Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) Ericsson AB 2007-2008
4 * Copyright (C) ST-Ericsson SA 2008-2010
5 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
6 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
7 */
8
9#include <linux/dma-mapping.h>
10#include <linux/kernel.h>
11#include <linux/slab.h>
12#include <linux/export.h>
13#include <linux/dmaengine.h>
14#include <linux/platform_device.h>
15#include <linux/clk.h>
16#include <linux/delay.h>
17#include <linux/log2.h>
18#include <linux/pm.h>
19#include <linux/pm_runtime.h>
20#include <linux/err.h>
21#include <linux/of.h>
22#include <linux/of_dma.h>
23#include <linux/amba/bus.h>
24#include <linux/regulator/consumer.h>
25#include <linux/platform_data/dma-ste-dma40.h>
26
27#include "dmaengine.h"
28#include "ste_dma40_ll.h"
29
30#define D40_NAME "dma40"
31
32#define D40_PHY_CHAN -1
33
34/* For masking out/in 2 bit channel positions */
35#define D40_CHAN_POS(chan) (2 * (chan / 2))
36#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
37
38/* Maximum iterations taken before giving up suspending a channel */
39#define D40_SUSPEND_MAX_IT 500
40
41/* Milliseconds */
42#define DMA40_AUTOSUSPEND_DELAY 100
43
44/* Hardware requirement on LCLA alignment */
45#define LCLA_ALIGNMENT 0x40000
46
47/* Max number of links per event group */
48#define D40_LCLA_LINK_PER_EVENT_GRP 128
49#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
50
51/* Max number of logical channels per physical channel */
52#define D40_MAX_LOG_CHAN_PER_PHY 32
53
54/* Attempts before giving up to trying to get pages that are aligned */
55#define MAX_LCLA_ALLOC_ATTEMPTS 256
56
57/* Bit markings for allocation map */
58#define D40_ALLOC_FREE BIT(31)
59#define D40_ALLOC_PHY BIT(30)
60#define D40_ALLOC_LOG_FREE 0
61
62#define D40_MEMCPY_MAX_CHANS 8
63
64/* Reserved event lines for memcpy only. */
65#define DB8500_DMA_MEMCPY_EV_0 51
66#define DB8500_DMA_MEMCPY_EV_1 56
67#define DB8500_DMA_MEMCPY_EV_2 57
68#define DB8500_DMA_MEMCPY_EV_3 58
69#define DB8500_DMA_MEMCPY_EV_4 59
70#define DB8500_DMA_MEMCPY_EV_5 60
71
72static int dma40_memcpy_channels[] = {
73 DB8500_DMA_MEMCPY_EV_0,
74 DB8500_DMA_MEMCPY_EV_1,
75 DB8500_DMA_MEMCPY_EV_2,
76 DB8500_DMA_MEMCPY_EV_3,
77 DB8500_DMA_MEMCPY_EV_4,
78 DB8500_DMA_MEMCPY_EV_5,
79};
80
81/* Default configuration for physcial memcpy */
82static const struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
83 .mode = STEDMA40_MODE_PHYSICAL,
84 .dir = DMA_MEM_TO_MEM,
85
86 .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
87 .src_info.psize = STEDMA40_PSIZE_PHY_1,
88 .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
89
90 .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
91 .dst_info.psize = STEDMA40_PSIZE_PHY_1,
92 .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
93};
94
95/* Default configuration for logical memcpy */
96static const struct stedma40_chan_cfg dma40_memcpy_conf_log = {
97 .mode = STEDMA40_MODE_LOGICAL,
98 .dir = DMA_MEM_TO_MEM,
99
100 .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
101 .src_info.psize = STEDMA40_PSIZE_LOG_1,
102 .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
103
104 .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
105 .dst_info.psize = STEDMA40_PSIZE_LOG_1,
106 .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
107};
108
109/**
110 * enum 40_command - The different commands and/or statuses.
111 *
112 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
113 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
114 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
115 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
116 */
117enum d40_command {
118 D40_DMA_STOP = 0,
119 D40_DMA_RUN = 1,
120 D40_DMA_SUSPEND_REQ = 2,
121 D40_DMA_SUSPENDED = 3
122};
123
124/*
125 * enum d40_events - The different Event Enables for the event lines.
126 *
127 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
128 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
129 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
130 * @D40_ROUND_EVENTLINE: Status check for event line.
131 */
132
133enum d40_events {
134 D40_DEACTIVATE_EVENTLINE = 0,
135 D40_ACTIVATE_EVENTLINE = 1,
136 D40_SUSPEND_REQ_EVENTLINE = 2,
137 D40_ROUND_EVENTLINE = 3
138};
139
140/*
141 * These are the registers that has to be saved and later restored
142 * when the DMA hw is powered off.
143 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
144 */
145static __maybe_unused u32 d40_backup_regs[] = {
146 D40_DREG_LCPA,
147 D40_DREG_LCLA,
148 D40_DREG_PRMSE,
149 D40_DREG_PRMSO,
150 D40_DREG_PRMOE,
151 D40_DREG_PRMOO,
152};
153
154#define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
155
156/*
157 * since 9540 and 8540 has the same HW revision
158 * use v4a for 9540 or ealier
159 * use v4b for 8540 or later
160 * HW revision:
161 * DB8500ed has revision 0
162 * DB8500v1 has revision 2
163 * DB8500v2 has revision 3
164 * AP9540v1 has revision 4
165 * DB8540v1 has revision 4
166 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
167 */
168static u32 d40_backup_regs_v4a[] = {
169 D40_DREG_PSEG1,
170 D40_DREG_PSEG2,
171 D40_DREG_PSEG3,
172 D40_DREG_PSEG4,
173 D40_DREG_PCEG1,
174 D40_DREG_PCEG2,
175 D40_DREG_PCEG3,
176 D40_DREG_PCEG4,
177 D40_DREG_RSEG1,
178 D40_DREG_RSEG2,
179 D40_DREG_RSEG3,
180 D40_DREG_RSEG4,
181 D40_DREG_RCEG1,
182 D40_DREG_RCEG2,
183 D40_DREG_RCEG3,
184 D40_DREG_RCEG4,
185};
186
187#define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
188
189static u32 d40_backup_regs_v4b[] = {
190 D40_DREG_CPSEG1,
191 D40_DREG_CPSEG2,
192 D40_DREG_CPSEG3,
193 D40_DREG_CPSEG4,
194 D40_DREG_CPSEG5,
195 D40_DREG_CPCEG1,
196 D40_DREG_CPCEG2,
197 D40_DREG_CPCEG3,
198 D40_DREG_CPCEG4,
199 D40_DREG_CPCEG5,
200 D40_DREG_CRSEG1,
201 D40_DREG_CRSEG2,
202 D40_DREG_CRSEG3,
203 D40_DREG_CRSEG4,
204 D40_DREG_CRSEG5,
205 D40_DREG_CRCEG1,
206 D40_DREG_CRCEG2,
207 D40_DREG_CRCEG3,
208 D40_DREG_CRCEG4,
209 D40_DREG_CRCEG5,
210};
211
212#define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
213
214static __maybe_unused u32 d40_backup_regs_chan[] = {
215 D40_CHAN_REG_SSCFG,
216 D40_CHAN_REG_SSELT,
217 D40_CHAN_REG_SSPTR,
218 D40_CHAN_REG_SSLNK,
219 D40_CHAN_REG_SDCFG,
220 D40_CHAN_REG_SDELT,
221 D40_CHAN_REG_SDPTR,
222 D40_CHAN_REG_SDLNK,
223};
224
225#define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
226 BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
227
228/**
229 * struct d40_interrupt_lookup - lookup table for interrupt handler
230 *
231 * @src: Interrupt mask register.
232 * @clr: Interrupt clear register.
233 * @is_error: true if this is an error interrupt.
234 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
235 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
236 */
237struct d40_interrupt_lookup {
238 u32 src;
239 u32 clr;
240 bool is_error;
241 int offset;
242};
243
244
245static struct d40_interrupt_lookup il_v4a[] = {
246 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
247 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
248 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
249 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
250 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
251 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
252 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
253 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
254 {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
255 {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
256};
257
258static struct d40_interrupt_lookup il_v4b[] = {
259 {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false, 0},
260 {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
261 {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
262 {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
263 {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
264 {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true, 0},
265 {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true, 32},
266 {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true, 64},
267 {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true, 96},
268 {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true, 128},
269 {D40_DREG_CPCTIS, D40_DREG_CPCICR, false, D40_PHY_CHAN},
270 {D40_DREG_CPCEIS, D40_DREG_CPCICR, true, D40_PHY_CHAN},
271};
272
273/**
274 * struct d40_reg_val - simple lookup struct
275 *
276 * @reg: The register.
277 * @val: The value that belongs to the register in reg.
278 */
279struct d40_reg_val {
280 unsigned int reg;
281 unsigned int val;
282};
283
284static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
285 /* Clock every part of the DMA block from start */
286 { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
287
288 /* Interrupts on all logical channels */
289 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
290 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
291 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
292 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
293 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
294 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
295 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
296 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
297 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
298 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
299 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
300 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
301};
302static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
303 /* Clock every part of the DMA block from start */
304 { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
305
306 /* Interrupts on all logical channels */
307 { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
308 { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
309 { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
310 { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
311 { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
312 { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
313 { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
314 { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
315 { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
316 { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
317 { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
318 { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
319 { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
320 { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
321 { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
322};
323
324/**
325 * struct d40_lli_pool - Structure for keeping LLIs in memory
326 *
327 * @base: Pointer to memory area when the pre_alloc_lli's are not large
328 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
329 * pre_alloc_lli is used.
330 * @dma_addr: DMA address, if mapped
331 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
332 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
333 * one buffer to one buffer.
334 */
335struct d40_lli_pool {
336 void *base;
337 int size;
338 dma_addr_t dma_addr;
339 /* Space for dst and src, plus an extra for padding */
340 u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
341};
342
343/**
344 * struct d40_desc - A descriptor is one DMA job.
345 *
346 * @lli_phy: LLI settings for physical channel. Both src and dst=
347 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
348 * lli_len equals one.
349 * @lli_log: Same as above but for logical channels.
350 * @lli_pool: The pool with two entries pre-allocated.
351 * @lli_len: Number of llis of current descriptor.
352 * @lli_current: Number of transferred llis.
353 * @lcla_alloc: Number of LCLA entries allocated.
354 * @txd: DMA engine struct. Used for among other things for communication
355 * during a transfer.
356 * @node: List entry.
357 * @is_in_client_list: true if the client owns this descriptor.
358 * @cyclic: true if this is a cyclic job
359 *
360 * This descriptor is used for both logical and physical transfers.
361 */
362struct d40_desc {
363 /* LLI physical */
364 struct d40_phy_lli_bidir lli_phy;
365 /* LLI logical */
366 struct d40_log_lli_bidir lli_log;
367
368 struct d40_lli_pool lli_pool;
369 int lli_len;
370 int lli_current;
371 int lcla_alloc;
372
373 struct dma_async_tx_descriptor txd;
374 struct list_head node;
375
376 bool is_in_client_list;
377 bool cyclic;
378};
379
380/**
381 * struct d40_lcla_pool - LCLA pool settings and data.
382 *
383 * @base: The virtual address of LCLA. 18 bit aligned.
384 * @dma_addr: DMA address, if mapped
385 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
386 * This pointer is only there for clean-up on error.
387 * @pages: The number of pages needed for all physical channels.
388 * Only used later for clean-up on error
389 * @lock: Lock to protect the content in this struct.
390 * @alloc_map: big map over which LCLA entry is own by which job.
391 */
392struct d40_lcla_pool {
393 void *base;
394 dma_addr_t dma_addr;
395 void *base_unaligned;
396 int pages;
397 spinlock_t lock;
398 struct d40_desc **alloc_map;
399};
400
401/**
402 * struct d40_phy_res - struct for handling eventlines mapped to physical
403 * channels.
404 *
405 * @lock: A lock protection this entity.
406 * @reserved: True if used by secure world or otherwise.
407 * @num: The physical channel number of this entity.
408 * @allocated_src: Bit mapped to show which src event line's are mapped to
409 * this physical channel. Can also be free or physically allocated.
410 * @allocated_dst: Same as for src but is dst.
411 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
412 * event line number.
413 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
414 */
415struct d40_phy_res {
416 spinlock_t lock;
417 bool reserved;
418 int num;
419 u32 allocated_src;
420 u32 allocated_dst;
421 bool use_soft_lli;
422};
423
424struct d40_base;
425
426/**
427 * struct d40_chan - Struct that describes a channel.
428 *
429 * @lock: A spinlock to protect this struct.
430 * @log_num: The logical number, if any of this channel.
431 * @pending_tx: The number of pending transfers. Used between interrupt handler
432 * and tasklet.
433 * @busy: Set to true when transfer is ongoing on this channel.
434 * @phy_chan: Pointer to physical channel which this instance runs on. If this
435 * point is NULL, then the channel is not allocated.
436 * @chan: DMA engine handle.
437 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
438 * transfer and call client callback.
439 * @client: Cliented owned descriptor list.
440 * @pending_queue: Submitted jobs, to be issued by issue_pending()
441 * @active: Active descriptor.
442 * @done: Completed jobs
443 * @queue: Queued jobs.
444 * @prepare_queue: Prepared jobs.
445 * @dma_cfg: The client configuration of this dma channel.
446 * @slave_config: DMA slave configuration.
447 * @configured: whether the dma_cfg configuration is valid
448 * @base: Pointer to the device instance struct.
449 * @src_def_cfg: Default cfg register setting for src.
450 * @dst_def_cfg: Default cfg register setting for dst.
451 * @log_def: Default logical channel settings.
452 * @lcpa: Pointer to dst and src lcpa settings.
453 * @runtime_addr: runtime configured address.
454 * @runtime_direction: runtime configured direction.
455 *
456 * This struct can either "be" a logical or a physical channel.
457 */
458struct d40_chan {
459 spinlock_t lock;
460 int log_num;
461 int pending_tx;
462 bool busy;
463 struct d40_phy_res *phy_chan;
464 struct dma_chan chan;
465 struct tasklet_struct tasklet;
466 struct list_head client;
467 struct list_head pending_queue;
468 struct list_head active;
469 struct list_head done;
470 struct list_head queue;
471 struct list_head prepare_queue;
472 struct stedma40_chan_cfg dma_cfg;
473 struct dma_slave_config slave_config;
474 bool configured;
475 struct d40_base *base;
476 /* Default register configurations */
477 u32 src_def_cfg;
478 u32 dst_def_cfg;
479 struct d40_def_lcsp log_def;
480 struct d40_log_lli_full *lcpa;
481 /* Runtime reconfiguration */
482 dma_addr_t runtime_addr;
483 enum dma_transfer_direction runtime_direction;
484};
485
486/**
487 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
488 * controller
489 *
490 * @backup: the pointer to the registers address array for backup
491 * @backup_size: the size of the registers address array for backup
492 * @realtime_en: the realtime enable register
493 * @realtime_clear: the realtime clear register
494 * @high_prio_en: the high priority enable register
495 * @high_prio_clear: the high priority clear register
496 * @interrupt_en: the interrupt enable register
497 * @interrupt_clear: the interrupt clear register
498 * @il: the pointer to struct d40_interrupt_lookup
499 * @il_size: the size of d40_interrupt_lookup array
500 * @init_reg: the pointer to the struct d40_reg_val
501 * @init_reg_size: the size of d40_reg_val array
502 */
503struct d40_gen_dmac {
504 u32 *backup;
505 u32 backup_size;
506 u32 realtime_en;
507 u32 realtime_clear;
508 u32 high_prio_en;
509 u32 high_prio_clear;
510 u32 interrupt_en;
511 u32 interrupt_clear;
512 struct d40_interrupt_lookup *il;
513 u32 il_size;
514 struct d40_reg_val *init_reg;
515 u32 init_reg_size;
516};
517
518/**
519 * struct d40_base - The big global struct, one for each probe'd instance.
520 *
521 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
522 * @execmd_lock: Lock for execute command usage since several channels share
523 * the same physical register.
524 * @dev: The device structure.
525 * @virtbase: The virtual base address of the DMA's register.
526 * @rev: silicon revision detected.
527 * @clk: Pointer to the DMA clock structure.
528 * @phy_start: Physical memory start of the DMA registers.
529 * @phy_size: Size of the DMA register map.
530 * @irq: The IRQ number.
531 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
532 * transfers).
533 * @num_phy_chans: The number of physical channels. Read from HW. This
534 * is the number of available channels for this driver, not counting "Secure
535 * mode" allocated physical channels.
