Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) Ericsson AB 2007-2008
   4 * Copyright (C) ST-Ericsson SA 2008-2010
   5 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
   6 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
   7 */
   8
   9#include <linux/dma-mapping.h>
  10#include <linux/kernel.h>
  11#include <linux/slab.h>
  12#include <linux/export.h>
  13#include <linux/dmaengine.h>
  14#include <linux/platform_device.h>
  15#include <linux/clk.h>
  16#include <linux/delay.h>
  17#include <linux/log2.h>
  18#include <linux/pm.h>
  19#include <linux/pm_runtime.h>
  20#include <linux/err.h>
  21#include <linux/of.h>
  22#include <linux/of_dma.h>
  23#include <linux/amba/bus.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/platform_data/dma-ste-dma40.h>
  26
  27#include "dmaengine.h"
  28#include "ste_dma40_ll.h"
  29
  30#define D40_NAME "dma40"
  31
  32#define D40_PHY_CHAN -1
  33
  34/* For masking out/in 2 bit channel positions */
  35#define D40_CHAN_POS(chan)  (2 * (chan / 2))
  36#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  37
  38/* Maximum iterations taken before giving up suspending a channel */
  39#define D40_SUSPEND_MAX_IT 500
  40
  41/* Milliseconds */
  42#define DMA40_AUTOSUSPEND_DELAY	100
  43
  44/* Hardware requirement on LCLA alignment */
  45#define LCLA_ALIGNMENT 0x40000
  46
  47/* Max number of links per event group */
  48#define D40_LCLA_LINK_PER_EVENT_GRP 128
  49#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  50
  51/* Max number of logical channels per physical channel */
  52#define D40_MAX_LOG_CHAN_PER_PHY 32
  53
  54/* Attempts before giving up to trying to get pages that are aligned */
  55#define MAX_LCLA_ALLOC_ATTEMPTS 256
  56
  57/* Bit markings for allocation map */
  58#define D40_ALLOC_FREE		BIT(31)
  59#define D40_ALLOC_PHY		BIT(30)
  60#define D40_ALLOC_LOG_FREE	0
  61
  62#define D40_MEMCPY_MAX_CHANS	8
  63
  64/* Reserved event lines for memcpy only. */
  65#define DB8500_DMA_MEMCPY_EV_0	51
  66#define DB8500_DMA_MEMCPY_EV_1	56
  67#define DB8500_DMA_MEMCPY_EV_2	57
  68#define DB8500_DMA_MEMCPY_EV_3	58
  69#define DB8500_DMA_MEMCPY_EV_4	59
  70#define DB8500_DMA_MEMCPY_EV_5	60
  71
  72static int dma40_memcpy_channels[] = {
  73	DB8500_DMA_MEMCPY_EV_0,
  74	DB8500_DMA_MEMCPY_EV_1,
  75	DB8500_DMA_MEMCPY_EV_2,
  76	DB8500_DMA_MEMCPY_EV_3,
  77	DB8500_DMA_MEMCPY_EV_4,
  78	DB8500_DMA_MEMCPY_EV_5,
  79};
  80
  81/* Default configuration for physcial memcpy */
  82static const struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
  83	.mode = STEDMA40_MODE_PHYSICAL,
  84	.dir = DMA_MEM_TO_MEM,
  85
  86	.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
  87	.src_info.psize = STEDMA40_PSIZE_PHY_1,
  88	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  89
  90	.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
  91	.dst_info.psize = STEDMA40_PSIZE_PHY_1,
  92	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  93};
  94
  95/* Default configuration for logical memcpy */
  96static const struct stedma40_chan_cfg dma40_memcpy_conf_log = {
  97	.mode = STEDMA40_MODE_LOGICAL,
  98	.dir = DMA_MEM_TO_MEM,
  99
 100	.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 101	.src_info.psize = STEDMA40_PSIZE_LOG_1,
 102	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
 103
 104	.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 105	.dst_info.psize = STEDMA40_PSIZE_LOG_1,
 106	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
 107};
 108
 109/**
 110 * enum 40_command - The different commands and/or statuses.
 111 *
 112 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
 113 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
 114 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
 115 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
 116 */
 117enum d40_command {
 118	D40_DMA_STOP		= 0,
 119	D40_DMA_RUN		= 1,
 120	D40_DMA_SUSPEND_REQ	= 2,
 121	D40_DMA_SUSPENDED	= 3
 122};
 123
 124/*
 125 * enum d40_events - The different Event Enables for the event lines.
 126 *
 127 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
 128 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
 129 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
 130 * @D40_ROUND_EVENTLINE: Status check for event line.
 131 */
 132
 133enum d40_events {
 134	D40_DEACTIVATE_EVENTLINE	= 0,
 135	D40_ACTIVATE_EVENTLINE		= 1,
 136	D40_SUSPEND_REQ_EVENTLINE	= 2,
 137	D40_ROUND_EVENTLINE		= 3
 138};
 139
 140/*
 141 * These are the registers that has to be saved and later restored
 142 * when the DMA hw is powered off.
 143 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
 144 */
 145static __maybe_unused u32 d40_backup_regs[] = {
 146	D40_DREG_LCPA,
 147	D40_DREG_LCLA,
 148	D40_DREG_PRMSE,
 149	D40_DREG_PRMSO,
 150	D40_DREG_PRMOE,
 151	D40_DREG_PRMOO,
 152};
 153
 154#define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
 155
 156/*
 157 * since 9540 and 8540 has the same HW revision
 158 * use v4a for 9540 or ealier
 159 * use v4b for 8540 or later
 160 * HW revision:
 161 * DB8500ed has revision 0
 162 * DB8500v1 has revision 2
 163 * DB8500v2 has revision 3
 164 * AP9540v1 has revision 4
 165 * DB8540v1 has revision 4
 166 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
 167 */
 168static u32 d40_backup_regs_v4a[] = {
 169	D40_DREG_PSEG1,
 170	D40_DREG_PSEG2,
 171	D40_DREG_PSEG3,
 172	D40_DREG_PSEG4,
 173	D40_DREG_PCEG1,
 174	D40_DREG_PCEG2,
 175	D40_DREG_PCEG3,
 176	D40_DREG_PCEG4,
 177	D40_DREG_RSEG1,
 178	D40_DREG_RSEG2,
 179	D40_DREG_RSEG3,
 180	D40_DREG_RSEG4,
 181	D40_DREG_RCEG1,
 182	D40_DREG_RCEG2,
 183	D40_DREG_RCEG3,
 184	D40_DREG_RCEG4,
 185};
 186
 187#define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
 188
 189static u32 d40_backup_regs_v4b[] = {
 190	D40_DREG_CPSEG1,
 191	D40_DREG_CPSEG2,
 192	D40_DREG_CPSEG3,
 193	D40_DREG_CPSEG4,
 194	D40_DREG_CPSEG5,
 195	D40_DREG_CPCEG1,
 196	D40_DREG_CPCEG2,
 197	D40_DREG_CPCEG3,
 198	D40_DREG_CPCEG4,
 199	D40_DREG_CPCEG5,
 200	D40_DREG_CRSEG1,
 201	D40_DREG_CRSEG2,
 202	D40_DREG_CRSEG3,
 203	D40_DREG_CRSEG4,
 204	D40_DREG_CRSEG5,
 205	D40_DREG_CRCEG1,
 206	D40_DREG_CRCEG2,
 207	D40_DREG_CRCEG3,
 208	D40_DREG_CRCEG4,
 209	D40_DREG_CRCEG5,
 210};
 211
 212#define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
 213
 214static __maybe_unused u32 d40_backup_regs_chan[] = {
 215	D40_CHAN_REG_SSCFG,
 216	D40_CHAN_REG_SSELT,
 217	D40_CHAN_REG_SSPTR,
 218	D40_CHAN_REG_SSLNK,
 219	D40_CHAN_REG_SDCFG,
 220	D40_CHAN_REG_SDELT,
 221	D40_CHAN_REG_SDPTR,
 222	D40_CHAN_REG_SDLNK,
 223};
 224
 225#define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
 226			     BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
 227
 228/**
 229 * struct d40_interrupt_lookup - lookup table for interrupt handler
 230 *
 231 * @src: Interrupt mask register.
 232 * @clr: Interrupt clear register.
 233 * @is_error: true if this is an error interrupt.
 234 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
 235 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
 236 */
 237struct d40_interrupt_lookup {
 238	u32 src;
 239	u32 clr;
 240	bool is_error;
 241	int offset;
 242};
 243
 244
 245static struct d40_interrupt_lookup il_v4a[] = {
 246	{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
 247	{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
 248	{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
 249	{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
 250	{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
 251	{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
 252	{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
 253	{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
 254	{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
 255	{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
 256};
 257
 258static struct d40_interrupt_lookup il_v4b[] = {
 259	{D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false,  0},
 260	{D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
 261	{D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
 262	{D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
 263	{D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
 264	{D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true,   0},
 265	{D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true,  32},
 266	{D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true,  64},
 267	{D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true,  96},
 268	{D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true,  128},
 269	{D40_DREG_CPCTIS,  D40_DREG_CPCICR,  false, D40_PHY_CHAN},
 270	{D40_DREG_CPCEIS,  D40_DREG_CPCICR,  true,  D40_PHY_CHAN},
 271};
 272
 273/**
 274 * struct d40_reg_val - simple lookup struct
 275 *
 276 * @reg: The register.
 277 * @val: The value that belongs to the register in reg.
 278 */
 279struct d40_reg_val {
 280	unsigned int reg;
 281	unsigned int val;
 282};
 283
 284static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
 285	/* Clock every part of the DMA block from start */
 286	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
 287
 288	/* Interrupts on all logical channels */
 289	{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
 290	{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
 291	{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
 292	{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
 293	{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
 294	{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
 295	{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
 296	{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
 297	{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
 298	{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
 299	{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
 300	{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
 301};
 302static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
 303	/* Clock every part of the DMA block from start */
 304	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
 305
 306	/* Interrupts on all logical channels */
 307	{ .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
 308	{ .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
 309	{ .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
 310	{ .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
 311	{ .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
 312	{ .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
 313	{ .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
 314	{ .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
 315	{ .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
 316	{ .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
 317	{ .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
 318	{ .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
 319	{ .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
 320	{ .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
 321	{ .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
 322};
 323
 324/**
 325 * struct d40_lli_pool - Structure for keeping LLIs in memory
 326 *
 327 * @base: Pointer to memory area when the pre_alloc_lli's are not large
 328 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
 329 * pre_alloc_lli is used.
 330 * @dma_addr: DMA address, if mapped
 331 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
 332 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
 333 * one buffer to one buffer.
 334 */
 335struct d40_lli_pool {
 336	void	*base;
 337	int	 size;
 338	dma_addr_t	dma_addr;
 339	/* Space for dst and src, plus an extra for padding */
 340	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
 341};
 342
 343/**
 344 * struct d40_desc - A descriptor is one DMA job.
 345 *
 346 * @lli_phy: LLI settings for physical channel. Both src and dst=
 347 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
 348 * lli_len equals one.
 349 * @lli_log: Same as above but for logical channels.
 350 * @lli_pool: The pool with two entries pre-allocated.
 351 * @lli_len: Number of llis of current descriptor.
 352 * @lli_current: Number of transferred llis.
 353 * @lcla_alloc: Number of LCLA entries allocated.
 354 * @txd: DMA engine struct. Used for among other things for communication
 355 * during a transfer.
 356 * @node: List entry.
 357 * @is_in_client_list: true if the client owns this descriptor.
 358 * @cyclic: true if this is a cyclic job
 359 *
 360 * This descriptor is used for both logical and physical transfers.
 361 */
 362struct d40_desc {
 363	/* LLI physical */
 364	struct d40_phy_lli_bidir	 lli_phy;
 365	/* LLI logical */
 366	struct d40_log_lli_bidir	 lli_log;
 367
 368	struct d40_lli_pool		 lli_pool;
 369	int				 lli_len;
 370	int				 lli_current;
 371	int				 lcla_alloc;
 372
 373	struct dma_async_tx_descriptor	 txd;
 374	struct list_head		 node;
 375
 376	bool				 is_in_client_list;
 377	bool				 cyclic;
 378};
 379
 380/**
 381 * struct d40_lcla_pool - LCLA pool settings and data.
 382 *
 383 * @base: The virtual address of LCLA. 18 bit aligned.
 384 * @dma_addr: DMA address, if mapped
 385 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
 386 * This pointer is only there for clean-up on error.
 387 * @pages: The number of pages needed for all physical channels.
 388 * Only used later for clean-up on error
 389 * @lock: Lock to protect the content in this struct.
 390 * @alloc_map: big map over which LCLA entry is own by which job.
 391 */
 392struct d40_lcla_pool {
 393	void		*base;
 394	dma_addr_t	dma_addr;
 395	void		*base_unaligned;
 396	int		 pages;
 397	spinlock_t	 lock;
 398	struct d40_desc	**alloc_map;
 399};
 400
 401/**
 402 * struct d40_phy_res - struct for handling eventlines mapped to physical
 403 * channels.
 404 *
 405 * @lock: A lock protection this entity.
 406 * @reserved: True if used by secure world or otherwise.
 407 * @num: The physical channel number of this entity.
 408 * @allocated_src: Bit mapped to show which src event line's are mapped to
 409 * this physical channel. Can also be free or physically allocated.
 410 * @allocated_dst: Same as for src but is dst.
 411 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
 412 * event line number.
 413 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
 414 */
 415struct d40_phy_res {
 416	spinlock_t lock;
 417	bool	   reserved;
 418	int	   num;
 419	u32	   allocated_src;
 420	u32	   allocated_dst;
 421	bool	   use_soft_lli;
 422};
 423
 424struct d40_base;
 425
 426/**
 427 * struct d40_chan - Struct that describes a channel.
 428 *
 429 * @lock: A spinlock to protect this struct.
 430 * @log_num: The logical number, if any of this channel.
 431 * @pending_tx: The number of pending transfers. Used between interrupt handler
 432 * and tasklet.
 433 * @busy: Set to true when transfer is ongoing on this channel.
 434 * @phy_chan: Pointer to physical channel which this instance runs on. If this
 435 * point is NULL, then the channel is not allocated.
 436 * @chan: DMA engine handle.
 437 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
 438 * transfer and call client callback.
 439 * @client: Cliented owned descriptor list.
 440 * @pending_queue: Submitted jobs, to be issued by issue_pending()
 441 * @active: Active descriptor.
 442 * @done: Completed jobs
 443 * @queue: Queued jobs.
 444 * @prepare_queue: Prepared jobs.
 445 * @dma_cfg: The client configuration of this dma channel.
 446 * @slave_config: DMA slave configuration.
 447 * @configured: whether the dma_cfg configuration is valid
 448 * @base: Pointer to the device instance struct.
 449 * @src_def_cfg: Default cfg register setting for src.
 450 * @dst_def_cfg: Default cfg register setting for dst.
 451 * @log_def: Default logical channel settings.
 452 * @lcpa: Pointer to dst and src lcpa settings.
 453 * @runtime_addr: runtime configured address.
 454 * @runtime_direction: runtime configured direction.
 455 *
 456 * This struct can either "be" a logical or a physical channel.
 457 */
 458struct d40_chan {
 459	spinlock_t			 lock;
 460	int				 log_num;
 461	int				 pending_tx;
 462	bool				 busy;
 463	struct d40_phy_res		*phy_chan;
 464	struct dma_chan			 chan;
 465	struct tasklet_struct		 tasklet;
 466	struct list_head		 client;
 467	struct list_head		 pending_queue;
 468	struct list_head		 active;
 469	struct list_head		 done;
 470	struct list_head		 queue;
 471	struct list_head		 prepare_queue;
 472	struct stedma40_chan_cfg	 dma_cfg;
 473	struct dma_slave_config		 slave_config;
 474	bool				 configured;
 475	struct d40_base			*base;
 476	/* Default register configurations */
 477	u32				 src_def_cfg;
 478	u32				 dst_def_cfg;
 479	struct d40_def_lcsp		 log_def;
 480	struct d40_log_lli_full		*lcpa;
 481	/* Runtime reconfiguration */
 482	dma_addr_t			runtime_addr;
 483	enum dma_transfer_direction	runtime_direction;
 484};
 485
 486/**
 487 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
 488 * controller
 489 *
 490 * @backup: the pointer to the registers address array for backup
 491 * @backup_size: the size of the registers address array for backup
 492 * @realtime_en: the realtime enable register
 493 * @realtime_clear: the realtime clear register
 494 * @high_prio_en: the high priority enable register
 495 * @high_prio_clear: the high priority clear register
 496 * @interrupt_en: the interrupt enable register
 497 * @interrupt_clear: the interrupt clear register
 498 * @il: the pointer to struct d40_interrupt_lookup
 499 * @il_size: the size of d40_interrupt_lookup array
 500 * @init_reg: the pointer to the struct d40_reg_val
 501 * @init_reg_size: the size of d40_reg_val array
 502 */
 503struct d40_gen_dmac {
 504	u32				*backup;
 505	u32				 backup_size;
 506	u32				 realtime_en;
 507	u32				 realtime_clear;
 508	u32				 high_prio_en;
 509	u32				 high_prio_clear;
 510	u32				 interrupt_en;
 511	u32				 interrupt_clear;
 512	struct d40_interrupt_lookup	*il;
 513	u32				 il_size;
 514	struct d40_reg_val		*init_reg;
 515	u32				 init_reg_size;
 516};
 517
 518/**
 519 * struct d40_base - The big global struct, one for each probe'd instance.
 520 *
 521 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
 522 * @execmd_lock: Lock for execute command usage since several channels share
 523 * the same physical register.
 524 * @dev: The device structure.
 525 * @virtbase: The virtual base address of the DMA's register.
 526 * @rev: silicon revision detected.
 527 * @clk: Pointer to the DMA clock structure.
 528 * @phy_start: Physical memory start of the DMA registers.
 529 * @phy_size: Size of the DMA register map.
 530 * @irq: The IRQ number.
 531 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
 532 * transfers).
 533 * @num_phy_chans: The number of physical channels. Read from HW. This
 534 * is the number of available channels for this driver, not counting "Secure
 535 * mode" allocated physical channels.
 536 * @num_log_chans: The number of logical channels. Calculated from
 537 * num_phy_chans.
 538 * @dma_parms: DMA parameters for the channel
 539 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
 540 * @dma_slave: dma_device channels that can do only do slave transfers.
 541 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
 542 * @phy_chans: Room for all possible physical channels in system.
 543 * @log_chans: Room for all possible logical channels in system.
 544 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
 545 * to log_chans entries.
 546 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
 547 * to phy_chans entries.
 548 * @plat_data: Pointer to provided platform_data which is the driver
 549 * configuration.
 550 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
 551 * @phy_res: Vector containing all physical channels.
 552 * @lcla_pool: lcla pool settings and data.
 553 * @lcpa_base: The virtual mapped address of LCPA.
 554 * @phy_lcpa: The physical address of the LCPA.
 555 * @lcpa_size: The size of the LCPA area.
 556 * @desc_slab: cache for descriptors.
 557 * @reg_val_backup: Here the values of some hardware registers are stored
 558 * before the DMA is powered off. They are restored when the power is back on.
 559 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
 560 * later
 561 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
 562 * @regs_interrupt: Scratch space for registers during interrupt.
 563 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
 564 * @gen_dmac: the struct for generic registers values to represent u8500/8540
 565 * DMA controller
 566 */
 567struct d40_base {
 568	spinlock_t			 interrupt_lock;
 569	spinlock_t			 execmd_lock;
 570	struct device			 *dev;
 571	void __iomem			 *virtbase;
 572	u8				  rev:4;
 573	struct clk			 *clk;
 574	phys_addr_t			  phy_start;
 575	resource_size_t			  phy_size;
 576	int				  irq;
 577	int				  num_memcpy_chans;
 578	int				  num_phy_chans;
 579	int				  num_log_chans;
 580	struct device_dma_parameters	  dma_parms;
 581	struct dma_device		  dma_both;
 582	struct dma_device		  dma_slave;
 583	struct dma_device		  dma_memcpy;
 584	struct d40_chan			 *phy_chans;
 585	struct d40_chan			 *log_chans;
 586	struct d40_chan			**lookup_log_chans;
 587	struct d40_chan			**lookup_phy_chans;
 588	struct stedma40_platform_data	 *plat_data;
 589	struct regulator		 *lcpa_regulator;
 590	/* Physical half channels */
 591	struct d40_phy_res		 *phy_res;
 592	struct d40_lcla_pool		  lcla_pool;
 593	void				 *lcpa_base;
 594	dma_addr_t			  phy_lcpa;
 595	resource_size_t			  lcpa_size;
 596	struct kmem_cache		 *desc_slab;
 597	u32				  reg_val_backup[BACKUP_REGS_SZ];
 598	u32				  reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
 599	u32				 *reg_val_backup_chan;
 600	u32				 *regs_interrupt;
 601	u16				  gcc_pwr_off_mask;
 602	struct d40_gen_dmac		  gen_dmac;
 603};
 604
 605static struct device *chan2dev(struct d40_chan *d40c)
 606{
 607	return &d40c->chan.dev->device;
 608}
 609
 610static bool chan_is_physical(struct d40_chan *chan)
 611{
 612	return chan->log_num == D40_PHY_CHAN;
 613}
 614
 615static bool chan_is_logical(struct d40_chan *chan)
 616{
 617	return !chan_is_physical(chan);
 618}
 619
 620static void __iomem *chan_base(struct d40_chan *chan)
 621{
 622	return chan->base->virtbase + D40_DREG_PCBASE +
 623	       chan->phy_chan->num * D40_DREG_PCDELTA;
 624}
 625
 626#define d40_err(dev, format, arg...)		\
 627	dev_err(dev, "[%s] " format, __func__, ## arg)
 628
 629#define chan_err(d40c, format, arg...)		\
 630	d40_err(chan2dev(d40c), format, ## arg)
 631
 632static int d40_set_runtime_config_write(struct dma_chan *chan,
 633				  struct dma_slave_config *config,
 634				  enum dma_transfer_direction direction);
 635
 636static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
 637			      int lli_len)
 638{
 639	bool is_log = chan_is_logical(d40c);
 640	u32 align;
 641	void *base;
 642
 643	if (is_log)
 644		align = sizeof(struct d40_log_lli);
 645	else
 646		align = sizeof(struct d40_phy_lli);
 647
 648	if (lli_len == 1) {
 649		base = d40d->lli_pool.pre_alloc_lli;
 650		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
 651		d40d->lli_pool.base = NULL;
 652	} else {
 653		d40d->lli_pool.size = lli_len * 2 * align;
 654
 655		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
 656		d40d->lli_pool.base = base;
 657
 658		if (d40d->lli_pool.base == NULL)
 659			return -ENOMEM;
 660	}
 661
 662	if (is_log) {
 663		d40d->lli_log.src = PTR_ALIGN(base, align);
 664		d40d->lli_log.dst = d40d->lli_log.src + lli_len;
 665
 666		d40d->lli_pool.dma_addr = 0;
 667	} else {
 668		d40d->lli_phy.src = PTR_ALIGN(base, align);
 669		d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
 670
 671		d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
 672							 d40d->lli_phy.src,
 673							 d40d->lli_pool.size,
 674							 DMA_TO_DEVICE);
 675
 676		if (dma_mapping_error(d40c->base->dev,
 677				      d40d->lli_pool.dma_addr)) {
 678			kfree(d40d->lli_pool.base);
 679			d40d->lli_pool.base = NULL;
 680			d40d->lli_pool.dma_addr = 0;
 681			return -ENOMEM;
 682		}
 683	}
 684
 685	return 0;
 686}
 687
 688static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
 689{
 690	if (d40d->lli_pool.dma_addr)
 691		dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
 692				 d40d->lli_pool.size, DMA_TO_DEVICE);
 693
 694	kfree(d40d->lli_pool.base);
 695	d40d->lli_pool.base = NULL;
 696	d40d->lli_pool.size = 0;
 697	d40d->lli_log.src = NULL;
 698	d40d->lli_log.dst = NULL;
 699	d40d->lli_phy.src = NULL;
 700	d40d->lli_phy.dst = NULL;
 701}
 702
 703static int d40_lcla_alloc_one(struct d40_chan *d40c,
 704			      struct d40_desc *d40d)
 705{
 706	unsigned long flags;
 707	int i;
 708	int ret = -EINVAL;
 709
 710	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
 711
 712	/*
 713	 * Allocate both src and dst at the same time, therefore the half
 714	 * start on 1 since 0 can't be used since zero is used as end marker.
 715	 */
 716	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
 717		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
 718
 719		if (!d40c->base->lcla_pool.alloc_map[idx]) {
 720			d40c->base->lcla_pool.alloc_map[idx] = d40d;
 721			d40d->lcla_alloc++;
 722			ret = i;
 723			break;
 724		}
 725	}
 726
 727	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
 728
 729	return ret;
 730}
 731
 732static int d40_lcla_free_all(struct d40_chan *d40c,
 733			     struct d40_desc *d40d)
 734{
 735	unsigned long flags;
 736	int i;
 737	int ret = -EINVAL;
 738
 739	if (chan_is_physical(d40c))
 740		return 0;
 741
 742	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
 743
 744	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
 745		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
 746
 747		if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
 748			d40c->base->lcla_pool.alloc_map[idx] = NULL;
 749			d40d->lcla_alloc--;
 750			if (d40d->lcla_alloc == 0) {
 751				ret = 0;
 752				break;
 753			}
 754		}
 755	}
 756
 757	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
 758
 759	return ret;
 760
 761}
 762
 763static void d40_desc_remove(struct d40_desc *d40d)
 764{
 765	list_del(&d40d->node);
 766}
 767
 768static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
 769{
 770	struct d40_desc *desc = NULL;
 771
 772	if (!list_empty(&d40c->client)) {
 773		struct d40_desc *d;
 774		struct d40_desc *_d;
 775
 776		list_for_each_entry_safe(d, _d, &d40c->client, node) {
 777			if (async_tx_test_ack(&d->txd)) {
 778				d40_desc_remove(d);
 779				desc = d;
 780				memset(desc, 0, sizeof(*desc));
 781				break;
 782			}
 783		}
 784	}
 785
 786	if (!desc)
 787		desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
 788
 789	if (desc)
 790		INIT_LIST_HEAD(&desc->node);
 791
 792	return desc;
 793}
 794
 795static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
 796{
 797
 798	d40_pool_lli_free(d40c, d40d);
 799	d40_lcla_free_all(d40c, d40d);
 800	kmem_cache_free(d40c->base->desc_slab, d40d);
 801}
 802
 803static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
 804{
 805	list_add_tail(&desc->node, &d40c->active);
 806}
 807
 808static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
 809{
 810	struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
 811	struct d40_phy_lli *lli_src = desc->lli_phy.src;
 812	void __iomem *base = chan_base(chan);
 813
 814	writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
 815	writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
 816	writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
 817	writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
 818
 819	writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
 820	writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
 821	writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
 822	writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
 823}
 824
 825static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
 826{
 827	list_add_tail(&desc->node, &d40c->done);
 828}
 829
 830static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
 831{
 832	struct d40_lcla_pool *pool = &chan->base->lcla_pool;
 833	struct d40_log_lli_bidir *lli = &desc->lli_log;
 834	int lli_current = desc->lli_current;
 835	int lli_len = desc->lli_len;
 836	bool cyclic = desc->cyclic;
 837	int curr_lcla = -EINVAL;
 838	int first_lcla = 0;
 839	bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
 840	bool linkback;
 841
 842	/*
 843	 * We may have partially running cyclic transfers, in case we did't get
 844	 * enough LCLA entries.
 845	 */
 846	linkback = cyclic && lli_current == 0;
 847
 848	/*
 849	 * For linkback, we need one LCLA even with only one link, because we
 850	 * can't link back to the one in LCPA space
 851	 */
 852	if (linkback || (lli_len - lli_current > 1)) {
 853		/*
 854		 * If the channel is expected to use only soft_lli don't
 855		 * allocate a lcla. This is to avoid a HW issue that exists
 856		 * in some controller during a peripheral to memory transfer
 857		 * that uses linked lists.
 858		 */
 859		if (!(chan->phy_chan->use_soft_lli &&
 860			chan->dma_cfg.dir == DMA_DEV_TO_MEM))
 861			curr_lcla = d40_lcla_alloc_one(chan, desc);
 862
 863		first_lcla = curr_lcla;
 864	}
 865
 866	/*
 867	 * For linkback, we normally load the LCPA in the loop since we need to
 868	 * link it to the second LCLA and not the first.  However, if we
 869	 * couldn't even get a first LCLA, then we have to run in LCPA and
 870	 * reload manually.
