Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Device probing and sysfs code.
   4 *
   5 * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/bug.h>
   9#include <linux/ctype.h>
  10#include <linux/delay.h>
  11#include <linux/device.h>
  12#include <linux/errno.h>
  13#include <linux/firewire.h>
  14#include <linux/firewire-constants.h>
  15#include <linux/idr.h>
  16#include <linux/jiffies.h>
  17#include <linux/kobject.h>
  18#include <linux/list.h>
  19#include <linux/mod_devicetable.h>
  20#include <linux/module.h>
  21#include <linux/mutex.h>
  22#include <linux/random.h>
  23#include <linux/rwsem.h>
  24#include <linux/slab.h>
  25#include <linux/spinlock.h>
  26#include <linux/string.h>
  27#include <linux/workqueue.h>
  28
  29#include <linux/atomic.h>
  30#include <asm/byteorder.h>
  31
  32#include "core.h"
  33
  34void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
  35{
  36	ci->p = p + 1;
  37	ci->end = ci->p + (p[0] >> 16);
  38}
  39EXPORT_SYMBOL(fw_csr_iterator_init);
  40
  41int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
  42{
  43	*key = *ci->p >> 24;
  44	*value = *ci->p & 0xffffff;
  45
  46	return ci->p++ < ci->end;
  47}
  48EXPORT_SYMBOL(fw_csr_iterator_next);
  49
  50static const u32 *search_leaf(const u32 *directory, int search_key)
  51{
  52	struct fw_csr_iterator ci;
  53	int last_key = 0, key, value;
  54
  55	fw_csr_iterator_init(&ci, directory);
  56	while (fw_csr_iterator_next(&ci, &key, &value)) {
  57		if (last_key == search_key &&
  58		    key == (CSR_DESCRIPTOR | CSR_LEAF))
  59			return ci.p - 1 + value;
  60
  61		last_key = key;
  62	}
  63
  64	return NULL;
  65}
  66
  67static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
  68{
  69	unsigned int quadlets, i;
  70	char c;
  71
  72	if (!size || !buf)
  73		return -EINVAL;
  74
  75	quadlets = min(block[0] >> 16, 256U);
  76	if (quadlets < 2)
  77		return -ENODATA;
  78
  79	if (block[1] != 0 || block[2] != 0)
  80		/* unknown language/character set */
  81		return -ENODATA;
  82
  83	block += 3;
  84	quadlets -= 2;
  85	for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
  86		c = block[i / 4] >> (24 - 8 * (i % 4));
  87		if (c == '\0')
  88			break;
  89		buf[i] = c;
  90	}
  91	buf[i] = '\0';
  92
  93	return i;
  94}
  95
  96/**
  97 * fw_csr_string() - reads a string from the configuration ROM
  98 * @directory:	e.g. root directory or unit directory
  99 * @key:	the key of the preceding directory entry
 100 * @buf:	where to put the string
 101 * @size:	size of @buf, in bytes
 102 *
 103 * The string is taken from a minimal ASCII text descriptor leaf after
 104 * the immediate entry with @key.  The string is zero-terminated.
 105 * An overlong string is silently truncated such that it and the
 106 * zero byte fit into @size.
 107 *
 108 * Returns strlen(buf) or a negative error code.
 109 */
 110int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
 111{
 112	const u32 *leaf = search_leaf(directory, key);
 113	if (!leaf)
 114		return -ENOENT;
 115
 116	return textual_leaf_to_string(leaf, buf, size);
 117}
 118EXPORT_SYMBOL(fw_csr_string);
 119
 120static void get_ids(const u32 *directory, int *id)
 121{
 122	struct fw_csr_iterator ci;
 123	int key, value;
 124
 125	fw_csr_iterator_init(&ci, directory);
 126	while (fw_csr_iterator_next(&ci, &key, &value)) {
 127		switch (key) {
 128		case CSR_VENDOR:	id[0] = value; break;
 129		case CSR_MODEL:		id[1] = value; break;
 130		case CSR_SPECIFIER_ID:	id[2] = value; break;
 131		case CSR_VERSION:	id[3] = value; break;
 132		}
 133	}
 134}
 135
 136static void get_modalias_ids(struct fw_unit *unit, int *id)
 137{
 138	get_ids(&fw_parent_device(unit)->config_rom[5], id);
 139	get_ids(unit->directory, id);
 140}
 141
 142static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
 143{
 144	int match = 0;
 145
 146	if (id[0] == id_table->vendor_id)
 147		match |= IEEE1394_MATCH_VENDOR_ID;
 148	if (id[1] == id_table->model_id)
 149		match |= IEEE1394_MATCH_MODEL_ID;
 150	if (id[2] == id_table->specifier_id)
 151		match |= IEEE1394_MATCH_SPECIFIER_ID;
 152	if (id[3] == id_table->version)
 153		match |= IEEE1394_MATCH_VERSION;
 154
 155	return (match & id_table->match_flags) == id_table->match_flags;
 156}
 157
 158static const struct ieee1394_device_id *unit_match(struct device *dev,
 159						   struct device_driver *drv)
 160{
 161	const struct ieee1394_device_id *id_table =
 162			container_of(drv, struct fw_driver, driver)->id_table;
 163	int id[] = {0, 0, 0, 0};
 164
 165	get_modalias_ids(fw_unit(dev), id);
 166
 167	for (; id_table->match_flags != 0; id_table++)
 168		if (match_ids(id_table, id))
 169			return id_table;
 170
 171	return NULL;
 172}
 173
 174static bool is_fw_unit(struct device *dev);
 175
 176static int fw_unit_match(struct device *dev, struct device_driver *drv)
 177{
 178	/* We only allow binding to fw_units. */
 179	return is_fw_unit(dev) && unit_match(dev, drv) != NULL;
 180}
 181
 182static int fw_unit_probe(struct device *dev)
 183{
 184	struct fw_driver *driver =
 185			container_of(dev->driver, struct fw_driver, driver);
 186
 187	return driver->probe(fw_unit(dev), unit_match(dev, dev->driver));
 188}
 189
 190static int fw_unit_remove(struct device *dev)
 191{
 192	struct fw_driver *driver =
 193			container_of(dev->driver, struct fw_driver, driver);
 194
 195	return driver->remove(fw_unit(dev)), 0;
 196}
 197
 198static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
 199{
 200	int id[] = {0, 0, 0, 0};
 201
 202	get_modalias_ids(unit, id);
 203
 204	return snprintf(buffer, buffer_size,
 205			"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
 206			id[0], id[1], id[2], id[3]);
 207}
 208
 209static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
 210{
 211	struct fw_unit *unit = fw_unit(dev);
 212	char modalias[64];
 213
 214	get_modalias(unit, modalias, sizeof(modalias));
 215
 216	if (add_uevent_var(env, "MODALIAS=%s", modalias))
 217		return -ENOMEM;
 218
 219	return 0;
 220}
 221
 222struct bus_type fw_bus_type = {
 223	.name = "firewire",
 224	.match = fw_unit_match,
 225	.probe = fw_unit_probe,
 226	.remove = fw_unit_remove,
 227};
 228EXPORT_SYMBOL(fw_bus_type);
 229
 230int fw_device_enable_phys_dma(struct fw_device *device)
 231{
 232	int generation = device->generation;
 233
 234	/* device->node_id, accessed below, must not be older than generation */
 235	smp_rmb();
 236
 237	return device->card->driver->enable_phys_dma(device->card,
 238						     device->node_id,
 239						     generation);
 240}
 241EXPORT_SYMBOL(fw_device_enable_phys_dma);
 242
 243struct config_rom_attribute {
 244	struct device_attribute attr;
 245	u32 key;
 246};
 247
 248static ssize_t show_immediate(struct device *dev,
 249			      struct device_attribute *dattr, char *buf)
 250{
 251	struct config_rom_attribute *attr =
 252		container_of(dattr, struct config_rom_attribute, attr);
 253	struct fw_csr_iterator ci;
 254	const u32 *dir;
 255	int key, value, ret = -ENOENT;
 256
 257	down_read(&fw_device_rwsem);
 258
 259	if (is_fw_unit(dev))
 260		dir = fw_unit(dev)->directory;
 261	else
 262		dir = fw_device(dev)->config_rom + 5;
 263
 264	fw_csr_iterator_init(&ci, dir);
 265	while (fw_csr_iterator_next(&ci, &key, &value))
 266		if (attr->key == key) {
 267			ret = snprintf(buf, buf ? PAGE_SIZE : 0,
 268				       "0x%06x\n", value);
 269			break;
 270		}
 271
 272	up_read(&fw_device_rwsem);
 273
 274	return ret;
 275}
 276
 277#define IMMEDIATE_ATTR(name, key)				\
 278	{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }
 279
 280static ssize_t show_text_leaf(struct device *dev,
 281			      struct device_attribute *dattr, char *buf)
 282{
 283	struct config_rom_attribute *attr =
 284		container_of(dattr, struct config_rom_attribute, attr);
 285	const u32 *dir;
 286	size_t bufsize;
 287	char dummy_buf[2];
 288	int ret;
 289
 290	down_read(&fw_device_rwsem);
 291
 292	if (is_fw_unit(dev))
 293		dir = fw_unit(dev)->directory;
 294	else
 295		dir = fw_device(dev)->config_rom + 5;
 296
 297	if (buf) {
 298		bufsize = PAGE_SIZE - 1;
 299	} else {
 300		buf = dummy_buf;
 301		bufsize = 1;
 302	}
 303
 304	ret = fw_csr_string(dir, attr->key, buf, bufsize);
 305
 306	if (ret >= 0) {
 307		/* Strip trailing whitespace and add newline. */
 308		while (ret > 0 && isspace(buf[ret - 1]))
 309			ret--;
 310		strcpy(buf + ret, "\n");
 311		ret++;
 312	}
 313
 314	up_read(&fw_device_rwsem);
 315
 316	return ret;
 317}
 318
 319#define TEXT_LEAF_ATTR(name, key)				\
 320	{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
 321
 322static struct config_rom_attribute config_rom_attributes[] = {
 323	IMMEDIATE_ATTR(vendor, CSR_VENDOR),
 324	IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
 325	IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
 326	IMMEDIATE_ATTR(version, CSR_VERSION),
 327	IMMEDIATE_ATTR(model, CSR_MODEL),
 328	TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
 329	TEXT_LEAF_ATTR(model_name, CSR_MODEL),
 330	TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
 331};
 332
 333static void init_fw_attribute_group(struct device *dev,
 334				    struct device_attribute *attrs,