536 * @num_log_chans: The number of logical channels. Calculated from
537 * num_phy_chans.
538 * @dma_parms: DMA parameters for the channel
539 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
540 * @dma_slave: dma_device channels that can do only do slave transfers.
541 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
542 * @phy_chans: Room for all possible physical channels in system.
543 * @log_chans: Room for all possible logical channels in system.
544 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
545 * to log_chans entries.
546 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
547 * to phy_chans entries.
548 * @plat_data: Pointer to provided platform_data which is the driver
549 * configuration.
550 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
551 * @phy_res: Vector containing all physical channels.
552 * @lcla_pool: lcla pool settings and data.
553 * @lcpa_base: The virtual mapped address of LCPA.
554 * @phy_lcpa: The physical address of the LCPA.
555 * @lcpa_size: The size of the LCPA area.
556 * @desc_slab: cache for descriptors.
557 * @reg_val_backup: Here the values of some hardware registers are stored
558 * before the DMA is powered off. They are restored when the power is back on.
559 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
560 * later
561 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
562 * @regs_interrupt: Scratch space for registers during interrupt.
563 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
564 * @gen_dmac: the struct for generic registers values to represent u8500/8540
565 * DMA controller
566 */
567struct d40_base {
568 spinlock_t interrupt_lock;
569 spinlock_t execmd_lock;
570 struct device *dev;
571 void __iomem *virtbase;
572 u8 rev:4;
573 struct clk *clk;
574 phys_addr_t phy_start;
575 resource_size_t phy_size;
576 int irq;
577 int num_memcpy_chans;
578 int num_phy_chans;
579 int num_log_chans;
580 struct device_dma_parameters dma_parms;
581 struct dma_device dma_both;
582 struct dma_device dma_slave;
583 struct dma_device dma_memcpy;
584 struct d40_chan *phy_chans;
585 struct d40_chan *log_chans;
586 struct d40_chan **lookup_log_chans;
587 struct d40_chan **lookup_phy_chans;
588 struct stedma40_platform_data *plat_data;
589 struct regulator *lcpa_regulator;
590 /* Physical half channels */
591 struct d40_phy_res *phy_res;
592 struct d40_lcla_pool lcla_pool;
593 void *lcpa_base;
594 dma_addr_t phy_lcpa;
595 resource_size_t lcpa_size;
596 struct kmem_cache *desc_slab;
597 u32 reg_val_backup[BACKUP_REGS_SZ];
598 u32 reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
599 u32 *reg_val_backup_chan;
600 u32 *regs_interrupt;
601 u16 gcc_pwr_off_mask;
602 struct d40_gen_dmac gen_dmac;
603};
604
605static struct device *chan2dev(struct d40_chan *d40c)
606{
607 return &d40c->chan.dev->device;
608}
609
610static bool chan_is_physical(struct d40_chan *chan)
611{
612 return chan->log_num == D40_PHY_CHAN;
613}
614
615static bool chan_is_logical(struct d40_chan *chan)
616{
617 return !chan_is_physical(chan);
618}
619
620static void __iomem *chan_base(struct d40_chan *chan)
621{
622 return chan->base->virtbase + D40_DREG_PCBASE +
623 chan->phy_chan->num * D40_DREG_PCDELTA;
624}
625
626#define d40_err(dev, format, arg...) \
627 dev_err(dev, "[%s] " format, __func__, ## arg)
628
629#define chan_err(d40c, format, arg...) \
630 d40_err(chan2dev(d40c), format, ## arg)
631
632static int d40_set_runtime_config_write(struct dma_chan *chan,
633 struct dma_slave_config *config,
634 enum dma_transfer_direction direction);
635
636static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
637 int lli_len)
638{
639 bool is_log = chan_is_logical(d40c);
640 u32 align;
641 void *base;
642
643 if (is_log)
644 align = sizeof(struct d40_log_lli);
645 else
646 align = sizeof(struct d40_phy_lli);
647
648 if (lli_len == 1) {
649 base = d40d->lli_pool.pre_alloc_lli;
650 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
651 d40d->lli_pool.base = NULL;
652 } else {
653 d40d->lli_pool.size = lli_len * 2 * align;
654
655 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
656 d40d->lli_pool.base = base;
657
658 if (d40d->lli_pool.base == NULL)
659 return -ENOMEM;
660 }
661
662 if (is_log) {
663 d40d->lli_log.src = PTR_ALIGN(base, align);
664 d40d->lli_log.dst = d40d->lli_log.src + lli_len;
665
666 d40d->lli_pool.dma_addr = 0;
667 } else {
668 d40d->lli_phy.src = PTR_ALIGN(base, align);
669 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
670
671 d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
672 d40d->lli_phy.src,
673 d40d->lli_pool.size,
674 DMA_TO_DEVICE);
675
676 if (dma_mapping_error(d40c->base->dev,
677 d40d->lli_pool.dma_addr)) {
678 kfree(d40d->lli_pool.base);
679 d40d->lli_pool.base = NULL;
680 d40d->lli_pool.dma_addr = 0;
681 return -ENOMEM;
682 }
683 }
684
685 return 0;
686}
687
688static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
689{
690 if (d40d->lli_pool.dma_addr)
691 dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
692 d40d->lli_pool.size, DMA_TO_DEVICE);
693
694 kfree(d40d->lli_pool.base);
695 d40d->lli_pool.base = NULL;
696 d40d->lli_pool.size = 0;
697 d40d->lli_log.src = NULL;
698 d40d->lli_log.dst = NULL;
699 d40d->lli_phy.src = NULL;
700 d40d->lli_phy.dst = NULL;
701}
702
703static int d40_lcla_alloc_one(struct d40_chan *d40c,
704 struct d40_desc *d40d)
705{
706 unsigned long flags;
707 int i;
708 int ret = -EINVAL;
709
710 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
711
712 /*
713 * Allocate both src and dst at the same time, therefore the half
714 * start on 1 since 0 can't be used since zero is used as end marker.
715 */
716 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
717 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
718
719 if (!d40c->base->lcla_pool.alloc_map[idx]) {
720 d40c->base->lcla_pool.alloc_map[idx] = d40d;
721 d40d->lcla_alloc++;
722 ret = i;
723 break;
724 }
725 }
726
727 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
728
729 return ret;
730}
731
732static int d40_lcla_free_all(struct d40_chan *d40c,
733 struct d40_desc *d40d)
734{
735 unsigned long flags;
736 int i;
737 int ret = -EINVAL;
738
739 if (chan_is_physical(d40c))
740 return 0;
741
742 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
743
744 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
745 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
746
747 if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
748 d40c->base->lcla_pool.alloc_map[idx] = NULL;
749 d40d->lcla_alloc--;
750 if (d40d->lcla_alloc == 0) {
751 ret = 0;
752 break;
753 }
754 }
755 }
756
757 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
758
759 return ret;
760
761}
762
763static void d40_desc_remove(struct d40_desc *d40d)
764{
765 list_del(&d40d->node);
766}
767
768static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
769{
770 struct d40_desc *desc = NULL;
771
772 if (!list_empty(&d40c->client)) {
773 struct d40_desc *d;
774 struct d40_desc *_d;
775
776 list_for_each_entry_safe(d, _d, &d40c->client, node) {
777 if (async_tx_test_ack(&d->txd)) {
778 d40_desc_remove(d);
779 desc = d;
780 memset(desc, 0, sizeof(*desc));
781 break;
782 }
783 }
784 }
785
786 if (!desc)
787 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
788
789 if (desc)
790 INIT_LIST_HEAD(&desc->node);
791
792 return desc;
793}
794
795static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
796{
797
798 d40_pool_lli_free(d40c, d40d);
799 d40_lcla_free_all(d40c, d40d);
800 kmem_cache_free(d40c->base->desc_slab, d40d);
801}
802
803static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
804{
805 list_add_tail(&desc->node, &d40c->active);
806}
807
808static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
809{
810 struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
811 struct d40_phy_lli *lli_src = desc->lli_phy.src;
812 void __iomem *base = chan_base(chan);
813
814 writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
815 writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
816 writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
817 writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
818
819 writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
820 writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
821 writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
822 writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
823}
824
825static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
826{
827 list_add_tail(&desc->node, &d40c->done);
828}
829
830static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
831{
832 struct d40_lcla_pool *pool = &chan->base->lcla_pool;
833 struct d40_log_lli_bidir *lli = &desc->lli_log;
834 int lli_current = desc->lli_current;
835 int lli_len = desc->lli_len;
836 bool cyclic = desc->cyclic;
837 int curr_lcla = -EINVAL;
838 int first_lcla = 0;
839 bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
840 bool linkback;
841
842 /*
843 * We may have partially running cyclic transfers, in case we did't get
844 * enough LCLA entries.
845 */
846 linkback = cyclic && lli_current == 0;
847
848 /*
849 * For linkback, we need one LCLA even with only one link, because we
850 * can't link back to the one in LCPA space
851 */
852 if (linkback || (lli_len - lli_current > 1)) {
853 /*
854 * If the channel is expected to use only soft_lli don't
855 * allocate a lcla. This is to avoid a HW issue that exists
856 * in some controller during a peripheral to memory transfer
857 * that uses linked lists.
858 */
859 if (!(chan->phy_chan->use_soft_lli &&
860 chan->dma_cfg.dir == DMA_DEV_TO_MEM))
861 curr_lcla = d40_lcla_alloc_one(chan, desc);
862
863 first_lcla = curr_lcla;
864 }
865
866 /*
867 * For linkback, we normally load the LCPA in the loop since we need to
868 * link it to the second LCLA and not the first. However, if we
869 * couldn't even get a first LCLA, then we have to run in LCPA and
870 * reload manually.
871 */
872 if (!linkback || curr_lcla == -EINVAL) {
873 unsigned int flags = 0;
874
875 if (curr_lcla == -EINVAL)
876 flags |= LLI_TERM_INT;
877
878 d40_log_lli_lcpa_write(chan->lcpa,
879 &lli->dst[lli_current],
880 &lli->src[lli_current],
881 curr_lcla,
882 flags);
883 lli_current++;
884 }
885
886 if (curr_lcla < 0)
887 goto set_current;
888
889 for (; lli_current < lli_len; lli_current++) {
890 unsigned int lcla_offset = chan->phy_chan->num * 1024 +
891 8 * curr_lcla * 2;
892 struct d40_log_lli *lcla = pool->base + lcla_offset;
893 unsigned int flags = 0;
894 int next_lcla;
895
896 if (lli_current + 1 < lli_len)
897 next_lcla = d40_lcla_alloc_one(chan, desc);
898 else
899 next_lcla = linkback ? first_lcla : -EINVAL;
900
901 if (cyclic || next_lcla == -EINVAL)
902 flags |= LLI_TERM_INT;
903
904 if (linkback && curr_lcla == first_lcla) {
905 /* First link goes in both LCPA and LCLA */
906 d40_log_lli_lcpa_write(chan->lcpa,
907 &lli->dst[lli_current],
908 &lli->src[lli_current],
909 next_lcla, flags);
910 }
911
912 /*
913 * One unused LCLA in the cyclic case if the very first
914 * next_lcla fails...
915 */
916 d40_log_lli_lcla_write(lcla,
917 &lli->dst[lli_current],
918 &lli->src[lli_current],
919 next_lcla, flags);
920
921 /*
922 * Cache maintenance is not needed if lcla is
923 * mapped in esram
924 */
925 if (!use_esram_lcla) {
926 dma_sync_single_range_for_device(chan->base->dev,
927 pool->dma_addr, lcla_offset,
928 2 * sizeof(struct d40_log_lli),
929 DMA_TO_DEVICE);
930 }
931 curr_lcla = next_lcla;
932
933 if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
934 lli_current++;
935 break;
936 }
937 }
938 set_current:
939 desc->lli_current = lli_current;
940}
941
942static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
943{
944 if (chan_is_physical(d40c)) {
945 d40_phy_lli_load(d40c, d40d);
946 d40d->lli_current = d40d->lli_len;
947 } else
948 d40_log_lli_to_lcxa(d40c, d40d);
949}
950
951static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
952{
953 return list_first_entry_or_null(&d40c->active, struct d40_desc, node);
954}
955
956/* remove desc from current queue and add it to the pending_queue */
957static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
958{
959 d40_desc_remove(desc);
960 desc->is_in_client_list = false;
961 list_add_tail(&desc->node, &d40c->pending_queue);
962}
963
964static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
965{
966 return list_first_entry_or_null(&d40c->pending_queue, struct d40_desc,
967 node);
968}
969
970static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
971{
972 return list_first_entry_or_null(&d40c->queue, struct d40_desc, node);
973}
974
975static struct d40_desc *d40_first_done(struct d40_chan *d40c)
976{
977 return list_first_entry_or_null(&d40c->done, struct d40_desc, node);
978}
979
980static int d40_psize_2_burst_size(bool is_log, int psize)
981{
982 if (is_log) {
983 if (psize == STEDMA40_PSIZE_LOG_1)
984 return 1;
985 } else {
986 if (psize == STEDMA40_PSIZE_PHY_1)
987 return 1;
988 }
989
990 return 2 << psize;
991}
992
993/*
994 * The dma only supports transmitting packages up to
995 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
996 *
997 * Calculate the total number of dma elements required to send the entire sg list.
998 */
999static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
1000{
1001 int dmalen;
1002 u32 max_w = max(data_width1, data_width2);
1003 u32 min_w = min(data_width1, data_width2);
1004 u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
1005
1006 if (seg_max > STEDMA40_MAX_SEG_SIZE)
1007 seg_max -= max_w;
1008
1009 if (!IS_ALIGNED(size, max_w))
1010 return -EINVAL;
1011
1012 if (size <= seg_max)
1013 dmalen = 1;
1014 else {
1015 dmalen = size / seg_max;
1016 if (dmalen * seg_max < size)
1017 dmalen++;
1018 }
1019 return dmalen;
1020}
1021
1022static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
1023 u32 data_width1, u32 data_width2)
1024{
1025 struct scatterlist *sg;
1026 int i;
1027 int len = 0;
1028 int ret;
1029
1030 for_each_sg(sgl, sg, sg_len, i) {
1031 ret = d40_size_2_dmalen(sg_dma_len(sg),
1032 data_width1, data_width2);
1033 if (ret < 0)
1034 return ret;
1035 len += ret;
1036 }
1037 return len;
1038}
1039
1040static int __d40_execute_command_phy(struct d40_chan *d40c,
1041 enum d40_command command)
1042{
1043 u32 status;
1044 int i;
1045 void __iomem *active_reg;
1046 int ret = 0;
1047 unsigned long flags;
1048 u32 wmask;
1049
1050 if (command == D40_DMA_STOP) {
1051 ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
1052 if (ret)
1053 return ret;
1054 }
1055
1056 spin_lock_irqsave(&d40c->base->execmd_lock, flags);
1057
1058 if (d40c->phy_chan->num % 2 == 0)
1059 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1060 else
1061 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1062
1063 if (command == D40_DMA_SUSPEND_REQ) {
1064 status = (readl(active_reg) &
1065 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1066 D40_CHAN_POS(d40c->phy_chan->num);
1067
1068 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1069 goto unlock;
1070 }
1071
1072 wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
1073 writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
1074 active_reg);
1075
1076 if (command == D40_DMA_SUSPEND_REQ) {
1077
1078 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
1079 status = (readl(active_reg) &
1080 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1081 D40_CHAN_POS(d40c->phy_chan->num);
1082
1083 cpu_relax();
1084 /*
1085 * Reduce the number of bus accesses while
1086 * waiting for the DMA to suspend.
