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
 31 * allocated in descending order (high to low), meaning the guest might
 32 * never get any MFN's under the 4GB mark.
 33 *
 34 */
 35
 36#define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
 37
 38#include <linux/bootmem.h>
 39#include <linux/dma-mapping.h>
 
 40#include <linux/export.h>
 41#include <xen/swiotlb-xen.h>
 42#include <xen/page.h>
 43#include <xen/xen-ops.h>
 44#include <xen/hvc-console.h>
 45
 46#include <asm/dma-mapping.h>
 47#include <asm/xen/page-coherent.h>
 48
 49#include <trace/events/swiotlb.h>
 
 50/*
 51 * Used to do a quick range check in swiotlb_tbl_unmap_single and
 52 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
 53 * API.
 54 */
 55
 56#ifndef CONFIG_X86
 57static unsigned long dma_alloc_coherent_mask(struct device *dev,
 58					    gfp_t gfp)
 59{
 60	unsigned long dma_mask = 0;
 61
 62	dma_mask = dev->coherent_dma_mask;
 63	if (!dma_mask)
 64		dma_mask = (gfp & GFP_DMA) ? DMA_BIT_MASK(24) : DMA_BIT_MASK(32);
 65
 66	return dma_mask;
 67}
 68#endif
 69
 70static char *xen_io_tlb_start, *xen_io_tlb_end;
 71static unsigned long xen_io_tlb_nslabs;
 72/*
 73 * Quick lookup value of the bus address of the IOTLB.
 74 */
 75
 76static u64 start_dma_addr;
 77
 78/*
 79 * Both of these functions should avoid XEN_PFN_PHYS because phys_addr_t
 80 * can be 32bit when dma_addr_t is 64bit leading to a loss in
 81 * information if the shift is done before casting to 64bit.
 82 */
 83static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
 84{
 85	unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
 86	dma_addr_t dma = (dma_addr_t)bfn << XEN_PAGE_SHIFT;
 87
 88	dma |= paddr & ~XEN_PAGE_MASK;
 
 
 89
 90	return dma;
 
 
 91}
 92
 93static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
 
 94{
 95	unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
 96	dma_addr_t dma = (dma_addr_t)xen_pfn << XEN_PAGE_SHIFT;
 97	phys_addr_t paddr = dma;
 98
 99	paddr |= baddr & ~XEN_PAGE_MASK;
 
100
101	return paddr;
 
 
 