 871	 */
 872	if (!linkback || curr_lcla == -EINVAL) {
 873		unsigned int flags = 0;
 874
 875		if (curr_lcla == -EINVAL)
 876			flags |= LLI_TERM_INT;
 877
 878		d40_log_lli_lcpa_write(chan->lcpa,
 879				       &lli->dst[lli_current],
 880				       &lli->src[lli_current],
 881				       curr_lcla,
 882				       flags);
 883		lli_current++;
 884	}
 885
 886	if (curr_lcla < 0)
 887		goto set_current;
 888
 889	for (; lli_current < lli_len; lli_current++) {
 890		unsigned int lcla_offset = chan->phy_chan->num * 1024 +
 891					   8 * curr_lcla * 2;
 892		struct d40_log_lli *lcla = pool->base + lcla_offset;
 893		unsigned int flags = 0;
 894		int next_lcla;
 895
 896		if (lli_current + 1 < lli_len)
 897			next_lcla = d40_lcla_alloc_one(chan, desc);
 898		else
 899			next_lcla = linkback ? first_lcla : -EINVAL;
 900
 901		if (cyclic || next_lcla == -EINVAL)
 902			flags |= LLI_TERM_INT;
 903
 904		if (linkback && curr_lcla == first_lcla) {
 905			/* First link goes in both LCPA and LCLA */
 906			d40_log_lli_lcpa_write(chan->lcpa,
 907					       &lli->dst[lli_current],
 908					       &lli->src[lli_current],
 909					       next_lcla, flags);
 910		}
 911
 912		/*
 913		 * One unused LCLA in the cyclic case if the very first
 914		 * next_lcla fails...
 915		 */
 916		d40_log_lli_lcla_write(lcla,
 917				       &lli->dst[lli_current],
 918				       &lli->src[lli_current],
 919				       next_lcla, flags);
 920
 921		/*
 922		 * Cache maintenance is not needed if lcla is
 923		 * mapped in esram
 924		 */
 925		if (!use_esram_lcla) {
 926			dma_sync_single_range_for_device(chan->base->dev,
 927						pool->dma_addr, lcla_offset,
 928						2 * sizeof(struct d40_log_lli),
 929						DMA_TO_DEVICE);
 930		}
 931		curr_lcla = next_lcla;
 932
 933		if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
 934			lli_current++;
 935			break;
 936		}
 937	}
 938 set_current:
 939	desc->lli_current = lli_current;
 940}
 941
 942static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
 943{
 944	if (chan_is_physical(d40c)) {
 945		d40_phy_lli_load(d40c, d40d);
 946		d40d->lli_current = d40d->lli_len;
 947	} else
 948		d40_log_lli_to_lcxa(d40c, d40d);
 949}
 950
 951static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
 952{
 953	return list_first_entry_or_null(&d40c->active, struct d40_desc, node);
 954}
 955
 956/* remove desc from current queue and add it to the pending_queue */
 957static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
 958{
 959	d40_desc_remove(desc);
 960	desc->is_in_client_list = false;
 961	list_add_tail(&desc->node, &d40c->pending_queue);
 962}
 963
 964static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
 965{
 966	return list_first_entry_or_null(&d40c->pending_queue, struct d40_desc,
 967					node);
 968}
 969
 970static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
 971{
 972	return list_first_entry_or_null(&d40c->queue, struct d40_desc, node);
 973}
 974
 975static struct d40_desc *d40_first_done(struct d40_chan *d40c)
 976{
 977	return list_first_entry_or_null(&d40c->done, struct d40_desc, node);
 978}
 979
 980static int d40_psize_2_burst_size(bool is_log, int psize)
 981{
 982	if (is_log) {
 983		if (psize == STEDMA40_PSIZE_LOG_1)
 984			return 1;
 985	} else {
 986		if (psize == STEDMA40_PSIZE_PHY_1)
 987			return 1;
 988	}
 989
 990	return 2 << psize;
 991}
 992
 993/*
 994 * The dma only supports transmitting packages up to
 995 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
 996 *
 997 * Calculate the total number of dma elements required to send the entire sg list.
 998 */
 999static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
1000{
1001	int dmalen;
1002	u32 max_w = max(data_width1, data_width2);
1003	u32 min_w = min(data_width1, data_width2);
1004	u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
1005
1006	if (seg_max > STEDMA40_MAX_SEG_SIZE)
1007		seg_max -= max_w;
1008
1009	if (!IS_ALIGNED(size, max_w))
1010		return -EINVAL;
1011
1012	if (size <= seg_max)
1013		dmalen = 1;
1014	else {
1015		dmalen = size / seg_max;
1016		if (dmalen * seg_max < size)
1017			dmalen++;
1018	}
1019	return dmalen;
1020}
1021
1022static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
1023			   u32 data_width1, u32 data_width2)
1024{
1025	struct scatterlist *sg;
1026	int i;
1027	int len = 0;
1028	int ret;
1029
1030	for_each_sg(sgl, sg, sg_len, i) {
1031		ret = d40_size_2_dmalen(sg_dma_len(sg),
1032					data_width1, data_width2);
1033		if (ret < 0)
1034			return ret;
1035		len += ret;
1036	}
1037	return len;
1038}
1039
1040static int __d40_execute_command_phy(struct d40_chan *d40c,
1041				     enum d40_command command)
1042{
1043	u32 status;
1044	int i;
1045	void __iomem *active_reg;
1046	int ret = 0;
1047	unsigned long flags;
1048	u32 wmask;
1049
1050	if (command == D40_DMA_STOP) {
1051		ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
1052		if (ret)
1053			return ret;
1054	}
1055
1056	spin_lock_irqsave(&d40c->base->execmd_lock, flags);
1057
1058	if (d40c->phy_chan->num % 2 == 0)
1059		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1060	else
1061		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1062
1063	if (command == D40_DMA_SUSPEND_REQ) {
1064		status = (readl(active_reg) &
1065			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1066			D40_CHAN_POS(d40c->phy_chan->num);
1067
1068		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1069			goto unlock;
1070	}
1071
1072	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
1073	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
1074	       active_reg);
1075
1076	if (command == D40_DMA_SUSPEND_REQ) {
1077
1078		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
1079			status = (readl(active_reg) &
1080				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1081				D40_CHAN_POS(d40c->phy_chan->num);
1082
1083			cpu_relax();
1084			/*
1085			 * Reduce the number of bus accesses while
1086			 * waiting for the DMA to suspend.
1087			 */
1088			udelay(3);
1089
1090			if (status == D40_DMA_STOP ||
1091			    status == D40_DMA_SUSPENDED)
1092				break;
1093		}
1094
1095		if (i == D40_SUSPEND_MAX_IT) {
1096			chan_err(d40c,
1097				"unable to suspend the chl %d (log: %d) status %x\n",
1098				d40c->phy_chan->num, d40c->log_num,
1099				status);
1100			dump_stack();
1101			ret = -EBUSY;
1102		}
1103
1104	}
1105 unlock:
1106	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
1107	return ret;
1108}
1109
1110static void d40_term_all(struct d40_chan *d40c)
1111{
1112	struct d40_desc *d40d;
1113	struct d40_desc *_d;
1114
1115	/* Release completed descriptors */
1116	while ((d40d = d40_first_done(d40c))) {
1117		d40_desc_remove(d40d);
1118		d40_desc_free(d40c, d40d);
1119	}
1120
1121	/* Release active descriptors */
1122	while ((d40d = d40_first_active_get(d40c))) {
1123		d40_desc_remove(d40d);
1124		d40_desc_free(d40c, d40d);
1125	}
1126
1127	/* Release queued descriptors waiting for transfer */
1128	while ((d40d = d40_first_queued(d40c))) {
1129		d40_desc_remove(d40d);
1130		d40_desc_free(d40c, d40d);
1131	}
1132
1133	/* Release pending descriptors */
1134	while ((d40d = d40_first_pending(d40c))) {
1135		d40_desc_remove(d40d);
1136		d40_desc_free(d40c, d40d);
1137	}
1138
1139	/* Release client owned descriptors */
1140	if (!list_empty(&d40c->client))
1141		list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
1142			d40_desc_remove(d40d);
1143			d40_desc_free(d40c, d40d);
1144		}
1145
1146	/* Release descriptors in prepare queue */
1147	if (!list_empty(&d40c->prepare_queue))
1148		list_for_each_entry_safe(d40d, _d,
1149					 &d40c->prepare_queue, node) {
1150			d40_desc_remove(d40d);
1151			d40_desc_free(d40c, d40d);
1152		}
1153
1154	d40c->pending_tx = 0;
1155}
1156
1157static void __d40_config_set_event(struct d40_chan *d40c,
1158				   enum d40_events event_type, u32 event,
1159				   int reg)
1160{
1161	void __iomem *addr = chan_base(d40c) + reg;
1162	int tries;
1163	u32 status;
1164
1165	switch (event_type) {
1166
1167	case D40_DEACTIVATE_EVENTLINE:
1168
1169		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1170		       | ~D40_EVENTLINE_MASK(event), addr);
1171		break;
1172
1173	case D40_SUSPEND_REQ_EVENTLINE:
1174		status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1175			  D40_EVENTLINE_POS(event);
1176
1177		if (status == D40_DEACTIVATE_EVENTLINE ||
1178		    status == D40_SUSPEND_REQ_EVENTLINE)
1179			break;
1180
1181		writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1182		       | ~D40_EVENTLINE_MASK(event), addr);
1183
1184		for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1185
1186			status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1187				  D40_EVENTLINE_POS(event);
1188
1189			cpu_relax();
1190			/*
1191			 * Reduce the number of bus accesses while
1192			 * waiting for the DMA to suspend.
1193			 */
1194			udelay(3);
1195
1196			if (status == D40_DEACTIVATE_EVENTLINE)
1197				break;
1198		}
1199
1200		if (tries == D40_SUSPEND_MAX_IT) {
1201			chan_err(d40c,
1202				"unable to stop the event_line chl %d (log: %d)"
1203				"status %x\n", d40c->phy_chan->num,
1204				 d40c->log_num, status);
1205		}
1206		break;
1207
1208	case D40_ACTIVATE_EVENTLINE:
1209	/*
1210	 * The hardware sometimes doesn't register the enable when src and dst
1211	 * event lines are active on the same logical channel.  Retry to ensure
1212	 * it does.  Usually only one retry is sufficient.
1213	 */
1214		tries = 100;
1215		while (--tries) {
1216			writel((D40_ACTIVATE_EVENTLINE <<
1217				D40_EVENTLINE_POS(event)) |
1218				~D40_EVENTLINE_MASK(event), addr);
1219
1220			if (readl(addr) & D40_EVENTLINE_MASK(event))
1221				break;
1222		}
1223
1224		if (tries != 99)
1225			dev_dbg(chan2dev(d40c),
1226				"[%s] workaround enable S%cLNK (%d tries)\n",
1227				__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1228				100 - tries);
1229
1230		WARN_ON(!tries);
1231		break;
1232
1233	case D40_ROUND_EVENTLINE:
1234		BUG();
1235		break;
1236
1237	}
1238}
1239
1240static void d40_config_set_event(struct d40_chan *d40c,
1241				 enum d40_events event_type)
1242{
1243	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1244
1245	/* Enable event line connected to device (or memcpy) */
1246	if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
1247	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
1248		__d40_config_set_event(d40c, event_type, event,
1249				       D40_CHAN_REG_SSLNK);
1250
1251	if (d40c->dma_cfg.dir !=  DMA_DEV_TO_MEM)
1252		__d40_config_set_event(d40c, event_type, event,
1253				       D40_CHAN_REG_SDLNK);
1254}
1255
1256static u32 d40_chan_has_events(struct d40_chan *d40c)
1257{
1258	void __iomem *chanbase = chan_base(d40c);
1259	u32 val;
1260
1261	val = readl(chanbase + D40_CHAN_REG_SSLNK);
1262	val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1263
1264	return val;
1265}
1266
1267static int
1268__d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1269{
1270	unsigned long flags;
1271	int ret = 0;
1272	u32 active_status;
1273	void __iomem *active_reg;
1274
1275	if (d40c->phy_chan->num % 2 == 0)
1276		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1277	else
1278		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1279
1280
1281	spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1282
1283	switch (command) {
1284	case D40_DMA_STOP:
1285	case D40_DMA_SUSPEND_REQ:
1286
1287		active_status = (readl(active_reg) &
1288				 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1289				 D40_CHAN_POS(d40c->phy_chan->num);
1290
1291		if (active_status == D40_DMA_RUN)
1292			d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1293		else
1294			d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1295
1296		if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1297			ret = __d40_execute_command_phy(d40c, command);
1298
1299		break;
1300
1301	case D40_DMA_RUN:
1302
1303		d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1304		ret = __d40_execute_command_phy(d40c, command);
1305		break;
1306
1307	case D40_DMA_SUSPENDED:
1308		BUG();
1309		break;
1310	}
1311
1312	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1313	return ret;
1314}
1315
1316static int d40_channel_execute_command(struct d40_chan *d40c,
1317				       enum d40_command command)
1318{
1319	if (chan_is_logical(d40c))
1320		return __d40_execute_command_log(d40c, command);
1321	else
1322		return __d40_execute_command_phy(d40c, command);
1323}
1324
1325static u32 d40_get_prmo(struct d40_chan *d40c)
1326{
1327	static const unsigned int phy_map[] = {
1328		[STEDMA40_PCHAN_BASIC_MODE]
1329			= D40_DREG_PRMO_PCHAN_BASIC,
1330		[STEDMA40_PCHAN_MODULO_MODE]
1331			= D40_DREG_PRMO_PCHAN_MODULO,
1332		[STEDMA40_PCHAN_DOUBLE_DST_MODE]
1333			= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1334	};
1335	static const unsigned int log_map[] = {
1336		[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1337			= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1338		[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1339			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1340		[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1341			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1342	};
1343
1344	if (chan_is_physical(d40c))
1345		return phy_map[d40c->dma_cfg.mode_opt];
1346	else
1347		return log_map[d40c->dma_cfg.mode_opt];
1348}
1349
1350static void d40_config_write(struct d40_chan *d40c)
1351{
1352	u32 addr_base;
1353	u32 var;
1354
1355	/* Odd addresses are even addresses + 4 */
1356	addr_base = (d40c->phy_chan->num % 2) * 4;
1357	/* Setup channel mode to logical or physical */
1358	var = ((u32)(chan_is_logical(d40c)) + 1) <<
1359		D40_CHAN_POS(d40c->phy_chan->num);
1360	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1361
1362	/* Setup operational mode option register */
1363	var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1364
1365	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1366
1367	if (chan_is_logical(d40c)) {
1368		int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1369			   & D40_SREG_ELEM_LOG_LIDX_MASK;
1370		void __iomem *chanbase = chan_base(d40c);
1371
1372		/* Set default config for CFG reg */
1373		writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1374		writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1375
1376		/* Set LIDX for lcla */
1377		writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1378		writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1379
1380		/* Clear LNK which will be used by d40_chan_has_events() */
1381		writel(0, chanbase + D40_CHAN_REG_SSLNK);
1382		writel(0, chanbase + D40_CHAN_REG_SDLNK);
1383	}
1384}
1385
1386static u32 d40_residue(struct d40_chan *d40c)
1387{
1388	u32 num_elt;
1389
1390	if (chan_is_logical(d40c))
1391		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1392			>> D40_MEM_LCSP2_ECNT_POS;
1393	else {
1394		u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1395		num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1396			  >> D40_SREG_ELEM_PHY_ECNT_POS;
1397	}
1398
1399	return num_elt * d40c->dma_cfg.dst_info.data_width;
1400}
1401
1402static bool d40_tx_is_linked(struct d40_chan *d40c)
1403{
1404	bool is_link;
1405
1406	if (chan_is_logical(d40c))
1407		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1408	else
1409		is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1410			  & D40_SREG_LNK_PHYS_LNK_MASK;
1411
1412	return is_link;
1413}
1414
1415static int d40_pause(struct dma_chan *chan)
1416{
1417	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1418	int res = 0;
1419	unsigned long flags;
1420
1421	if (d40c->phy_chan == NULL) {
1422		chan_err(d40c, "Channel is not allocated!\n");
1423		return -EINVAL;
1424	}
1425
1426	if (!d40c->busy)
1427		return 0;
1428
1429	spin_lock_irqsave(&d40c->lock, flags);
1430	pm_runtime_get_sync(d40c->base->dev);
1431
1432	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1433
1434	pm_runtime_mark_last_busy(d40c->base->dev);
1435	pm_runtime_put_autosuspend(d40c->base->dev);
1436	spin_unlock_irqrestore(&d40c->lock, flags);
1437	return res;
1438}
1439
1440static int d40_resume(struct dma_chan *chan)
1441{
1442	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1443	int res = 0;
1444	unsigned long flags;
1445
1446	if (d40c->phy_chan == NULL) {
1447		chan_err(d40c, "Channel is not allocated!\n");
1448		return -EINVAL;
1449	}
1450
1451	if (!d40c->busy)
1452		return 0;
1453
1454	spin_lock_irqsave(&d40c->lock, flags);
1455	pm_runtime_get_sync(d40c->base->dev);
1456
1457	/* If bytes left to transfer or linked tx resume job */
1458	if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1459		res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1460
1461	pm_runtime_mark_last_busy(d40c->base->dev);
1462	pm_runtime_put_autosuspend(d40c->base->dev);
1463	spin_unlock_irqrestore(&d40c->lock, flags);
1464	return res;
1465}
1466
1467static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1468{
1469	struct d40_chan *d40c = container_of(tx->chan,
1470					     struct d40_chan,
1471					     chan);
1472	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1473	unsigned long flags;
1474	dma_cookie_t cookie;
1475
1476	spin_lock_irqsave(&d40c->lock, flags);
1477	cookie = dma_cookie_assign(tx);
1478	d40_desc_queue(d40c, d40d);
1479	spin_unlock_irqrestore(&d40c->lock, flags);
1480
1481	return cookie;
1482}
1483
1484static int d40_start(struct d40_chan *d40c)
1485{
1486	return d40_channel_execute_command(d40c, D40_DMA_RUN);
1487}
1488
1489static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1490{
1491	struct d40_desc *d40d;
1492	int err;
1493
1494	/* Start queued jobs, if any */
1495	d40d = d40_first_queued(d40c);
1496
1497	if (d40d != NULL) {
1498		if (!d40c->busy) {
1499			d40c->busy = true;
1500			pm_runtime_get_sync(d40c->base->dev);
1501		}
1502
1503		/* Remove from queue */
1504		d40_desc_remove(d40d);
1505
1506		/* Add to active queue */
1507		d40_desc_submit(d40c, d40d);
1508
1509		/* Initiate DMA job */
1510		d40_desc_load(d40c, d40d);
1511
1512		/* Start dma job */
1513		err = d40_start(d40c);
1514
1515		if (err)
1516			return NULL;
1517	}
1518
1519	return d40d;
1520}
1521
1522/* called from interrupt context */
1523static void dma_tc_handle(struct d40_chan *d40c)
1524{
1525	struct d40_desc *d40d;
1526
1527	/* Get first active entry from list */
1528	d40d = d40_first_active_get(d40c);
1529
1530	if (d40d == NULL)
1531		return;
1532
1533	if (d40d->cyclic) {
1534		/*
1535		 * If this was a paritially loaded list, we need to reloaded
1536		 * it, and only when the list is completed.  We need to check
1537		 * for done because the interrupt will hit for every link, and
1538		 * not just the last one.
1539		 */
1540		if (d40d->lli_current < d40d->lli_len
1541		    && !d40_tx_is_linked(d40c)
1542		    && !d40_residue(d40c)) {
1543			d40_lcla_free_all(d40c, d40d);
1544			d40_desc_load(d40c, d40d);
1545			(void) d40_start(d40c);
1546
1547			if (d40d->lli_current == d40d->lli_len)
1548				d40d->lli_current = 0;
1549		}
1550	} else {
1551		d40_lcla_free_all(d40c, d40d);
1552
1553		if (d40d->lli_current < d40d->lli_len) {
1554			d40_desc_load(d40c, d40d);
1555			/* Start dma job */
1556			(void) d40_start(d40c);
1557			return;
1558		}
1559
1560		if (d40_queue_start(d40c) == NULL) {
1561			d40c->busy = false;
1562
1563			pm_runtime_mark_last_busy(d40c->base->dev);
1564			pm_runtime_put_autosuspend(d40c->base->dev);
1565		}
1566
1567		d40_desc_remove(d40d);
1568		d40_desc_done(d40c, d40d);
1569	}
1570
1571	d40c->pending_tx++;
1572	tasklet_schedule(&d40c->tasklet);
1573
1574}
1575
1576static void dma_tasklet(unsigned long data)
1577{
1578	struct d40_chan *d40c = (struct d40_chan *) data;
1579	struct d40_desc *d40d;
1580	unsigned long flags;
1581	bool callback_active;
1582	struct dmaengine_desc_callback cb;
1583
1584	spin_lock_irqsave(&d40c->lock, flags);
1585
1586	/* Get first entry from the done list */
1587	d40d = d40_first_done(d40c);
1588	if (d40d == NULL) {
1589		/* Check if we have reached here for cyclic job */
1590		d40d = d40_first_active_get(d40c);
1591		if (d40d == NULL || !d40d->cyclic)
1592			goto check_pending_tx;
1593	}
1594
1595	if (!d40d->cyclic)
1596		dma_cookie_complete(&d40d->txd);
1597
1598	/*
1599	 * If terminating a channel pending_tx is set to zero.
1600	 * This prevents any finished active jobs to return to the client.
1601	 */
1602	if (d40c->pending_tx == 0) {
1603		spin_unlock_irqrestore(&d40c->lock, flags);
1604		return;
1605	}
1606
1607	/* Callback to client */
1608	callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
1609	dmaengine_desc_get_callback(&d40d->txd, &cb);
1610
1611	if (!d40d->cyclic) {
1612		if (async_tx_test_ack(&d40d->txd)) {
1613			d40_desc_remove(d40d);
1614			d40_desc_free(d40c, d40d);
1615		} else if (!d40d->is_in_client_list) {
1616			d40_desc_remove(d40d);
1617			d40_lcla_free_all(d40c, d40d);
1618			list_add_tail(&d40d->node, &d40c->client);
1619			d40d->is_in_client_list = true;
1620		}
1621	}
1622
1623	d40c->pending_tx--;
1624
1625	if (d40c->pending_tx)
1626		tasklet_schedule(&d40c->tasklet);
1627
1628	spin_unlock_irqrestore(&d40c->lock, flags);
1629
1630	if (callback_active)
1631		dmaengine_desc_callback_invoke(&cb, NULL);
1632
1633	return;
1634 check_pending_tx:
1635	/* Rescue manouver if receiving double interrupts */
1636	if (d40c->pending_tx > 0)
1637		d40c->pending_tx--;
1638	spin_unlock_irqrestore(&d40c->lock, flags);
1639}
1640
1641static irqreturn_t d40_handle_interrupt(int irq, void *data)
1642{
1643	int i;
1644	u32 idx;
1645	u32 row;
1646	long chan = -1;
1647	struct d40_chan *d40c;
1648	unsigned long flags;
1649	struct d40_base *base = data;
1650	u32 *regs = base->regs_interrupt;
1651	struct d40_interrupt_lookup *il = base->gen_dmac.il;
1652	u32 il_size = base->gen_dmac.il_size;
1653
1654	spin_lock_irqsave(&base->interrupt_lock, flags);
1655
1656	/* Read interrupt status of both logical and physical channels */
1657	for (i = 0; i < il_size; i++)
1658		regs[i] = readl(base->virtbase + il[i].src);
1659
1660	for (;;) {
1661
1662		chan = find_next_bit((unsigned long *)regs,
1663				     BITS_PER_LONG * il_size, chan + 1);
1664
1665		/* No more set bits found? */
1666		if (chan == BITS_PER_LONG * il_size)
1667			break;
1668
1669		row = chan / BITS_PER_LONG;
1670		idx = chan & (BITS_PER_LONG - 1);
1671
1672		if (il[row].offset == D40_PHY_CHAN)
1673			d40c = base->lookup_phy_chans[idx];
1674		else
1675			d40c = base->lookup_log_chans[il[row].offset + idx];
1676
1677		if (!d40c) {
1678			/*
1679			 * No error because this can happen if something else
1680			 * in the system is using the channel.
1681			 */
1682			continue;
1683		}
1684
1685		/* ACK interrupt */
1686		writel(BIT(idx), base->virtbase + il[row].clr);
1687
1688		spin_lock(&d40c->lock);
1689
1690		if (!il[row].is_error)
1691			dma_tc_handle(d40c);
1692		else
1693			d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1694				chan, il[row].offset, idx);
1695
1696		spin_unlock(&d40c->lock);
1697	}
1698
1699	spin_unlock_irqrestore(&base->interrupt_lock, flags);
1700
1701	return IRQ_HANDLED;
1702}
1703
1704static int d40_validate_conf(struct d40_chan *d40c,
1705			     struct stedma40_chan_cfg *conf)
1706{
1707	int res = 0;
1708	bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1709
1710	if (!conf->dir) {
1711		chan_err(d40c, "Invalid direction.\n");
1712		res = -EINVAL;
1713	}
1714
1715	if ((is_log && conf->dev_type > d40c->base->num_log_chans)  ||
1716	    (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
1717	    (conf->dev_type < 0)) {
1718		chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1719		res = -EINVAL;
1720	}
1721
1722	if (conf->dir == DMA_DEV_TO_DEV) {
1723		/*
1724		 * DMAC HW supports it. Will be added to this driver,
1725		 * in case any dma client requires it.
1726		 */
1727		chan_err(d40c, "periph to periph not supported\n");
1728		res = -EINVAL;
1729	}
1730
1731	if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1732	    conf->src_info.data_width !=
1733	    d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1734	    conf->dst_info.data_width) {
1735		/*
1736		 * The DMAC hardware only supports
1737		 * src (burst x width) == dst (burst x width)
1738		 */
1739
1740		chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1741		res = -EINVAL;
1742	}
1743
1744	return res;
1745}
1746
1747static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1748			       bool is_src, int log_event_line, bool is_log,
1749			       bool *first_user)
1750{
1751	unsigned long flags;
1752	spin_lock_irqsave(&phy->lock, flags);
1753
1754	*first_user = ((phy->allocated_src | phy->allocated_dst)
1755			== D40_ALLOC_FREE);
1756
1757	if (!is_log) {
1758		/* Physical interrupts are masked per physical full channel */
1759		if (phy->allocated_src == D40_ALLOC_FREE &&
1760		    phy->allocated_dst == D40_ALLOC_FREE) {
1761			phy->allocated_dst = D40_ALLOC_PHY;
1762			phy->allocated_src = D40_ALLOC_PHY;
1763			goto found_unlock;
1764		} else
1765			goto not_found_unlock;
1766	}
1767
1768	/* Logical channel */
1769	if (is_src) {
1770		if (phy->allocated_src == D40_ALLOC_PHY)
1771			goto not_found_unlock;
1772
1773		if (phy->allocated_src == D40_ALLOC_FREE)
1774			phy->allocated_src = D40_ALLOC_LOG_FREE;
1775
1776		if (!(phy->allocated_src & BIT(log_event_line))) {
1777			phy->allocated_src |= BIT(log_event_line);
1778			goto found_unlock;
1779		} else
1780			goto not_found_unlock;
1781	} else {
1782		if (phy->allocated_dst == D40_ALLOC_PHY)
1783			goto not_found_unlock;
1784
1785		if (phy->allocated_dst == D40_ALLOC_FREE)
1786			phy->allocated_dst = D40_ALLOC_LOG_FREE;
1787
1788		if (!(phy->allocated_dst & BIT(log_event_line))) {
1789			phy->allocated_dst |= BIT(log_event_line);
1790			goto found_unlock;
1791		}
1792	}
1793 not_found_unlock:
1794	spin_unlock_irqrestore(&phy->lock, flags);
1795	return false;
1796 found_unlock:
1797	spin_unlock_irqrestore(&phy->lock, flags);
1798	return true;
1799}
1800
1801static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1802			       int log_event_line)
1803{
1804	unsigned long flags;
1805	bool is_free = false;
1806
1807	spin_lock_irqsave(&phy->lock, flags);
1808	if (!log_event_line) {
1809		phy->allocated_dst = D40_ALLOC_FREE;
1810		phy->allocated_src = D40_ALLOC_FREE;
1811		is_free = true;
1812		goto unlock;
1813	}
1814
1815	/* Logical channel */
1816	if (is_src) {
1817		phy->allocated_src &= ~BIT(log_event_line);
1818		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1819			phy->allocated_src = D40_ALLOC_FREE;
1820	} else {
1821		phy->allocated_dst &= ~BIT(log_event_line);
1822		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1823			phy->allocated_dst = D40_ALLOC_FREE;
1824	}
1825
1826	is_free = ((phy->allocated_src | phy->allocated_dst) ==
1827		   D40_ALLOC_FREE);
1828 unlock:
1829	spin_unlock_irqrestore(&phy->lock, flags);
1830
1831	return is_free;
1832}
1833
1834static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1835{
1836	int dev_type = d40c->dma_cfg.dev_type;
1837	int event_group;
1838	int event_line;
1839	struct d40_phy_res *phys;
1840	int i;
1841	int j;
1842	int log_num;
1843	int num_phy_chans;
1844	bool is_src;
1845	bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1846
1847	phys = d40c->base->phy_res;
1848	num_phy_chans = d40c->base->num_phy_chans;
1849
1850	if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
1851		log_num = 2 * dev_type;
1852		is_src = true;
1853	} else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
1854		   d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1855		/* dst event lines are used for logical memcpy */
1856		log_num = 2 * dev_type + 1;
1857		is_src = false;
1858	} else
1859		return -EINVAL;
1860
1861	event_group = D40_TYPE_TO_GROUP(dev_type);
1862	event_line = D40_TYPE_TO_EVENT(dev_type);
1863
1864	if (!is_log) {
1865		if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1866			/* Find physical half channel */
1867			if (d40c->dma_cfg.use_fixed_channel) {
1868				i = d40c->dma_cfg.phy_channel;
1869				if (d40_alloc_mask_set(&phys[i], is_src,
1870						       0, is_log,
1871						       first_phy_user))
1872					goto found_phy;
1873			} else {
1874				for (i = 0; i < num_phy_chans; i++) {
1875					if (d40_alloc_mask_set(&phys[i], is_src,
1876						       0, is_log,
1877						       first_phy_user))
1878						goto found_phy;
1879				}
1880			}
1881		} else
1882			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1883				int phy_num = j  + event_group * 2;
1884				for (i = phy_num; i < phy_num + 2; i++) {
1885					if (d40_alloc_mask_set(&phys[i],
1886							       is_src,
1887							       0,
1888							       is_log,
1889							       first_phy_user))
1890						goto found_phy;
1891				}
1892			}
1893		return -EINVAL;
1894found_phy:
1895		d40c->phy_chan = &phys[i];
1896		d40c->log_num = D40_PHY_CHAN;
1897		goto out;
1898	}
1899	if (dev_type == -1)
1900		return -EINVAL;
1901
1902	/* Find logical channel */
1903	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1904		int phy_num = j + event_group * 2;
1905
1906		if (d40c->dma_cfg.use_fixed_channel) {
1907			i = d40c->dma_cfg.phy_channel;
1908
1909			if ((i != phy_num) && (i != phy_num + 1)) {
1910				dev_err(chan2dev(d40c),
1911					"invalid fixed phy channel %d\n", i);
1912				return -EINVAL;
1913			}
1914
1915			if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1916					       is_log, first_phy_user))
1917				goto found_log;
1918
1919			dev_err(chan2dev(d40c),
1920				"could not allocate fixed phy channel %d\n", i);
1921			return -EINVAL;
1922		}
1923
1924		/*
1925		 * Spread logical channels across all available physical rather
1926		 * than pack every logical channel at the first available phy
1927		 * channels.