1087 */
1088 udelay(3);
1089
1090 if (status == D40_DMA_STOP ||
1091 status == D40_DMA_SUSPENDED)
1092 break;
1093 }
1094
1095 if (i == D40_SUSPEND_MAX_IT) {
1096 chan_err(d40c,
1097 "unable to suspend the chl %d (log: %d) status %x\n",
1098 d40c->phy_chan->num, d40c->log_num,
1099 status);
1100 dump_stack();
1101 ret = -EBUSY;
1102 }
1103
1104 }
1105 unlock:
1106 spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
1107 return ret;
1108}
1109
1110static void d40_term_all(struct d40_chan *d40c)
1111{
1112 struct d40_desc *d40d;
1113 struct d40_desc *_d;
1114
1115 /* Release completed descriptors */
1116 while ((d40d = d40_first_done(d40c))) {
1117 d40_desc_remove(d40d);
1118 d40_desc_free(d40c, d40d);
1119 }
1120
1121 /* Release active descriptors */
1122 while ((d40d = d40_first_active_get(d40c))) {
1123 d40_desc_remove(d40d);
1124 d40_desc_free(d40c, d40d);
1125 }
1126
1127 /* Release queued descriptors waiting for transfer */
1128 while ((d40d = d40_first_queued(d40c))) {
1129 d40_desc_remove(d40d);
1130 d40_desc_free(d40c, d40d);
1131 }
1132
1133 /* Release pending descriptors */
1134 while ((d40d = d40_first_pending(d40c))) {
1135 d40_desc_remove(d40d);
1136 d40_desc_free(d40c, d40d);
1137 }
1138
1139 /* Release client owned descriptors */
1140 if (!list_empty(&d40c->client))
1141 list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
1142 d40_desc_remove(d40d);
1143 d40_desc_free(d40c, d40d);
1144 }
1145
1146 /* Release descriptors in prepare queue */
1147 if (!list_empty(&d40c->prepare_queue))
1148 list_for_each_entry_safe(d40d, _d,
1149 &d40c->prepare_queue, node) {
1150 d40_desc_remove(d40d);
1151 d40_desc_free(d40c, d40d);
1152 }
1153
1154 d40c->pending_tx = 0;
1155}
1156
1157static void __d40_config_set_event(struct d40_chan *d40c,
1158 enum d40_events event_type, u32 event,
1159 int reg)
1160{
1161 void __iomem *addr = chan_base(d40c) + reg;
1162 int tries;
1163 u32 status;
1164
1165 switch (event_type) {
1166
1167 case D40_DEACTIVATE_EVENTLINE:
1168
1169 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1170 | ~D40_EVENTLINE_MASK(event), addr);
1171 break;
1172
1173 case D40_SUSPEND_REQ_EVENTLINE:
1174 status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1175 D40_EVENTLINE_POS(event);
1176
1177 if (status == D40_DEACTIVATE_EVENTLINE ||
1178 status == D40_SUSPEND_REQ_EVENTLINE)
1179 break;
1180
1181 writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1182 | ~D40_EVENTLINE_MASK(event), addr);
1183
1184 for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1185
1186 status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1187 D40_EVENTLINE_POS(event);
1188
1189 cpu_relax();
1190 /*
1191 * Reduce the number of bus accesses while
1192 * waiting for the DMA to suspend.
1193 */
1194 udelay(3);
1195
1196 if (status == D40_DEACTIVATE_EVENTLINE)
1197 break;
1198 }
1199
1200 if (tries == D40_SUSPEND_MAX_IT) {
1201 chan_err(d40c,
1202 "unable to stop the event_line chl %d (log: %d)"
1203 "status %x\n", d40c->phy_chan->num,
1204 d40c->log_num, status);
1205 }
1206 break;
1207
1208 case D40_ACTIVATE_EVENTLINE:
1209 /*
1210 * The hardware sometimes doesn't register the enable when src and dst
1211 * event lines are active on the same logical channel. Retry to ensure
1212 * it does. Usually only one retry is sufficient.
1213 */
1214 tries = 100;
1215 while (--tries) {
1216 writel((D40_ACTIVATE_EVENTLINE <<
1217 D40_EVENTLINE_POS(event)) |
1218 ~D40_EVENTLINE_MASK(event), addr);
1219
1220 if (readl(addr) & D40_EVENTLINE_MASK(event))
1221 break;
1222 }
1223
1224 if (tries != 99)
1225 dev_dbg(chan2dev(d40c),
1226 "[%s] workaround enable S%cLNK (%d tries)\n",
1227 __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1228 100 - tries);
1229
1230 WARN_ON(!tries);
1231 break;
1232
1233 case D40_ROUND_EVENTLINE:
1234 BUG();
1235 break;
1236
1237 }
1238}
1239
1240static void d40_config_set_event(struct d40_chan *d40c,
1241 enum d40_events event_type)
1242{
1243 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1244
1245 /* Enable event line connected to device (or memcpy) */
1246 if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
1247 (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
1248 __d40_config_set_event(d40c, event_type, event,
1249 D40_CHAN_REG_SSLNK);
1250
1251 if (d40c->dma_cfg.dir != DMA_DEV_TO_MEM)
1252 __d40_config_set_event(d40c, event_type, event,
1253 D40_CHAN_REG_SDLNK);
1254}
1255
1256static u32 d40_chan_has_events(struct d40_chan *d40c)
1257{
1258 void __iomem *chanbase = chan_base(d40c);
1259 u32 val;
1260
1261 val = readl(chanbase + D40_CHAN_REG_SSLNK);
1262 val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1263
1264 return val;
1265}
1266
1267static int
1268__d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1269{
1270 unsigned long flags;
1271 int ret = 0;
1272 u32 active_status;
1273 void __iomem *active_reg;
1274
1275 if (d40c->phy_chan->num % 2 == 0)
1276 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1277 else
1278 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1279
1280
1281 spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1282
1283 switch (command) {
1284 case D40_DMA_STOP:
1285 case D40_DMA_SUSPEND_REQ:
1286
1287 active_status = (readl(active_reg) &
1288 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1289 D40_CHAN_POS(d40c->phy_chan->num);
1290
1291 if (active_status == D40_DMA_RUN)
1292 d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1293 else
1294 d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1295
1296 if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1297 ret = __d40_execute_command_phy(d40c, command);
1298
1299 break;
1300
1301 case D40_DMA_RUN:
1302
1303 d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1304 ret = __d40_execute_command_phy(d40c, command);
1305 break;
1306
1307 case D40_DMA_SUSPENDED:
1308 BUG();
1309 break;
1310 }
1311
1312 spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1313 return ret;
1314}
1315
1316static int d40_channel_execute_command(struct d40_chan *d40c,
1317 enum d40_command command)
1318{
1319 if (chan_is_logical(d40c))
1320 return __d40_execute_command_log(d40c, command);
1321 else
1322 return __d40_execute_command_phy(d40c, command);
1323}
1324
1325static u32 d40_get_prmo(struct d40_chan *d40c)
1326{
1327 static const unsigned int phy_map[] = {
1328 [STEDMA40_PCHAN_BASIC_MODE]
1329 = D40_DREG_PRMO_PCHAN_BASIC,
1330 [STEDMA40_PCHAN_MODULO_MODE]
1331 = D40_DREG_PRMO_PCHAN_MODULO,
1332 [STEDMA40_PCHAN_DOUBLE_DST_MODE]
1333 = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1334 };
1335 static const unsigned int log_map[] = {
1336 [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1337 = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1338 [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1339 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1340 [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1341 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1342 };
1343
1344 if (chan_is_physical(d40c))
1345 return phy_map[d40c->dma_cfg.mode_opt];
1346 else
1347 return log_map[d40c->dma_cfg.mode_opt];
1348}
1349
1350static void d40_config_write(struct d40_chan *d40c)
1351{
1352 u32 addr_base;
1353 u32 var;
1354
1355 /* Odd addresses are even addresses + 4 */
1356 addr_base = (d40c->phy_chan->num % 2) * 4;
1357 /* Setup channel mode to logical or physical */
1358 var = ((u32)(chan_is_logical(d40c)) + 1) <<
1359 D40_CHAN_POS(d40c->phy_chan->num);
1360 writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1361
1362 /* Setup operational mode option register */
1363 var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1364
1365 writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1366
1367 if (chan_is_logical(d40c)) {
1368 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1369 & D40_SREG_ELEM_LOG_LIDX_MASK;
1370 void __iomem *chanbase = chan_base(d40c);
1371
1372 /* Set default config for CFG reg */
1373 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1374 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1375
1376 /* Set LIDX for lcla */
1377 writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1378 writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1379
1380 /* Clear LNK which will be used by d40_chan_has_events() */
1381 writel(0, chanbase + D40_CHAN_REG_SSLNK);
1382 writel(0, chanbase + D40_CHAN_REG_SDLNK);
1383 }
1384}
1385
1386static u32 d40_residue(struct d40_chan *d40c)
1387{
1388 u32 num_elt;
1389
1390 if (chan_is_logical(d40c))
1391 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1392 >> D40_MEM_LCSP2_ECNT_POS;
1393 else {
1394 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1395 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1396 >> D40_SREG_ELEM_PHY_ECNT_POS;
1397 }
1398
1399 return num_elt * d40c->dma_cfg.dst_info.data_width;
1400}
1401
1402static bool d40_tx_is_linked(struct d40_chan *d40c)
1403{
1404 bool is_link;
1405
1406 if (chan_is_logical(d40c))
1407 is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
1408 else
1409 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1410 & D40_SREG_LNK_PHYS_LNK_MASK;
1411
1412 return is_link;
1413}
1414
1415static int d40_pause(struct dma_chan *chan)
1416{
1417 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1418 int res = 0;
1419 unsigned long flags;
1420
1421 if (d40c->phy_chan == NULL) {
1422 chan_err(d40c, "Channel is not allocated!\n");
1423 return -EINVAL;
1424 }
1425
1426 if (!d40c->busy)
1427 return 0;
1428
1429 spin_lock_irqsave(&d40c->lock, flags);
1430 pm_runtime_get_sync(d40c->base->dev);
1431
1432 res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1433
1434 pm_runtime_mark_last_busy(d40c->base->dev);
1435 pm_runtime_put_autosuspend(d40c->base->dev);
1436 spin_unlock_irqrestore(&d40c->lock, flags);
1437 return res;
1438}
1439
1440static int d40_resume(struct dma_chan *chan)
1441{
1442 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1443 int res = 0;
1444 unsigned long flags;
1445
1446 if (d40c->phy_chan == NULL) {
1447 chan_err(d40c, "Channel is not allocated!\n");
1448 return -EINVAL;
1449 }
1450
1451 if (!d40c->busy)
1452 return 0;
1453
1454 spin_lock_irqsave(&d40c->lock, flags);
1455 pm_runtime_get_sync(d40c->base->dev);
1456
1457 /* If bytes left to transfer or linked tx resume job */
1458 if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1459 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1460
1461 pm_runtime_mark_last_busy(d40c->base->dev);
1462 pm_runtime_put_autosuspend(d40c->base->dev);
1463 spin_unlock_irqrestore(&d40c->lock, flags);
1464 return res;
1465}
1466
1467static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1468{
1469 struct d40_chan *d40c = container_of(tx->chan,
1470 struct d40_chan,
1471 chan);
1472 struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1473 unsigned long flags;
1474 dma_cookie_t cookie;
1475
1476 spin_lock_irqsave(&d40c->lock, flags);
1477 cookie = dma_cookie_assign(tx);
1478 d40_desc_queue(d40c, d40d);
1479 spin_unlock_irqrestore(&d40c->lock, flags);
1480
1481 return cookie;
1482}
1483
1484static int d40_start(struct d40_chan *d40c)
1485{
1486 return d40_channel_execute_command(d40c, D40_DMA_RUN);
1487}
1488
1489static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1490{
1491 struct d40_desc *d40d;
1492 int err;
1493
1494 /* Start queued jobs, if any */
1495 d40d = d40_first_queued(d40c);
1496
1497 if (d40d != NULL) {
1498 if (!d40c->busy) {
1499 d40c->busy = true;
1500 pm_runtime_get_sync(d40c->base->dev);
1501 }
1502
1503 /* Remove from queue */
1504 d40_desc_remove(d40d);
1505
1506 /* Add to active queue */
1507 d40_desc_submit(d40c, d40d);
1508
1509 /* Initiate DMA job */
1510 d40_desc_load(d40c, d40d);
1511
1512 /* Start dma job */
1513 err = d40_start(d40c);
1514
1515 if (err)
1516 return NULL;
1517 }
1518
1519 return d40d;
1520}
1521
1522/* called from interrupt context */
1523static void dma_tc_handle(struct d40_chan *d40c)
1524{
1525 struct d40_desc *d40d;
1526
1527 /* Get first active entry from list */
1528 d40d = d40_first_active_get(d40c);
1529
1530 if (d40d == NULL)
1531 return;
1532
1533 if (d40d->cyclic) {
1534 /*
1535 * If this was a paritially loaded list, we need to reloaded
1536 * it, and only when the list is completed. We need to check
1537 * for done because the interrupt will hit for every link, and
1538 * not just the last one.
1539 */
1540 if (d40d->lli_current < d40d->lli_len
1541 && !d40_tx_is_linked(d40c)
1542 && !d40_residue(d40c)) {
1543 d40_lcla_free_all(d40c, d40d);
1544 d40_desc_load(d40c, d40d);
1545 (void) d40_start(d40c);
1546
1547 if (d40d->lli_current == d40d->lli_len)
1548 d40d->lli_current = 0;
1549 }
1550 } else {
1551 d40_lcla_free_all(d40c, d40d);
1552
1553 if (d40d->lli_current < d40d->lli_len) {
1554 d40_desc_load(d40c, d40d);
1555 /* Start dma job */
1556 (void) d40_start(d40c);
1557 return;
1558 }
1559
1560 if (d40_queue_start(d40c) == NULL) {
1561 d40c->busy = false;
1562
1563 pm_runtime_mark_last_busy(d40c->base->dev);
1564 pm_runtime_put_autosuspend(d40c->base->dev);
1565 }
1566
1567 d40_desc_remove(d40d);
1568 d40_desc_done(d40c, d40d);
1569 }
1570
1571 d40c->pending_tx++;
1572 tasklet_schedule(&d40c->tasklet);
1573
1574}
1575
1576static void dma_tasklet(unsigned long data)
1577{
1578 struct d40_chan *d40c = (struct d40_chan *) data;
1579 struct d40_desc *d40d;
1580 unsigned long flags;
1581 bool callback_active;
1582 struct dmaengine_desc_callback cb;
1583
1584 spin_lock_irqsave(&d40c->lock, flags);
1585
1586 /* Get first entry from the done list */
1587 d40d = d40_first_done(d40c);
1588 if (d40d == NULL) {
1589 /* Check if we have reached here for cyclic job */
1590 d40d = d40_first_active_get(d40c);
1591 if (d40d == NULL || !d40d->cyclic)
1592 goto check_pending_tx;
1593 }
1594
1595 if (!d40d->cyclic)
1596 dma_cookie_complete(&d40d->txd);
1597
1598 /*
1599 * If terminating a channel pending_tx is set to zero.
1600 * This prevents any finished active jobs to return to the client.
1601 */
1602 if (d40c->pending_tx == 0) {
1603 spin_unlock_irqrestore(&d40c->lock, flags);
1604 return;
1605 }
1606
1607 /* Callback to client */
1608 callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
1609 dmaengine_desc_get_callback(&d40d->txd, &cb);
1610
1611 if (!d40d->cyclic) {
1612 if (async_tx_test_ack(&d40d->txd)) {
1613 d40_desc_remove(d40d);
1614 d40_desc_free(d40c, d40d);
1615 } else if (!d40d->is_in_client_list) {
1616 d40_desc_remove(d40d);
1617 d40_lcla_free_all(d40c, d40d);
1618 list_add_tail(&d40d->node, &d40c->client);
1619 d40d->is_in_client_list = true;
1620 }
1621 }
1622
1623 d40c->pending_tx--;
1624
1625 if (d40c->pending_tx)
1626 tasklet_schedule(&d40c->tasklet);
1627
1628 spin_unlock_irqrestore(&d40c->lock, flags);
1629
1630 if (callback_active)
1631 dmaengine_desc_callback_invoke(&cb, NULL);
1632
1633 return;
1634 check_pending_tx:
1635 /* Rescue manouver if receiving double interrupts */
1636 if (d40c->pending_tx > 0)
1637 d40c->pending_tx--;
1638 spin_unlock_irqrestore(&d40c->lock, flags);
1639}
1640
1641static irqreturn_t d40_handle_interrupt(int irq, void *data)
1642{
1643 int i;
1644 u32 idx;
1645 u32 row;
1646 long chan = -1;
1647 struct d40_chan *d40c;
1648 unsigned long flags;
1649 struct d40_base *base = data;
1650 u32 *regs = base->regs_interrupt;
1651 struct d40_interrupt_lookup *il = base->gen_dmac.il;
1652 u32 il_size = base->gen_dmac.il_size;
1653
1654 spin_lock_irqsave(&base->interrupt_lock, flags);
1655
1656 /* Read interrupt status of both logical and physical channels */
1657 for (i = 0; i < il_size; i++)
1658 regs[i] = readl(base->virtbase + il[i].src);
1659
1660 for (;;) {
1661
1662 chan = find_next_bit((unsigned long *)regs,
1663 BITS_PER_LONG * il_size, chan + 1);
1664
1665 /* No more set bits found? */
1666 if (chan == BITS_PER_LONG * il_size)
1667 break;
1668
1669 row = chan / BITS_PER_LONG;
1670 idx = chan & (BITS_PER_LONG - 1);
1671
1672 if (il[row].offset == D40_PHY_CHAN)
1673 d40c = base->lookup_phy_chans[idx];
1674 else
1675 d40c = base->lookup_log_chans[il[row].offset + idx];
1676
1677 if (!d40c) {
1678 /*
1679 * No error because this can happen if something else
1680 * in the system is using the channel.
