Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Device probing and sysfs code.
4 *
5 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 */
7
8#include <linux/bug.h>
9#include <linux/ctype.h>
10#include <linux/delay.h>
11#include <linux/device.h>
12#include <linux/errno.h>
13#include <linux/firewire.h>
14#include <linux/firewire-constants.h>
15#include <linux/idr.h>
16#include <linux/jiffies.h>
17#include <linux/kobject.h>
18#include <linux/list.h>
19#include <linux/mod_devicetable.h>
20#include <linux/module.h>
21#include <linux/mutex.h>
22#include <linux/random.h>
23#include <linux/rwsem.h>
24#include <linux/slab.h>
25#include <linux/spinlock.h>
26#include <linux/string.h>
27#include <linux/workqueue.h>
28
29#include <linux/atomic.h>
30#include <asm/byteorder.h>
31
32#include "core.h"
33
34void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
35{
36 ci->p = p + 1;
37 ci->end = ci->p + (p[0] >> 16);
38}
39EXPORT_SYMBOL(fw_csr_iterator_init);
40
41int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
42{
43 *key = *ci->p >> 24;
44 *value = *ci->p & 0xffffff;
45
46 return ci->p++ < ci->end;
47}
48EXPORT_SYMBOL(fw_csr_iterator_next);
49
50static const u32 *search_leaf(const u32 *directory, int search_key)
51{
52 struct fw_csr_iterator ci;
53 int last_key = 0, key, value;
54
55 fw_csr_iterator_init(&ci, directory);
56 while (fw_csr_iterator_next(&ci, &key, &value)) {
57 if (last_key == search_key &&
58 key == (CSR_DESCRIPTOR | CSR_LEAF))
59 return ci.p - 1 + value;
60
61 last_key = key;
62 }
63
64 return NULL;
65}
66
67static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
68{
69 unsigned int quadlets, i;
70 char c;
71
72 if (!size || !buf)
73 return -EINVAL;
74
75 quadlets = min(block[0] >> 16, 256U);
76 if (quadlets < 2)
77 return -ENODATA;
78
79 if (block[1] != 0 || block[2] != 0)
80 /* unknown language/character set */
81 return -ENODATA;
82
83 block += 3;
84 quadlets -= 2;
85 for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
86 c = block[i / 4] >> (24 - 8 * (i % 4));
87 if (c == '\0')
88 break;
89 buf[i] = c;
90 }
91 buf[i] = '\0';
92
93 return i;
94}
95
96/**
97 * fw_csr_string() - reads a string from the configuration ROM
98 * @directory: e.g. root directory or unit directory
99 * @key: the key of the preceding directory entry
100 * @buf: where to put the string
101 * @size: size of @buf, in bytes
102 *
103 * The string is taken from a minimal ASCII text descriptor leaf after
104 * the immediate entry with @key. The string is zero-terminated.
105 * An overlong string is silently truncated such that it and the
106 * zero byte fit into @size.
107 *
108 * Returns strlen(buf) or a negative error code.
109 */
110int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
111{
112 const u32 *leaf = search_leaf(directory, key);
113 if (!leaf)
114 return -ENOENT;
115
116 return textual_leaf_to_string(leaf, buf, size);
117}
118EXPORT_SYMBOL(fw_csr_string);
119
120static void get_ids(const u32 *directory, int *id)
121{
122 struct fw_csr_iterator ci;
123 int key, value;
124
125 fw_csr_iterator_init(&ci, directory);
126 while (fw_csr_iterator_next(&ci, &key, &value)) {
127 switch (key) {
128 case CSR_VENDOR: id[0] = value; break;
129 case CSR_MODEL: id[1] = value; break;
130 case CSR_SPECIFIER_ID: id[2] = value; break;
131 case CSR_VERSION: id[3] = value; break;
132 }
133 }
134}
135
136static void get_modalias_ids(struct fw_unit *unit, int *id)
137{
138 get_ids(&fw_parent_device(unit)->config_rom[5], id);
139 get_ids(unit->directory, id);
140}
141
142static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
143{
144 int match = 0;
145
146 if (id[0] == id_table->vendor_id)
147 match |= IEEE1394_MATCH_VENDOR_ID;
148 if (id[1] == id_table->model_id)
149 match |= IEEE1394_MATCH_MODEL_ID;
150 if (id[2] == id_table->specifier_id)
151 match |= IEEE1394_MATCH_SPECIFIER_ID;
152 if (id[3] == id_table->version)
153 match |= IEEE1394_MATCH_VERSION;
154
155 return (match & id_table->match_flags) == id_table->match_flags;
156}
157
158static const struct ieee1394_device_id *unit_match(struct device *dev,
159 struct device_driver *drv)
160{
161 const struct ieee1394_device_id *id_table =
162 container_of(drv, struct fw_driver, driver)->id_table;
163 int id[] = {0, 0, 0, 0};
164
165 get_modalias_ids(fw_unit(dev), id);
166
167 for (; id_table->match_flags != 0; id_table++)
168 if (match_ids(id_table, id))
169 return id_table;
170
171 return NULL;
172}
173
174static bool is_fw_unit(struct device *dev);
175
176static int fw_unit_match(struct device *dev, struct device_driver *drv)
177{
178 /* We only allow binding to fw_units. */
179 return is_fw_unit(dev) && unit_match(dev, drv) != NULL;
180}
181
182static int fw_unit_probe(struct device *dev)
183{
184 struct fw_driver *driver =
185 container_of(dev->driver, struct fw_driver, driver);
186
187 return driver->probe(fw_unit(dev), unit_match(dev, dev->driver));
188}
189
190static int fw_unit_remove(struct device *dev)
191{
192 struct fw_driver *driver =
193 container_of(dev->driver, struct fw_driver, driver);
194
195 return driver->remove(fw_unit(dev)), 0;
196}
197
198static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
199{
200 int id[] = {0, 0, 0, 0};
201
202 get_modalias_ids(unit, id);
203
204 return snprintf(buffer, buffer_size,
205 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
206 id[0], id[1], id[2], id[3]);
207}
208
209static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
210{
211 struct fw_unit *unit = fw_unit(dev);
212 char modalias[64];
213
214 get_modalias(unit, modalias, sizeof(modalias));
215
216 if (add_uevent_var(env, "MODALIAS=%s", modalias))
217 return -ENOMEM;
218
219 return 0;
220}
221
222struct bus_type fw_bus_type = {
223 .name = "firewire",
224 .match = fw_unit_match,
225 .probe = fw_unit_probe,
226 .remove = fw_unit_remove,
227};
228EXPORT_SYMBOL(fw_bus_type);
229
230int fw_device_enable_phys_dma(struct fw_device *device)
231{
232 int generation = device->generation;
233
234 /* device->node_id, accessed below, must not be older than generation */
235 smp_rmb();
236
237 return device->card->driver->enable_phys_dma(device->card,
238 device->node_id,
239 generation);
240}
241EXPORT_SYMBOL(fw_device_enable_phys_dma);
242
243struct config_rom_attribute {
244 struct device_attribute attr;
245 u32 key;
246};
247
248static ssize_t show_immediate(struct device *dev,
249 struct device_attribute *dattr, char *buf)
250{
251 struct config_rom_attribute *attr =
252 container_of(dattr, struct config_rom_attribute, attr);
253 struct fw_csr_iterator ci;
254 const u32 *dir;
255 int key, value, ret = -ENOENT;
256
257 down_read(&fw_device_rwsem);
258
259 if (is_fw_unit(dev))
260 dir = fw_unit(dev)->directory;
261 else
262 dir = fw_device(dev)->config_rom + 5;
263
264 fw_csr_iterator_init(&ci, dir);
265 while (fw_csr_iterator_next(&ci, &key, &value))
266 if (attr->key == key) {
267 ret = snprintf(buf, buf ? PAGE_SIZE : 0,
268 "0x%06x\n", value);
269 break;
270 }
271
272 up_read(&fw_device_rwsem);
273
274 return ret;
275}
276
277#define IMMEDIATE_ATTR(name, key) \
278 { __ATTR(name, S_IRUGO, show_immediate, NULL), key }
279
280static ssize_t show_text_leaf(struct device *dev,
281 struct device_attribute *dattr, char *buf)
282{
283 struct config_rom_attribute *attr =
284 container_of(dattr, struct config_rom_attribute, attr);
285 const u32 *dir;
286 size_t bufsize;
287 char dummy_buf[2];
288 int ret;
289
290 down_read(&fw_device_rwsem);
291
292 if (is_fw_unit(dev))
293 dir = fw_unit(dev)->directory;
294 else
295 dir = fw_device(dev)->config_rom + 5;
296
297 if (buf) {
298 bufsize = PAGE_SIZE - 1;
299 } else {
300 buf = dummy_buf;
301 bufsize = 1;
302 }
303
304 ret = fw_csr_string(dir, attr->key, buf, bufsize);
305
306 if (ret >= 0) {
307 /* Strip trailing whitespace and add newline. */
308 while (ret > 0 && isspace(buf[ret - 1]))
309 ret--;
310 strcpy(buf + ret, "\n");
311 ret++;
312 }
313
314 up_read(&fw_device_rwsem);
315
316 return ret;
317}
318
319#define TEXT_LEAF_ATTR(name, key) \
320 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
321
322static struct config_rom_attribute config_rom_attributes[] = {
323 IMMEDIATE_ATTR(vendor, CSR_VENDOR),
324 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
325 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
326 IMMEDIATE_ATTR(version, CSR_VERSION),
327 IMMEDIATE_ATTR(model, CSR_MODEL),
328 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
329 TEXT_LEAF_ATTR(model_name, CSR_MODEL),
330 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
331};
332
333static void init_fw_attribute_group(struct device *dev,