1928		 */
1929		if (is_src) {
1930			for (i = phy_num; i < phy_num + 2; i++) {
1931				if (d40_alloc_mask_set(&phys[i], is_src,
1932						       event_line, is_log,
1933						       first_phy_user))
1934					goto found_log;
1935			}
1936		} else {
1937			for (i = phy_num + 1; i >= phy_num; i--) {
1938				if (d40_alloc_mask_set(&phys[i], is_src,
1939						       event_line, is_log,
1940						       first_phy_user))
1941					goto found_log;
1942			}
1943		}
1944	}
1945	return -EINVAL;
1946
1947found_log:
1948	d40c->phy_chan = &phys[i];
1949	d40c->log_num = log_num;
1950out:
1951
1952	if (is_log)
1953		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1954	else
1955		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1956
1957	return 0;
1958
1959}
1960
1961static int d40_config_memcpy(struct d40_chan *d40c)
1962{
1963	dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1964
1965	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1966		d40c->dma_cfg = dma40_memcpy_conf_log;
1967		d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
1968
1969		d40_log_cfg(&d40c->dma_cfg,
1970			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1971
1972	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
1973		   dma_has_cap(DMA_SLAVE, cap)) {
1974		d40c->dma_cfg = dma40_memcpy_conf_phy;
1975
1976		/* Generate interrrupt at end of transfer or relink. */
1977		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
1978
1979		/* Generate interrupt on error. */
1980		d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
1981		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
1982
1983	} else {
1984		chan_err(d40c, "No memcpy\n");
1985		return -EINVAL;
1986	}
1987
1988	return 0;
1989}
1990
1991static int d40_free_dma(struct d40_chan *d40c)
1992{
1993
1994	int res = 0;
1995	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1996	struct d40_phy_res *phy = d40c->phy_chan;
1997	bool is_src;
1998
1999	/* Terminate all queued and active transfers */
2000	d40_term_all(d40c);
2001
2002	if (phy == NULL) {
2003		chan_err(d40c, "phy == null\n");
2004		return -EINVAL;
2005	}
2006
2007	if (phy->allocated_src == D40_ALLOC_FREE &&
2008	    phy->allocated_dst == D40_ALLOC_FREE) {
2009		chan_err(d40c, "channel already free\n");
2010		return -EINVAL;
2011	}
2012
2013	if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2014	    d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
2015		is_src = false;
2016	else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2017		is_src = true;
2018	else {
2019		chan_err(d40c, "Unknown direction\n");
2020		return -EINVAL;
2021	}
2022
2023	pm_runtime_get_sync(d40c->base->dev);
2024	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2025	if (res) {
2026		chan_err(d40c, "stop failed\n");
2027		goto mark_last_busy;
2028	}
2029
2030	d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2031
2032	if (chan_is_logical(d40c))
2033		d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2034	else
2035		d40c->base->lookup_phy_chans[phy->num] = NULL;
2036
2037	if (d40c->busy) {
2038		pm_runtime_mark_last_busy(d40c->base->dev);
2039		pm_runtime_put_autosuspend(d40c->base->dev);
2040	}
2041
2042	d40c->busy = false;
2043	d40c->phy_chan = NULL;
2044	d40c->configured = false;
2045 mark_last_busy:
2046	pm_runtime_mark_last_busy(d40c->base->dev);
2047	pm_runtime_put_autosuspend(d40c->base->dev);
2048	return res;
2049}
2050
2051static bool d40_is_paused(struct d40_chan *d40c)
2052{
2053	void __iomem *chanbase = chan_base(d40c);
2054	bool is_paused = false;
2055	unsigned long flags;
2056	void __iomem *active_reg;
2057	u32 status;
2058	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2059
2060	spin_lock_irqsave(&d40c->lock, flags);
2061
2062	if (chan_is_physical(d40c)) {
2063		if (d40c->phy_chan->num % 2 == 0)
2064			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
2065		else
2066			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
2067
2068		status = (readl(active_reg) &
2069			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
2070			D40_CHAN_POS(d40c->phy_chan->num);
2071		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
2072			is_paused = true;
2073		goto unlock;
2074	}
2075
2076	if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2077	    d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
2078		status = readl(chanbase + D40_CHAN_REG_SDLNK);
2079	} else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
2080		status = readl(chanbase + D40_CHAN_REG_SSLNK);
2081	} else {
2082		chan_err(d40c, "Unknown direction\n");
2083		goto unlock;
2084	}
2085
2086	status = (status & D40_EVENTLINE_MASK(event)) >>
2087		D40_EVENTLINE_POS(event);
2088
2089	if (status != D40_DMA_RUN)
2090		is_paused = true;
2091 unlock:
2092	spin_unlock_irqrestore(&d40c->lock, flags);
2093	return is_paused;
2094
2095}
2096
2097static u32 stedma40_residue(struct dma_chan *chan)
2098{
2099	struct d40_chan *d40c =
2100		container_of(chan, struct d40_chan, chan);
2101	u32 bytes_left;
2102	unsigned long flags;
2103
2104	spin_lock_irqsave(&d40c->lock, flags);
2105	bytes_left = d40_residue(d40c);
2106	spin_unlock_irqrestore(&d40c->lock, flags);
2107
2108	return bytes_left;
2109}
2110
2111static int
2112d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
2113		struct scatterlist *sg_src, struct scatterlist *sg_dst,
2114		unsigned int sg_len, dma_addr_t src_dev_addr,
2115		dma_addr_t dst_dev_addr)
2116{
2117	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2118	struct stedma40_half_channel_info *src_info = &cfg->src_info;
2119	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2120	int ret;
2121
2122	ret = d40_log_sg_to_lli(sg_src, sg_len,
2123				src_dev_addr,
2124				desc->lli_log.src,
2125				chan->log_def.lcsp1,
2126				src_info->data_width,
2127				dst_info->data_width);
2128
2129	ret = d40_log_sg_to_lli(sg_dst, sg_len,
2130				dst_dev_addr,
2131				desc->lli_log.dst,
2132				chan->log_def.lcsp3,
2133				dst_info->data_width,
2134				src_info->data_width);
2135
2136	return ret < 0 ? ret : 0;
2137}
2138
2139static int
2140d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2141		struct scatterlist *sg_src, struct scatterlist *sg_dst,
2142		unsigned int sg_len, dma_addr_t src_dev_addr,
2143		dma_addr_t dst_dev_addr)
2144{
2145	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2146	struct stedma40_half_channel_info *src_info = &cfg->src_info;
2147	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2148	unsigned long flags = 0;
2149	int ret;
2150
2151	if (desc->cyclic)
2152		flags |= LLI_CYCLIC | LLI_TERM_INT;
2153
2154	ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2155				desc->lli_phy.src,
2156				virt_to_phys(desc->lli_phy.src),
2157				chan->src_def_cfg,
2158				src_info, dst_info, flags);
2159
2160	ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2161				desc->lli_phy.dst,
2162				virt_to_phys(desc->lli_phy.dst),
2163				chan->dst_def_cfg,
2164				dst_info, src_info, flags);
2165
2166	dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2167				   desc->lli_pool.size, DMA_TO_DEVICE);
2168
2169	return ret < 0 ? ret : 0;
2170}
2171
2172static struct d40_desc *
2173d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2174	      unsigned int sg_len, unsigned long dma_flags)
2175{
2176	struct stedma40_chan_cfg *cfg;
2177	struct d40_desc *desc;
2178	int ret;
2179
2180	desc = d40_desc_get(chan);
2181	if (!desc)
2182		return NULL;
2183
2184	cfg = &chan->dma_cfg;
2185	desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2186					cfg->dst_info.data_width);
2187	if (desc->lli_len < 0) {
2188		chan_err(chan, "Unaligned size\n");
2189		goto free_desc;
2190	}
2191
2192	ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2193	if (ret < 0) {
2194		chan_err(chan, "Could not allocate lli\n");
2195		goto free_desc;
2196	}
2197
2198	desc->lli_current = 0;
2199	desc->txd.flags = dma_flags;
2200	desc->txd.tx_submit = d40_tx_submit;
2201
2202	dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2203
2204	return desc;
2205 free_desc:
2206	d40_desc_free(chan, desc);
2207	return NULL;
2208}
2209
2210static struct dma_async_tx_descriptor *
2211d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2212	    struct scatterlist *sg_dst, unsigned int sg_len,
2213	    enum dma_transfer_direction direction, unsigned long dma_flags)
2214{
2215	struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2216	dma_addr_t src_dev_addr;
2217	dma_addr_t dst_dev_addr;
2218	struct d40_desc *desc;
2219	unsigned long flags;
2220	int ret;
2221
2222	if (!chan->phy_chan) {
2223		chan_err(chan, "Cannot prepare unallocated channel\n");
2224		return NULL;
2225	}
2226
2227	d40_set_runtime_config_write(dchan, &chan->slave_config, direction);
2228
2229	spin_lock_irqsave(&chan->lock, flags);
2230
2231	desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2232	if (desc == NULL)
2233		goto unlock;
2234
2235	if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2236		desc->cyclic = true;
2237
2238	src_dev_addr = 0;
2239	dst_dev_addr = 0;
2240	if (direction == DMA_DEV_TO_MEM)
2241		src_dev_addr = chan->runtime_addr;
2242	else if (direction == DMA_MEM_TO_DEV)
2243		dst_dev_addr = chan->runtime_addr;
2244
2245	if (chan_is_logical(chan))
2246		ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2247				      sg_len, src_dev_addr, dst_dev_addr);
2248	else
2249		ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2250				      sg_len, src_dev_addr, dst_dev_addr);
2251
2252	if (ret) {
2253		chan_err(chan, "Failed to prepare %s sg job: %d\n",
2254			 chan_is_logical(chan) ? "log" : "phy", ret);
2255		goto free_desc;
2256	}
2257
2258	/*
2259	 * add descriptor to the prepare queue in order to be able
2260	 * to free them later in terminate_all
2261	 */
2262	list_add_tail(&desc->node, &chan->prepare_queue);
2263
2264	spin_unlock_irqrestore(&chan->lock, flags);
2265
2266	return &desc->txd;
2267 free_desc:
2268	d40_desc_free(chan, desc);
2269 unlock:
2270	spin_unlock_irqrestore(&chan->lock, flags);
2271	return NULL;
2272}
2273
2274bool stedma40_filter(struct dma_chan *chan, void *data)
2275{
2276	struct stedma40_chan_cfg *info = data;
2277	struct d40_chan *d40c =
2278		container_of(chan, struct d40_chan, chan);
2279	int err;
2280
2281	if (data) {
2282		err = d40_validate_conf(d40c, info);
2283		if (!err)
2284			d40c->dma_cfg = *info;
2285	} else
2286		err = d40_config_memcpy(d40c);
2287
2288	if (!err)
2289		d40c->configured = true;
2290
2291	return err == 0;
2292}
2293EXPORT_SYMBOL(stedma40_filter);
2294
2295static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2296{
2297	bool realtime = d40c->dma_cfg.realtime;
2298	bool highprio = d40c->dma_cfg.high_priority;
2299	u32 rtreg;
2300	u32 event = D40_TYPE_TO_EVENT(dev_type);
2301	u32 group = D40_TYPE_TO_GROUP(dev_type);
2302	u32 bit = BIT(event);
2303	u32 prioreg;
2304	struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2305
2306	rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2307	/*
2308	 * Due to a hardware bug, in some cases a logical channel triggered by
2309	 * a high priority destination event line can generate extra packet
2310	 * transactions.
2311	 *
2312	 * The workaround is to not set the high priority level for the
2313	 * destination event lines that trigger logical channels.
2314	 */
2315	if (!src && chan_is_logical(d40c))
2316		highprio = false;
2317
2318	prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2319
2320	/* Destination event lines are stored in the upper halfword */
2321	if (!src)
2322		bit <<= 16;
2323
2324	writel(bit, d40c->base->virtbase + prioreg + group * 4);
2325	writel(bit, d40c->base->virtbase + rtreg + group * 4);
2326}
2327
2328static void d40_set_prio_realtime(struct d40_chan *d40c)
2329{
2330	if (d40c->base->rev < 3)
2331		return;
2332
2333	if ((d40c->dma_cfg.dir ==  DMA_DEV_TO_MEM) ||
2334	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2335		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2336
2337	if ((d40c->dma_cfg.dir ==  DMA_MEM_TO_DEV) ||
2338	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2339		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2340}
2341
2342#define D40_DT_FLAGS_MODE(flags)       ((flags >> 0) & 0x1)
2343#define D40_DT_FLAGS_DIR(flags)        ((flags >> 1) & 0x1)
2344#define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2345#define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2346#define D40_DT_FLAGS_HIGH_PRIO(flags)  ((flags >> 4) & 0x1)
2347
2348static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
2349				  struct of_dma *ofdma)
2350{
2351	struct stedma40_chan_cfg cfg;
2352	dma_cap_mask_t cap;
2353	u32 flags;
2354
2355	memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
2356
2357	dma_cap_zero(cap);
2358	dma_cap_set(DMA_SLAVE, cap);
2359
2360	cfg.dev_type = dma_spec->args[0];
2361	flags = dma_spec->args[2];
2362
2363	switch (D40_DT_FLAGS_MODE(flags)) {
2364	case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
2365	case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
2366	}
2367
2368	switch (D40_DT_FLAGS_DIR(flags)) {
2369	case 0:
2370		cfg.dir = DMA_MEM_TO_DEV;
2371		cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2372		break;
2373	case 1:
2374		cfg.dir = DMA_DEV_TO_MEM;
2375		cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2376		break;
2377	}
2378
2379	if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
2380		cfg.phy_channel = dma_spec->args[1];
2381		cfg.use_fixed_channel = true;
2382	}
2383
2384	if (D40_DT_FLAGS_HIGH_PRIO(flags))
2385		cfg.high_priority = true;
2386
2387	return dma_request_channel(cap, stedma40_filter, &cfg);
2388}
2389
2390/* DMA ENGINE functions */
2391static int d40_alloc_chan_resources(struct dma_chan *chan)
2392{
2393	int err;
2394	unsigned long flags;
2395	struct d40_chan *d40c =
2396		container_of(chan, struct d40_chan, chan);
2397	bool is_free_phy;
2398	spin_lock_irqsave(&d40c->lock, flags);
2399
2400	dma_cookie_init(chan);
2401
2402	/* If no dma configuration is set use default configuration (memcpy) */
2403	if (!d40c->configured) {
2404		err = d40_config_memcpy(d40c);
2405		if (err) {
2406			chan_err(d40c, "Failed to configure memcpy channel\n");
2407			goto mark_last_busy;
2408		}
2409	}
2410
2411	err = d40_allocate_channel(d40c, &is_free_phy);
2412	if (err) {
2413		chan_err(d40c, "Failed to allocate channel\n");
2414		d40c->configured = false;
2415		goto mark_last_busy;
2416	}
2417
2418	pm_runtime_get_sync(d40c->base->dev);
2419
2420	d40_set_prio_realtime(d40c);
2421
2422	if (chan_is_logical(d40c)) {
2423		if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2424			d40c->lcpa = d40c->base->lcpa_base +
2425				d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2426		else
2427			d40c->lcpa = d40c->base->lcpa_base +
2428				d40c->dma_cfg.dev_type *
2429				D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2430
2431		/* Unmask the Global Interrupt Mask. */
2432		d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2433		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2434	}
2435
2436	dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2437		 chan_is_logical(d40c) ? "logical" : "physical",
2438		 d40c->phy_chan->num,
2439		 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2440
2441
2442	/*
2443	 * Only write channel configuration to the DMA if the physical
2444	 * resource is free. In case of multiple logical channels
2445	 * on the same physical resource, only the first write is necessary.
2446	 */
2447	if (is_free_phy)
2448		d40_config_write(d40c);
2449 mark_last_busy:
2450	pm_runtime_mark_last_busy(d40c->base->dev);
2451	pm_runtime_put_autosuspend(d40c->base->dev);
2452	spin_unlock_irqrestore(&d40c->lock, flags);
2453	return err;
2454}
2455
2456static void d40_free_chan_resources(struct dma_chan *chan)
2457{
2458	struct d40_chan *d40c =
2459		container_of(chan, struct d40_chan, chan);
2460	int err;
2461	unsigned long flags;
2462
2463	if (d40c->phy_chan == NULL) {
2464		chan_err(d40c, "Cannot free unallocated channel\n");
2465		return;
2466	}
2467
2468	spin_lock_irqsave(&d40c->lock, flags);
2469
2470	err = d40_free_dma(d40c);
2471
2472	if (err)
2473		chan_err(d40c, "Failed to free channel\n");
2474	spin_unlock_irqrestore(&d40c->lock, flags);
2475}
2476
2477static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2478						       dma_addr_t dst,
2479						       dma_addr_t src,
2480						       size_t size,
2481						       unsigned long dma_flags)
2482{
2483	struct scatterlist dst_sg;
2484	struct scatterlist src_sg;
2485
2486	sg_init_table(&dst_sg, 1);
2487	sg_init_table(&src_sg, 1);
2488
2489	sg_dma_address(&dst_sg) = dst;
2490	sg_dma_address(&src_sg) = src;
2491
2492	sg_dma_len(&dst_sg) = size;
2493	sg_dma_len(&src_sg) = size;
2494
2495	return d40_prep_sg(chan, &src_sg, &dst_sg, 1,
2496			   DMA_MEM_TO_MEM, dma_flags);
2497}
2498
2499static struct dma_async_tx_descriptor *
2500d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2501		  unsigned int sg_len, enum dma_transfer_direction direction,
2502		  unsigned long dma_flags, void *context)
2503{
2504	if (!is_slave_direction(direction))
2505		return NULL;
2506
2507	return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2508}
2509
2510static struct dma_async_tx_descriptor *
2511dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2512		     size_t buf_len, size_t period_len,
2513		     enum dma_transfer_direction direction, unsigned long flags)
2514{
2515	unsigned int periods = buf_len / period_len;
2516	struct dma_async_tx_descriptor *txd;
2517	struct scatterlist *sg;
2518	int i;
2519
2520	sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2521	if (!sg)
2522		return NULL;
2523
2524	for (i = 0; i < periods; i++) {
2525		sg_dma_address(&sg[i]) = dma_addr;
2526		sg_dma_len(&sg[i]) = period_len;
2527		dma_addr += period_len;
2528	}
2529
2530	sg_chain(sg, periods + 1, sg);
2531
2532	txd = d40_prep_sg(chan, sg, sg, periods, direction,
2533			  DMA_PREP_INTERRUPT);
2534
2535	kfree(sg);
2536
2537	return txd;
2538}
2539
2540static enum dma_status d40_tx_status(struct dma_chan *chan,
2541				     dma_cookie_t cookie,
2542				     struct dma_tx_state *txstate)
2543{
2544	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2545	enum dma_status ret;
2546
2547	if (d40c->phy_chan == NULL) {
2548		chan_err(d40c, "Cannot read status of unallocated channel\n");
2549		return -EINVAL;
2550	}
2551
2552	ret = dma_cookie_status(chan, cookie, txstate);
2553	if (ret != DMA_COMPLETE && txstate)
2554		dma_set_residue(txstate, stedma40_residue(chan));
2555
2556	if (d40_is_paused(d40c))
2557		ret = DMA_PAUSED;
2558
2559	return ret;
2560}
2561
2562static void d40_issue_pending(struct dma_chan *chan)
2563{
2564	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2565	unsigned long flags;
2566
2567	if (d40c->phy_chan == NULL) {
2568		chan_err(d40c, "Channel is not allocated!\n");
2569		return;
2570	}
2571
2572	spin_lock_irqsave(&d40c->lock, flags);
2573
2574	list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2575
2576	/* Busy means that queued jobs are already being processed */
2577	if (!d40c->busy)
2578		(void) d40_queue_start(d40c);
2579
2580	spin_unlock_irqrestore(&d40c->lock, flags);
2581}
2582
2583static int d40_terminate_all(struct dma_chan *chan)
2584{
2585	unsigned long flags;
2586	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2587	int ret;
2588
2589	if (d40c->phy_chan == NULL) {
2590		chan_err(d40c, "Channel is not allocated!\n");
2591		return -EINVAL;
2592	}
2593
2594	spin_lock_irqsave(&d40c->lock, flags);
2595
2596	pm_runtime_get_sync(d40c->base->dev);
2597	ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2598	if (ret)
2599		chan_err(d40c, "Failed to stop channel\n");
2600
2601	d40_term_all(d40c);
2602	pm_runtime_mark_last_busy(d40c->base->dev);
2603	pm_runtime_put_autosuspend(d40c->base->dev);
2604	if (d40c->busy) {
2605		pm_runtime_mark_last_busy(d40c->base->dev);
2606		pm_runtime_put_autosuspend(d40c->base->dev);
2607	}
2608	d40c->busy = false;
2609
2610	spin_unlock_irqrestore(&d40c->lock, flags);
2611	return 0;
2612}
2613
2614static int
2615dma40_config_to_halfchannel(struct d40_chan *d40c,
2616			    struct stedma40_half_channel_info *info,
2617			    u32 maxburst)
2618{
2619	int psize;
2620
2621	if (chan_is_logical(d40c)) {
2622		if (maxburst >= 16)
2623			psize = STEDMA40_PSIZE_LOG_16;
2624		else if (maxburst >= 8)
2625			psize = STEDMA40_PSIZE_LOG_8;
2626		else if (maxburst >= 4)
2627			psize = STEDMA40_PSIZE_LOG_4;
2628		else
2629			psize = STEDMA40_PSIZE_LOG_1;
2630	} else {
2631		if (maxburst >= 16)
2632			psize = STEDMA40_PSIZE_PHY_16;
2633		else if (maxburst >= 8)
2634			psize = STEDMA40_PSIZE_PHY_8;
2635		else if (maxburst >= 4)
2636			psize = STEDMA40_PSIZE_PHY_4;
2637		else
2638			psize = STEDMA40_PSIZE_PHY_1;
2639	}
2640
2641	info->psize = psize;
2642	info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2643
2644	return 0;
2645}
2646
2647static int d40_set_runtime_config(struct dma_chan *chan,
2648				  struct dma_slave_config *config)
2649{
2650	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2651
2652	memcpy(&d40c->slave_config, config, sizeof(*config));
2653
2654	return 0;
2655}
2656
2657/* Runtime reconfiguration extension */
2658static int d40_set_runtime_config_write(struct dma_chan *chan,
2659				  struct dma_slave_config *config,
2660				  enum dma_transfer_direction direction)
2661{
2662	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2663	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2664	enum dma_slave_buswidth src_addr_width, dst_addr_width;
2665	dma_addr_t config_addr;
2666	u32 src_maxburst, dst_maxburst;
2667	int ret;
2668
2669	if (d40c->phy_chan == NULL) {
2670		chan_err(d40c, "Channel is not allocated!\n");
2671		return -EINVAL;
2672	}
2673
2674	src_addr_width = config->src_addr_width;
2675	src_maxburst = config->src_maxburst;
2676	dst_addr_width = config->dst_addr_width;
2677	dst_maxburst = config->dst_maxburst;
2678
2679	if (direction == DMA_DEV_TO_MEM) {
2680		config_addr = config->src_addr;
2681
2682		if (cfg->dir != DMA_DEV_TO_MEM)
2683			dev_dbg(d40c->base->dev,
2684				"channel was not configured for peripheral "
2685				"to memory transfer (%d) overriding\n",
2686				cfg->dir);
2687		cfg->dir = DMA_DEV_TO_MEM;
2688
2689		/* Configure the memory side */
2690		if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2691			dst_addr_width = src_addr_width;
2692		if (dst_maxburst == 0)
2693			dst_maxburst = src_maxburst;
2694
2695	} else if (direction == DMA_MEM_TO_DEV) {
2696		config_addr = config->dst_addr;
2697
2698		if (cfg->dir != DMA_MEM_TO_DEV)
2699			dev_dbg(d40c->base->dev,
2700				"channel was not configured for memory "
2701				"to peripheral transfer (%d) overriding\n",
2702				cfg->dir);
2703		cfg->dir = DMA_MEM_TO_DEV;
2704
2705		/* Configure the memory side */
2706		if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2707			src_addr_width = dst_addr_width;
2708		if (src_maxburst == 0)
2709			src_maxburst = dst_maxburst;
2710	} else {
2711		dev_err(d40c->base->dev,
2712			"unrecognized channel direction %d\n",
2713			direction);
2714		return -EINVAL;
2715	}
2716
2717	if (config_addr <= 0) {
2718		dev_err(d40c->base->dev, "no address supplied\n");
2719		return -EINVAL;
2720	}
2721
2722	if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2723		dev_err(d40c->base->dev,
2724			"src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2725			src_maxburst,
2726			src_addr_width,
2727			dst_maxburst,
2728			dst_addr_width);
2729		return -EINVAL;
2730	}
2731
2732	if (src_maxburst > 16) {
2733		src_maxburst = 16;
2734		dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
2735	} else if (dst_maxburst > 16) {
2736		dst_maxburst = 16;
2737		src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
2738	}
2739
2740	/* Only valid widths are; 1, 2, 4 and 8. */
2741	if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2742	    src_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2743	    dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2744	    dst_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2745	    !is_power_of_2(src_addr_width) ||
2746	    !is_power_of_2(dst_addr_width))
2747		return -EINVAL;
2748
2749	cfg->src_info.data_width = src_addr_width;
2750	cfg->dst_info.data_width = dst_addr_width;
2751
2752	ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2753					  src_maxburst);
2754	if (ret)
2755		return ret;
2756
2757	ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2758					  dst_maxburst);
2759	if (ret)
2760		return ret;
2761
2762	/* Fill in register values */
2763	if (chan_is_logical(d40c))
2764		d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2765	else
2766		d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
2767
2768	/* These settings will take precedence later */
2769	d40c->runtime_addr = config_addr;
2770	d40c->runtime_direction = direction;
2771	dev_dbg(d40c->base->dev,
2772		"configured channel %s for %s, data width %d/%d, "
2773		"maxburst %d/%d elements, LE, no flow control\n",
2774		dma_chan_name(chan),
2775		(direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2776		src_addr_width, dst_addr_width,
2777		src_maxburst, dst_maxburst);
2778
2779	return 0;
2780}
2781
2782/* Initialization functions */
2783
2784static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2785				 struct d40_chan *chans, int offset,
2786				 int num_chans)
2787{
2788	int i = 0;
2789	struct d40_chan *d40c;
2790
2791	INIT_LIST_HEAD(&dma->channels);
2792
2793	for (i = offset; i < offset + num_chans; i++) {
2794		d40c = &chans[i];
2795		d40c->base = base;
2796		d40c->chan.device = dma;
2797
2798		spin_lock_init(&d40c->lock);
2799
2800		d40c->log_num = D40_PHY_CHAN;
2801
2802		INIT_LIST_HEAD(&d40c->done);
2803		INIT_LIST_HEAD(&d40c->active);
2804		INIT_LIST_HEAD(&d40c->queue);
2805		INIT_LIST_HEAD(&d40c->pending_queue);
2806		INIT_LIST_HEAD(&d40c->client);
2807		INIT_LIST_HEAD(&d40c->prepare_queue);
2808
2809		tasklet_init(&d40c->tasklet, dma_tasklet,
2810			     (unsigned long) d40c);
2811
2812		list_add_tail(&d40c->chan.device_node,
2813			      &dma->channels);
2814	}
2815}
2816
2817static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2818{
2819	if (dma_has_cap(DMA_SLAVE, dev->cap_mask)) {
2820		dev->device_prep_slave_sg = d40_prep_slave_sg;
2821		dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2822	}
2823
2824	if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2825		dev->device_prep_dma_memcpy = d40_prep_memcpy;
2826		dev->directions = BIT(DMA_MEM_TO_MEM);
2827		/*
2828		 * This controller can only access address at even
2829		 * 32bit boundaries, i.e. 2^2
2830		 */
2831		dev->copy_align = DMAENGINE_ALIGN_4_BYTES;
2832	}
2833
2834	if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2835		dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2836
2837	dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2838	dev->device_free_chan_resources = d40_free_chan_resources;
2839	dev->device_issue_pending = d40_issue_pending;
2840	dev->device_tx_status = d40_tx_status;
2841	dev->device_config = d40_set_runtime_config;
2842	dev->device_pause = d40_pause;
2843	dev->device_resume = d40_resume;
2844	dev->device_terminate_all = d40_terminate_all;
2845	dev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2846	dev->dev = base->dev;
2847}
2848
2849static int __init d40_dmaengine_init(struct d40_base *base,
2850				     int num_reserved_chans)
2851{
2852	int err ;
2853
2854	d40_chan_init(base, &base->dma_slave, base->log_chans,
2855		      0, base->num_log_chans);
2856
2857	dma_cap_zero(base->dma_slave.cap_mask);
2858	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2859	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2860
2861	d40_ops_init(base, &base->dma_slave);
2862
2863	err = dmaenginem_async_device_register(&base->dma_slave);
2864
2865	if (err) {
2866		d40_err(base->dev, "Failed to register slave channels\n");
2867		goto exit;
2868	}
2869
2870	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2871		      base->num_log_chans, base->num_memcpy_chans);
2872
2873	dma_cap_zero(base->dma_memcpy.cap_mask);
2874	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2875
2876	d40_ops_init(base, &base->dma_memcpy);
2877
2878	err = dmaenginem_async_device_register(&base->dma_memcpy);
2879
2880	if (err) {
2881		d40_err(base->dev,
2882			"Failed to register memcpy only channels\n");
2883		goto exit;
2884	}
2885
2886	d40_chan_init(base, &base->dma_both, base->phy_chans,
2887		      0, num_reserved_chans);
2888
2889	dma_cap_zero(base->dma_both.cap_mask);
2890	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2891	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2892	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2893
2894	d40_ops_init(base, &base->dma_both);
2895	err = dmaenginem_async_device_register(&base->dma_both);