1681 */
1682 continue;
1683 }
1684
1685 /* ACK interrupt */
1686 writel(BIT(idx), base->virtbase + il[row].clr);
1687
1688 spin_lock(&d40c->lock);
1689
1690 if (!il[row].is_error)
1691 dma_tc_handle(d40c);
1692 else
1693 d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1694 chan, il[row].offset, idx);
1695
1696 spin_unlock(&d40c->lock);
1697 }
1698
1699 spin_unlock_irqrestore(&base->interrupt_lock, flags);
1700
1701 return IRQ_HANDLED;
1702}
1703
1704static int d40_validate_conf(struct d40_chan *d40c,
1705 struct stedma40_chan_cfg *conf)
1706{
1707 int res = 0;
1708 bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1709
1710 if (!conf->dir) {
1711 chan_err(d40c, "Invalid direction.\n");
1712 res = -EINVAL;
1713 }
1714
1715 if ((is_log && conf->dev_type > d40c->base->num_log_chans) ||
1716 (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
1717 (conf->dev_type < 0)) {
1718 chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1719 res = -EINVAL;
1720 }
1721
1722 if (conf->dir == DMA_DEV_TO_DEV) {
1723 /*
1724 * DMAC HW supports it. Will be added to this driver,
1725 * in case any dma client requires it.
1726 */
1727 chan_err(d40c, "periph to periph not supported\n");
1728 res = -EINVAL;
1729 }
1730
1731 if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1732 conf->src_info.data_width !=
1733 d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1734 conf->dst_info.data_width) {
1735 /*
1736 * The DMAC hardware only supports
1737 * src (burst x width) == dst (burst x width)
1738 */
1739
1740 chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1741 res = -EINVAL;
1742 }
1743
1744 return res;
1745}
1746
1747static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1748 bool is_src, int log_event_line, bool is_log,
1749 bool *first_user)
1750{
1751 unsigned long flags;
1752 spin_lock_irqsave(&phy->lock, flags);
1753
1754 *first_user = ((phy->allocated_src | phy->allocated_dst)
1755 == D40_ALLOC_FREE);
1756
1757 if (!is_log) {
1758 /* Physical interrupts are masked per physical full channel */
1759 if (phy->allocated_src == D40_ALLOC_FREE &&
1760 phy->allocated_dst == D40_ALLOC_FREE) {
1761 phy->allocated_dst = D40_ALLOC_PHY;
1762 phy->allocated_src = D40_ALLOC_PHY;
1763 goto found_unlock;
1764 } else
1765 goto not_found_unlock;
1766 }
1767
1768 /* Logical channel */
1769 if (is_src) {
1770 if (phy->allocated_src == D40_ALLOC_PHY)
1771 goto not_found_unlock;
1772
1773 if (phy->allocated_src == D40_ALLOC_FREE)
1774 phy->allocated_src = D40_ALLOC_LOG_FREE;
1775
1776 if (!(phy->allocated_src & BIT(log_event_line))) {
1777 phy->allocated_src |= BIT(log_event_line);
1778 goto found_unlock;
1779 } else
1780 goto not_found_unlock;
1781 } else {
1782 if (phy->allocated_dst == D40_ALLOC_PHY)
1783 goto not_found_unlock;
1784
1785 if (phy->allocated_dst == D40_ALLOC_FREE)
1786 phy->allocated_dst = D40_ALLOC_LOG_FREE;
1787
1788 if (!(phy->allocated_dst & BIT(log_event_line))) {
1789 phy->allocated_dst |= BIT(log_event_line);
1790 goto found_unlock;
1791 }
1792 }
1793 not_found_unlock:
1794 spin_unlock_irqrestore(&phy->lock, flags);
1795 return false;
1796 found_unlock:
1797 spin_unlock_irqrestore(&phy->lock, flags);
1798 return true;
1799}
1800
1801static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1802 int log_event_line)
1803{
1804 unsigned long flags;
1805 bool is_free = false;
1806
1807 spin_lock_irqsave(&phy->lock, flags);
1808 if (!log_event_line) {
1809 phy->allocated_dst = D40_ALLOC_FREE;
1810 phy->allocated_src = D40_ALLOC_FREE;
1811 is_free = true;
1812 goto unlock;
1813 }
1814
1815 /* Logical channel */
1816 if (is_src) {
1817 phy->allocated_src &= ~BIT(log_event_line);
1818 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1819 phy->allocated_src = D40_ALLOC_FREE;
1820 } else {
1821 phy->allocated_dst &= ~BIT(log_event_line);
1822 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1823 phy->allocated_dst = D40_ALLOC_FREE;
1824 }
1825
1826 is_free = ((phy->allocated_src | phy->allocated_dst) ==
1827 D40_ALLOC_FREE);
1828 unlock:
1829 spin_unlock_irqrestore(&phy->lock, flags);
1830
1831 return is_free;
1832}
1833
1834static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1835{
1836 int dev_type = d40c->dma_cfg.dev_type;
1837 int event_group;
1838 int event_line;
1839 struct d40_phy_res *phys;
1840 int i;
1841 int j;
1842 int log_num;
1843 int num_phy_chans;
1844 bool is_src;
1845 bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1846
1847 phys = d40c->base->phy_res;
1848 num_phy_chans = d40c->base->num_phy_chans;
1849
1850 if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
1851 log_num = 2 * dev_type;
1852 is_src = true;
1853 } else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
1854 d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1855 /* dst event lines are used for logical memcpy */
1856 log_num = 2 * dev_type + 1;
1857 is_src = false;
1858 } else
1859 return -EINVAL;
1860
1861 event_group = D40_TYPE_TO_GROUP(dev_type);
1862 event_line = D40_TYPE_TO_EVENT(dev_type);
1863
1864 if (!is_log) {
1865 if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1866 /* Find physical half channel */
1867 if (d40c->dma_cfg.use_fixed_channel) {
1868 i = d40c->dma_cfg.phy_channel;
1869 if (d40_alloc_mask_set(&phys[i], is_src,
1870 0, is_log,
1871 first_phy_user))
1872 goto found_phy;
1873 } else {
1874 for (i = 0; i < num_phy_chans; i++) {
1875 if (d40_alloc_mask_set(&phys[i], is_src,
1876 0, is_log,
1877 first_phy_user))
1878 goto found_phy;
1879 }
1880 }
1881 } else
1882 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1883 int phy_num = j + event_group * 2;
1884 for (i = phy_num; i < phy_num + 2; i++) {
1885 if (d40_alloc_mask_set(&phys[i],
1886 is_src,
1887 0,
1888 is_log,
1889 first_phy_user))
1890 goto found_phy;
1891 }
1892 }
1893 return -EINVAL;
1894found_phy:
1895 d40c->phy_chan = &phys[i];
1896 d40c->log_num = D40_PHY_CHAN;
1897 goto out;
1898 }
1899 if (dev_type == -1)
1900 return -EINVAL;
1901
1902 /* Find logical channel */
1903 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1904 int phy_num = j + event_group * 2;
1905
1906 if (d40c->dma_cfg.use_fixed_channel) {
1907 i = d40c->dma_cfg.phy_channel;
1908
1909 if ((i != phy_num) && (i != phy_num + 1)) {
1910 dev_err(chan2dev(d40c),
1911 "invalid fixed phy channel %d\n", i);
1912 return -EINVAL;
1913 }
1914
1915 if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1916 is_log, first_phy_user))
1917 goto found_log;
1918
1919 dev_err(chan2dev(d40c),
1920 "could not allocate fixed phy channel %d\n", i);
1921 return -EINVAL;
1922 }
1923
1924 /*
1925 * Spread logical channels across all available physical rather
1926 * than pack every logical channel at the first available phy
1927 * channels.
1928 */
1929 if (is_src) {
1930 for (i = phy_num; i < phy_num + 2; i++) {
1931 if (d40_alloc_mask_set(&phys[i], is_src,
1932 event_line, is_log,
1933 first_phy_user))
1934 goto found_log;
1935 }
1936 } else {
1937 for (i = phy_num + 1; i >= phy_num; i--) {
1938 if (d40_alloc_mask_set(&phys[i], is_src,
1939 event_line, is_log,
1940 first_phy_user))
1941 goto found_log;
1942 }
1943 }
1944 }
1945 return -EINVAL;
1946
1947found_log:
1948 d40c->phy_chan = &phys[i];
1949 d40c->log_num = log_num;
1950out:
1951
1952 if (is_log)
1953 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1954 else
1955 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1956
1957 return 0;
1958
1959}
1960
1961static int d40_config_memcpy(struct d40_chan *d40c)
1962{
1963 dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1964
1965 if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1966 d40c->dma_cfg = dma40_memcpy_conf_log;
1967 d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
1968
1969 d40_log_cfg(&d40c->dma_cfg,
1970 &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1971
1972 } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1973 dma_has_cap(DMA_SLAVE, cap)) {
1974 d40c->dma_cfg = dma40_memcpy_conf_phy;
1975
1976 /* Generate interrrupt at end of transfer or relink. */
1977 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
1978
1979 /* Generate interrupt on error. */
1980 d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
1981 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
1982
1983 } else {
1984 chan_err(d40c, "No memcpy\n");
1985 return -EINVAL;
1986 }
1987
1988 return 0;
1989}
1990
1991static int d40_free_dma(struct d40_chan *d40c)
1992{
1993
1994 int res = 0;
1995 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1996 struct d40_phy_res *phy = d40c->phy_chan;
1997 bool is_src;
1998
1999 /* Terminate all queued and active transfers */
2000 d40_term_all(d40c);
2001
2002 if (phy == NULL) {
2003 chan_err(d40c, "phy == null\n");
2004 return -EINVAL;
2005 }
2006
2007 if (phy->allocated_src == D40_ALLOC_FREE &&
2008 phy->allocated_dst == D40_ALLOC_FREE) {
2009 chan_err(d40c, "channel already free\n");
2010 return -EINVAL;
2011 }
2012
2013 if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2014 d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
2015 is_src = false;
2016 else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2017 is_src = true;
2018 else {
2019 chan_err(d40c, "Unknown direction\n");
2020 return -EINVAL;
2021 }
2022
2023 pm_runtime_get_sync(d40c->base->dev);
2024 res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2025 if (res) {
2026 chan_err(d40c, "stop failed\n");
2027 goto mark_last_busy;
2028 }
2029
2030 d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2031
2032 if (chan_is_logical(d40c))
2033 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2034 else
2035 d40c->base->lookup_phy_chans[phy->num] = NULL;
2036
2037 if (d40c->busy) {
2038 pm_runtime_mark_last_busy(d40c->base->dev);
2039 pm_runtime_put_autosuspend(d40c->base->dev);
2040 }
2041
2042 d40c->busy = false;
2043 d40c->phy_chan = NULL;
2044 d40c->configured = false;
2045 mark_last_busy:
2046 pm_runtime_mark_last_busy(d40c->base->dev);
2047 pm_runtime_put_autosuspend(d40c->base->dev);
2048 return res;
2049}
2050
2051static bool d40_is_paused(struct d40_chan *d40c)
2052{
2053 void __iomem *chanbase = chan_base(d40c);
2054 bool is_paused = false;
2055 unsigned long flags;
2056 void __iomem *active_reg;
2057 u32 status;
2058 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2059
2060 spin_lock_irqsave(&d40c->lock, flags);
2061
2062 if (chan_is_physical(d40c)) {
2063 if (d40c->phy_chan->num % 2 == 0)
2064 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
2065 else
2066 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
2067
2068 status = (readl(active_reg) &
2069 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
2070 D40_CHAN_POS(d40c->phy_chan->num);
2071 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
2072 is_paused = true;
2073 goto unlock;
2074 }
2075
2076 if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2077 d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
2078 status = readl(chanbase + D40_CHAN_REG_SDLNK);
2079 } else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
2080 status = readl(chanbase + D40_CHAN_REG_SSLNK);
2081 } else {
2082 chan_err(d40c, "Unknown direction\n");
2083 goto unlock;
2084 }
2085
2086 status = (status & D40_EVENTLINE_MASK(event)) >>
2087 D40_EVENTLINE_POS(event);
2088
2089 if (status != D40_DMA_RUN)
2090 is_paused = true;
2091 unlock:
2092 spin_unlock_irqrestore(&d40c->lock, flags);
2093 return is_paused;
2094
2095}
2096
2097static u32 stedma40_residue(struct dma_chan *chan)
2098{
2099 struct d40_chan *d40c =
2100 container_of(chan, struct d40_chan, chan);
2101 u32 bytes_left;
2102 unsigned long flags;
2103
2104 spin_lock_irqsave(&d40c->lock, flags);
2105 bytes_left = d40_residue(d40c);
2106 spin_unlock_irqrestore(&d40c->lock, flags);
2107
2108 return bytes_left;
2109}
2110
2111static int
2112d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
2113 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2114 unsigned int sg_len, dma_addr_t src_dev_addr,
2115 dma_addr_t dst_dev_addr)
2116{
2117 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2118 struct stedma40_half_channel_info *src_info = &cfg->src_info;
2119 struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2120 int ret;
2121
2122 ret = d40_log_sg_to_lli(sg_src, sg_len,
2123 src_dev_addr,
2124 desc->lli_log.src,
2125 chan->log_def.lcsp1,
2126 src_info->data_width,
2127 dst_info->data_width);
2128
2129 ret = d40_log_sg_to_lli(sg_dst, sg_len,
2130 dst_dev_addr,
2131 desc->lli_log.dst,
2132 chan->log_def.lcsp3,
2133 dst_info->data_width,
2134 src_info->data_width);
2135
2136 return ret < 0 ? ret : 0;
2137}
2138
2139static int
2140d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2141 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2142 unsigned int sg_len, dma_addr_t src_dev_addr,
2143 dma_addr_t dst_dev_addr)
2144{
2145 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2146 struct stedma40_half_channel_info *src_info = &cfg->src_info;
2147 struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2148 unsigned long flags = 0;
2149 int ret;
2150
2151 if (desc->cyclic)
2152 flags |= LLI_CYCLIC | LLI_TERM_INT;
2153
2154 ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2155 desc->lli_phy.src,
2156 virt_to_phys(desc->lli_phy.src),
2157 chan->src_def_cfg,
2158 src_info, dst_info, flags);
2159
2160 ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2161 desc->lli_phy.dst,
2162 virt_to_phys(desc->lli_phy.dst),
2163 chan->dst_def_cfg,
2164 dst_info, src_info, flags);
2165
2166 dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2167 desc->lli_pool.size, DMA_TO_DEVICE);
2168
2169 return ret < 0 ? ret : 0;
2170}
2171
2172static struct d40_desc *
2173d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2174 unsigned int sg_len, unsigned long dma_flags)
2175{
2176 struct stedma40_chan_cfg *cfg;
2177 struct d40_desc *desc;
2178 int ret;
2179
2180 desc = d40_desc_get(chan);
2181 if (!desc)
2182 return NULL;
2183
2184 cfg = &chan->dma_cfg;
2185 desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2186 cfg->dst_info.data_width);
2187 if (desc->lli_len < 0) {
2188 chan_err(chan, "Unaligned size\n");
2189 goto free_desc;
2190 }
2191
2192 ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2193 if (ret < 0) {
2194 chan_err(chan, "Could not allocate lli\n");
2195 goto free_desc;
2196 }
2197
2198 desc->lli_current = 0;
2199 desc->txd.flags = dma_flags;
2200 desc->txd.tx_submit = d40_tx_submit;
2201
2202 dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2203
2204 return desc;
2205 free_desc:
2206 d40_desc_free(chan, desc);
2207 return NULL;
2208}
2209
2210static struct dma_async_tx_descriptor *
2211d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2212 struct scatterlist *sg_dst, unsigned int sg_len,
2213 enum dma_transfer_direction direction, unsigned long dma_flags)
2214{
2215 struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2216 dma_addr_t src_dev_addr;
2217 dma_addr_t dst_dev_addr;
2218 struct d40_desc *desc;
2219 unsigned long flags;
2220 int ret;
2221
2222 if (!chan->phy_chan) {
2223 chan_err(chan, "Cannot prepare unallocated channel\n");
2224 return NULL;
2225 }
2226
2227 d40_set_runtime_config_write(dchan, &chan->slave_config, direction);
2228
2229 spin_lock_irqsave(&chan->lock, flags);
2230
2231 desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2232 if (desc == NULL)
2233 goto unlock;
2234
2235 if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2236 desc->cyclic = true;
2237
2238 src_dev_addr = 0;
2239 dst_dev_addr = 0;
2240 if (direction == DMA_DEV_TO_MEM)
2241 src_dev_addr = chan->runtime_addr;
2242 else if (direction == DMA_MEM_TO_DEV)
2243 dst_dev_addr = chan->runtime_addr;
2244
2245 if (chan_is_logical(chan))
2246 ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2247 sg_len, src_dev_addr, dst_dev_addr);
2248 else
2249 ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2250 sg_len, src_dev_addr, dst_dev_addr);
2251
2252 if (ret) {
2253 chan_err(chan, "Failed to prepare %s sg job: %d\n",
2254 chan_is_logical(chan) ? "log" : "phy", ret);
2255 goto free_desc;
2256 }
2257
2258 /*
2259 * add descriptor to the prepare queue in order to be able
2260 * to free them later in terminate_all
2261 */
2262 list_add_tail(&desc->node, &chan->prepare_queue);
2263
2264 spin_unlock_irqrestore(&chan->lock, flags);
2265
2266 return &desc->txd;
2267 free_desc:
2268 d40_desc_free(chan, desc);
2269 unlock:
2270 spin_unlock_irqrestore(&chan->lock, flags);
2271 return NULL;
2272}
2273
2274bool stedma40_filter(struct dma_chan *chan, void *data)
2275{
2276 struct stedma40_chan_cfg *info = data;
2277 struct d40_chan *d40c =
2278 container_of(chan, struct d40_chan, chan);
2279 int err;
2280
2281 if (data) {
2282 err = d40_validate_conf(d40c, info);
2283 if (!err)
2284 d40c->dma_cfg = *info;
2285 } else
2286 err = d40_config_memcpy(d40c);
2287
2288 if (!err)
2289 d40c->configured = true;
2290
2291 return err == 0;
2292}
2293EXPORT_SYMBOL(stedma40_filter);
2294
2295static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2296{
2297 bool realtime = d40c->dma_cfg.realtime;
2298 bool highprio = d40c->dma_cfg.high_priority;
2299 u32 rtreg;
2300 u32 event = D40_TYPE_TO_EVENT(dev_type);
2301 u32 group = D40_TYPE_TO_GROUP(dev_type);
2302 u32 bit = BIT(event);
2303 u32 prioreg;
2304 struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2305
2306 rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2307 /*
2308 * Due to a hardware bug, in some cases a logical channel triggered by
2309 * a high priority destination event line can generate extra packet
2310 * transactions.