 335				    struct fw_attribute_group *group)
 336{
 337	struct device_attribute *attr;
 338	int i, j;
 339
 340	for (j = 0; attrs[j].attr.name != NULL; j++)
 341		group->attrs[j] = &attrs[j].attr;
 342
 343	for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
 344		attr = &config_rom_attributes[i].attr;
 345		if (attr->show(dev, attr, NULL) < 0)
 346			continue;
 347		group->attrs[j++] = &attr->attr;
 348	}
 349
 350	group->attrs[j] = NULL;
 351	group->groups[0] = &group->group;
 352	group->groups[1] = NULL;
 353	group->group.attrs = group->attrs;
 354	dev->groups = (const struct attribute_group **) group->groups;
 355}
 356
 357static ssize_t modalias_show(struct device *dev,
 358			     struct device_attribute *attr, char *buf)
 359{
 360	struct fw_unit *unit = fw_unit(dev);
 361	int length;
 362
 363	length = get_modalias(unit, buf, PAGE_SIZE);
 364	strcpy(buf + length, "\n");
 365
 366	return length + 1;
 367}
 368
 369static ssize_t rom_index_show(struct device *dev,
 370			      struct device_attribute *attr, char *buf)
 371{
 372	struct fw_device *device = fw_device(dev->parent);
 373	struct fw_unit *unit = fw_unit(dev);
 374
 375	return snprintf(buf, PAGE_SIZE, "%d\n",
 376			(int)(unit->directory - device->config_rom));
 377}
 378
 379static struct device_attribute fw_unit_attributes[] = {
 380	__ATTR_RO(modalias),
 381	__ATTR_RO(rom_index),
 382	__ATTR_NULL,
 383};
 384
 385static ssize_t config_rom_show(struct device *dev,
 386			       struct device_attribute *attr, char *buf)
 387{
 388	struct fw_device *device = fw_device(dev);
 389	size_t length;
 390
 391	down_read(&fw_device_rwsem);
 392	length = device->config_rom_length * 4;
 393	memcpy(buf, device->config_rom, length);
 394	up_read(&fw_device_rwsem);
 395
 396	return length;
 397}
 398
 399static ssize_t guid_show(struct device *dev,
 400			 struct device_attribute *attr, char *buf)
 401{
 402	struct fw_device *device = fw_device(dev);
 403	int ret;
 404
 405	down_read(&fw_device_rwsem);
 406	ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
 407		       device->config_rom[3], device->config_rom[4]);
 408	up_read(&fw_device_rwsem);
 409
 410	return ret;
 411}
 412
 413static ssize_t is_local_show(struct device *dev,
 414			     struct device_attribute *attr, char *buf)
 415{
 416	struct fw_device *device = fw_device(dev);
 417
 418	return sprintf(buf, "%u\n", device->is_local);
 419}
 420
 421static int units_sprintf(char *buf, const u32 *directory)
 422{
 423	struct fw_csr_iterator ci;
 424	int key, value;
 425	int specifier_id = 0;
 426	int version = 0;
 427
 428	fw_csr_iterator_init(&ci, directory);
 429	while (fw_csr_iterator_next(&ci, &key, &value)) {
 430		switch (key) {
 431		case CSR_SPECIFIER_ID:
 432			specifier_id = value;
 433			break;
 434		case CSR_VERSION:
 435			version = value;
 436			break;
 437		}
 438	}
 439
 440	return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
 441}
 442
 443static ssize_t units_show(struct device *dev,
 444			  struct device_attribute *attr, char *buf)
 445{
 446	struct fw_device *device = fw_device(dev);
 447	struct fw_csr_iterator ci;
 448	int key, value, i = 0;
 449
 450	down_read(&fw_device_rwsem);
 451	fw_csr_iterator_init(&ci, &device->config_rom[5]);
 452	while (fw_csr_iterator_next(&ci, &key, &value)) {
 453		if (key != (CSR_UNIT | CSR_DIRECTORY))
 454			continue;
 455		i += units_sprintf(&buf[i], ci.p + value - 1);
 456		if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
 457			break;
 458	}
 459	up_read(&fw_device_rwsem);
 460
 461	if (i)
 462		buf[i - 1] = '\n';
 463
 464	return i;
 465}
 466
 467static struct device_attribute fw_device_attributes[] = {
 468	__ATTR_RO(config_rom),
 469	__ATTR_RO(guid),
 470	__ATTR_RO(is_local),
 471	__ATTR_RO(units),
 472	__ATTR_NULL,
 473};
 474
 475static int read_rom(struct fw_device *device,
 476		    int generation, int index, u32 *data)
 477{
 478	u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
 479	int i, rcode;
 480
 481	/* device->node_id, accessed below, must not be older than generation */
 482	smp_rmb();
 483
 484	for (i = 10; i < 100; i += 10) {
 485		rcode = fw_run_transaction(device->card,
 486				TCODE_READ_QUADLET_REQUEST, device->node_id,
 487				generation, device->max_speed, offset, data, 4);
 488		if (rcode != RCODE_BUSY)
 489			break;
 490		msleep(i);
 491	}
 492	be32_to_cpus(data);
 493
 494	return rcode;
 495}
 496
 497#define MAX_CONFIG_ROM_SIZE 256
 498
 499/*
 500 * Read the bus info block, perform a speed probe, and read all of the rest of
 501 * the config ROM.  We do all this with a cached bus generation.  If the bus
 502 * generation changes under us, read_config_rom will fail and get retried.
 503 * It's better to start all over in this case because the node from which we
 504 * are reading the ROM may have changed the ROM during the reset.
 505 * Returns either a result code or a negative error code.
 506 */
 507static int read_config_rom(struct fw_device *device, int generation)
 508{
 509	struct fw_card *card = device->card;
 510	const u32 *old_rom, *new_rom;
 511	u32 *rom, *stack;
 512	u32 sp, key;
 513	int i, end, length, ret;
 514
 515	rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
 516		      sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
 517	if (rom == NULL)
 518		return -ENOMEM;
 519
 520	stack = &rom[MAX_CONFIG_ROM_SIZE];
 521	memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
 522
 523	device->max_speed = SCODE_100;
 524
 525	/* First read the bus info block. */
 526	for (i = 0; i < 5; i++) {
 527		ret = read_rom(device, generation, i, &rom[i]);
 528		if (ret != RCODE_COMPLETE)
 529			goto out;
 530		/*
 531		 * As per IEEE1212 7.2, during initialization, devices can
 532		 * reply with a 0 for the first quadlet of the config
 533		 * rom to indicate that they are booting (for example,
 534		 * if the firmware is on the disk of a external
 535		 * harddisk).  In that case we just fail, and the
 536		 * retry mechanism will try again later.
 537		 */
 538		if (i == 0 && rom[i] == 0) {
 539			ret = RCODE_BUSY;
 540			goto out;
 541		}
 542	}
 543
 544	device->max_speed = device->node->max_speed;
 545
 546	/*
 547	 * Determine the speed of
 548	 *   - devices with link speed less than PHY speed,
 549	 *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
 550	 *   - all devices if there are 1394b repeaters.
 551	 * Note, we cannot use the bus info block's link_spd as starting point
 552	 * because some buggy firmwares set it lower than necessary and because
 553	 * 1394-1995 nodes do not have the field.
 554	 */
 555	if ((rom[2] & 0x7) < device->max_speed ||
 556	    device->max_speed == SCODE_BETA ||
 557	    card->beta_repeaters_present) {
 558		u32 dummy;
 559
 560		/* for S1600 and S3200 */
 561		if (device->max_speed == SCODE_BETA)
 562			device->max_speed = card->link_speed;
 563
 564		while (device->max_speed > SCODE_100) {
 565			if (read_rom(device, generation, 0, &dummy) ==
 566			    RCODE_COMPLETE)
 567				break;
 568			device->max_speed--;
 569		}
 570	}
 571
 572	/*
 573	 * Now parse the config rom.  The config rom is a recursive
 574	 * directory structure so we parse it using a stack of
 575	 * references to the blocks that make up the structure.  We
 576	 * push a reference to the root directory on the stack to
 577	 * start things off.
 578	 */
 579	length = i;
 580	sp = 0;
 581	stack[sp++] = 0xc0000005;
 582	while (sp > 0) {
 583		/*
 584		 * Pop the next block reference of the stack.  The
 585		 * lower 24 bits is the offset into the config rom,
 586		 * the upper 8 bits are the type of the reference the
 587		 * block.
 588		 */
 589		key = stack[--sp];
 590		i = key & 0xffffff;
 591		if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
 592			ret = -ENXIO;
 593			goto out;
 594		}
 595
 596		/* Read header quadlet for the block to get the length. */
 597		ret = read_rom(device, generation, i, &rom[i]);
 598		if (ret != RCODE_COMPLETE)
 599			goto out;
 600		end = i + (rom[i] >> 16) + 1;
 601		if (end > MAX_CONFIG_ROM_SIZE) {
 602			/*
 603			 * This block extends outside the config ROM which is
 604			 * a firmware bug.  Ignore this whole block, i.e.
 605			 * simply set a fake block length of 0.
 606			 */
 607			fw_err(card, "skipped invalid ROM block %x at %llx\n",
 608			       rom[i],
 609			       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
 610			rom[i] = 0;
 611			end = i;
 612		}
 613		i++;
 614
 615		/*
 616		 * Now read in the block.  If this is a directory
 617		 * block, check the entries as we read them to see if
 618		 * it references another block, and push it in that case.
 619		 */
 620		for (; i < end; i++) {
 621			ret = read_rom(device, generation, i, &rom[i]);
 622			if (ret != RCODE_COMPLETE)
 623				goto out;
 624
 625			if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
 626				continue;
 627			/*
 628			 * Offset points outside the ROM.  May be a firmware
 629			 * bug or an Extended ROM entry (IEEE 1212-2001 clause
 630			 * 7.7.18).  Simply overwrite this pointer here by a
 631			 * fake immediate entry so that later iterators over
 632			 * the ROM don't have to check offsets all the time.