2896
2897	if (err) {
2898		d40_err(base->dev,
2899			"Failed to register logical and physical capable channels\n");
2900		goto exit;
2901	}
2902	return 0;
2903 exit:
2904	return err;
2905}
2906
2907/* Suspend resume functionality */
2908#ifdef CONFIG_PM_SLEEP
2909static int dma40_suspend(struct device *dev)
2910{
2911	struct d40_base *base = dev_get_drvdata(dev);
2912	int ret;
2913
2914	ret = pm_runtime_force_suspend(dev);
2915	if (ret)
2916		return ret;
2917
2918	if (base->lcpa_regulator)
2919		ret = regulator_disable(base->lcpa_regulator);
2920	return ret;
2921}
2922
2923static int dma40_resume(struct device *dev)
2924{
2925	struct d40_base *base = dev_get_drvdata(dev);
2926	int ret = 0;
2927
2928	if (base->lcpa_regulator) {
2929		ret = regulator_enable(base->lcpa_regulator);
2930		if (ret)
2931			return ret;
2932	}
2933
2934	return pm_runtime_force_resume(dev);
2935}
2936#endif
2937
2938#ifdef CONFIG_PM
2939static void dma40_backup(void __iomem *baseaddr, u32 *backup,
2940			 u32 *regaddr, int num, bool save)
2941{
2942	int i;
2943
2944	for (i = 0; i < num; i++) {
2945		void __iomem *addr = baseaddr + regaddr[i];
2946
2947		if (save)
2948			backup[i] = readl_relaxed(addr);
2949		else
2950			writel_relaxed(backup[i], addr);
2951	}
2952}
2953
2954static void d40_save_restore_registers(struct d40_base *base, bool save)
2955{
2956	int i;
2957
2958	/* Save/Restore channel specific registers */
2959	for (i = 0; i < base->num_phy_chans; i++) {
2960		void __iomem *addr;
2961		int idx;
2962
2963		if (base->phy_res[i].reserved)
2964			continue;
2965
2966		addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
2967		idx = i * ARRAY_SIZE(d40_backup_regs_chan);
2968
2969		dma40_backup(addr, &base->reg_val_backup_chan[idx],
2970			     d40_backup_regs_chan,
2971			     ARRAY_SIZE(d40_backup_regs_chan),
2972			     save);
2973	}
2974
2975	/* Save/Restore global registers */
2976	dma40_backup(base->virtbase, base->reg_val_backup,
2977		     d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
2978		     save);
2979
2980	/* Save/Restore registers only existing on dma40 v3 and later */
2981	if (base->gen_dmac.backup)
2982		dma40_backup(base->virtbase, base->reg_val_backup_v4,
2983			     base->gen_dmac.backup,
2984			base->gen_dmac.backup_size,
2985			save);
2986}
2987
2988static int dma40_runtime_suspend(struct device *dev)
2989{
2990	struct d40_base *base = dev_get_drvdata(dev);
2991
2992	d40_save_restore_registers(base, true);
2993
2994	/* Don't disable/enable clocks for v1 due to HW bugs */
2995	if (base->rev != 1)
2996		writel_relaxed(base->gcc_pwr_off_mask,
2997			       base->virtbase + D40_DREG_GCC);
2998
2999	return 0;
3000}
3001
3002static int dma40_runtime_resume(struct device *dev)
3003{
3004	struct d40_base *base = dev_get_drvdata(dev);
3005
3006	d40_save_restore_registers(base, false);
3007
3008	writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
3009		       base->virtbase + D40_DREG_GCC);
3010	return 0;
3011}
3012#endif
3013
3014static const struct dev_pm_ops dma40_pm_ops = {
3015	SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume)
3016	SET_RUNTIME_PM_OPS(dma40_runtime_suspend,
3017				dma40_runtime_resume,
3018				NULL)
3019};
3020
3021/* Initialization functions. */
3022
3023static int __init d40_phy_res_init(struct d40_base *base)
3024{
3025	int i;
3026	int num_phy_chans_avail = 0;
3027	u32 val[2];
3028	int odd_even_bit = -2;
3029	int gcc = D40_DREG_GCC_ENA;
3030
3031	val[0] = readl(base->virtbase + D40_DREG_PRSME);
3032	val[1] = readl(base->virtbase + D40_DREG_PRSMO);
3033
3034	for (i = 0; i < base->num_phy_chans; i++) {
3035		base->phy_res[i].num = i;
3036		odd_even_bit += 2 * ((i % 2) == 0);
3037		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
3038			/* Mark security only channels as occupied */
3039			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
3040			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3041			base->phy_res[i].reserved = true;
3042			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3043						       D40_DREG_GCC_SRC);
3044			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3045						       D40_DREG_GCC_DST);
3046
3047
3048		} else {
3049			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
3050			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3051			base->phy_res[i].reserved = false;
3052			num_phy_chans_avail++;
3053		}
3054		spin_lock_init(&base->phy_res[i].lock);
3055	}
3056
3057	/* Mark disabled channels as occupied */
3058	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3059		int chan = base->plat_data->disabled_channels[i];
3060
3061		base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
3062		base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3063		base->phy_res[chan].reserved = true;
3064		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3065					       D40_DREG_GCC_SRC);
3066		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3067					       D40_DREG_GCC_DST);
3068		num_phy_chans_avail--;
3069	}
3070
3071	/* Mark soft_lli channels */
3072	for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
3073		int chan = base->plat_data->soft_lli_chans[i];
3074
3075		base->phy_res[chan].use_soft_lli = true;
3076	}
3077
3078	dev_info(base->dev, "%d of %d physical DMA channels available\n",
3079		 num_phy_chans_avail, base->num_phy_chans);
3080
3081	/* Verify settings extended vs standard */
3082	val[0] = readl(base->virtbase + D40_DREG_PRTYP);
3083
3084	for (i = 0; i < base->num_phy_chans; i++) {
3085
3086		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
3087		    (val[0] & 0x3) != 1)
3088			dev_info(base->dev,
3089				 "[%s] INFO: channel %d is misconfigured (%d)\n",
3090				 __func__, i, val[0] & 0x3);
3091
3092		val[0] = val[0] >> 2;
3093	}
3094
3095	/*
3096	 * To keep things simple, Enable all clocks initially.
3097	 * The clocks will get managed later post channel allocation.
3098	 * The clocks for the event lines on which reserved channels exists
3099	 * are not managed here.
3100	 */
3101	writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3102	base->gcc_pwr_off_mask = gcc;
3103
3104	return num_phy_chans_avail;
3105}
3106
3107static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
3108{
3109	struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3110	struct clk *clk;
3111	void __iomem *virtbase;
3112	struct resource *res;
3113	struct d40_base *base;
3114	int num_log_chans;
3115	int num_phy_chans;
3116	int num_memcpy_chans;
3117	int clk_ret = -EINVAL;
3118	int i;
3119	u32 pid;
3120	u32 cid;
3121	u8 rev;
3122
3123	clk = clk_get(&pdev->dev, NULL);
3124	if (IS_ERR(clk)) {
3125		d40_err(&pdev->dev, "No matching clock found\n");
3126		goto check_prepare_enabled;
3127	}
3128
3129	clk_ret = clk_prepare_enable(clk);
3130	if (clk_ret) {
3131		d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
3132		goto disable_unprepare;
3133	}
3134
3135	/* Get IO for DMAC base address */
3136	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3137	if (!res)
3138		goto disable_unprepare;
3139
3140	if (request_mem_region(res->start, resource_size(res),
3141			       D40_NAME " I/O base") == NULL)
3142		goto release_region;
3143
3144	virtbase = ioremap(res->start, resource_size(res));
3145	if (!virtbase)
3146		goto release_region;
3147
3148	/* This is just a regular AMBA PrimeCell ID actually */
3149	for (pid = 0, i = 0; i < 4; i++)
3150		pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
3151			& 255) << (i * 8);
3152	for (cid = 0, i = 0; i < 4; i++)
3153		cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
3154			& 255) << (i * 8);
3155
3156	if (cid != AMBA_CID) {
3157		d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
3158		goto unmap_io;
3159	}
3160	if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3161		d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
3162			AMBA_MANF_BITS(pid),
3163			AMBA_VENDOR_ST);
3164		goto unmap_io;
3165	}
3166	/*
3167	 * HW revision:
3168	 * DB8500ed has revision 0
3169	 * ? has revision 1
3170	 * DB8500v1 has revision 2
3171	 * DB8500v2 has revision 3
3172	 * AP9540v1 has revision 4
3173	 * DB8540v1 has revision 4
3174	 */
3175	rev = AMBA_REV_BITS(pid);
3176	if (rev < 2) {
3177		d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
3178		goto unmap_io;
3179	}
3180
3181	/* The number of physical channels on this HW */
3182	if (plat_data->num_of_phy_chans)
3183		num_phy_chans = plat_data->num_of_phy_chans;
3184	else
3185		num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3186
3187	/* The number of channels used for memcpy */
3188	if (plat_data->num_of_memcpy_chans)
3189		num_memcpy_chans = plat_data->num_of_memcpy_chans;
3190	else
3191		num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
3192
3193	num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
3194
3195	dev_info(&pdev->dev,
3196		 "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
3197		 rev, &res->start, num_phy_chans, num_log_chans);
3198
3199	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3200		       (num_phy_chans + num_log_chans + num_memcpy_chans) *
3201		       sizeof(struct d40_chan), GFP_KERNEL);
3202
3203	if (base == NULL)
3204		goto unmap_io;
3205
3206	base->rev = rev;
3207	base->clk = clk;
3208	base->num_memcpy_chans = num_memcpy_chans;
3209	base->num_phy_chans = num_phy_chans;
3210	base->num_log_chans = num_log_chans;
3211	base->phy_start = res->start;
3212	base->phy_size = resource_size(res);
3213	base->virtbase = virtbase;
3214	base->plat_data = plat_data;
3215	base->dev = &pdev->dev;
3216	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3217	base->log_chans = &base->phy_chans[num_phy_chans];
3218
3219	if (base->plat_data->num_of_phy_chans == 14) {
3220		base->gen_dmac.backup = d40_backup_regs_v4b;
3221		base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
3222		base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
3223		base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
3224		base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
3225		base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
3226		base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
3227		base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
3228		base->gen_dmac.il = il_v4b;
3229		base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
3230		base->gen_dmac.init_reg = dma_init_reg_v4b;
3231		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
3232	} else {
3233		if (base->rev >= 3) {
3234			base->gen_dmac.backup = d40_backup_regs_v4a;
3235			base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
3236		}
3237		base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
3238		base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
3239		base->gen_dmac.realtime_en = D40_DREG_RSEG1;
3240		base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
3241		base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
3242		base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
3243		base->gen_dmac.il = il_v4a;
3244		base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
3245		base->gen_dmac.init_reg = dma_init_reg_v4a;
3246		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
3247	}
3248
3249	base->phy_res = kcalloc(num_phy_chans,
3250				sizeof(*base->phy_res),
3251				GFP_KERNEL);
3252	if (!base->phy_res)
3253		goto free_base;
3254
3255	base->lookup_phy_chans = kcalloc(num_phy_chans,
3256					 sizeof(*base->lookup_phy_chans),
3257					 GFP_KERNEL);
3258	if (!base->lookup_phy_chans)
3259		goto free_phy_res;
3260
3261	base->lookup_log_chans = kcalloc(num_log_chans,
3262					 sizeof(*base->lookup_log_chans),
3263					 GFP_KERNEL);
3264	if (!base->lookup_log_chans)
3265		goto free_phy_chans;
3266
3267	base->reg_val_backup_chan = kmalloc_array(base->num_phy_chans,
3268						  sizeof(d40_backup_regs_chan),
3269						  GFP_KERNEL);
3270	if (!base->reg_val_backup_chan)
3271		goto free_log_chans;
3272
3273	base->lcla_pool.alloc_map = kcalloc(num_phy_chans
3274					    * D40_LCLA_LINK_PER_EVENT_GRP,
3275					    sizeof(*base->lcla_pool.alloc_map),
3276					    GFP_KERNEL);
3277	if (!base->lcla_pool.alloc_map)
3278		goto free_backup_chan;
3279
3280	base->regs_interrupt = kmalloc_array(base->gen_dmac.il_size,
3281					     sizeof(*base->regs_interrupt),
3282					     GFP_KERNEL);
3283	if (!base->regs_interrupt)
3284		goto free_map;
3285
3286	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3287					    0, SLAB_HWCACHE_ALIGN,
3288					    NULL);
3289	if (base->desc_slab == NULL)
3290		goto free_regs;
3291
3292
3293	return base;
3294 free_regs:
3295	kfree(base->regs_interrupt);
3296 free_map:
3297	kfree(base->lcla_pool.alloc_map);
3298 free_backup_chan:
3299	kfree(base->reg_val_backup_chan);
3300 free_log_chans:
3301	kfree(base->lookup_log_chans);
3302 free_phy_chans:
3303	kfree(base->lookup_phy_chans);
3304 free_phy_res:
3305	kfree(base->phy_res);
3306 free_base:
3307	kfree(base);
3308 unmap_io:
3309	iounmap(virtbase);
3310 release_region:
3311	release_mem_region(res->start, resource_size(res));
3312 check_prepare_enabled:
3313	if (!clk_ret)
3314 disable_unprepare:
3315		clk_disable_unprepare(clk);
3316	if (!IS_ERR(clk))
3317		clk_put(clk);
3318	return NULL;
3319}
3320
3321static void __init d40_hw_init(struct d40_base *base)
3322{
3323
3324	int i;
3325	u32 prmseo[2] = {0, 0};
3326	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3327	u32 pcmis = 0;
3328	u32 pcicr = 0;
3329	struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
3330	u32 reg_size = base->gen_dmac.init_reg_size;
3331
3332	for (i = 0; i < reg_size; i++)
3333		writel(dma_init_reg[i].val,
3334		       base->virtbase + dma_init_reg[i].reg);
3335
3336	/* Configure all our dma channels to default settings */
3337	for (i = 0; i < base->num_phy_chans; i++) {
3338
3339		activeo[i % 2] = activeo[i % 2] << 2;
3340
3341		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3342		    == D40_ALLOC_PHY) {
3343			activeo[i % 2] |= 3;
3344			continue;
3345		}
3346
3347		/* Enable interrupt # */
3348		pcmis = (pcmis << 1) | 1;
3349
3350		/* Clear interrupt # */
3351		pcicr = (pcicr << 1) | 1;
3352
3353		/* Set channel to physical mode */
3354		prmseo[i % 2] = prmseo[i % 2] << 2;
3355		prmseo[i % 2] |= 1;
3356
3357	}
3358
3359	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3360	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3361	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3362	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3363
3364	/* Write which interrupt to enable */
3365	writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3366
3367	/* Write which interrupt to clear */
3368	writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3369
3370	/* These are __initdata and cannot be accessed after init */
3371	base->gen_dmac.init_reg = NULL;
3372	base->gen_dmac.init_reg_size = 0;
3373}
3374
3375static int __init d40_lcla_allocate(struct d40_base *base)
3376{
3377	struct d40_lcla_pool *pool = &base->lcla_pool;
3378	unsigned long *page_list;
3379	int i, j;
3380	int ret;
3381
3382	/*
3383	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3384	 * To full fill this hardware requirement without wasting 256 kb
3385	 * we allocate pages until we get an aligned one.
3386	 */
3387	page_list = kmalloc_array(MAX_LCLA_ALLOC_ATTEMPTS,
3388				  sizeof(*page_list),
3389				  GFP_KERNEL);
3390	if (!page_list)
3391		return -ENOMEM;
3392
3393	/* Calculating how many pages that are required */
3394	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3395
3396	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3397		page_list[i] = __get_free_pages(GFP_KERNEL,
3398						base->lcla_pool.pages);
3399		if (!page_list[i]) {
3400
3401			d40_err(base->dev, "Failed to allocate %d pages.\n",
3402				base->lcla_pool.pages);
3403			ret = -ENOMEM;
3404
3405			for (j = 0; j < i; j++)
3406				free_pages(page_list[j], base->lcla_pool.pages);
3407			goto free_page_list;
3408		}
3409
3410		if ((virt_to_phys((void *)page_list[i]) &
3411		     (LCLA_ALIGNMENT - 1)) == 0)
3412			break;
3413	}
3414
3415	for (j = 0; j < i; j++)
3416		free_pages(page_list[j], base->lcla_pool.pages);
3417
3418	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3419		base->lcla_pool.base = (void *)page_list[i];
3420	} else {
3421		/*
3422		 * After many attempts and no succees with finding the correct
3423		 * alignment, try with allocating a big buffer.
3424		 */
3425		dev_warn(base->dev,
3426			 "[%s] Failed to get %d pages @ 18 bit align.\n",
3427			 __func__, base->lcla_pool.pages);
3428		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3429							 base->num_phy_chans +
3430							 LCLA_ALIGNMENT,
3431							 GFP_KERNEL);
3432		if (!base->lcla_pool.base_unaligned) {
3433			ret = -ENOMEM;
3434			goto free_page_list;
3435		}
3436
3437		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3438						 LCLA_ALIGNMENT);
3439	}
3440
3441	pool->dma_addr = dma_map_single(base->dev, pool->base,
3442					SZ_1K * base->num_phy_chans,
3443					DMA_TO_DEVICE);
3444	if (dma_mapping_error(base->dev, pool->dma_addr)) {
3445		pool->dma_addr = 0;
3446		ret = -ENOMEM;
3447		goto free_page_list;
3448	}
3449
3450	writel(virt_to_phys(base->lcla_pool.base),
3451	       base->virtbase + D40_DREG_LCLA);
3452	ret = 0;
3453 free_page_list:
3454	kfree(page_list);
3455	return ret;
3456}
3457
3458static int __init d40_of_probe(struct platform_device *pdev,
3459			       struct device_node *np)
3460{
3461	struct stedma40_platform_data *pdata;
3462	int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3463	const __be32 *list;
3464
3465	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
3466	if (!pdata)
3467		return -ENOMEM;
3468
3469	/* If absent this value will be obtained from h/w. */
3470	of_property_read_u32(np, "dma-channels", &num_phy);
3471	if (num_phy > 0)
3472		pdata->num_of_phy_chans = num_phy;
3473
3474	list = of_get_property(np, "memcpy-channels", &num_memcpy);
3475	num_memcpy /= sizeof(*list);
3476
3477	if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
3478		d40_err(&pdev->dev,
3479			"Invalid number of memcpy channels specified (%d)\n",
3480			num_memcpy);
3481		return -EINVAL;
3482	}
3483	pdata->num_of_memcpy_chans = num_memcpy;
3484
3485	of_property_read_u32_array(np, "memcpy-channels",
3486				   dma40_memcpy_channels,
3487				   num_memcpy);
3488
3489	list = of_get_property(np, "disabled-channels", &num_disabled);
3490	num_disabled /= sizeof(*list);
3491
3492	if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
3493		d40_err(&pdev->dev,
3494			"Invalid number of disabled channels specified (%d)\n",
3495			num_disabled);
3496		return -EINVAL;
3497	}
3498
3499	of_property_read_u32_array(np, "disabled-channels",
3500				   pdata->disabled_channels,
3501				   num_disabled);
3502	pdata->disabled_channels[num_disabled] = -1;
3503
3504	pdev->dev.platform_data = pdata;
3505
3506	return 0;
3507}
3508
3509static int __init d40_probe(struct platform_device *pdev)
3510{
3511	struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3512	struct device_node *np = pdev->dev.of_node;
3513	int ret = -ENOENT;
3514	struct d40_base *base;
3515	struct resource *res;
3516	int num_reserved_chans;
3517	u32 val;
3518
3519	if (!plat_data) {
3520		if (np) {
3521			if (d40_of_probe(pdev, np)) {
3522				ret = -ENOMEM;
3523				goto report_failure;
3524			}
3525		} else {
3526			d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
3527			goto report_failure;
3528		}
3529	}
3530
3531	base = d40_hw_detect_init(pdev);
3532	if (!base)
3533		goto report_failure;
3534
3535	num_reserved_chans = d40_phy_res_init(base);
3536
3537	platform_set_drvdata(pdev, base);
3538
3539	spin_lock_init(&base->interrupt_lock);
3540	spin_lock_init(&base->execmd_lock);
3541
3542	/* Get IO for logical channel parameter address */
3543	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3544	if (!res) {
3545		ret = -ENOENT;
3546		d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3547		goto destroy_cache;
3548	}
3549	base->lcpa_size = resource_size(res);
3550	base->phy_lcpa = res->start;
3551
3552	if (request_mem_region(res->start, resource_size(res),
3553			       D40_NAME " I/O lcpa") == NULL) {
3554		ret = -EBUSY;
3555		d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
3556		goto destroy_cache;
3557	}
3558
3559	/* We make use of ESRAM memory for this. */
3560	val = readl(base->virtbase + D40_DREG_LCPA);
3561	if (res->start != val && val != 0) {
3562		dev_warn(&pdev->dev,
3563			 "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
3564			 __func__, val, &res->start);
3565	} else
3566		writel(res->start, base->virtbase + D40_DREG_LCPA);
3567
3568	base->lcpa_base = ioremap(res->start, resource_size(res));
3569	if (!base->lcpa_base) {
3570		ret = -ENOMEM;
3571		d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3572		goto destroy_cache;
3573	}
3574	/* If lcla has to be located in ESRAM we don't need to allocate */
3575	if (base->plat_data->use_esram_lcla) {
3576		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3577							"lcla_esram");
3578		if (!res) {
3579			ret = -ENOENT;
3580			d40_err(&pdev->dev,
3581				"No \"lcla_esram\" memory resource\n");
3582			goto destroy_cache;
3583		}
3584		base->lcla_pool.base = ioremap(res->start,
3585						resource_size(res));
3586		if (!base->lcla_pool.base) {
3587			ret = -ENOMEM;
3588			d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3589			goto destroy_cache;
3590		}
3591		writel(res->start, base->virtbase + D40_DREG_LCLA);
3592
3593	} else {
3594		ret = d40_lcla_allocate(base);
3595		if (ret) {
3596			d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3597			goto destroy_cache;
3598		}
3599	}
3600
3601	spin_lock_init(&base->lcla_pool.lock);
3602
3603	base->irq = platform_get_irq(pdev, 0);
3604
3605	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3606	if (ret) {
3607		d40_err(&pdev->dev, "No IRQ defined\n");
3608		goto destroy_cache;
3609	}
3610
3611	if (base->plat_data->use_esram_lcla) {
3612
3613		base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3614		if (IS_ERR(base->lcpa_regulator)) {
3615			d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3616			ret = PTR_ERR(base->lcpa_regulator);
3617			base->lcpa_regulator = NULL;
3618			goto destroy_cache;
3619		}
3620
3621		ret = regulator_enable(base->lcpa_regulator);
3622		if (ret) {
3623			d40_err(&pdev->dev,
3624				"Failed to enable lcpa_regulator\n");
3625			regulator_put(base->lcpa_regulator);
3626			base->lcpa_regulator = NULL;
3627			goto destroy_cache;
3628		}
3629	}
3630
3631	writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3632
3633	pm_runtime_irq_safe(base->dev);
3634	pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3635	pm_runtime_use_autosuspend(base->dev);
3636	pm_runtime_mark_last_busy(base->dev);
3637	pm_runtime_set_active(base->dev);
3638	pm_runtime_enable(base->dev);
3639
3640	ret = d40_dmaengine_init(base, num_reserved_chans);
3641	if (ret)
3642		goto destroy_cache;
3643
3644	base->dev->dma_parms = &base->dma_parms;
3645	ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
3646	if (ret) {
3647		d40_err(&pdev->dev, "Failed to set dma max seg size\n");
3648		goto destroy_cache;
3649	}
3650
3651	d40_hw_init(base);
3652
3653	if (np) {
3654		ret = of_dma_controller_register(np, d40_xlate, NULL);
3655		if (ret)
3656			dev_err(&pdev->dev,
3657				"could not register of_dma_controller\n");
3658	}
3659
3660	dev_info(base->dev, "initialized\n");
3661	return 0;
3662 destroy_cache:
3663	kmem_cache_destroy(base->desc_slab);
3664	if (base->virtbase)
3665		iounmap(base->virtbase);
3666
3667	if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3668		iounmap(base->lcla_pool.base);
3669		base->lcla_pool.base = NULL;
3670	}
3671
3672	if (base->lcla_pool.dma_addr)
3673		dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3674				 SZ_1K * base->num_phy_chans,
3675				 DMA_TO_DEVICE);
3676
3677	if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3678		free_pages((unsigned long)base->lcla_pool.base,
3679			   base->lcla_pool.pages);
3680
3681	kfree(base->lcla_pool.base_unaligned);
 
 
 
3682
3683	if (base->phy_lcpa)
3684		release_mem_region(base->phy_lcpa,
3685				   base->lcpa_size);
3686	if (base->phy_start)
3687		release_mem_region(base->phy_start,
3688				   base->phy_size);
3689	if (base->clk) {
3690		clk_disable_unprepare(base->clk);
3691		clk_put(base->clk);
3692	}
3693
3694	if (base->lcpa_regulator) {
3695		regulator_disable(base->lcpa_regulator);
3696		regulator_put(base->lcpa_regulator);
3697	}
3698
3699	kfree(base->lcla_pool.alloc_map);
3700	kfree(base->lookup_log_chans);
3701	kfree(base->lookup_phy_chans);
3702	kfree(base->phy_res);
3703	kfree(base);
3704 report_failure:
3705	d40_err(&pdev->dev, "probe failed\n");
3706	return ret;
3707}
3708
3709static const struct of_device_id d40_match[] = {
3710        { .compatible = "stericsson,dma40", },
3711        {}
3712};
3713
3714static struct platform_driver d40_driver = {
3715	.driver = {
3716		.name  = D40_NAME,
3717		.pm = &dma40_pm_ops,
3718		.of_match_table = d40_match,
3719	},
3720};
3721
3722static int __init stedma40_init(void)
3723{
3724	return platform_driver_probe(&d40_driver, d40_probe);
3725}
3726subsys_initcall(stedma40_init);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) Ericsson AB 2007-2008
   4 * Copyright (C) ST-Ericsson SA 2008-2010
   5 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
   6 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
   7 */
   8
   9#include <linux/dma-mapping.h>
  10#include <linux/kernel.h>
  11#include <linux/slab.h>
  12#include <linux/export.h>
  13#include <linux/dmaengine.h>
  14#include <linux/platform_device.h>
  15#include <linux/clk.h>
  16#include <linux/delay.h>
  17#include <linux/log2.h>
  18#include <linux/pm.h>
  19#include <linux/pm_runtime.h>
  20#include <linux/err.h>
  21#include <linux/of.h>
  22#include <linux/of_dma.h>
  23#include <linux/amba/bus.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/platform_data/dma-ste-dma40.h>
  26
  27#include "dmaengine.h"
  28#include "ste_dma40_ll.h"
  29
  30#define D40_NAME "dma40"
  31
  32#define D40_PHY_CHAN -1
  33
  34/* For masking out/in 2 bit channel positions */
  35#define D40_CHAN_POS(chan)  (2 * (chan / 2))
  36#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  37
  38/* Maximum iterations taken before giving up suspending a channel */
  39#define D40_SUSPEND_MAX_IT 500
  40
  41/* Milliseconds */
  42#define DMA40_AUTOSUSPEND_DELAY	100
  43
  44/* Hardware requirement on LCLA alignment */
  45#define LCLA_ALIGNMENT 0x40000
  46
  47/* Max number of links per event group */
  48#define D40_LCLA_LINK_PER_EVENT_GRP 128
  49#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  50
  51/* Max number of logical channels per physical channel */
  52#define D40_MAX_LOG_CHAN_PER_PHY 32
  53
  54/* Attempts before giving up to trying to get pages that are aligned */
  55#define MAX_LCLA_ALLOC_ATTEMPTS 256
  56
  57/* Bit markings for allocation map */
  58#define D40_ALLOC_FREE		BIT(31)
  59#define D40_ALLOC_PHY		BIT(30)
  60#define D40_ALLOC_LOG_FREE	0
  61
  62#define D40_MEMCPY_MAX_CHANS	8
  63
  64/* Reserved event lines for memcpy only. */
  65#define DB8500_DMA_MEMCPY_EV_0	51
  66#define DB8500_DMA_MEMCPY_EV_1	56
  67#define DB8500_DMA_MEMCPY_EV_2	57
  68#define DB8500_DMA_MEMCPY_EV_3	58
  69#define DB8500_DMA_MEMCPY_EV_4	59
  70#define DB8500_DMA_MEMCPY_EV_5	60
  71
  72static int dma40_memcpy_channels[] = {
  73	DB8500_DMA_MEMCPY_EV_0,
  74	DB8500_DMA_MEMCPY_EV_1,
  75	DB8500_DMA_MEMCPY_EV_2,
  76	DB8500_DMA_MEMCPY_EV_3,
  77	DB8500_DMA_MEMCPY_EV_4,
  78	DB8500_DMA_MEMCPY_EV_5,
  79};
  80
  81/* Default configuration for physical memcpy */
  82static const struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
  83	.mode = STEDMA40_MODE_PHYSICAL,
  84	.dir = DMA_MEM_TO_MEM,
  85
  86	.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
  87	.src_info.psize = STEDMA40_PSIZE_PHY_1,
  88	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  89
  90	.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
  91	.dst_info.psize = STEDMA40_PSIZE_PHY_1,
  92	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  93};
  94
  95/* Default configuration for logical memcpy */
  96static const struct stedma40_chan_cfg dma40_memcpy_conf_log = {
  97	.mode = STEDMA40_MODE_LOGICAL,
  98	.dir = DMA_MEM_TO_MEM,
  99
 100	.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 101	.src_info.psize = STEDMA40_PSIZE_LOG_1,
 102	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
 103
 104	.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 105	.dst_info.psize = STEDMA40_PSIZE_LOG_1,
 106	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
 107};
 108
 109/**
 110 * enum 40_command - The different commands and/or statuses.
