Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Procedures for creating, accessing and interpreting the device tree.
4 *
5 * Paul Mackerras August 1996.
6 * Copyright (C) 1996-2005 Paul Mackerras.
7 *
8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9 * {engebret|bergner}@us.ibm.com
10 *
11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12 *
13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14 * Grant Likely.
15 */
16
17#define pr_fmt(fmt) "OF: " fmt
18
19#include <linux/bitmap.h>
20#include <linux/console.h>
21#include <linux/ctype.h>
22#include <linux/cpu.h>
23#include <linux/module.h>
24#include <linux/of.h>
25#include <linux/of_device.h>
26#include <linux/of_graph.h>
27#include <linux/spinlock.h>
28#include <linux/slab.h>
29#include <linux/string.h>
30#include <linux/proc_fs.h>
31
32#include "of_private.h"
33
34LIST_HEAD(aliases_lookup);
35
36struct device_node *of_root;
37EXPORT_SYMBOL(of_root);
38struct device_node *of_chosen;
39struct device_node *of_aliases;
40struct device_node *of_stdout;
41static const char *of_stdout_options;
42
43struct kset *of_kset;
44
45/*
46 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
47 * This mutex must be held whenever modifications are being made to the
48 * device tree. The of_{attach,detach}_node() and
49 * of_{add,remove,update}_property() helpers make sure this happens.
50 */
51DEFINE_MUTEX(of_mutex);
52
53/* use when traversing tree through the child, sibling,
54 * or parent members of struct device_node.
55 */
56DEFINE_RAW_SPINLOCK(devtree_lock);
57
58bool of_node_name_eq(const struct device_node *np, const char *name)
59{
60 const char *node_name;
61 size_t len;
62
63 if (!np)
64 return false;
65
66 node_name = kbasename(np->full_name);
67 len = strchrnul(node_name, '@') - node_name;
68
69 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
70}
71EXPORT_SYMBOL(of_node_name_eq);
72
73bool of_node_name_prefix(const struct device_node *np, const char *prefix)
74{
75 if (!np)
76 return false;
77
78 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
79}
80EXPORT_SYMBOL(of_node_name_prefix);
81
82static bool __of_node_is_type(const struct device_node *np, const char *type)
83{
84 const char *match = __of_get_property(np, "device_type", NULL);
85
86 return np && match && type && !strcmp(match, type);
87}
88
89int of_bus_n_addr_cells(struct device_node *np)
90{
91 u32 cells;
92
93 for (; np; np = np->parent)
94 if (!of_property_read_u32(np, "#address-cells", &cells))
95 return cells;
96
97 /* No #address-cells property for the root node */
98 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
99}
100
101int of_n_addr_cells(struct device_node *np)
102{
103 if (np->parent)
104 np = np->parent;
105
106 return of_bus_n_addr_cells(np);
107}
108EXPORT_SYMBOL(of_n_addr_cells);
109
110int of_bus_n_size_cells(struct device_node *np)
111{
112 u32 cells;
113
114 for (; np; np = np->parent)
115 if (!of_property_read_u32(np, "#size-cells", &cells))
116 return cells;
117
118 /* No #size-cells property for the root node */
119 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
120}
121
122int of_n_size_cells(struct device_node *np)
123{
124 if (np->parent)
125 np = np->parent;
126
127 return of_bus_n_size_cells(np);
128}
129EXPORT_SYMBOL(of_n_size_cells);
130
131#ifdef CONFIG_NUMA
132int __weak of_node_to_nid(struct device_node *np)
133{
134 return NUMA_NO_NODE;
135}
136#endif
137
138#define OF_PHANDLE_CACHE_BITS 7
139#define OF_PHANDLE_CACHE_SZ BIT(OF_PHANDLE_CACHE_BITS)
140
141static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
142
143static u32 of_phandle_cache_hash(phandle handle)
144{
145 return hash_32(handle, OF_PHANDLE_CACHE_BITS);
146}
147
148/*
149 * Caller must hold devtree_lock.
150 */
151void __of_phandle_cache_inv_entry(phandle handle)
152{
153 u32 handle_hash;
154 struct device_node *np;
155
156 if (!handle)
157 return;
158
159 handle_hash = of_phandle_cache_hash(handle);
160
161 np = phandle_cache[handle_hash];
162 if (np && handle == np->phandle)
163 phandle_cache[handle_hash] = NULL;
164}
165
166void __init of_core_init(void)
167{
168 struct device_node *np;
169
170
171 /* Create the kset, and register existing nodes */
172 mutex_lock(&of_mutex);
173 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
174 if (!of_kset) {
175 mutex_unlock(&of_mutex);
176 pr_err("failed to register existing nodes\n");
177 return;
178 }
179 for_each_of_allnodes(np) {
180 __of_attach_node_sysfs(np);
181 if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
182 phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
183 }
184 mutex_unlock(&of_mutex);
185
186 /* Symlink in /proc as required by userspace ABI */
187 if (of_root)
188 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
189}
190
191static struct property *__of_find_property(const struct device_node *np,
192 const char *name, int *lenp)
193{
194 struct property *pp;
195
196 if (!np)
197 return NULL;
198
199 for (pp = np->properties; pp; pp = pp->next) {
200 if (of_prop_cmp(pp->name, name) == 0) {
201 if (lenp)
202 *lenp = pp->length;
203 break;
204 }
205 }
206
207 return pp;
208}
209
210struct property *of_find_property(const struct device_node *np,
211 const char *name,
212 int *lenp)
213{
214 struct property *pp;
215 unsigned long flags;
216
217 raw_spin_lock_irqsave(&devtree_lock, flags);
218 pp = __of_find_property(np, name, lenp);
219 raw_spin_unlock_irqrestore(&devtree_lock, flags);
220
221 return pp;
222}
223EXPORT_SYMBOL(of_find_property);
224
225struct device_node *__of_find_all_nodes(struct device_node *prev)
226{
227 struct device_node *np;
228 if (!prev) {
229 np = of_root;
230 } else if (prev->child) {
231 np = prev->child;
232 } else {
233 /* Walk back up looking for a sibling, or the end of the structure */
234 np = prev;
235 while (np->parent && !np->sibling)
236 np = np->parent;
237 np = np->sibling; /* Might be null at the end of the tree */
238 }
239 return np;
240}
241
242/**
243 * of_find_all_nodes - Get next node in global list
244 * @prev: Previous node or NULL to start iteration
245 * of_node_put() will be called on it
246 *
247 * Returns a node pointer with refcount incremented, use
248 * of_node_put() on it when done.
249 */
250struct device_node *of_find_all_nodes(struct device_node *prev)
251{
252 struct device_node *np;
253 unsigned long flags;
254
255 raw_spin_lock_irqsave(&devtree_lock, flags);
256 np = __of_find_all_nodes(prev);
257 of_node_get(np);
258 of_node_put(prev);
259 raw_spin_unlock_irqrestore(&devtree_lock, flags);
260 return np;
261}
262EXPORT_SYMBOL(of_find_all_nodes);
263
264/*
265 * Find a property with a given name for a given node
266 * and return the value.
267 */
268const void *__of_get_property(const struct device_node *np,
269 const char *name, int *lenp)
270{
271 struct property *pp = __of_find_property(np, name, lenp);
272
273 return pp ? pp->value : NULL;
274}
275
276/*
277 * Find a property with a given name for a given node
278 * and return the value.
279 */
280const void *of_get_property(const struct device_node *np, const char *name,
281 int *lenp)
282{
283 struct property *pp = of_find_property(np, name, lenp);
284
285 return pp ? pp->value : NULL;
286}
287EXPORT_SYMBOL(of_get_property);
288
289/*
290 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
291 *
292 * @cpu: logical cpu index of a core/thread
293 * @phys_id: physical identifier of a core/thread
294 *
295 * CPU logical to physical index mapping is architecture specific.
296 * However this __weak function provides a default match of physical
297 * id to logical cpu index. phys_id provided here is usually values read
298 * from the device tree which must match the hardware internal registers.
299 *
300 * Returns true if the physical identifier and the logical cpu index
301 * correspond to the same core/thread, false otherwise.
302 */
303bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
304{
305 return (u32)phys_id == cpu;
306}
307
308/**
309 * Checks if the given "prop_name" property holds the physical id of the
310 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
311 * NULL, local thread number within the core is returned in it.
312 */
313static bool __of_find_n_match_cpu_property(struct device_node *cpun,
314 const char *prop_name, int cpu, unsigned int *thread)
315{
316 const __be32 *cell;
317 int ac, prop_len, tid;
318 u64 hwid;
319
320 ac = of_n_addr_cells(cpun);
321 cell = of_get_property(cpun, prop_name, &prop_len);
322 if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
323 return true;
324 if (!cell || !ac)
325 return false;
326 prop_len /= sizeof(*cell) * ac;
327 for (tid = 0; tid < prop_len; tid++) {
328 hwid = of_read_number(cell, ac);
329 if (arch_match_cpu_phys_id(cpu, hwid)) {
330 if (thread)
331 *thread = tid;
332 return true;
333 }
334 cell += ac;
335 }
336 return false;
337}
338
339/*
340 * arch_find_n_match_cpu_physical_id - See if the given device node is
341 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
342 * else false. If 'thread' is non-NULL, the local thread number within the
343 * core is returned in it.
344 */
345bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
346 int cpu, unsigned int *thread)
347{
348 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
349 * for thread ids on PowerPC. If it doesn't exist fallback to
350 * standard "reg" property.
351 */
352 if (IS_ENABLED(CONFIG_PPC) &&
353 __of_find_n_match_cpu_property(cpun,
354 "ibm,ppc-interrupt-server#s",
355 cpu, thread))
356 return true;
357
358 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
359}
360
361/**
362 * of_get_cpu_node - Get device node associated with the given logical CPU
363 *
364 * @cpu: CPU number(logical index) for which device node is required
365 * @thread: if not NULL, local thread number within the physical core is
366 * returned
367 *
368 * The main purpose of this function is to retrieve the device node for the
369 * given logical CPU index. It should be used to initialize the of_node in
370 * cpu device. Once of_node in cpu device is populated, all the further
371 * references can use that instead.
372 *
373 * CPU logical to physical index mapping is architecture specific and is built
374 * before booting secondary cores. This function uses arch_match_cpu_phys_id
375 * which can be overridden by architecture specific implementation.
376 *
377 * Returns a node pointer for the logical cpu with refcount incremented, use
378 * of_node_put() on it when done. Returns NULL if not found.
379 */
380struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
381{
382 struct device_node *cpun;
383
384 for_each_of_cpu_node(cpun) {
385 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
386 return cpun;
387 }
388 return NULL;
389}
390EXPORT_SYMBOL(of_get_cpu_node);
391
392/**
393 * of_cpu_node_to_id: Get the logical CPU number for a given device_node
394 *
395 * @cpu_node: Pointer to the device_node for CPU.
396 *
397 * Returns the logical CPU number of the given CPU device_node.
398 * Returns -ENODEV if the CPU is not found.
399 */
400int of_cpu_node_to_id(struct device_node *cpu_node)
401{
402 int cpu;
403 bool found = false;
404 struct device_node *np;
405
406 for_each_possible_cpu(cpu) {
407 np = of_cpu_device_node_get(cpu);
408 found = (cpu_node == np);
409 of_node_put(np);
410 if (found)
411 return cpu;
412 }
413
414 return -ENODEV;
415}
416EXPORT_SYMBOL(of_cpu_node_to_id);
417
418/**
419 * of_get_cpu_state_node - Get CPU's idle state node at the given index
420 *
421 * @cpu_node: The device node for the CPU
422 * @index: The index in the list of the idle states
423 *
424 * Two generic methods can be used to describe a CPU's idle states, either via
425 * a flattened description through the "cpu-idle-states" binding or via the
426 * hierarchical layout, using the "power-domains" and the "domain-idle-states"
427 * bindings. This function check for both and returns the idle state node for
428 * the requested index.
429 *
430 * In case an idle state node is found at @index, the refcount is incremented
431 * for it, so call of_node_put() on it when done. Returns NULL if not found.
432 */
433struct device_node *of_get_cpu_state_node(struct device_node *cpu_node,
434 int index)
435{
436 struct of_phandle_args args;
437 int err;
438
439 err = of_parse_phandle_with_args(cpu_node, "power-domains",
440 "#power-domain-cells", 0, &args);
441 if (!err) {
442 struct device_node *state_node =
443 of_parse_phandle(args.np, "domain-idle-states", index);
444
445 of_node_put(args.np);
446 if (state_node)
447 return state_node;
448 }
449
450 return of_parse_phandle(cpu_node, "cpu-idle-states", index);
451}
452EXPORT_SYMBOL(of_get_cpu_state_node);
453
454/**
455 * __of_device_is_compatible() - Check if the node matches given constraints
456 * @device: pointer to node
457 * @compat: required compatible string, NULL or "" for any match
458 * @type: required device_type value, NULL or "" for any match
459 * @name: required node name, NULL or "" for any match
460 *
461 * Checks if the given @compat, @type and @name strings match the
462 * properties of the given @device. A constraints can be skipped by
463 * passing NULL or an empty string as the constraint.
464 *
465 * Returns 0 for no match, and a positive integer on match. The return
466 * value is a relative score with larger values indicating better
467 * matches. The score is weighted for the most specific compatible value
468 * to get the highest score. Matching type is next, followed by matching
469 * name. Practically speaking, this results in the following priority
470 * order for matches:
471 *
472 * 1. specific compatible && type && name
473 * 2. specific compatible && type
474 * 3. specific compatible && name
475 * 4. specific compatible
476 * 5. general compatible && type && name
477 * 6. general compatible && type
478 * 7. general compatible && name
479 * 8. general compatible
480 * 9. type && name
481 * 10. type
482 * 11. name
483 */
484static int __of_device_is_compatible(const struct device_node *device,
485 const char *compat, const char *type, const char *name)
486{
487 struct property *prop;
488 const char *cp;
489 int index = 0, score = 0;
490
491 /* Compatible match has highest priority */
492 if (compat && compat[0]) {
493 prop = __of_find_property(device, "compatible", NULL);
494 for (cp = of_prop_next_string(prop, NULL); cp;
495 cp = of_prop_next_string(prop, cp), index++) {
496 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
497 score = INT_MAX/2 - (index << 2);
498 break;
499 }
500 }
501 if (!score)
502 return 0;
503 }
504
505 /* Matching type is better than matching name */
506 if (type && type[0]) {
507 if (!__of_node_is_type(device, type))
508 return 0;
509 score += 2;
510 }
511
512 /* Matching name is a bit better than not */
513 if (name && name[0]) {
514 if (!of_node_name_eq(device, name))
515 return 0;
516 score++;
517 }
518
519 return score;
520}
521
522/** Checks if the given "compat" string matches one of the strings in
523 * the device's "compatible" property
524 */
525int of_device_is_compatible(const struct device_node *device,
526 const char *compat)
527{
528 unsigned long flags;
529 int res;
530
531 raw_spin_lock_irqsave(&devtree_lock, flags);
532 res = __of_device_is_compatible(device, compat, NULL, NULL);
533 raw_spin_unlock_irqrestore(&devtree_lock, flags);
534 return res;
535}
536EXPORT_SYMBOL(of_device_is_compatible);
537
538/** Checks if the device is compatible with any of the entries in
539 * a NULL terminated array of strings. Returns the best match
540 * score or 0.
541 */
542int of_device_compatible_match(struct device_node *device,
543 const char *const *compat)
544{
545 unsigned int tmp, score = 0;
546
547 if (!compat)
548 return 0;
549
550 while (*compat) {
551 tmp = of_device_is_compatible(device, *compat);
552 if (tmp > score)
553 score = tmp;
554 compat++;
555 }
556
557 return score;
558}
559
560/**
561 * of_machine_is_compatible - Test root of device tree for a given compatible value
562 * @compat: compatible string to look for in root node's compatible property.
563 *
564 * Returns a positive integer if the root node has the given value in its
565 * compatible property.
566 */
567int of_machine_is_compatible(const char *compat)
568{
569 struct device_node *root;
570 int rc = 0;
571
572 root = of_find_node_by_path("/");
573 if (root) {
574 rc = of_device_is_compatible(root, compat);
575 of_node_put(root);
576 }
577 return rc;
578}
579EXPORT_SYMBOL(of_machine_is_compatible);
580
581/**
582 * __of_device_is_available - check if a device is available for use
583 *
584 * @device: Node to check for availability, with locks already held
585 *
586 * Returns true if the status property is absent or set to "okay" or "ok",
587 * false otherwise
588 */
589static bool __of_device_is_available(const struct device_node *device)
590{
591 const char *status;
592 int statlen;
593
594 if (!device)
595 return false;
596
597 status = __of_get_property(device, "status", &statlen);
598 if (status == NULL)
599 return true;
600
601 if (statlen > 0) {
602 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
603 return true;
604 }
605
606 return false;
607}
608
609/**
610 * of_device_is_available - check if a device is available for use
611 *
612 * @device: Node to check for availability
613 *
614 * Returns true if the status property is absent or set to "okay" or "ok",
615 * false otherwise
616 */
617bool of_device_is_available(const struct device_node *device)
618{
619 unsigned long flags;
620 bool res;
621
622 raw_spin_lock_irqsave(&devtree_lock, flags);
623 res = __of_device_is_available(device);
624 raw_spin_unlock_irqrestore(&devtree_lock, flags);
625 return res;
626
627}
628EXPORT_SYMBOL(of_device_is_available);
629
630/**
631 * of_device_is_big_endian - check if a device has BE registers
632 *
633 * @device: Node to check for endianness
634 *
635 * Returns true if the device has a "big-endian" property, or if the kernel
636 * was compiled for BE *and* the device has a "native-endian" property.