 633			 */
 634			if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
 635				fw_err(card,
 636				       "skipped unsupported ROM entry %x at %llx\n",
 637				       rom[i],
 638				       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
 639				rom[i] = 0;
 640				continue;
 641			}
 642			stack[sp++] = i + rom[i];
 643		}
 644		if (length < i)
 645			length = i;
 646	}
 647
 648	old_rom = device->config_rom;
 649	new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
 650	if (new_rom == NULL) {
 651		ret = -ENOMEM;
 652		goto out;
 653	}
 654
 655	down_write(&fw_device_rwsem);
 656	device->config_rom = new_rom;
 657	device->config_rom_length = length;
 658	up_write(&fw_device_rwsem);
 659
 660	kfree(old_rom);
 661	ret = RCODE_COMPLETE;
 662	device->max_rec	= rom[2] >> 12 & 0xf;
 663	device->cmc	= rom[2] >> 30 & 1;
 664	device->irmc	= rom[2] >> 31 & 1;
 665 out:
 666	kfree(rom);
 667
 668	return ret;
 669}
 670
 671static void fw_unit_release(struct device *dev)
 672{
 673	struct fw_unit *unit = fw_unit(dev);
 674
 675	fw_device_put(fw_parent_device(unit));
 676	kfree(unit);
 677}
 678
 679static struct device_type fw_unit_type = {
 680	.uevent		= fw_unit_uevent,
 681	.release	= fw_unit_release,
 682};
 683
 684static bool is_fw_unit(struct device *dev)
 685{
 686	return dev->type == &fw_unit_type;
 687}
 688
 689static void create_units(struct fw_device *device)
 690{
 691	struct fw_csr_iterator ci;
 692	struct fw_unit *unit;
 693	int key, value, i;
 694
 695	i = 0;
 696	fw_csr_iterator_init(&ci, &device->config_rom[5]);
 697	while (fw_csr_iterator_next(&ci, &key, &value)) {
 698		if (key != (CSR_UNIT | CSR_DIRECTORY))
 699			continue;
 700
 701		/*
 702		 * Get the address of the unit directory and try to
 703		 * match the drivers id_tables against it.
 704		 */
 705		unit = kzalloc(sizeof(*unit), GFP_KERNEL);
 706		if (unit == NULL)
 707			continue;
 708
 709		unit->directory = ci.p + value - 1;
 710		unit->device.bus = &fw_bus_type;
 711		unit->device.type = &fw_unit_type;
 712		unit->device.parent = &device->device;
 713		dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
 714
 715		BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
 716				ARRAY_SIZE(fw_unit_attributes) +
 717				ARRAY_SIZE(config_rom_attributes));
 718		init_fw_attribute_group(&unit->device,
 719					fw_unit_attributes,
 720					&unit->attribute_group);
 721
 722		if (device_register(&unit->device) < 0)
 723			goto skip_unit;
 724
 725		fw_device_get(device);
 726		continue;
 727
 728	skip_unit:
 729		kfree(unit);
 730	}
 731}
 732
 733static int shutdown_unit(struct device *device, void *data)
 734{
 735	device_unregister(device);
 736
 737	return 0;
 738}
 739
 740/*
 741 * fw_device_rwsem acts as dual purpose mutex:
 742 *   - serializes accesses to fw_device_idr,
 743 *   - serializes accesses to fw_device.config_rom/.config_rom_length and
 744 *     fw_unit.directory, unless those accesses happen at safe occasions
 745 */
 746DECLARE_RWSEM(fw_device_rwsem);
 747
 748DEFINE_IDR(fw_device_idr);
 749int fw_cdev_major;
 750
 751struct fw_device *fw_device_get_by_devt(dev_t devt)
 752{
 753	struct fw_device *device;
 754
 755	down_read(&fw_device_rwsem);
 756	device = idr_find(&fw_device_idr, MINOR(devt));
 757	if (device)
 758		fw_device_get(device);
 759	up_read(&fw_device_rwsem);
 760
 761	return device;
 762}
 763
 764struct workqueue_struct *fw_workqueue;
 765EXPORT_SYMBOL(fw_workqueue);
 766
 767static void fw_schedule_device_work(struct fw_device *device,
 768				    unsigned long delay)
 769{
 770	queue_delayed_work(fw_workqueue, &device->work, delay);
 771}
 772
 773/*
 774 * These defines control the retry behavior for reading the config
 775 * rom.  It shouldn't be necessary to tweak these; if the device
 776 * doesn't respond to a config rom read within 10 seconds, it's not
 777 * going to respond at all.  As for the initial delay, a lot of
 778 * devices will be able to respond within half a second after bus
 779 * reset.  On the other hand, it's not really worth being more
 780 * aggressive than that, since it scales pretty well; if 10 devices
 781 * are plugged in, they're all getting read within one second.
 782 */
 783
 784#define MAX_RETRIES	10
 785#define RETRY_DELAY	(3 * HZ)
 786#define INITIAL_DELAY	(HZ / 2)
 787#define SHUTDOWN_DELAY	(2 * HZ)
 788
 789static void fw_device_shutdown(struct work_struct *work)
 790{
 791	struct fw_device *device =
 792		container_of(work, struct fw_device, work.work);
 793	int minor = MINOR(device->device.devt);
 794
 795	if (time_before64(get_jiffies_64(),
 796			  device->card->reset_jiffies + SHUTDOWN_DELAY)
 797	    && !list_empty(&device->card->link)) {
 798		fw_schedule_device_work(device, SHUTDOWN_DELAY);
 799		return;
 800	}
 801
 802	if (atomic_cmpxchg(&device->state,
 803			   FW_DEVICE_GONE,
 804			   FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
 805		return;
 806
 807	fw_device_cdev_remove(device);
 808	device_for_each_child(&device->device, NULL, shutdown_unit);
 809	device_unregister(&device->device);
 810
 811	down_write(&fw_device_rwsem);
 812	idr_remove(&fw_device_idr, minor);
 813	up_write(&fw_device_rwsem);
 814
 815	fw_device_put(device);
 816}
 817
 818static void fw_device_release(struct device *dev)
 819{
 820	struct fw_device *device = fw_device(dev);
 821	struct fw_card *card = device->card;
 822	unsigned long flags;
 823
 824	/*
 825	 * Take the card lock so we don't set this to NULL while a
 826	 * FW_NODE_UPDATED callback is being handled or while the
 827	 * bus manager work looks at this node.
 828	 */
 829	spin_lock_irqsave(&card->lock, flags);
 830	device->node->data = NULL;
 831	spin_unlock_irqrestore(&card->lock, flags);
 832
 833	fw_node_put(device->node);
 834	kfree(device->config_rom);
 835	kfree(device);
 836	fw_card_put(card);
 837}
 838
 839static struct device_type fw_device_type = {
 840	.release = fw_device_release,
 841};
 842
 843static bool is_fw_device(struct device *dev)
 844{
 845	return dev->type == &fw_device_type;
 846}
 847
 848static int update_unit(struct device *dev, void *data)
 849{
 850	struct fw_unit *unit = fw_unit(dev);
 851	struct fw_driver *driver = (struct fw_driver *)dev->driver;
 852
 853	if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
 854		device_lock(dev);
 855		driver->update(unit);
 856		device_unlock(dev);
 857	}
 858
 859	return 0;
 860}
 861
 862static void fw_device_update(struct work_struct *work)
 863{
 864	struct fw_device *device =
 865		container_of(work, struct fw_device, work.work);
 866
 867	fw_device_cdev_update(device);
 868	device_for_each_child(&device->device, NULL, update_unit);
 869}
 870
 871/*
 872 * If a device was pending for deletion because its node went away but its
 873 * bus info block and root directory header matches that of a newly discovered
 874 * device, revive the existing fw_device.
 875 * The newly allocated fw_device becomes obsolete instead.
 876 */
 877static int lookup_existing_device(struct device *dev, void *data)
 878{
 879	struct fw_device *old = fw_device(dev);
 880	struct fw_device *new = data;
 881	struct fw_card *card = new->card;
 882	int match = 0;
 883
 884	if (!is_fw_device(dev))
 885		return 0;
 886
 887	down_read(&fw_device_rwsem); /* serialize config_rom access */
 888	spin_lock_irq(&card->lock);  /* serialize node access */
 889
 890	if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
 891	    atomic_cmpxchg(&old->state,
 892			   FW_DEVICE_GONE,
 893			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
 894		struct fw_node *current_node = new->node;
 895		struct fw_node *obsolete_node = old->node;
 896
 897		new->node = obsolete_node;
 898		new->node->data = new;
 899		old->node = current_node;
 900		old->node->data = old;
 901
 902		old->max_speed = new->max_speed;
 903		old->node_id = current_node->node_id;
 904		smp_wmb();  /* update node_id before generation */
 905		old->generation = card->generation;
 906		old->config_rom_retries = 0;
 907		fw_notice(card, "rediscovered device %s\n", dev_name(dev));
 908
 909		old->workfn = fw_device_update;
 910		fw_schedule_device_work(old, 0);
 911
 912		if (current_node == card->root_node)
 913			fw_schedule_bm_work(card, 0);
 914
 915		match = 1;
 916	}
 917
 918	spin_unlock_irq(&card->lock);
 919	up_read(&fw_device_rwsem);
 920
 921	return match;
 922}
 923
 924enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
 925
 926static void set_broadcast_channel(struct fw_device *device, int generation)
 927{
 928	struct fw_card *card = device->card;
 929	__be32 data;
 930	int rcode;
 931
 932	if (!card->broadcast_channel_allocated)
 933		return;
 934
 935	/*
 936	 * The Broadcast_Channel Valid bit is required by nodes which want to
 937	 * transmit on this channel.  Such transmissions are practically
 938	 * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required
 939	 * to be IRM capable and have a max_rec of 8 or more.  We use this fact
 940	 * to narrow down to which nodes we send Broadcast_Channel updates.
 941	 */
 942	if (!device->irmc || device->max_rec < 8)
 943		return;
 944
 945	/*
 946	 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
 947	 * Perform a read test first.
 948	 */
 949	if (device->bc_implemented == BC_UNKNOWN) {
 950		rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
 951				device->node_id, generation, device->max_speed,
 952				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
 953				&data, 4);
 954		switch (rcode) {
 955		case RCODE_COMPLETE:
 956			if (data & cpu_to_be32(1 << 31)) {
 957				device->bc_implemented = BC_IMPLEMENTED;
 958				break;
 959			}
 960			fallthrough;	/* to case address error */
 961		case RCODE_ADDRESS_ERROR:
 962			device->bc_implemented = BC_UNIMPLEMENTED;
 963		}
 964	}
 965
 966	if (device->bc_implemented == BC_IMPLEMENTED) {
 967		data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
 968				   BROADCAST_CHANNEL_VALID);
 969		fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
 970				device->node_id, generation, device->max_speed,
 971				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
 972				&data, 4);
 973	}
 974}
 975
 976int fw_device_set_broadcast_channel(struct device *dev, void *gen)
 977{
 978	if (is_fw_device(dev))
 979		set_broadcast_channel(fw_device(dev), (long)gen);
 980
 981	return 0;
 982}
 983
 984static void fw_device_init(struct work_struct *work)
 985{
 986	struct fw_device *device =
 987		container_of(work, struct fw_device, work.work);
 988	struct fw_card *card = device->card;
 989	struct device *revived_dev;
 990	int minor, ret;
 991
 992	/*
 993	 * All failure paths here set node->data to NULL, so that we
 994	 * don't try to do device_for_each_child() on a kfree()'d
 995	 * device.