 111 *
 112 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
 113 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
 114 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
 115 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
 116 */
 117enum d40_command {
 118	D40_DMA_STOP		= 0,
 119	D40_DMA_RUN		= 1,
 120	D40_DMA_SUSPEND_REQ	= 2,
 121	D40_DMA_SUSPENDED	= 3
 122};
 123
 124/*
 125 * enum d40_events - The different Event Enables for the event lines.
 126 *
 127 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
 128 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
 129 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
 130 * @D40_ROUND_EVENTLINE: Status check for event line.
 131 */
 132
 133enum d40_events {
 134	D40_DEACTIVATE_EVENTLINE	= 0,
 135	D40_ACTIVATE_EVENTLINE		= 1,
 136	D40_SUSPEND_REQ_EVENTLINE	= 2,
 137	D40_ROUND_EVENTLINE		= 3
 138};
 139
 140/*
 141 * These are the registers that has to be saved and later restored
 142 * when the DMA hw is powered off.
 143 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
 144 */
 145static __maybe_unused u32 d40_backup_regs[] = {
 146	D40_DREG_LCPA,
 147	D40_DREG_LCLA,
 148	D40_DREG_PRMSE,
 149	D40_DREG_PRMSO,
 150	D40_DREG_PRMOE,
 151	D40_DREG_PRMOO,
 152};
 153
 154#define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
 155
 156/*
 157 * since 9540 and 8540 has the same HW revision
 158 * use v4a for 9540 or ealier
 159 * use v4b for 8540 or later
 160 * HW revision:
 161 * DB8500ed has revision 0
 162 * DB8500v1 has revision 2
 163 * DB8500v2 has revision 3
 164 * AP9540v1 has revision 4
 165 * DB8540v1 has revision 4
 166 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
 167 */
 168static u32 d40_backup_regs_v4a[] = {
 169	D40_DREG_PSEG1,
 170	D40_DREG_PSEG2,
 171	D40_DREG_PSEG3,
 172	D40_DREG_PSEG4,
 173	D40_DREG_PCEG1,
 174	D40_DREG_PCEG2,
 175	D40_DREG_PCEG3,
 176	D40_DREG_PCEG4,
 177	D40_DREG_RSEG1,
 178	D40_DREG_RSEG2,
 179	D40_DREG_RSEG3,
 180	D40_DREG_RSEG4,
 181	D40_DREG_RCEG1,
 182	D40_DREG_RCEG2,
 183	D40_DREG_RCEG3,
 184	D40_DREG_RCEG4,
 185};
 186
 187#define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
 188
 189static u32 d40_backup_regs_v4b[] = {
 190	D40_DREG_CPSEG1,
 191	D40_DREG_CPSEG2,
 192	D40_DREG_CPSEG3,
 193	D40_DREG_CPSEG4,
 194	D40_DREG_CPSEG5,
 195	D40_DREG_CPCEG1,
 196	D40_DREG_CPCEG2,
 197	D40_DREG_CPCEG3,
 198	D40_DREG_CPCEG4,
 199	D40_DREG_CPCEG5,
 200	D40_DREG_CRSEG1,
 201	D40_DREG_CRSEG2,
 202	D40_DREG_CRSEG3,
 203	D40_DREG_CRSEG4,
 204	D40_DREG_CRSEG5,
 205	D40_DREG_CRCEG1,
 206	D40_DREG_CRCEG2,
 207	D40_DREG_CRCEG3,
 208	D40_DREG_CRCEG4,
 209	D40_DREG_CRCEG5,
 210};
 211
 212#define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
 213
 214static __maybe_unused u32 d40_backup_regs_chan[] = {
 215	D40_CHAN_REG_SSCFG,
 216	D40_CHAN_REG_SSELT,
 217	D40_CHAN_REG_SSPTR,
 218	D40_CHAN_REG_SSLNK,
 219	D40_CHAN_REG_SDCFG,
 220	D40_CHAN_REG_SDELT,
 221	D40_CHAN_REG_SDPTR,
 222	D40_CHAN_REG_SDLNK,
 223};
 224
 225#define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
 226			     BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
 227
 228/**
 229 * struct d40_interrupt_lookup - lookup table for interrupt handler
 230 *
 231 * @src: Interrupt mask register.
 232 * @clr: Interrupt clear register.
 233 * @is_error: true if this is an error interrupt.
 234 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
 235 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
 236 */
 237struct d40_interrupt_lookup {
 238	u32 src;
 239	u32 clr;
 240	bool is_error;
 241	int offset;
 242};
 243
 244
 245static struct d40_interrupt_lookup il_v4a[] = {
 246	{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
 247	{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
 248	{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
 249	{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
 250	{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
 251	{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
 252	{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
 253	{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
 254	{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
 255	{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
 256};
 257
 258static struct d40_interrupt_lookup il_v4b[] = {
 259	{D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false,  0},
 260	{D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
 261	{D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
 262	{D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
 263	{D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
 264	{D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true,   0},
 265	{D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true,  32},
 266	{D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true,  64},
 267	{D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true,  96},
 268	{D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true,  128},
 269	{D40_DREG_CPCTIS,  D40_DREG_CPCICR,  false, D40_PHY_CHAN},
 270	{D40_DREG_CPCEIS,  D40_DREG_CPCICR,  true,  D40_PHY_CHAN},
 271};
 272
 273/**
 274 * struct d40_reg_val - simple lookup struct
 275 *
 276 * @reg: The register.
 277 * @val: The value that belongs to the register in reg.
 278 */
 279struct d40_reg_val {
 280	unsigned int reg;
 281	unsigned int val;
 282};
 283
 284static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
 285	/* Clock every part of the DMA block from start */
 286	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
 287
 288	/* Interrupts on all logical channels */
 289	{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
 290	{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
 291	{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
 292	{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
 293	{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
 294	{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
 295	{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
 296	{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
 297	{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
 298	{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
 299	{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
 300	{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
 301};
 302static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
 303	/* Clock every part of the DMA block from start */
 304	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
 305
 306	/* Interrupts on all logical channels */
 307	{ .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
 308	{ .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
 309	{ .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
 310	{ .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
 311	{ .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
 312	{ .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
 313	{ .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
 314	{ .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
 315	{ .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
 316	{ .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
 317	{ .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
 318	{ .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
 319	{ .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
 320	{ .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
 321	{ .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
 322};
 323
 324/**
 325 * struct d40_lli_pool - Structure for keeping LLIs in memory
 326 *
 327 * @base: Pointer to memory area when the pre_alloc_lli's are not large
 328 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
 329 * pre_alloc_lli is used.
 330 * @dma_addr: DMA address, if mapped
 331 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
 332 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
 333 * one buffer to one buffer.
 334 */
 335struct d40_lli_pool {
 336	void	*base;
 337	int	 size;
 338	dma_addr_t	dma_addr;
 339	/* Space for dst and src, plus an extra for padding */
 340	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
 341};
 342
 343/**
 344 * struct d40_desc - A descriptor is one DMA job.
 345 *
 346 * @lli_phy: LLI settings for physical channel. Both src and dst=
 347 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
 348 * lli_len equals one.
 349 * @lli_log: Same as above but for logical channels.
 350 * @lli_pool: The pool with two entries pre-allocated.
 351 * @lli_len: Number of llis of current descriptor.
 352 * @lli_current: Number of transferred llis.
 353 * @lcla_alloc: Number of LCLA entries allocated.
 354 * @txd: DMA engine struct. Used for among other things for communication
 355 * during a transfer.
 356 * @node: List entry.
 357 * @is_in_client_list: true if the client owns this descriptor.
 358 * @cyclic: true if this is a cyclic job
 359 *
 360 * This descriptor is used for both logical and physical transfers.
 361 */
 362struct d40_desc {
 363	/* LLI physical */
 364	struct d40_phy_lli_bidir	 lli_phy;
 365	/* LLI logical */
 366	struct d40_log_lli_bidir	 lli_log;
 367
 368	struct d40_lli_pool		 lli_pool;
 369	int				 lli_len;
 370	int				 lli_current;
 371	int				 lcla_alloc;
 372
 373	struct dma_async_tx_descriptor	 txd;
 374	struct list_head		 node;
 375
 376	bool				 is_in_client_list;
 377	bool				 cyclic;
 378};
 379
 380/**
 381 * struct d40_lcla_pool - LCLA pool settings and data.
 382 *
 383 * @base: The virtual address of LCLA. 18 bit aligned.
 384 * @dma_addr: DMA address, if mapped
 385 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
 386 * This pointer is only there for clean-up on error.
 387 * @pages: The number of pages needed for all physical channels.
 388 * Only used later for clean-up on error
 389 * @lock: Lock to protect the content in this struct.
 390 * @alloc_map: big map over which LCLA entry is own by which job.
 391 */
 392struct d40_lcla_pool {
 393	void		*base;
 394	dma_addr_t	dma_addr;
 395	void		*base_unaligned;
 396	int		 pages;
 397	spinlock_t	 lock;
 398	struct d40_desc	**alloc_map;
 399};
 400
 401/**
 402 * struct d40_phy_res - struct for handling eventlines mapped to physical
 403 * channels.
 404 *
 405 * @lock: A lock protection this entity.
 406 * @reserved: True if used by secure world or otherwise.
 407 * @num: The physical channel number of this entity.
 408 * @allocated_src: Bit mapped to show which src event line's are mapped to
 409 * this physical channel. Can also be free or physically allocated.
 410 * @allocated_dst: Same as for src but is dst.
 411 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
 412 * event line number.
 413 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
 414 */
 415struct d40_phy_res {
 416	spinlock_t lock;
 417	bool	   reserved;
 418	int	   num;
 419	u32	   allocated_src;
 420	u32	   allocated_dst;
 421	bool	   use_soft_lli;
 422};
 423
 424struct d40_base;
 425
 426/**
 427 * struct d40_chan - Struct that describes a channel.
 428 *
 429 * @lock: A spinlock to protect this struct.
 430 * @log_num: The logical number, if any of this channel.
 431 * @pending_tx: The number of pending transfers. Used between interrupt handler
 432 * and tasklet.
 433 * @busy: Set to true when transfer is ongoing on this channel.
 434 * @phy_chan: Pointer to physical channel which this instance runs on. If this
 435 * point is NULL, then the channel is not allocated.
 436 * @chan: DMA engine handle.
 437 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
 438 * transfer and call client callback.
 439 * @client: Cliented owned descriptor list.
 440 * @pending_queue: Submitted jobs, to be issued by issue_pending()
 441 * @active: Active descriptor.
 442 * @done: Completed jobs
 443 * @queue: Queued jobs.
 444 * @prepare_queue: Prepared jobs.
 445 * @dma_cfg: The client configuration of this dma channel.
 446 * @slave_config: DMA slave configuration.
 447 * @configured: whether the dma_cfg configuration is valid
 448 * @base: Pointer to the device instance struct.
 449 * @src_def_cfg: Default cfg register setting for src.
 450 * @dst_def_cfg: Default cfg register setting for dst.
 451 * @log_def: Default logical channel settings.
 452 * @lcpa: Pointer to dst and src lcpa settings.
 453 * @runtime_addr: runtime configured address.
 454 * @runtime_direction: runtime configured direction.
 455 *
 456 * This struct can either "be" a logical or a physical channel.
 457 */
 458struct d40_chan {
 459	spinlock_t			 lock;
 460	int				 log_num;
 461	int				 pending_tx;
 462	bool				 busy;
 463	struct d40_phy_res		*phy_chan;
 464	struct dma_chan			 chan;
 465	struct tasklet_struct		 tasklet;
 466	struct list_head		 client;
 467	struct list_head		 pending_queue;
 468	struct list_head		 active;
 469	struct list_head		 done;
 470	struct list_head		 queue;
 471	struct list_head		 prepare_queue;
 472	struct stedma40_chan_cfg	 dma_cfg;
 473	struct dma_slave_config		 slave_config;
 474	bool				 configured;
 475	struct d40_base			*base;
 476	/* Default register configurations */
 477	u32				 src_def_cfg;
 478	u32				 dst_def_cfg;
 479	struct d40_def_lcsp		 log_def;
 480	struct d40_log_lli_full		*lcpa;
 481	/* Runtime reconfiguration */
 482	dma_addr_t			runtime_addr;
 483	enum dma_transfer_direction	runtime_direction;
 484};
 485
 486/**
 487 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
 488 * controller
 489 *
 490 * @backup: the pointer to the registers address array for backup
 491 * @backup_size: the size of the registers address array for backup
 492 * @realtime_en: the realtime enable register
 493 * @realtime_clear: the realtime clear register
 494 * @high_prio_en: the high priority enable register
 495 * @high_prio_clear: the high priority clear register
 496 * @interrupt_en: the interrupt enable register
 497 * @interrupt_clear: the interrupt clear register
 498 * @il: the pointer to struct d40_interrupt_lookup
 499 * @il_size: the size of d40_interrupt_lookup array
 500 * @init_reg: the pointer to the struct d40_reg_val
 501 * @init_reg_size: the size of d40_reg_val array
 502 */
 503struct d40_gen_dmac {
 504	u32				*backup;
 505	u32				 backup_size;
 506	u32				 realtime_en;
 507	u32				 realtime_clear;
 508	u32				 high_prio_en;
 509	u32				 high_prio_clear;
 510	u32				 interrupt_en;
 511	u32				 interrupt_clear;
 512	struct d40_interrupt_lookup	*il;
 513	u32				 il_size;
 514	struct d40_reg_val		*init_reg;
 515	u32				 init_reg_size;
 516};
 517
 518/**
 519 * struct d40_base - The big global struct, one for each probe'd instance.
 520 *
 521 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
 522 * @execmd_lock: Lock for execute command usage since several channels share
 523 * the same physical register.
 524 * @dev: The device structure.
 525 * @virtbase: The virtual base address of the DMA's register.
 526 * @rev: silicon revision detected.
 527 * @clk: Pointer to the DMA clock structure.
 528 * @phy_start: Physical memory start of the DMA registers.
 529 * @phy_size: Size of the DMA register map.
 530 * @irq: The IRQ number.
 531 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
 532 * transfers).
 533 * @num_phy_chans: The number of physical channels. Read from HW. This
 534 * is the number of available channels for this driver, not counting "Secure
 535 * mode" allocated physical channels.
 536 * @num_log_chans: The number of logical channels. Calculated from
 537 * num_phy_chans.
 
 538 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
 539 * @dma_slave: dma_device channels that can do only do slave transfers.
 540 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
 541 * @phy_chans: Room for all possible physical channels in system.
 542 * @log_chans: Room for all possible logical channels in system.
 543 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
 544 * to log_chans entries.
 545 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
 546 * to phy_chans entries.
 547 * @plat_data: Pointer to provided platform_data which is the driver
 548 * configuration.
 549 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
 550 * @phy_res: Vector containing all physical channels.
 551 * @lcla_pool: lcla pool settings and data.
 552 * @lcpa_base: The virtual mapped address of LCPA.
 553 * @phy_lcpa: The physical address of the LCPA.
 554 * @lcpa_size: The size of the LCPA area.
 555 * @desc_slab: cache for descriptors.
 556 * @reg_val_backup: Here the values of some hardware registers are stored
 557 * before the DMA is powered off. They are restored when the power is back on.
 558 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
 559 * later
 560 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
 561 * @regs_interrupt: Scratch space for registers during interrupt.
 562 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
 563 * @gen_dmac: the struct for generic registers values to represent u8500/8540
 564 * DMA controller
 565 */
 566struct d40_base {
 567	spinlock_t			 interrupt_lock;
 568	spinlock_t			 execmd_lock;
 569	struct device			 *dev;
 570	void __iomem			 *virtbase;
 571	u8				  rev:4;
 572	struct clk			 *clk;
 573	phys_addr_t			  phy_start;
 574	resource_size_t			  phy_size;
 575	int				  irq;
 576	int				  num_memcpy_chans;
 577	int				  num_phy_chans;
 578	int				  num_log_chans;
 
 579	struct dma_device		  dma_both;
 580	struct dma_device		  dma_slave;
 581	struct dma_device		  dma_memcpy;
 582	struct d40_chan			 *phy_chans;
 583	struct d40_chan			 *log_chans;
 584	struct d40_chan			**lookup_log_chans;
 585	struct d40_chan			**lookup_phy_chans;
 586	struct stedma40_platform_data	 *plat_data;
 587	struct regulator		 *lcpa_regulator;
 588	/* Physical half channels */
 589	struct d40_phy_res		 *phy_res;
 590	struct d40_lcla_pool		  lcla_pool;
 591	void				 *lcpa_base;
 592	dma_addr_t			  phy_lcpa;
 593	resource_size_t			  lcpa_size;
 594	struct kmem_cache		 *desc_slab;
 595	u32				  reg_val_backup[BACKUP_REGS_SZ];
 596	u32				  reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
 597	u32				 *reg_val_backup_chan;
 598	u32				 *regs_interrupt;
 599	u16				  gcc_pwr_off_mask;
 600	struct d40_gen_dmac		  gen_dmac;
 601};
 602
 603static struct device *chan2dev(struct d40_chan *d40c)
 604{
 605	return &d40c->chan.dev->device;
 606}
 607
 608static bool chan_is_physical(struct d40_chan *chan)
 609{
 610	return chan->log_num == D40_PHY_CHAN;
 611}
 612
 613static bool chan_is_logical(struct d40_chan *chan)
 614{
 615	return !chan_is_physical(chan);
 616}
 617
 618static void __iomem *chan_base(struct d40_chan *chan)
 619{
 620	return chan->base->virtbase + D40_DREG_PCBASE +
 621	       chan->phy_chan->num * D40_DREG_PCDELTA;
 622}
 623
 624#define d40_err(dev, format, arg...)		\
 625	dev_err(dev, "[%s] " format, __func__, ## arg)
 626
 627#define chan_err(d40c, format, arg...)		\
 628	d40_err(chan2dev(d40c), format, ## arg)
 629
 630static int d40_set_runtime_config_write(struct dma_chan *chan,
 631				  struct dma_slave_config *config,
 632				  enum dma_transfer_direction direction);
 633
 634static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
 635			      int lli_len)
 636{
 637	bool is_log = chan_is_logical(d40c);
 638	u32 align;
 639	void *base;
 640
 641	if (is_log)
 642		align = sizeof(struct d40_log_lli);
 643	else
 644		align = sizeof(struct d40_phy_lli);
 645
 646	if (lli_len == 1) {
 647		base = d40d->lli_pool.pre_alloc_lli;
 648		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
 649		d40d->lli_pool.base = NULL;
 650	} else {
 651		d40d->lli_pool.size = lli_len * 2 * align;
 652
 653		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
 654		d40d->lli_pool.base = base;
 655
 656		if (d40d->lli_pool.base == NULL)
 657			return -ENOMEM;
 658	}
 659
 660	if (is_log) {
 661		d40d->lli_log.src = PTR_ALIGN(base, align);
 662		d40d->lli_log.dst = d40d->lli_log.src + lli_len;
 663
 664		d40d->lli_pool.dma_addr = 0;
 665	} else {
 666		d40d->lli_phy.src = PTR_ALIGN(base, align);
 667		d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
 668
 669		d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
 670							 d40d->lli_phy.src,
 671							 d40d->lli_pool.size,
 672							 DMA_TO_DEVICE);
 673
 674		if (dma_mapping_error(d40c->base->dev,
 675				      d40d->lli_pool.dma_addr)) {
 676			kfree(d40d->lli_pool.base);
 677			d40d->lli_pool.base = NULL;
 678			d40d->lli_pool.dma_addr = 0;
 679			return -ENOMEM;
 680		}
 681	}
 682
 683	return 0;
 684}
 685
 686static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
 687{
 688	if (d40d->lli_pool.dma_addr)
 689		dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
 690				 d40d->lli_pool.size, DMA_TO_DEVICE);
 691
 692	kfree(d40d->lli_pool.base);
 693	d40d->lli_pool.base = NULL;
 694	d40d->lli_pool.size = 0;
 695	d40d->lli_log.src = NULL;
 696	d40d->lli_log.dst = NULL;
 697	d40d->lli_phy.src = NULL;
 698	d40d->lli_phy.dst = NULL;
 699}
 700
 701static int d40_lcla_alloc_one(struct d40_chan *d40c,
 702			      struct d40_desc *d40d)
 703{
 704	unsigned long flags;
 705	int i;
 706	int ret = -EINVAL;
 707
 708	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
 709
 710	/*
 711	 * Allocate both src and dst at the same time, therefore the half
 712	 * start on 1 since 0 can't be used since zero is used as end marker.
 713	 */
 714	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
 715		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
 716
 717		if (!d40c->base->lcla_pool.alloc_map[idx]) {
 718			d40c->base->lcla_pool.alloc_map[idx] = d40d;
 719			d40d->lcla_alloc++;
 720			ret = i;
 721			break;
 722		}
 723	}
 724
 725	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
 726
 727	return ret;
 728}
 729
 730static int d40_lcla_free_all(struct d40_chan *d40c,
 731			     struct d40_desc *d40d)
 732{
 733	unsigned long flags;
 734	int i;
 735	int ret = -EINVAL;
 736
 737	if (chan_is_physical(d40c))
 738		return 0;
 739
 740	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
 741
 742	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
 743		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
 744
 745		if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
 746			d40c->base->lcla_pool.alloc_map[idx] = NULL;
 747			d40d->lcla_alloc--;
 748			if (d40d->lcla_alloc == 0) {
 749				ret = 0;
 750				break;
 751			}
 752		}
 753	}
 754
 755	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
 756
 757	return ret;
 758
 759}
 760
 761static void d40_desc_remove(struct d40_desc *d40d)
 762{
 763	list_del(&d40d->node);
 764}
 765
 766static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
 767{
 768	struct d40_desc *desc = NULL;
 769
 770	if (!list_empty(&d40c->client)) {
 771		struct d40_desc *d;
 772		struct d40_desc *_d;
 773
 774		list_for_each_entry_safe(d, _d, &d40c->client, node) {
 775			if (async_tx_test_ack(&d->txd)) {
 776				d40_desc_remove(d);
 777				desc = d;
 778				memset(desc, 0, sizeof(*desc));
 779				break;
 780			}
 781		}
 782	}
 783
 784	if (!desc)
 785		desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
 786
 787	if (desc)
 788		INIT_LIST_HEAD(&desc->node);
 789
 790	return desc;
 791}
 792
 793static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
 794{
 795
 796	d40_pool_lli_free(d40c, d40d);
 797	d40_lcla_free_all(d40c, d40d);
 798	kmem_cache_free(d40c->base->desc_slab, d40d);
 799}
 800
 801static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
 802{
 803	list_add_tail(&desc->node, &d40c->active);
 804}
 805
 806static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
 807{
 808	struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
 809	struct d40_phy_lli *lli_src = desc->lli_phy.src;
 810	void __iomem *base = chan_base(chan);
 811
 812	writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
 813	writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
 814	writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
 815	writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
 816
 817	writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
 818	writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
 819	writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
 820	writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
 821}
 822
 823static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
 824{
 825	list_add_tail(&desc->node, &d40c->done);
 826}
 827
 828static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
 829{
 830	struct d40_lcla_pool *pool = &chan->base->lcla_pool;
 831	struct d40_log_lli_bidir *lli = &desc->lli_log;
 832	int lli_current = desc->lli_current;
 833	int lli_len = desc->lli_len;
 834	bool cyclic = desc->cyclic;
 835	int curr_lcla = -EINVAL;
 836	int first_lcla = 0;
 837	bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
 838	bool linkback;
 839
 840	/*
 841	 * We may have partially running cyclic transfers, in case we did't get
 842	 * enough LCLA entries.
 843	 */
 844	linkback = cyclic && lli_current == 0;
 845
 846	/*
 847	 * For linkback, we need one LCLA even with only one link, because we
 848	 * can't link back to the one in LCPA space
 849	 */
 850	if (linkback || (lli_len - lli_current > 1)) {
 851		/*
 852		 * If the channel is expected to use only soft_lli don't
 853		 * allocate a lcla. This is to avoid a HW issue that exists
 854		 * in some controller during a peripheral to memory transfer
 855		 * that uses linked lists.
 856		 */
 857		if (!(chan->phy_chan->use_soft_lli &&
 858			chan->dma_cfg.dir == DMA_DEV_TO_MEM))
 859			curr_lcla = d40_lcla_alloc_one(chan, desc);
 860
 861		first_lcla = curr_lcla;
 862	}
 863
 864	/*
 865	 * For linkback, we normally load the LCPA in the loop since we need to
 866	 * link it to the second LCLA and not the first.  However, if we
 867	 * couldn't even get a first LCLA, then we have to run in LCPA and
 868	 * reload manually.