637 * Returns false otherwise.
638 *
639 * Callers would nominally use ioread32be/iowrite32be if
640 * of_device_is_big_endian() == true, or readl/writel otherwise.
641 */
642bool of_device_is_big_endian(const struct device_node *device)
643{
644 if (of_property_read_bool(device, "big-endian"))
645 return true;
646 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
647 of_property_read_bool(device, "native-endian"))
648 return true;
649 return false;
650}
651EXPORT_SYMBOL(of_device_is_big_endian);
652
653/**
654 * of_get_parent - Get a node's parent if any
655 * @node: Node to get parent
656 *
657 * Returns a node pointer with refcount incremented, use
658 * of_node_put() on it when done.
659 */
660struct device_node *of_get_parent(const struct device_node *node)
661{
662 struct device_node *np;
663 unsigned long flags;
664
665 if (!node)
666 return NULL;
667
668 raw_spin_lock_irqsave(&devtree_lock, flags);
669 np = of_node_get(node->parent);
670 raw_spin_unlock_irqrestore(&devtree_lock, flags);
671 return np;
672}
673EXPORT_SYMBOL(of_get_parent);
674
675/**
676 * of_get_next_parent - Iterate to a node's parent
677 * @node: Node to get parent of
678 *
679 * This is like of_get_parent() except that it drops the
680 * refcount on the passed node, making it suitable for iterating
681 * through a node's parents.
682 *
683 * Returns a node pointer with refcount incremented, use
684 * of_node_put() on it when done.
685 */
686struct device_node *of_get_next_parent(struct device_node *node)
687{
688 struct device_node *parent;
689 unsigned long flags;
690
691 if (!node)
692 return NULL;
693
694 raw_spin_lock_irqsave(&devtree_lock, flags);
695 parent = of_node_get(node->parent);
696 of_node_put(node);
697 raw_spin_unlock_irqrestore(&devtree_lock, flags);
698 return parent;
699}
700EXPORT_SYMBOL(of_get_next_parent);
701
702static struct device_node *__of_get_next_child(const struct device_node *node,
703 struct device_node *prev)
704{
705 struct device_node *next;
706
707 if (!node)
708 return NULL;
709
710 next = prev ? prev->sibling : node->child;
711 for (; next; next = next->sibling)
712 if (of_node_get(next))
713 break;
714 of_node_put(prev);
715 return next;
716}
717#define __for_each_child_of_node(parent, child) \
718 for (child = __of_get_next_child(parent, NULL); child != NULL; \
719 child = __of_get_next_child(parent, child))
720
721/**
722 * of_get_next_child - Iterate a node childs
723 * @node: parent node
724 * @prev: previous child of the parent node, or NULL to get first
725 *
726 * Returns a node pointer with refcount incremented, use of_node_put() on
727 * it when done. Returns NULL when prev is the last child. Decrements the
728 * refcount of prev.
729 */
730struct device_node *of_get_next_child(const struct device_node *node,
731 struct device_node *prev)
732{
733 struct device_node *next;
734 unsigned long flags;
735
736 raw_spin_lock_irqsave(&devtree_lock, flags);
737 next = __of_get_next_child(node, prev);
738 raw_spin_unlock_irqrestore(&devtree_lock, flags);
739 return next;
740}
741EXPORT_SYMBOL(of_get_next_child);
742
743/**
744 * of_get_next_available_child - Find the next available child node
745 * @node: parent node
746 * @prev: previous child of the parent node, or NULL to get first
747 *
748 * This function is like of_get_next_child(), except that it
749 * automatically skips any disabled nodes (i.e. status = "disabled").
750 */
751struct device_node *of_get_next_available_child(const struct device_node *node,
752 struct device_node *prev)
753{
754 struct device_node *next;
755 unsigned long flags;
756
757 if (!node)
758 return NULL;
759
760 raw_spin_lock_irqsave(&devtree_lock, flags);
761 next = prev ? prev->sibling : node->child;
762 for (; next; next = next->sibling) {
763 if (!__of_device_is_available(next))
764 continue;
765 if (of_node_get(next))
766 break;
767 }
768 of_node_put(prev);
769 raw_spin_unlock_irqrestore(&devtree_lock, flags);
770 return next;
771}
772EXPORT_SYMBOL(of_get_next_available_child);
773
774/**
775 * of_get_next_cpu_node - Iterate on cpu nodes
776 * @prev: previous child of the /cpus node, or NULL to get first
777 *
778 * Returns a cpu node pointer with refcount incremented, use of_node_put()
779 * on it when done. Returns NULL when prev is the last child. Decrements
780 * the refcount of prev.
781 */
782struct device_node *of_get_next_cpu_node(struct device_node *prev)
783{
784 struct device_node *next = NULL;
785 unsigned long flags;
786 struct device_node *node;
787
788 if (!prev)
789 node = of_find_node_by_path("/cpus");
790
791 raw_spin_lock_irqsave(&devtree_lock, flags);
792 if (prev)
793 next = prev->sibling;
794 else if (node) {
795 next = node->child;
796 of_node_put(node);
797 }
798 for (; next; next = next->sibling) {
799 if (!(of_node_name_eq(next, "cpu") ||
800 __of_node_is_type(next, "cpu")))
801 continue;
802 if (of_node_get(next))
803 break;
804 }
805 of_node_put(prev);
806 raw_spin_unlock_irqrestore(&devtree_lock, flags);
807 return next;
808}
809EXPORT_SYMBOL(of_get_next_cpu_node);
810
811/**
812 * of_get_compatible_child - Find compatible child node
813 * @parent: parent node
814 * @compatible: compatible string
815 *
816 * Lookup child node whose compatible property contains the given compatible
817 * string.
818 *
819 * Returns a node pointer with refcount incremented, use of_node_put() on it
820 * when done; or NULL if not found.
821 */
822struct device_node *of_get_compatible_child(const struct device_node *parent,
823 const char *compatible)
824{
825 struct device_node *child;
826
827 for_each_child_of_node(parent, child) {
828 if (of_device_is_compatible(child, compatible))
829 break;
830 }
831
832 return child;
833}
834EXPORT_SYMBOL(of_get_compatible_child);
835
836/**
837 * of_get_child_by_name - Find the child node by name for a given parent
838 * @node: parent node
839 * @name: child name to look for.
840 *
841 * This function looks for child node for given matching name
842 *
843 * Returns a node pointer if found, with refcount incremented, use
844 * of_node_put() on it when done.
845 * Returns NULL if node is not found.
846 */
847struct device_node *of_get_child_by_name(const struct device_node *node,
848 const char *name)
849{
850 struct device_node *child;
851
852 for_each_child_of_node(node, child)
853 if (of_node_name_eq(child, name))
854 break;
855 return child;
856}
857EXPORT_SYMBOL(of_get_child_by_name);
858
859struct device_node *__of_find_node_by_path(struct device_node *parent,
860 const char *path)
861{
862 struct device_node *child;
863 int len;
864
865 len = strcspn(path, "/:");
866 if (!len)
867 return NULL;
868
869 __for_each_child_of_node(parent, child) {
870 const char *name = kbasename(child->full_name);
871 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
872 return child;
873 }
874 return NULL;
875}
876
877struct device_node *__of_find_node_by_full_path(struct device_node *node,
878 const char *path)
879{
880 const char *separator = strchr(path, ':');
881
882 while (node && *path == '/') {
883 struct device_node *tmp = node;
884
885 path++; /* Increment past '/' delimiter */
886 node = __of_find_node_by_path(node, path);
887 of_node_put(tmp);
888 path = strchrnul(path, '/');
889 if (separator && separator < path)
890 break;
891 }
892 return node;
893}
894
895/**
896 * of_find_node_opts_by_path - Find a node matching a full OF path
897 * @path: Either the full path to match, or if the path does not
898 * start with '/', the name of a property of the /aliases
899 * node (an alias). In the case of an alias, the node
900 * matching the alias' value will be returned.
901 * @opts: Address of a pointer into which to store the start of
902 * an options string appended to the end of the path with
903 * a ':' separator.
904 *
905 * Valid paths:
906 * /foo/bar Full path
907 * foo Valid alias
908 * foo/bar Valid alias + relative path
909 *
910 * Returns a node pointer with refcount incremented, use
911 * of_node_put() on it when done.
912 */
913struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
914{
915 struct device_node *np = NULL;
916 struct property *pp;
917 unsigned long flags;
918 const char *separator = strchr(path, ':');
919
920 if (opts)
921 *opts = separator ? separator + 1 : NULL;
922
923 if (strcmp(path, "/") == 0)
924 return of_node_get(of_root);
925
926 /* The path could begin with an alias */
927 if (*path != '/') {
928 int len;
929 const char *p = separator;
930
931 if (!p)
932 p = strchrnul(path, '/');
933 len = p - path;
934
935 /* of_aliases must not be NULL */
936 if (!of_aliases)
937 return NULL;
938
939 for_each_property_of_node(of_aliases, pp) {
940 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
941 np = of_find_node_by_path(pp->value);
942 break;
943 }
944 }
945 if (!np)
946 return NULL;
947 path = p;
948 }
949
950 /* Step down the tree matching path components */
951 raw_spin_lock_irqsave(&devtree_lock, flags);
952 if (!np)
953 np = of_node_get(of_root);
954 np = __of_find_node_by_full_path(np, path);
955 raw_spin_unlock_irqrestore(&devtree_lock, flags);
956 return np;
957}
958EXPORT_SYMBOL(of_find_node_opts_by_path);
959
960/**
961 * of_find_node_by_name - Find a node by its "name" property
962 * @from: The node to start searching from or NULL; the node
963 * you pass will not be searched, only the next one
964 * will. Typically, you pass what the previous call
965 * returned. of_node_put() will be called on @from.
966 * @name: The name string to match against
967 *
968 * Returns a node pointer with refcount incremented, use
969 * of_node_put() on it when done.
970 */
971struct device_node *of_find_node_by_name(struct device_node *from,
972 const char *name)
973{
974 struct device_node *np;
975 unsigned long flags;
976
977 raw_spin_lock_irqsave(&devtree_lock, flags);
978 for_each_of_allnodes_from(from, np)
979 if (of_node_name_eq(np, name) && of_node_get(np))
980 break;
981 of_node_put(from);
982 raw_spin_unlock_irqrestore(&devtree_lock, flags);
983 return np;
984}
985EXPORT_SYMBOL(of_find_node_by_name);
986
987/**
988 * of_find_node_by_type - Find a node by its "device_type" property
989 * @from: The node to start searching from, or NULL to start searching
990 * the entire device tree. The node you pass will not be
991 * searched, only the next one will; typically, you pass
992 * what the previous call returned. of_node_put() will be
993 * called on from for you.
994 * @type: The type string to match against
995 *
996 * Returns a node pointer with refcount incremented, use
997 * of_node_put() on it when done.
998 */
999struct device_node *of_find_node_by_type(struct device_node *from,
1000 const char *type)
1001{
1002 struct device_node *np;
1003 unsigned long flags;
1004
1005 raw_spin_lock_irqsave(&devtree_lock, flags);
1006 for_each_of_allnodes_from(from, np)
1007 if (__of_node_is_type(np, type) && of_node_get(np))
1008 break;
1009 of_node_put(from);
1010 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1011 return np;
1012}
1013EXPORT_SYMBOL(of_find_node_by_type);
1014
1015/**
1016 * of_find_compatible_node - Find a node based on type and one of the
1017 * tokens in its "compatible" property
1018 * @from: The node to start searching from or NULL, the node
1019 * you pass will not be searched, only the next one
1020 * will; typically, you pass what the previous call
1021 * returned. of_node_put() will be called on it
1022 * @type: The type string to match "device_type" or NULL to ignore
1023 * @compatible: The string to match to one of the tokens in the device
1024 * "compatible" list.
1025 *
1026 * Returns a node pointer with refcount incremented, use
1027 * of_node_put() on it when done.
1028 */
1029struct device_node *of_find_compatible_node(struct device_node *from,
1030 const char *type, const char *compatible)
1031{
1032 struct device_node *np;
1033 unsigned long flags;
1034
1035 raw_spin_lock_irqsave(&devtree_lock, flags);
1036 for_each_of_allnodes_from(from, np)
1037 if (__of_device_is_compatible(np, compatible, type, NULL) &&
1038 of_node_get(np))
1039 break;
1040 of_node_put(from);
1041 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1042 return np;
1043}
1044EXPORT_SYMBOL(of_find_compatible_node);
1045
1046/**
1047 * of_find_node_with_property - Find a node which has a property with
1048 * the given name.
1049 * @from: The node to start searching from or NULL, the node
1050 * you pass will not be searched, only the next one
1051 * will; typically, you pass what the previous call
1052 * returned. of_node_put() will be called on it
1053 * @prop_name: The name of the property to look for.
1054 *
1055 * Returns a node pointer with refcount incremented, use
1056 * of_node_put() on it when done.
1057 */
1058struct device_node *of_find_node_with_property(struct device_node *from,
1059 const char *prop_name)
1060{
1061 struct device_node *np;
1062 struct property *pp;
1063 unsigned long flags;
1064
1065 raw_spin_lock_irqsave(&devtree_lock, flags);
1066 for_each_of_allnodes_from(from, np) {
1067 for (pp = np->properties; pp; pp = pp->next) {
1068 if (of_prop_cmp(pp->name, prop_name) == 0) {
1069 of_node_get(np);
1070 goto out;
1071 }
1072 }
1073 }
1074out:
1075 of_node_put(from);
1076 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1077 return np;
1078}
1079EXPORT_SYMBOL(of_find_node_with_property);
1080
1081static
1082const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1083 const struct device_node *node)
1084{
1085 const struct of_device_id *best_match = NULL;
1086 int score, best_score = 0;
1087
1088 if (!matches)
1089 return NULL;
1090
1091 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1092 score = __of_device_is_compatible(node, matches->compatible,
1093 matches->type, matches->name);
1094 if (score > best_score) {
1095 best_match = matches;
1096 best_score = score;
1097 }
1098 }
1099
1100 return best_match;
1101}
1102
1103/**
1104 * of_match_node - Tell if a device_node has a matching of_match structure
1105 * @matches: array of of device match structures to search in
1106 * @node: the of device structure to match against
1107 *
1108 * Low level utility function used by device matching.
1109 */
1110const struct of_device_id *of_match_node(const struct of_device_id *matches,
1111 const struct device_node *node)
1112{
1113 const struct of_device_id *match;
1114 unsigned long flags;
1115
1116 raw_spin_lock_irqsave(&devtree_lock, flags);
1117 match = __of_match_node(matches, node);
1118 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1119 return match;
1120}
1121EXPORT_SYMBOL(of_match_node);
1122
1123/**
1124 * of_find_matching_node_and_match - Find a node based on an of_device_id
1125 * match table.
1126 * @from: The node to start searching from or NULL, the node
1127 * you pass will not be searched, only the next one
1128 * will; typically, you pass what the previous call
1129 * returned. of_node_put() will be called on it
1130 * @matches: array of of device match structures to search in
1131 * @match Updated to point at the matches entry which matched
1132 *
1133 * Returns a node pointer with refcount incremented, use
1134 * of_node_put() on it when done.
1135 */
1136struct device_node *of_find_matching_node_and_match(struct device_node *from,
1137 const struct of_device_id *matches,
1138 const struct of_device_id **match)
1139{
1140 struct device_node *np;
1141 const struct of_device_id *m;
1142 unsigned long flags;
1143
1144 if (match)
1145 *match = NULL;
1146
1147 raw_spin_lock_irqsave(&devtree_lock, flags);
1148 for_each_of_allnodes_from(from, np) {
1149 m = __of_match_node(matches, np);
1150 if (m && of_node_get(np)) {
1151 if (match)
1152 *match = m;
1153 break;
1154 }
1155 }
1156 of_node_put(from);
1157 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1158 return np;
1159}
1160EXPORT_SYMBOL(of_find_matching_node_and_match);
1161
1162/**
1163 * of_modalias_node - Lookup appropriate modalias for a device node
1164 * @node: pointer to a device tree node
1165 * @modalias: Pointer to buffer that modalias value will be copied into
1166 * @len: Length of modalias value
1167 *
1168 * Based on the value of the compatible property, this routine will attempt
1169 * to choose an appropriate modalias value for a particular device tree node.
1170 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1171 * from the first entry in the compatible list property.
1172 *
1173 * This routine returns 0 on success, <0 on failure.