 996	 */
 997
 998	ret = read_config_rom(device, device->generation);
 999	if (ret != RCODE_COMPLETE) {
1000		if (device->config_rom_retries < MAX_RETRIES &&
1001		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1002			device->config_rom_retries++;
1003			fw_schedule_device_work(device, RETRY_DELAY);
1004		} else {
1005			if (device->node->link_on)
1006				fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
1007					  device->node_id,
1008					  fw_rcode_string(ret));
1009			if (device->node == card->root_node)
1010				fw_schedule_bm_work(card, 0);
1011			fw_device_release(&device->device);
1012		}
1013		return;
1014	}
1015
1016	revived_dev = device_find_child(card->device,
1017					device, lookup_existing_device);
1018	if (revived_dev) {
1019		put_device(revived_dev);
1020		fw_device_release(&device->device);
1021
1022		return;
1023	}
1024
1025	device_initialize(&device->device);
1026
1027	fw_device_get(device);
1028	down_write(&fw_device_rwsem);
1029	minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS,
1030			GFP_KERNEL);
1031	up_write(&fw_device_rwsem);
1032
1033	if (minor < 0)
1034		goto error;
1035
1036	device->device.bus = &fw_bus_type;
1037	device->device.type = &fw_device_type;
1038	device->device.parent = card->device;
1039	device->device.devt = MKDEV(fw_cdev_major, minor);
1040	dev_set_name(&device->device, "fw%d", minor);
1041
1042	BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1043			ARRAY_SIZE(fw_device_attributes) +
1044			ARRAY_SIZE(config_rom_attributes));
1045	init_fw_attribute_group(&device->device,
1046				fw_device_attributes,
1047				&device->attribute_group);
1048
1049	if (device_add(&device->device)) {
1050		fw_err(card, "failed to add device\n");
1051		goto error_with_cdev;
1052	}
1053
1054	create_units(device);
1055
1056	/*
1057	 * Transition the device to running state.  If it got pulled
1058	 * out from under us while we did the initialization work, we
1059	 * have to shut down the device again here.  Normally, though,
1060	 * fw_node_event will be responsible for shutting it down when
1061	 * necessary.  We have to use the atomic cmpxchg here to avoid
1062	 * racing with the FW_NODE_DESTROYED case in
1063	 * fw_node_event().
1064	 */
1065	if (atomic_cmpxchg(&device->state,
1066			   FW_DEVICE_INITIALIZING,
1067			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1068		device->workfn = fw_device_shutdown;
1069		fw_schedule_device_work(device, SHUTDOWN_DELAY);
1070	} else {
1071		fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1072			  dev_name(&device->device),
1073			  device->config_rom[3], device->config_rom[4],
1074			  1 << device->max_speed);
1075		device->config_rom_retries = 0;
1076
1077		set_broadcast_channel(device, device->generation);
1078
1079		add_device_randomness(&device->config_rom[3], 8);
1080	}
1081
1082	/*
1083	 * Reschedule the IRM work if we just finished reading the
1084	 * root node config rom.  If this races with a bus reset we
1085	 * just end up running the IRM work a couple of extra times -
1086	 * pretty harmless.
1087	 */
1088	if (device->node == card->root_node)
1089		fw_schedule_bm_work(card, 0);
1090
1091	return;
1092
1093 error_with_cdev:
1094	down_write(&fw_device_rwsem);
1095	idr_remove(&fw_device_idr, minor);
1096	up_write(&fw_device_rwsem);
1097 error:
1098	fw_device_put(device);		/* fw_device_idr's reference */
1099
1100	put_device(&device->device);	/* our reference */
1101}
1102
1103/* Reread and compare bus info block and header of root directory */
1104static int reread_config_rom(struct fw_device *device, int generation,
1105			     bool *changed)
1106{
1107	u32 q;
1108	int i, rcode;
1109
1110	for (i = 0; i < 6; i++) {
1111		rcode = read_rom(device, generation, i, &q);
1112		if (rcode != RCODE_COMPLETE)
1113			return rcode;
1114
1115		if (i == 0 && q == 0)
1116			/* inaccessible (see read_config_rom); retry later */
1117			return RCODE_BUSY;
1118
1119		if (q != device->config_rom[i]) {
1120			*changed = true;
1121			return RCODE_COMPLETE;
1122		}
1123	}
1124
1125	*changed = false;
1126	return RCODE_COMPLETE;
1127}
1128
1129static void fw_device_refresh(struct work_struct *work)
1130{
1131	struct fw_device *device =
1132		container_of(work, struct fw_device, work.work);
1133	struct fw_card *card = device->card;
1134	int ret, node_id = device->node_id;
1135	bool changed;
1136
1137	ret = reread_config_rom(device, device->generation, &changed);
1138	if (ret != RCODE_COMPLETE)
1139		goto failed_config_rom;
1140
1141	if (!changed) {
1142		if (atomic_cmpxchg(&device->state,
1143				   FW_DEVICE_INITIALIZING,
1144				   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1145			goto gone;
1146
1147		fw_device_update(work);
1148		device->config_rom_retries = 0;
1149		goto out;
1150	}
1151
1152	/*
1153	 * Something changed.  We keep things simple and don't investigate
1154	 * further.  We just destroy all previous units and create new ones.
1155	 */
1156	device_for_each_child(&device->device, NULL, shutdown_unit);
1157
1158	ret = read_config_rom(device, device->generation);
1159	if (ret != RCODE_COMPLETE)
1160		goto failed_config_rom;
1161
1162	fw_device_cdev_update(device);
1163	create_units(device);
1164
1165	/* Userspace may want to re-read attributes. */
1166	kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1167
1168	if (atomic_cmpxchg(&device->state,
1169			   FW_DEVICE_INITIALIZING,
1170			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1171		goto gone;
1172
1173	fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1174	device->config_rom_retries = 0;
1175	goto out;
1176
1177 failed_config_rom:
1178	if (device->config_rom_retries < MAX_RETRIES &&
1179	    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1180		device->config_rom_retries++;
1181		fw_schedule_device_work(device, RETRY_DELAY);
1182		return;
1183	}
1184
1185	fw_notice(card, "giving up on refresh of device %s: %s\n",
1186		  dev_name(&device->device), fw_rcode_string(ret));
1187 gone:
1188	atomic_set(&device->state, FW_DEVICE_GONE);
1189	device->workfn = fw_device_shutdown;
1190	fw_schedule_device_work(device, SHUTDOWN_DELAY);
1191 out:
1192	if (node_id == card->root_node->node_id)
1193		fw_schedule_bm_work(card, 0);
1194}
1195
1196static void fw_device_workfn(struct work_struct *work)
1197{
1198	struct fw_device *device = container_of(to_delayed_work(work),
1199						struct fw_device, work);
1200	device->workfn(work);
1201}
1202
1203void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1204{
1205	struct fw_device *device;
1206
1207	switch (event) {
1208	case FW_NODE_CREATED:
1209		/*
1210		 * Attempt to scan the node, regardless whether its self ID has
1211		 * the L (link active) flag set or not.  Some broken devices
1212		 * send L=0 but have an up-and-running link; others send L=1
1213		 * without actually having a link.
1214		 */
1215 create:
1216		device = kzalloc(sizeof(*device), GFP_ATOMIC);
1217		if (device == NULL)
1218			break;
1219
1220		/*
1221		 * Do minimal initialization of the device here, the
1222		 * rest will happen in fw_device_init().
1223		 *
1224		 * Attention:  A lot of things, even fw_device_get(),
1225		 * cannot be done before fw_device_init() finished!
1226		 * You can basically just check device->state and
1227		 * schedule work until then, but only while holding
1228		 * card->lock.
1229		 */
1230		atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1231		device->card = fw_card_get(card);
1232		device->node = fw_node_get(node);
1233		device->node_id = node->node_id;
1234		device->generation = card->generation;
1235		device->is_local = node == card->local_node;
1236		mutex_init(&device->client_list_mutex);
1237		INIT_LIST_HEAD(&device->client_list);
1238
1239		/*
1240		 * Set the node data to point back to this device so
1241		 * FW_NODE_UPDATED callbacks can update the node_id
1242		 * and generation for the device.
1243		 */
1244		node->data = device;
1245
1246		/*
1247		 * Many devices are slow to respond after bus resets,
1248		 * especially if they are bus powered and go through
1249		 * power-up after getting plugged in.  We schedule the
1250		 * first config rom scan half a second after bus reset.
1251		 */
1252		device->workfn = fw_device_init;
1253		INIT_DELAYED_WORK(&device->work, fw_device_workfn);
1254		fw_schedule_device_work(device, INITIAL_DELAY);
1255		break;
1256
1257	case FW_NODE_INITIATED_RESET:
1258	case FW_NODE_LINK_ON:
1259		device = node->data;
1260		if (device == NULL)
1261			goto create;
1262
1263		device->node_id = node->node_id;
1264		smp_wmb();  /* update node_id before generation */
1265		device->generation = card->generation;
1266		if (atomic_cmpxchg(&device->state,
1267			    FW_DEVICE_RUNNING,
1268			    FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1269			device->workfn = fw_device_refresh;
1270			fw_schedule_device_work(device,
1271				device->is_local ? 0 : INITIAL_DELAY);
1272		}
1273		break;
1274
1275	case FW_NODE_UPDATED:
1276		device = node->data;
1277		if (device == NULL)
1278			break;
1279
1280		device->node_id = node->node_id;
1281		smp_wmb();  /* update node_id before generation */
1282		device->generation = card->generation;
1283		if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1284			device->workfn = fw_device_update;
1285			fw_schedule_device_work(device, 0);
1286		}
1287		break;
1288
1289	case FW_NODE_DESTROYED:
1290	case FW_NODE_LINK_OFF:
1291		if (!node->data)
1292			break;
1293
1294		/*
1295		 * Destroy the device associated with the node.  There
1296		 * are two cases here: either the device is fully
1297		 * initialized (FW_DEVICE_RUNNING) or we're in the
1298		 * process of reading its config rom
1299		 * (FW_DEVICE_INITIALIZING).  If it is fully
1300		 * initialized we can reuse device->work to schedule a
1301		 * full fw_device_shutdown().  If not, there's work
1302		 * scheduled to read it's config rom, and we just put
1303		 * the device in shutdown state to have that code fail
1304		 * to create the device.
1305		 */
1306		device = node->data;
1307		if (atomic_xchg(&device->state,
1308				FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1309			device->workfn = fw_device_shutdown;
1310			fw_schedule_device_work(device,
1311				list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1312		}
1313		break;
1314	}
1315}
v3.15
 
   1/*
   2 * Device probing and sysfs code.