 869	 */
 870	if (!linkback || curr_lcla == -EINVAL) {
 871		unsigned int flags = 0;
 872
 873		if (curr_lcla == -EINVAL)
 874			flags |= LLI_TERM_INT;
 875
 876		d40_log_lli_lcpa_write(chan->lcpa,
 877				       &lli->dst[lli_current],
 878				       &lli->src[lli_current],
 879				       curr_lcla,
 880				       flags);
 881		lli_current++;
 882	}
 883
 884	if (curr_lcla < 0)
 885		goto set_current;
 886
 887	for (; lli_current < lli_len; lli_current++) {
 888		unsigned int lcla_offset = chan->phy_chan->num * 1024 +
 889					   8 * curr_lcla * 2;
 890		struct d40_log_lli *lcla = pool->base + lcla_offset;
 891		unsigned int flags = 0;
 892		int next_lcla;
 893
 894		if (lli_current + 1 < lli_len)
 895			next_lcla = d40_lcla_alloc_one(chan, desc);
 896		else
 897			next_lcla = linkback ? first_lcla : -EINVAL;
 898
 899		if (cyclic || next_lcla == -EINVAL)
 900			flags |= LLI_TERM_INT;
 901
 902		if (linkback && curr_lcla == first_lcla) {
 903			/* First link goes in both LCPA and LCLA */
 904			d40_log_lli_lcpa_write(chan->lcpa,
 905					       &lli->dst[lli_current],
 906					       &lli->src[lli_current],
 907					       next_lcla, flags);
 908		}
 909
 910		/*
 911		 * One unused LCLA in the cyclic case if the very first
 912		 * next_lcla fails...
 913		 */
 914		d40_log_lli_lcla_write(lcla,
 915				       &lli->dst[lli_current],
 916				       &lli->src[lli_current],
 917				       next_lcla, flags);
 918
 919		/*
 920		 * Cache maintenance is not needed if lcla is
 921		 * mapped in esram
 922		 */
 923		if (!use_esram_lcla) {
 924			dma_sync_single_range_for_device(chan->base->dev,
 925						pool->dma_addr, lcla_offset,
 926						2 * sizeof(struct d40_log_lli),
 927						DMA_TO_DEVICE);
 928		}
 929		curr_lcla = next_lcla;
 930
 931		if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
 932			lli_current++;
 933			break;
 934		}
 935	}
 936 set_current:
 937	desc->lli_current = lli_current;
 938}
 939
 940static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
 941{
 942	if (chan_is_physical(d40c)) {
 943		d40_phy_lli_load(d40c, d40d);
 944		d40d->lli_current = d40d->lli_len;
 945	} else
 946		d40_log_lli_to_lcxa(d40c, d40d);
 947}
 948
 949static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
 950{
 951	return list_first_entry_or_null(&d40c->active, struct d40_desc, node);
 952}
 953
 954/* remove desc from current queue and add it to the pending_queue */
 955static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
 956{
 957	d40_desc_remove(desc);
 958	desc->is_in_client_list = false;
 959	list_add_tail(&desc->node, &d40c->pending_queue);
 960}
 961
 962static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
 963{
 964	return list_first_entry_or_null(&d40c->pending_queue, struct d40_desc,
 965					node);
 966}
 967
 968static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
 969{
 970	return list_first_entry_or_null(&d40c->queue, struct d40_desc, node);
 971}
 972
 973static struct d40_desc *d40_first_done(struct d40_chan *d40c)
 974{
 975	return list_first_entry_or_null(&d40c->done, struct d40_desc, node);
 976}
 977
 978static int d40_psize_2_burst_size(bool is_log, int psize)
 979{
 980	if (is_log) {
 981		if (psize == STEDMA40_PSIZE_LOG_1)
 982			return 1;
 983	} else {
 984		if (psize == STEDMA40_PSIZE_PHY_1)
 985			return 1;
 986	}
 987
 988	return 2 << psize;
 989}
 990
 991/*
 992 * The dma only supports transmitting packages up to
 993 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
 994 *
 995 * Calculate the total number of dma elements required to send the entire sg list.
 996 */
 997static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
 998{
 999	int dmalen;
1000	u32 max_w = max(data_width1, data_width2);
1001	u32 min_w = min(data_width1, data_width2);
1002	u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
1003
1004	if (seg_max > STEDMA40_MAX_SEG_SIZE)
1005		seg_max -= max_w;
1006
1007	if (!IS_ALIGNED(size, max_w))
1008		return -EINVAL;
1009
1010	if (size <= seg_max)
1011		dmalen = 1;
1012	else {
1013		dmalen = size / seg_max;
1014		if (dmalen * seg_max < size)
1015			dmalen++;
1016	}
1017	return dmalen;
1018}
1019
1020static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
1021			   u32 data_width1, u32 data_width2)
1022{
1023	struct scatterlist *sg;
1024	int i;
1025	int len = 0;
1026	int ret;
1027
1028	for_each_sg(sgl, sg, sg_len, i) {
1029		ret = d40_size_2_dmalen(sg_dma_len(sg),
1030					data_width1, data_width2);
1031		if (ret < 0)
1032			return ret;
1033		len += ret;
1034	}
1035	return len;
1036}
1037
1038static int __d40_execute_command_phy(struct d40_chan *d40c,
1039				     enum d40_command command)
1040{
1041	u32 status;
1042	int i;
1043	void __iomem *active_reg;
1044	int ret = 0;
1045	unsigned long flags;
1046	u32 wmask;
1047
1048	if (command == D40_DMA_STOP) {
1049		ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
1050		if (ret)
1051			return ret;
1052	}
1053
1054	spin_lock_irqsave(&d40c->base->execmd_lock, flags);
1055
1056	if (d40c->phy_chan->num % 2 == 0)
1057		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1058	else
1059		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1060
1061	if (command == D40_DMA_SUSPEND_REQ) {
1062		status = (readl(active_reg) &
1063			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1064			D40_CHAN_POS(d40c->phy_chan->num);
1065
1066		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1067			goto unlock;
1068	}
1069
1070	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
1071	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
1072	       active_reg);
1073
1074	if (command == D40_DMA_SUSPEND_REQ) {
1075
1076		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
1077			status = (readl(active_reg) &
1078				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1079				D40_CHAN_POS(d40c->phy_chan->num);
1080
1081			cpu_relax();
1082			/*
1083			 * Reduce the number of bus accesses while
1084			 * waiting for the DMA to suspend.
1085			 */
1086			udelay(3);
1087
1088			if (status == D40_DMA_STOP ||
1089			    status == D40_DMA_SUSPENDED)
1090				break;
1091		}
1092
1093		if (i == D40_SUSPEND_MAX_IT) {
1094			chan_err(d40c,
1095				"unable to suspend the chl %d (log: %d) status %x\n",
1096				d40c->phy_chan->num, d40c->log_num,
1097				status);
1098			dump_stack();
1099			ret = -EBUSY;
1100		}
1101
1102	}
1103 unlock:
1104	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
1105	return ret;
1106}
1107
1108static void d40_term_all(struct d40_chan *d40c)
1109{
1110	struct d40_desc *d40d;
1111	struct d40_desc *_d;
1112
1113	/* Release completed descriptors */
1114	while ((d40d = d40_first_done(d40c))) {
1115		d40_desc_remove(d40d);
1116		d40_desc_free(d40c, d40d);
1117	}
1118
1119	/* Release active descriptors */
1120	while ((d40d = d40_first_active_get(d40c))) {
1121		d40_desc_remove(d40d);
1122		d40_desc_free(d40c, d40d);
1123	}
1124
1125	/* Release queued descriptors waiting for transfer */
1126	while ((d40d = d40_first_queued(d40c))) {
1127		d40_desc_remove(d40d);
1128		d40_desc_free(d40c, d40d);
1129	}
1130
1131	/* Release pending descriptors */
1132	while ((d40d = d40_first_pending(d40c))) {
1133		d40_desc_remove(d40d);
1134		d40_desc_free(d40c, d40d);
1135	}
1136
1137	/* Release client owned descriptors */
1138	if (!list_empty(&d40c->client))
1139		list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
1140			d40_desc_remove(d40d);
1141			d40_desc_free(d40c, d40d);
1142		}
1143
1144	/* Release descriptors in prepare queue */
1145	if (!list_empty(&d40c->prepare_queue))
1146		list_for_each_entry_safe(d40d, _d,
1147					 &d40c->prepare_queue, node) {
1148			d40_desc_remove(d40d);
1149			d40_desc_free(d40c, d40d);
1150		}
1151
1152	d40c->pending_tx = 0;
1153}
1154
1155static void __d40_config_set_event(struct d40_chan *d40c,
1156				   enum d40_events event_type, u32 event,
1157				   int reg)
1158{
1159	void __iomem *addr = chan_base(d40c) + reg;
1160	int tries;
1161	u32 status;
1162
1163	switch (event_type) {
1164
1165	case D40_DEACTIVATE_EVENTLINE:
1166
1167		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1168		       | ~D40_EVENTLINE_MASK(event), addr);
1169		break;
1170
1171	case D40_SUSPEND_REQ_EVENTLINE:
1172		status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1173			  D40_EVENTLINE_POS(event);
1174
1175		if (status == D40_DEACTIVATE_EVENTLINE ||
1176		    status == D40_SUSPEND_REQ_EVENTLINE)
1177			break;
1178
1179		writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1180		       | ~D40_EVENTLINE_MASK(event), addr);
1181
1182		for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1183
1184			status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1185				  D40_EVENTLINE_POS(event);
1186
1187			cpu_relax();
1188			/*
1189			 * Reduce the number of bus accesses while
1190			 * waiting for the DMA to suspend.
1191			 */
1192			udelay(3);
1193
1194			if (status == D40_DEACTIVATE_EVENTLINE)
1195				break;
1196		}
1197
1198		if (tries == D40_SUSPEND_MAX_IT) {
1199			chan_err(d40c,
1200				"unable to stop the event_line chl %d (log: %d)"
1201				"status %x\n", d40c->phy_chan->num,
1202				 d40c->log_num, status);
1203		}
1204		break;
1205
1206	case D40_ACTIVATE_EVENTLINE:
1207	/*
1208	 * The hardware sometimes doesn't register the enable when src and dst
1209	 * event lines are active on the same logical channel.  Retry to ensure
1210	 * it does.  Usually only one retry is sufficient.
1211	 */
1212		tries = 100;
1213		while (--tries) {
1214			writel((D40_ACTIVATE_EVENTLINE <<
1215				D40_EVENTLINE_POS(event)) |
1216				~D40_EVENTLINE_MASK(event), addr);
1217
1218			if (readl(addr) & D40_EVENTLINE_MASK(event))
1219				break;
1220		}
1221
1222		if (tries != 99)
1223			dev_dbg(chan2dev(d40c),
1224				"[%s] workaround enable S%cLNK (%d tries)\n",
1225				__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1226				100 - tries);
1227
1228		WARN_ON(!tries);
1229		break;
1230
1231	case D40_ROUND_EVENTLINE:
1232		BUG();
1233		break;
1234
1235	}
1236}
1237
1238static void d40_config_set_event(struct d40_chan *d40c,
1239				 enum d40_events event_type)
1240{
1241	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1242
1243	/* Enable event line connected to device (or memcpy) */
1244	if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
1245	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
1246		__d40_config_set_event(d40c, event_type, event,
1247				       D40_CHAN_REG_SSLNK);
1248
1249	if (d40c->dma_cfg.dir !=  DMA_DEV_TO_MEM)
1250		__d40_config_set_event(d40c, event_type, event,
1251				       D40_CHAN_REG_SDLNK);
1252}
1253
1254static u32 d40_chan_has_events(struct d40_chan *d40c)
1255{
1256	void __iomem *chanbase = chan_base(d40c);
1257	u32 val;
1258
1259	val = readl(chanbase + D40_CHAN_REG_SSLNK);
1260	val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1261
1262	return val;
1263}
1264
1265static int
1266__d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1267{
1268	unsigned long flags;
1269	int ret = 0;
1270	u32 active_status;
1271	void __iomem *active_reg;
1272
1273	if (d40c->phy_chan->num % 2 == 0)
1274		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1275	else
1276		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1277
1278
1279	spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1280
1281	switch (command) {
1282	case D40_DMA_STOP:
1283	case D40_DMA_SUSPEND_REQ:
1284
1285		active_status = (readl(active_reg) &
1286				 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1287				 D40_CHAN_POS(d40c->phy_chan->num);
1288
1289		if (active_status == D40_DMA_RUN)
1290			d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1291		else
1292			d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1293
1294		if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1295			ret = __d40_execute_command_phy(d40c, command);
1296
1297		break;
1298
1299	case D40_DMA_RUN:
1300
1301		d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1302		ret = __d40_execute_command_phy(d40c, command);
1303		break;
1304
1305	case D40_DMA_SUSPENDED:
1306		BUG();
1307		break;
1308	}
1309
1310	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1311	return ret;
1312}
1313
1314static int d40_channel_execute_command(struct d40_chan *d40c,
1315				       enum d40_command command)
1316{
1317	if (chan_is_logical(d40c))
1318		return __d40_execute_command_log(d40c, command);
1319	else
1320		return __d40_execute_command_phy(d40c, command);
1321}
1322
1323static u32 d40_get_prmo(struct d40_chan *d40c)
1324{
1325	static const unsigned int phy_map[] = {
1326		[STEDMA40_PCHAN_BASIC_MODE]
1327			= D40_DREG_PRMO_PCHAN_BASIC,
1328		[STEDMA40_PCHAN_MODULO_MODE]
1329			= D40_DREG_PRMO_PCHAN_MODULO,
1330		[STEDMA40_PCHAN_DOUBLE_DST_MODE]
1331			= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1332	};
1333	static const unsigned int log_map[] = {
1334		[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1335			= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1336		[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1337			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1338		[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1339			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1340	};
1341
1342	if (chan_is_physical(d40c))
1343		return phy_map[d40c->dma_cfg.mode_opt];
1344	else
1345		return log_map[d40c->dma_cfg.mode_opt];
1346}
1347
1348static void d40_config_write(struct d40_chan *d40c)
1349{
1350	u32 addr_base;
1351	u32 var;
1352
1353	/* Odd addresses are even addresses + 4 */
1354	addr_base = (d40c->phy_chan->num % 2) * 4;
1355	/* Setup channel mode to logical or physical */
1356	var = ((u32)(chan_is_logical(d40c)) + 1) <<
1357		D40_CHAN_POS(d40c->phy_chan->num);
1358	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1359
1360	/* Setup operational mode option register */
1361	var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1362
1363	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1364
1365	if (chan_is_logical(d40c)) {
1366		int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1367			   & D40_SREG_ELEM_LOG_LIDX_MASK;
1368		void __iomem *chanbase = chan_base(d40c);
1369
1370		/* Set default config for CFG reg */
1371		writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1372		writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1373
1374		/* Set LIDX for lcla */
1375		writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1376		writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1377
1378		/* Clear LNK which will be used by d40_chan_has_events() */
1379		writel(0, chanbase + D40_CHAN_REG_SSLNK);
1380		writel(0, chanbase + D40_CHAN_REG_SDLNK);
1381	}
1382}
1383
1384static u32 d40_residue(struct d40_chan *d40c)
1385{
1386	u32 num_elt;
1387
1388	if (chan_is_logical(d40c))
1389		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1390			>> D40_MEM_LCSP2_ECNT_POS;
1391	else {
1392		u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1393		num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1394			  >> D40_SREG_ELEM_PHY_ECNT_POS;
1395	}
1396
1397	return num_elt * d40c->dma_cfg.dst_info.data_width;
1398}
1399
1400static bool d40_tx_is_linked(struct d40_chan *d40c)
1401{
1402	bool is_link;
1403
1404	if (chan_is_logical(d40c))
1405		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1406	else
1407		is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1408			  & D40_SREG_LNK_PHYS_LNK_MASK;
1409
1410	return is_link;
1411}
1412
1413static int d40_pause(struct dma_chan *chan)
1414{
1415	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1416	int res = 0;
1417	unsigned long flags;
1418
1419	if (d40c->phy_chan == NULL) {
1420		chan_err(d40c, "Channel is not allocated!\n");
1421		return -EINVAL;
1422	}
1423
1424	if (!d40c->busy)
1425		return 0;
1426
1427	spin_lock_irqsave(&d40c->lock, flags);
1428	pm_runtime_get_sync(d40c->base->dev);
1429
1430	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1431
1432	pm_runtime_mark_last_busy(d40c->base->dev);
1433	pm_runtime_put_autosuspend(d40c->base->dev);
1434	spin_unlock_irqrestore(&d40c->lock, flags);
1435	return res;
1436}
1437
1438static int d40_resume(struct dma_chan *chan)
1439{
1440	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1441	int res = 0;
1442	unsigned long flags;
1443
1444	if (d40c->phy_chan == NULL) {
1445		chan_err(d40c, "Channel is not allocated!\n");
1446		return -EINVAL;
1447	}
1448
1449	if (!d40c->busy)
1450		return 0;
1451
1452	spin_lock_irqsave(&d40c->lock, flags);
1453	pm_runtime_get_sync(d40c->base->dev);
1454
1455	/* If bytes left to transfer or linked tx resume job */
1456	if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1457		res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1458
1459	pm_runtime_mark_last_busy(d40c->base->dev);
1460	pm_runtime_put_autosuspend(d40c->base->dev);
1461	spin_unlock_irqrestore(&d40c->lock, flags);
1462	return res;
1463}
1464
1465static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1466{
1467	struct d40_chan *d40c = container_of(tx->chan,
1468					     struct d40_chan,
1469					     chan);
1470	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1471	unsigned long flags;
1472	dma_cookie_t cookie;
1473
1474	spin_lock_irqsave(&d40c->lock, flags);
1475	cookie = dma_cookie_assign(tx);
1476	d40_desc_queue(d40c, d40d);
1477	spin_unlock_irqrestore(&d40c->lock, flags);
1478
1479	return cookie;
1480}
1481
1482static int d40_start(struct d40_chan *d40c)
1483{
1484	return d40_channel_execute_command(d40c, D40_DMA_RUN);
1485}
1486
1487static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1488{
1489	struct d40_desc *d40d;
1490	int err;
1491
1492	/* Start queued jobs, if any */
1493	d40d = d40_first_queued(d40c);
1494
1495	if (d40d != NULL) {
1496		if (!d40c->busy) {
1497			d40c->busy = true;
1498			pm_runtime_get_sync(d40c->base->dev);
1499		}
1500
1501		/* Remove from queue */
1502		d40_desc_remove(d40d);
1503
1504		/* Add to active queue */
1505		d40_desc_submit(d40c, d40d);
1506
1507		/* Initiate DMA job */
1508		d40_desc_load(d40c, d40d);
1509
1510		/* Start dma job */
1511		err = d40_start(d40c);
1512
1513		if (err)
1514			return NULL;
1515	}
1516
1517	return d40d;
1518}
1519
1520/* called from interrupt context */
1521static void dma_tc_handle(struct d40_chan *d40c)
1522{
1523	struct d40_desc *d40d;
1524
1525	/* Get first active entry from list */
1526	d40d = d40_first_active_get(d40c);
1527
1528	if (d40d == NULL)
1529		return;
1530
1531	if (d40d->cyclic) {
1532		/*
1533		 * If this was a paritially loaded list, we need to reloaded
1534		 * it, and only when the list is completed.  We need to check
1535		 * for done because the interrupt will hit for every link, and
1536		 * not just the last one.
1537		 */
1538		if (d40d->lli_current < d40d->lli_len
1539		    && !d40_tx_is_linked(d40c)
1540		    && !d40_residue(d40c)) {
1541			d40_lcla_free_all(d40c, d40d);
1542			d40_desc_load(d40c, d40d);
1543			(void) d40_start(d40c);
1544
1545			if (d40d->lli_current == d40d->lli_len)
1546				d40d->lli_current = 0;
1547		}
1548	} else {
1549		d40_lcla_free_all(d40c, d40d);
1550
1551		if (d40d->lli_current < d40d->lli_len) {
1552			d40_desc_load(d40c, d40d);
1553			/* Start dma job */
1554			(void) d40_start(d40c);
1555			return;
1556		}
1557
1558		if (d40_queue_start(d40c) == NULL) {
1559			d40c->busy = false;
1560
1561			pm_runtime_mark_last_busy(d40c->base->dev);
1562			pm_runtime_put_autosuspend(d40c->base->dev);
1563		}
1564
1565		d40_desc_remove(d40d);
1566		d40_desc_done(d40c, d40d);
1567	}
1568
1569	d40c->pending_tx++;
1570	tasklet_schedule(&d40c->tasklet);
1571
1572}
1573
1574static void dma_tasklet(struct tasklet_struct *t)
1575{
1576	struct d40_chan *d40c = from_tasklet(d40c, t, tasklet);
1577	struct d40_desc *d40d;
1578	unsigned long flags;
1579	bool callback_active;
1580	struct dmaengine_desc_callback cb;
1581
1582	spin_lock_irqsave(&d40c->lock, flags);
1583
1584	/* Get first entry from the done list */
1585	d40d = d40_first_done(d40c);
1586	if (d40d == NULL) {
1587		/* Check if we have reached here for cyclic job */
1588		d40d = d40_first_active_get(d40c);
1589		if (d40d == NULL || !d40d->cyclic)
1590			goto check_pending_tx;
1591	}
1592
1593	if (!d40d->cyclic)
1594		dma_cookie_complete(&d40d->txd);
1595
1596	/*
1597	 * If terminating a channel pending_tx is set to zero.
1598	 * This prevents any finished active jobs to return to the client.
1599	 */
1600	if (d40c->pending_tx == 0) {
1601		spin_unlock_irqrestore(&d40c->lock, flags);
1602		return;
1603	}
1604
1605	/* Callback to client */
1606	callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
1607	dmaengine_desc_get_callback(&d40d->txd, &cb);
1608
1609	if (!d40d->cyclic) {
1610		if (async_tx_test_ack(&d40d->txd)) {
1611			d40_desc_remove(d40d);
1612			d40_desc_free(d40c, d40d);
1613		} else if (!d40d->is_in_client_list) {
1614			d40_desc_remove(d40d);
1615			d40_lcla_free_all(d40c, d40d);
1616			list_add_tail(&d40d->node, &d40c->client);
1617			d40d->is_in_client_list = true;
1618		}
1619	}
1620
1621	d40c->pending_tx--;
1622
1623	if (d40c->pending_tx)
1624		tasklet_schedule(&d40c->tasklet);
1625
1626	spin_unlock_irqrestore(&d40c->lock, flags);
1627
1628	if (callback_active)
1629		dmaengine_desc_callback_invoke(&cb, NULL);
1630
1631	return;
1632 check_pending_tx:
1633	/* Rescue manouver if receiving double interrupts */
1634	if (d40c->pending_tx > 0)
1635		d40c->pending_tx--;
1636	spin_unlock_irqrestore(&d40c->lock, flags);
1637}
1638
1639static irqreturn_t d40_handle_interrupt(int irq, void *data)
1640{
1641	int i;
1642	u32 idx;
1643	u32 row;
1644	long chan = -1;
1645	struct d40_chan *d40c;
 
1646	struct d40_base *base = data;
1647	u32 *regs = base->regs_interrupt;
1648	struct d40_interrupt_lookup *il = base->gen_dmac.il;
1649	u32 il_size = base->gen_dmac.il_size;
1650
1651	spin_lock(&base->interrupt_lock);
1652
1653	/* Read interrupt status of both logical and physical channels */
1654	for (i = 0; i < il_size; i++)
1655		regs[i] = readl(base->virtbase + il[i].src);
1656
1657	for (;;) {
1658
1659		chan = find_next_bit((unsigned long *)regs,
1660				     BITS_PER_LONG * il_size, chan + 1);
1661
1662		/* No more set bits found? */
1663		if (chan == BITS_PER_LONG * il_size)
1664			break;
1665
1666		row = chan / BITS_PER_LONG;
1667		idx = chan & (BITS_PER_LONG - 1);
1668
1669		if (il[row].offset == D40_PHY_CHAN)
1670			d40c = base->lookup_phy_chans[idx];
1671		else
1672			d40c = base->lookup_log_chans[il[row].offset + idx];
1673
1674		if (!d40c) {
1675			/*
1676			 * No error because this can happen if something else
1677			 * in the system is using the channel.
1678			 */
1679			continue;
1680		}
1681
1682		/* ACK interrupt */
1683		writel(BIT(idx), base->virtbase + il[row].clr);
1684
1685		spin_lock(&d40c->lock);
1686
1687		if (!il[row].is_error)
1688			dma_tc_handle(d40c);
1689		else
1690			d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1691				chan, il[row].offset, idx);
1692
1693		spin_unlock(&d40c->lock);
1694	}
1695
1696	spin_unlock(&base->interrupt_lock);
1697
1698	return IRQ_HANDLED;
1699}
1700
1701static int d40_validate_conf(struct d40_chan *d40c,
1702			     struct stedma40_chan_cfg *conf)
1703{
1704	int res = 0;
1705	bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1706
1707	if (!conf->dir) {
1708		chan_err(d40c, "Invalid direction.\n");
1709		res = -EINVAL;
1710	}
1711
1712	if ((is_log && conf->dev_type > d40c->base->num_log_chans)  ||
1713	    (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
1714	    (conf->dev_type < 0)) {
1715		chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1716		res = -EINVAL;
1717	}
1718
1719	if (conf->dir == DMA_DEV_TO_DEV) {
1720		/*
1721		 * DMAC HW supports it. Will be added to this driver,
1722		 * in case any dma client requires it.
1723		 */
1724		chan_err(d40c, "periph to periph not supported\n");
1725		res = -EINVAL;
1726	}
1727
1728	if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1729	    conf->src_info.data_width !=
1730	    d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1731	    conf->dst_info.data_width) {
1732		/*
1733		 * The DMAC hardware only supports
1734		 * src (burst x width) == dst (burst x width)
1735		 */
1736
1737		chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1738		res = -EINVAL;
1739	}
1740
1741	return res;
1742}
1743
1744static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1745			       bool is_src, int log_event_line, bool is_log,
1746			       bool *first_user)
1747{
1748	unsigned long flags;
1749	spin_lock_irqsave(&phy->lock, flags);
1750
1751	*first_user = ((phy->allocated_src | phy->allocated_dst)
1752			== D40_ALLOC_FREE);
1753
1754	if (!is_log) {
1755		/* Physical interrupts are masked per physical full channel */
1756		if (phy->allocated_src == D40_ALLOC_FREE &&
1757		    phy->allocated_dst == D40_ALLOC_FREE) {
1758			phy->allocated_dst = D40_ALLOC_PHY;
1759			phy->allocated_src = D40_ALLOC_PHY;
1760			goto found_unlock;
1761		} else
1762			goto not_found_unlock;
1763	}
1764
1765	/* Logical channel */
1766	if (is_src) {
1767		if (phy->allocated_src == D40_ALLOC_PHY)
1768			goto not_found_unlock;
1769
1770		if (phy->allocated_src == D40_ALLOC_FREE)
1771			phy->allocated_src = D40_ALLOC_LOG_FREE;
1772
1773		if (!(phy->allocated_src & BIT(log_event_line))) {
1774			phy->allocated_src |= BIT(log_event_line);
1775			goto found_unlock;
1776		} else
1777			goto not_found_unlock;
1778	} else {
1779		if (phy->allocated_dst == D40_ALLOC_PHY)
1780			goto not_found_unlock;
1781
1782		if (phy->allocated_dst == D40_ALLOC_FREE)
1783			phy->allocated_dst = D40_ALLOC_LOG_FREE;
1784
1785		if (!(phy->allocated_dst & BIT(log_event_line))) {
1786			phy->allocated_dst |= BIT(log_event_line);
1787			goto found_unlock;
1788		}
1789	}
1790 not_found_unlock:
1791	spin_unlock_irqrestore(&phy->lock, flags);
1792	return false;
1793 found_unlock:
1794	spin_unlock_irqrestore(&phy->lock, flags);
1795	return true;
1796}
1797
1798static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1799			       int log_event_line)
1800{
1801	unsigned long flags;
1802	bool is_free = false;
1803
1804	spin_lock_irqsave(&phy->lock, flags);
1805	if (!log_event_line) {
1806		phy->allocated_dst = D40_ALLOC_FREE;
1807		phy->allocated_src = D40_ALLOC_FREE;
1808		is_free = true;
1809		goto unlock;
1810	}
1811
1812	/* Logical channel */
1813	if (is_src) {
1814		phy->allocated_src &= ~BIT(log_event_line);
1815		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1816			phy->allocated_src = D40_ALLOC_FREE;
1817	} else {
1818		phy->allocated_dst &= ~BIT(log_event_line);
1819		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1820			phy->allocated_dst = D40_ALLOC_FREE;
1821	}
1822
1823	is_free = ((phy->allocated_src | phy->allocated_dst) ==
1824		   D40_ALLOC_FREE);
1825 unlock:
1826	spin_unlock_irqrestore(&phy->lock, flags);
1827
1828	return is_free;
1829}
1830
1831static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1832{
1833	int dev_type = d40c->dma_cfg.dev_type;
1834	int event_group;
1835	int event_line;
1836	struct d40_phy_res *phys;
1837	int i;
1838	int j;
1839	int log_num;
1840	int num_phy_chans;
1841	bool is_src;
1842	bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1843
1844	phys = d40c->base->phy_res;
1845	num_phy_chans = d40c->base->num_phy_chans;
1846
1847	if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
1848		log_num = 2 * dev_type;
1849		is_src = true;
1850	} else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
1851		   d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1852		/* dst event lines are used for logical memcpy */
1853		log_num = 2 * dev_type + 1;
1854		is_src = false;
1855	} else
1856		return -EINVAL;
1857
1858	event_group = D40_TYPE_TO_GROUP(dev_type);
1859	event_line = D40_TYPE_TO_EVENT(dev_type);
1860
1861	if (!is_log) {
1862		if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1863			/* Find physical half channel */
1864			if (d40c->dma_cfg.use_fixed_channel) {
1865				i = d40c->dma_cfg.phy_channel;
1866				if (d40_alloc_mask_set(&phys[i], is_src,
1867						       0, is_log,
1868						       first_phy_user))
1869					goto found_phy;
1870			} else {
1871				for (i = 0; i < num_phy_chans; i++) {
1872					if (d40_alloc_mask_set(&phys[i], is_src,
1873						       0, is_log,
1874						       first_phy_user))
1875						goto found_phy;
1876				}
1877			}
1878		} else
1879			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1880				int phy_num = j  + event_group * 2;
1881				for (i = phy_num; i < phy_num + 2; i++) {
1882					if (d40_alloc_mask_set(&phys[i],
1883							       is_src,
1884							       0,
1885							       is_log,
1886							       first_phy_user))
1887						goto found_phy;
1888				}
1889			}
1890		return -EINVAL;
1891found_phy:
1892		d40c->phy_chan = &phys[i];
1893		d40c->log_num = D40_PHY_CHAN;
1894		goto out;
1895	}
1896	if (dev_type == -1)
1897		return -EINVAL;
1898
1899	/* Find logical channel */
1900	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1901		int phy_num = j + event_group * 2;
1902
1903		if (d40c->dma_cfg.use_fixed_channel) {
1904			i = d40c->dma_cfg.phy_channel;
1905
1906			if ((i != phy_num) && (i != phy_num + 1)) {
1907				dev_err(chan2dev(d40c),
1908					"invalid fixed phy channel %d\n", i);
1909				return -EINVAL;
1910			}
1911
1912			if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1913					       is_log, first_phy_user))
1914				goto found_log;
1915
1916			dev_err(chan2dev(d40c),
1917				"could not allocate fixed phy channel %d\n", i);
1918			return -EINVAL;
1919		}
1920
1921		/*
1922		 * Spread logical channels across all available physical rather
1923		 * than pack every logical channel at the first available phy
1924		 * channels.