2311 *
2312 * The workaround is to not set the high priority level for the
2313 * destination event lines that trigger logical channels.
2314 */
2315 if (!src && chan_is_logical(d40c))
2316 highprio = false;
2317
2318 prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2319
2320 /* Destination event lines are stored in the upper halfword */
2321 if (!src)
2322 bit <<= 16;
2323
2324 writel(bit, d40c->base->virtbase + prioreg + group * 4);
2325 writel(bit, d40c->base->virtbase + rtreg + group * 4);
2326}
2327
2328static void d40_set_prio_realtime(struct d40_chan *d40c)
2329{
2330 if (d40c->base->rev < 3)
2331 return;
2332
2333 if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
2334 (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2335 __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2336
2337 if ((d40c->dma_cfg.dir == DMA_MEM_TO_DEV) ||
2338 (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2339 __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2340}
2341
2342#define D40_DT_FLAGS_MODE(flags) ((flags >> 0) & 0x1)
2343#define D40_DT_FLAGS_DIR(flags) ((flags >> 1) & 0x1)
2344#define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2345#define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2346#define D40_DT_FLAGS_HIGH_PRIO(flags) ((flags >> 4) & 0x1)
2347
2348static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
2349 struct of_dma *ofdma)
2350{
2351 struct stedma40_chan_cfg cfg;
2352 dma_cap_mask_t cap;
2353 u32 flags;
2354
2355 memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
2356
2357 dma_cap_zero(cap);
2358 dma_cap_set(DMA_SLAVE, cap);
2359
2360 cfg.dev_type = dma_spec->args[0];
2361 flags = dma_spec->args[2];
2362
2363 switch (D40_DT_FLAGS_MODE(flags)) {
2364 case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
2365 case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
2366 }
2367
2368 switch (D40_DT_FLAGS_DIR(flags)) {
2369 case 0:
2370 cfg.dir = DMA_MEM_TO_DEV;
2371 cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2372 break;
2373 case 1:
2374 cfg.dir = DMA_DEV_TO_MEM;
2375 cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2376 break;
2377 }
2378
2379 if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
2380 cfg.phy_channel = dma_spec->args[1];
2381 cfg.use_fixed_channel = true;
2382 }
2383
2384 if (D40_DT_FLAGS_HIGH_PRIO(flags))
2385 cfg.high_priority = true;
2386
2387 return dma_request_channel(cap, stedma40_filter, &cfg);
2388}
2389
2390/* DMA ENGINE functions */
2391static int d40_alloc_chan_resources(struct dma_chan *chan)
2392{
2393 int err;
2394 unsigned long flags;
2395 struct d40_chan *d40c =
2396 container_of(chan, struct d40_chan, chan);
2397 bool is_free_phy;
2398 spin_lock_irqsave(&d40c->lock, flags);
2399
2400 dma_cookie_init(chan);
2401
2402 /* If no dma configuration is set use default configuration (memcpy) */
2403 if (!d40c->configured) {
2404 err = d40_config_memcpy(d40c);
2405 if (err) {
2406 chan_err(d40c, "Failed to configure memcpy channel\n");
2407 goto mark_last_busy;
2408 }
2409 }
2410
2411 err = d40_allocate_channel(d40c, &is_free_phy);
2412 if (err) {
2413 chan_err(d40c, "Failed to allocate channel\n");
2414 d40c->configured = false;
2415 goto mark_last_busy;
2416 }
2417
2418 pm_runtime_get_sync(d40c->base->dev);
2419
2420 d40_set_prio_realtime(d40c);
2421
2422 if (chan_is_logical(d40c)) {
2423 if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2424 d40c->lcpa = d40c->base->lcpa_base +
2425 d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2426 else
2427 d40c->lcpa = d40c->base->lcpa_base +
2428 d40c->dma_cfg.dev_type *
2429 D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2430
2431 /* Unmask the Global Interrupt Mask. */
2432 d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2433 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2434 }
2435
2436 dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2437 chan_is_logical(d40c) ? "logical" : "physical",
2438 d40c->phy_chan->num,
2439 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2440
2441
2442 /*
2443 * Only write channel configuration to the DMA if the physical
2444 * resource is free. In case of multiple logical channels
2445 * on the same physical resource, only the first write is necessary.
2446 */
2447 if (is_free_phy)
2448 d40_config_write(d40c);
2449 mark_last_busy:
2450 pm_runtime_mark_last_busy(d40c->base->dev);
2451 pm_runtime_put_autosuspend(d40c->base->dev);
2452 spin_unlock_irqrestore(&d40c->lock, flags);
2453 return err;
2454}
2455
2456static void d40_free_chan_resources(struct dma_chan *chan)
2457{
2458 struct d40_chan *d40c =
2459 container_of(chan, struct d40_chan, chan);
2460 int err;
2461 unsigned long flags;
2462
2463 if (d40c->phy_chan == NULL) {
2464 chan_err(d40c, "Cannot free unallocated channel\n");
2465 return;
2466 }
2467
2468 spin_lock_irqsave(&d40c->lock, flags);
2469
2470 err = d40_free_dma(d40c);
2471
2472 if (err)
2473 chan_err(d40c, "Failed to free channel\n");
2474 spin_unlock_irqrestore(&d40c->lock, flags);
2475}
2476
2477static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2478 dma_addr_t dst,
2479 dma_addr_t src,
2480 size_t size,
2481 unsigned long dma_flags)
2482{
2483 struct scatterlist dst_sg;
2484 struct scatterlist src_sg;
2485
2486 sg_init_table(&dst_sg, 1);
2487 sg_init_table(&src_sg, 1);
2488
2489 sg_dma_address(&dst_sg) = dst;
2490 sg_dma_address(&src_sg) = src;
2491
2492 sg_dma_len(&dst_sg) = size;
2493 sg_dma_len(&src_sg) = size;
2494
2495 return d40_prep_sg(chan, &src_sg, &dst_sg, 1,
2496 DMA_MEM_TO_MEM, dma_flags);
2497}
2498
2499static struct dma_async_tx_descriptor *
2500d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2501 unsigned int sg_len, enum dma_transfer_direction direction,
2502 unsigned long dma_flags, void *context)
2503{
2504 if (!is_slave_direction(direction))
2505 return NULL;
2506
2507 return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2508}
2509
2510static struct dma_async_tx_descriptor *
2511dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2512 size_t buf_len, size_t period_len,
2513 enum dma_transfer_direction direction, unsigned long flags)
2514{
2515 unsigned int periods = buf_len / period_len;
2516 struct dma_async_tx_descriptor *txd;
2517 struct scatterlist *sg;
2518 int i;
2519
2520 sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2521 if (!sg)
2522 return NULL;
2523
2524 for (i = 0; i < periods; i++) {
2525 sg_dma_address(&sg[i]) = dma_addr;
2526 sg_dma_len(&sg[i]) = period_len;
2527 dma_addr += period_len;
2528 }
2529
2530 sg_chain(sg, periods + 1, sg);
2531
2532 txd = d40_prep_sg(chan, sg, sg, periods, direction,
2533 DMA_PREP_INTERRUPT);
2534
2535 kfree(sg);
2536
2537 return txd;
2538}
2539
2540static enum dma_status d40_tx_status(struct dma_chan *chan,
2541 dma_cookie_t cookie,
2542 struct dma_tx_state *txstate)
2543{
2544 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2545 enum dma_status ret;
2546
2547 if (d40c->phy_chan == NULL) {
2548 chan_err(d40c, "Cannot read status of unallocated channel\n");
2549 return -EINVAL;
2550 }
2551
2552 ret = dma_cookie_status(chan, cookie, txstate);
2553 if (ret != DMA_COMPLETE && txstate)
2554 dma_set_residue(txstate, stedma40_residue(chan));
2555
2556 if (d40_is_paused(d40c))
2557 ret = DMA_PAUSED;
2558
2559 return ret;
2560}
2561
2562static void d40_issue_pending(struct dma_chan *chan)
2563{
2564 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2565 unsigned long flags;
2566
2567 if (d40c->phy_chan == NULL) {
2568 chan_err(d40c, "Channel is not allocated!\n");
2569 return;
2570 }
2571
2572 spin_lock_irqsave(&d40c->lock, flags);
2573
2574 list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2575
2576 /* Busy means that queued jobs are already being processed */
2577 if (!d40c->busy)
2578 (void) d40_queue_start(d40c);
2579
2580 spin_unlock_irqrestore(&d40c->lock, flags);
2581}
2582
2583static int d40_terminate_all(struct dma_chan *chan)
2584{
2585 unsigned long flags;
2586 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2587 int ret;
2588
2589 if (d40c->phy_chan == NULL) {
2590 chan_err(d40c, "Channel is not allocated!\n");
2591 return -EINVAL;
2592 }
2593
2594 spin_lock_irqsave(&d40c->lock, flags);
2595
2596 pm_runtime_get_sync(d40c->base->dev);
2597 ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2598 if (ret)
2599 chan_err(d40c, "Failed to stop channel\n");
2600
2601 d40_term_all(d40c);
2602 pm_runtime_mark_last_busy(d40c->base->dev);
2603 pm_runtime_put_autosuspend(d40c->base->dev);
2604 if (d40c->busy) {
2605 pm_runtime_mark_last_busy(d40c->base->dev);
2606 pm_runtime_put_autosuspend(d40c->base->dev);
2607 }
2608 d40c->busy = false;
2609
2610 spin_unlock_irqrestore(&d40c->lock, flags);
2611 return 0;
2612}
2613
2614static int
2615dma40_config_to_halfchannel(struct d40_chan *d40c,
2616 struct stedma40_half_channel_info *info,
2617 u32 maxburst)
2618{
2619 int psize;
2620
2621 if (chan_is_logical(d40c)) {
2622 if (maxburst >= 16)
2623 psize = STEDMA40_PSIZE_LOG_16;
2624 else if (maxburst >= 8)
2625 psize = STEDMA40_PSIZE_LOG_8;
2626 else if (maxburst >= 4)
2627 psize = STEDMA40_PSIZE_LOG_4;
2628 else
2629 psize = STEDMA40_PSIZE_LOG_1;
2630 } else {
2631 if (maxburst >= 16)
2632 psize = STEDMA40_PSIZE_PHY_16;
2633 else if (maxburst >= 8)
2634 psize = STEDMA40_PSIZE_PHY_8;
2635 else if (maxburst >= 4)
2636 psize = STEDMA40_PSIZE_PHY_4;
2637 else
2638 psize = STEDMA40_PSIZE_PHY_1;
2639 }
2640
2641 info->psize = psize;
2642 info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2643
2644 return 0;
2645}
2646
2647static int d40_set_runtime_config(struct dma_chan *chan,
2648 struct dma_slave_config *config)
2649{
2650 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2651
2652 memcpy(&d40c->slave_config, config, sizeof(*config));
2653
2654 return 0;
2655}
2656
2657/* Runtime reconfiguration extension */
2658static int d40_set_runtime_config_write(struct dma_chan *chan,
2659 struct dma_slave_config *config,
2660 enum dma_transfer_direction direction)
2661{
2662 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2663 struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2664 enum dma_slave_buswidth src_addr_width, dst_addr_width;
2665 dma_addr_t config_addr;
2666 u32 src_maxburst, dst_maxburst;
2667 int ret;
2668
2669 if (d40c->phy_chan == NULL) {
2670 chan_err(d40c, "Channel is not allocated!\n");
2671 return -EINVAL;
2672 }
2673
2674 src_addr_width = config->src_addr_width;
2675 src_maxburst = config->src_maxburst;
2676 dst_addr_width = config->dst_addr_width;
2677 dst_maxburst = config->dst_maxburst;
2678
2679 if (direction == DMA_DEV_TO_MEM) {
2680 config_addr = config->src_addr;
2681
2682 if (cfg->dir != DMA_DEV_TO_MEM)
2683 dev_dbg(d40c->base->dev,
2684 "channel was not configured for peripheral "
2685 "to memory transfer (%d) overriding\n",
2686 cfg->dir);
2687 cfg->dir = DMA_DEV_TO_MEM;
2688
2689 /* Configure the memory side */
2690 if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2691 dst_addr_width = src_addr_width;
2692 if (dst_maxburst == 0)
2693 dst_maxburst = src_maxburst;
2694
2695 } else if (direction == DMA_MEM_TO_DEV) {
2696 config_addr = config->dst_addr;
2697
2698 if (cfg->dir != DMA_MEM_TO_DEV)
2699 dev_dbg(d40c->base->dev,
2700 "channel was not configured for memory "
2701 "to peripheral transfer (%d) overriding\n",
2702 cfg->dir);
2703 cfg->dir = DMA_MEM_TO_DEV;
2704
2705 /* Configure the memory side */
2706 if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2707 src_addr_width = dst_addr_width;
2708 if (src_maxburst == 0)
2709 src_maxburst = dst_maxburst;
2710 } else {
2711 dev_err(d40c->base->dev,
2712 "unrecognized channel direction %d\n",
2713 direction);
2714 return -EINVAL;
2715 }
2716
2717 if (config_addr <= 0) {
2718 dev_err(d40c->base->dev, "no address supplied\n");
2719 return -EINVAL;
2720 }
2721
2722 if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2723 dev_err(d40c->base->dev,
2724 "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2725 src_maxburst,
2726 src_addr_width,
2727 dst_maxburst,
2728 dst_addr_width);
2729 return -EINVAL;
2730 }
2731
2732 if (src_maxburst > 16) {
2733 src_maxburst = 16;
2734 dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
2735 } else if (dst_maxburst > 16) {
2736 dst_maxburst = 16;
2737 src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
2738 }
2739
2740 /* Only valid widths are; 1, 2, 4 and 8. */
2741 if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2742 src_addr_width > DMA_SLAVE_BUSWIDTH_8_BYTES ||
2743 dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2744 dst_addr_width > DMA_SLAVE_BUSWIDTH_8_BYTES ||
2745 !is_power_of_2(src_addr_width) ||
2746 !is_power_of_2(dst_addr_width))
2747 return -EINVAL;
2748
2749 cfg->src_info.data_width = src_addr_width;
2750 cfg->dst_info.data_width = dst_addr_width;
2751
2752 ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2753 src_maxburst);
2754 if (ret)
2755 return ret;
2756
2757 ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2758 dst_maxburst);
2759 if (ret)
2760 return ret;
2761
2762 /* Fill in register values */
2763 if (chan_is_logical(d40c))
2764 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2765 else
2766 d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
2767
2768 /* These settings will take precedence later */
2769 d40c->runtime_addr = config_addr;
2770 d40c->runtime_direction = direction;
2771 dev_dbg(d40c->base->dev,
2772 "configured channel %s for %s, data width %d/%d, "
2773 "maxburst %d/%d elements, LE, no flow control\n",
2774 dma_chan_name(chan),
2775 (direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2776 src_addr_width, dst_addr_width,
2777 src_maxburst, dst_maxburst);
2778
2779 return 0;
2780}
2781
2782/* Initialization functions */
2783
2784static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2785 struct d40_chan *chans, int offset,
2786 int num_chans)
2787{
2788 int i = 0;
2789 struct d40_chan *d40c;
2790
2791 INIT_LIST_HEAD(&dma->channels);
2792
2793 for (i = offset; i < offset + num_chans; i++) {
2794 d40c = &chans[i];
2795 d40c->base = base;
2796 d40c->chan.device = dma;
2797
2798 spin_lock_init(&d40c->lock);
2799
2800 d40c->log_num = D40_PHY_CHAN;
2801
2802 INIT_LIST_HEAD(&d40c->done);
2803 INIT_LIST_HEAD(&d40c->active);
2804 INIT_LIST_HEAD(&d40c->queue);
2805 INIT_LIST_HEAD(&d40c->pending_queue);
2806 INIT_LIST_HEAD(&d40c->client);
2807 INIT_LIST_HEAD(&d40c->prepare_queue);
2808
2809 tasklet_init(&d40c->tasklet, dma_tasklet,
2810 (unsigned long) d40c);
2811
2812 list_add_tail(&d40c->chan.device_node,
2813 &dma->channels);
2814 }
2815}
2816
2817static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2818{
2819 if (dma_has_cap(DMA_SLAVE, dev->cap_mask)) {
2820 dev->device_prep_slave_sg = d40_prep_slave_sg;
2821 dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2822 }
2823
2824 if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2825 dev->device_prep_dma_memcpy = d40_prep_memcpy;
2826 dev->directions = BIT(DMA_MEM_TO_MEM);
2827 /*
2828 * This controller can only access address at even
2829 * 32bit boundaries, i.e. 2^2
2830 */
2831 dev->copy_align = DMAENGINE_ALIGN_4_BYTES;
2832 }
2833
2834 if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2835 dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2836
2837 dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2838 dev->device_free_chan_resources = d40_free_chan_resources;
2839 dev->device_issue_pending = d40_issue_pending;
2840 dev->device_tx_status = d40_tx_status;
2841 dev->device_config = d40_set_runtime_config;
2842 dev->device_pause = d40_pause;
2843 dev->device_resume = d40_resume;
2844 dev->device_terminate_all = d40_terminate_all;
2845 dev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2846 dev->dev = base->dev;
2847}
2848
2849static int __init d40_dmaengine_init(struct d40_base *base,
2850 int num_reserved_chans)
2851{
2852 int err ;
2853
2854 d40_chan_init(base, &base->dma_slave, base->log_chans,
2855 0, base->num_log_chans);
2856
2857 dma_cap_zero(base->dma_slave.cap_mask);