334 struct device_attribute *attrs,
335 struct fw_attribute_group *group)
336{
337 struct device_attribute *attr;
338 int i, j;
339
340 for (j = 0; attrs[j].attr.name != NULL; j++)
341 group->attrs[j] = &attrs[j].attr;
342
343 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
344 attr = &config_rom_attributes[i].attr;
345 if (attr->show(dev, attr, NULL) < 0)
346 continue;
347 group->attrs[j++] = &attr->attr;
348 }
349
350 group->attrs[j] = NULL;
351 group->groups[0] = &group->group;
352 group->groups[1] = NULL;
353 group->group.attrs = group->attrs;
354 dev->groups = (const struct attribute_group **) group->groups;
355}
356
357static ssize_t modalias_show(struct device *dev,
358 struct device_attribute *attr, char *buf)
359{
360 struct fw_unit *unit = fw_unit(dev);
361 int length;
362
363 length = get_modalias(unit, buf, PAGE_SIZE);
364 strcpy(buf + length, "\n");
365
366 return length + 1;
367}
368
369static ssize_t rom_index_show(struct device *dev,
370 struct device_attribute *attr, char *buf)
371{
372 struct fw_device *device = fw_device(dev->parent);
373 struct fw_unit *unit = fw_unit(dev);
374
375 return snprintf(buf, PAGE_SIZE, "%d\n",
376 (int)(unit->directory - device->config_rom));
377}
378
379static struct device_attribute fw_unit_attributes[] = {
380 __ATTR_RO(modalias),
381 __ATTR_RO(rom_index),
382 __ATTR_NULL,
383};
384
385static ssize_t config_rom_show(struct device *dev,
386 struct device_attribute *attr, char *buf)
387{
388 struct fw_device *device = fw_device(dev);
389 size_t length;
390
391 down_read(&fw_device_rwsem);
392 length = device->config_rom_length * 4;
393 memcpy(buf, device->config_rom, length);
394 up_read(&fw_device_rwsem);
395
396 return length;
397}
398
399static ssize_t guid_show(struct device *dev,
400 struct device_attribute *attr, char *buf)
401{
402 struct fw_device *device = fw_device(dev);
403 int ret;
404
405 down_read(&fw_device_rwsem);
406 ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
407 device->config_rom[3], device->config_rom[4]);
408 up_read(&fw_device_rwsem);
409
410 return ret;
411}
412
413static ssize_t is_local_show(struct device *dev,
414 struct device_attribute *attr, char *buf)
415{
416 struct fw_device *device = fw_device(dev);
417
418 return sprintf(buf, "%u\n", device->is_local);
419}
420
421static int units_sprintf(char *buf, const u32 *directory)
422{
423 struct fw_csr_iterator ci;
424 int key, value;
425 int specifier_id = 0;
426 int version = 0;
427
428 fw_csr_iterator_init(&ci, directory);
429 while (fw_csr_iterator_next(&ci, &key, &value)) {
430 switch (key) {
431 case CSR_SPECIFIER_ID:
432 specifier_id = value;
433 break;
434 case CSR_VERSION:
435 version = value;
436 break;
437 }
438 }
439
440 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
441}
442
443static ssize_t units_show(struct device *dev,
444 struct device_attribute *attr, char *buf)
445{
446 struct fw_device *device = fw_device(dev);
447 struct fw_csr_iterator ci;
448 int key, value, i = 0;
449
450 down_read(&fw_device_rwsem);
451 fw_csr_iterator_init(&ci, &device->config_rom[5]);
452 while (fw_csr_iterator_next(&ci, &key, &value)) {
453 if (key != (CSR_UNIT | CSR_DIRECTORY))
454 continue;
455 i += units_sprintf(&buf[i], ci.p + value - 1);
456 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
457 break;
458 }
459 up_read(&fw_device_rwsem);
460
461 if (i)
462 buf[i - 1] = '\n';
463
464 return i;
465}
466
467static struct device_attribute fw_device_attributes[] = {
468 __ATTR_RO(config_rom),
469 __ATTR_RO(guid),
470 __ATTR_RO(is_local),
471 __ATTR_RO(units),
472 __ATTR_NULL,
473};
474
475static int read_rom(struct fw_device *device,
476 int generation, int index, u32 *data)
477{
478 u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
479 int i, rcode;
480
481 /* device->node_id, accessed below, must not be older than generation */
482 smp_rmb();
483
484 for (i = 10; i < 100; i += 10) {
485 rcode = fw_run_transaction(device->card,
486 TCODE_READ_QUADLET_REQUEST, device->node_id,
487 generation, device->max_speed, offset, data, 4);
488 if (rcode != RCODE_BUSY)
489 break;
490 msleep(i);
491 }
492 be32_to_cpus(data);
493
494 return rcode;
495}
496
497#define MAX_CONFIG_ROM_SIZE 256
498
499/*
500 * Read the bus info block, perform a speed probe, and read all of the rest of
501 * the config ROM. We do all this with a cached bus generation. If the bus
502 * generation changes under us, read_config_rom will fail and get retried.
503 * It's better to start all over in this case because the node from which we
504 * are reading the ROM may have changed the ROM during the reset.
505 * Returns either a result code or a negative error code.
506 */
507static int read_config_rom(struct fw_device *device, int generation)
508{
509 struct fw_card *card = device->card;
510 const u32 *old_rom, *new_rom;
511 u32 *rom, *stack;
512 u32 sp, key;
513 int i, end, length, ret;
514
515 rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
516 sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
517 if (rom == NULL)
518 return -ENOMEM;
519
520 stack = &rom[MAX_CONFIG_ROM_SIZE];
521 memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
522
523 device->max_speed = SCODE_100;
524
525 /* First read the bus info block. */
526 for (i = 0; i < 5; i++) {
527 ret = read_rom(device, generation, i, &rom[i]);
528 if (ret != RCODE_COMPLETE)
529 goto out;
530 /*
531 * As per IEEE1212 7.2, during initialization, devices can
532 * reply with a 0 for the first quadlet of the config
533 * rom to indicate that they are booting (for example,
534 * if the firmware is on the disk of a external
535 * harddisk). In that case we just fail, and the
536 * retry mechanism will try again later.
537 */
538 if (i == 0 && rom[i] == 0) {
539 ret = RCODE_BUSY;
540 goto out;
541 }
542 }
543
544 device->max_speed = device->node->max_speed;
545
546 /*
547 * Determine the speed of
548 * - devices with link speed less than PHY speed,
549 * - devices with 1394b PHY (unless only connected to 1394a PHYs),
550 * - all devices if there are 1394b repeaters.
551 * Note, we cannot use the bus info block's link_spd as starting point
552 * because some buggy firmwares set it lower than necessary and because
553 * 1394-1995 nodes do not have the field.
554 */
555 if ((rom[2] & 0x7) < device->max_speed ||
556 device->max_speed == SCODE_BETA ||
557 card->beta_repeaters_present) {
558 u32 dummy;
559
560 /* for S1600 and S3200 */
561 if (device->max_speed == SCODE_BETA)
562 device->max_speed = card->link_speed;
563
564 while (device->max_speed > SCODE_100) {
565 if (read_rom(device, generation, 0, &dummy) ==
566 RCODE_COMPLETE)
567 break;
568 device->max_speed--;
569 }
570 }
571
572 /*
573 * Now parse the config rom. The config rom is a recursive
574 * directory structure so we parse it using a stack of
575 * references to the blocks that make up the structure. We
576 * push a reference to the root directory on the stack to
577 * start things off.
578 */
579 length = i;
580 sp = 0;
581 stack[sp++] = 0xc0000005;
582 while (sp > 0) {
583 /*
584 * Pop the next block reference of the stack. The
585 * lower 24 bits is the offset into the config rom,
586 * the upper 8 bits are the type of the reference the
587 * block.
588 */
589 key = stack[--sp];
590 i = key & 0xffffff;
591 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
592 ret = -ENXIO;
593 goto out;
594 }
595
596 /* Read header quadlet for the block to get the length. */
597 ret = read_rom(device, generation, i, &rom[i]);
598 if (ret != RCODE_COMPLETE)
599 goto out;
600 end = i + (rom[i] >> 16) + 1;
601 if (end > MAX_CONFIG_ROM_SIZE) {
602 /*
603 * This block extends outside the config ROM which is
604 * a firmware bug. Ignore this whole block, i.e.
605 * simply set a fake block length of 0.
606 */
607 fw_err(card, "skipped invalid ROM block %x at %llx\n",
608 rom[i],
609 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
610 rom[i] = 0;
611 end = i;
612 }
613 i++;
614
615 /*
616 * Now read in the block. If this is a directory
617 * block, check the entries as we read them to see if
618 * it references another block, and push it in that case.
619 */
620 for (; i < end; i++) {
621 ret = read_rom(device, generation, i, &rom[i]);
622 if (ret != RCODE_COMPLETE)
623 goto out;
624
625 if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
626 continue;
627 /*
628 * Offset points outside the ROM. May be a firmware
629 * bug or an Extended ROM entry (IEEE 1212-2001 clause
630 * 7.7.18). Simply overwrite this pointer here by a
631 * fake immediate entry so that later iterators over
632 * the ROM don't have to check offsets all the time.