1174 */
1175int of_modalias_node(struct device_node *node, char *modalias, int len)
1176{
1177 const char *compatible, *p;
1178 int cplen;
1179
1180 compatible = of_get_property(node, "compatible", &cplen);
1181 if (!compatible || strlen(compatible) > cplen)
1182 return -ENODEV;
1183 p = strchr(compatible, ',');
1184 strlcpy(modalias, p ? p + 1 : compatible, len);
1185 return 0;
1186}
1187EXPORT_SYMBOL_GPL(of_modalias_node);
1188
1189/**
1190 * of_find_node_by_phandle - Find a node given a phandle
1191 * @handle: phandle of the node to find
1192 *
1193 * Returns a node pointer with refcount incremented, use
1194 * of_node_put() on it when done.
1195 */
1196struct device_node *of_find_node_by_phandle(phandle handle)
1197{
1198 struct device_node *np = NULL;
1199 unsigned long flags;
1200 u32 handle_hash;
1201
1202 if (!handle)
1203 return NULL;
1204
1205 handle_hash = of_phandle_cache_hash(handle);
1206
1207 raw_spin_lock_irqsave(&devtree_lock, flags);
1208
1209 if (phandle_cache[handle_hash] &&
1210 handle == phandle_cache[handle_hash]->phandle)
1211 np = phandle_cache[handle_hash];
1212
1213 if (!np) {
1214 for_each_of_allnodes(np)
1215 if (np->phandle == handle &&
1216 !of_node_check_flag(np, OF_DETACHED)) {
1217 phandle_cache[handle_hash] = np;
1218 break;
1219 }
1220 }
1221
1222 of_node_get(np);
1223 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1224 return np;
1225}
1226EXPORT_SYMBOL(of_find_node_by_phandle);
1227
1228void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1229{
1230 int i;
1231 printk("%s %pOF", msg, args->np);
1232 for (i = 0; i < args->args_count; i++) {
1233 const char delim = i ? ',' : ':';
1234
1235 pr_cont("%c%08x", delim, args->args[i]);
1236 }
1237 pr_cont("\n");
1238}
1239
1240int of_phandle_iterator_init(struct of_phandle_iterator *it,
1241 const struct device_node *np,
1242 const char *list_name,
1243 const char *cells_name,
1244 int cell_count)
1245{
1246 const __be32 *list;
1247 int size;
1248
1249 memset(it, 0, sizeof(*it));
1250
1251 /*
1252 * one of cell_count or cells_name must be provided to determine the
1253 * argument length.
1254 */
1255 if (cell_count < 0 && !cells_name)
1256 return -EINVAL;
1257
1258 list = of_get_property(np, list_name, &size);
1259 if (!list)
1260 return -ENOENT;
1261
1262 it->cells_name = cells_name;
1263 it->cell_count = cell_count;
1264 it->parent = np;
1265 it->list_end = list + size / sizeof(*list);
1266 it->phandle_end = list;
1267 it->cur = list;
1268
1269 return 0;
1270}
1271EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1272
1273int of_phandle_iterator_next(struct of_phandle_iterator *it)
1274{
1275 uint32_t count = 0;
1276
1277 if (it->node) {
1278 of_node_put(it->node);
1279 it->node = NULL;
1280 }
1281
1282 if (!it->cur || it->phandle_end >= it->list_end)
1283 return -ENOENT;
1284
1285 it->cur = it->phandle_end;
1286
1287 /* If phandle is 0, then it is an empty entry with no arguments. */
1288 it->phandle = be32_to_cpup(it->cur++);
1289
1290 if (it->phandle) {
1291
1292 /*
1293 * Find the provider node and parse the #*-cells property to
1294 * determine the argument length.
1295 */
1296 it->node = of_find_node_by_phandle(it->phandle);
1297
1298 if (it->cells_name) {
1299 if (!it->node) {
1300 pr_err("%pOF: could not find phandle\n",
1301 it->parent);
1302 goto err;
1303 }
1304
1305 if (of_property_read_u32(it->node, it->cells_name,
1306 &count)) {
1307 /*
1308 * If both cell_count and cells_name is given,
1309 * fall back to cell_count in absence
1310 * of the cells_name property
1311 */
1312 if (it->cell_count >= 0) {
1313 count = it->cell_count;
1314 } else {
1315 pr_err("%pOF: could not get %s for %pOF\n",
1316 it->parent,
1317 it->cells_name,
1318 it->node);
1319 goto err;
1320 }
1321 }
1322 } else {
1323 count = it->cell_count;
1324 }
1325
1326 /*
1327 * Make sure that the arguments actually fit in the remaining
1328 * property data length
1329 */
1330 if (it->cur + count > it->list_end) {
1331 pr_err("%pOF: %s = %d found %d\n",
1332 it->parent, it->cells_name,
1333 count, it->cell_count);
1334 goto err;
1335 }
1336 }
1337
1338 it->phandle_end = it->cur + count;
1339 it->cur_count = count;
1340
1341 return 0;
1342
1343err:
1344 if (it->node) {
1345 of_node_put(it->node);
1346 it->node = NULL;
1347 }
1348
1349 return -EINVAL;
1350}
1351EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1352
1353int of_phandle_iterator_args(struct of_phandle_iterator *it,
1354 uint32_t *args,
1355 int size)
1356{
1357 int i, count;
1358
1359 count = it->cur_count;
1360
1361 if (WARN_ON(size < count))
1362 count = size;
1363
1364 for (i = 0; i < count; i++)
1365 args[i] = be32_to_cpup(it->cur++);
1366
1367 return count;
1368}
1369
1370static int __of_parse_phandle_with_args(const struct device_node *np,
1371 const char *list_name,
1372 const char *cells_name,
1373 int cell_count, int index,
1374 struct of_phandle_args *out_args)
1375{
1376 struct of_phandle_iterator it;
1377 int rc, cur_index = 0;
1378
1379 /* Loop over the phandles until all the requested entry is found */
1380 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1381 /*
1382 * All of the error cases bail out of the loop, so at
1383 * this point, the parsing is successful. If the requested
1384 * index matches, then fill the out_args structure and return,
1385 * or return -ENOENT for an empty entry.
1386 */
1387 rc = -ENOENT;
1388 if (cur_index == index) {
1389 if (!it.phandle)
1390 goto err;
1391
1392 if (out_args) {
1393 int c;
1394
1395 c = of_phandle_iterator_args(&it,
1396 out_args->args,
1397 MAX_PHANDLE_ARGS);
1398 out_args->np = it.node;
1399 out_args->args_count = c;
1400 } else {
1401 of_node_put(it.node);
1402 }
1403
1404 /* Found it! return success */
1405 return 0;
1406 }
1407
1408 cur_index++;
1409 }
1410
1411 /*
1412 * Unlock node before returning result; will be one of:
1413 * -ENOENT : index is for empty phandle
1414 * -EINVAL : parsing error on data
1415 */
1416
1417 err:
1418 of_node_put(it.node);
1419 return rc;
1420}
1421
1422/**
1423 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1424 * @np: Pointer to device node holding phandle property
1425 * @phandle_name: Name of property holding a phandle value
1426 * @index: For properties holding a table of phandles, this is the index into
1427 * the table
1428 *
1429 * Returns the device_node pointer with refcount incremented. Use
1430 * of_node_put() on it when done.
1431 */
1432struct device_node *of_parse_phandle(const struct device_node *np,
1433 const char *phandle_name, int index)
1434{
1435 struct of_phandle_args args;
1436
1437 if (index < 0)
1438 return NULL;
1439
1440 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1441 index, &args))
1442 return NULL;
1443
1444 return args.np;
1445}
1446EXPORT_SYMBOL(of_parse_phandle);
1447
1448/**
1449 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1450 * @np: pointer to a device tree node containing a list
1451 * @list_name: property name that contains a list
1452 * @cells_name: property name that specifies phandles' arguments count
1453 * @index: index of a phandle to parse out
1454 * @out_args: optional pointer to output arguments structure (will be filled)
1455 *
1456 * This function is useful to parse lists of phandles and their arguments.
1457 * Returns 0 on success and fills out_args, on error returns appropriate
1458 * errno value.
1459 *
1460 * Caller is responsible to call of_node_put() on the returned out_args->np
1461 * pointer.
1462 *
1463 * Example:
1464 *
1465 * phandle1: node1 {
1466 * #list-cells = <2>;
1467 * }
1468 *
1469 * phandle2: node2 {
1470 * #list-cells = <1>;
1471 * }
1472 *
1473 * node3 {
1474 * list = <&phandle1 1 2 &phandle2 3>;
1475 * }
1476 *
1477 * To get a device_node of the `node2' node you may call this:
1478 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1479 */
1480int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1481 const char *cells_name, int index,
1482 struct of_phandle_args *out_args)
1483{
1484 int cell_count = -1;
1485
1486 if (index < 0)
1487 return -EINVAL;
1488
1489 /* If cells_name is NULL we assume a cell count of 0 */
1490 if (!cells_name)
1491 cell_count = 0;
1492
1493 return __of_parse_phandle_with_args(np, list_name, cells_name,
1494 cell_count, index, out_args);
1495}
1496EXPORT_SYMBOL(of_parse_phandle_with_args);
1497
1498/**
1499 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1500 * @np: pointer to a device tree node containing a list
1501 * @list_name: property name that contains a list
1502 * @stem_name: stem of property names that specify phandles' arguments count
1503 * @index: index of a phandle to parse out
1504 * @out_args: optional pointer to output arguments structure (will be filled)
1505 *
1506 * This function is useful to parse lists of phandles and their arguments.
1507 * Returns 0 on success and fills out_args, on error returns appropriate errno
1508 * value. The difference between this function and of_parse_phandle_with_args()
1509 * is that this API remaps a phandle if the node the phandle points to has
1510 * a <@stem_name>-map property.
1511 *
1512 * Caller is responsible to call of_node_put() on the returned out_args->np
1513 * pointer.
1514 *
1515 * Example:
1516 *
1517 * phandle1: node1 {
1518 * #list-cells = <2>;
1519 * }
1520 *
1521 * phandle2: node2 {
1522 * #list-cells = <1>;
1523 * }
1524 *
1525 * phandle3: node3 {
1526 * #list-cells = <1>;
1527 * list-map = <0 &phandle2 3>,
1528 * <1 &phandle2 2>,
1529 * <2 &phandle1 5 1>;
1530 * list-map-mask = <0x3>;
1531 * };
1532 *
1533 * node4 {
1534 * list = <&phandle1 1 2 &phandle3 0>;
1535 * }
1536 *
1537 * To get a device_node of the `node2' node you may call this:
1538 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1539 */
1540int of_parse_phandle_with_args_map(const struct device_node *np,
1541 const char *list_name,
1542 const char *stem_name,
1543 int index, struct of_phandle_args *out_args)
1544{
1545 char *cells_name, *map_name = NULL, *mask_name = NULL;
1546 char *pass_name = NULL;
1547 struct device_node *cur, *new = NULL;
1548 const __be32 *map, *mask, *pass;
1549 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1550 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1551 __be32 initial_match_array[MAX_PHANDLE_ARGS];
1552 const __be32 *match_array = initial_match_array;
1553 int i, ret, map_len, match;
1554 u32 list_size, new_size;
1555
1556 if (index < 0)
1557 return -EINVAL;
1558
1559 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1560 if (!cells_name)
1561 return -ENOMEM;
1562
1563 ret = -ENOMEM;
1564 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1565 if (!map_name)
1566 goto free;
1567
1568 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1569 if (!mask_name)
1570 goto free;
1571
1572 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1573 if (!pass_name)
1574 goto free;
1575
1576 ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1577 out_args);
1578 if (ret)
1579 goto free;
1580
1581 /* Get the #<list>-cells property */
1582 cur = out_args->np;
1583 ret = of_property_read_u32(cur, cells_name, &list_size);
1584 if (ret < 0)
1585 goto put;
1586
1587 /* Precalculate the match array - this simplifies match loop */
1588 for (i = 0; i < list_size; i++)
1589 initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1590
1591 ret = -EINVAL;
1592 while (cur) {
1593 /* Get the <list>-map property */
1594 map = of_get_property(cur, map_name, &map_len);
1595 if (!map) {
1596 ret = 0;
1597 goto free;
1598 }
1599 map_len /= sizeof(u32);
1600
1601 /* Get the <list>-map-mask property (optional) */
1602 mask = of_get_property(cur, mask_name, NULL);
1603 if (!mask)
1604 mask = dummy_mask;
1605 /* Iterate through <list>-map property */
1606 match = 0;
1607 while (map_len > (list_size + 1) && !match) {
1608 /* Compare specifiers */
1609 match = 1;
1610 for (i = 0; i < list_size; i++, map_len--)
1611 match &= !((match_array[i] ^ *map++) & mask[i]);
1612
1613 of_node_put(new);
1614 new = of_find_node_by_phandle(be32_to_cpup(map));
1615 map++;
1616 map_len--;
1617
1618 /* Check if not found */
1619 if (!new)
1620 goto put;
1621
1622 if (!of_device_is_available(new))
1623 match = 0;
1624
1625 ret = of_property_read_u32(new, cells_name, &new_size);
1626 if (ret)
1627 goto put;
1628
1629 /* Check for malformed properties */
1630 if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1631 goto put;
1632 if (map_len < new_size)
1633 goto put;
1634
1635 /* Move forward by new node's #<list>-cells amount */
1636 map += new_size;
1637 map_len -= new_size;
1638 }
1639 if (!match)
1640 goto put;
1641
1642 /* Get the <list>-map-pass-thru property (optional) */
1643 pass = of_get_property(cur, pass_name, NULL);
1644 if (!pass)
1645 pass = dummy_pass;
1646
1647 /*
1648 * Successfully parsed a <list>-map translation; copy new
1649 * specifier into the out_args structure, keeping the
1650 * bits specified in <list>-map-pass-thru.
1651 */
1652 match_array = map - new_size;
1653 for (i = 0; i < new_size; i++) {
1654 __be32 val = *(map - new_size + i);
1655
1656 if (i < list_size) {
1657 val &= ~pass[i];
1658 val |= cpu_to_be32(out_args->args[i]) & pass[i];
1659 }
1660
1661 out_args->args[i] = be32_to_cpu(val);
1662 }
1663 out_args->args_count = list_size = new_size;
1664 /* Iterate again with new provider */
1665 out_args->np = new;
1666 of_node_put(cur);
1667 cur = new;
1668 }
1669put:
1670 of_node_put(cur);
1671 of_node_put(new);
1672free:
1673 kfree(mask_name);
1674 kfree(map_name);
1675 kfree(cells_name);
1676 kfree(pass_name);
1677
1678 return ret;
1679}
1680EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1681
1682/**
1683 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1684 * @np: pointer to a device tree node containing a list
1685 * @list_name: property name that contains a list
1686 * @cell_count: number of argument cells following the phandle
1687 * @index: index of a phandle to parse out
1688 * @out_args: optional pointer to output arguments structure (will be filled)
1689 *
1690 * This function is useful to parse lists of phandles and their arguments.
1691 * Returns 0 on success and fills out_args, on error returns appropriate
1692 * errno value.
1693 *
1694 * Caller is responsible to call of_node_put() on the returned out_args->np
1695 * pointer.
1696 *
1697 * Example:
1698 *
1699 * phandle1: node1 {
1700 * }
1701 *
1702 * phandle2: node2 {
1703 * }
1704 *
1705 * node3 {
1706 * list = <&phandle1 0 2 &phandle2 2 3>;
1707 * }
1708 *
1709 * To get a device_node of the `node2' node you may call this:
1710 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1711 */
1712int of_parse_phandle_with_fixed_args(const struct device_node *np,
1713 const char *list_name, int cell_count,
1714 int index, struct of_phandle_args *out_args)
1715{
1716 if (index < 0)
1717 return -EINVAL;
1718 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1719 index, out_args);
1720}
1721EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1722
1723/**
1724 * of_count_phandle_with_args() - Find the number of phandles references in a property
1725 * @np: pointer to a device tree node containing a list
1726 * @list_name: property name that contains a list
1727 * @cells_name: property name that specifies phandles' arguments count
1728 *
1729 * Returns the number of phandle + argument tuples within a property. It
1730 * is a typical pattern to encode a list of phandle and variable
1731 * arguments into a single property. The number of arguments is encoded
1732 * by a property in the phandle-target node. For example, a gpios
1733 * property would contain a list of GPIO specifies consisting of a
1734 * phandle and 1 or more arguments. The number of arguments are
1735 * determined by the #gpio-cells property in the node pointed to by the
1736 * phandle.
1737 */
1738int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1739 const char *cells_name)
1740{
1741 struct of_phandle_iterator it;
1742 int rc, cur_index = 0;
1743
1744 /*
1745 * If cells_name is NULL we assume a cell count of 0. This makes
1746 * counting the phandles trivial as each 32bit word in the list is a
1747 * phandle and no arguments are to consider. So we don't iterate through
1748 * the list but just use the length to determine the phandle count.