2858 dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2859 dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2860
2861 d40_ops_init(base, &base->dma_slave);
2862
2863 err = dmaenginem_async_device_register(&base->dma_slave);
2864
2865 if (err) {
2866 d40_err(base->dev, "Failed to register slave channels\n");
2867 goto exit;
2868 }
2869
2870 d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2871 base->num_log_chans, base->num_memcpy_chans);
2872
2873 dma_cap_zero(base->dma_memcpy.cap_mask);
2874 dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2875
2876 d40_ops_init(base, &base->dma_memcpy);
2877
2878 err = dmaenginem_async_device_register(&base->dma_memcpy);
2879
2880 if (err) {
2881 d40_err(base->dev,
2882 "Failed to register memcpy only channels\n");
2883 goto exit;
2884 }
2885
2886 d40_chan_init(base, &base->dma_both, base->phy_chans,
2887 0, num_reserved_chans);
2888
2889 dma_cap_zero(base->dma_both.cap_mask);
2890 dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2891 dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2892 dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2893
2894 d40_ops_init(base, &base->dma_both);
2895 err = dmaenginem_async_device_register(&base->dma_both);
2896
2897 if (err) {
2898 d40_err(base->dev,
2899 "Failed to register logical and physical capable channels\n");
2900 goto exit;
2901 }
2902 return 0;
2903 exit:
2904 return err;
2905}
2906
2907/* Suspend resume functionality */
2908#ifdef CONFIG_PM_SLEEP
2909static int dma40_suspend(struct device *dev)
2910{
2911 struct d40_base *base = dev_get_drvdata(dev);
2912 int ret;
2913
2914 ret = pm_runtime_force_suspend(dev);
2915 if (ret)
2916 return ret;
2917
2918 if (base->lcpa_regulator)
2919 ret = regulator_disable(base->lcpa_regulator);
2920 return ret;
2921}
2922
2923static int dma40_resume(struct device *dev)
2924{
2925 struct d40_base *base = dev_get_drvdata(dev);
2926 int ret = 0;
2927
2928 if (base->lcpa_regulator) {
2929 ret = regulator_enable(base->lcpa_regulator);
2930 if (ret)
2931 return ret;
2932 }
2933
2934 return pm_runtime_force_resume(dev);
2935}
2936#endif
2937
2938#ifdef CONFIG_PM
2939static void dma40_backup(void __iomem *baseaddr, u32 *backup,
2940 u32 *regaddr, int num, bool save)
2941{
2942 int i;
2943
2944 for (i = 0; i < num; i++) {
2945 void __iomem *addr = baseaddr + regaddr[i];
2946
2947 if (save)
2948 backup[i] = readl_relaxed(addr);
2949 else
2950 writel_relaxed(backup[i], addr);
2951 }
2952}
2953
2954static void d40_save_restore_registers(struct d40_base *base, bool save)
2955{
2956 int i;
2957
2958 /* Save/Restore channel specific registers */
2959 for (i = 0; i < base->num_phy_chans; i++) {
2960 void __iomem *addr;
2961 int idx;
2962
2963 if (base->phy_res[i].reserved)
2964 continue;
2965
2966 addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
2967 idx = i * ARRAY_SIZE(d40_backup_regs_chan);
2968
2969 dma40_backup(addr, &base->reg_val_backup_chan[idx],
2970 d40_backup_regs_chan,
2971 ARRAY_SIZE(d40_backup_regs_chan),
2972 save);
2973 }
2974
2975 /* Save/Restore global registers */
2976 dma40_backup(base->virtbase, base->reg_val_backup,
2977 d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
2978 save);
2979
2980 /* Save/Restore registers only existing on dma40 v3 and later */
2981 if (base->gen_dmac.backup)
2982 dma40_backup(base->virtbase, base->reg_val_backup_v4,
2983 base->gen_dmac.backup,
2984 base->gen_dmac.backup_size,
2985 save);
2986}
2987
2988static int dma40_runtime_suspend(struct device *dev)
2989{
2990 struct d40_base *base = dev_get_drvdata(dev);
2991
2992 d40_save_restore_registers(base, true);
2993
2994 /* Don't disable/enable clocks for v1 due to HW bugs */
2995 if (base->rev != 1)
2996 writel_relaxed(base->gcc_pwr_off_mask,
2997 base->virtbase + D40_DREG_GCC);
2998
2999 return 0;
3000}
3001
3002static int dma40_runtime_resume(struct device *dev)
3003{
3004 struct d40_base *base = dev_get_drvdata(dev);
3005
3006 d40_save_restore_registers(base, false);
3007
3008 writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
3009 base->virtbase + D40_DREG_GCC);
3010 return 0;
3011}
3012#endif
3013
3014static const struct dev_pm_ops dma40_pm_ops = {
3015 SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume)
3016 SET_RUNTIME_PM_OPS(dma40_runtime_suspend,
3017 dma40_runtime_resume,
3018 NULL)
3019};
3020
3021/* Initialization functions. */
3022
3023static int __init d40_phy_res_init(struct d40_base *base)
3024{
3025 int i;
3026 int num_phy_chans_avail = 0;
3027 u32 val[2];
3028 int odd_even_bit = -2;
3029 int gcc = D40_DREG_GCC_ENA;
3030
3031 val[0] = readl(base->virtbase + D40_DREG_PRSME);
3032 val[1] = readl(base->virtbase + D40_DREG_PRSMO);
3033
3034 for (i = 0; i < base->num_phy_chans; i++) {
3035 base->phy_res[i].num = i;
3036 odd_even_bit += 2 * ((i % 2) == 0);
3037 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
3038 /* Mark security only channels as occupied */
3039 base->phy_res[i].allocated_src = D40_ALLOC_PHY;
3040 base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3041 base->phy_res[i].reserved = true;
3042 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3043 D40_DREG_GCC_SRC);
3044 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3045 D40_DREG_GCC_DST);
3046
3047
3048 } else {
3049 base->phy_res[i].allocated_src = D40_ALLOC_FREE;
3050 base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3051 base->phy_res[i].reserved = false;
3052 num_phy_chans_avail++;
3053 }
3054 spin_lock_init(&base->phy_res[i].lock);
3055 }
3056
3057 /* Mark disabled channels as occupied */
3058 for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3059 int chan = base->plat_data->disabled_channels[i];
3060
3061 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
3062 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3063 base->phy_res[chan].reserved = true;
3064 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3065 D40_DREG_GCC_SRC);
3066 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3067 D40_DREG_GCC_DST);
3068 num_phy_chans_avail--;
3069 }
3070
3071 /* Mark soft_lli channels */
3072 for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
3073 int chan = base->plat_data->soft_lli_chans[i];
3074
3075 base->phy_res[chan].use_soft_lli = true;
3076 }
3077
3078 dev_info(base->dev, "%d of %d physical DMA channels available\n",
3079 num_phy_chans_avail, base->num_phy_chans);
3080
3081 /* Verify settings extended vs standard */
3082 val[0] = readl(base->virtbase + D40_DREG_PRTYP);
3083
3084 for (i = 0; i < base->num_phy_chans; i++) {
3085
3086 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
3087 (val[0] & 0x3) != 1)
3088 dev_info(base->dev,
3089 "[%s] INFO: channel %d is misconfigured (%d)\n",
3090 __func__, i, val[0] & 0x3);
3091
3092 val[0] = val[0] >> 2;
3093 }
3094
3095 /*
3096 * To keep things simple, Enable all clocks initially.
3097 * The clocks will get managed later post channel allocation.
3098 * The clocks for the event lines on which reserved channels exists
3099 * are not managed here.
3100 */
3101 writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3102 base->gcc_pwr_off_mask = gcc;
3103
3104 return num_phy_chans_avail;
3105}
3106
3107static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
3108{
3109 struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3110 struct clk *clk;
3111 void __iomem *virtbase;
3112 struct resource *res;
3113 struct d40_base *base;
3114 int num_log_chans;
3115 int num_phy_chans;
3116 int num_memcpy_chans;
3117 int clk_ret = -EINVAL;
3118 int i;
3119 u32 pid;
3120 u32 cid;
3121 u8 rev;
3122
3123 clk = clk_get(&pdev->dev, NULL);
3124 if (IS_ERR(clk)) {
3125 d40_err(&pdev->dev, "No matching clock found\n");
3126 goto check_prepare_enabled;
3127 }
3128
3129 clk_ret = clk_prepare_enable(clk);
3130 if (clk_ret) {
3131 d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
3132 goto disable_unprepare;
3133 }
3134
3135 /* Get IO for DMAC base address */
3136 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3137 if (!res)
3138 goto disable_unprepare;
3139
3140 if (request_mem_region(res->start, resource_size(res),
3141 D40_NAME " I/O base") == NULL)
3142 goto release_region;
3143
3144 virtbase = ioremap(res->start, resource_size(res));
3145 if (!virtbase)
3146 goto release_region;
3147
3148 /* This is just a regular AMBA PrimeCell ID actually */
3149 for (pid = 0, i = 0; i < 4; i++)
3150 pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
3151 & 255) << (i * 8);
3152 for (cid = 0, i = 0; i < 4; i++)
3153 cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
3154 & 255) << (i * 8);
3155
3156 if (cid != AMBA_CID) {
3157 d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
3158 goto unmap_io;
3159 }
3160 if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3161 d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
3162 AMBA_MANF_BITS(pid),
3163 AMBA_VENDOR_ST);
3164 goto unmap_io;
3165 }
3166 /*
3167 * HW revision:
3168 * DB8500ed has revision 0
3169 * ? has revision 1
3170 * DB8500v1 has revision 2
3171 * DB8500v2 has revision 3
3172 * AP9540v1 has revision 4
3173 * DB8540v1 has revision 4
3174 */
3175 rev = AMBA_REV_BITS(pid);
3176 if (rev < 2) {
3177 d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
3178 goto unmap_io;
3179 }
3180
3181 /* The number of physical channels on this HW */
3182 if (plat_data->num_of_phy_chans)
3183 num_phy_chans = plat_data->num_of_phy_chans;
3184 else
3185 num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3186
3187 /* The number of channels used for memcpy */
3188 if (plat_data->num_of_memcpy_chans)
3189 num_memcpy_chans = plat_data->num_of_memcpy_chans;
3190 else
3191 num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
3192
3193 num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
3194
3195 dev_info(&pdev->dev,
3196 "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
3197 rev, &res->start, num_phy_chans, num_log_chans);
3198
3199 base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3200 (num_phy_chans + num_log_chans + num_memcpy_chans) *
3201 sizeof(struct d40_chan), GFP_KERNEL);
3202
3203 if (base == NULL)
3204 goto unmap_io;
3205
3206 base->rev = rev;
3207 base->clk = clk;
3208 base->num_memcpy_chans = num_memcpy_chans;
3209 base->num_phy_chans = num_phy_chans;
3210 base->num_log_chans = num_log_chans;
3211 base->phy_start = res->start;
3212 base->phy_size = resource_size(res);
3213 base->virtbase = virtbase;
3214 base->plat_data = plat_data;
3215 base->dev = &pdev->dev;
3216 base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3217 base->log_chans = &base->phy_chans[num_phy_chans];
3218
3219 if (base->plat_data->num_of_phy_chans == 14) {
3220 base->gen_dmac.backup = d40_backup_regs_v4b;
3221 base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
3222 base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
3223 base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
3224 base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
3225 base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
3226 base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
3227 base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
3228 base->gen_dmac.il = il_v4b;
3229 base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
3230 base->gen_dmac.init_reg = dma_init_reg_v4b;
3231 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
3232 } else {
3233 if (base->rev >= 3) {
3234 base->gen_dmac.backup = d40_backup_regs_v4a;
3235 base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
3236 }
3237 base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
3238 base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
3239 base->gen_dmac.realtime_en = D40_DREG_RSEG1;
3240 base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
3241 base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
3242 base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
3243 base->gen_dmac.il = il_v4a;
3244 base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
3245 base->gen_dmac.init_reg = dma_init_reg_v4a;
3246 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
3247 }
3248
3249 base->phy_res = kcalloc(num_phy_chans,
3250 sizeof(*base->phy_res),
3251 GFP_KERNEL);
3252 if (!base->phy_res)
3253 goto free_base;
3254
3255 base->lookup_phy_chans = kcalloc(num_phy_chans,
3256 sizeof(*base->lookup_phy_chans),
3257 GFP_KERNEL);
3258 if (!base->lookup_phy_chans)
3259 goto free_phy_res;
3260
3261 base->lookup_log_chans = kcalloc(num_log_chans,
3262 sizeof(*base->lookup_log_chans),
3263 GFP_KERNEL);
3264 if (!base->lookup_log_chans)
3265 goto free_phy_chans;
3266
3267 base->reg_val_backup_chan = kmalloc_array(base->num_phy_chans,
3268 sizeof(d40_backup_regs_chan),
3269 GFP_KERNEL);
3270 if (!base->reg_val_backup_chan)
3271 goto free_log_chans;
3272
3273 base->lcla_pool.alloc_map = kcalloc(num_phy_chans
3274 * D40_LCLA_LINK_PER_EVENT_GRP,
3275 sizeof(*base->lcla_pool.alloc_map),
3276 GFP_KERNEL);
3277 if (!base->lcla_pool.alloc_map)
3278 goto free_backup_chan;
3279
3280 base->regs_interrupt = kmalloc_array(base->gen_dmac.il_size,
3281 sizeof(*base->regs_interrupt),
3282 GFP_KERNEL);
3283 if (!base->regs_interrupt)
3284 goto free_map;
3285
3286 base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3287 0, SLAB_HWCACHE_ALIGN,
3288 NULL);
3289 if (base->desc_slab == NULL)
3290 goto free_regs;
3291
3292
3293 return base;
3294 free_regs:
3295 kfree(base->regs_interrupt);
3296 free_map:
3297 kfree(base->lcla_pool.alloc_map);
3298 free_backup_chan:
3299 kfree(base->reg_val_backup_chan);
3300 free_log_chans:
3301 kfree(base->lookup_log_chans);
3302 free_phy_chans:
3303 kfree(base->lookup_phy_chans);
3304 free_phy_res:
3305 kfree(base->phy_res);
3306 free_base:
3307 kfree(base);
3308 unmap_io:
3309 iounmap(virtbase);
3310 release_region:
3311 release_mem_region(res->start, resource_size(res));
3312 check_prepare_enabled:
3313 if (!clk_ret)
3314 disable_unprepare:
3315 clk_disable_unprepare(clk);
3316 if (!IS_ERR(clk))
3317 clk_put(clk);
3318 return NULL;
3319}
3320
3321static void __init d40_hw_init(struct d40_base *base)
3322{
3323
3324 int i;
3325 u32 prmseo[2] = {0, 0};
3326 u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3327 u32 pcmis = 0;
3328 u32 pcicr = 0;
3329 struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
3330 u32 reg_size = base->gen_dmac.init_reg_size;
3331
3332 for (i = 0; i < reg_size; i++)
3333 writel(dma_init_reg[i].val,
3334 base->virtbase + dma_init_reg[i].reg);
3335
3336 /* Configure all our dma channels to default settings */
3337 for (i = 0; i < base->num_phy_chans; i++) {
3338
3339 activeo[i % 2] = activeo[i % 2] << 2;
3340
3341 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3342 == D40_ALLOC_PHY) {
3343 activeo[i % 2] |= 3;
3344 continue;
3345 }
3346
3347 /* Enable interrupt # */
3348 pcmis = (pcmis << 1) | 1;
3349
3350 /* Clear interrupt # */
3351 pcicr = (pcicr << 1) | 1;
3352
3353 /* Set channel to physical mode */
3354 prmseo[i % 2] = prmseo[i % 2] << 2;
3355 prmseo[i % 2] |= 1;
3356
3357 }
3358
3359 writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3360 writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3361 writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3362 writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3363
3364 /* Write which interrupt to enable */
3365 writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3366
3367 /* Write which interrupt to clear */
3368 writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3369
3370 /* These are __initdata and cannot be accessed after init */
3371 base->gen_dmac.init_reg = NULL;
3372 base->gen_dmac.init_reg_size = 0;
3373}
3374
3375static int __init d40_lcla_allocate(struct d40_base *base)
3376{
3377 struct d40_lcla_pool *pool = &base->lcla_pool;
3378 unsigned long *page_list;
3379 int i, j;
3380 int ret;
3381
3382 /*
3383 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3384 * To full fill this hardware requirement without wasting 256 kb
3385 * we allocate pages until we get an aligned one.