633 */
634 if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
635 fw_err(card,
636 "skipped unsupported ROM entry %x at %llx\n",
637 rom[i],
638 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
639 rom[i] = 0;
640 continue;
641 }
642 stack[sp++] = i + rom[i];
643 }
644 if (length < i)
645 length = i;
646 }
647
648 old_rom = device->config_rom;
649 new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
650 if (new_rom == NULL) {
651 ret = -ENOMEM;
652 goto out;
653 }
654
655 down_write(&fw_device_rwsem);
656 device->config_rom = new_rom;
657 device->config_rom_length = length;
658 up_write(&fw_device_rwsem);
659
660 kfree(old_rom);
661 ret = RCODE_COMPLETE;
662 device->max_rec = rom[2] >> 12 & 0xf;
663 device->cmc = rom[2] >> 30 & 1;
664 device->irmc = rom[2] >> 31 & 1;
665 out:
666 kfree(rom);
667
668 return ret;
669}
670
671static void fw_unit_release(struct device *dev)
672{
673 struct fw_unit *unit = fw_unit(dev);
674
675 fw_device_put(fw_parent_device(unit));
676 kfree(unit);
677}
678
679static struct device_type fw_unit_type = {
680 .uevent = fw_unit_uevent,
681 .release = fw_unit_release,
682};
683
684static bool is_fw_unit(struct device *dev)
685{
686 return dev->type == &fw_unit_type;
687}
688
689static void create_units(struct fw_device *device)
690{
691 struct fw_csr_iterator ci;
692 struct fw_unit *unit;
693 int key, value, i;
694
695 i = 0;
696 fw_csr_iterator_init(&ci, &device->config_rom[5]);
697 while (fw_csr_iterator_next(&ci, &key, &value)) {
698 if (key != (CSR_UNIT | CSR_DIRECTORY))
699 continue;
700
701 /*
702 * Get the address of the unit directory and try to
703 * match the drivers id_tables against it.
704 */
705 unit = kzalloc(sizeof(*unit), GFP_KERNEL);
706 if (unit == NULL)
707 continue;
708
709 unit->directory = ci.p + value - 1;
710 unit->device.bus = &fw_bus_type;
711 unit->device.type = &fw_unit_type;
712 unit->device.parent = &device->device;
713 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
714
715 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
716 ARRAY_SIZE(fw_unit_attributes) +
717 ARRAY_SIZE(config_rom_attributes));
718 init_fw_attribute_group(&unit->device,
719 fw_unit_attributes,
720 &unit->attribute_group);
721
722 if (device_register(&unit->device) < 0)
723 goto skip_unit;
724
725 fw_device_get(device);
726 continue;
727
728 skip_unit:
729 kfree(unit);
730 }
731}
732
733static int shutdown_unit(struct device *device, void *data)
734{
735 device_unregister(device);
736
737 return 0;
738}
739
740/*
741 * fw_device_rwsem acts as dual purpose mutex:
742 * - serializes accesses to fw_device_idr,
743 * - serializes accesses to fw_device.config_rom/.config_rom_length and
744 * fw_unit.directory, unless those accesses happen at safe occasions
745 */
746DECLARE_RWSEM(fw_device_rwsem);
747
748DEFINE_IDR(fw_device_idr);
749int fw_cdev_major;
750
751struct fw_device *fw_device_get_by_devt(dev_t devt)
752{
753 struct fw_device *device;
754
755 down_read(&fw_device_rwsem);
756 device = idr_find(&fw_device_idr, MINOR(devt));
757 if (device)
758 fw_device_get(device);
759 up_read(&fw_device_rwsem);
760
761 return device;
762}
763
764struct workqueue_struct *fw_workqueue;
765EXPORT_SYMBOL(fw_workqueue);
766
767static void fw_schedule_device_work(struct fw_device *device,
768 unsigned long delay)
769{
770 queue_delayed_work(fw_workqueue, &device->work, delay);
771}
772
773/*
774 * These defines control the retry behavior for reading the config
775 * rom. It shouldn't be necessary to tweak these; if the device
776 * doesn't respond to a config rom read within 10 seconds, it's not
777 * going to respond at all. As for the initial delay, a lot of
778 * devices will be able to respond within half a second after bus
779 * reset. On the other hand, it's not really worth being more
780 * aggressive than that, since it scales pretty well; if 10 devices
781 * are plugged in, they're all getting read within one second.
782 */
783
784#define MAX_RETRIES 10
785#define RETRY_DELAY (3 * HZ)
786#define INITIAL_DELAY (HZ / 2)
787#define SHUTDOWN_DELAY (2 * HZ)
788
789static void fw_device_shutdown(struct work_struct *work)
790{
791 struct fw_device *device =
792 container_of(work, struct fw_device, work.work);
793 int minor = MINOR(device->device.devt);
794
795 if (time_before64(get_jiffies_64(),
796 device->card->reset_jiffies + SHUTDOWN_DELAY)
797 && !list_empty(&device->card->link)) {
798 fw_schedule_device_work(device, SHUTDOWN_DELAY);
799 return;
800 }
801
802 if (atomic_cmpxchg(&device->state,
803 FW_DEVICE_GONE,
804 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
805 return;
806
807 fw_device_cdev_remove(device);
808 device_for_each_child(&device->device, NULL, shutdown_unit);
809 device_unregister(&device->device);
810
811 down_write(&fw_device_rwsem);
812 idr_remove(&fw_device_idr, minor);
813 up_write(&fw_device_rwsem);
814
815 fw_device_put(device);
816}
817
818static void fw_device_release(struct device *dev)
819{
820 struct fw_device *device = fw_device(dev);
821 struct fw_card *card = device->card;
822 unsigned long flags;
823
824 /*
825 * Take the card lock so we don't set this to NULL while a
826 * FW_NODE_UPDATED callback is being handled or while the
827 * bus manager work looks at this node.
828 */
829 spin_lock_irqsave(&card->lock, flags);
830 device->node->data = NULL;
831 spin_unlock_irqrestore(&card->lock, flags);
832
833 fw_node_put(device->node);
834 kfree(device->config_rom);
835 kfree(device);
836 fw_card_put(card);
837}
838
839static struct device_type fw_device_type = {
840 .release = fw_device_release,
841};
842
843static bool is_fw_device(struct device *dev)
844{
845 return dev->type == &fw_device_type;
846}
847
848static int update_unit(struct device *dev, void *data)
849{
850 struct fw_unit *unit = fw_unit(dev);
851 struct fw_driver *driver = (struct fw_driver *)dev->driver;
852
853 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
854 device_lock(dev);
855 driver->update(unit);
856 device_unlock(dev);
857 }
858
859 return 0;
860}
861
862static void fw_device_update(struct work_struct *work)
863{
864 struct fw_device *device =
865 container_of(work, struct fw_device, work.work);
866
867 fw_device_cdev_update(device);
868 device_for_each_child(&device->device, NULL, update_unit);
869}
870
871/*
872 * If a device was pending for deletion because its node went away but its
873 * bus info block and root directory header matches that of a newly discovered
874 * device, revive the existing fw_device.
875 * The newly allocated fw_device becomes obsolete instead.
876 */
877static int lookup_existing_device(struct device *dev, void *data)
878{
879 struct fw_device *old = fw_device(dev);
880 struct fw_device *new = data;
881 struct fw_card *card = new->card;
882 int match = 0;
883
884 if (!is_fw_device(dev))
885 return 0;
886
887 down_read(&fw_device_rwsem); /* serialize config_rom access */
888 spin_lock_irq(&card->lock); /* serialize node access */
889
890 if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
891 atomic_cmpxchg(&old->state,
892 FW_DEVICE_GONE,
893 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
894 struct fw_node *current_node = new->node;
895 struct fw_node *obsolete_node = old->node;
896
897 new->node = obsolete_node;
898 new->node->data = new;
899 old->node = current_node;
900 old->node->data = old;
901
902 old->max_speed = new->max_speed;
903 old->node_id = current_node->node_id;
904 smp_wmb(); /* update node_id before generation */
905 old->generation = card->generation;
906 old->config_rom_retries = 0;
907 fw_notice(card, "rediscovered device %s\n", dev_name(dev));
908
909 old->workfn = fw_device_update;
910 fw_schedule_device_work(old, 0);
911
912 if (current_node == card->root_node)
913 fw_schedule_bm_work(card, 0);
914
915 match = 1;
916 }
917
918 spin_unlock_irq(&card->lock);
919 up_read(&fw_device_rwsem);
920
921 return match;
922}
923
924enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
925
926static void set_broadcast_channel(struct fw_device *device, int generation)
927{
928 struct fw_card *card = device->card;
929 __be32 data;
930 int rcode;
931
932 if (!card->broadcast_channel_allocated)
933 return;
934
935 /*
936 * The Broadcast_Channel Valid bit is required by nodes which want to
937 * transmit on this channel. Such transmissions are practically
938 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required
939 * to be IRM capable and have a max_rec of 8 or more. We use this fact
940 * to narrow down to which nodes we send Broadcast_Channel updates.
941 */
942 if (!device->irmc || device->max_rec < 8)
943 return;
944
945 /*
946 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
947 * Perform a read test first.
948 */
949 if (device->bc_implemented == BC_UNKNOWN) {
950 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
951 device->node_id, generation, device->max_speed,
952 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
953 &data, 4);
954 switch (rcode) {
955 case RCODE_COMPLETE:
956 if (data & cpu_to_be32(1 << 31)) {
957 device->bc_implemented = BC_IMPLEMENTED;
958 break;
959 }
960 fallthrough; /* to case address error */
961 case RCODE_ADDRESS_ERROR:
962 device->bc_implemented = BC_UNIMPLEMENTED;
963 }
964 }
965
966 if (device->bc_implemented == BC_IMPLEMENTED) {
967 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
968 BROADCAST_CHANNEL_VALID);
969 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
970 device->node_id, generation, device->max_speed,
971 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
972 &data, 4);
973 }
974}
975
976int fw_device_set_broadcast_channel(struct device *dev, void *gen)
977{
978 if (is_fw_device(dev))
979 set_broadcast_channel(fw_device(dev), (long)gen);
980
981 return 0;
982}
983
984static void fw_device_init(struct work_struct *work)
985{
986 struct fw_device *device =
987 container_of(work, struct fw_device, work.work);
988 struct fw_card *card = device->card;
989 struct device *revived_dev;
990 int minor, ret;
991
992 /*
993 * All failure paths here set node->data to NULL, so that we
994 * don't try to do device_for_each_child() on a kfree()'d
995 * device.