   3 *
   4 * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software Foundation,
  18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21#include <linux/bug.h>
  22#include <linux/ctype.h>
  23#include <linux/delay.h>
  24#include <linux/device.h>
  25#include <linux/errno.h>
  26#include <linux/firewire.h>
  27#include <linux/firewire-constants.h>
  28#include <linux/idr.h>
  29#include <linux/jiffies.h>
  30#include <linux/kobject.h>
  31#include <linux/list.h>
  32#include <linux/mod_devicetable.h>
  33#include <linux/module.h>
  34#include <linux/mutex.h>
  35#include <linux/random.h>
  36#include <linux/rwsem.h>
  37#include <linux/slab.h>
  38#include <linux/spinlock.h>
  39#include <linux/string.h>
  40#include <linux/workqueue.h>
  41
  42#include <linux/atomic.h>
  43#include <asm/byteorder.h>
  44
  45#include "core.h"
  46
  47void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
  48{
  49	ci->p = p + 1;
  50	ci->end = ci->p + (p[0] >> 16);
  51}
  52EXPORT_SYMBOL(fw_csr_iterator_init);
  53
  54int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
  55{
  56	*key = *ci->p >> 24;
  57	*value = *ci->p & 0xffffff;
  58
  59	return ci->p++ < ci->end;
  60}
  61EXPORT_SYMBOL(fw_csr_iterator_next);
  62
  63static const u32 *search_leaf(const u32 *directory, int search_key)
  64{
  65	struct fw_csr_iterator ci;
  66	int last_key = 0, key, value;
  67
  68	fw_csr_iterator_init(&ci, directory);
  69	while (fw_csr_iterator_next(&ci, &key, &value)) {
  70		if (last_key == search_key &&
  71		    key == (CSR_DESCRIPTOR | CSR_LEAF))
  72			return ci.p - 1 + value;
  73
  74		last_key = key;
  75	}
  76
  77	return NULL;
  78}
  79
  80static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
  81{
  82	unsigned int quadlets, i;
  83	char c;
  84
  85	if (!size || !buf)
  86		return -EINVAL;
  87
  88	quadlets = min(block[0] >> 16, 256U);
  89	if (quadlets < 2)
  90		return -ENODATA;
  91
  92	if (block[1] != 0 || block[2] != 0)
  93		/* unknown language/character set */
  94		return -ENODATA;
  95
  96	block += 3;
  97	quadlets -= 2;
  98	for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
  99		c = block[i / 4] >> (24 - 8 * (i % 4));
 100		if (c == '\0')
 101			break;
 102		buf[i] = c;
 103	}
 104	buf[i] = '\0';
 105
 106	return i;
 107}
 108
 109/**
 110 * fw_csr_string() - reads a string from the configuration ROM
 111 * @directory:	e.g. root directory or unit directory
 112 * @key:	the key of the preceding directory entry
 113 * @buf:	where to put the string
 114 * @size:	size of @buf, in bytes
 115 *
 116 * The string is taken from a minimal ASCII text descriptor leaf after
 117 * the immediate entry with @key.  The string is zero-terminated.
 
 
 
 118 * Returns strlen(buf) or a negative error code.
 119 */
 120int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
 121{
 122	const u32 *leaf = search_leaf(directory, key);
 123	if (!leaf)
 124		return -ENOENT;
 125
 126	return textual_leaf_to_string(leaf, buf, size);
 127}
 128EXPORT_SYMBOL(fw_csr_string);
 129
 130static void get_ids(const u32 *directory, int *id)
 131{
 132	struct fw_csr_iterator ci;
 133	int key, value;
 134
 135	fw_csr_iterator_init(&ci, directory);
 136	while (fw_csr_iterator_next(&ci, &key, &value)) {
 137		switch (key) {
 138		case CSR_VENDOR:	id[0] = value; break;
 139		case CSR_MODEL:		id[1] = value; break;
 140		case CSR_SPECIFIER_ID:	id[2] = value; break;
 141		case CSR_VERSION:	id[3] = value; break;
 142		}
 143	}
 144}
 145
 146static void get_modalias_ids(struct fw_unit *unit, int *id)
 147{
 148	get_ids(&fw_parent_device(unit)->config_rom[5], id);
 149	get_ids(unit->directory, id);
 150}
 151
 152static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
 153{
 154	int match = 0;
 155
 156	if (id[0] == id_table->vendor_id)
 157		match |= IEEE1394_MATCH_VENDOR_ID;
 158	if (id[1] == id_table->model_id)
 159		match |= IEEE1394_MATCH_MODEL_ID;
 160	if (id[2] == id_table->specifier_id)
 161		match |= IEEE1394_MATCH_SPECIFIER_ID;
 162	if (id[3] == id_table->version)
 163		match |= IEEE1394_MATCH_VERSION;
 164
 165	return (match & id_table->match_flags) == id_table->match_flags;
 166}
 167
 168static const struct ieee1394_device_id *unit_match(struct device *dev,
 169						   struct device_driver *drv)
 170{
 171	const struct ieee1394_device_id *id_table =
 172			container_of(drv, struct fw_driver, driver)->id_table;
 173	int id[] = {0, 0, 0, 0};
 174
 175	get_modalias_ids(fw_unit(dev), id);
 176
 177	for (; id_table->match_flags != 0; id_table++)
 178		if (match_ids(id_table, id))
 179			return id_table;
 180
 181	return NULL;
 182}
 183
 184static bool is_fw_unit(struct device *dev);
 185
 186static int fw_unit_match(struct device *dev, struct device_driver *drv)
 187{
 188	/* We only allow binding to fw_units. */
 189	return is_fw_unit(dev) && unit_match(dev, drv) != NULL;
 190}
 191
 192static int fw_unit_probe(struct device *dev)
 193{
 194	struct fw_driver *driver =
 195			container_of(dev->driver, struct fw_driver, driver);
 196
 197	return driver->probe(fw_unit(dev), unit_match(dev, dev->driver));
 198}
 199
 200static int fw_unit_remove(struct device *dev)
 201{
 202	struct fw_driver *driver =
 203			container_of(dev->driver, struct fw_driver, driver);
 204
 205	return driver->remove(fw_unit(dev)), 0;
 206}
 207
 208static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
 209{
 210	int id[] = {0, 0, 0, 0};
 211
 212	get_modalias_ids(unit, id);
 213
 214	return snprintf(buffer, buffer_size,
 215			"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
 216			id[0], id[1], id[2], id[3]);
 217}
 218
 219static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
 220{
 221	struct fw_unit *unit = fw_unit(dev);
 222	char modalias[64];
 223
 224	get_modalias(unit, modalias, sizeof(modalias));
 225
 226	if (add_uevent_var(env, "MODALIAS=%s", modalias))
 227		return -ENOMEM;
 228
 229	return 0;
 230}
 231
 232struct bus_type fw_bus_type = {
 233	.name = "firewire",
 234	.match = fw_unit_match,
 235	.probe = fw_unit_probe,
 236	.remove = fw_unit_remove,
 237};
 238EXPORT_SYMBOL(fw_bus_type);
 239
 240int fw_device_enable_phys_dma(struct fw_device *device)
 241{
 242	int generation = device->generation;
 243
 244	/* device->node_id, accessed below, must not be older than generation */
 245	smp_rmb();
 246
 247	return device->card->driver->enable_phys_dma(device->card,
 248						     device->node_id,
 249						     generation);
 250}
 251EXPORT_SYMBOL(fw_device_enable_phys_dma);
 252
 253struct config_rom_attribute {
 254	struct device_attribute attr;
 255	u32 key;
 256};
 257
 258static ssize_t show_immediate(struct device *dev,
 259			      struct device_attribute *dattr, char *buf)
 260{
 261	struct config_rom_attribute *attr =
 262		container_of(dattr, struct config_rom_attribute, attr);
 263	struct fw_csr_iterator ci;
 264	const u32 *dir;
 265	int key, value, ret = -ENOENT;
 266
 267	down_read(&fw_device_rwsem);
 268
 269	if (is_fw_unit(dev))
 270		dir = fw_unit(dev)->directory;
 271	else
 272		dir = fw_device(dev)->config_rom + 5;
 273
 274	fw_csr_iterator_init(&ci, dir);
 275	while (fw_csr_iterator_next(&ci, &key, &value))
 276		if (attr->key == key) {
 277			ret = snprintf(buf, buf ? PAGE_SIZE : 0,
 278				       "0x%06x\n", value);
 279			break;
 280		}
 281
 282	up_read(&fw_device_rwsem);
 283
 284	return ret;
 285}
 286
 287#define IMMEDIATE_ATTR(name, key)				\
 288	{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }
 289
 290static ssize_t show_text_leaf(struct device *dev,
 291			      struct device_attribute *dattr, char *buf)
 292{
 293	struct config_rom_attribute *attr =
 294		container_of(dattr, struct config_rom_attribute, attr);
 295	const u32 *dir;
 296	size_t bufsize;
 297	char dummy_buf[2];
 298	int ret;
 299
 300	down_read(&fw_device_rwsem);
 301
 302	if (is_fw_unit(dev))
 303		dir = fw_unit(dev)->directory;
 304	else
 305		dir = fw_device(dev)->config_rom + 5;
 306
 307	if (buf) {
 308		bufsize = PAGE_SIZE - 1;
 309	} else {
 310		buf = dummy_buf;
 311		bufsize = 1;
 312	}
 313
 314	ret = fw_csr_string(dir, attr->key, buf, bufsize);
 315
 316	if (ret >= 0) {
 317		/* Strip trailing whitespace and add newline. */
 318		while (ret > 0 && isspace(buf[ret - 1]))
 319			ret--;
 320		strcpy(buf + ret, "\n");
 321		ret++;
 322	}
 323
 324	up_read(&fw_device_rwsem);
 325
 326	return ret;
 327}
 328
 329#define TEXT_LEAF_ATTR(name, key)				\
 330	{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
 331
 332static struct config_rom_attribute config_rom_attributes[] = {
 333	IMMEDIATE_ATTR(vendor, CSR_VENDOR),
 334	IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
 335	IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
 336	IMMEDIATE_ATTR(version, CSR_VERSION),
 337	IMMEDIATE_ATTR(model, CSR_MODEL),
 338	TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
 339	TEXT_LEAF_ATTR(model_name, CSR_MODEL),
 340	TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
 341};
 342
 343static void init_fw_attribute_group(struct device *dev,
 344				    struct device_attribute *attrs,
 345				    struct fw_attribute_group *group)