3386 */
3387 page_list = kmalloc_array(MAX_LCLA_ALLOC_ATTEMPTS,
3388 sizeof(*page_list),
3389 GFP_KERNEL);
3390 if (!page_list)
3391 return -ENOMEM;
3392
3393 /* Calculating how many pages that are required */
3394 base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3395
3396 for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3397 page_list[i] = __get_free_pages(GFP_KERNEL,
3398 base->lcla_pool.pages);
3399 if (!page_list[i]) {
3400
3401 d40_err(base->dev, "Failed to allocate %d pages.\n",
3402 base->lcla_pool.pages);
3403 ret = -ENOMEM;
3404
3405 for (j = 0; j < i; j++)
3406 free_pages(page_list[j], base->lcla_pool.pages);
3407 goto free_page_list;
3408 }
3409
3410 if ((virt_to_phys((void *)page_list[i]) &
3411 (LCLA_ALIGNMENT - 1)) == 0)
3412 break;
3413 }
3414
3415 for (j = 0; j < i; j++)
3416 free_pages(page_list[j], base->lcla_pool.pages);
3417
3418 if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3419 base->lcla_pool.base = (void *)page_list[i];
3420 } else {
3421 /*
3422 * After many attempts and no succees with finding the correct
3423 * alignment, try with allocating a big buffer.
3424 */
3425 dev_warn(base->dev,
3426 "[%s] Failed to get %d pages @ 18 bit align.\n",
3427 __func__, base->lcla_pool.pages);
3428 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3429 base->num_phy_chans +
3430 LCLA_ALIGNMENT,
3431 GFP_KERNEL);
3432 if (!base->lcla_pool.base_unaligned) {
3433 ret = -ENOMEM;
3434 goto free_page_list;
3435 }
3436
3437 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3438 LCLA_ALIGNMENT);
3439 }
3440
3441 pool->dma_addr = dma_map_single(base->dev, pool->base,
3442 SZ_1K * base->num_phy_chans,
3443 DMA_TO_DEVICE);
3444 if (dma_mapping_error(base->dev, pool->dma_addr)) {
3445 pool->dma_addr = 0;
3446 ret = -ENOMEM;
3447 goto free_page_list;
3448 }
3449
3450 writel(virt_to_phys(base->lcla_pool.base),
3451 base->virtbase + D40_DREG_LCLA);
3452 ret = 0;
3453 free_page_list:
3454 kfree(page_list);
3455 return ret;
3456}
3457
3458static int __init d40_of_probe(struct platform_device *pdev,
3459 struct device_node *np)
3460{
3461 struct stedma40_platform_data *pdata;
3462 int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3463 const __be32 *list;
3464
3465 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
3466 if (!pdata)
3467 return -ENOMEM;
3468
3469 /* If absent this value will be obtained from h/w. */
3470 of_property_read_u32(np, "dma-channels", &num_phy);
3471 if (num_phy > 0)
3472 pdata->num_of_phy_chans = num_phy;
3473
3474 list = of_get_property(np, "memcpy-channels", &num_memcpy);
3475 num_memcpy /= sizeof(*list);
3476
3477 if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
3478 d40_err(&pdev->dev,
3479 "Invalid number of memcpy channels specified (%d)\n",
3480 num_memcpy);
3481 return -EINVAL;
3482 }
3483 pdata->num_of_memcpy_chans = num_memcpy;
3484
3485 of_property_read_u32_array(np, "memcpy-channels",
3486 dma40_memcpy_channels,
3487 num_memcpy);
3488
3489 list = of_get_property(np, "disabled-channels", &num_disabled);
3490 num_disabled /= sizeof(*list);
3491
3492 if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
3493 d40_err(&pdev->dev,
3494 "Invalid number of disabled channels specified (%d)\n",
3495 num_disabled);
3496 return -EINVAL;
3497 }
3498
3499 of_property_read_u32_array(np, "disabled-channels",
3500 pdata->disabled_channels,
3501 num_disabled);
3502 pdata->disabled_channels[num_disabled] = -1;
3503
3504 pdev->dev.platform_data = pdata;
3505
3506 return 0;
3507}
3508
3509static int __init d40_probe(struct platform_device *pdev)
3510{
3511 struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3512 struct device_node *np = pdev->dev.of_node;
3513 int ret = -ENOENT;
3514 struct d40_base *base;
3515 struct resource *res;
3516 int num_reserved_chans;
3517 u32 val;
3518
3519 if (!plat_data) {
3520 if (np) {
3521 if (d40_of_probe(pdev, np)) {
3522 ret = -ENOMEM;
3523 goto report_failure;
3524 }
3525 } else {
3526 d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
3527 goto report_failure;
3528 }
3529 }
3530
3531 base = d40_hw_detect_init(pdev);
3532 if (!base)
3533 goto report_failure;
3534
3535 num_reserved_chans = d40_phy_res_init(base);
3536
3537 platform_set_drvdata(pdev, base);
3538
3539 spin_lock_init(&base->interrupt_lock);
3540 spin_lock_init(&base->execmd_lock);
3541
3542 /* Get IO for logical channel parameter address */
3543 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3544 if (!res) {
3545 ret = -ENOENT;
3546 d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3547 goto destroy_cache;
3548 }
3549 base->lcpa_size = resource_size(res);
3550 base->phy_lcpa = res->start;
3551
3552 if (request_mem_region(res->start, resource_size(res),
3553 D40_NAME " I/O lcpa") == NULL) {
3554 ret = -EBUSY;
3555 d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
3556 goto destroy_cache;
3557 }
3558
3559 /* We make use of ESRAM memory for this. */
3560 val = readl(base->virtbase + D40_DREG_LCPA);
3561 if (res->start != val && val != 0) {
3562 dev_warn(&pdev->dev,
3563 "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
3564 __func__, val, &res->start);
3565 } else
3566 writel(res->start, base->virtbase + D40_DREG_LCPA);
3567
3568 base->lcpa_base = ioremap(res->start, resource_size(res));
3569 if (!base->lcpa_base) {
3570 ret = -ENOMEM;
3571 d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3572 goto destroy_cache;
3573 }
3574 /* If lcla has to be located in ESRAM we don't need to allocate */
3575 if (base->plat_data->use_esram_lcla) {
3576 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3577 "lcla_esram");
3578 if (!res) {
3579 ret = -ENOENT;
3580 d40_err(&pdev->dev,
3581 "No \"lcla_esram\" memory resource\n");
3582 goto destroy_cache;
3583 }
3584 base->lcla_pool.base = ioremap(res->start,
3585 resource_size(res));
3586 if (!base->lcla_pool.base) {
3587 ret = -ENOMEM;
3588 d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3589 goto destroy_cache;
3590 }
3591 writel(res->start, base->virtbase + D40_DREG_LCLA);
3592
3593 } else {
3594 ret = d40_lcla_allocate(base);
3595 if (ret) {
3596 d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3597 goto destroy_cache;
3598 }
3599 }
3600
3601 spin_lock_init(&base->lcla_pool.lock);
3602
3603 base->irq = platform_get_irq(pdev, 0);
3604
3605 ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3606 if (ret) {
3607 d40_err(&pdev->dev, "No IRQ defined\n");
3608 goto destroy_cache;
3609 }
3610
3611 if (base->plat_data->use_esram_lcla) {
3612
3613 base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3614 if (IS_ERR(base->lcpa_regulator)) {
3615 d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3616 ret = PTR_ERR(base->lcpa_regulator);
3617 base->lcpa_regulator = NULL;
3618 goto destroy_cache;
3619 }
3620
3621 ret = regulator_enable(base->lcpa_regulator);
3622 if (ret) {
3623 d40_err(&pdev->dev,
3624 "Failed to enable lcpa_regulator\n");
3625 regulator_put(base->lcpa_regulator);
3626 base->lcpa_regulator = NULL;
3627 goto destroy_cache;
3628 }
3629 }
3630
3631 writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3632
3633 pm_runtime_irq_safe(base->dev);
3634 pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3635 pm_runtime_use_autosuspend(base->dev);
3636 pm_runtime_mark_last_busy(base->dev);
3637 pm_runtime_set_active(base->dev);
3638 pm_runtime_enable(base->dev);
3639
3640 ret = d40_dmaengine_init(base, num_reserved_chans);
3641 if (ret)
3642 goto destroy_cache;
3643
3644 base->dev->dma_parms = &base->dma_parms;
3645 ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
3646 if (ret) {
3647 d40_err(&pdev->dev, "Failed to set dma max seg size\n");
3648 goto destroy_cache;
3649 }
3650
3651 d40_hw_init(base);
3652
3653 if (np) {
3654 ret = of_dma_controller_register(np, d40_xlate, NULL);
3655 if (ret)
3656 dev_err(&pdev->dev,
3657 "could not register of_dma_controller\n");
3658 }
3659
3660 dev_info(base->dev, "initialized\n");
3661 return 0;
3662 destroy_cache:
3663 kmem_cache_destroy(base->desc_slab);
3664 if (base->virtbase)
3665 iounmap(base->virtbase);
3666
3667 if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3668 iounmap(base->lcla_pool.base);
3669 base->lcla_pool.base = NULL;
3670 }
3671
3672 if (base->lcla_pool.dma_addr)
3673 dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3674 SZ_1K * base->num_phy_chans,
3675 DMA_TO_DEVICE);
3676
3677 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3678 free_pages((unsigned long)base->lcla_pool.base,
3679 base->lcla_pool.pages);
3680
3681 kfree(base->lcla_pool.base_unaligned);
3682
3683 if (base->phy_lcpa)
3684 release_mem_region(base->phy_lcpa,
3685 base->lcpa_size);
3686 if (base->phy_start)
3687 release_mem_region(base->phy_start,
3688 base->phy_size);
3689 if (base->clk) {
3690 clk_disable_unprepare(base->clk);
3691 clk_put(base->clk);
3692 }
3693
3694 if (base->lcpa_regulator) {
3695 regulator_disable(base->lcpa_regulator);
3696 regulator_put(base->lcpa_regulator);
3697 }
3698
3699 kfree(base->lcla_pool.alloc_map);
3700 kfree(base->lookup_log_chans);
3701 kfree(base->lookup_phy_chans);
3702 kfree(base->phy_res);
3703 kfree(base);
3704 report_failure:
3705 d40_err(&pdev->dev, "probe failed\n");
3706 return ret;
3707}
3708
3709static const struct of_device_id d40_match[] = {
3710 { .compatible = "stericsson,dma40", },
3711 {}
3712};
3713
3714static struct platform_driver d40_driver = {
3715 .driver = {
3716 .name = D40_NAME,
3717 .pm = &dma40_pm_ops,
3718 .of_match_table = d40_match,
3719 },
3720};
3721
3722static int __init stedma40_init(void)
3723{
3724 return platform_driver_probe(&d40_driver, d40_probe);
3725}
3726subsys_initcall(stedma40_init);
1/*
2 * Copyright (C) Ericsson AB 2007-2008
3 * Copyright (C) ST-Ericsson SA 2008-2010
4 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6 * License terms: GNU General Public License (GPL) version 2
7 */
8
9#include <linux/dma-mapping.h>
10#include <linux/kernel.h>
11#include <linux/slab.h>
12#include <linux/dmaengine.h>
13#include <linux/platform_device.h>
14#include <linux/clk.h>
15#include <linux/delay.h>
16#include <linux/err.h>
17#include <linux/amba/bus.h>
18
19#include <plat/ste_dma40.h>
20
21#include "ste_dma40_ll.h"
22
23#define D40_NAME "dma40"
24
25#define D40_PHY_CHAN -1
26
27/* For masking out/in 2 bit channel positions */
28#define D40_CHAN_POS(chan) (2 * (chan / 2))
29#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
30
31/* Maximum iterations taken before giving up suspending a channel */
32#define D40_SUSPEND_MAX_IT 500
33
34/* Hardware requirement on LCLA alignment */
35#define LCLA_ALIGNMENT 0x40000
36
37/* Max number of links per event group */
38#define D40_LCLA_LINK_PER_EVENT_GRP 128
39#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
40
41/* Attempts before giving up to trying to get pages that are aligned */
42#define MAX_LCLA_ALLOC_ATTEMPTS 256
43
44/* Bit markings for allocation map */
45#define D40_ALLOC_FREE (1 << 31)
46#define D40_ALLOC_PHY (1 << 30)
47#define D40_ALLOC_LOG_FREE 0
48
49/**
50 * enum 40_command - The different commands and/or statuses.
51 *
52 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
53 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
54 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
55 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
56 */
57enum d40_command {
58 D40_DMA_STOP = 0,
59 D40_DMA_RUN = 1,
60 D40_DMA_SUSPEND_REQ = 2,
61 D40_DMA_SUSPENDED = 3
62};
63
64/**
65 * struct d40_lli_pool - Structure for keeping LLIs in memory
66 *
67 * @base: Pointer to memory area when the pre_alloc_lli's are not large
68 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
69 * pre_alloc_lli is used.
70 * @dma_addr: DMA address, if mapped
71 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
72 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
73 * one buffer to one buffer.
74 */
75struct d40_lli_pool {
76 void *base;
77 int size;
78 dma_addr_t dma_addr;
79 /* Space for dst and src, plus an extra for padding */
80 u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
81};
82
83/**
84 * struct d40_desc - A descriptor is one DMA job.
85 *
86 * @lli_phy: LLI settings for physical channel. Both src and dst=
87 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
88 * lli_len equals one.