102}
103
104static inline dma_addr_t xen_virt_to_bus(void *address)
105{
106	return xen_phys_to_bus(virt_to_phys(address));
107}
108
109static int check_pages_physically_contiguous(unsigned long xen_pfn,
110					     unsigned int offset,
111					     size_t length)
112{
113	unsigned long next_bfn;
114	int i;
115	int nr_pages;
116
117	next_bfn = pfn_to_bfn(xen_pfn);
118	nr_pages = (offset + length + XEN_PAGE_SIZE-1) >> XEN_PAGE_SHIFT;
119
120	for (i = 1; i < nr_pages; i++) {
121		if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
122			return 0;
123	}
124	return 1;
125}
126
127static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
128{
129	unsigned long xen_pfn = XEN_PFN_DOWN(p);
130	unsigned int offset = p & ~XEN_PAGE_MASK;
131
132	if (offset + size <= XEN_PAGE_SIZE)
133		return 0;
134	if (check_pages_physically_contiguous(xen_pfn, offset, size))
135		return 0;
136	return 1;
137}
138
139static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
140{
141	unsigned long bfn = XEN_PFN_DOWN(dma_addr);
142	unsigned long xen_pfn = bfn_to_local_pfn(bfn);
143	phys_addr_t paddr = XEN_PFN_PHYS(xen_pfn);
144
145	/* If the address is outside our domain, it CAN
146	 * have the same virtual address as another address
147	 * in our domain. Therefore _only_ check address within our domain.
148	 */
149	if (pfn_valid(PFN_DOWN(paddr))) {
150		return paddr >= virt_to_phys(xen_io_tlb_start) &&
151		       paddr < virt_to_phys(xen_io_tlb_end);
152	}
153	return 0;
154}
155
156static int max_dma_bits = 32;
157
158static int
159xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
160{
161	int i, rc;
162	int dma_bits;
163	dma_addr_t dma_handle;
164	phys_addr_t p = virt_to_phys(buf);
165
166	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
167
168	i = 0;
169	do {
170		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
171
172		do {
173			rc = xen_create_contiguous_region(
174				p + (i << IO_TLB_SHIFT),
175				get_order(slabs << IO_TLB_SHIFT),
176				dma_bits, &dma_handle);
177		} while (rc && dma_bits++ < max_dma_bits);
178		if (rc)
179			return rc;
180
181		i += slabs;
182	} while (i < nslabs);
183	return 0;
184}
185static unsigned long xen_set_nslabs(unsigned long nr_tbl)
186{
187	if (!nr_tbl) {
188		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
189		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
190	} else
191		xen_io_tlb_nslabs = nr_tbl;
192
193	return xen_io_tlb_nslabs << IO_TLB_SHIFT;
194}
195
196enum xen_swiotlb_err {
197	XEN_SWIOTLB_UNKNOWN = 0,
198	XEN_SWIOTLB_ENOMEM,
199	XEN_SWIOTLB_EFIXUP
200};
201
202static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
203{
204	switch (err) {
205	case XEN_SWIOTLB_ENOMEM:
206		return "Cannot allocate Xen-SWIOTLB buffer\n";
207	case XEN_SWIOTLB_EFIXUP:
208		return "Failed to get contiguous memory for DMA from Xen!\n"\
209		    "You either: don't have the permissions, do not have"\
210		    " enough free memory under 4GB, or the hypervisor memory"\
211		    " is too fragmented!";
212	default:
213		break;
214	}
215	return "";
216}
217int __ref xen_swiotlb_init(int verbose, bool early)
218{
219	unsigned long bytes, order;
220	int rc = -ENOMEM;
221	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
222	unsigned int repeat = 3;
223
224	xen_io_tlb_nslabs = swiotlb_nr_tbl();
225retry:
226	bytes = xen_set_nslabs(xen_io_tlb_nslabs);
227	order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
 
 
 
 
 
 
 
 
 
228	/*
229	 * Get IO TLB memory from any location.
230	 */
231	if (early)
232		xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
233	else {
 
 
 
 
234#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
235#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
236		while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
237			xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order);
238			if (xen_io_tlb_start)
239				break;
240			order--;
241		}
242		if (order != get_order(bytes)) {
243			pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
244				(PAGE_SIZE << order) >> 20);
245			xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
246			bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
247		}
248	}
249	if (!xen_io_tlb_start) {
250		m_ret = XEN_SWIOTLB_ENOMEM;
251		goto error;
252	}
253	xen_io_tlb_end = xen_io_tlb_start + bytes;
254	/*
255	 * And replace that memory with pages under 4GB.
256	 */
257	rc = xen_swiotlb_fixup(xen_io_tlb_start,
258			       bytes,
259			       xen_io_tlb_nslabs);
260	if (rc) {
261		if (early)
262			free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
 
263		else {
264			free_pages((unsigned long)xen_io_tlb_start, order);
265			xen_io_tlb_start = NULL;
266		}
267		m_ret = XEN_SWIOTLB_EFIXUP;
268		goto error;
269	}
270	start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
271	if (early) {
272		if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
273			 verbose))
274			panic("Cannot allocate SWIOTLB buffer");
275		rc = 0;
276	} else
277		rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
 
 
 
 
 
 
278	return rc;
279error:
280	if (repeat--) {
281		xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
282					(xen_io_tlb_nslabs >> 1));
283		pr_info("Lowering to %luMB\n",
284			(xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
285		goto retry;
286	}
287	pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
288	if (early)
289		panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
290	else
291		free_pages((unsigned long)xen_io_tlb_start, order);
292	return rc;
293}
294void *
 
295xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
296			   dma_addr_t *dma_handle, gfp_t flags,
297			   struct dma_attrs *attrs)
298{
299	void *ret;
300	int order = get_order(size);
301	u64 dma_mask = DMA_BIT_MASK(32);
302	phys_addr_t phys;
303	dma_addr_t dev_addr;
304
305	/*
306	* Ignore region specifiers - the kernel's ideas of
307	* pseudo-phys memory layout has nothing to do with the
308	* machine physical layout.  We can't allocate highmem
309	* because we can't return a pointer to it.
310	*/
311	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
312
 
 
 
313	/* On ARM this function returns an ioremap'ped virtual address for
314	 * which virt_to_phys doesn't return the corresponding physical
315	 * address. In fact on ARM virt_to_phys only works for kernel direct
316	 * mapped RAM memory. Also see comment below.
317	 */
318	ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
319
320	if (!ret)
321		return ret;
322
323	if (hwdev && hwdev->coherent_dma_mask)
324		dma_mask = dma_alloc_coherent_mask(hwdev, flags);
325
326	/* At this point dma_handle is the physical address, next we are
327	 * going to set it to the machine address.
328	 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
329	 * to *dma_handle. */
330	phys = *dma_handle;
331	dev_addr = xen_phys_to_bus(phys);
332	if (((dev_addr + size - 1 <= dma_mask)) &&
333	    !range_straddles_page_boundary(phys, size))
334		*dma_handle = dev_addr;
335	else {
336		if (xen_create_contiguous_region(phys, order,
337						 fls64(dma_mask), dma_handle) != 0) {
338			xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
339			return NULL;
340		}
 
 
341	}
342	memset(ret, 0, size);
343	return ret;
344}
345EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
346
347void
348xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
349			  dma_addr_t dev_addr, struct dma_attrs *attrs)
350{
351	int order = get_order(size);
352	phys_addr_t phys;
353	u64 dma_mask = DMA_BIT_MASK(32);
 
354
355	if (hwdev && hwdev->coherent_dma_mask)
356		dma_mask = hwdev->coherent_dma_mask;
357
358	/* do not use virt_to_phys because on ARM it doesn't return you the
359	 * physical address */
360	phys = xen_bus_to_phys(dev_addr);
 
 
 
361
362	if (((dev_addr + size - 1 > dma_mask)) ||
363	    range_straddles_page_boundary(phys, size))
 
 
 
 
 
 
364		xen_destroy_contiguous_region(phys, order);
365
366	xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs);
 
367}
368EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
369
370
371/*
372 * Map a single buffer of the indicated size for DMA in streaming mode.  The
373 * physical address to use is returned.
374 *
375 * Once the device is given the dma address, the device owns this memory until
376 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
377 */
378dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
379				unsigned long offset, size_t size,
380				enum dma_data_direction dir,
381				struct dma_attrs *attrs)
382{
383	phys_addr_t map, phys = page_to_phys(page) + offset;
384	dma_addr_t dev_addr = xen_phys_to_bus(phys);
385
386	BUG_ON(dir == DMA_NONE);
387	/*
388	 * If the address happens to be in the device's DMA window,
389	 * we can safely return the device addr and not worry about bounce
390	 * buffering it.
391	 */
392	if (dma_capable(dev, dev_addr, size) &&
393	    !range_straddles_page_boundary(phys, size) &&
394		!xen_arch_need_swiotlb(dev, phys, dev_addr) &&
395		!swiotlb_force) {
396		/* we are not interested in the dma_addr returned by
397		 * xen_dma_map_page, only in the potential cache flushes executed
398		 * by the function. */
399		xen_dma_map_page(dev, page, dev_addr, offset, size, dir, attrs);
400		return dev_addr;
401	}
402
403	/*
404	 * Oh well, have to allocate and map a bounce buffer.
405	 */
406	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
407
408	map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
409	if (map == SWIOTLB_MAP_ERROR)
410		return DMA_ERROR_CODE;
411
412	xen_dma_map_page(dev, pfn_to_page(map >> PAGE_SHIFT),
413					dev_addr, map & ~PAGE_MASK, size, dir, attrs);
414	dev_addr = xen_phys_to_bus(map);
415
416	/*
417	 * Ensure that the address returned is DMA'ble
418	 */
419	if (!dma_capable(dev, dev_addr, size)) {
420		swiotlb_tbl_unmap_single(dev, map, size, dir);
421		dev_addr = 0;
 