 346{
 347	struct device_attribute *attr;
 348	int i, j;
 349
 350	for (j = 0; attrs[j].attr.name != NULL; j++)
 351		group->attrs[j] = &attrs[j].attr;
 352
 353	for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
 354		attr = &config_rom_attributes[i].attr;
 355		if (attr->show(dev, attr, NULL) < 0)
 356			continue;
 357		group->attrs[j++] = &attr->attr;
 358	}
 359
 360	group->attrs[j] = NULL;
 361	group->groups[0] = &group->group;
 362	group->groups[1] = NULL;
 363	group->group.attrs = group->attrs;
 364	dev->groups = (const struct attribute_group **) group->groups;
 365}
 366
 367static ssize_t modalias_show(struct device *dev,
 368			     struct device_attribute *attr, char *buf)
 369{
 370	struct fw_unit *unit = fw_unit(dev);
 371	int length;
 372
 373	length = get_modalias(unit, buf, PAGE_SIZE);
 374	strcpy(buf + length, "\n");
 375
 376	return length + 1;
 377}
 378
 379static ssize_t rom_index_show(struct device *dev,
 380			      struct device_attribute *attr, char *buf)
 381{
 382	struct fw_device *device = fw_device(dev->parent);
 383	struct fw_unit *unit = fw_unit(dev);
 384
 385	return snprintf(buf, PAGE_SIZE, "%d\n",
 386			(int)(unit->directory - device->config_rom));
 387}
 388
 389static struct device_attribute fw_unit_attributes[] = {
 390	__ATTR_RO(modalias),
 391	__ATTR_RO(rom_index),
 392	__ATTR_NULL,
 393};
 394
 395static ssize_t config_rom_show(struct device *dev,
 396			       struct device_attribute *attr, char *buf)
 397{
 398	struct fw_device *device = fw_device(dev);
 399	size_t length;
 400
 401	down_read(&fw_device_rwsem);
 402	length = device->config_rom_length * 4;
 403	memcpy(buf, device->config_rom, length);
 404	up_read(&fw_device_rwsem);
 405
 406	return length;
 407}
 408
 409static ssize_t guid_show(struct device *dev,
 410			 struct device_attribute *attr, char *buf)
 411{
 412	struct fw_device *device = fw_device(dev);
 413	int ret;
 414
 415	down_read(&fw_device_rwsem);
 416	ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
 417		       device->config_rom[3], device->config_rom[4]);
 418	up_read(&fw_device_rwsem);
 419
 420	return ret;
 421}
 422
 423static ssize_t is_local_show(struct device *dev,
 424			     struct device_attribute *attr, char *buf)
 425{
 426	struct fw_device *device = fw_device(dev);
 427
 428	return sprintf(buf, "%u\n", device->is_local);
 429}
 430
 431static int units_sprintf(char *buf, const u32 *directory)
 432{
 433	struct fw_csr_iterator ci;
 434	int key, value;
 435	int specifier_id = 0;
 436	int version = 0;
 437
 438	fw_csr_iterator_init(&ci, directory);
 439	while (fw_csr_iterator_next(&ci, &key, &value)) {
 440		switch (key) {
 441		case CSR_SPECIFIER_ID:
 442			specifier_id = value;
 443			break;
 444		case CSR_VERSION:
 445			version = value;
 446			break;
 447		}
 448	}
 449
 450	return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
 451}
 452
 453static ssize_t units_show(struct device *dev,
 454			  struct device_attribute *attr, char *buf)
 455{
 456	struct fw_device *device = fw_device(dev);
 457	struct fw_csr_iterator ci;
 458	int key, value, i = 0;
 459
 460	down_read(&fw_device_rwsem);
 461	fw_csr_iterator_init(&ci, &device->config_rom[5]);
 462	while (fw_csr_iterator_next(&ci, &key, &value)) {
 463		if (key != (CSR_UNIT | CSR_DIRECTORY))
 464			continue;
 465		i += units_sprintf(&buf[i], ci.p + value - 1);
 466		if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
 467			break;
 468	}
 469	up_read(&fw_device_rwsem);
 470
 471	if (i)
 472		buf[i - 1] = '\n';
 473
 474	return i;
 475}
 476
 477static struct device_attribute fw_device_attributes[] = {
 478	__ATTR_RO(config_rom),
 479	__ATTR_RO(guid),
 480	__ATTR_RO(is_local),
 481	__ATTR_RO(units),
 482	__ATTR_NULL,
 483};
 484
 485static int read_rom(struct fw_device *device,
 486		    int generation, int index, u32 *data)
 487{
 488	u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
 489	int i, rcode;
 490
 491	/* device->node_id, accessed below, must not be older than generation */
 492	smp_rmb();
 493
 494	for (i = 10; i < 100; i += 10) {
 495		rcode = fw_run_transaction(device->card,
 496				TCODE_READ_QUADLET_REQUEST, device->node_id,
 497				generation, device->max_speed, offset, data, 4);
 498		if (rcode != RCODE_BUSY)
 499			break;
 500		msleep(i);
 501	}
 502	be32_to_cpus(data);
 503
 504	return rcode;
 505}
 506
 507#define MAX_CONFIG_ROM_SIZE 256
 508
 509/*
 510 * Read the bus info block, perform a speed probe, and read all of the rest of
 511 * the config ROM.  We do all this with a cached bus generation.  If the bus
 512 * generation changes under us, read_config_rom will fail and get retried.
 513 * It's better to start all over in this case because the node from which we
 514 * are reading the ROM may have changed the ROM during the reset.
 515 * Returns either a result code or a negative error code.
 516 */
 517static int read_config_rom(struct fw_device *device, int generation)
 518{
 519	struct fw_card *card = device->card;
 520	const u32 *old_rom, *new_rom;
 521	u32 *rom, *stack;
 522	u32 sp, key;
 523	int i, end, length, ret;
 524
 525	rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
 526		      sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
 527	if (rom == NULL)
 528		return -ENOMEM;
 529
 530	stack = &rom[MAX_CONFIG_ROM_SIZE];
 531	memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
 532
 533	device->max_speed = SCODE_100;
 534
 535	/* First read the bus info block. */
 536	for (i = 0; i < 5; i++) {
 537		ret = read_rom(device, generation, i, &rom[i]);
 538		if (ret != RCODE_COMPLETE)
 539			goto out;
 540		/*
 541		 * As per IEEE1212 7.2, during initialization, devices can
 542		 * reply with a 0 for the first quadlet of the config
 543		 * rom to indicate that they are booting (for example,
 544		 * if the firmware is on the disk of a external
 545		 * harddisk).  In that case we just fail, and the
 546		 * retry mechanism will try again later.
 547		 */
 548		if (i == 0 && rom[i] == 0) {
 549			ret = RCODE_BUSY;
 550			goto out;
 551		}
 552	}
 553
 554	device->max_speed = device->node->max_speed;
 555
 556	/*
 557	 * Determine the speed of
 558	 *   - devices with link speed less than PHY speed,
 559	 *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
 560	 *   - all devices if there are 1394b repeaters.
 561	 * Note, we cannot use the bus info block's link_spd as starting point
 562	 * because some buggy firmwares set it lower than necessary and because
 563	 * 1394-1995 nodes do not have the field.
 564	 */
 565	if ((rom[2] & 0x7) < device->max_speed ||
 566	    device->max_speed == SCODE_BETA ||
 567	    card->beta_repeaters_present) {
 568		u32 dummy;
 569
 570		/* for S1600 and S3200 */
 571		if (device->max_speed == SCODE_BETA)
 572			device->max_speed = card->link_speed;
 573
 574		while (device->max_speed > SCODE_100) {
 575			if (read_rom(device, generation, 0, &dummy) ==
 576			    RCODE_COMPLETE)
 577				break;
 578			device->max_speed--;
 579		}
 580	}
 581
 582	/*
 583	 * Now parse the config rom.  The config rom is a recursive
 584	 * directory structure so we parse it using a stack of
 585	 * references to the blocks that make up the structure.  We
 586	 * push a reference to the root directory on the stack to
 587	 * start things off.
 588	 */
 589	length = i;
 590	sp = 0;
 591	stack[sp++] = 0xc0000005;
 592	while (sp > 0) {
 593		/*
 594		 * Pop the next block reference of the stack.  The
 595		 * lower 24 bits is the offset into the config rom,
 596		 * the upper 8 bits are the type of the reference the
 597		 * block.
 598		 */
 599		key = stack[--sp];
 600		i = key & 0xffffff;
 601		if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
 602			ret = -ENXIO;
 603			goto out;
 604		}
 605
 606		/* Read header quadlet for the block to get the length. */
 607		ret = read_rom(device, generation, i, &rom[i]);
 608		if (ret != RCODE_COMPLETE)
 609			goto out;
 610		end = i + (rom[i] >> 16) + 1;
 611		if (end > MAX_CONFIG_ROM_SIZE) {
 612			/*
 613			 * This block extends outside the config ROM which is
 614			 * a firmware bug.  Ignore this whole block, i.e.
 615			 * simply set a fake block length of 0.
 616			 */
 617			fw_err(card, "skipped invalid ROM block %x at %llx\n",
 618			       rom[i],
 619			       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
 620			rom[i] = 0;
 621			end = i;
 622		}
 623		i++;
 624
 625		/*
 626		 * Now read in the block.  If this is a directory
 627		 * block, check the entries as we read them to see if
 628		 * it references another block, and push it in that case.
 629		 */
 630		for (; i < end; i++) {
 631			ret = read_rom(device, generation, i, &rom[i]);
 632			if (ret != RCODE_COMPLETE)
 633				goto out;
 634
 635			if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
 636				continue;
 637			/*
 638			 * Offset points outside the ROM.  May be a firmware
 639			 * bug or an Extended ROM entry (IEEE 1212-2001 clause
 640			 * 7.7.18).  Simply overwrite this pointer here by a
 641			 * fake immediate entry so that later iterators over
 642			 * the ROM don't have to check offsets all the time.