996 */
997
998 ret = read_config_rom(device, device->generation);
999 if (ret != RCODE_COMPLETE) {
1000 if (device->config_rom_retries < MAX_RETRIES &&
1001 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1002 device->config_rom_retries++;
1003 fw_schedule_device_work(device, RETRY_DELAY);
1004 } else {
1005 if (device->node->link_on)
1006 fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
1007 device->node_id,
1008 fw_rcode_string(ret));
1009 if (device->node == card->root_node)
1010 fw_schedule_bm_work(card, 0);
1011 fw_device_release(&device->device);
1012 }
1013 return;
1014 }
1015
1016 revived_dev = device_find_child(card->device,
1017 device, lookup_existing_device);
1018 if (revived_dev) {
1019 put_device(revived_dev);
1020 fw_device_release(&device->device);
1021
1022 return;
1023 }
1024
1025 device_initialize(&device->device);
1026
1027 fw_device_get(device);
1028 down_write(&fw_device_rwsem);
1029 minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS,
1030 GFP_KERNEL);
1031 up_write(&fw_device_rwsem);
1032
1033 if (minor < 0)
1034 goto error;
1035
1036 device->device.bus = &fw_bus_type;
1037 device->device.type = &fw_device_type;
1038 device->device.parent = card->device;
1039 device->device.devt = MKDEV(fw_cdev_major, minor);
1040 dev_set_name(&device->device, "fw%d", minor);
1041
1042 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1043 ARRAY_SIZE(fw_device_attributes) +
1044 ARRAY_SIZE(config_rom_attributes));
1045 init_fw_attribute_group(&device->device,
1046 fw_device_attributes,
1047 &device->attribute_group);
1048
1049 if (device_add(&device->device)) {
1050 fw_err(card, "failed to add device\n");
1051 goto error_with_cdev;
1052 }
1053
1054 create_units(device);
1055
1056 /*
1057 * Transition the device to running state. If it got pulled
1058 * out from under us while we did the initialization work, we
1059 * have to shut down the device again here. Normally, though,
1060 * fw_node_event will be responsible for shutting it down when
1061 * necessary. We have to use the atomic cmpxchg here to avoid
1062 * racing with the FW_NODE_DESTROYED case in
1063 * fw_node_event().
1064 */
1065 if (atomic_cmpxchg(&device->state,
1066 FW_DEVICE_INITIALIZING,
1067 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1068 device->workfn = fw_device_shutdown;
1069 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1070 } else {
1071 fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1072 dev_name(&device->device),
1073 device->config_rom[3], device->config_rom[4],
1074 1 << device->max_speed);
1075 device->config_rom_retries = 0;
1076
1077 set_broadcast_channel(device, device->generation);
1078
1079 add_device_randomness(&device->config_rom[3], 8);
1080 }
1081
1082 /*
1083 * Reschedule the IRM work if we just finished reading the
1084 * root node config rom. If this races with a bus reset we
1085 * just end up running the IRM work a couple of extra times -
1086 * pretty harmless.
1087 */
1088 if (device->node == card->root_node)
1089 fw_schedule_bm_work(card, 0);
1090
1091 return;
1092
1093 error_with_cdev:
1094 down_write(&fw_device_rwsem);
1095 idr_remove(&fw_device_idr, minor);
1096 up_write(&fw_device_rwsem);
1097 error:
1098 fw_device_put(device); /* fw_device_idr's reference */
1099
1100 put_device(&device->device); /* our reference */
1101}
1102
1103/* Reread and compare bus info block and header of root directory */
1104static int reread_config_rom(struct fw_device *device, int generation,
1105 bool *changed)
1106{
1107 u32 q;
1108 int i, rcode;
1109
1110 for (i = 0; i < 6; i++) {
1111 rcode = read_rom(device, generation, i, &q);
1112 if (rcode != RCODE_COMPLETE)
1113 return rcode;
1114
1115 if (i == 0 && q == 0)
1116 /* inaccessible (see read_config_rom); retry later */
1117 return RCODE_BUSY;
1118
1119 if (q != device->config_rom[i]) {
1120 *changed = true;
1121 return RCODE_COMPLETE;
1122 }
1123 }
1124
1125 *changed = false;
1126 return RCODE_COMPLETE;
1127}
1128
1129static void fw_device_refresh(struct work_struct *work)
1130{
1131 struct fw_device *device =
1132 container_of(work, struct fw_device, work.work);
1133 struct fw_card *card = device->card;
1134 int ret, node_id = device->node_id;
1135 bool changed;
1136
1137 ret = reread_config_rom(device, device->generation, &changed);
1138 if (ret != RCODE_COMPLETE)
1139 goto failed_config_rom;
1140
1141 if (!changed) {
1142 if (atomic_cmpxchg(&device->state,
1143 FW_DEVICE_INITIALIZING,
1144 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1145 goto gone;
1146
1147 fw_device_update(work);
1148 device->config_rom_retries = 0;
1149 goto out;
1150 }
1151
1152 /*
1153 * Something changed. We keep things simple and don't investigate
1154 * further. We just destroy all previous units and create new ones.
1155 */
1156 device_for_each_child(&device->device, NULL, shutdown_unit);
1157
1158 ret = read_config_rom(device, device->generation);
1159 if (ret != RCODE_COMPLETE)
1160 goto failed_config_rom;
1161
1162 fw_device_cdev_update(device);
1163 create_units(device);
1164
1165 /* Userspace may want to re-read attributes. */
1166 kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1167
1168 if (atomic_cmpxchg(&device->state,
1169 FW_DEVICE_INITIALIZING,
1170 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1171 goto gone;
1172
1173 fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1174 device->config_rom_retries = 0;
1175 goto out;
1176
1177 failed_config_rom:
1178 if (device->config_rom_retries < MAX_RETRIES &&
1179 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1180 device->config_rom_retries++;
1181 fw_schedule_device_work(device, RETRY_DELAY);
1182 return;
1183 }
1184
1185 fw_notice(card, "giving up on refresh of device %s: %s\n",
1186 dev_name(&device->device), fw_rcode_string(ret));
1187 gone:
1188 atomic_set(&device->state, FW_DEVICE_GONE);
1189 device->workfn = fw_device_shutdown;
1190 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1191 out:
1192 if (node_id == card->root_node->node_id)
1193 fw_schedule_bm_work(card, 0);
1194}
1195
1196static void fw_device_workfn(struct work_struct *work)
1197{
1198 struct fw_device *device = container_of(to_delayed_work(work),
1199 struct fw_device, work);
1200 device->workfn(work);
1201}
1202
1203void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1204{
1205 struct fw_device *device;
1206
1207 switch (event) {
1208 case FW_NODE_CREATED:
1209 /*
1210 * Attempt to scan the node, regardless whether its self ID has
1211 * the L (link active) flag set or not. Some broken devices
1212 * send L=0 but have an up-and-running link; others send L=1
1213 * without actually having a link.
1214 */
1215 create:
1216 device = kzalloc(sizeof(*device), GFP_ATOMIC);
1217 if (device == NULL)
1218 break;
1219
1220 /*
1221 * Do minimal initialization of the device here, the
1222 * rest will happen in fw_device_init().
1223 *
1224 * Attention: A lot of things, even fw_device_get(),
1225 * cannot be done before fw_device_init() finished!
1226 * You can basically just check device->state and
1227 * schedule work until then, but only while holding
1228 * card->lock.
1229 */
1230 atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1231 device->card = fw_card_get(card);
1232 device->node = fw_node_get(node);
1233 device->node_id = node->node_id;
1234 device->generation = card->generation;
1235 device->is_local = node == card->local_node;
1236 mutex_init(&device->client_list_mutex);
1237 INIT_LIST_HEAD(&device->client_list);
1238
1239 /*
1240 * Set the node data to point back to this device so
1241 * FW_NODE_UPDATED callbacks can update the node_id
1242 * and generation for the device.
1243 */
1244 node->data = device;
1245
1246 /*
1247 * Many devices are slow to respond after bus resets,
1248 * especially if they are bus powered and go through
1249 * power-up after getting plugged in. We schedule the
1250 * first config rom scan half a second after bus reset.
1251 */
1252 device->workfn = fw_device_init;
1253 INIT_DELAYED_WORK(&device->work, fw_device_workfn);
1254 fw_schedule_device_work(device, INITIAL_DELAY);
1255 break;
1256
1257 case FW_NODE_INITIATED_RESET:
1258 case FW_NODE_LINK_ON:
1259 device = node->data;
1260 if (device == NULL)
1261 goto create;
1262
1263 device->node_id = node->node_id;
1264 smp_wmb(); /* update node_id before generation */
1265 device->generation = card->generation;
1266 if (atomic_cmpxchg(&device->state,
1267 FW_DEVICE_RUNNING,
1268 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1269 device->workfn = fw_device_refresh;
1270 fw_schedule_device_work(device,
1271 device->is_local ? 0 : INITIAL_DELAY);
1272 }
1273 break;
1274
1275 case FW_NODE_UPDATED:
1276 device = node->data;
1277 if (device == NULL)
1278 break;
1279
1280 device->node_id = node->node_id;
1281 smp_wmb(); /* update node_id before generation */
1282 device->generation = card->generation;
1283 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1284 device->workfn = fw_device_update;
1285 fw_schedule_device_work(device, 0);
1286 }
1287 break;
1288
1289 case FW_NODE_DESTROYED:
1290 case FW_NODE_LINK_OFF:
1291 if (!node->data)
1292 break;
1293
1294 /*
1295 * Destroy the device associated with the node. There
1296 * are two cases here: either the device is fully
1297 * initialized (FW_DEVICE_RUNNING) or we're in the
1298 * process of reading its config rom
1299 * (FW_DEVICE_INITIALIZING). If it is fully
1300 * initialized we can reuse device->work to schedule a
1301 * full fw_device_shutdown(). If not, there's work
1302 * scheduled to read it's config rom, and we just put
1303 * the device in shutdown state to have that code fail
1304 * to create the device.
1305 */
1306 device = node->data;
1307 if (atomic_xchg(&device->state,
1308 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1309 device->workfn = fw_device_shutdown;
1310 fw_schedule_device_work(device,
1311 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1312 }
1313 break;
1314 }
1315}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Device probing and sysfs code.