 
 
 
 
 
 
 
 
422	}
423	return dev_addr;
424}
425EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
426
427/*
428 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
429 * match what was provided for in a previous xen_swiotlb_map_page call.  All
430 * other usages are undefined.
431 *
432 * After this call, reads by the cpu to the buffer are guaranteed to see
433 * whatever the device wrote there.
434 */
435static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
436			     size_t size, enum dma_data_direction dir,
437				 struct dma_attrs *attrs)
438{
439	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
440
441	BUG_ON(dir == DMA_NONE);
442
443	xen_dma_unmap_page(hwdev, dev_addr, size, dir, attrs);
 
 
 
 
 
444
445	/* NOTE: We use dev_addr here, not paddr! */
446	if (is_xen_swiotlb_buffer(dev_addr)) {
447		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
448		return;
449	}
450
451	if (dir != DMA_FROM_DEVICE)
452		return;
453
454	/*
455	 * phys_to_virt doesn't work with hihgmem page but we could
456	 * call dma_mark_clean() with hihgmem page here. However, we
457	 * are fine since dma_mark_clean() is null on POWERPC. We can
458	 * make dma_mark_clean() take a physical address if necessary.
459	 */
460	dma_mark_clean(phys_to_virt(paddr), size);
461}
462
463void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
464			    size_t size, enum dma_data_direction dir,
465			    struct dma_attrs *attrs)
466{
467	xen_unmap_single(hwdev, dev_addr, size, dir, attrs);
468}
469EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
470
471/*
472 * Make physical memory consistent for a single streaming mode DMA translation
473 * after a transfer.
474 *
475 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
476 * using the cpu, yet do not wish to teardown the dma mapping, you must
477 * call this function before doing so.  At the next point you give the dma
478 * address back to the card, you must first perform a
479 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
480 */
481static void
482xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
483			size_t size, enum dma_data_direction dir,
484			enum dma_sync_target target)
485{
486	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
487
488	BUG_ON(dir == DMA_NONE);
489
490	if (target == SYNC_FOR_CPU)
491		xen_dma_sync_single_for_cpu(hwdev, dev_addr, size, dir);
492
493	/* NOTE: We use dev_addr here, not paddr! */
494	if (is_xen_swiotlb_buffer(dev_addr))
495		swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
496
497	if (target == SYNC_FOR_DEVICE)
498		xen_dma_sync_single_for_device(hwdev, dev_addr, size, dir);
499
500	if (dir != DMA_FROM_DEVICE)
501		return;
502
503	dma_mark_clean(phys_to_virt(paddr), size);
 
504}
505
506void
507xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
508				size_t size, enum dma_data_direction dir)
509{
510	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
511}
512EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
 
513
514void
515xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
516				   size_t size, enum dma_data_direction dir)
517{
518	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
 