1749 */
1750 if (!cells_name) {
1751 const __be32 *list;
1752 int size;
1753
1754 list = of_get_property(np, list_name, &size);
1755 if (!list)
1756 return -ENOENT;
1757
1758 return size / sizeof(*list);
1759 }
1760
1761 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1762 if (rc)
1763 return rc;
1764
1765 while ((rc = of_phandle_iterator_next(&it)) == 0)
1766 cur_index += 1;
1767
1768 if (rc != -ENOENT)
1769 return rc;
1770
1771 return cur_index;
1772}
1773EXPORT_SYMBOL(of_count_phandle_with_args);
1774
1775/**
1776 * __of_add_property - Add a property to a node without lock operations
1777 */
1778int __of_add_property(struct device_node *np, struct property *prop)
1779{
1780 struct property **next;
1781
1782 prop->next = NULL;
1783 next = &np->properties;
1784 while (*next) {
1785 if (strcmp(prop->name, (*next)->name) == 0)
1786 /* duplicate ! don't insert it */
1787 return -EEXIST;
1788
1789 next = &(*next)->next;
1790 }
1791 *next = prop;
1792
1793 return 0;
1794}
1795
1796/**
1797 * of_add_property - Add a property to a node
1798 */
1799int of_add_property(struct device_node *np, struct property *prop)
1800{
1801 unsigned long flags;
1802 int rc;
1803
1804 mutex_lock(&of_mutex);
1805
1806 raw_spin_lock_irqsave(&devtree_lock, flags);
1807 rc = __of_add_property(np, prop);
1808 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1809
1810 if (!rc)
1811 __of_add_property_sysfs(np, prop);
1812
1813 mutex_unlock(&of_mutex);
1814
1815 if (!rc)
1816 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1817
1818 return rc;
1819}
1820
1821int __of_remove_property(struct device_node *np, struct property *prop)
1822{
1823 struct property **next;
1824
1825 for (next = &np->properties; *next; next = &(*next)->next) {
1826 if (*next == prop)
1827 break;
1828 }
1829 if (*next == NULL)
1830 return -ENODEV;
1831
1832 /* found the node */
1833 *next = prop->next;
1834 prop->next = np->deadprops;
1835 np->deadprops = prop;
1836
1837 return 0;
1838}
1839
1840/**
1841 * of_remove_property - Remove a property from a node.
1842 *
1843 * Note that we don't actually remove it, since we have given out
1844 * who-knows-how-many pointers to the data using get-property.
1845 * Instead we just move the property to the "dead properties"
1846 * list, so it won't be found any more.
1847 */
1848int of_remove_property(struct device_node *np, struct property *prop)
1849{
1850 unsigned long flags;
1851 int rc;
1852
1853 if (!prop)
1854 return -ENODEV;
1855
1856 mutex_lock(&of_mutex);
1857
1858 raw_spin_lock_irqsave(&devtree_lock, flags);
1859 rc = __of_remove_property(np, prop);
1860 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1861
1862 if (!rc)
1863 __of_remove_property_sysfs(np, prop);
1864
1865 mutex_unlock(&of_mutex);
1866
1867 if (!rc)
1868 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1869
1870 return rc;
1871}
1872
1873int __of_update_property(struct device_node *np, struct property *newprop,
1874 struct property **oldpropp)
1875{
1876 struct property **next, *oldprop;
1877
1878 for (next = &np->properties; *next; next = &(*next)->next) {
1879 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1880 break;
1881 }
1882 *oldpropp = oldprop = *next;
1883
1884 if (oldprop) {
1885 /* replace the node */
1886 newprop->next = oldprop->next;
1887 *next = newprop;
1888 oldprop->next = np->deadprops;
1889 np->deadprops = oldprop;
1890 } else {
1891 /* new node */
1892 newprop->next = NULL;
1893 *next = newprop;
1894 }
1895
1896 return 0;
1897}
1898
1899/*
1900 * of_update_property - Update a property in a node, if the property does
1901 * not exist, add it.
1902 *
1903 * Note that we don't actually remove it, since we have given out
1904 * who-knows-how-many pointers to the data using get-property.
1905 * Instead we just move the property to the "dead properties" list,
1906 * and add the new property to the property list
1907 */
1908int of_update_property(struct device_node *np, struct property *newprop)
1909{
1910 struct property *oldprop;
1911 unsigned long flags;
1912 int rc;
1913
1914 if (!newprop->name)
1915 return -EINVAL;
1916
1917 mutex_lock(&of_mutex);
1918
1919 raw_spin_lock_irqsave(&devtree_lock, flags);
1920 rc = __of_update_property(np, newprop, &oldprop);
1921 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1922
1923 if (!rc)
1924 __of_update_property_sysfs(np, newprop, oldprop);
1925
1926 mutex_unlock(&of_mutex);
1927
1928 if (!rc)
1929 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1930
1931 return rc;
1932}
1933
1934static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1935 int id, const char *stem, int stem_len)
1936{
1937 ap->np = np;
1938 ap->id = id;
1939 strncpy(ap->stem, stem, stem_len);
1940 ap->stem[stem_len] = 0;
1941 list_add_tail(&ap->link, &aliases_lookup);
1942 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1943 ap->alias, ap->stem, ap->id, np);
1944}
1945
1946/**
1947 * of_alias_scan - Scan all properties of the 'aliases' node
1948 *
1949 * The function scans all the properties of the 'aliases' node and populates
1950 * the global lookup table with the properties. It returns the
1951 * number of alias properties found, or an error code in case of failure.
1952 *
1953 * @dt_alloc: An allocator that provides a virtual address to memory
1954 * for storing the resulting tree
1955 */
1956void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1957{
1958 struct property *pp;
1959
1960 of_aliases = of_find_node_by_path("/aliases");
1961 of_chosen = of_find_node_by_path("/chosen");
1962 if (of_chosen == NULL)
1963 of_chosen = of_find_node_by_path("/chosen@0");
1964
1965 if (of_chosen) {
1966 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1967 const char *name = NULL;
1968
1969 if (of_property_read_string(of_chosen, "stdout-path", &name))
1970 of_property_read_string(of_chosen, "linux,stdout-path",
1971 &name);
1972 if (IS_ENABLED(CONFIG_PPC) && !name)
1973 of_property_read_string(of_aliases, "stdout", &name);
1974 if (name)
1975 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1976 }
1977
1978 if (!of_aliases)
1979 return;
1980
1981 for_each_property_of_node(of_aliases, pp) {
1982 const char *start = pp->name;
1983 const char *end = start + strlen(start);
1984 struct device_node *np;
1985 struct alias_prop *ap;
1986 int id, len;
1987
1988 /* Skip those we do not want to proceed */
1989 if (!strcmp(pp->name, "name") ||
1990 !strcmp(pp->name, "phandle") ||
1991 !strcmp(pp->name, "linux,phandle"))
1992 continue;
1993
1994 np = of_find_node_by_path(pp->value);
1995 if (!np)
1996 continue;
1997
1998 /* walk the alias backwards to extract the id and work out
1999 * the 'stem' string */
2000 while (isdigit(*(end-1)) && end > start)
2001 end--;
2002 len = end - start;
2003
2004 if (kstrtoint(end, 10, &id) < 0)
2005 continue;
2006
2007 /* Allocate an alias_prop with enough space for the stem */
2008 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
2009 if (!ap)
2010 continue;
2011 memset(ap, 0, sizeof(*ap) + len + 1);
2012 ap->alias = start;
2013 of_alias_add(ap, np, id, start, len);
2014 }
2015}
2016
2017/**
2018 * of_alias_get_id - Get alias id for the given device_node
2019 * @np: Pointer to the given device_node
2020 * @stem: Alias stem of the given device_node
2021 *
2022 * The function travels the lookup table to get the alias id for the given
2023 * device_node and alias stem. It returns the alias id if found.
2024 */
2025int of_alias_get_id(struct device_node *np, const char *stem)
2026{
2027 struct alias_prop *app;
2028 int id = -ENODEV;
2029
2030 mutex_lock(&of_mutex);
2031 list_for_each_entry(app, &aliases_lookup, link) {
2032 if (strcmp(app->stem, stem) != 0)
2033 continue;
2034
2035 if (np == app->np) {
2036 id = app->id;
2037 break;
2038 }
2039 }
2040 mutex_unlock(&of_mutex);
2041
2042 return id;
2043}
2044EXPORT_SYMBOL_GPL(of_alias_get_id);
2045
2046/**
2047 * of_alias_get_alias_list - Get alias list for the given device driver
2048 * @matches: Array of OF device match structures to search in
2049 * @stem: Alias stem of the given device_node
2050 * @bitmap: Bitmap field pointer
2051 * @nbits: Maximum number of alias IDs which can be recorded in bitmap
2052 *
2053 * The function travels the lookup table to record alias ids for the given
2054 * device match structures and alias stem.
2055 *
2056 * Return: 0 or -ENOSYS when !CONFIG_OF or
2057 * -EOVERFLOW if alias ID is greater then allocated nbits
2058 */
2059int of_alias_get_alias_list(const struct of_device_id *matches,
2060 const char *stem, unsigned long *bitmap,
2061 unsigned int nbits)
2062{
2063 struct alias_prop *app;
2064 int ret = 0;
2065
2066 /* Zero bitmap field to make sure that all the time it is clean */
2067 bitmap_zero(bitmap, nbits);
2068
2069 mutex_lock(&of_mutex);
2070 pr_debug("%s: Looking for stem: %s\n", __func__, stem);
2071 list_for_each_entry(app, &aliases_lookup, link) {
2072 pr_debug("%s: stem: %s, id: %d\n",
2073 __func__, app->stem, app->id);
2074
2075 if (strcmp(app->stem, stem) != 0) {
2076 pr_debug("%s: stem comparison didn't pass %s\n",
2077 __func__, app->stem);
2078 continue;
2079 }
2080
2081 if (of_match_node(matches, app->np)) {
2082 pr_debug("%s: Allocated ID %d\n", __func__, app->id);
2083
2084 if (app->id >= nbits) {
2085 pr_warn("%s: ID %d >= than bitmap field %d\n",
2086 __func__, app->id, nbits);
2087 ret = -EOVERFLOW;
2088 } else {
2089 set_bit(app->id, bitmap);
2090 }
2091 }
2092 }
2093 mutex_unlock(&of_mutex);
2094
2095 return ret;
2096}
2097EXPORT_SYMBOL_GPL(of_alias_get_alias_list);
2098
2099/**
2100 * of_alias_get_highest_id - Get highest alias id for the given stem
2101 * @stem: Alias stem to be examined
2102 *
2103 * The function travels the lookup table to get the highest alias id for the
2104 * given alias stem. It returns the alias id if found.
2105 */
2106int of_alias_get_highest_id(const char *stem)
2107{
2108 struct alias_prop *app;
2109 int id = -ENODEV;
2110
2111 mutex_lock(&of_mutex);
2112 list_for_each_entry(app, &aliases_lookup, link) {
2113 if (strcmp(app->stem, stem) != 0)
2114 continue;
2115
2116 if (app->id > id)
2117 id = app->id;
2118 }
2119 mutex_unlock(&of_mutex);
2120
2121 return id;
2122}
2123EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2124
2125/**
2126 * of_console_check() - Test and setup console for DT setup
2127 * @dn - Pointer to device node
2128 * @name - Name to use for preferred console without index. ex. "ttyS"
2129 * @index - Index to use for preferred console.
2130 *
2131 * Check if the given device node matches the stdout-path property in the
2132 * /chosen node. If it does then register it as the preferred console and return
2133 * TRUE. Otherwise return FALSE.
2134 */
2135bool of_console_check(struct device_node *dn, char *name, int index)
2136{
2137 if (!dn || dn != of_stdout || console_set_on_cmdline)
2138 return false;
2139
2140 /*
2141 * XXX: cast `options' to char pointer to suppress complication
2142 * warnings: printk, UART and console drivers expect char pointer.
2143 */
2144 return !add_preferred_console(name, index, (char *)of_stdout_options);
2145}
2146EXPORT_SYMBOL_GPL(of_console_check);
2147
2148/**
2149 * of_find_next_cache_node - Find a node's subsidiary cache
2150 * @np: node of type "cpu" or "cache"
2151 *
2152 * Returns a node pointer with refcount incremented, use
2153 * of_node_put() on it when done. Caller should hold a reference
2154 * to np.
2155 */
2156struct device_node *of_find_next_cache_node(const struct device_node *np)
2157{
2158 struct device_node *child, *cache_node;
2159
2160 cache_node = of_parse_phandle(np, "l2-cache", 0);
2161 if (!cache_node)
2162 cache_node = of_parse_phandle(np, "next-level-cache", 0);
2163
2164 if (cache_node)
2165 return cache_node;
2166
2167 /* OF on pmac has nodes instead of properties named "l2-cache"
2168 * beneath CPU nodes.
2169 */
2170 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2171 for_each_child_of_node(np, child)
2172 if (of_node_is_type(child, "cache"))
2173 return child;
2174
2175 return NULL;
2176}
2177
2178/**
2179 * of_find_last_cache_level - Find the level at which the last cache is
2180 * present for the given logical cpu
2181 *
2182 * @cpu: cpu number(logical index) for which the last cache level is needed
2183 *
2184 * Returns the the level at which the last cache is present. It is exactly
2185 * same as the total number of cache levels for the given logical cpu.
2186 */
2187int of_find_last_cache_level(unsigned int cpu)
2188{
2189 u32 cache_level = 0;
2190 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2191
2192 while (np) {
2193 prev = np;
2194 of_node_put(np);
2195 np = of_find_next_cache_node(np);
2196 }
2197
2198 of_property_read_u32(prev, "cache-level", &cache_level);
2199
2200 return cache_level;
2201}
2202
2203/**
2204 * of_map_id - Translate an ID through a downstream mapping.
2205 * @np: root complex device node.
2206 * @id: device ID to map.
2207 * @map_name: property name of the map to use.
2208 * @map_mask_name: optional property name of the mask to use.
2209 * @target: optional pointer to a target device node.
2210 * @id_out: optional pointer to receive the translated ID.
2211 *
2212 * Given a device ID, look up the appropriate implementation-defined
2213 * platform ID and/or the target device which receives transactions on that
2214 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2215 * @id_out may be NULL if only the other is required. If @target points to
2216 * a non-NULL device node pointer, only entries targeting that node will be
2217 * matched; if it points to a NULL value, it will receive the device node of
2218 * the first matching target phandle, with a reference held.
2219 *
2220 * Return: 0 on success or a standard error code on failure.
2221 */
2222int of_map_id(struct device_node *np, u32 id,
2223 const char *map_name, const char *map_mask_name,
2224 struct device_node **target, u32 *id_out)
2225{
2226 u32 map_mask, masked_id;
2227 int map_len;
2228 const __be32 *map = NULL;
2229
2230 if (!np || !map_name || (!target && !id_out))
2231 return -EINVAL;
2232
2233 map = of_get_property(np, map_name, &map_len);
2234 if (!map) {
2235 if (target)
2236 return -ENODEV;
2237 /* Otherwise, no map implies no translation */
2238 *id_out = id;
2239 return 0;
2240 }
2241
2242 if (!map_len || map_len % (4 * sizeof(*map))) {
2243 pr_err("%pOF: Error: Bad %s length: %d\n", np,
2244 map_name, map_len);
2245 return -EINVAL;
2246 }
2247
2248 /* The default is to select all bits. */
2249 map_mask = 0xffffffff;
2250
2251 /*
2252 * Can be overridden by "{iommu,msi}-map-mask" property.
2253 * If of_property_read_u32() fails, the default is used.
2254 */
2255 if (map_mask_name)
2256 of_property_read_u32(np, map_mask_name, &map_mask);
2257
2258 masked_id = map_mask & id;
2259 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2260 struct device_node *phandle_node;
2261 u32 id_base = be32_to_cpup(map + 0);
2262 u32 phandle = be32_to_cpup(map + 1);
2263 u32 out_base = be32_to_cpup(map + 2);
2264 u32 id_len = be32_to_cpup(map + 3);
2265
2266 if (id_base & ~map_mask) {
2267 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2268 np, map_name, map_name,
2269 map_mask, id_base);
2270 return -EFAULT;
2271 }
2272
2273 if (masked_id < id_base || masked_id >= id_base + id_len)
2274 continue;
2275
2276 phandle_node = of_find_node_by_phandle(phandle);
2277 if (!phandle_node)
2278 return -ENODEV;
2279
2280 if (target) {
2281 if (*target)
2282 of_node_put(phandle_node);
2283 else
2284 *target = phandle_node;
2285
2286 if (*target != phandle_node)
2287 continue;
2288 }
2289
2290 if (id_out)
2291 *id_out = masked_id - id_base + out_base;
2292
2293 pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2294 np, map_name, map_mask, id_base, out_base,
2295 id_len, id, masked_id - id_base + out_base);
2296 return 0;
2297 }
2298
2299 pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2300 id, target && *target ? *target : NULL);
2301
2302 /* Bypasses translation */
2303 if (id_out)
2304 *id_out = id;
2305 return 0;
2306}
2307EXPORT_SYMBOL_GPL(of_map_id);
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Procedures for creating, accessing and interpreting the device tree.
4 *
5 * Paul Mackerras August 1996.
6 * Copyright (C) 1996-2005 Paul Mackerras.