4 *
5 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 */
7
8#include <linux/bug.h>
9#include <linux/ctype.h>
10#include <linux/delay.h>
11#include <linux/device.h>
12#include <linux/errno.h>
13#include <linux/firewire.h>
14#include <linux/firewire-constants.h>
15#include <linux/idr.h>
16#include <linux/jiffies.h>
17#include <linux/kobject.h>
18#include <linux/list.h>
19#include <linux/mod_devicetable.h>
20#include <linux/module.h>
21#include <linux/mutex.h>
22#include <linux/random.h>
23#include <linux/rwsem.h>
24#include <linux/slab.h>
25#include <linux/spinlock.h>
26#include <linux/string.h>
27#include <linux/workqueue.h>
28
29#include <linux/atomic.h>
30#include <asm/byteorder.h>
31
32#include "core.h"
33
34void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
35{
36 ci->p = p + 1;
37 ci->end = ci->p + (p[0] >> 16);
38}
39EXPORT_SYMBOL(fw_csr_iterator_init);
40
41int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
42{
43 *key = *ci->p >> 24;
44 *value = *ci->p & 0xffffff;
45
46 return ci->p++ < ci->end;
47}
48EXPORT_SYMBOL(fw_csr_iterator_next);
49
50static const u32 *search_leaf(const u32 *directory, int search_key)
51{
52 struct fw_csr_iterator ci;
53 int last_key = 0, key, value;
54
55 fw_csr_iterator_init(&ci, directory);
56 while (fw_csr_iterator_next(&ci, &key, &value)) {
57 if (last_key == search_key &&
58 key == (CSR_DESCRIPTOR | CSR_LEAF))
59 return ci.p - 1 + value;
60
61 last_key = key;
62 }
63
64 return NULL;
65}
66
67static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
68{
69 unsigned int quadlets, i;
70 char c;
71
72 if (!size || !buf)
73 return -EINVAL;
74
75 quadlets = min(block[0] >> 16, 256U);
76 if (quadlets < 2)
77 return -ENODATA;
78
79 if (block[1] != 0 || block[2] != 0)
80 /* unknown language/character set */
81 return -ENODATA;
82
83 block += 3;
84 quadlets -= 2;
85 for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
86 c = block[i / 4] >> (24 - 8 * (i % 4));
87 if (c == '\0')
88 break;
89 buf[i] = c;
90 }
91 buf[i] = '\0';
92
93 return i;
94}
95
96/**
97 * fw_csr_string() - reads a string from the configuration ROM
98 * @directory: e.g. root directory or unit directory
99 * @key: the key of the preceding directory entry
100 * @buf: where to put the string
101 * @size: size of @buf, in bytes
102 *
103 * The string is taken from a minimal ASCII text descriptor leaf after
104 * the immediate entry with @key. The string is zero-terminated.
105 * An overlong string is silently truncated such that it and the
106 * zero byte fit into @size.
107 *
108 * Returns strlen(buf) or a negative error code.
109 */
110int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
111{
112 const u32 *leaf = search_leaf(directory, key);
113 if (!leaf)
114 return -ENOENT;
115
116 return textual_leaf_to_string(leaf, buf, size);
117}
118EXPORT_SYMBOL(fw_csr_string);
119
120static void get_ids(const u32 *directory, int *id)
121{
122 struct fw_csr_iterator ci;
123 int key, value;
124
125 fw_csr_iterator_init(&ci, directory);
126 while (fw_csr_iterator_next(&ci, &key, &value)) {
127 switch (key) {
128 case CSR_VENDOR: id[0] = value; break;
129 case CSR_MODEL: id[1] = value; break;
130 case CSR_SPECIFIER_ID: id[2] = value; break;
131 case CSR_VERSION: id[3] = value; break;
132 }
133 }
134}
135
136static void get_modalias_ids(struct fw_unit *unit, int *id)
137{
138 get_ids(&fw_parent_device(unit)->config_rom[5], id);
139 get_ids(unit->directory, id);
140}
141
142static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
143{
144 int match = 0;
145
146 if (id[0] == id_table->vendor_id)
147 match |= IEEE1394_MATCH_VENDOR_ID;
148 if (id[1] == id_table->model_id)
149 match |= IEEE1394_MATCH_MODEL_ID;
150 if (id[2] == id_table->specifier_id)
151 match |= IEEE1394_MATCH_SPECIFIER_ID;
152 if (id[3] == id_table->version)
153 match |= IEEE1394_MATCH_VERSION;
154
155 return (match & id_table->match_flags) == id_table->match_flags;
156}
157
158static const struct ieee1394_device_id *unit_match(struct device *dev,
159 struct device_driver *drv)
160{
161 const struct ieee1394_device_id *id_table =
162 container_of(drv, struct fw_driver, driver)->id_table;
163 int id[] = {0, 0, 0, 0};
164
165 get_modalias_ids(fw_unit(dev), id);
166
167 for (; id_table->match_flags != 0; id_table++)
168 if (match_ids(id_table, id))
169 return id_table;
170
171 return NULL;
172}
173
174static bool is_fw_unit(struct device *dev);
175
176static int fw_unit_match(struct device *dev, struct device_driver *drv)
177{
178 /* We only allow binding to fw_units. */
179 return is_fw_unit(dev) && unit_match(dev, drv) != NULL;
180}
181
182static int fw_unit_probe(struct device *dev)
183{
184 struct fw_driver *driver =
185 container_of(dev->driver, struct fw_driver, driver);
186
187 return driver->probe(fw_unit(dev), unit_match(dev, dev->driver));
188}
189
190static int fw_unit_remove(struct device *dev)
191{
192 struct fw_driver *driver =
193 container_of(dev->driver, struct fw_driver, driver);
194
195 driver->remove(fw_unit(dev));
196
197 return 0;
198}
199
200static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
201{
202 int id[] = {0, 0, 0, 0};
203
204 get_modalias_ids(unit, id);
205
206 return snprintf(buffer, buffer_size,
207 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
208 id[0], id[1], id[2], id[3]);
209}
210
211static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
212{
213 struct fw_unit *unit = fw_unit(dev);
214 char modalias[64];
215
216 get_modalias(unit, modalias, sizeof(modalias));
217
218 if (add_uevent_var(env, "MODALIAS=%s", modalias))
219 return -ENOMEM;
220
221 return 0;
222}
223
224struct bus_type fw_bus_type = {
225 .name = "firewire",
226 .match = fw_unit_match,
227 .probe = fw_unit_probe,
228 .remove = fw_unit_remove,
229};
230EXPORT_SYMBOL(fw_bus_type);
231
232int fw_device_enable_phys_dma(struct fw_device *device)
233{
234 int generation = device->generation;
235
236 /* device->node_id, accessed below, must not be older than generation */
237 smp_rmb();
238
239 return device->card->driver->enable_phys_dma(device->card,
240 device->node_id,
241 generation);
242}
243EXPORT_SYMBOL(fw_device_enable_phys_dma);
244
245struct config_rom_attribute {
246 struct device_attribute attr;
247 u32 key;
248};
249
250static ssize_t show_immediate(struct device *dev,
251 struct device_attribute *dattr, char *buf)
252{
253 struct config_rom_attribute *attr =
254 container_of(dattr, struct config_rom_attribute, attr);
255 struct fw_csr_iterator ci;
256 const u32 *dir;
257 int key, value, ret = -ENOENT;
258
259 down_read(&fw_device_rwsem);
260
261 if (is_fw_unit(dev))
262 dir = fw_unit(dev)->directory;
263 else
264 dir = fw_device(dev)->config_rom + 5;
265
266 fw_csr_iterator_init(&ci, dir);
267 while (fw_csr_iterator_next(&ci, &key, &value))
268 if (attr->key == key) {
269 ret = snprintf(buf, buf ? PAGE_SIZE : 0,
270 "0x%06x\n", value);
271 break;
272 }
273
274 up_read(&fw_device_rwsem);
275
276 return ret;
277}
278
279#define IMMEDIATE_ATTR(name, key) \
280 { __ATTR(name, S_IRUGO, show_immediate, NULL), key }
281
282static ssize_t show_text_leaf(struct device *dev,
283 struct device_attribute *dattr, char *buf)
284{
285 struct config_rom_attribute *attr =
286 container_of(dattr, struct config_rom_attribute, attr);
287 const u32 *dir;
288 size_t bufsize;
289 char dummy_buf[2];
290 int ret;
291
292 down_read(&fw_device_rwsem);
293
294 if (is_fw_unit(dev))
295 dir = fw_unit(dev)->directory;
296 else
297 dir = fw_device(dev)->config_rom + 5;
298
299 if (buf) {
300 bufsize = PAGE_SIZE - 1;
301 } else {
302 buf = dummy_buf;
303 bufsize = 1;
304 }
305
306 ret = fw_csr_string(dir, attr->key, buf, bufsize);
307
308 if (ret >= 0) {
309 /* Strip trailing whitespace and add newline. */
310 while (ret > 0 && isspace(buf[ret - 1]))
311 ret--;
312 strcpy(buf + ret, "\n");
313 ret++;
314 }
315
316 up_read(&fw_device_rwsem);
317
318 return ret;
319}
320
321#define TEXT_LEAF_ATTR(name, key) \
322 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
323
324static struct config_rom_attribute config_rom_attributes[] = {
325 IMMEDIATE_ATTR(vendor, CSR_VENDOR),
326 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
327 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
328 IMMEDIATE_ATTR(version, CSR_VERSION),
329 IMMEDIATE_ATTR(model, CSR_MODEL),
330 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
331 TEXT_LEAF_ATTR(model_name, CSR_MODEL),
332 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
333};
334
335static void init_fw_attribute_group(struct device *dev,
336 struct device_attribute *attrs,