519}
520EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
521
522/*
523 * Map a set of buffers described by scatterlist in streaming mode for DMA.
524 * This is the scatter-gather version of the above xen_swiotlb_map_page
525 * interface.  Here the scatter gather list elements are each tagged with the
526 * appropriate dma address and length.  They are obtained via
527 * sg_dma_{address,length}(SG).
528 *
529 * NOTE: An implementation may be able to use a smaller number of
530 *       DMA address/length pairs than there are SG table elements.
531 *       (for example via virtual mapping capabilities)
532 *       The routine returns the number of addr/length pairs actually
533 *       used, at most nents.
534 *
535 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
536 * same here.
537 */
538int
539xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
540			 int nelems, enum dma_data_direction dir,
541			 struct dma_attrs *attrs)
542{
543	struct scatterlist *sg;
544	int i;
545
546	BUG_ON(dir == DMA_NONE);
547
548	for_each_sg(sgl, sg, nelems, i) {
549		phys_addr_t paddr = sg_phys(sg);
550		dma_addr_t dev_addr = xen_phys_to_bus(paddr);
551
552		if (swiotlb_force ||
553		    xen_arch_need_swiotlb(hwdev, paddr, dev_addr) ||
554		    !dma_capable(hwdev, dev_addr, sg->length) ||
555		    range_straddles_page_boundary(paddr, sg->length)) {
556			phys_addr_t map = swiotlb_tbl_map_single(hwdev,
557								 start_dma_addr,
558								 sg_phys(sg),
559								 sg->length,
560								 dir);
561			if (map == SWIOTLB_MAP_ERROR) {
562				dev_warn(hwdev, "swiotlb buffer is full\n");
563				/* Don't panic here, we expect map_sg users
564				   to do proper error handling. */
565				xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
566							   attrs);
567				sg_dma_len(sgl) = 0;
568				return 0;
569			}
570			xen_dma_map_page(hwdev, pfn_to_page(map >> PAGE_SHIFT),
571						dev_addr,
572						map & ~PAGE_MASK,
573						sg->length,
574						dir,
575						attrs);
576			sg->dma_address = xen_phys_to_bus(map);
577		} else {
578			/* we are not interested in the dma_addr returned by
579			 * xen_dma_map_page, only in the potential cache flushes executed
580			 * by the function. */
581			xen_dma_map_page(hwdev, pfn_to_page(paddr >> PAGE_SHIFT),
582						dev_addr,
583						paddr & ~PAGE_MASK,
584						sg->length,
585						dir,
586						attrs);
587			sg->dma_address = dev_addr;
588		}
589		sg_dma_len(sg) = sg->length;
590	}
591	return nelems;
592}
593EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
594
595/*
596 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
597 * concerning calls here are the same as for swiotlb_unmap_page() above.
598 */
599void
600xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
601			   int nelems, enum dma_data_direction dir,
602			   struct dma_attrs *attrs)
603{
604	struct scatterlist *sg;
605	int i;
606
607	BUG_ON(dir == DMA_NONE);
608
609	for_each_sg(sgl, sg, nelems, i)
610		xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs);
 
 
 
 
 
611
 
 
 
 
 
612}
613EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
614
615/*
616 * Make physical memory consistent for a set of streaming mode DMA translations
617 * after a transfer.
618 *
619 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
620 * and usage.
621 */
622static void
623xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
624		    int nelems, enum dma_data_direction dir,
625		    enum dma_sync_target target)
626{
627	struct scatterlist *sg;
628	int i;
629
630	for_each_sg(sgl, sg, nelems, i)
631		xen_swiotlb_sync_single(hwdev, sg->dma_address,
632					sg_dma_len(sg), dir, target);
 
633}
634
635void
636xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
637			    int nelems, enum dma_data_direction dir)
638{
639	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
640}
641EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
642
643void
644xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
645			       int nelems, enum dma_data_direction dir)
646{
647	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
648}
649EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
650
651int
652xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
653{
654	return !dma_addr;
655}
656EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
657
658/*
659 * Return whether the given device DMA address mask can be supported
660 * properly.  For example, if your device can only drive the low 24-bits
661 * during bus mastering, then you would pass 0x00ffffff as the mask to
662 * this function.
663 */
664int
665xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
666{
667	return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
668}
669EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);
670
671int
672xen_swiotlb_set_dma_mask(struct device *dev, u64 dma_mask)
673{
674	if (!dev->dma_mask || !xen_swiotlb_dma_supported(dev, dma_mask))
675		return -EIO;
676
677	*dev->dma_mask = dma_mask;
678
679	return 0;
680}
681EXPORT_SYMBOL_GPL(xen_swiotlb_set_dma_mask);