 643			 */
 644			if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
 645				fw_err(card,
 646				       "skipped unsupported ROM entry %x at %llx\n",
 647				       rom[i],
 648				       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
 649				rom[i] = 0;
 650				continue;
 651			}
 652			stack[sp++] = i + rom[i];
 653		}
 654		if (length < i)
 655			length = i;
 656	}
 657
 658	old_rom = device->config_rom;
 659	new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
 660	if (new_rom == NULL) {
 661		ret = -ENOMEM;
 662		goto out;
 663	}
 664
 665	down_write(&fw_device_rwsem);
 666	device->config_rom = new_rom;
 667	device->config_rom_length = length;
 668	up_write(&fw_device_rwsem);
 669
 670	kfree(old_rom);
 671	ret = RCODE_COMPLETE;
 672	device->max_rec	= rom[2] >> 12 & 0xf;
 673	device->cmc	= rom[2] >> 30 & 1;
 674	device->irmc	= rom[2] >> 31 & 1;
 675 out:
 676	kfree(rom);
 677
 678	return ret;
 679}
 680
 681static void fw_unit_release(struct device *dev)
 682{
 683	struct fw_unit *unit = fw_unit(dev);
 684
 685	fw_device_put(fw_parent_device(unit));
 686	kfree(unit);
 687}
 688
 689static struct device_type fw_unit_type = {
 690	.uevent		= fw_unit_uevent,
 691	.release	= fw_unit_release,
 692};
 693
 694static bool is_fw_unit(struct device *dev)
 695{
 696	return dev->type == &fw_unit_type;
 697}
 698
 699static void create_units(struct fw_device *device)
 700{
 701	struct fw_csr_iterator ci;
 702	struct fw_unit *unit;
 703	int key, value, i;
 704
 705	i = 0;
 706	fw_csr_iterator_init(&ci, &device->config_rom[5]);
 707	while (fw_csr_iterator_next(&ci, &key, &value)) {
 708		if (key != (CSR_UNIT | CSR_DIRECTORY))
 709			continue;
 710
 711		/*
 712		 * Get the address of the unit directory and try to
 713		 * match the drivers id_tables against it.
 714		 */
 715		unit = kzalloc(sizeof(*unit), GFP_KERNEL);
 716		if (unit == NULL)
 717			continue;
 718
 719		unit->directory = ci.p + value - 1;
 720		unit->device.bus = &fw_bus_type;
 721		unit->device.type = &fw_unit_type;
 722		unit->device.parent = &device->device;
 723		dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
 724
 725		BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
 726				ARRAY_SIZE(fw_unit_attributes) +
 727				ARRAY_SIZE(config_rom_attributes));
 728		init_fw_attribute_group(&unit->device,
 729					fw_unit_attributes,
 730					&unit->attribute_group);
 731
 732		if (device_register(&unit->device) < 0)
 733			goto skip_unit;
 734
 735		fw_device_get(device);
 736		continue;
 737
 738	skip_unit:
 739		kfree(unit);
 740	}
 741}
 742
 743static int shutdown_unit(struct device *device, void *data)
 744{
 745	device_unregister(device);
 746
 747	return 0;
 748}
 749
 750/*
 751 * fw_device_rwsem acts as dual purpose mutex:
 752 *   - serializes accesses to fw_device_idr,
 753 *   - serializes accesses to fw_device.config_rom/.config_rom_length and
 754 *     fw_unit.directory, unless those accesses happen at safe occasions
 755 */
 756DECLARE_RWSEM(fw_device_rwsem);
 757
 758DEFINE_IDR(fw_device_idr);
 759int fw_cdev_major;
 760
 761struct fw_device *fw_device_get_by_devt(dev_t devt)
 762{
 763	struct fw_device *device;
 764
 765	down_read(&fw_device_rwsem);
 766	device = idr_find(&fw_device_idr, MINOR(devt));
 767	if (device)
 768		fw_device_get(device);
 769	up_read(&fw_device_rwsem);
 770
 771	return device;
 772}
 773
 774struct workqueue_struct *fw_workqueue;
 775EXPORT_SYMBOL(fw_workqueue);
 776
 777static void fw_schedule_device_work(struct fw_device *device,
 778				    unsigned long delay)
 779{
 780	queue_delayed_work(fw_workqueue, &device->work, delay);
 781}
 782
 783/*
 784 * These defines control the retry behavior for reading the config
 785 * rom.  It shouldn't be necessary to tweak these; if the device
 786 * doesn't respond to a config rom read within 10 seconds, it's not
 787 * going to respond at all.  As for the initial delay, a lot of
 788 * devices will be able to respond within half a second after bus
 789 * reset.  On the other hand, it's not really worth being more
 790 * aggressive than that, since it scales pretty well; if 10 devices
 791 * are plugged in, they're all getting read within one second.
 792 */
 793
 794#define MAX_RETRIES	10
 795#define RETRY_DELAY	(3 * HZ)
 796#define INITIAL_DELAY	(HZ / 2)
 797#define SHUTDOWN_DELAY	(2 * HZ)
 798
 799static void fw_device_shutdown(struct work_struct *work)
 800{
 801	struct fw_device *device =
 802		container_of(work, struct fw_device, work.work);
 803	int minor = MINOR(device->device.devt);
 804
 805	if (time_before64(get_jiffies_64(),
 806			  device->card->reset_jiffies + SHUTDOWN_DELAY)
 807	    && !list_empty(&device->card->link)) {
 808		fw_schedule_device_work(device, SHUTDOWN_DELAY);
 809		return;
 810	}
 811
 812	if (atomic_cmpxchg(&device->state,
 813			   FW_DEVICE_GONE,
 814			   FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
 815		return;
 816
 817	fw_device_cdev_remove(device);
 818	device_for_each_child(&device->device, NULL, shutdown_unit);
 819	device_unregister(&device->device);
 820
 821	down_write(&fw_device_rwsem);
 822	idr_remove(&fw_device_idr, minor);
 823	up_write(&fw_device_rwsem);
 824
 825	fw_device_put(device);
 826}
 827
 828static void fw_device_release(struct device *dev)
 829{
 830	struct fw_device *device = fw_device(dev);
 831	struct fw_card *card = device->card;
 832	unsigned long flags;
 833
 834	/*
 835	 * Take the card lock so we don't set this to NULL while a
 836	 * FW_NODE_UPDATED callback is being handled or while the
 837	 * bus manager work looks at this node.
 838	 */
 839	spin_lock_irqsave(&card->lock, flags);
 840	device->node->data = NULL;
 841	spin_unlock_irqrestore(&card->lock, flags);
 842
 843	fw_node_put(device->node);
 844	kfree(device->config_rom);
 845	kfree(device);
 846	fw_card_put(card);
 847}
 848
 849static struct device_type fw_device_type = {
 850	.release = fw_device_release,
 851};
 852
 853static bool is_fw_device(struct device *dev)
 854{
 855	return dev->type == &fw_device_type;
 856}
 857
 858static int update_unit(struct device *dev, void *data)
 859{
 860	struct fw_unit *unit = fw_unit(dev);
 861	struct fw_driver *driver = (struct fw_driver *)dev->driver;
 862
 863	if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
 864		device_lock(dev);
 865		driver->update(unit);
 866		device_unlock(dev);
 867	}
 868
 869	return 0;
 870}
 871
 872static void fw_device_update(struct work_struct *work)
 873{
 874	struct fw_device *device =
 875		container_of(work, struct fw_device, work.work);
 876
 877	fw_device_cdev_update(device);
 878	device_for_each_child(&device->device, NULL, update_unit);
 879}
 880
 881/*
 882 * If a device was pending for deletion because its node went away but its
 883 * bus info block and root directory header matches that of a newly discovered
 884 * device, revive the existing fw_device.
 885 * The newly allocated fw_device becomes obsolete instead.
 886 */
 887static int lookup_existing_device(struct device *dev, void *data)
 888{
 889	struct fw_device *old = fw_device(dev);
 890	struct fw_device *new = data;
 891	struct fw_card *card = new->card;
 892	int match = 0;
 893
 894	if (!is_fw_device(dev))
 895		return 0;
 896
 897	down_read(&fw_device_rwsem); /* serialize config_rom access */
 898	spin_lock_irq(&card->lock);  /* serialize node access */
 899
 900	if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
 901	    atomic_cmpxchg(&old->state,
 902			   FW_DEVICE_GONE,
 903			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
 904		struct fw_node *current_node = new->node;
 905		struct fw_node *obsolete_node = old->node;
 906
 907		new->node = obsolete_node;
 908		new->node->data = new;
 909		old->node = current_node;
 910		old->node->data = old;
 911
 912		old->max_speed = new->max_speed;
 913		old->node_id = current_node->node_id;
 914		smp_wmb();  /* update node_id before generation */
 915		old->generation = card->generation;
 916		old->config_rom_retries = 0;
 917		fw_notice(card, "rediscovered device %s\n", dev_name(dev));
 918
 919		old->workfn = fw_device_update;
 920		fw_schedule_device_work(old, 0);
 921
 922		if (current_node == card->root_node)
 923			fw_schedule_bm_work(card, 0);
 924
 925		match = 1;
 926	}
 927
 928	spin_unlock_irq(&card->lock);
 929	up_read(&fw_device_rwsem);
 930
 931	return match;
 932}
 933
 934enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
 935
 936static void set_broadcast_channel(struct fw_device *device, int generation)
 937{
 938	struct fw_card *card = device->card;
 939	__be32 data;
 940	int rcode;
 941
 942	if (!card->broadcast_channel_allocated)
 943		return;
 944
 945	/*
 946	 * The Broadcast_Channel Valid bit is required by nodes which want to
 947	 * transmit on this channel.  Such transmissions are practically
 948	 * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required
 949	 * to be IRM capable and have a max_rec of 8 or more.  We use this fact
 950	 * to narrow down to which nodes we send Broadcast_Channel updates.
 951	 */
 952	if (!device->irmc || device->max_rec < 8)
 953		return;
 954
 955	/*
 956	 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
 957	 * Perform a read test first.
 958	 */
 959	if (device->bc_implemented == BC_UNKNOWN) {
 960		rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
 961				device->node_id, generation, device->max_speed,
 962				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
 963				&data, 4);
 964		switch (rcode) {
 965		case RCODE_COMPLETE:
 966			if (data & cpu_to_be32(1 << 31)) {
 967				device->bc_implemented = BC_IMPLEMENTED;
 968				break;
 969			}
 970			/* else fall through to case address error */
 971		case RCODE_ADDRESS_ERROR:
 972			device->bc_implemented = BC_UNIMPLEMENTED;
 973		}
 974	}
 975
 976	if (device->bc_implemented == BC_IMPLEMENTED) {
 977		data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
 978				   BROADCAST_CHANNEL_VALID);
 979		fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
 980				device->node_id, generation, device->max_speed,
 981				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
 982				&data, 4);
 983	}
 984}
 985
 986int fw_device_set_broadcast_channel(struct device *dev, void *gen)
 987{
 988	if (is_fw_device(dev))
 989		set_broadcast_channel(fw_device(dev), (long)gen);
 990
 991	return 0;
 992}
 993
 994static void fw_device_init(struct work_struct *work)
 995{
 996	struct fw_device *device =
 997		container_of(work, struct fw_device, work.work);
 998	struct fw_card *card = device->card;
 999	struct device *revived_dev;
1000	int minor, ret;
1001
1002	/*
1003	 * All failure paths here set node->data to NULL, so that we
1004	 * don't try to do device_for_each_child() on a kfree()'d
1005	 * device.