337 struct fw_attribute_group *group)
338{
339 struct device_attribute *attr;
340 int i, j;
341
342 for (j = 0; attrs[j].attr.name != NULL; j++)
343 group->attrs[j] = &attrs[j].attr;
344
345 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
346 attr = &config_rom_attributes[i].attr;
347 if (attr->show(dev, attr, NULL) < 0)
348 continue;
349 group->attrs[j++] = &attr->attr;
350 }
351
352 group->attrs[j] = NULL;
353 group->groups[0] = &group->group;
354 group->groups[1] = NULL;
355 group->group.attrs = group->attrs;
356 dev->groups = (const struct attribute_group **) group->groups;
357}
358
359static ssize_t modalias_show(struct device *dev,
360 struct device_attribute *attr, char *buf)
361{
362 struct fw_unit *unit = fw_unit(dev);
363 int length;
364
365 length = get_modalias(unit, buf, PAGE_SIZE);
366 strcpy(buf + length, "\n");
367
368 return length + 1;
369}
370
371static ssize_t rom_index_show(struct device *dev,
372 struct device_attribute *attr, char *buf)
373{
374 struct fw_device *device = fw_device(dev->parent);
375 struct fw_unit *unit = fw_unit(dev);
376
377 return snprintf(buf, PAGE_SIZE, "%d\n",
378 (int)(unit->directory - device->config_rom));
379}
380
381static struct device_attribute fw_unit_attributes[] = {
382 __ATTR_RO(modalias),
383 __ATTR_RO(rom_index),
384 __ATTR_NULL,
385};
386
387static ssize_t config_rom_show(struct device *dev,
388 struct device_attribute *attr, char *buf)
389{
390 struct fw_device *device = fw_device(dev);
391 size_t length;
392
393 down_read(&fw_device_rwsem);
394 length = device->config_rom_length * 4;
395 memcpy(buf, device->config_rom, length);
396 up_read(&fw_device_rwsem);
397
398 return length;
399}
400
401static ssize_t guid_show(struct device *dev,
402 struct device_attribute *attr, char *buf)
403{
404 struct fw_device *device = fw_device(dev);
405 int ret;
406
407 down_read(&fw_device_rwsem);
408 ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
409 device->config_rom[3], device->config_rom[4]);
410 up_read(&fw_device_rwsem);
411
412 return ret;
413}
414
415static ssize_t is_local_show(struct device *dev,
416 struct device_attribute *attr, char *buf)
417{
418 struct fw_device *device = fw_device(dev);
419
420 return sprintf(buf, "%u\n", device->is_local);
421}
422
423static int units_sprintf(char *buf, const u32 *directory)
424{
425 struct fw_csr_iterator ci;
426 int key, value;
427 int specifier_id = 0;
428 int version = 0;
429
430 fw_csr_iterator_init(&ci, directory);
431 while (fw_csr_iterator_next(&ci, &key, &value)) {
432 switch (key) {
433 case CSR_SPECIFIER_ID:
434 specifier_id = value;
435 break;
436 case CSR_VERSION:
437 version = value;
438 break;
439 }
440 }
441
442 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
443}
444
445static ssize_t units_show(struct device *dev,
446 struct device_attribute *attr, char *buf)
447{
448 struct fw_device *device = fw_device(dev);
449 struct fw_csr_iterator ci;
450 int key, value, i = 0;
451
452 down_read(&fw_device_rwsem);
453 fw_csr_iterator_init(&ci, &device->config_rom[5]);
454 while (fw_csr_iterator_next(&ci, &key, &value)) {
455 if (key != (CSR_UNIT | CSR_DIRECTORY))
456 continue;
457 i += units_sprintf(&buf[i], ci.p + value - 1);
458 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
459 break;
460 }
461 up_read(&fw_device_rwsem);
462
463 if (i)
464 buf[i - 1] = '\n';
465
466 return i;
467}
468
469static struct device_attribute fw_device_attributes[] = {
470 __ATTR_RO(config_rom),
471 __ATTR_RO(guid),
472 __ATTR_RO(is_local),
473 __ATTR_RO(units),
474 __ATTR_NULL,
475};
476
477static int read_rom(struct fw_device *device,
478 int generation, int index, u32 *data)
479{
480 u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
481 int i, rcode;
482
483 /* device->node_id, accessed below, must not be older than generation */
484 smp_rmb();
485
486 for (i = 10; i < 100; i += 10) {
487 rcode = fw_run_transaction(device->card,
488 TCODE_READ_QUADLET_REQUEST, device->node_id,
489 generation, device->max_speed, offset, data, 4);
490 if (rcode != RCODE_BUSY)
491 break;
492 msleep(i);
493 }
494 be32_to_cpus(data);
495
496 return rcode;
497}
498
499#define MAX_CONFIG_ROM_SIZE 256
500
501/*
502 * Read the bus info block, perform a speed probe, and read all of the rest of
503 * the config ROM. We do all this with a cached bus generation. If the bus
504 * generation changes under us, read_config_rom will fail and get retried.
505 * It's better to start all over in this case because the node from which we
506 * are reading the ROM may have changed the ROM during the reset.
507 * Returns either a result code or a negative error code.
508 */
509static int read_config_rom(struct fw_device *device, int generation)
510{
511 struct fw_card *card = device->card;
512 const u32 *old_rom, *new_rom;
513 u32 *rom, *stack;
514 u32 sp, key;
515 int i, end, length, ret;
516
517 rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
518 sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
519 if (rom == NULL)
520 return -ENOMEM;
521
522 stack = &rom[MAX_CONFIG_ROM_SIZE];
523 memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
524
525 device->max_speed = SCODE_100;
526
527 /* First read the bus info block. */
528 for (i = 0; i < 5; i++) {
529 ret = read_rom(device, generation, i, &rom[i]);
530 if (ret != RCODE_COMPLETE)
531 goto out;
532 /*
533 * As per IEEE1212 7.2, during initialization, devices can
534 * reply with a 0 for the first quadlet of the config
535 * rom to indicate that they are booting (for example,
536 * if the firmware is on the disk of a external
537 * harddisk). In that case we just fail, and the
538 * retry mechanism will try again later.
539 */
540 if (i == 0 && rom[i] == 0) {
541 ret = RCODE_BUSY;
542 goto out;
543 }
544 }
545
546 device->max_speed = device->node->max_speed;
547
548 /*
549 * Determine the speed of
550 * - devices with link speed less than PHY speed,
551 * - devices with 1394b PHY (unless only connected to 1394a PHYs),
552 * - all devices if there are 1394b repeaters.
553 * Note, we cannot use the bus info block's link_spd as starting point
554 * because some buggy firmwares set it lower than necessary and because
555 * 1394-1995 nodes do not have the field.
556 */
557 if ((rom[2] & 0x7) < device->max_speed ||
558 device->max_speed == SCODE_BETA ||
559 card->beta_repeaters_present) {
560 u32 dummy;
561
562 /* for S1600 and S3200 */
563 if (device->max_speed == SCODE_BETA)
564 device->max_speed = card->link_speed;
565
566 while (device->max_speed > SCODE_100) {
567 if (read_rom(device, generation, 0, &dummy) ==
568 RCODE_COMPLETE)
569 break;
570 device->max_speed--;
571 }
572 }
573
574 /*
575 * Now parse the config rom. The config rom is a recursive
576 * directory structure so we parse it using a stack of
577 * references to the blocks that make up the structure. We
578 * push a reference to the root directory on the stack to
579 * start things off.
580 */
581 length = i;
582 sp = 0;
583 stack[sp++] = 0xc0000005;
584 while (sp > 0) {
585 /*
586 * Pop the next block reference of the stack. The
587 * lower 24 bits is the offset into the config rom,
588 * the upper 8 bits are the type of the reference the
589 * block.
590 */
591 key = stack[--sp];
592 i = key & 0xffffff;
593 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
594 ret = -ENXIO;
595 goto out;
596 }
597
598 /* Read header quadlet for the block to get the length. */
599 ret = read_rom(device, generation, i, &rom[i]);
600 if (ret != RCODE_COMPLETE)
601 goto out;
602 end = i + (rom[i] >> 16) + 1;
603 if (end > MAX_CONFIG_ROM_SIZE) {
604 /*
605 * This block extends outside the config ROM which is
606 * a firmware bug. Ignore this whole block, i.e.
607 * simply set a fake block length of 0.
608 */
609 fw_err(card, "skipped invalid ROM block %x at %llx\n",
610 rom[i],
611 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
612 rom[i] = 0;
613 end = i;
614 }
615 i++;
616
617 /*
618 * Now read in the block. If this is a directory
619 * block, check the entries as we read them to see if
620 * it references another block, and push it in that case.
621 */
622 for (; i < end; i++) {
623 ret = read_rom(device, generation, i, &rom[i]);
624 if (ret != RCODE_COMPLETE)
625 goto out;
626
627 if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
628 continue;
629 /*
630 * Offset points outside the ROM. May be a firmware
631 * bug or an Extended ROM entry (IEEE 1212-2001 clause
632 * 7.7.18). Simply overwrite this pointer here by a
633 * fake immediate entry so that later iterators over
634 * the ROM don't have to check offsets all the time.