7 *
8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9 * {engebret|bergner}@us.ibm.com
10 *
11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12 *
13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14 * Grant Likely.
15 */
16
17#define pr_fmt(fmt) "OF: " fmt
18
19#include <linux/bitmap.h>
20#include <linux/console.h>
21#include <linux/ctype.h>
22#include <linux/cpu.h>
23#include <linux/module.h>
24#include <linux/of.h>
25#include <linux/of_device.h>
26#include <linux/of_graph.h>
27#include <linux/spinlock.h>
28#include <linux/slab.h>
29#include <linux/string.h>
30#include <linux/proc_fs.h>
31
32#include "of_private.h"
33
34LIST_HEAD(aliases_lookup);
35
36struct device_node *of_root;
37EXPORT_SYMBOL(of_root);
38struct device_node *of_chosen;
39EXPORT_SYMBOL(of_chosen);
40struct device_node *of_aliases;
41struct device_node *of_stdout;
42static const char *of_stdout_options;
43
44struct kset *of_kset;
45
46/*
47 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
48 * This mutex must be held whenever modifications are being made to the
49 * device tree. The of_{attach,detach}_node() and
50 * of_{add,remove,update}_property() helpers make sure this happens.
51 */
52DEFINE_MUTEX(of_mutex);
53
54/* use when traversing tree through the child, sibling,
55 * or parent members of struct device_node.
56 */
57DEFINE_RAW_SPINLOCK(devtree_lock);
58
59bool of_node_name_eq(const struct device_node *np, const char *name)
60{
61 const char *node_name;
62 size_t len;
63
64 if (!np)
65 return false;
66
67 node_name = kbasename(np->full_name);
68 len = strchrnul(node_name, '@') - node_name;
69
70 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
71}
72EXPORT_SYMBOL(of_node_name_eq);
73
74bool of_node_name_prefix(const struct device_node *np, const char *prefix)
75{
76 if (!np)
77 return false;
78
79 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
80}
81EXPORT_SYMBOL(of_node_name_prefix);
82
83static bool __of_node_is_type(const struct device_node *np, const char *type)
84{
85 const char *match = __of_get_property(np, "device_type", NULL);
86
87 return np && match && type && !strcmp(match, type);
88}
89
90int of_bus_n_addr_cells(struct device_node *np)
91{
92 u32 cells;
93
94 for (; np; np = np->parent)
95 if (!of_property_read_u32(np, "#address-cells", &cells))
96 return cells;
97
98 /* No #address-cells property for the root node */
99 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
100}
101
102int of_n_addr_cells(struct device_node *np)
103{
104 if (np->parent)
105 np = np->parent;
106
107 return of_bus_n_addr_cells(np);
108}
109EXPORT_SYMBOL(of_n_addr_cells);
110
111int of_bus_n_size_cells(struct device_node *np)
112{
113 u32 cells;
114
115 for (; np; np = np->parent)
116 if (!of_property_read_u32(np, "#size-cells", &cells))
117 return cells;
118
119 /* No #size-cells property for the root node */
120 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
121}
122
123int of_n_size_cells(struct device_node *np)
124{
125 if (np->parent)
126 np = np->parent;
127
128 return of_bus_n_size_cells(np);
129}
130EXPORT_SYMBOL(of_n_size_cells);
131
132#ifdef CONFIG_NUMA
133int __weak of_node_to_nid(struct device_node *np)
134{
135 return NUMA_NO_NODE;
136}
137#endif
138
139#define OF_PHANDLE_CACHE_BITS 7
140#define OF_PHANDLE_CACHE_SZ BIT(OF_PHANDLE_CACHE_BITS)
141
142static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
143
144static u32 of_phandle_cache_hash(phandle handle)
145{
146 return hash_32(handle, OF_PHANDLE_CACHE_BITS);
147}
148
149/*
150 * Caller must hold devtree_lock.
151 */
152void __of_phandle_cache_inv_entry(phandle handle)
153{
154 u32 handle_hash;
155 struct device_node *np;
156
157 if (!handle)
158 return;
159
160 handle_hash = of_phandle_cache_hash(handle);
161
162 np = phandle_cache[handle_hash];
163 if (np && handle == np->phandle)
164 phandle_cache[handle_hash] = NULL;
165}
166
167void __init of_core_init(void)
168{
169 struct device_node *np;
170
171
172 /* Create the kset, and register existing nodes */
173 mutex_lock(&of_mutex);
174 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
175 if (!of_kset) {
176 mutex_unlock(&of_mutex);
177 pr_err("failed to register existing nodes\n");
178 return;
179 }
180 for_each_of_allnodes(np) {
181 __of_attach_node_sysfs(np);
182 if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
183 phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
184 }
185 mutex_unlock(&of_mutex);
186
187 /* Symlink in /proc as required by userspace ABI */
188 if (of_root)
189 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
190}
191
192static struct property *__of_find_property(const struct device_node *np,
193 const char *name, int *lenp)
194{
195 struct property *pp;
196
197 if (!np)
198 return NULL;
199
200 for (pp = np->properties; pp; pp = pp->next) {
201 if (of_prop_cmp(pp->name, name) == 0) {
202 if (lenp)
203 *lenp = pp->length;
204 break;
205 }
206 }
207
208 return pp;
209}
210
211struct property *of_find_property(const struct device_node *np,
212 const char *name,
213 int *lenp)
214{
215 struct property *pp;
216 unsigned long flags;
217
218 raw_spin_lock_irqsave(&devtree_lock, flags);
219 pp = __of_find_property(np, name, lenp);
220 raw_spin_unlock_irqrestore(&devtree_lock, flags);
221
222 return pp;
223}
224EXPORT_SYMBOL(of_find_property);
225
226struct device_node *__of_find_all_nodes(struct device_node *prev)
227{
228 struct device_node *np;
229 if (!prev) {
230 np = of_root;
231 } else if (prev->child) {
232 np = prev->child;
233 } else {
234 /* Walk back up looking for a sibling, or the end of the structure */
235 np = prev;
236 while (np->parent && !np->sibling)
237 np = np->parent;
238 np = np->sibling; /* Might be null at the end of the tree */
239 }
240 return np;
241}
242
243/**
244 * of_find_all_nodes - Get next node in global list
245 * @prev: Previous node or NULL to start iteration
246 * of_node_put() will be called on it
247 *
248 * Return: A node pointer with refcount incremented, use
249 * of_node_put() on it when done.
250 */
251struct device_node *of_find_all_nodes(struct device_node *prev)
252{
253 struct device_node *np;
254 unsigned long flags;
255
256 raw_spin_lock_irqsave(&devtree_lock, flags);
257 np = __of_find_all_nodes(prev);
258 of_node_get(np);
259 of_node_put(prev);
260 raw_spin_unlock_irqrestore(&devtree_lock, flags);
261 return np;
262}
263EXPORT_SYMBOL(of_find_all_nodes);
264
265/*
266 * Find a property with a given name for a given node
267 * and return the value.
268 */
269const void *__of_get_property(const struct device_node *np,
270 const char *name, int *lenp)
271{
272 struct property *pp = __of_find_property(np, name, lenp);
273
274 return pp ? pp->value : NULL;
275}
276
277/*
278 * Find a property with a given name for a given node
279 * and return the value.
280 */
281const void *of_get_property(const struct device_node *np, const char *name,
282 int *lenp)
283{
284 struct property *pp = of_find_property(np, name, lenp);
285
286 return pp ? pp->value : NULL;
287}
288EXPORT_SYMBOL(of_get_property);
289
290/*
291 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
292 *
293 * @cpu: logical cpu index of a core/thread
294 * @phys_id: physical identifier of a core/thread
295 *
296 * CPU logical to physical index mapping is architecture specific.
297 * However this __weak function provides a default match of physical
298 * id to logical cpu index. phys_id provided here is usually values read
299 * from the device tree which must match the hardware internal registers.
300 *
301 * Returns true if the physical identifier and the logical cpu index
302 * correspond to the same core/thread, false otherwise.
303 */
304bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
305{
306 return (u32)phys_id == cpu;
307}
308
309/*
310 * Checks if the given "prop_name" property holds the physical id of the
311 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
312 * NULL, local thread number within the core is returned in it.
313 */
314static bool __of_find_n_match_cpu_property(struct device_node *cpun,
315 const char *prop_name, int cpu, unsigned int *thread)
316{
317 const __be32 *cell;
318 int ac, prop_len, tid;
319 u64 hwid;
320
321 ac = of_n_addr_cells(cpun);
322 cell = of_get_property(cpun, prop_name, &prop_len);
323 if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
324 return true;
325 if (!cell || !ac)
326 return false;
327 prop_len /= sizeof(*cell) * ac;
328 for (tid = 0; tid < prop_len; tid++) {
329 hwid = of_read_number(cell, ac);
330 if (arch_match_cpu_phys_id(cpu, hwid)) {
331 if (thread)
332 *thread = tid;
333 return true;
334 }
335 cell += ac;
336 }
337 return false;
338}
339
340/*
341 * arch_find_n_match_cpu_physical_id - See if the given device node is
342 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
343 * else false. If 'thread' is non-NULL, the local thread number within the
344 * core is returned in it.
345 */
346bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
347 int cpu, unsigned int *thread)
348{
349 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
350 * for thread ids on PowerPC. If it doesn't exist fallback to
351 * standard "reg" property.
352 */
353 if (IS_ENABLED(CONFIG_PPC) &&
354 __of_find_n_match_cpu_property(cpun,
355 "ibm,ppc-interrupt-server#s",
356 cpu, thread))
357 return true;
358
359 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
360}
361
362/**
363 * of_get_cpu_node - Get device node associated with the given logical CPU
364 *
365 * @cpu: CPU number(logical index) for which device node is required
366 * @thread: if not NULL, local thread number within the physical core is
367 * returned
368 *
369 * The main purpose of this function is to retrieve the device node for the
370 * given logical CPU index. It should be used to initialize the of_node in
371 * cpu device. Once of_node in cpu device is populated, all the further
372 * references can use that instead.
373 *
374 * CPU logical to physical index mapping is architecture specific and is built
375 * before booting secondary cores. This function uses arch_match_cpu_phys_id
376 * which can be overridden by architecture specific implementation.
377 *
378 * Return: A node pointer for the logical cpu with refcount incremented, use
379 * of_node_put() on it when done. Returns NULL if not found.
380 */
381struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
382{
383 struct device_node *cpun;
384
385 for_each_of_cpu_node(cpun) {
386 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
387 return cpun;
388 }
389 return NULL;
390}
391EXPORT_SYMBOL(of_get_cpu_node);
392
393/**
394 * of_cpu_node_to_id: Get the logical CPU number for a given device_node
395 *
396 * @cpu_node: Pointer to the device_node for CPU.
397 *
398 * Return: The logical CPU number of the given CPU device_node or -ENODEV if the
399 * CPU is not found.
400 */
401int of_cpu_node_to_id(struct device_node *cpu_node)
402{
403 int cpu;
404 bool found = false;
405 struct device_node *np;
406
407 for_each_possible_cpu(cpu) {
408 np = of_cpu_device_node_get(cpu);
409 found = (cpu_node == np);
410 of_node_put(np);
411 if (found)
412 return cpu;
413 }
414
415 return -ENODEV;
416}
417EXPORT_SYMBOL(of_cpu_node_to_id);
418
419/**
420 * of_get_cpu_state_node - Get CPU's idle state node at the given index
421 *
422 * @cpu_node: The device node for the CPU
423 * @index: The index in the list of the idle states
424 *
425 * Two generic methods can be used to describe a CPU's idle states, either via
426 * a flattened description through the "cpu-idle-states" binding or via the
427 * hierarchical layout, using the "power-domains" and the "domain-idle-states"
428 * bindings. This function check for both and returns the idle state node for
429 * the requested index.
430 *
431 * Return: An idle state node if found at @index. The refcount is incremented
432 * for it, so call of_node_put() on it when done. Returns NULL if not found.
433 */
434struct device_node *of_get_cpu_state_node(struct device_node *cpu_node,
435 int index)
436{
437 struct of_phandle_args args;
438 int err;
439
440 err = of_parse_phandle_with_args(cpu_node, "power-domains",
441 "#power-domain-cells", 0, &args);
442 if (!err) {
443 struct device_node *state_node =
444 of_parse_phandle(args.np, "domain-idle-states", index);
445
446 of_node_put(args.np);
447 if (state_node)
448 return state_node;
449 }
450
451 return of_parse_phandle(cpu_node, "cpu-idle-states", index);
452}
453EXPORT_SYMBOL(of_get_cpu_state_node);
454
455/**
456 * __of_device_is_compatible() - Check if the node matches given constraints
457 * @device: pointer to node
458 * @compat: required compatible string, NULL or "" for any match
459 * @type: required device_type value, NULL or "" for any match
460 * @name: required node name, NULL or "" for any match
461 *
462 * Checks if the given @compat, @type and @name strings match the
463 * properties of the given @device. A constraints can be skipped by
464 * passing NULL or an empty string as the constraint.
465 *
466 * Returns 0 for no match, and a positive integer on match. The return
467 * value is a relative score with larger values indicating better
468 * matches. The score is weighted for the most specific compatible value
469 * to get the highest score. Matching type is next, followed by matching
470 * name. Practically speaking, this results in the following priority
471 * order for matches:
472 *
473 * 1. specific compatible && type && name
474 * 2. specific compatible && type
475 * 3. specific compatible && name
476 * 4. specific compatible
477 * 5. general compatible && type && name
478 * 6. general compatible && type
479 * 7. general compatible && name
480 * 8. general compatible
481 * 9. type && name
482 * 10. type
483 * 11. name
484 */
485static int __of_device_is_compatible(const struct device_node *device,
486 const char *compat, const char *type, const char *name)
487{
488 struct property *prop;
489 const char *cp;
490 int index = 0, score = 0;
491
492 /* Compatible match has highest priority */
493 if (compat && compat[0]) {
494 prop = __of_find_property(device, "compatible", NULL);
495 for (cp = of_prop_next_string(prop, NULL); cp;
496 cp = of_prop_next_string(prop, cp), index++) {
497 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
498 score = INT_MAX/2 - (index << 2);
499 break;
500 }
501 }
502 if (!score)
503 return 0;
504 }
505
506 /* Matching type is better than matching name */
507 if (type && type[0]) {
508 if (!__of_node_is_type(device, type))
509 return 0;
510 score += 2;
511 }
512
513 /* Matching name is a bit better than not */
514 if (name && name[0]) {
515 if (!of_node_name_eq(device, name))
516 return 0;
517 score++;
518 }
519
520 return score;
521}
522
523/** Checks if the given "compat" string matches one of the strings in
524 * the device's "compatible" property
525 */
526int of_device_is_compatible(const struct device_node *device,
527 const char *compat)
528{
529 unsigned long flags;
530 int res;
531
532 raw_spin_lock_irqsave(&devtree_lock, flags);
533 res = __of_device_is_compatible(device, compat, NULL, NULL);
534 raw_spin_unlock_irqrestore(&devtree_lock, flags);
535 return res;
536}
537EXPORT_SYMBOL(of_device_is_compatible);
538
539/** Checks if the device is compatible with any of the entries in
540 * a NULL terminated array of strings. Returns the best match
541 * score or 0.
542 */
543int of_device_compatible_match(struct device_node *device,
544 const char *const *compat)
545{
546 unsigned int tmp, score = 0;
547
548 if (!compat)
549 return 0;
550
551 while (*compat) {
552 tmp = of_device_is_compatible(device, *compat);
553 if (tmp > score)
554 score = tmp;
555 compat++;
556 }
557
558 return score;
559}
560
561/**
562 * of_machine_is_compatible - Test root of device tree for a given compatible value
563 * @compat: compatible string to look for in root node's compatible property.
564 *
565 * Return: A positive integer if the root node has the given value in its
566 * compatible property.
567 */
568int of_machine_is_compatible(const char *compat)
569{
570 struct device_node *root;
571 int rc = 0;
572
573 root = of_find_node_by_path("/");
574 if (root) {
575 rc = of_device_is_compatible(root, compat);
576 of_node_put(root);
577 }
578 return rc;
579}
580EXPORT_SYMBOL(of_machine_is_compatible);
581
582/**
583 * __of_device_is_available - check if a device is available for use
584 *
585 * @device: Node to check for availability, with locks already held
586 *
587 * Return: True if the status property is absent or set to "okay" or "ok",
588 * false otherwise
589 */
590static bool __of_device_is_available(const struct device_node *device)
591{
592 const char *status;
593 int statlen;
594
595 if (!device)
596 return false;
597
598 status = __of_get_property(device, "status", &statlen);
599 if (status == NULL)
600 return true;
601
602 if (statlen > 0) {
603 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
604 return true;
605 }
606
607 return false;
608}
609
610/**
611 * of_device_is_available - check if a device is available for use
612 *
613 * @device: Node to check for availability
614 *
615 * Return: True if the status property is absent or set to "okay" or "ok",
616 * false otherwise
617 */
618bool of_device_is_available(const struct device_node *device)
619{
620 unsigned long flags;
621 bool res;
622
623 raw_spin_lock_irqsave(&devtree_lock, flags);
624 res = __of_device_is_available(device);
625 raw_spin_unlock_irqrestore(&devtree_lock, flags);
626 return res;
627
628}
629EXPORT_SYMBOL(of_device_is_available);
630
631/**
632 * of_device_is_big_endian - check if a device has BE registers
633 *
634 * @device: Node to check for endianness
635 *
636 * Return: True if the device has a "big-endian" property, or if the kernel
637 * was compiled for BE *and* the device has a "native-endian" property.