1006	 */
1007
1008	ret = read_config_rom(device, device->generation);
1009	if (ret != RCODE_COMPLETE) {
1010		if (device->config_rom_retries < MAX_RETRIES &&
1011		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1012			device->config_rom_retries++;
1013			fw_schedule_device_work(device, RETRY_DELAY);
1014		} else {
1015			if (device->node->link_on)
1016				fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
1017					  device->node_id,
1018					  fw_rcode_string(ret));
1019			if (device->node == card->root_node)
1020				fw_schedule_bm_work(card, 0);
1021			fw_device_release(&device->device);
1022		}
1023		return;
1024	}
1025
1026	revived_dev = device_find_child(card->device,
1027					device, lookup_existing_device);
1028	if (revived_dev) {
1029		put_device(revived_dev);
1030		fw_device_release(&device->device);
1031
1032		return;
1033	}
1034
1035	device_initialize(&device->device);
1036
1037	fw_device_get(device);
1038	down_write(&fw_device_rwsem);
1039	minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS,
1040			GFP_KERNEL);
1041	up_write(&fw_device_rwsem);
1042
1043	if (minor < 0)
1044		goto error;
1045
1046	device->device.bus = &fw_bus_type;
1047	device->device.type = &fw_device_type;
1048	device->device.parent = card->device;
1049	device->device.devt = MKDEV(fw_cdev_major, minor);
1050	dev_set_name(&device->device, "fw%d", minor);
1051
1052	BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1053			ARRAY_SIZE(fw_device_attributes) +
1054			ARRAY_SIZE(config_rom_attributes));
1055	init_fw_attribute_group(&device->device,
1056				fw_device_attributes,
1057				&device->attribute_group);
1058
1059	if (device_add(&device->device)) {
1060		fw_err(card, "failed to add device\n");
1061		goto error_with_cdev;
1062	}
1063
1064	create_units(device);
1065
1066	/*
1067	 * Transition the device to running state.  If it got pulled
1068	 * out from under us while we did the intialization work, we
1069	 * have to shut down the device again here.  Normally, though,
1070	 * fw_node_event will be responsible for shutting it down when
1071	 * necessary.  We have to use the atomic cmpxchg here to avoid
1072	 * racing with the FW_NODE_DESTROYED case in
1073	 * fw_node_event().
1074	 */
1075	if (atomic_cmpxchg(&device->state,
1076			   FW_DEVICE_INITIALIZING,
1077			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1078		device->workfn = fw_device_shutdown;
1079		fw_schedule_device_work(device, SHUTDOWN_DELAY);
1080	} else {
1081		fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1082			  dev_name(&device->device),
1083			  device->config_rom[3], device->config_rom[4],
1084			  1 << device->max_speed);
1085		device->config_rom_retries = 0;
1086
1087		set_broadcast_channel(device, device->generation);
1088
1089		add_device_randomness(&device->config_rom[3], 8);
1090	}
1091
1092	/*
1093	 * Reschedule the IRM work if we just finished reading the
1094	 * root node config rom.  If this races with a bus reset we
1095	 * just end up running the IRM work a couple of extra times -
1096	 * pretty harmless.
1097	 */
1098	if (device->node == card->root_node)
1099		fw_schedule_bm_work(card, 0);
1100
1101	return;
1102
1103 error_with_cdev:
1104	down_write(&fw_device_rwsem);
1105	idr_remove(&fw_device_idr, minor);
1106	up_write(&fw_device_rwsem);
1107 error:
1108	fw_device_put(device);		/* fw_device_idr's reference */
1109
1110	put_device(&device->device);	/* our reference */
1111}
1112
1113/* Reread and compare bus info block and header of root directory */
1114static int reread_config_rom(struct fw_device *device, int generation,
1115			     bool *changed)
1116{
1117	u32 q;
1118	int i, rcode;
1119
1120	for (i = 0; i < 6; i++) {
1121		rcode = read_rom(device, generation, i, &q);
1122		if (rcode != RCODE_COMPLETE)
1123			return rcode;
1124
1125		if (i == 0 && q == 0)
1126			/* inaccessible (see read_config_rom); retry later */
1127			return RCODE_BUSY;
1128
1129		if (q != device->config_rom[i]) {
1130			*changed = true;
1131			return RCODE_COMPLETE;
1132		}
1133	}
1134
1135	*changed = false;
1136	return RCODE_COMPLETE;
1137}
1138
1139static void fw_device_refresh(struct work_struct *work)
1140{
1141	struct fw_device *device =
1142		container_of(work, struct fw_device, work.work);
1143	struct fw_card *card = device->card;
1144	int ret, node_id = device->node_id;
1145	bool changed;
1146
1147	ret = reread_config_rom(device, device->generation, &changed);
1148	if (ret != RCODE_COMPLETE)
1149		goto failed_config_rom;
1150
1151	if (!changed) {
1152		if (atomic_cmpxchg(&device->state,
1153				   FW_DEVICE_INITIALIZING,
1154				   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1155			goto gone;
1156
1157		fw_device_update(work);
1158		device->config_rom_retries = 0;
1159		goto out;
1160	}
1161
1162	/*
1163	 * Something changed.  We keep things simple and don't investigate
1164	 * further.  We just destroy all previous units and create new ones.
1165	 */
1166	device_for_each_child(&device->device, NULL, shutdown_unit);
1167
1168	ret = read_config_rom(device, device->generation);
1169	if (ret != RCODE_COMPLETE)
1170		goto failed_config_rom;
1171
1172	fw_device_cdev_update(device);
1173	create_units(device);
1174
1175	/* Userspace may want to re-read attributes. */
1176	kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1177
1178	if (atomic_cmpxchg(&device->state,
1179			   FW_DEVICE_INITIALIZING,
1180			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1181		goto gone;
1182
1183	fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1184	device->config_rom_retries = 0;
1185	goto out;
1186
1187 failed_config_rom:
1188	if (device->config_rom_retries < MAX_RETRIES &&
1189	    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1190		device->config_rom_retries++;
1191		fw_schedule_device_work(device, RETRY_DELAY);
1192		return;
1193	}
1194
1195	fw_notice(card, "giving up on refresh of device %s: %s\n",
1196		  dev_name(&device->device), fw_rcode_string(ret));
1197 gone:
1198	atomic_set(&device->state, FW_DEVICE_GONE);
1199	device->workfn = fw_device_shutdown;
1200	fw_schedule_device_work(device, SHUTDOWN_DELAY);
1201 out:
1202	if (node_id == card->root_node->node_id)
1203		fw_schedule_bm_work(card, 0);
1204}
1205
1206static void fw_device_workfn(struct work_struct *work)
1207{
1208	struct fw_device *device = container_of(to_delayed_work(work),
1209						struct fw_device, work);
1210	device->workfn(work);
1211}
1212
1213void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1214{
1215	struct fw_device *device;
1216
1217	switch (event) {
1218	case FW_NODE_CREATED:
1219		/*
1220		 * Attempt to scan the node, regardless whether its self ID has
1221		 * the L (link active) flag set or not.  Some broken devices
1222		 * send L=0 but have an up-and-running link; others send L=1
1223		 * without actually having a link.
1224		 */
1225 create:
1226		device = kzalloc(sizeof(*device), GFP_ATOMIC);
1227		if (device == NULL)
1228			break;
1229
1230		/*
1231		 * Do minimal intialization of the device here, the
1232		 * rest will happen in fw_device_init().
1233		 *
1234		 * Attention:  A lot of things, even fw_device_get(),
1235		 * cannot be done before fw_device_init() finished!
1236		 * You can basically just check device->state and
1237		 * schedule work until then, but only while holding
1238		 * card->lock.
1239		 */
1240		atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1241		device->card = fw_card_get(card);
1242		device->node = fw_node_get(node);
1243		device->node_id = node->node_id;
1244		device->generation = card->generation;
1245		device->is_local = node == card->local_node;
1246		mutex_init(&device->client_list_mutex);
1247		INIT_LIST_HEAD(&device->client_list);
1248
1249		/*
1250		 * Set the node data to point back to this device so
1251		 * FW_NODE_UPDATED callbacks can update the node_id
1252		 * and generation for the device.
1253		 */
1254		node->data = device;
1255
1256		/*
1257		 * Many devices are slow to respond after bus resets,
1258		 * especially if they are bus powered and go through
1259		 * power-up after getting plugged in.  We schedule the
1260		 * first config rom scan half a second after bus reset.
1261		 */
1262		device->workfn = fw_device_init;
1263		INIT_DELAYED_WORK(&device->work, fw_device_workfn);
1264		fw_schedule_device_work(device, INITIAL_DELAY);
1265		break;
1266
1267	case FW_NODE_INITIATED_RESET:
1268	case FW_NODE_LINK_ON:
1269		device = node->data;
1270		if (device == NULL)
1271			goto create;
1272
1273		device->node_id = node->node_id;
1274		smp_wmb();  /* update node_id before generation */
1275		device->generation = card->generation;
1276		if (atomic_cmpxchg(&device->state,
1277			    FW_DEVICE_RUNNING,
1278			    FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1279			device->workfn = fw_device_refresh;
1280			fw_schedule_device_work(device,
1281				device->is_local ? 0 : INITIAL_DELAY);
1282		}
1283		break;
1284
1285	case FW_NODE_UPDATED:
1286		device = node->data;
1287		if (device == NULL)
1288			break;
1289
1290		device->node_id = node->node_id;
1291		smp_wmb();  /* update node_id before generation */
1292		device->generation = card->generation;
1293		if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1294			device->workfn = fw_device_update;
1295			fw_schedule_device_work(device, 0);
1296		}
1297		break;
1298
1299	case FW_NODE_DESTROYED:
1300	case FW_NODE_LINK_OFF:
1301		if (!node->data)
1302			break;
1303
1304		/*
1305		 * Destroy the device associated with the node.  There
1306		 * are two cases here: either the device is fully
1307		 * initialized (FW_DEVICE_RUNNING) or we're in the
1308		 * process of reading its config rom
1309		 * (FW_DEVICE_INITIALIZING).  If it is fully
1310		 * initialized we can reuse device->work to schedule a
1311		 * full fw_device_shutdown().  If not, there's work
1312		 * scheduled to read it's config rom, and we just put
1313		 * the device in shutdown state to have that code fail
1314		 * to create the device.
1315		 */
1316		device = node->data;
1317		if (atomic_xchg(&device->state,
1318				FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1319			device->workfn = fw_device_shutdown;
1320			fw_schedule_device_work(device,
1321				list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1322		}
1323		break;
1324	}
1325}