1925		 */
1926		if (is_src) {
1927			for (i = phy_num; i < phy_num + 2; i++) {
1928				if (d40_alloc_mask_set(&phys[i], is_src,
1929						       event_line, is_log,
1930						       first_phy_user))
1931					goto found_log;
1932			}
1933		} else {
1934			for (i = phy_num + 1; i >= phy_num; i--) {
1935				if (d40_alloc_mask_set(&phys[i], is_src,
1936						       event_line, is_log,
1937						       first_phy_user))
1938					goto found_log;
1939			}
1940		}
1941	}
1942	return -EINVAL;
1943
1944found_log:
1945	d40c->phy_chan = &phys[i];
1946	d40c->log_num = log_num;
1947out:
1948
1949	if (is_log)
1950		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1951	else
1952		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1953
1954	return 0;
1955
1956}
1957
1958static int d40_config_memcpy(struct d40_chan *d40c)
1959{
1960	dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1961
1962	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1963		d40c->dma_cfg = dma40_memcpy_conf_log;
1964		d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
1965
1966		d40_log_cfg(&d40c->dma_cfg,
1967			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1968
1969	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
1970		   dma_has_cap(DMA_SLAVE, cap)) {
1971		d40c->dma_cfg = dma40_memcpy_conf_phy;
1972
1973		/* Generate interrrupt at end of transfer or relink. */
1974		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
1975
1976		/* Generate interrupt on error. */
1977		d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
1978		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
1979
1980	} else {
1981		chan_err(d40c, "No memcpy\n");
1982		return -EINVAL;
1983	}
1984
1985	return 0;
1986}
1987
1988static int d40_free_dma(struct d40_chan *d40c)
1989{
1990
1991	int res = 0;
1992	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1993	struct d40_phy_res *phy = d40c->phy_chan;
1994	bool is_src;
1995
1996	/* Terminate all queued and active transfers */
1997	d40_term_all(d40c);
1998
1999	if (phy == NULL) {
2000		chan_err(d40c, "phy == null\n");
2001		return -EINVAL;
2002	}
2003
2004	if (phy->allocated_src == D40_ALLOC_FREE &&
2005	    phy->allocated_dst == D40_ALLOC_FREE) {
2006		chan_err(d40c, "channel already free\n");
2007		return -EINVAL;
2008	}
2009
2010	if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2011	    d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
2012		is_src = false;
2013	else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2014		is_src = true;
2015	else {
2016		chan_err(d40c, "Unknown direction\n");
2017		return -EINVAL;
2018	}
2019
2020	pm_runtime_get_sync(d40c->base->dev);
2021	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2022	if (res) {
2023		chan_err(d40c, "stop failed\n");
2024		goto mark_last_busy;
2025	}
2026
2027	d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2028
2029	if (chan_is_logical(d40c))
2030		d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2031	else
2032		d40c->base->lookup_phy_chans[phy->num] = NULL;
2033
2034	if (d40c->busy) {
2035		pm_runtime_mark_last_busy(d40c->base->dev);
2036		pm_runtime_put_autosuspend(d40c->base->dev);
2037	}
2038
2039	d40c->busy = false;
2040	d40c->phy_chan = NULL;
2041	d40c->configured = false;
2042 mark_last_busy:
2043	pm_runtime_mark_last_busy(d40c->base->dev);
2044	pm_runtime_put_autosuspend(d40c->base->dev);
2045	return res;
2046}
2047
2048static bool d40_is_paused(struct d40_chan *d40c)
2049{
2050	void __iomem *chanbase = chan_base(d40c);
2051	bool is_paused = false;
2052	unsigned long flags;
2053	void __iomem *active_reg;
2054	u32 status;
2055	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2056
2057	spin_lock_irqsave(&d40c->lock, flags);
2058
2059	if (chan_is_physical(d40c)) {
2060		if (d40c->phy_chan->num % 2 == 0)
2061			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
2062		else
2063			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
2064
2065		status = (readl(active_reg) &
2066			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
2067			D40_CHAN_POS(d40c->phy_chan->num);
2068		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
2069			is_paused = true;
2070		goto unlock;
2071	}
2072
2073	if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2074	    d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
2075		status = readl(chanbase + D40_CHAN_REG_SDLNK);
2076	} else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
2077		status = readl(chanbase + D40_CHAN_REG_SSLNK);
2078	} else {
2079		chan_err(d40c, "Unknown direction\n");
2080		goto unlock;
2081	}
2082
2083	status = (status & D40_EVENTLINE_MASK(event)) >>
2084		D40_EVENTLINE_POS(event);
2085
2086	if (status != D40_DMA_RUN)
2087		is_paused = true;
2088 unlock:
2089	spin_unlock_irqrestore(&d40c->lock, flags);
2090	return is_paused;
2091
2092}
2093
2094static u32 stedma40_residue(struct dma_chan *chan)
2095{
2096	struct d40_chan *d40c =
2097		container_of(chan, struct d40_chan, chan);
2098	u32 bytes_left;
2099	unsigned long flags;
2100
2101	spin_lock_irqsave(&d40c->lock, flags);
2102	bytes_left = d40_residue(d40c);
2103	spin_unlock_irqrestore(&d40c->lock, flags);
2104
2105	return bytes_left;
2106}
2107
2108static int
2109d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
2110		struct scatterlist *sg_src, struct scatterlist *sg_dst,
2111		unsigned int sg_len, dma_addr_t src_dev_addr,
2112		dma_addr_t dst_dev_addr)
2113{
2114	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2115	struct stedma40_half_channel_info *src_info = &cfg->src_info;
2116	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2117	int ret;
2118
2119	ret = d40_log_sg_to_lli(sg_src, sg_len,
2120				src_dev_addr,
2121				desc->lli_log.src,
2122				chan->log_def.lcsp1,
2123				src_info->data_width,
2124				dst_info->data_width);
2125
2126	ret = d40_log_sg_to_lli(sg_dst, sg_len,
2127				dst_dev_addr,
2128				desc->lli_log.dst,
2129				chan->log_def.lcsp3,
2130				dst_info->data_width,
2131				src_info->data_width);
2132
2133	return ret < 0 ? ret : 0;
2134}
2135
2136static int
2137d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2138		struct scatterlist *sg_src, struct scatterlist *sg_dst,
2139		unsigned int sg_len, dma_addr_t src_dev_addr,
2140		dma_addr_t dst_dev_addr)
2141{
2142	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2143	struct stedma40_half_channel_info *src_info = &cfg->src_info;
2144	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2145	unsigned long flags = 0;
2146	int ret;
2147
2148	if (desc->cyclic)
2149		flags |= LLI_CYCLIC | LLI_TERM_INT;
2150
2151	ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2152				desc->lli_phy.src,
2153				virt_to_phys(desc->lli_phy.src),
2154				chan->src_def_cfg,
2155				src_info, dst_info, flags);
2156
2157	ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2158				desc->lli_phy.dst,
2159				virt_to_phys(desc->lli_phy.dst),
2160				chan->dst_def_cfg,
2161				dst_info, src_info, flags);
2162
2163	dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2164				   desc->lli_pool.size, DMA_TO_DEVICE);
2165
2166	return ret < 0 ? ret : 0;
2167}
2168
2169static struct d40_desc *
2170d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2171	      unsigned int sg_len, unsigned long dma_flags)
2172{
2173	struct stedma40_chan_cfg *cfg;
2174	struct d40_desc *desc;
2175	int ret;
2176
2177	desc = d40_desc_get(chan);
2178	if (!desc)
2179		return NULL;
2180
2181	cfg = &chan->dma_cfg;
2182	desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2183					cfg->dst_info.data_width);
2184	if (desc->lli_len < 0) {
2185		chan_err(chan, "Unaligned size\n");
2186		goto free_desc;
2187	}
2188
2189	ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2190	if (ret < 0) {
2191		chan_err(chan, "Could not allocate lli\n");
2192		goto free_desc;
2193	}
2194
2195	desc->lli_current = 0;
2196	desc->txd.flags = dma_flags;
2197	desc->txd.tx_submit = d40_tx_submit;
2198
2199	dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2200
2201	return desc;
2202 free_desc:
2203	d40_desc_free(chan, desc);
2204	return NULL;
2205}
2206
2207static struct dma_async_tx_descriptor *
2208d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2209	    struct scatterlist *sg_dst, unsigned int sg_len,
2210	    enum dma_transfer_direction direction, unsigned long dma_flags)
2211{
2212	struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2213	dma_addr_t src_dev_addr;
2214	dma_addr_t dst_dev_addr;
2215	struct d40_desc *desc;
2216	unsigned long flags;
2217	int ret;
2218
2219	if (!chan->phy_chan) {
2220		chan_err(chan, "Cannot prepare unallocated channel\n");
2221		return NULL;
2222	}
2223
2224	d40_set_runtime_config_write(dchan, &chan->slave_config, direction);
2225
2226	spin_lock_irqsave(&chan->lock, flags);
2227
2228	desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2229	if (desc == NULL)
2230		goto unlock;
2231
2232	if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2233		desc->cyclic = true;
2234
2235	src_dev_addr = 0;
2236	dst_dev_addr = 0;
2237	if (direction == DMA_DEV_TO_MEM)
2238		src_dev_addr = chan->runtime_addr;
2239	else if (direction == DMA_MEM_TO_DEV)
2240		dst_dev_addr = chan->runtime_addr;
2241
2242	if (chan_is_logical(chan))
2243		ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2244				      sg_len, src_dev_addr, dst_dev_addr);
2245	else
2246		ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2247				      sg_len, src_dev_addr, dst_dev_addr);
2248
2249	if (ret) {
2250		chan_err(chan, "Failed to prepare %s sg job: %d\n",
2251			 chan_is_logical(chan) ? "log" : "phy", ret);
2252		goto free_desc;
2253	}
2254
2255	/*
2256	 * add descriptor to the prepare queue in order to be able
2257	 * to free them later in terminate_all
2258	 */
2259	list_add_tail(&desc->node, &chan->prepare_queue);
2260
2261	spin_unlock_irqrestore(&chan->lock, flags);
2262
2263	return &desc->txd;
2264 free_desc:
2265	d40_desc_free(chan, desc);
2266 unlock:
2267	spin_unlock_irqrestore(&chan->lock, flags);
2268	return NULL;
2269}
2270
2271bool stedma40_filter(struct dma_chan *chan, void *data)
2272{
2273	struct stedma40_chan_cfg *info = data;
2274	struct d40_chan *d40c =
2275		container_of(chan, struct d40_chan, chan);
2276	int err;
2277
2278	if (data) {
2279		err = d40_validate_conf(d40c, info);
2280		if (!err)
2281			d40c->dma_cfg = *info;
2282	} else
2283		err = d40_config_memcpy(d40c);
2284
2285	if (!err)
2286		d40c->configured = true;
2287
2288	return err == 0;
2289}
2290EXPORT_SYMBOL(stedma40_filter);
2291
2292static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2293{
2294	bool realtime = d40c->dma_cfg.realtime;
2295	bool highprio = d40c->dma_cfg.high_priority;
2296	u32 rtreg;
2297	u32 event = D40_TYPE_TO_EVENT(dev_type);
2298	u32 group = D40_TYPE_TO_GROUP(dev_type);
2299	u32 bit = BIT(event);
2300	u32 prioreg;
2301	struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2302
2303	rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2304	/*
2305	 * Due to a hardware bug, in some cases a logical channel triggered by
2306	 * a high priority destination event line can generate extra packet
2307	 * transactions.
2308	 *
2309	 * The workaround is to not set the high priority level for the
2310	 * destination event lines that trigger logical channels.
2311	 */
2312	if (!src && chan_is_logical(d40c))
2313		highprio = false;
2314
2315	prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2316
2317	/* Destination event lines are stored in the upper halfword */
2318	if (!src)
2319		bit <<= 16;
2320
2321	writel(bit, d40c->base->virtbase + prioreg + group * 4);
2322	writel(bit, d40c->base->virtbase + rtreg + group * 4);
2323}
2324
2325static void d40_set_prio_realtime(struct d40_chan *d40c)
2326{
2327	if (d40c->base->rev < 3)
2328		return;
2329
2330	if ((d40c->dma_cfg.dir ==  DMA_DEV_TO_MEM) ||
2331	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2332		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2333
2334	if ((d40c->dma_cfg.dir ==  DMA_MEM_TO_DEV) ||
2335	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2336		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2337}
2338
2339#define D40_DT_FLAGS_MODE(flags)       ((flags >> 0) & 0x1)
2340#define D40_DT_FLAGS_DIR(flags)        ((flags >> 1) & 0x1)
2341#define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2342#define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2343#define D40_DT_FLAGS_HIGH_PRIO(flags)  ((flags >> 4) & 0x1)
2344
2345static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
2346				  struct of_dma *ofdma)
2347{
2348	struct stedma40_chan_cfg cfg;
2349	dma_cap_mask_t cap;
2350	u32 flags;
2351
2352	memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
2353
2354	dma_cap_zero(cap);
2355	dma_cap_set(DMA_SLAVE, cap);
2356
2357	cfg.dev_type = dma_spec->args[0];
2358	flags = dma_spec->args[2];
2359
2360	switch (D40_DT_FLAGS_MODE(flags)) {
2361	case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
2362	case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
2363	}
2364
2365	switch (D40_DT_FLAGS_DIR(flags)) {
2366	case 0:
2367		cfg.dir = DMA_MEM_TO_DEV;
2368		cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2369		break;
2370	case 1:
2371		cfg.dir = DMA_DEV_TO_MEM;
2372		cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2373		break;
2374	}
2375
2376	if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
2377		cfg.phy_channel = dma_spec->args[1];
2378		cfg.use_fixed_channel = true;
2379	}
2380
2381	if (D40_DT_FLAGS_HIGH_PRIO(flags))
2382		cfg.high_priority = true;
2383
2384	return dma_request_channel(cap, stedma40_filter, &cfg);
2385}
2386
2387/* DMA ENGINE functions */
2388static int d40_alloc_chan_resources(struct dma_chan *chan)
2389{
2390	int err;
2391	unsigned long flags;
2392	struct d40_chan *d40c =
2393		container_of(chan, struct d40_chan, chan);
2394	bool is_free_phy;
2395	spin_lock_irqsave(&d40c->lock, flags);
2396
2397	dma_cookie_init(chan);
2398
2399	/* If no dma configuration is set use default configuration (memcpy) */
2400	if (!d40c->configured) {
2401		err = d40_config_memcpy(d40c);
2402		if (err) {
2403			chan_err(d40c, "Failed to configure memcpy channel\n");
2404			goto mark_last_busy;
2405		}
2406	}
2407
2408	err = d40_allocate_channel(d40c, &is_free_phy);
2409	if (err) {
2410		chan_err(d40c, "Failed to allocate channel\n");
2411		d40c->configured = false;
2412		goto mark_last_busy;
2413	}
2414
2415	pm_runtime_get_sync(d40c->base->dev);
2416
2417	d40_set_prio_realtime(d40c);
2418
2419	if (chan_is_logical(d40c)) {
2420		if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2421			d40c->lcpa = d40c->base->lcpa_base +
2422				d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2423		else
2424			d40c->lcpa = d40c->base->lcpa_base +
2425				d40c->dma_cfg.dev_type *
2426				D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2427
2428		/* Unmask the Global Interrupt Mask. */
2429		d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2430		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2431	}
2432
2433	dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2434		 chan_is_logical(d40c) ? "logical" : "physical",
2435		 d40c->phy_chan->num,
2436		 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2437
2438
2439	/*
2440	 * Only write channel configuration to the DMA if the physical
2441	 * resource is free. In case of multiple logical channels
2442	 * on the same physical resource, only the first write is necessary.
2443	 */
2444	if (is_free_phy)
2445		d40_config_write(d40c);
2446 mark_last_busy:
2447	pm_runtime_mark_last_busy(d40c->base->dev);
2448	pm_runtime_put_autosuspend(d40c->base->dev);
2449	spin_unlock_irqrestore(&d40c->lock, flags);
2450	return err;
2451}
2452
2453static void d40_free_chan_resources(struct dma_chan *chan)
2454{
2455	struct d40_chan *d40c =
2456		container_of(chan, struct d40_chan, chan);
2457	int err;
2458	unsigned long flags;
2459
2460	if (d40c->phy_chan == NULL) {
2461		chan_err(d40c, "Cannot free unallocated channel\n");
2462		return;
2463	}
2464
2465	spin_lock_irqsave(&d40c->lock, flags);
2466
2467	err = d40_free_dma(d40c);
2468
2469	if (err)
2470		chan_err(d40c, "Failed to free channel\n");
2471	spin_unlock_irqrestore(&d40c->lock, flags);
2472}
2473
2474static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2475						       dma_addr_t dst,
2476						       dma_addr_t src,
2477						       size_t size,
2478						       unsigned long dma_flags)
2479{
2480	struct scatterlist dst_sg;
2481	struct scatterlist src_sg;
2482
2483	sg_init_table(&dst_sg, 1);
2484	sg_init_table(&src_sg, 1);
2485
2486	sg_dma_address(&dst_sg) = dst;
2487	sg_dma_address(&src_sg) = src;
2488
2489	sg_dma_len(&dst_sg) = size;
2490	sg_dma_len(&src_sg) = size;
2491
2492	return d40_prep_sg(chan, &src_sg, &dst_sg, 1,
2493			   DMA_MEM_TO_MEM, dma_flags);
2494}
2495
2496static struct dma_async_tx_descriptor *
2497d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2498		  unsigned int sg_len, enum dma_transfer_direction direction,
2499		  unsigned long dma_flags, void *context)
2500{
2501	if (!is_slave_direction(direction))
2502		return NULL;
2503
2504	return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2505}
2506
2507static struct dma_async_tx_descriptor *
2508dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2509		     size_t buf_len, size_t period_len,
2510		     enum dma_transfer_direction direction, unsigned long flags)
2511{
2512	unsigned int periods = buf_len / period_len;
2513	struct dma_async_tx_descriptor *txd;
2514	struct scatterlist *sg;
2515	int i;
2516
2517	sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2518	if (!sg)
2519		return NULL;
2520
2521	for (i = 0; i < periods; i++) {
2522		sg_dma_address(&sg[i]) = dma_addr;
2523		sg_dma_len(&sg[i]) = period_len;
2524		dma_addr += period_len;
2525	}
2526
2527	sg_chain(sg, periods + 1, sg);
2528
2529	txd = d40_prep_sg(chan, sg, sg, periods, direction,
2530			  DMA_PREP_INTERRUPT);
2531
2532	kfree(sg);
2533
2534	return txd;
2535}
2536
2537static enum dma_status d40_tx_status(struct dma_chan *chan,
2538				     dma_cookie_t cookie,
2539				     struct dma_tx_state *txstate)
2540{
2541	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2542	enum dma_status ret;
2543
2544	if (d40c->phy_chan == NULL) {
2545		chan_err(d40c, "Cannot read status of unallocated channel\n");
2546		return -EINVAL;
2547	}
2548
2549	ret = dma_cookie_status(chan, cookie, txstate);
2550	if (ret != DMA_COMPLETE && txstate)
2551		dma_set_residue(txstate, stedma40_residue(chan));
2552
2553	if (d40_is_paused(d40c))
2554		ret = DMA_PAUSED;
2555
2556	return ret;
2557}
2558
2559static void d40_issue_pending(struct dma_chan *chan)
2560{
2561	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2562	unsigned long flags;
2563
2564	if (d40c->phy_chan == NULL) {
2565		chan_err(d40c, "Channel is not allocated!\n");
2566		return;
2567	}
2568
2569	spin_lock_irqsave(&d40c->lock, flags);
2570
2571	list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2572
2573	/* Busy means that queued jobs are already being processed */
2574	if (!d40c->busy)
2575		(void) d40_queue_start(d40c);
2576
2577	spin_unlock_irqrestore(&d40c->lock, flags);
2578}
2579
2580static int d40_terminate_all(struct dma_chan *chan)
2581{
2582	unsigned long flags;
2583	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2584	int ret;
2585
2586	if (d40c->phy_chan == NULL) {
2587		chan_err(d40c, "Channel is not allocated!\n");
2588		return -EINVAL;
2589	}
2590
2591	spin_lock_irqsave(&d40c->lock, flags);
2592
2593	pm_runtime_get_sync(d40c->base->dev);
2594	ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2595	if (ret)
2596		chan_err(d40c, "Failed to stop channel\n");
2597
2598	d40_term_all(d40c);
2599	pm_runtime_mark_last_busy(d40c->base->dev);
2600	pm_runtime_put_autosuspend(d40c->base->dev);
2601	if (d40c->busy) {
2602		pm_runtime_mark_last_busy(d40c->base->dev);
2603		pm_runtime_put_autosuspend(d40c->base->dev);
2604	}
2605	d40c->busy = false;
2606
2607	spin_unlock_irqrestore(&d40c->lock, flags);
2608	return 0;
2609}
2610
2611static int
2612dma40_config_to_halfchannel(struct d40_chan *d40c,
2613			    struct stedma40_half_channel_info *info,
2614			    u32 maxburst)
2615{
2616	int psize;
2617
2618	if (chan_is_logical(d40c)) {
2619		if (maxburst >= 16)
2620			psize = STEDMA40_PSIZE_LOG_16;
2621		else if (maxburst >= 8)
2622			psize = STEDMA40_PSIZE_LOG_8;
2623		else if (maxburst >= 4)
2624			psize = STEDMA40_PSIZE_LOG_4;
2625		else
2626			psize = STEDMA40_PSIZE_LOG_1;
2627	} else {
2628		if (maxburst >= 16)
2629			psize = STEDMA40_PSIZE_PHY_16;
2630		else if (maxburst >= 8)
2631			psize = STEDMA40_PSIZE_PHY_8;
2632		else if (maxburst >= 4)
2633			psize = STEDMA40_PSIZE_PHY_4;
2634		else
2635			psize = STEDMA40_PSIZE_PHY_1;
2636	}
2637
2638	info->psize = psize;
2639	info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2640
2641	return 0;
2642}
2643
2644static int d40_set_runtime_config(struct dma_chan *chan,
2645				  struct dma_slave_config *config)
2646{
2647	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2648
2649	memcpy(&d40c->slave_config, config, sizeof(*config));
2650
2651	return 0;
2652}
2653
2654/* Runtime reconfiguration extension */
2655static int d40_set_runtime_config_write(struct dma_chan *chan,
2656				  struct dma_slave_config *config,
2657				  enum dma_transfer_direction direction)
2658{
2659	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2660	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2661	enum dma_slave_buswidth src_addr_width, dst_addr_width;
2662	dma_addr_t config_addr;
2663	u32 src_maxburst, dst_maxburst;
2664	int ret;
2665
2666	if (d40c->phy_chan == NULL) {
2667		chan_err(d40c, "Channel is not allocated!\n");
2668		return -EINVAL;
2669	}
2670
2671	src_addr_width = config->src_addr_width;
2672	src_maxburst = config->src_maxburst;
2673	dst_addr_width = config->dst_addr_width;
2674	dst_maxburst = config->dst_maxburst;
2675
2676	if (direction == DMA_DEV_TO_MEM) {
2677		config_addr = config->src_addr;
2678
2679		if (cfg->dir != DMA_DEV_TO_MEM)
2680			dev_dbg(d40c->base->dev,
2681				"channel was not configured for peripheral "
2682				"to memory transfer (%d) overriding\n",
2683				cfg->dir);
2684		cfg->dir = DMA_DEV_TO_MEM;
2685
2686		/* Configure the memory side */
2687		if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2688			dst_addr_width = src_addr_width;
2689		if (dst_maxburst == 0)
2690			dst_maxburst = src_maxburst;
2691
2692	} else if (direction == DMA_MEM_TO_DEV) {
2693		config_addr = config->dst_addr;
2694
2695		if (cfg->dir != DMA_MEM_TO_DEV)
2696			dev_dbg(d40c->base->dev,
2697				"channel was not configured for memory "
2698				"to peripheral transfer (%d) overriding\n",
2699				cfg->dir);
2700		cfg->dir = DMA_MEM_TO_DEV;
2701
2702		/* Configure the memory side */
2703		if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2704			src_addr_width = dst_addr_width;
2705		if (src_maxburst == 0)
2706			src_maxburst = dst_maxburst;
2707	} else {
2708		dev_err(d40c->base->dev,
2709			"unrecognized channel direction %d\n",
2710			direction);
2711		return -EINVAL;
2712	}
2713
2714	if (config_addr <= 0) {
2715		dev_err(d40c->base->dev, "no address supplied\n");
2716		return -EINVAL;
2717	}
2718
2719	if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2720		dev_err(d40c->base->dev,
2721			"src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2722			src_maxburst,
2723			src_addr_width,
2724			dst_maxburst,
2725			dst_addr_width);
2726		return -EINVAL;
2727	}
2728
2729	if (src_maxburst > 16) {
2730		src_maxburst = 16;
2731		dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
2732	} else if (dst_maxburst > 16) {
2733		dst_maxburst = 16;
2734		src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
2735	}
2736
2737	/* Only valid widths are; 1, 2, 4 and 8. */
2738	if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2739	    src_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2740	    dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2741	    dst_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2742	    !is_power_of_2(src_addr_width) ||
2743	    !is_power_of_2(dst_addr_width))
2744		return -EINVAL;
2745
2746	cfg->src_info.data_width = src_addr_width;
2747	cfg->dst_info.data_width = dst_addr_width;
2748
2749	ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2750					  src_maxburst);
2751	if (ret)
2752		return ret;
2753
2754	ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2755					  dst_maxburst);
2756	if (ret)
2757		return ret;
2758
2759	/* Fill in register values */
2760	if (chan_is_logical(d40c))
2761		d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2762	else
2763		d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
2764
2765	/* These settings will take precedence later */
2766	d40c->runtime_addr = config_addr;
2767	d40c->runtime_direction = direction;
2768	dev_dbg(d40c->base->dev,
2769		"configured channel %s for %s, data width %d/%d, "
2770		"maxburst %d/%d elements, LE, no flow control\n",
2771		dma_chan_name(chan),
2772		(direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2773		src_addr_width, dst_addr_width,
2774		src_maxburst, dst_maxburst);
2775
2776	return 0;
2777}
2778
2779/* Initialization functions */
2780
2781static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2782				 struct d40_chan *chans, int offset,
2783				 int num_chans)
2784{
2785	int i = 0;
2786	struct d40_chan *d40c;
2787
2788	INIT_LIST_HEAD(&dma->channels);
2789
2790	for (i = offset; i < offset + num_chans; i++) {
2791		d40c = &chans[i];
2792		d40c->base = base;
2793		d40c->chan.device = dma;
2794
2795		spin_lock_init(&d40c->lock);
2796
2797		d40c->log_num = D40_PHY_CHAN;
2798
2799		INIT_LIST_HEAD(&d40c->done);
2800		INIT_LIST_HEAD(&d40c->active);
2801		INIT_LIST_HEAD(&d40c->queue);
2802		INIT_LIST_HEAD(&d40c->pending_queue);
2803		INIT_LIST_HEAD(&d40c->client);
2804		INIT_LIST_HEAD(&d40c->prepare_queue);
2805
2806		tasklet_setup(&d40c->tasklet, dma_tasklet);
 
2807
2808		list_add_tail(&d40c->chan.device_node,
2809			      &dma->channels);
2810	}
2811}
2812
2813static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2814{
2815	if (dma_has_cap(DMA_SLAVE, dev->cap_mask)) {
2816		dev->device_prep_slave_sg = d40_prep_slave_sg;
2817		dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2818	}
2819
2820	if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2821		dev->device_prep_dma_memcpy = d40_prep_memcpy;
2822		dev->directions = BIT(DMA_MEM_TO_MEM);
2823		/*
2824		 * This controller can only access address at even
2825		 * 32bit boundaries, i.e. 2^2
2826		 */
2827		dev->copy_align = DMAENGINE_ALIGN_4_BYTES;
2828	}
2829
2830	if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2831		dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2832
2833	dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2834	dev->device_free_chan_resources = d40_free_chan_resources;
2835	dev->device_issue_pending = d40_issue_pending;
2836	dev->device_tx_status = d40_tx_status;