638 * Returns false otherwise.
639 *
640 * Callers would nominally use ioread32be/iowrite32be if
641 * of_device_is_big_endian() == true, or readl/writel otherwise.
642 */
643bool of_device_is_big_endian(const struct device_node *device)
644{
645 if (of_property_read_bool(device, "big-endian"))
646 return true;
647 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
648 of_property_read_bool(device, "native-endian"))
649 return true;
650 return false;
651}
652EXPORT_SYMBOL(of_device_is_big_endian);
653
654/**
655 * of_get_parent - Get a node's parent if any
656 * @node: Node to get parent
657 *
658 * Return: A node pointer with refcount incremented, use
659 * of_node_put() on it when done.
660 */
661struct device_node *of_get_parent(const struct device_node *node)
662{
663 struct device_node *np;
664 unsigned long flags;
665
666 if (!node)
667 return NULL;
668
669 raw_spin_lock_irqsave(&devtree_lock, flags);
670 np = of_node_get(node->parent);
671 raw_spin_unlock_irqrestore(&devtree_lock, flags);
672 return np;
673}
674EXPORT_SYMBOL(of_get_parent);
675
676/**
677 * of_get_next_parent - Iterate to a node's parent
678 * @node: Node to get parent of
679 *
680 * This is like of_get_parent() except that it drops the
681 * refcount on the passed node, making it suitable for iterating
682 * through a node's parents.
683 *
684 * Return: A node pointer with refcount incremented, use
685 * of_node_put() on it when done.
686 */
687struct device_node *of_get_next_parent(struct device_node *node)
688{
689 struct device_node *parent;
690 unsigned long flags;
691
692 if (!node)
693 return NULL;
694
695 raw_spin_lock_irqsave(&devtree_lock, flags);
696 parent = of_node_get(node->parent);
697 of_node_put(node);
698 raw_spin_unlock_irqrestore(&devtree_lock, flags);
699 return parent;
700}
701EXPORT_SYMBOL(of_get_next_parent);
702
703static struct device_node *__of_get_next_child(const struct device_node *node,
704 struct device_node *prev)
705{
706 struct device_node *next;
707
708 if (!node)
709 return NULL;
710
711 next = prev ? prev->sibling : node->child;
712 for (; next; next = next->sibling)
713 if (of_node_get(next))
714 break;
715 of_node_put(prev);
716 return next;
717}
718#define __for_each_child_of_node(parent, child) \
719 for (child = __of_get_next_child(parent, NULL); child != NULL; \
720 child = __of_get_next_child(parent, child))
721
722/**
723 * of_get_next_child - Iterate a node childs
724 * @node: parent node
725 * @prev: previous child of the parent node, or NULL to get first
726 *
727 * Return: A node pointer with refcount incremented, use of_node_put() on
728 * it when done. Returns NULL when prev is the last child. Decrements the
729 * refcount of prev.
730 */
731struct device_node *of_get_next_child(const struct device_node *node,
732 struct device_node *prev)
733{
734 struct device_node *next;
735 unsigned long flags;
736
737 raw_spin_lock_irqsave(&devtree_lock, flags);
738 next = __of_get_next_child(node, prev);
739 raw_spin_unlock_irqrestore(&devtree_lock, flags);
740 return next;
741}
742EXPORT_SYMBOL(of_get_next_child);
743
744/**
745 * of_get_next_available_child - Find the next available child node
746 * @node: parent node
747 * @prev: previous child of the parent node, or NULL to get first
748 *
749 * This function is like of_get_next_child(), except that it
750 * automatically skips any disabled nodes (i.e. status = "disabled").
751 */
752struct device_node *of_get_next_available_child(const struct device_node *node,
753 struct device_node *prev)
754{
755 struct device_node *next;
756 unsigned long flags;
757
758 if (!node)
759 return NULL;
760
761 raw_spin_lock_irqsave(&devtree_lock, flags);
762 next = prev ? prev->sibling : node->child;
763 for (; next; next = next->sibling) {
764 if (!__of_device_is_available(next))
765 continue;
766 if (of_node_get(next))
767 break;
768 }
769 of_node_put(prev);
770 raw_spin_unlock_irqrestore(&devtree_lock, flags);
771 return next;
772}
773EXPORT_SYMBOL(of_get_next_available_child);
774
775/**
776 * of_get_next_cpu_node - Iterate on cpu nodes
777 * @prev: previous child of the /cpus node, or NULL to get first
778 *
779 * Return: A cpu node pointer with refcount incremented, use of_node_put()
780 * on it when done. Returns NULL when prev is the last child. Decrements
781 * the refcount of prev.
782 */
783struct device_node *of_get_next_cpu_node(struct device_node *prev)
784{
785 struct device_node *next = NULL;
786 unsigned long flags;
787 struct device_node *node;
788
789 if (!prev)
790 node = of_find_node_by_path("/cpus");
791
792 raw_spin_lock_irqsave(&devtree_lock, flags);
793 if (prev)
794 next = prev->sibling;
795 else if (node) {
796 next = node->child;
797 of_node_put(node);
798 }
799 for (; next; next = next->sibling) {
800 if (!(of_node_name_eq(next, "cpu") ||
801 __of_node_is_type(next, "cpu")))
802 continue;
803 if (of_node_get(next))
804 break;
805 }
806 of_node_put(prev);
807 raw_spin_unlock_irqrestore(&devtree_lock, flags);
808 return next;
809}
810EXPORT_SYMBOL(of_get_next_cpu_node);
811
812/**
813 * of_get_compatible_child - Find compatible child node
814 * @parent: parent node
815 * @compatible: compatible string
816 *
817 * Lookup child node whose compatible property contains the given compatible
818 * string.
819 *
820 * Return: a node pointer with refcount incremented, use of_node_put() on it
821 * when done; or NULL if not found.
822 */
823struct device_node *of_get_compatible_child(const struct device_node *parent,
824 const char *compatible)
825{
826 struct device_node *child;
827
828 for_each_child_of_node(parent, child) {
829 if (of_device_is_compatible(child, compatible))
830 break;
831 }
832
833 return child;
834}
835EXPORT_SYMBOL(of_get_compatible_child);
836
837/**
838 * of_get_child_by_name - Find the child node by name for a given parent
839 * @node: parent node
840 * @name: child name to look for.
841 *
842 * This function looks for child node for given matching name
843 *
844 * Return: A node pointer if found, with refcount incremented, use
845 * of_node_put() on it when done.
846 * Returns NULL if node is not found.
847 */
848struct device_node *of_get_child_by_name(const struct device_node *node,
849 const char *name)
850{
851 struct device_node *child;
852
853 for_each_child_of_node(node, child)
854 if (of_node_name_eq(child, name))
855 break;
856 return child;
857}
858EXPORT_SYMBOL(of_get_child_by_name);
859
860struct device_node *__of_find_node_by_path(struct device_node *parent,
861 const char *path)
862{
863 struct device_node *child;
864 int len;
865
866 len = strcspn(path, "/:");
867 if (!len)
868 return NULL;
869
870 __for_each_child_of_node(parent, child) {
871 const char *name = kbasename(child->full_name);
872 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
873 return child;
874 }
875 return NULL;
876}
877
878struct device_node *__of_find_node_by_full_path(struct device_node *node,
879 const char *path)
880{
881 const char *separator = strchr(path, ':');
882
883 while (node && *path == '/') {
884 struct device_node *tmp = node;
885
886 path++; /* Increment past '/' delimiter */
887 node = __of_find_node_by_path(node, path);
888 of_node_put(tmp);
889 path = strchrnul(path, '/');
890 if (separator && separator < path)
891 break;
892 }
893 return node;
894}
895
896/**
897 * of_find_node_opts_by_path - Find a node matching a full OF path
898 * @path: Either the full path to match, or if the path does not
899 * start with '/', the name of a property of the /aliases
900 * node (an alias). In the case of an alias, the node
901 * matching the alias' value will be returned.
902 * @opts: Address of a pointer into which to store the start of
903 * an options string appended to the end of the path with
904 * a ':' separator.
905 *
906 * Valid paths:
907 * * /foo/bar Full path
908 * * foo Valid alias
909 * * foo/bar Valid alias + relative path
910 *
911 * Return: A node pointer with refcount incremented, use
912 * of_node_put() on it when done.
913 */
914struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
915{
916 struct device_node *np = NULL;
917 struct property *pp;
918 unsigned long flags;
919 const char *separator = strchr(path, ':');
920
921 if (opts)
922 *opts = separator ? separator + 1 : NULL;
923
924 if (strcmp(path, "/") == 0)
925 return of_node_get(of_root);
926
927 /* The path could begin with an alias */
928 if (*path != '/') {
929 int len;
930 const char *p = separator;
931
932 if (!p)
933 p = strchrnul(path, '/');
934 len = p - path;
935
936 /* of_aliases must not be NULL */
937 if (!of_aliases)
938 return NULL;
939
940 for_each_property_of_node(of_aliases, pp) {
941 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
942 np = of_find_node_by_path(pp->value);
943 break;
944 }
945 }
946 if (!np)
947 return NULL;
948 path = p;
949 }
950
951 /* Step down the tree matching path components */
952 raw_spin_lock_irqsave(&devtree_lock, flags);
953 if (!np)
954 np = of_node_get(of_root);
955 np = __of_find_node_by_full_path(np, path);
956 raw_spin_unlock_irqrestore(&devtree_lock, flags);
957 return np;
958}
959EXPORT_SYMBOL(of_find_node_opts_by_path);
960
961/**
962 * of_find_node_by_name - Find a node by its "name" property
963 * @from: The node to start searching from or NULL; the node
964 * you pass will not be searched, only the next one
965 * will. Typically, you pass what the previous call
966 * returned. of_node_put() will be called on @from.
967 * @name: The name string to match against
968 *
969 * Return: A node pointer with refcount incremented, use
970 * of_node_put() on it when done.
971 */
972struct device_node *of_find_node_by_name(struct device_node *from,
973 const char *name)
974{
975 struct device_node *np;
976 unsigned long flags;
977
978 raw_spin_lock_irqsave(&devtree_lock, flags);
979 for_each_of_allnodes_from(from, np)
980 if (of_node_name_eq(np, name) && of_node_get(np))
981 break;
982 of_node_put(from);
983 raw_spin_unlock_irqrestore(&devtree_lock, flags);
984 return np;
985}
986EXPORT_SYMBOL(of_find_node_by_name);
987
988/**
989 * of_find_node_by_type - Find a node by its "device_type" property
990 * @from: The node to start searching from, or NULL to start searching
991 * the entire device tree. The node you pass will not be
992 * searched, only the next one will; typically, you pass
993 * what the previous call returned. of_node_put() will be
994 * called on from for you.
995 * @type: The type string to match against
996 *
997 * Return: A node pointer with refcount incremented, use
998 * of_node_put() on it when done.
999 */
1000struct device_node *of_find_node_by_type(struct device_node *from,
1001 const char *type)
1002{
1003 struct device_node *np;
1004 unsigned long flags;
1005
1006 raw_spin_lock_irqsave(&devtree_lock, flags);
1007 for_each_of_allnodes_from(from, np)
1008 if (__of_node_is_type(np, type) && of_node_get(np))
1009 break;
1010 of_node_put(from);
1011 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1012 return np;
1013}
1014EXPORT_SYMBOL(of_find_node_by_type);
1015
1016/**
1017 * of_find_compatible_node - Find a node based on type and one of the
1018 * tokens in its "compatible" property
1019 * @from: The node to start searching from or NULL, the node
1020 * you pass will not be searched, only the next one
1021 * will; typically, you pass what the previous call
1022 * returned. of_node_put() will be called on it
1023 * @type: The type string to match "device_type" or NULL to ignore
1024 * @compatible: The string to match to one of the tokens in the device
1025 * "compatible" list.
1026 *
1027 * Return: A node pointer with refcount incremented, use
1028 * of_node_put() on it when done.
1029 */
1030struct device_node *of_find_compatible_node(struct device_node *from,
1031 const char *type, const char *compatible)
1032{
1033 struct device_node *np;
1034 unsigned long flags;
1035
1036 raw_spin_lock_irqsave(&devtree_lock, flags);
1037 for_each_of_allnodes_from(from, np)
1038 if (__of_device_is_compatible(np, compatible, type, NULL) &&
1039 of_node_get(np))
1040 break;
1041 of_node_put(from);
1042 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1043 return np;
1044}
1045EXPORT_SYMBOL(of_find_compatible_node);
1046
1047/**
1048 * of_find_node_with_property - Find a node which has a property with
1049 * the given name.
1050 * @from: The node to start searching from or NULL, the node
1051 * you pass will not be searched, only the next one
1052 * will; typically, you pass what the previous call
1053 * returned. of_node_put() will be called on it
1054 * @prop_name: The name of the property to look for.
1055 *
1056 * Return: A node pointer with refcount incremented, use
1057 * of_node_put() on it when done.
1058 */
1059struct device_node *of_find_node_with_property(struct device_node *from,
1060 const char *prop_name)
1061{
1062 struct device_node *np;
1063 struct property *pp;
1064 unsigned long flags;
1065
1066 raw_spin_lock_irqsave(&devtree_lock, flags);
1067 for_each_of_allnodes_from(from, np) {
1068 for (pp = np->properties; pp; pp = pp->next) {
1069 if (of_prop_cmp(pp->name, prop_name) == 0) {
1070 of_node_get(np);
1071 goto out;
1072 }
1073 }
1074 }
1075out:
1076 of_node_put(from);
1077 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1078 return np;
1079}
1080EXPORT_SYMBOL(of_find_node_with_property);
1081
1082static
1083const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1084 const struct device_node *node)
1085{
1086 const struct of_device_id *best_match = NULL;
1087 int score, best_score = 0;
1088
1089 if (!matches)
1090 return NULL;
1091
1092 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1093 score = __of_device_is_compatible(node, matches->compatible,
1094 matches->type, matches->name);
1095 if (score > best_score) {
1096 best_match = matches;
1097 best_score = score;
1098 }
1099 }
1100
1101 return best_match;
1102}
1103
1104/**
1105 * of_match_node - Tell if a device_node has a matching of_match structure
1106 * @matches: array of of device match structures to search in
1107 * @node: the of device structure to match against
1108 *
1109 * Low level utility function used by device matching.
1110 */
1111const struct of_device_id *of_match_node(const struct of_device_id *matches,
1112 const struct device_node *node)
1113{
1114 const struct of_device_id *match;
1115 unsigned long flags;
1116
1117 raw_spin_lock_irqsave(&devtree_lock, flags);
1118 match = __of_match_node(matches, node);
1119 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1120 return match;
1121}
1122EXPORT_SYMBOL(of_match_node);
1123
1124/**
1125 * of_find_matching_node_and_match - Find a node based on an of_device_id
1126 * match table.
1127 * @from: The node to start searching from or NULL, the node
1128 * you pass will not be searched, only the next one
1129 * will; typically, you pass what the previous call
1130 * returned. of_node_put() will be called on it
1131 * @matches: array of of device match structures to search in
1132 * @match: Updated to point at the matches entry which matched
1133 *
1134 * Return: A node pointer with refcount incremented, use
1135 * of_node_put() on it when done.
1136 */
1137struct device_node *of_find_matching_node_and_match(struct device_node *from,
1138 const struct of_device_id *matches,
1139 const struct of_device_id **match)
1140{
1141 struct device_node *np;
1142 const struct of_device_id *m;
1143 unsigned long flags;
1144
1145 if (match)
1146 *match = NULL;
1147
1148 raw_spin_lock_irqsave(&devtree_lock, flags);
1149 for_each_of_allnodes_from(from, np) {
1150 m = __of_match_node(matches, np);
1151 if (m && of_node_get(np)) {
1152 if (match)
1153 *match = m;
1154 break;
1155 }
1156 }
1157 of_node_put(from);
1158 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1159 return np;
1160}
1161EXPORT_SYMBOL(of_find_matching_node_and_match);
1162
1163/**
1164 * of_modalias_node - Lookup appropriate modalias for a device node
1165 * @node: pointer to a device tree node
1166 * @modalias: Pointer to buffer that modalias value will be copied into
1167 * @len: Length of modalias value
1168 *
1169 * Based on the value of the compatible property, this routine will attempt
1170 * to choose an appropriate modalias value for a particular device tree node.
1171 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1172 * from the first entry in the compatible list property.
1173 *
1174 * Return: This routine returns 0 on success, <0 on failure.