635 */
636 if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
637 fw_err(card,
638 "skipped unsupported ROM entry %x at %llx\n",
639 rom[i],
640 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
641 rom[i] = 0;
642 continue;
643 }
644 stack[sp++] = i + rom[i];
645 }
646 if (length < i)
647 length = i;
648 }
649
650 old_rom = device->config_rom;
651 new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
652 if (new_rom == NULL) {
653 ret = -ENOMEM;
654 goto out;
655 }
656
657 down_write(&fw_device_rwsem);
658 device->config_rom = new_rom;
659 device->config_rom_length = length;
660 up_write(&fw_device_rwsem);
661
662 kfree(old_rom);
663 ret = RCODE_COMPLETE;
664 device->max_rec = rom[2] >> 12 & 0xf;
665 device->cmc = rom[2] >> 30 & 1;
666 device->irmc = rom[2] >> 31 & 1;
667 out:
668 kfree(rom);
669
670 return ret;
671}
672
673static void fw_unit_release(struct device *dev)
674{
675 struct fw_unit *unit = fw_unit(dev);
676
677 fw_device_put(fw_parent_device(unit));
678 kfree(unit);
679}
680
681static struct device_type fw_unit_type = {
682 .uevent = fw_unit_uevent,
683 .release = fw_unit_release,
684};
685
686static bool is_fw_unit(struct device *dev)
687{
688 return dev->type == &fw_unit_type;
689}
690
691static void create_units(struct fw_device *device)
692{
693 struct fw_csr_iterator ci;
694 struct fw_unit *unit;
695 int key, value, i;
696
697 i = 0;
698 fw_csr_iterator_init(&ci, &device->config_rom[5]);
699 while (fw_csr_iterator_next(&ci, &key, &value)) {
700 if (key != (CSR_UNIT | CSR_DIRECTORY))
701 continue;
702
703 /*
704 * Get the address of the unit directory and try to
705 * match the drivers id_tables against it.
706 */
707 unit = kzalloc(sizeof(*unit), GFP_KERNEL);
708 if (unit == NULL)
709 continue;
710
711 unit->directory = ci.p + value - 1;
712 unit->device.bus = &fw_bus_type;
713 unit->device.type = &fw_unit_type;
714 unit->device.parent = &device->device;
715 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
716
717 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
718 ARRAY_SIZE(fw_unit_attributes) +
719 ARRAY_SIZE(config_rom_attributes));
720 init_fw_attribute_group(&unit->device,
721 fw_unit_attributes,
722 &unit->attribute_group);
723
724 if (device_register(&unit->device) < 0)
725 goto skip_unit;
726
727 fw_device_get(device);
728 continue;
729
730 skip_unit:
731 kfree(unit);
732 }
733}
734
735static int shutdown_unit(struct device *device, void *data)
736{
737 device_unregister(device);
738
739 return 0;
740}
741
742/*
743 * fw_device_rwsem acts as dual purpose mutex:
744 * - serializes accesses to fw_device_idr,
745 * - serializes accesses to fw_device.config_rom/.config_rom_length and
746 * fw_unit.directory, unless those accesses happen at safe occasions
747 */
748DECLARE_RWSEM(fw_device_rwsem);
749
750DEFINE_IDR(fw_device_idr);
751int fw_cdev_major;
752
753struct fw_device *fw_device_get_by_devt(dev_t devt)
754{
755 struct fw_device *device;
756
757 down_read(&fw_device_rwsem);
758 device = idr_find(&fw_device_idr, MINOR(devt));
759 if (device)
760 fw_device_get(device);
761 up_read(&fw_device_rwsem);
762
763 return device;
764}
765
766struct workqueue_struct *fw_workqueue;
767EXPORT_SYMBOL(fw_workqueue);
768
769static void fw_schedule_device_work(struct fw_device *device,
770 unsigned long delay)
771{
772 queue_delayed_work(fw_workqueue, &device->work, delay);
773}
774
775/*
776 * These defines control the retry behavior for reading the config
777 * rom. It shouldn't be necessary to tweak these; if the device
778 * doesn't respond to a config rom read within 10 seconds, it's not
779 * going to respond at all. As for the initial delay, a lot of
780 * devices will be able to respond within half a second after bus
781 * reset. On the other hand, it's not really worth being more
782 * aggressive than that, since it scales pretty well; if 10 devices
783 * are plugged in, they're all getting read within one second.
784 */
785
786#define MAX_RETRIES 10
787#define RETRY_DELAY (3 * HZ)
788#define INITIAL_DELAY (HZ / 2)
789#define SHUTDOWN_DELAY (2 * HZ)
790
791static void fw_device_shutdown(struct work_struct *work)
792{
793 struct fw_device *device =
794 container_of(work, struct fw_device, work.work);
795 int minor = MINOR(device->device.devt);
796
797 if (time_before64(get_jiffies_64(),
798 device->card->reset_jiffies + SHUTDOWN_DELAY)
799 && !list_empty(&device->card->link)) {
800 fw_schedule_device_work(device, SHUTDOWN_DELAY);
801 return;
802 }
803
804 if (atomic_cmpxchg(&device->state,
805 FW_DEVICE_GONE,
806 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
807 return;
808
809 fw_device_cdev_remove(device);
810 device_for_each_child(&device->device, NULL, shutdown_unit);
811 device_unregister(&device->device);
812
813 down_write(&fw_device_rwsem);
814 idr_remove(&fw_device_idr, minor);
815 up_write(&fw_device_rwsem);
816
817 fw_device_put(device);
818}
819
820static void fw_device_release(struct device *dev)
821{
822 struct fw_device *device = fw_device(dev);
823 struct fw_card *card = device->card;
824 unsigned long flags;
825
826 /*
827 * Take the card lock so we don't set this to NULL while a
828 * FW_NODE_UPDATED callback is being handled or while the
829 * bus manager work looks at this node.
830 */
831 spin_lock_irqsave(&card->lock, flags);
832 device->node->data = NULL;
833 spin_unlock_irqrestore(&card->lock, flags);
834
835 fw_node_put(device->node);
836 kfree(device->config_rom);
837 kfree(device);
838 fw_card_put(card);
839}
840
841static struct device_type fw_device_type = {
842 .release = fw_device_release,
843};
844
845static bool is_fw_device(struct device *dev)
846{
847 return dev->type == &fw_device_type;
848}
849
850static int update_unit(struct device *dev, void *data)
851{
852 struct fw_unit *unit = fw_unit(dev);
853 struct fw_driver *driver = (struct fw_driver *)dev->driver;
854
855 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
856 device_lock(dev);
857 driver->update(unit);
858 device_unlock(dev);
859 }
860
861 return 0;
862}
863
864static void fw_device_update(struct work_struct *work)
865{
866 struct fw_device *device =
867 container_of(work, struct fw_device, work.work);
868
869 fw_device_cdev_update(device);
870 device_for_each_child(&device->device, NULL, update_unit);
871}
872
873/*
874 * If a device was pending for deletion because its node went away but its
875 * bus info block and root directory header matches that of a newly discovered
876 * device, revive the existing fw_device.
877 * The newly allocated fw_device becomes obsolete instead.
878 */
879static int lookup_existing_device(struct device *dev, void *data)
880{
881 struct fw_device *old = fw_device(dev);
882 struct fw_device *new = data;
883 struct fw_card *card = new->card;
884 int match = 0;
885
886 if (!is_fw_device(dev))
887 return 0;
888
889 down_read(&fw_device_rwsem); /* serialize config_rom access */
890 spin_lock_irq(&card->lock); /* serialize node access */
891
892 if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
893 atomic_cmpxchg(&old->state,
894 FW_DEVICE_GONE,
895 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
896 struct fw_node *current_node = new->node;
897 struct fw_node *obsolete_node = old->node;
898
899 new->node = obsolete_node;
900 new->node->data = new;
901 old->node = current_node;
902 old->node->data = old;
903
904 old->max_speed = new->max_speed;
905 old->node_id = current_node->node_id;
906 smp_wmb(); /* update node_id before generation */
907 old->generation = card->generation;
908 old->config_rom_retries = 0;
909 fw_notice(card, "rediscovered device %s\n", dev_name(dev));
910
911 old->workfn = fw_device_update;
912 fw_schedule_device_work(old, 0);
913
914 if (current_node == card->root_node)
915 fw_schedule_bm_work(card, 0);
916
917 match = 1;
918 }
919
920 spin_unlock_irq(&card->lock);
921 up_read(&fw_device_rwsem);
922
923 return match;
924}
925
926enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
927
928static void set_broadcast_channel(struct fw_device *device, int generation)
929{
930 struct fw_card *card = device->card;
931 __be32 data;
932 int rcode;
933
934 if (!card->broadcast_channel_allocated)
935 return;
936
937 /*
938 * The Broadcast_Channel Valid bit is required by nodes which want to
939 * transmit on this channel. Such transmissions are practically
940 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required
941 * to be IRM capable and have a max_rec of 8 or more. We use this fact
942 * to narrow down to which nodes we send Broadcast_Channel updates.
943 */
944 if (!device->irmc || device->max_rec < 8)
945 return;
946
947 /*
948 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
949 * Perform a read test first.
950 */
951 if (device->bc_implemented == BC_UNKNOWN) {
952 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
953 device->node_id, generation, device->max_speed,
954 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
955 &data, 4);
956 switch (rcode) {
957 case RCODE_COMPLETE:
958 if (data & cpu_to_be32(1 << 31)) {
959 device->bc_implemented = BC_IMPLEMENTED;
960 break;
961 }
962 fallthrough; /* to case address error */
963 case RCODE_ADDRESS_ERROR:
964 device->bc_implemented = BC_UNIMPLEMENTED;
965 }
966 }
967
968 if (device->bc_implemented == BC_IMPLEMENTED) {
969 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
970 BROADCAST_CHANNEL_VALID);
971 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
972 device->node_id, generation, device->max_speed,
973 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
974 &data, 4);
975 }
976}
977
978int fw_device_set_broadcast_channel(struct device *dev, void *gen)
979{
980 if (is_fw_device(dev))
981 set_broadcast_channel(fw_device(dev), (long)gen);
982
983 return 0;
984}
985
986static void fw_device_init(struct work_struct *work)
987{
988 struct fw_device *device =
989 container_of(work, struct fw_device, work.work);
990 struct fw_card *card = device->card;
991 struct device *revived_dev;
992 int minor, ret;
993
994 /*
995 * All failure paths here set node->data to NULL, so that we
996 * don't try to do device_for_each_child() on a kfree()'d
997 * device.