2837	dev->device_config = d40_set_runtime_config;
2838	dev->device_pause = d40_pause;
2839	dev->device_resume = d40_resume;
2840	dev->device_terminate_all = d40_terminate_all;
2841	dev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2842	dev->dev = base->dev;
2843}
2844
2845static int __init d40_dmaengine_init(struct d40_base *base,
2846				     int num_reserved_chans)
2847{
2848	int err ;
2849
2850	d40_chan_init(base, &base->dma_slave, base->log_chans,
2851		      0, base->num_log_chans);
2852
2853	dma_cap_zero(base->dma_slave.cap_mask);
2854	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2855	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2856
2857	d40_ops_init(base, &base->dma_slave);
2858
2859	err = dmaenginem_async_device_register(&base->dma_slave);
2860
2861	if (err) {
2862		d40_err(base->dev, "Failed to register slave channels\n");
2863		goto exit;
2864	}
2865
2866	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2867		      base->num_log_chans, base->num_memcpy_chans);
2868
2869	dma_cap_zero(base->dma_memcpy.cap_mask);
2870	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2871
2872	d40_ops_init(base, &base->dma_memcpy);
2873
2874	err = dmaenginem_async_device_register(&base->dma_memcpy);
2875
2876	if (err) {
2877		d40_err(base->dev,
2878			"Failed to register memcpy only channels\n");
2879		goto exit;
2880	}
2881
2882	d40_chan_init(base, &base->dma_both, base->phy_chans,
2883		      0, num_reserved_chans);
2884
2885	dma_cap_zero(base->dma_both.cap_mask);
2886	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2887	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2888	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2889
2890	d40_ops_init(base, &base->dma_both);
2891	err = dmaenginem_async_device_register(&base->dma_both);
2892
2893	if (err) {
2894		d40_err(base->dev,
2895			"Failed to register logical and physical capable channels\n");
2896		goto exit;
2897	}
2898	return 0;
2899 exit:
2900	return err;
2901}
2902
2903/* Suspend resume functionality */
2904#ifdef CONFIG_PM_SLEEP
2905static int dma40_suspend(struct device *dev)
2906{
2907	struct d40_base *base = dev_get_drvdata(dev);
2908	int ret;
2909
2910	ret = pm_runtime_force_suspend(dev);
2911	if (ret)
2912		return ret;
2913
2914	if (base->lcpa_regulator)
2915		ret = regulator_disable(base->lcpa_regulator);
2916	return ret;
2917}
2918
2919static int dma40_resume(struct device *dev)
2920{
2921	struct d40_base *base = dev_get_drvdata(dev);
2922	int ret = 0;
2923
2924	if (base->lcpa_regulator) {
2925		ret = regulator_enable(base->lcpa_regulator);
2926		if (ret)
2927			return ret;
2928	}
2929
2930	return pm_runtime_force_resume(dev);
2931}
2932#endif
2933
2934#ifdef CONFIG_PM
2935static void dma40_backup(void __iomem *baseaddr, u32 *backup,
2936			 u32 *regaddr, int num, bool save)
2937{
2938	int i;
2939
2940	for (i = 0; i < num; i++) {
2941		void __iomem *addr = baseaddr + regaddr[i];
2942
2943		if (save)
2944			backup[i] = readl_relaxed(addr);
2945		else
2946			writel_relaxed(backup[i], addr);
2947	}
2948}
2949
2950static void d40_save_restore_registers(struct d40_base *base, bool save)
2951{
2952	int i;
2953
2954	/* Save/Restore channel specific registers */
2955	for (i = 0; i < base->num_phy_chans; i++) {
2956		void __iomem *addr;
2957		int idx;
2958
2959		if (base->phy_res[i].reserved)
2960			continue;
2961
2962		addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
2963		idx = i * ARRAY_SIZE(d40_backup_regs_chan);
2964
2965		dma40_backup(addr, &base->reg_val_backup_chan[idx],
2966			     d40_backup_regs_chan,
2967			     ARRAY_SIZE(d40_backup_regs_chan),
2968			     save);
2969	}
2970
2971	/* Save/Restore global registers */
2972	dma40_backup(base->virtbase, base->reg_val_backup,
2973		     d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
2974		     save);
2975
2976	/* Save/Restore registers only existing on dma40 v3 and later */
2977	if (base->gen_dmac.backup)
2978		dma40_backup(base->virtbase, base->reg_val_backup_v4,
2979			     base->gen_dmac.backup,
2980			base->gen_dmac.backup_size,
2981			save);
2982}
2983
2984static int dma40_runtime_suspend(struct device *dev)
2985{
2986	struct d40_base *base = dev_get_drvdata(dev);
2987
2988	d40_save_restore_registers(base, true);
2989
2990	/* Don't disable/enable clocks for v1 due to HW bugs */
2991	if (base->rev != 1)
2992		writel_relaxed(base->gcc_pwr_off_mask,
2993			       base->virtbase + D40_DREG_GCC);
2994
2995	return 0;
2996}
2997
2998static int dma40_runtime_resume(struct device *dev)
2999{
3000	struct d40_base *base = dev_get_drvdata(dev);
3001
3002	d40_save_restore_registers(base, false);
3003
3004	writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
3005		       base->virtbase + D40_DREG_GCC);
3006	return 0;
3007}
3008#endif
3009
3010static const struct dev_pm_ops dma40_pm_ops = {
3011	SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume)
3012	SET_RUNTIME_PM_OPS(dma40_runtime_suspend,
3013				dma40_runtime_resume,
3014				NULL)
3015};
3016
3017/* Initialization functions. */
3018
3019static int __init d40_phy_res_init(struct d40_base *base)
3020{
3021	int i;
3022	int num_phy_chans_avail = 0;
3023	u32 val[2];
3024	int odd_even_bit = -2;
3025	int gcc = D40_DREG_GCC_ENA;
3026
3027	val[0] = readl(base->virtbase + D40_DREG_PRSME);
3028	val[1] = readl(base->virtbase + D40_DREG_PRSMO);
3029
3030	for (i = 0; i < base->num_phy_chans; i++) {
3031		base->phy_res[i].num = i;
3032		odd_even_bit += 2 * ((i % 2) == 0);
3033		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
3034			/* Mark security only channels as occupied */
3035			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
3036			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3037			base->phy_res[i].reserved = true;
3038			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3039						       D40_DREG_GCC_SRC);
3040			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3041						       D40_DREG_GCC_DST);
3042
3043
3044		} else {
3045			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
3046			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3047			base->phy_res[i].reserved = false;
3048			num_phy_chans_avail++;
3049		}
3050		spin_lock_init(&base->phy_res[i].lock);
3051	}
3052
3053	/* Mark disabled channels as occupied */
3054	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3055		int chan = base->plat_data->disabled_channels[i];
3056
3057		base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
3058		base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3059		base->phy_res[chan].reserved = true;
3060		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3061					       D40_DREG_GCC_SRC);
3062		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3063					       D40_DREG_GCC_DST);
3064		num_phy_chans_avail--;
3065	}
3066
3067	/* Mark soft_lli channels */
3068	for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
3069		int chan = base->plat_data->soft_lli_chans[i];
3070
3071		base->phy_res[chan].use_soft_lli = true;
3072	}
3073
3074	dev_info(base->dev, "%d of %d physical DMA channels available\n",
3075		 num_phy_chans_avail, base->num_phy_chans);
3076
3077	/* Verify settings extended vs standard */
3078	val[0] = readl(base->virtbase + D40_DREG_PRTYP);
3079
3080	for (i = 0; i < base->num_phy_chans; i++) {
3081
3082		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
3083		    (val[0] & 0x3) != 1)
3084			dev_info(base->dev,
3085				 "[%s] INFO: channel %d is misconfigured (%d)\n",
3086				 __func__, i, val[0] & 0x3);
3087
3088		val[0] = val[0] >> 2;
3089	}
3090
3091	/*
3092	 * To keep things simple, Enable all clocks initially.
3093	 * The clocks will get managed later post channel allocation.
3094	 * The clocks for the event lines on which reserved channels exists
3095	 * are not managed here.
3096	 */
3097	writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3098	base->gcc_pwr_off_mask = gcc;
3099
3100	return num_phy_chans_avail;
3101}
3102
3103static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
3104{
3105	struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3106	struct clk *clk;
3107	void __iomem *virtbase;
3108	struct resource *res;
3109	struct d40_base *base;
3110	int num_log_chans;
3111	int num_phy_chans;
3112	int num_memcpy_chans;
3113	int clk_ret = -EINVAL;
3114	int i;
3115	u32 pid;
3116	u32 cid;
3117	u8 rev;
3118
3119	clk = clk_get(&pdev->dev, NULL);
3120	if (IS_ERR(clk)) {
3121		d40_err(&pdev->dev, "No matching clock found\n");
3122		goto check_prepare_enabled;
3123	}
3124
3125	clk_ret = clk_prepare_enable(clk);
3126	if (clk_ret) {
3127		d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
3128		goto disable_unprepare;
3129	}
3130
3131	/* Get IO for DMAC base address */
3132	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3133	if (!res)
3134		goto disable_unprepare;
3135
3136	if (request_mem_region(res->start, resource_size(res),
3137			       D40_NAME " I/O base") == NULL)
3138		goto release_region;
3139
3140	virtbase = ioremap(res->start, resource_size(res));
3141	if (!virtbase)
3142		goto release_region;
3143
3144	/* This is just a regular AMBA PrimeCell ID actually */
3145	for (pid = 0, i = 0; i < 4; i++)
3146		pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
3147			& 255) << (i * 8);
3148	for (cid = 0, i = 0; i < 4; i++)
3149		cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
3150			& 255) << (i * 8);
3151
3152	if (cid != AMBA_CID) {
3153		d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
3154		goto unmap_io;
3155	}
3156	if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3157		d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
3158			AMBA_MANF_BITS(pid),
3159			AMBA_VENDOR_ST);
3160		goto unmap_io;
3161	}
3162	/*
3163	 * HW revision:
3164	 * DB8500ed has revision 0
3165	 * ? has revision 1
3166	 * DB8500v1 has revision 2
3167	 * DB8500v2 has revision 3
3168	 * AP9540v1 has revision 4
3169	 * DB8540v1 has revision 4
3170	 */
3171	rev = AMBA_REV_BITS(pid);
3172	if (rev < 2) {
3173		d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
3174		goto unmap_io;
3175	}
3176
3177	/* The number of physical channels on this HW */
3178	if (plat_data->num_of_phy_chans)
3179		num_phy_chans = plat_data->num_of_phy_chans;
3180	else
3181		num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3182
3183	/* The number of channels used for memcpy */
3184	if (plat_data->num_of_memcpy_chans)
3185		num_memcpy_chans = plat_data->num_of_memcpy_chans;
3186	else
3187		num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
3188
3189	num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
3190
3191	dev_info(&pdev->dev,
3192		 "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
3193		 rev, &res->start, num_phy_chans, num_log_chans);
3194
3195	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3196		       (num_phy_chans + num_log_chans + num_memcpy_chans) *
3197		       sizeof(struct d40_chan), GFP_KERNEL);
3198
3199	if (base == NULL)
3200		goto unmap_io;
3201
3202	base->rev = rev;
3203	base->clk = clk;
3204	base->num_memcpy_chans = num_memcpy_chans;
3205	base->num_phy_chans = num_phy_chans;
3206	base->num_log_chans = num_log_chans;
3207	base->phy_start = res->start;
3208	base->phy_size = resource_size(res);
3209	base->virtbase = virtbase;
3210	base->plat_data = plat_data;
3211	base->dev = &pdev->dev;
3212	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3213	base->log_chans = &base->phy_chans[num_phy_chans];
3214
3215	if (base->plat_data->num_of_phy_chans == 14) {
3216		base->gen_dmac.backup = d40_backup_regs_v4b;
3217		base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
3218		base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
3219		base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
3220		base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
3221		base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
3222		base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
3223		base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
3224		base->gen_dmac.il = il_v4b;
3225		base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
3226		base->gen_dmac.init_reg = dma_init_reg_v4b;
3227		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
3228	} else {
3229		if (base->rev >= 3) {
3230			base->gen_dmac.backup = d40_backup_regs_v4a;
3231			base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
3232		}
3233		base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
3234		base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
3235		base->gen_dmac.realtime_en = D40_DREG_RSEG1;
3236		base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
3237		base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
3238		base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
3239		base->gen_dmac.il = il_v4a;
3240		base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
3241		base->gen_dmac.init_reg = dma_init_reg_v4a;
3242		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
3243	}
3244
3245	base->phy_res = kcalloc(num_phy_chans,
3246				sizeof(*base->phy_res),
3247				GFP_KERNEL);
3248	if (!base->phy_res)
3249		goto free_base;
3250
3251	base->lookup_phy_chans = kcalloc(num_phy_chans,
3252					 sizeof(*base->lookup_phy_chans),
3253					 GFP_KERNEL);
3254	if (!base->lookup_phy_chans)
3255		goto free_phy_res;
3256
3257	base->lookup_log_chans = kcalloc(num_log_chans,
3258					 sizeof(*base->lookup_log_chans),
3259					 GFP_KERNEL);
3260	if (!base->lookup_log_chans)
3261		goto free_phy_chans;
3262
3263	base->reg_val_backup_chan = kmalloc_array(base->num_phy_chans,
3264						  sizeof(d40_backup_regs_chan),
3265						  GFP_KERNEL);
3266	if (!base->reg_val_backup_chan)
3267		goto free_log_chans;
3268
3269	base->lcla_pool.alloc_map = kcalloc(num_phy_chans
3270					    * D40_LCLA_LINK_PER_EVENT_GRP,
3271					    sizeof(*base->lcla_pool.alloc_map),
3272					    GFP_KERNEL);
3273	if (!base->lcla_pool.alloc_map)
3274		goto free_backup_chan;
3275
3276	base->regs_interrupt = kmalloc_array(base->gen_dmac.il_size,
3277					     sizeof(*base->regs_interrupt),
3278					     GFP_KERNEL);
3279	if (!base->regs_interrupt)
3280		goto free_map;
3281
3282	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3283					    0, SLAB_HWCACHE_ALIGN,
3284					    NULL);
3285	if (base->desc_slab == NULL)
3286		goto free_regs;
3287
3288
3289	return base;
3290 free_regs:
3291	kfree(base->regs_interrupt);
3292 free_map:
3293	kfree(base->lcla_pool.alloc_map);
3294 free_backup_chan:
3295	kfree(base->reg_val_backup_chan);
3296 free_log_chans:
3297	kfree(base->lookup_log_chans);
3298 free_phy_chans:
3299	kfree(base->lookup_phy_chans);
3300 free_phy_res:
3301	kfree(base->phy_res);
3302 free_base:
3303	kfree(base);
3304 unmap_io:
3305	iounmap(virtbase);
3306 release_region:
3307	release_mem_region(res->start, resource_size(res));
3308 check_prepare_enabled:
3309	if (!clk_ret)
3310 disable_unprepare:
3311		clk_disable_unprepare(clk);
3312	if (!IS_ERR(clk))
3313		clk_put(clk);
3314	return NULL;
3315}
3316
3317static void __init d40_hw_init(struct d40_base *base)
3318{
3319
3320	int i;
3321	u32 prmseo[2] = {0, 0};
3322	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3323	u32 pcmis = 0;
3324	u32 pcicr = 0;
3325	struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
3326	u32 reg_size = base->gen_dmac.init_reg_size;
3327
3328	for (i = 0; i < reg_size; i++)
3329		writel(dma_init_reg[i].val,
3330		       base->virtbase + dma_init_reg[i].reg);
3331
3332	/* Configure all our dma channels to default settings */
3333	for (i = 0; i < base->num_phy_chans; i++) {
3334
3335		activeo[i % 2] = activeo[i % 2] << 2;
3336
3337		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3338		    == D40_ALLOC_PHY) {
3339			activeo[i % 2] |= 3;
3340			continue;
3341		}
3342
3343		/* Enable interrupt # */
3344		pcmis = (pcmis << 1) | 1;
3345
3346		/* Clear interrupt # */
3347		pcicr = (pcicr << 1) | 1;
3348
3349		/* Set channel to physical mode */
3350		prmseo[i % 2] = prmseo[i % 2] << 2;
3351		prmseo[i % 2] |= 1;
3352
3353	}
3354
3355	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3356	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3357	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3358	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3359
3360	/* Write which interrupt to enable */
3361	writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3362
3363	/* Write which interrupt to clear */
3364	writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3365
3366	/* These are __initdata and cannot be accessed after init */
3367	base->gen_dmac.init_reg = NULL;
3368	base->gen_dmac.init_reg_size = 0;
3369}
3370
3371static int __init d40_lcla_allocate(struct d40_base *base)
3372{
3373	struct d40_lcla_pool *pool = &base->lcla_pool;
3374	unsigned long *page_list;
3375	int i, j;
3376	int ret;
3377
3378	/*
3379	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3380	 * To full fill this hardware requirement without wasting 256 kb
3381	 * we allocate pages until we get an aligned one.
3382	 */
3383	page_list = kmalloc_array(MAX_LCLA_ALLOC_ATTEMPTS,
3384				  sizeof(*page_list),
3385				  GFP_KERNEL);
3386	if (!page_list)
3387		return -ENOMEM;
3388
3389	/* Calculating how many pages that are required */
3390	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3391
3392	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3393		page_list[i] = __get_free_pages(GFP_KERNEL,
3394						base->lcla_pool.pages);
3395		if (!page_list[i]) {
3396
3397			d40_err(base->dev, "Failed to allocate %d pages.\n",
3398				base->lcla_pool.pages);
3399			ret = -ENOMEM;
3400
3401			for (j = 0; j < i; j++)
3402				free_pages(page_list[j], base->lcla_pool.pages);
3403			goto free_page_list;
3404		}
3405
3406		if ((virt_to_phys((void *)page_list[i]) &
3407		     (LCLA_ALIGNMENT - 1)) == 0)
3408			break;
3409	}
3410
3411	for (j = 0; j < i; j++)
3412		free_pages(page_list[j], base->lcla_pool.pages);
3413
3414	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3415		base->lcla_pool.base = (void *)page_list[i];
3416	} else {
3417		/*
3418		 * After many attempts and no succees with finding the correct
3419		 * alignment, try with allocating a big buffer.
3420		 */
3421		dev_warn(base->dev,
3422			 "[%s] Failed to get %d pages @ 18 bit align.\n",
3423			 __func__, base->lcla_pool.pages);
3424		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3425							 base->num_phy_chans +
3426							 LCLA_ALIGNMENT,
3427							 GFP_KERNEL);
3428		if (!base->lcla_pool.base_unaligned) {
3429			ret = -ENOMEM;
3430			goto free_page_list;
3431		}
3432
3433		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3434						 LCLA_ALIGNMENT);
3435	}
3436
3437	pool->dma_addr = dma_map_single(base->dev, pool->base,
3438					SZ_1K * base->num_phy_chans,
3439					DMA_TO_DEVICE);
3440	if (dma_mapping_error(base->dev, pool->dma_addr)) {
3441		pool->dma_addr = 0;
3442		ret = -ENOMEM;
3443		goto free_page_list;
3444	}
3445
3446	writel(virt_to_phys(base->lcla_pool.base),
3447	       base->virtbase + D40_DREG_LCLA);
3448	ret = 0;
3449 free_page_list:
3450	kfree(page_list);
3451	return ret;
3452}
3453
3454static int __init d40_of_probe(struct platform_device *pdev,
3455			       struct device_node *np)
3456{
3457	struct stedma40_platform_data *pdata;
3458	int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3459	const __be32 *list;
3460
3461	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
3462	if (!pdata)
3463		return -ENOMEM;
3464
3465	/* If absent this value will be obtained from h/w. */
3466	of_property_read_u32(np, "dma-channels", &num_phy);
3467	if (num_phy > 0)
3468		pdata->num_of_phy_chans = num_phy;
3469
3470	list = of_get_property(np, "memcpy-channels", &num_memcpy);
3471	num_memcpy /= sizeof(*list);
3472
3473	if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
3474		d40_err(&pdev->dev,
3475			"Invalid number of memcpy channels specified (%d)\n",
3476			num_memcpy);
3477		return -EINVAL;
3478	}
3479	pdata->num_of_memcpy_chans = num_memcpy;
3480
3481	of_property_read_u32_array(np, "memcpy-channels",
3482				   dma40_memcpy_channels,
3483				   num_memcpy);
3484
3485	list = of_get_property(np, "disabled-channels", &num_disabled);
3486	num_disabled /= sizeof(*list);
3487
3488	if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
3489		d40_err(&pdev->dev,
3490			"Invalid number of disabled channels specified (%d)\n",
3491			num_disabled);
3492		return -EINVAL;
3493	}
3494
3495	of_property_read_u32_array(np, "disabled-channels",
3496				   pdata->disabled_channels,
3497				   num_disabled);
3498	pdata->disabled_channels[num_disabled] = -1;
3499
3500	pdev->dev.platform_data = pdata;
3501
3502	return 0;
3503}
3504
3505static int __init d40_probe(struct platform_device *pdev)
3506{
3507	struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3508	struct device_node *np = pdev->dev.of_node;
3509	int ret = -ENOENT;
3510	struct d40_base *base;
3511	struct resource *res;
3512	int num_reserved_chans;
3513	u32 val;
3514
3515	if (!plat_data) {
3516		if (np) {
3517			if (d40_of_probe(pdev, np)) {
3518				ret = -ENOMEM;
3519				goto report_failure;
3520			}
3521		} else {
3522			d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
3523			goto report_failure;
3524		}
3525	}
3526
3527	base = d40_hw_detect_init(pdev);
3528	if (!base)
3529		goto report_failure;
3530
3531	num_reserved_chans = d40_phy_res_init(base);
3532
3533	platform_set_drvdata(pdev, base);
3534
3535	spin_lock_init(&base->interrupt_lock);
3536	spin_lock_init(&base->execmd_lock);
3537
3538	/* Get IO for logical channel parameter address */
3539	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3540	if (!res) {
3541		ret = -ENOENT;
3542		d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3543		goto destroy_cache;
3544	}
3545	base->lcpa_size = resource_size(res);
3546	base->phy_lcpa = res->start;
3547
3548	if (request_mem_region(res->start, resource_size(res),
3549			       D40_NAME " I/O lcpa") == NULL) {
3550		ret = -EBUSY;
3551		d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
3552		goto destroy_cache;
3553	}
3554
3555	/* We make use of ESRAM memory for this. */
3556	val = readl(base->virtbase + D40_DREG_LCPA);
3557	if (res->start != val && val != 0) {
3558		dev_warn(&pdev->dev,
3559			 "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
3560			 __func__, val, &res->start);
3561	} else
3562		writel(res->start, base->virtbase + D40_DREG_LCPA);
3563
3564	base->lcpa_base = ioremap(res->start, resource_size(res));
3565	if (!base->lcpa_base) {
3566		ret = -ENOMEM;
3567		d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3568		goto destroy_cache;
3569	}
3570	/* If lcla has to be located in ESRAM we don't need to allocate */
3571	if (base->plat_data->use_esram_lcla) {
3572		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3573							"lcla_esram");
3574		if (!res) {
3575			ret = -ENOENT;
3576			d40_err(&pdev->dev,
3577				"No \"lcla_esram\" memory resource\n");
3578			goto destroy_cache;
3579		}
3580		base->lcla_pool.base = ioremap(res->start,
3581						resource_size(res));
3582		if (!base->lcla_pool.base) {
3583			ret = -ENOMEM;
3584			d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3585			goto destroy_cache;
3586		}
3587		writel(res->start, base->virtbase + D40_DREG_LCLA);
3588
3589	} else {
3590		ret = d40_lcla_allocate(base);
3591		if (ret) {
3592			d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3593			goto destroy_cache;
3594		}
3595	}
3596
3597	spin_lock_init(&base->lcla_pool.lock);
3598
3599	base->irq = platform_get_irq(pdev, 0);
3600
3601	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3602	if (ret) {
3603		d40_err(&pdev->dev, "No IRQ defined\n");
3604		goto destroy_cache;
3605	}
3606
3607	if (base->plat_data->use_esram_lcla) {
3608
3609		base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3610		if (IS_ERR(base->lcpa_regulator)) {
3611			d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3612			ret = PTR_ERR(base->lcpa_regulator);
3613			base->lcpa_regulator = NULL;
3614			goto destroy_cache;
3615		}
3616
3617		ret = regulator_enable(base->lcpa_regulator);
3618		if (ret) {
3619			d40_err(&pdev->dev,
3620				"Failed to enable lcpa_regulator\n");
3621			regulator_put(base->lcpa_regulator);
3622			base->lcpa_regulator = NULL;
3623			goto destroy_cache;
3624		}
3625	}
3626
3627	writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3628
3629	pm_runtime_irq_safe(base->dev);
3630	pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3631	pm_runtime_use_autosuspend(base->dev);
3632	pm_runtime_mark_last_busy(base->dev);
3633	pm_runtime_set_active(base->dev);
3634	pm_runtime_enable(base->dev);
3635
3636	ret = d40_dmaengine_init(base, num_reserved_chans);
3637	if (ret)
3638		goto destroy_cache;
3639
 
3640	ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
3641	if (ret) {
3642		d40_err(&pdev->dev, "Failed to set dma max seg size\n");
3643		goto destroy_cache;
3644	}
3645
3646	d40_hw_init(base);
3647
3648	if (np) {
3649		ret = of_dma_controller_register(np, d40_xlate, NULL);
3650		if (ret)
3651			dev_err(&pdev->dev,
3652				"could not register of_dma_controller\n");
3653	}
3654
3655	dev_info(base->dev, "initialized\n");
3656	return 0;
3657 destroy_cache:
3658	kmem_cache_destroy(base->desc_slab);
3659	if (base->virtbase)
3660		iounmap(base->virtbase);
3661
3662	if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3663		iounmap(base->lcla_pool.base);
3664		base->lcla_pool.base = NULL;
3665	}
3666
3667	if (base->lcla_pool.dma_addr)
3668		dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3669				 SZ_1K * base->num_phy_chans,
3670				 DMA_TO_DEVICE);
3671
3672	if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3673		free_pages((unsigned long)base->lcla_pool.base,
3674			   base->lcla_pool.pages);
3675
3676	kfree(base->lcla_pool.base_unaligned);
3677
3678	if (base->lcpa_base)
3679		iounmap(base->lcpa_base);
3680
3681	if (base->phy_lcpa)
3682		release_mem_region(base->phy_lcpa,
3683				   base->lcpa_size);
3684	if (base->phy_start)
3685		release_mem_region(base->phy_start,
3686				   base->phy_size);
3687	if (base->clk) {
3688		clk_disable_unprepare(base->clk);
3689		clk_put(base->clk);
3690	}
3691
3692	if (base->lcpa_regulator) {
3693		regulator_disable(base->lcpa_regulator);
3694		regulator_put(base->lcpa_regulator);
3695	}
3696
3697	kfree(base->lcla_pool.alloc_map);
3698	kfree(base->lookup_log_chans);
3699	kfree(base->lookup_phy_chans);
3700	kfree(base->phy_res);
3701	kfree(base);
3702 report_failure:
3703	d40_err(&pdev->dev, "probe failed\n");
3704	return ret;
3705}
3706
3707static const struct of_device_id d40_match[] = {
3708        { .compatible = "stericsson,dma40", },
3709        {}
3710};
3711
3712static struct platform_driver d40_driver = {
3713	.driver = {
3714		.name  = D40_NAME,
3715		.pm = &dma40_pm_ops,
3716		.of_match_table = d40_match,
3717	},
3718};
3719
3720static int __init stedma40_init(void)
3721{
3722	return platform_driver_probe(&d40_driver, d40_probe);
3723}
3724subsys_initcall(stedma40_init);