1175 */
1176int of_modalias_node(struct device_node *node, char *modalias, int len)
1177{
1178 const char *compatible, *p;
1179 int cplen;
1180
1181 compatible = of_get_property(node, "compatible", &cplen);
1182 if (!compatible || strlen(compatible) > cplen)
1183 return -ENODEV;
1184 p = strchr(compatible, ',');
1185 strlcpy(modalias, p ? p + 1 : compatible, len);
1186 return 0;
1187}
1188EXPORT_SYMBOL_GPL(of_modalias_node);
1189
1190/**
1191 * of_find_node_by_phandle - Find a node given a phandle
1192 * @handle: phandle of the node to find
1193 *
1194 * Return: A node pointer with refcount incremented, use
1195 * of_node_put() on it when done.
1196 */
1197struct device_node *of_find_node_by_phandle(phandle handle)
1198{
1199 struct device_node *np = NULL;
1200 unsigned long flags;
1201 u32 handle_hash;
1202
1203 if (!handle)
1204 return NULL;
1205
1206 handle_hash = of_phandle_cache_hash(handle);
1207
1208 raw_spin_lock_irqsave(&devtree_lock, flags);
1209
1210 if (phandle_cache[handle_hash] &&
1211 handle == phandle_cache[handle_hash]->phandle)
1212 np = phandle_cache[handle_hash];
1213
1214 if (!np) {
1215 for_each_of_allnodes(np)
1216 if (np->phandle == handle &&
1217 !of_node_check_flag(np, OF_DETACHED)) {
1218 phandle_cache[handle_hash] = np;
1219 break;
1220 }
1221 }
1222
1223 of_node_get(np);
1224 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1225 return np;
1226}
1227EXPORT_SYMBOL(of_find_node_by_phandle);
1228
1229void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1230{
1231 int i;
1232 printk("%s %pOF", msg, args->np);
1233 for (i = 0; i < args->args_count; i++) {
1234 const char delim = i ? ',' : ':';
1235
1236 pr_cont("%c%08x", delim, args->args[i]);
1237 }
1238 pr_cont("\n");
1239}
1240
1241int of_phandle_iterator_init(struct of_phandle_iterator *it,
1242 const struct device_node *np,
1243 const char *list_name,
1244 const char *cells_name,
1245 int cell_count)
1246{
1247 const __be32 *list;
1248 int size;
1249
1250 memset(it, 0, sizeof(*it));
1251
1252 /*
1253 * one of cell_count or cells_name must be provided to determine the
1254 * argument length.
1255 */
1256 if (cell_count < 0 && !cells_name)
1257 return -EINVAL;
1258
1259 list = of_get_property(np, list_name, &size);
1260 if (!list)
1261 return -ENOENT;
1262
1263 it->cells_name = cells_name;
1264 it->cell_count = cell_count;
1265 it->parent = np;
1266 it->list_end = list + size / sizeof(*list);
1267 it->phandle_end = list;
1268 it->cur = list;
1269
1270 return 0;
1271}
1272EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1273
1274int of_phandle_iterator_next(struct of_phandle_iterator *it)
1275{
1276 uint32_t count = 0;
1277
1278 if (it->node) {
1279 of_node_put(it->node);
1280 it->node = NULL;
1281 }
1282
1283 if (!it->cur || it->phandle_end >= it->list_end)
1284 return -ENOENT;
1285
1286 it->cur = it->phandle_end;
1287
1288 /* If phandle is 0, then it is an empty entry with no arguments. */
1289 it->phandle = be32_to_cpup(it->cur++);
1290
1291 if (it->phandle) {
1292
1293 /*
1294 * Find the provider node and parse the #*-cells property to
1295 * determine the argument length.
1296 */
1297 it->node = of_find_node_by_phandle(it->phandle);
1298
1299 if (it->cells_name) {
1300 if (!it->node) {
1301 pr_err("%pOF: could not find phandle %d\n",
1302 it->parent, it->phandle);
1303 goto err;
1304 }
1305
1306 if (of_property_read_u32(it->node, it->cells_name,
1307 &count)) {
1308 /*
1309 * If both cell_count and cells_name is given,
1310 * fall back to cell_count in absence
1311 * of the cells_name property
1312 */
1313 if (it->cell_count >= 0) {
1314 count = it->cell_count;
1315 } else {
1316 pr_err("%pOF: could not get %s for %pOF\n",
1317 it->parent,
1318 it->cells_name,
1319 it->node);
1320 goto err;
1321 }
1322 }
1323 } else {
1324 count = it->cell_count;
1325 }
1326
1327 /*
1328 * Make sure that the arguments actually fit in the remaining
1329 * property data length
1330 */
1331 if (it->cur + count > it->list_end) {
1332 pr_err("%pOF: %s = %d found %d\n",
1333 it->parent, it->cells_name,
1334 count, it->cell_count);
1335 goto err;
1336 }
1337 }
1338
1339 it->phandle_end = it->cur + count;
1340 it->cur_count = count;
1341
1342 return 0;
1343
1344err:
1345 if (it->node) {
1346 of_node_put(it->node);
1347 it->node = NULL;
1348 }
1349
1350 return -EINVAL;
1351}
1352EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1353
1354int of_phandle_iterator_args(struct of_phandle_iterator *it,
1355 uint32_t *args,
1356 int size)
1357{
1358 int i, count;
1359
1360 count = it->cur_count;
1361
1362 if (WARN_ON(size < count))
1363 count = size;
1364
1365 for (i = 0; i < count; i++)
1366 args[i] = be32_to_cpup(it->cur++);
1367
1368 return count;
1369}
1370
1371static int __of_parse_phandle_with_args(const struct device_node *np,
1372 const char *list_name,
1373 const char *cells_name,
1374 int cell_count, int index,
1375 struct of_phandle_args *out_args)
1376{
1377 struct of_phandle_iterator it;
1378 int rc, cur_index = 0;
1379
1380 /* Loop over the phandles until all the requested entry is found */
1381 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1382 /*
1383 * All of the error cases bail out of the loop, so at
1384 * this point, the parsing is successful. If the requested
1385 * index matches, then fill the out_args structure and return,
1386 * or return -ENOENT for an empty entry.
1387 */
1388 rc = -ENOENT;
1389 if (cur_index == index) {
1390 if (!it.phandle)
1391 goto err;
1392
1393 if (out_args) {
1394 int c;
1395
1396 c = of_phandle_iterator_args(&it,
1397 out_args->args,
1398 MAX_PHANDLE_ARGS);
1399 out_args->np = it.node;
1400 out_args->args_count = c;
1401 } else {
1402 of_node_put(it.node);
1403 }
1404
1405 /* Found it! return success */
1406 return 0;
1407 }
1408
1409 cur_index++;
1410 }
1411
1412 /*
1413 * Unlock node before returning result; will be one of:
1414 * -ENOENT : index is for empty phandle
1415 * -EINVAL : parsing error on data
1416 */
1417
1418 err:
1419 of_node_put(it.node);
1420 return rc;
1421}
1422
1423/**
1424 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1425 * @np: Pointer to device node holding phandle property
1426 * @phandle_name: Name of property holding a phandle value
1427 * @index: For properties holding a table of phandles, this is the index into
1428 * the table
1429 *
1430 * Return: The device_node pointer with refcount incremented. Use
1431 * of_node_put() on it when done.
1432 */
1433struct device_node *of_parse_phandle(const struct device_node *np,
1434 const char *phandle_name, int index)
1435{
1436 struct of_phandle_args args;
1437
1438 if (index < 0)
1439 return NULL;
1440
1441 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1442 index, &args))
1443 return NULL;
1444
1445 return args.np;
1446}
1447EXPORT_SYMBOL(of_parse_phandle);
1448
1449/**
1450 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1451 * @np: pointer to a device tree node containing a list
1452 * @list_name: property name that contains a list
1453 * @cells_name: property name that specifies phandles' arguments count
1454 * @index: index of a phandle to parse out
1455 * @out_args: optional pointer to output arguments structure (will be filled)
1456 *
1457 * This function is useful to parse lists of phandles and their arguments.
1458 * Returns 0 on success and fills out_args, on error returns appropriate
1459 * errno value.
1460 *
1461 * Caller is responsible to call of_node_put() on the returned out_args->np
1462 * pointer.
1463 *
1464 * Example::
1465 *
1466 * phandle1: node1 {
1467 * #list-cells = <2>;
1468 * };
1469 *
1470 * phandle2: node2 {
1471 * #list-cells = <1>;
1472 * };
1473 *
1474 * node3 {
1475 * list = <&phandle1 1 2 &phandle2 3>;
1476 * };
1477 *
1478 * To get a device_node of the ``node2`` node you may call this:
1479 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1480 */
1481int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1482 const char *cells_name, int index,
1483 struct of_phandle_args *out_args)
1484{
1485 int cell_count = -1;
1486
1487 if (index < 0)
1488 return -EINVAL;
1489
1490 /* If cells_name is NULL we assume a cell count of 0 */
1491 if (!cells_name)
1492 cell_count = 0;
1493
1494 return __of_parse_phandle_with_args(np, list_name, cells_name,
1495 cell_count, index, out_args);
1496}
1497EXPORT_SYMBOL(of_parse_phandle_with_args);
1498
1499/**
1500 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1501 * @np: pointer to a device tree node containing a list
1502 * @list_name: property name that contains a list
1503 * @stem_name: stem of property names that specify phandles' arguments count
1504 * @index: index of a phandle to parse out
1505 * @out_args: optional pointer to output arguments structure (will be filled)
1506 *
1507 * This function is useful to parse lists of phandles and their arguments.
1508 * Returns 0 on success and fills out_args, on error returns appropriate errno
1509 * value. The difference between this function and of_parse_phandle_with_args()
1510 * is that this API remaps a phandle if the node the phandle points to has
1511 * a <@stem_name>-map property.
1512 *
1513 * Caller is responsible to call of_node_put() on the returned out_args->np
1514 * pointer.
1515 *
1516 * Example::
1517 *
1518 * phandle1: node1 {
1519 * #list-cells = <2>;
1520 * };
1521 *
1522 * phandle2: node2 {
1523 * #list-cells = <1>;
1524 * };
1525 *
1526 * phandle3: node3 {
1527 * #list-cells = <1>;
1528 * list-map = <0 &phandle2 3>,
1529 * <1 &phandle2 2>,
1530 * <2 &phandle1 5 1>;
1531 * list-map-mask = <0x3>;
1532 * };
1533 *
1534 * node4 {
1535 * list = <&phandle1 1 2 &phandle3 0>;
1536 * };
1537 *
1538 * To get a device_node of the ``node2`` node you may call this:
1539 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1540 */
1541int of_parse_phandle_with_args_map(const struct device_node *np,
1542 const char *list_name,
1543 const char *stem_name,
1544 int index, struct of_phandle_args *out_args)
1545{
1546 char *cells_name, *map_name = NULL, *mask_name = NULL;
1547 char *pass_name = NULL;
1548 struct device_node *cur, *new = NULL;
1549 const __be32 *map, *mask, *pass;
1550 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1551 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1552 __be32 initial_match_array[MAX_PHANDLE_ARGS];
1553 const __be32 *match_array = initial_match_array;
1554 int i, ret, map_len, match;
1555 u32 list_size, new_size;
1556
1557 if (index < 0)
1558 return -EINVAL;
1559
1560 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1561 if (!cells_name)
1562 return -ENOMEM;
1563
1564 ret = -ENOMEM;
1565 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1566 if (!map_name)
1567 goto free;
1568
1569 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1570 if (!mask_name)
1571 goto free;
1572
1573 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1574 if (!pass_name)
1575 goto free;
1576
1577 ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1578 out_args);
1579 if (ret)
1580 goto free;
1581
1582 /* Get the #<list>-cells property */
1583 cur = out_args->np;
1584 ret = of_property_read_u32(cur, cells_name, &list_size);
1585 if (ret < 0)
1586 goto put;
1587
1588 /* Precalculate the match array - this simplifies match loop */
1589 for (i = 0; i < list_size; i++)
1590 initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1591
1592 ret = -EINVAL;
1593 while (cur) {
1594 /* Get the <list>-map property */
1595 map = of_get_property(cur, map_name, &map_len);
1596 if (!map) {
1597 ret = 0;
1598 goto free;
1599 }
1600 map_len /= sizeof(u32);
1601
1602 /* Get the <list>-map-mask property (optional) */
1603 mask = of_get_property(cur, mask_name, NULL);
1604 if (!mask)
1605 mask = dummy_mask;
1606 /* Iterate through <list>-map property */
1607 match = 0;
1608 while (map_len > (list_size + 1) && !match) {
1609 /* Compare specifiers */
1610 match = 1;
1611 for (i = 0; i < list_size; i++, map_len--)
1612 match &= !((match_array[i] ^ *map++) & mask[i]);
1613
1614 of_node_put(new);
1615 new = of_find_node_by_phandle(be32_to_cpup(map));
1616 map++;
1617 map_len--;
1618
1619 /* Check if not found */
1620 if (!new)
1621 goto put;
1622
1623 if (!of_device_is_available(new))
1624 match = 0;
1625
1626 ret = of_property_read_u32(new, cells_name, &new_size);
1627 if (ret)
1628 goto put;
1629
1630 /* Check for malformed properties */
1631 if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1632 goto put;
1633 if (map_len < new_size)
1634 goto put;
1635
1636 /* Move forward by new node's #<list>-cells amount */
1637 map += new_size;
1638 map_len -= new_size;
1639 }
1640 if (!match)
1641 goto put;
1642
1643 /* Get the <list>-map-pass-thru property (optional) */
1644 pass = of_get_property(cur, pass_name, NULL);
1645 if (!pass)
1646 pass = dummy_pass;
1647
1648 /*
1649 * Successfully parsed a <list>-map translation; copy new
1650 * specifier into the out_args structure, keeping the
1651 * bits specified in <list>-map-pass-thru.
1652 */
1653 match_array = map - new_size;
1654 for (i = 0; i < new_size; i++) {
1655 __be32 val = *(map - new_size + i);
1656
1657 if (i < list_size) {
1658 val &= ~pass[i];
1659 val |= cpu_to_be32(out_args->args[i]) & pass[i];
1660 }
1661
1662 out_args->args[i] = be32_to_cpu(val);
1663 }
1664 out_args->args_count = list_size = new_size;
1665 /* Iterate again with new provider */
1666 out_args->np = new;
1667 of_node_put(cur);
1668 cur = new;
1669 }
1670put:
1671 of_node_put(cur);
1672 of_node_put(new);
1673free:
1674 kfree(mask_name);
1675 kfree(map_name);
1676 kfree(cells_name);
1677 kfree(pass_name);
1678
1679 return ret;
1680}
1681EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1682
1683/**
1684 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1685 * @np: pointer to a device tree node containing a list
1686 * @list_name: property name that contains a list
1687 * @cell_count: number of argument cells following the phandle
1688 * @index: index of a phandle to parse out
1689 * @out_args: optional pointer to output arguments structure (will be filled)
1690 *
1691 * This function is useful to parse lists of phandles and their arguments.
1692 * Returns 0 on success and fills out_args, on error returns appropriate
1693 * errno value.
1694 *
1695 * Caller is responsible to call of_node_put() on the returned out_args->np
1696 * pointer.
1697 *
1698 * Example::
1699 *
1700 * phandle1: node1 {
1701 * };
1702 *
1703 * phandle2: node2 {
1704 * };
1705 *
1706 * node3 {
1707 * list = <&phandle1 0 2 &phandle2 2 3>;
1708 * };
1709 *
1710 * To get a device_node of the ``node2`` node you may call this:
1711 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1712 */
1713int of_parse_phandle_with_fixed_args(const struct device_node *np,
1714 const char *list_name, int cell_count,
1715 int index, struct of_phandle_args *out_args)
1716{
1717 if (index < 0)
1718 return -EINVAL;
1719 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1720 index, out_args);
1721}
1722EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1723
1724/**
1725 * of_count_phandle_with_args() - Find the number of phandles references in a property
1726 * @np: pointer to a device tree node containing a list
1727 * @list_name: property name that contains a list
1728 * @cells_name: property name that specifies phandles' arguments count
1729 *
1730 * Return: The number of phandle + argument tuples within a property. It
1731 * is a typical pattern to encode a list of phandle and variable
1732 * arguments into a single property. The number of arguments is encoded
1733 * by a property in the phandle-target node. For example, a gpios
1734 * property would contain a list of GPIO specifies consisting of a
1735 * phandle and 1 or more arguments. The number of arguments are
1736 * determined by the #gpio-cells property in the node pointed to by the
1737 * phandle.
1738 */
1739int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1740 const char *cells_name)
1741{
1742 struct of_phandle_iterator it;
1743 int rc, cur_index = 0;
1744
1745 /*
1746 * If cells_name is NULL we assume a cell count of 0. This makes
1747 * counting the phandles trivial as each 32bit word in the list is a
1748 * phandle and no arguments are to consider. So we don't iterate through
1749 * the list but just use the length to determine the phandle count.