998 */
999
1000 ret = read_config_rom(device, device->generation);
1001 if (ret != RCODE_COMPLETE) {
1002 if (device->config_rom_retries < MAX_RETRIES &&
1003 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1004 device->config_rom_retries++;
1005 fw_schedule_device_work(device, RETRY_DELAY);
1006 } else {
1007 if (device->node->link_on)
1008 fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
1009 device->node_id,
1010 fw_rcode_string(ret));
1011 if (device->node == card->root_node)
1012 fw_schedule_bm_work(card, 0);
1013 fw_device_release(&device->device);
1014 }
1015 return;
1016 }
1017
1018 revived_dev = device_find_child(card->device,
1019 device, lookup_existing_device);
1020 if (revived_dev) {
1021 put_device(revived_dev);
1022 fw_device_release(&device->device);
1023
1024 return;
1025 }
1026
1027 device_initialize(&device->device);
1028
1029 fw_device_get(device);
1030 down_write(&fw_device_rwsem);
1031 minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS,
1032 GFP_KERNEL);
1033 up_write(&fw_device_rwsem);
1034
1035 if (minor < 0)
1036 goto error;
1037
1038 device->device.bus = &fw_bus_type;
1039 device->device.type = &fw_device_type;
1040 device->device.parent = card->device;
1041 device->device.devt = MKDEV(fw_cdev_major, minor);
1042 dev_set_name(&device->device, "fw%d", minor);
1043
1044 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1045 ARRAY_SIZE(fw_device_attributes) +
1046 ARRAY_SIZE(config_rom_attributes));
1047 init_fw_attribute_group(&device->device,
1048 fw_device_attributes,
1049 &device->attribute_group);
1050
1051 if (device_add(&device->device)) {
1052 fw_err(card, "failed to add device\n");
1053 goto error_with_cdev;
1054 }
1055
1056 create_units(device);
1057
1058 /*
1059 * Transition the device to running state. If it got pulled
1060 * out from under us while we did the initialization work, we
1061 * have to shut down the device again here. Normally, though,
1062 * fw_node_event will be responsible for shutting it down when
1063 * necessary. We have to use the atomic cmpxchg here to avoid
1064 * racing with the FW_NODE_DESTROYED case in
1065 * fw_node_event().
1066 */
1067 if (atomic_cmpxchg(&device->state,
1068 FW_DEVICE_INITIALIZING,
1069 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1070 device->workfn = fw_device_shutdown;
1071 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1072 } else {
1073 fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1074 dev_name(&device->device),
1075 device->config_rom[3], device->config_rom[4],
1076 1 << device->max_speed);
1077 device->config_rom_retries = 0;
1078
1079 set_broadcast_channel(device, device->generation);
1080
1081 add_device_randomness(&device->config_rom[3], 8);
1082 }
1083
1084 /*
1085 * Reschedule the IRM work if we just finished reading the
1086 * root node config rom. If this races with a bus reset we
1087 * just end up running the IRM work a couple of extra times -
1088 * pretty harmless.
1089 */
1090 if (device->node == card->root_node)
1091 fw_schedule_bm_work(card, 0);
1092
1093 return;
1094
1095 error_with_cdev:
1096 down_write(&fw_device_rwsem);
1097 idr_remove(&fw_device_idr, minor);
1098 up_write(&fw_device_rwsem);
1099 error:
1100 fw_device_put(device); /* fw_device_idr's reference */
1101
1102 put_device(&device->device); /* our reference */
1103}
1104
1105/* Reread and compare bus info block and header of root directory */
1106static int reread_config_rom(struct fw_device *device, int generation,
1107 bool *changed)
1108{
1109 u32 q;
1110 int i, rcode;
1111
1112 for (i = 0; i < 6; i++) {
1113 rcode = read_rom(device, generation, i, &q);
1114 if (rcode != RCODE_COMPLETE)
1115 return rcode;
1116
1117 if (i == 0 && q == 0)
1118 /* inaccessible (see read_config_rom); retry later */
1119 return RCODE_BUSY;
1120
1121 if (q != device->config_rom[i]) {
1122 *changed = true;
1123 return RCODE_COMPLETE;
1124 }
1125 }
1126
1127 *changed = false;
1128 return RCODE_COMPLETE;
1129}
1130
1131static void fw_device_refresh(struct work_struct *work)
1132{
1133 struct fw_device *device =
1134 container_of(work, struct fw_device, work.work);
1135 struct fw_card *card = device->card;
1136 int ret, node_id = device->node_id;
1137 bool changed;
1138
1139 ret = reread_config_rom(device, device->generation, &changed);
1140 if (ret != RCODE_COMPLETE)
1141 goto failed_config_rom;
1142
1143 if (!changed) {
1144 if (atomic_cmpxchg(&device->state,
1145 FW_DEVICE_INITIALIZING,
1146 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1147 goto gone;
1148
1149 fw_device_update(work);
1150 device->config_rom_retries = 0;
1151 goto out;
1152 }
1153
1154 /*
1155 * Something changed. We keep things simple and don't investigate
1156 * further. We just destroy all previous units and create new ones.
1157 */
1158 device_for_each_child(&device->device, NULL, shutdown_unit);
1159
1160 ret = read_config_rom(device, device->generation);
1161 if (ret != RCODE_COMPLETE)
1162 goto failed_config_rom;
1163
1164 fw_device_cdev_update(device);
1165 create_units(device);
1166
1167 /* Userspace may want to re-read attributes. */
1168 kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1169
1170 if (atomic_cmpxchg(&device->state,
1171 FW_DEVICE_INITIALIZING,
1172 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1173 goto gone;
1174
1175 fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1176 device->config_rom_retries = 0;
1177 goto out;
1178
1179 failed_config_rom:
1180 if (device->config_rom_retries < MAX_RETRIES &&
1181 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1182 device->config_rom_retries++;
1183 fw_schedule_device_work(device, RETRY_DELAY);
1184 return;
1185 }
1186
1187 fw_notice(card, "giving up on refresh of device %s: %s\n",
1188 dev_name(&device->device), fw_rcode_string(ret));
1189 gone:
1190 atomic_set(&device->state, FW_DEVICE_GONE);
1191 device->workfn = fw_device_shutdown;
1192 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1193 out:
1194 if (node_id == card->root_node->node_id)
1195 fw_schedule_bm_work(card, 0);
1196}
1197
1198static void fw_device_workfn(struct work_struct *work)
1199{
1200 struct fw_device *device = container_of(to_delayed_work(work),
1201 struct fw_device, work);
1202 device->workfn(work);
1203}
1204
1205void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1206{
1207 struct fw_device *device;
1208
1209 switch (event) {
1210 case FW_NODE_CREATED:
1211 /*
1212 * Attempt to scan the node, regardless whether its self ID has
1213 * the L (link active) flag set or not. Some broken devices
1214 * send L=0 but have an up-and-running link; others send L=1
1215 * without actually having a link.
1216 */
1217 create:
1218 device = kzalloc(sizeof(*device), GFP_ATOMIC);
1219 if (device == NULL)
1220 break;
1221
1222 /*
1223 * Do minimal initialization of the device here, the
1224 * rest will happen in fw_device_init().
1225 *
1226 * Attention: A lot of things, even fw_device_get(),
1227 * cannot be done before fw_device_init() finished!
1228 * You can basically just check device->state and
1229 * schedule work until then, but only while holding
1230 * card->lock.
1231 */
1232 atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1233 device->card = fw_card_get(card);
1234 device->node = fw_node_get(node);
1235 device->node_id = node->node_id;
1236 device->generation = card->generation;
1237 device->is_local = node == card->local_node;
1238 mutex_init(&device->client_list_mutex);
1239 INIT_LIST_HEAD(&device->client_list);
1240
1241 /*
1242 * Set the node data to point back to this device so
1243 * FW_NODE_UPDATED callbacks can update the node_id
1244 * and generation for the device.
1245 */
1246 node->data = device;
1247
1248 /*
1249 * Many devices are slow to respond after bus resets,
1250 * especially if they are bus powered and go through
1251 * power-up after getting plugged in. We schedule the
1252 * first config rom scan half a second after bus reset.
1253 */
1254 device->workfn = fw_device_init;
1255 INIT_DELAYED_WORK(&device->work, fw_device_workfn);
1256 fw_schedule_device_work(device, INITIAL_DELAY);
1257 break;
1258
1259 case FW_NODE_INITIATED_RESET:
1260 case FW_NODE_LINK_ON:
1261 device = node->data;
1262 if (device == NULL)
1263 goto create;
1264
1265 device->node_id = node->node_id;
1266 smp_wmb(); /* update node_id before generation */
1267 device->generation = card->generation;
1268 if (atomic_cmpxchg(&device->state,
1269 FW_DEVICE_RUNNING,
1270 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1271 device->workfn = fw_device_refresh;
1272 fw_schedule_device_work(device,
1273 device->is_local ? 0 : INITIAL_DELAY);
1274 }
1275 break;
1276
1277 case FW_NODE_UPDATED:
1278 device = node->data;
1279 if (device == NULL)
1280 break;
1281
1282 device->node_id = node->node_id;
1283 smp_wmb(); /* update node_id before generation */
1284 device->generation = card->generation;
1285 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1286 device->workfn = fw_device_update;
1287 fw_schedule_device_work(device, 0);
1288 }
1289 break;
1290
1291 case FW_NODE_DESTROYED:
1292 case FW_NODE_LINK_OFF:
1293 if (!node->data)
1294 break;
1295
1296 /*
1297 * Destroy the device associated with the node. There
1298 * are two cases here: either the device is fully
1299 * initialized (FW_DEVICE_RUNNING) or we're in the
1300 * process of reading its config rom
1301 * (FW_DEVICE_INITIALIZING). If it is fully
1302 * initialized we can reuse device->work to schedule a
1303 * full fw_device_shutdown(). If not, there's work
1304 * scheduled to read it's config rom, and we just put
1305 * the device in shutdown state to have that code fail
1306 * to create the device.
1307 */
1308 device = node->data;
1309 if (atomic_xchg(&device->state,
1310 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1311 device->workfn = fw_device_shutdown;
1312 fw_schedule_device_work(device,
1313 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1314 }
1315 break;
1316 }
1317}