1750 */
1751 if (!cells_name) {
1752 const __be32 *list;
1753 int size;
1754
1755 list = of_get_property(np, list_name, &size);
1756 if (!list)
1757 return -ENOENT;
1758
1759 return size / sizeof(*list);
1760 }
1761
1762 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1763 if (rc)
1764 return rc;
1765
1766 while ((rc = of_phandle_iterator_next(&it)) == 0)
1767 cur_index += 1;
1768
1769 if (rc != -ENOENT)
1770 return rc;
1771
1772 return cur_index;
1773}
1774EXPORT_SYMBOL(of_count_phandle_with_args);
1775
1776/**
1777 * __of_add_property - Add a property to a node without lock operations
1778 * @np: Caller's Device Node
1779 * @prop: Property to add
1780 */
1781int __of_add_property(struct device_node *np, struct property *prop)
1782{
1783 struct property **next;
1784
1785 prop->next = NULL;
1786 next = &np->properties;
1787 while (*next) {
1788 if (strcmp(prop->name, (*next)->name) == 0)
1789 /* duplicate ! don't insert it */
1790 return -EEXIST;
1791
1792 next = &(*next)->next;
1793 }
1794 *next = prop;
1795
1796 return 0;
1797}
1798
1799/**
1800 * of_add_property - Add a property to a node
1801 * @np: Caller's Device Node
1802 * @prop: Property to add
1803 */
1804int of_add_property(struct device_node *np, struct property *prop)
1805{
1806 unsigned long flags;
1807 int rc;
1808
1809 mutex_lock(&of_mutex);
1810
1811 raw_spin_lock_irqsave(&devtree_lock, flags);
1812 rc = __of_add_property(np, prop);
1813 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1814
1815 if (!rc)
1816 __of_add_property_sysfs(np, prop);
1817
1818 mutex_unlock(&of_mutex);
1819
1820 if (!rc)
1821 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1822
1823 return rc;
1824}
1825
1826int __of_remove_property(struct device_node *np, struct property *prop)
1827{
1828 struct property **next;
1829
1830 for (next = &np->properties; *next; next = &(*next)->next) {
1831 if (*next == prop)
1832 break;
1833 }
1834 if (*next == NULL)
1835 return -ENODEV;
1836
1837 /* found the node */
1838 *next = prop->next;
1839 prop->next = np->deadprops;
1840 np->deadprops = prop;
1841
1842 return 0;
1843}
1844
1845/**
1846 * of_remove_property - Remove a property from a node.
1847 * @np: Caller's Device Node
1848 * @prop: Property to remove
1849 *
1850 * Note that we don't actually remove it, since we have given out
1851 * who-knows-how-many pointers to the data using get-property.
1852 * Instead we just move the property to the "dead properties"
1853 * list, so it won't be found any more.
1854 */
1855int of_remove_property(struct device_node *np, struct property *prop)
1856{
1857 unsigned long flags;
1858 int rc;
1859
1860 if (!prop)
1861 return -ENODEV;
1862
1863 mutex_lock(&of_mutex);
1864
1865 raw_spin_lock_irqsave(&devtree_lock, flags);
1866 rc = __of_remove_property(np, prop);
1867 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1868
1869 if (!rc)
1870 __of_remove_property_sysfs(np, prop);
1871
1872 mutex_unlock(&of_mutex);
1873
1874 if (!rc)
1875 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1876
1877 return rc;
1878}
1879EXPORT_SYMBOL_GPL(of_remove_property);
1880
1881int __of_update_property(struct device_node *np, struct property *newprop,
1882 struct property **oldpropp)
1883{
1884 struct property **next, *oldprop;
1885
1886 for (next = &np->properties; *next; next = &(*next)->next) {
1887 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1888 break;
1889 }
1890 *oldpropp = oldprop = *next;
1891
1892 if (oldprop) {
1893 /* replace the node */
1894 newprop->next = oldprop->next;
1895 *next = newprop;
1896 oldprop->next = np->deadprops;
1897 np->deadprops = oldprop;
1898 } else {
1899 /* new node */
1900 newprop->next = NULL;
1901 *next = newprop;
1902 }
1903
1904 return 0;
1905}
1906
1907/*
1908 * of_update_property - Update a property in a node, if the property does
1909 * not exist, add it.
1910 *
1911 * Note that we don't actually remove it, since we have given out
1912 * who-knows-how-many pointers to the data using get-property.
1913 * Instead we just move the property to the "dead properties" list,
1914 * and add the new property to the property list
1915 */
1916int of_update_property(struct device_node *np, struct property *newprop)
1917{
1918 struct property *oldprop;
1919 unsigned long flags;
1920 int rc;
1921
1922 if (!newprop->name)
1923 return -EINVAL;
1924
1925 mutex_lock(&of_mutex);
1926
1927 raw_spin_lock_irqsave(&devtree_lock, flags);
1928 rc = __of_update_property(np, newprop, &oldprop);
1929 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1930
1931 if (!rc)
1932 __of_update_property_sysfs(np, newprop, oldprop);
1933
1934 mutex_unlock(&of_mutex);
1935
1936 if (!rc)
1937 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1938
1939 return rc;
1940}
1941
1942static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1943 int id, const char *stem, int stem_len)
1944{
1945 ap->np = np;
1946 ap->id = id;
1947 strncpy(ap->stem, stem, stem_len);
1948 ap->stem[stem_len] = 0;
1949 list_add_tail(&ap->link, &aliases_lookup);
1950 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1951 ap->alias, ap->stem, ap->id, np);
1952}
1953
1954/**
1955 * of_alias_scan - Scan all properties of the 'aliases' node
1956 * @dt_alloc: An allocator that provides a virtual address to memory
1957 * for storing the resulting tree
1958 *
1959 * The function scans all the properties of the 'aliases' node and populates
1960 * the global lookup table with the properties. It returns the
1961 * number of alias properties found, or an error code in case of failure.
1962 */
1963void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1964{
1965 struct property *pp;
1966
1967 of_aliases = of_find_node_by_path("/aliases");
1968 of_chosen = of_find_node_by_path("/chosen");
1969 if (of_chosen == NULL)
1970 of_chosen = of_find_node_by_path("/chosen@0");
1971
1972 if (of_chosen) {
1973 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1974 const char *name = NULL;
1975
1976 if (of_property_read_string(of_chosen, "stdout-path", &name))
1977 of_property_read_string(of_chosen, "linux,stdout-path",
1978 &name);
1979 if (IS_ENABLED(CONFIG_PPC) && !name)
1980 of_property_read_string(of_aliases, "stdout", &name);
1981 if (name)
1982 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1983 }
1984
1985 if (!of_aliases)
1986 return;
1987
1988 for_each_property_of_node(of_aliases, pp) {
1989 const char *start = pp->name;
1990 const char *end = start + strlen(start);
1991 struct device_node *np;
1992 struct alias_prop *ap;
1993 int id, len;
1994
1995 /* Skip those we do not want to proceed */
1996 if (!strcmp(pp->name, "name") ||
1997 !strcmp(pp->name, "phandle") ||
1998 !strcmp(pp->name, "linux,phandle"))
1999 continue;
2000
2001 np = of_find_node_by_path(pp->value);
2002 if (!np)
2003 continue;
2004
2005 /* walk the alias backwards to extract the id and work out
2006 * the 'stem' string */
2007 while (isdigit(*(end-1)) && end > start)
2008 end--;
2009 len = end - start;
2010
2011 if (kstrtoint(end, 10, &id) < 0)
2012 continue;
2013
2014 /* Allocate an alias_prop with enough space for the stem */
2015 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
2016 if (!ap)
2017 continue;
2018 memset(ap, 0, sizeof(*ap) + len + 1);
2019 ap->alias = start;
2020 of_alias_add(ap, np, id, start, len);
2021 }
2022}
2023
2024/**
2025 * of_alias_get_id - Get alias id for the given device_node
2026 * @np: Pointer to the given device_node
2027 * @stem: Alias stem of the given device_node
2028 *
2029 * The function travels the lookup table to get the alias id for the given
2030 * device_node and alias stem.
2031 *
2032 * Return: The alias id if found.
2033 */
2034int of_alias_get_id(struct device_node *np, const char *stem)
2035{
2036 struct alias_prop *app;
2037 int id = -ENODEV;
2038
2039 mutex_lock(&of_mutex);
2040 list_for_each_entry(app, &aliases_lookup, link) {
2041 if (strcmp(app->stem, stem) != 0)
2042 continue;
2043
2044 if (np == app->np) {
2045 id = app->id;
2046 break;
2047 }
2048 }
2049 mutex_unlock(&of_mutex);
2050
2051 return id;
2052}
2053EXPORT_SYMBOL_GPL(of_alias_get_id);
2054
2055/**
2056 * of_alias_get_alias_list - Get alias list for the given device driver
2057 * @matches: Array of OF device match structures to search in
2058 * @stem: Alias stem of the given device_node
2059 * @bitmap: Bitmap field pointer
2060 * @nbits: Maximum number of alias IDs which can be recorded in bitmap
2061 *
2062 * The function travels the lookup table to record alias ids for the given
2063 * device match structures and alias stem.
2064 *
2065 * Return: 0 or -ENOSYS when !CONFIG_OF or
2066 * -EOVERFLOW if alias ID is greater then allocated nbits
2067 */
2068int of_alias_get_alias_list(const struct of_device_id *matches,
2069 const char *stem, unsigned long *bitmap,
2070 unsigned int nbits)
2071{
2072 struct alias_prop *app;
2073 int ret = 0;
2074
2075 /* Zero bitmap field to make sure that all the time it is clean */
2076 bitmap_zero(bitmap, nbits);
2077
2078 mutex_lock(&of_mutex);
2079 pr_debug("%s: Looking for stem: %s\n", __func__, stem);
2080 list_for_each_entry(app, &aliases_lookup, link) {
2081 pr_debug("%s: stem: %s, id: %d\n",
2082 __func__, app->stem, app->id);
2083
2084 if (strcmp(app->stem, stem) != 0) {
2085 pr_debug("%s: stem comparison didn't pass %s\n",
2086 __func__, app->stem);
2087 continue;
2088 }
2089
2090 if (of_match_node(matches, app->np)) {
2091 pr_debug("%s: Allocated ID %d\n", __func__, app->id);
2092
2093 if (app->id >= nbits) {
2094 pr_warn("%s: ID %d >= than bitmap field %d\n",
2095 __func__, app->id, nbits);
2096 ret = -EOVERFLOW;
2097 } else {
2098 set_bit(app->id, bitmap);
2099 }
2100 }
2101 }
2102 mutex_unlock(&of_mutex);
2103
2104 return ret;
2105}
2106EXPORT_SYMBOL_GPL(of_alias_get_alias_list);
2107
2108/**
2109 * of_alias_get_highest_id - Get highest alias id for the given stem
2110 * @stem: Alias stem to be examined
2111 *
2112 * The function travels the lookup table to get the highest alias id for the
2113 * given alias stem. It returns the alias id if found.
2114 */
2115int of_alias_get_highest_id(const char *stem)
2116{
2117 struct alias_prop *app;
2118 int id = -ENODEV;
2119
2120 mutex_lock(&of_mutex);
2121 list_for_each_entry(app, &aliases_lookup, link) {
2122 if (strcmp(app->stem, stem) != 0)
2123 continue;
2124
2125 if (app->id > id)
2126 id = app->id;
2127 }
2128 mutex_unlock(&of_mutex);
2129
2130 return id;
2131}
2132EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2133
2134/**
2135 * of_console_check() - Test and setup console for DT setup
2136 * @dn: Pointer to device node
2137 * @name: Name to use for preferred console without index. ex. "ttyS"
2138 * @index: Index to use for preferred console.
2139 *
2140 * Check if the given device node matches the stdout-path property in the
2141 * /chosen node. If it does then register it as the preferred console.
2142 *
2143 * Return: TRUE if console successfully setup. Otherwise return FALSE.
2144 */
2145bool of_console_check(struct device_node *dn, char *name, int index)
2146{
2147 if (!dn || dn != of_stdout || console_set_on_cmdline)
2148 return false;
2149
2150 /*
2151 * XXX: cast `options' to char pointer to suppress complication
2152 * warnings: printk, UART and console drivers expect char pointer.
2153 */
2154 return !add_preferred_console(name, index, (char *)of_stdout_options);
2155}
2156EXPORT_SYMBOL_GPL(of_console_check);
2157
2158/**
2159 * of_find_next_cache_node - Find a node's subsidiary cache
2160 * @np: node of type "cpu" or "cache"
2161 *
2162 * Return: A node pointer with refcount incremented, use
2163 * of_node_put() on it when done. Caller should hold a reference
2164 * to np.
2165 */
2166struct device_node *of_find_next_cache_node(const struct device_node *np)
2167{
2168 struct device_node *child, *cache_node;
2169
2170 cache_node = of_parse_phandle(np, "l2-cache", 0);
2171 if (!cache_node)
2172 cache_node = of_parse_phandle(np, "next-level-cache", 0);
2173
2174 if (cache_node)
2175 return cache_node;
2176
2177 /* OF on pmac has nodes instead of properties named "l2-cache"
2178 * beneath CPU nodes.
2179 */
2180 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2181 for_each_child_of_node(np, child)
2182 if (of_node_is_type(child, "cache"))
2183 return child;
2184
2185 return NULL;
2186}
2187
2188/**
2189 * of_find_last_cache_level - Find the level at which the last cache is
2190 * present for the given logical cpu
2191 *
2192 * @cpu: cpu number(logical index) for which the last cache level is needed
2193 *
2194 * Return: The the level at which the last cache is present. It is exactly
2195 * same as the total number of cache levels for the given logical cpu.
2196 */
2197int of_find_last_cache_level(unsigned int cpu)
2198{
2199 u32 cache_level = 0;
2200 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2201
2202 while (np) {
2203 prev = np;
2204 of_node_put(np);
2205 np = of_find_next_cache_node(np);
2206 }
2207
2208 of_property_read_u32(prev, "cache-level", &cache_level);
2209
2210 return cache_level;
2211}
2212
2213/**
2214 * of_map_id - Translate an ID through a downstream mapping.
2215 * @np: root complex device node.
2216 * @id: device ID to map.
2217 * @map_name: property name of the map to use.
2218 * @map_mask_name: optional property name of the mask to use.
2219 * @target: optional pointer to a target device node.
2220 * @id_out: optional pointer to receive the translated ID.
2221 *
2222 * Given a device ID, look up the appropriate implementation-defined
2223 * platform ID and/or the target device which receives transactions on that
2224 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2225 * @id_out may be NULL if only the other is required. If @target points to
2226 * a non-NULL device node pointer, only entries targeting that node will be
2227 * matched; if it points to a NULL value, it will receive the device node of
2228 * the first matching target phandle, with a reference held.
2229 *
2230 * Return: 0 on success or a standard error code on failure.
2231 */
2232int of_map_id(struct device_node *np, u32 id,
2233 const char *map_name, const char *map_mask_name,
2234 struct device_node **target, u32 *id_out)
2235{
2236 u32 map_mask, masked_id;
2237 int map_len;
2238 const __be32 *map = NULL;
2239
2240 if (!np || !map_name || (!target && !id_out))
2241 return -EINVAL;
2242
2243 map = of_get_property(np, map_name, &map_len);
2244 if (!map) {
2245 if (target)
2246 return -ENODEV;
2247 /* Otherwise, no map implies no translation */
2248 *id_out = id;
2249 return 0;
2250 }
2251
2252 if (!map_len || map_len % (4 * sizeof(*map))) {
2253 pr_err("%pOF: Error: Bad %s length: %d\n", np,
2254 map_name, map_len);
2255 return -EINVAL;
2256 }
2257
2258 /* The default is to select all bits. */
2259 map_mask = 0xffffffff;
2260
2261 /*
2262 * Can be overridden by "{iommu,msi}-map-mask" property.
2263 * If of_property_read_u32() fails, the default is used.
2264 */
2265 if (map_mask_name)
2266 of_property_read_u32(np, map_mask_name, &map_mask);
2267
2268 masked_id = map_mask & id;
2269 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2270 struct device_node *phandle_node;
2271 u32 id_base = be32_to_cpup(map + 0);
2272 u32 phandle = be32_to_cpup(map + 1);
2273 u32 out_base = be32_to_cpup(map + 2);
2274 u32 id_len = be32_to_cpup(map + 3);
2275
2276 if (id_base & ~map_mask) {
2277 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2278 np, map_name, map_name,
2279 map_mask, id_base);
2280 return -EFAULT;
2281 }
2282
2283 if (masked_id < id_base || masked_id >= id_base + id_len)
2284 continue;
2285
2286 phandle_node = of_find_node_by_phandle(phandle);
2287 if (!phandle_node)
2288 return -ENODEV;
2289
2290 if (target) {
2291 if (*target)
2292 of_node_put(phandle_node);
2293 else
2294 *target = phandle_node;
2295
2296 if (*target != phandle_node)
2297 continue;
2298 }
2299
2300 if (id_out)
2301 *id_out = masked_id - id_base + out_base;
2302
2303 pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2304 np, map_name, map_mask, id_base, out_base,
2305 id_len, id, masked_id - id_base + out_base);
2306 return 0;
2307 }
2308
2309 pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2310 id, target && *target ? *target : NULL);
2311
2312 /* Bypasses translation */
2313 if (id_out)
2314 *id_out = id;
2315 return 0;
2316}
2317EXPORT_SYMBOL_GPL(of_map_id);