89 * @lli_log: Same as above but for logical channels.
90 * @lli_pool: The pool with two entries pre-allocated.
91 * @lli_len: Number of llis of current descriptor.
92 * @lli_current: Number of transferred llis.
93 * @lcla_alloc: Number of LCLA entries allocated.
94 * @txd: DMA engine struct. Used for among other things for communication
95 * during a transfer.
96 * @node: List entry.
97 * @is_in_client_list: true if the client owns this descriptor.
98 * the previous one.
99 *
100 * This descriptor is used for both logical and physical transfers.
101 */
102struct d40_desc {
103 /* LLI physical */
104 struct d40_phy_lli_bidir lli_phy;
105 /* LLI logical */
106 struct d40_log_lli_bidir lli_log;
107
108 struct d40_lli_pool lli_pool;
109 int lli_len;
110 int lli_current;
111 int lcla_alloc;
112
113 struct dma_async_tx_descriptor txd;
114 struct list_head node;
115
116 bool is_in_client_list;
117 bool cyclic;
118};
119
120/**
121 * struct d40_lcla_pool - LCLA pool settings and data.
122 *
123 * @base: The virtual address of LCLA. 18 bit aligned.
124 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
125 * This pointer is only there for clean-up on error.
126 * @pages: The number of pages needed for all physical channels.
127 * Only used later for clean-up on error
128 * @lock: Lock to protect the content in this struct.
129 * @alloc_map: big map over which LCLA entry is own by which job.
130 */
131struct d40_lcla_pool {
132 void *base;
133 dma_addr_t dma_addr;
134 void *base_unaligned;
135 int pages;
136 spinlock_t lock;
137 struct d40_desc **alloc_map;
138};
139
140/**
141 * struct d40_phy_res - struct for handling eventlines mapped to physical
142 * channels.
143 *
144 * @lock: A lock protection this entity.
145 * @num: The physical channel number of this entity.
146 * @allocated_src: Bit mapped to show which src event line's are mapped to
147 * this physical channel. Can also be free or physically allocated.
148 * @allocated_dst: Same as for src but is dst.
149 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
150 * event line number.
151 */
152struct d40_phy_res {
153 spinlock_t lock;
154 int num;
155 u32 allocated_src;
156 u32 allocated_dst;
157};
158
159struct d40_base;
160
161/**
162 * struct d40_chan - Struct that describes a channel.
163 *
164 * @lock: A spinlock to protect this struct.
165 * @log_num: The logical number, if any of this channel.
166 * @completed: Starts with 1, after first interrupt it is set to dma engine's
167 * current cookie.
168 * @pending_tx: The number of pending transfers. Used between interrupt handler
169 * and tasklet.
170 * @busy: Set to true when transfer is ongoing on this channel.
171 * @phy_chan: Pointer to physical channel which this instance runs on. If this
172 * point is NULL, then the channel is not allocated.
173 * @chan: DMA engine handle.
174 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
175 * transfer and call client callback.
176 * @client: Cliented owned descriptor list.
177 * @pending_queue: Submitted jobs, to be issued by issue_pending()
178 * @active: Active descriptor.
179 * @queue: Queued jobs.
180 * @prepare_queue: Prepared jobs.
181 * @dma_cfg: The client configuration of this dma channel.
182 * @configured: whether the dma_cfg configuration is valid
183 * @base: Pointer to the device instance struct.
184 * @src_def_cfg: Default cfg register setting for src.
185 * @dst_def_cfg: Default cfg register setting for dst.
186 * @log_def: Default logical channel settings.
187 * @lcla: Space for one dst src pair for logical channel transfers.
188 * @lcpa: Pointer to dst and src lcpa settings.
189 * @runtime_addr: runtime configured address.
190 * @runtime_direction: runtime configured direction.
191 *
192 * This struct can either "be" a logical or a physical channel.
193 */
194struct d40_chan {
195 spinlock_t lock;
196 int log_num;
197 /* ID of the most recent completed transfer */
198 int completed;
199 int pending_tx;
200 bool busy;
201 struct d40_phy_res *phy_chan;
202 struct dma_chan chan;
203 struct tasklet_struct tasklet;
204 struct list_head client;
205 struct list_head pending_queue;
206 struct list_head active;
207 struct list_head queue;
208 struct list_head prepare_queue;
209 struct stedma40_chan_cfg dma_cfg;
210 bool configured;
211 struct d40_base *base;
212 /* Default register configurations */
213 u32 src_def_cfg;
214 u32 dst_def_cfg;
215 struct d40_def_lcsp log_def;
216 struct d40_log_lli_full *lcpa;
217 /* Runtime reconfiguration */
218 dma_addr_t runtime_addr;
219 enum dma_data_direction runtime_direction;
220};
221
222/**
223 * struct d40_base - The big global struct, one for each probe'd instance.
224 *
225 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
226 * @execmd_lock: Lock for execute command usage since several channels share
227 * the same physical register.
228 * @dev: The device structure.
229 * @virtbase: The virtual base address of the DMA's register.
230 * @rev: silicon revision detected.
231 * @clk: Pointer to the DMA clock structure.
232 * @phy_start: Physical memory start of the DMA registers.
233 * @phy_size: Size of the DMA register map.
234 * @irq: The IRQ number.
235 * @num_phy_chans: The number of physical channels. Read from HW. This
236 * is the number of available channels for this driver, not counting "Secure
237 * mode" allocated physical channels.
238 * @num_log_chans: The number of logical channels. Calculated from
239 * num_phy_chans.
240 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
241 * @dma_slave: dma_device channels that can do only do slave transfers.
242 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
243 * @log_chans: Room for all possible logical channels in system.
244 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
245 * to log_chans entries.
246 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
247 * to phy_chans entries.
248 * @plat_data: Pointer to provided platform_data which is the driver
249 * configuration.
250 * @phy_res: Vector containing all physical channels.
251 * @lcla_pool: lcla pool settings and data.
252 * @lcpa_base: The virtual mapped address of LCPA.
253 * @phy_lcpa: The physical address of the LCPA.
254 * @lcpa_size: The size of the LCPA area.
255 * @desc_slab: cache for descriptors.
256 */
257struct d40_base {
258 spinlock_t interrupt_lock;
259 spinlock_t execmd_lock;
260 struct device *dev;
261 void __iomem *virtbase;
262 u8 rev:4;
263 struct clk *clk;
264 phys_addr_t phy_start;
265 resource_size_t phy_size;
266 int irq;
267 int num_phy_chans;
268 int num_log_chans;
269 struct dma_device dma_both;
270 struct dma_device dma_slave;
271 struct dma_device dma_memcpy;
272 struct d40_chan *phy_chans;
273 struct d40_chan *log_chans;
274 struct d40_chan **lookup_log_chans;
275 struct d40_chan **lookup_phy_chans;
276 struct stedma40_platform_data *plat_data;
277 /* Physical half channels */
278 struct d40_phy_res *phy_res;
279 struct d40_lcla_pool lcla_pool;
280 void *lcpa_base;
281 dma_addr_t phy_lcpa;
282 resource_size_t lcpa_size;
283 struct kmem_cache *desc_slab;
284};
285
286/**
287 * struct d40_interrupt_lookup - lookup table for interrupt handler
288 *
289 * @src: Interrupt mask register.
290 * @clr: Interrupt clear register.
291 * @is_error: true if this is an error interrupt.
292 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
293 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
294 */
295struct d40_interrupt_lookup {
296 u32 src;
297 u32 clr;
298 bool is_error;
299 int offset;
300};
301
302/**
303 * struct d40_reg_val - simple lookup struct
304 *
305 * @reg: The register.
306 * @val: The value that belongs to the register in reg.
307 */
308struct d40_reg_val {
309 unsigned int reg;
310 unsigned int val;
311};
312
313static struct device *chan2dev(struct d40_chan *d40c)
314{
315 return &d40c->chan.dev->device;
316}
317
318static bool chan_is_physical(struct d40_chan *chan)
319{
320 return chan->log_num == D40_PHY_CHAN;
321}
322
323static bool chan_is_logical(struct d40_chan *chan)
324{
325 return !chan_is_physical(chan);
326}
327
328static void __iomem *chan_base(struct d40_chan *chan)
329{
330 return chan->base->virtbase + D40_DREG_PCBASE +
331 chan->phy_chan->num * D40_DREG_PCDELTA;
332}
333
334#define d40_err(dev, format, arg...) \
335 dev_err(dev, "[%s] " format, __func__, ## arg)
336
337#define chan_err(d40c, format, arg...) \
338 d40_err(chan2dev(d40c), format, ## arg)
339
340static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
341 int lli_len)
342{
343 bool is_log = chan_is_logical(d40c);
344 u32 align;
345 void *base;
346
347 if (is_log)
348 align = sizeof(struct d40_log_lli);
349 else
350 align = sizeof(struct d40_phy_lli);
351
352 if (lli_len == 1) {
353 base = d40d->lli_pool.pre_alloc_lli;
354 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
355 d40d->lli_pool.base = NULL;
356 } else {
357 d40d->lli_pool.size = lli_len * 2 * align;
358
359 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
360 d40d->lli_pool.base = base;
361
362 if (d40d->lli_pool.base == NULL)
363 return -ENOMEM;
364 }
365
366 if (is_log) {
367 d40d->lli_log.src = PTR_ALIGN(base, align);
368 d40d->lli_log.dst = d40d->lli_log.src + lli_len;
369
370 d40d->lli_pool.dma_addr = 0;
371 } else {
372 d40d->lli_phy.src = PTR_ALIGN(base, align);
373 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
374
375 d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
376 d40d->lli_phy.src,
377 d40d->lli_pool.size,
378 DMA_TO_DEVICE);
379
380 if (dma_mapping_error(d40c->base->dev,
381 d40d->lli_pool.dma_addr)) {
382 kfree(d40d->lli_pool.base);
383 d40d->lli_pool.base = NULL;
384 d40d->lli_pool.dma_addr = 0;
385 return -ENOMEM;
386 }
387 }
388
389 return 0;
390}
391
392static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
393{
394 if (d40d->lli_pool.dma_addr)
395 dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
396 d40d->lli_pool.size, DMA_TO_DEVICE);
397
398 kfree(d40d->lli_pool.base);
399 d40d->lli_pool.base = NULL;
400 d40d->lli_pool.size = 0;
401 d40d->lli_log.src = NULL;
402 d40d->lli_log.dst = NULL;
403 d40d->lli_phy.src = NULL;
404 d40d->lli_phy.dst = NULL;
405}
406
407static int d40_lcla_alloc_one(struct d40_chan *d40c,
408 struct d40_desc *d40d)
409{
410 unsigned long flags;
411 int i;
412 int ret = -EINVAL;
413 int p;
414
415 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
416
417 p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
418
419 /*
420 * Allocate both src and dst at the same time, therefore the half
421 * start on 1 since 0 can't be used since zero is used as end marker.
422 */
423 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
424 if (!d40c->base->lcla_pool.alloc_map[p + i]) {
425 d40c->base->lcla_pool.alloc_map[p + i] = d40d;
426 d40d->lcla_alloc++;
427 ret = i;
428 break;
429 }
430 }
431
432 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
433
434 return ret;
435}
436
437static int d40_lcla_free_all(struct d40_chan *d40c,
438 struct d40_desc *d40d)
439{
440 unsigned long flags;
441 int i;
442 int ret = -EINVAL;
443
444 if (chan_is_physical(d40c))
445 return 0;
446
447 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
448
449 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
450 if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
451 D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
452 d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
453 D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
454 d40d->lcla_alloc--;
455 if (d40d->lcla_alloc == 0) {
456 ret = 0;
457 break;
458 }
459 }
460 }
461
462 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
463
464 return ret;
465
466}
467
468static void d40_desc_remove(struct d40_desc *d40d)
469{
470 list_del(&d40d->node);
471}
472
473static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
474{
475 struct d40_desc *desc = NULL;
476
477 if (!list_empty(&d40c->client)) {
478 struct d40_desc *d;
479 struct d40_desc *_d;
480
481 list_for_each_entry_safe(d, _d, &d40c->client, node)
482 if (async_tx_test_ack(&d->txd)) {
483 d40_desc_remove(d);
484 desc = d;
485 memset(desc, 0, sizeof(*desc));
486 break;
487 }
488 }
489
490 if (!desc)
491 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
492
493 if (desc)
494 INIT_LIST_HEAD(&desc->node);
495
496 return desc;
497}
498
499static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
500{
501
502 d40_pool_lli_free(d40c, d40d);
503 d40_lcla_free_all(d40c, d40d);
504 kmem_cache_free(d40c->base->desc_slab, d40d);
505}
506
507static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
508{
509 list_add_tail(&desc->node, &d40c->active);
510}
511
512static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
513{
514 struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
515 struct d40_phy_lli *lli_src = desc->lli_phy.src;
516 void __iomem *base = chan_base(chan);
517
518 writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
519 writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
520 writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
521 writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
522
523 writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
524 writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
525 writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
526 writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
527}
528
529static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
530{
531 struct d40_lcla_pool *pool = &chan->base->lcla_pool;
532 struct d40_log_lli_bidir *lli = &desc->lli_log;
533 int lli_current = desc->lli_current;
534 int lli_len = desc->lli_len;
535 bool cyclic = desc->cyclic;
536 int curr_lcla = -EINVAL;
537 int first_lcla = 0;
538 bool linkback;
539
540 /*
541 * We may have partially running cyclic transfers, in case we did't get
542 * enough LCLA entries.
543 */
544 linkback = cyclic && lli_current == 0;
545
546 /*
547 * For linkback, we need one LCLA even with only one link, because we
548 * can't link back to the one in LCPA space
549 */
550 if (linkback || (lli_len - lli_current > 1)) {
551 curr_lcla = d40_lcla_alloc_one(chan, desc);
552 first_lcla = curr_lcla;
553 }
554
555 /*
556 * For linkback, we normally load the LCPA in the loop since we need to
557 * link it to the second LCLA and not the first. However, if we
558 * couldn't even get a first LCLA, then we have to run in LCPA and
559 * reload manually.
560 */
561 if (!linkback || curr_lcla == -EINVAL) {
562 unsigned int flags = 0;
563
564 if (curr_lcla == -EINVAL)
565 flags |= LLI_TERM_INT;
566
567 d40_log_lli_lcpa_write(chan->lcpa,
568 &lli->dst[lli_current],
569 &lli->src[lli_current],
570 curr_lcla,
571 flags);
572 lli_current++;
573 }
574
575 if (curr_lcla < 0)
576 goto out;
577
578 for (; lli_current < lli_len; lli_current++) {
579 unsigned int lcla_offset = chan->phy_chan->num * 1024 +
580 8 * curr_lcla * 2;
581 struct d40_log_lli *lcla = pool->base + lcla_offset;
582 unsigned int flags = 0;
583 int next_lcla;
584
585 if (lli_current + 1 < lli_len)
586 next_lcla = d40_lcla_alloc_one(chan, desc);
587 else
588 next_lcla = linkback ? first_lcla : -EINVAL;
589
590 if (cyclic || next_lcla == -EINVAL)
591 flags |= LLI_TERM_INT;
592
593 if (linkback && curr_lcla == first_lcla) {
594 /* First link goes in both LCPA and LCLA */
595 d40_log_lli_lcpa_write(chan->lcpa,
596 &lli->dst[lli_current],
597 &lli->src[lli_current],
598 next_lcla, flags);
599 }
600
601 /*
602 * One unused LCLA in the cyclic case if the very first
603 * next_lcla fails...
604 */
605 d40_log_lli_lcla_write(lcla,
606 &lli->dst[lli_current],
607 &lli->src[lli_current],
608 next_lcla, flags);
609
610 dma_sync_single_range_for_device(chan->base->dev,
611 pool->dma_addr, lcla_offset,
612 2 * sizeof(struct d40_log_lli),
613 DMA_TO_DEVICE);
614
615 curr_lcla = next_lcla;
616
617 if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
618 lli_current++;
619 break;
620 }
621 }
622
623out:
624 desc->lli_current = lli_current;
625}
626
627static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
628{
629 if (chan_is_physical(d40c)) {
630 d40_phy_lli_load(d40c, d40d);
631 d40d->lli_current = d40d->lli_len;
632 } else
633 d40_log_lli_to_lcxa(d40c, d40d);
634}
635
636static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
637{
638 struct d40_desc *d;
639
640 if (list_empty(&d40c->active))
641 return NULL;
642
643 d = list_first_entry(&d40c->active,
644 struct d40_desc,
645 node);
646 return d;
647}
648
649/* remove desc from current queue and add it to the pending_queue */
650static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
651{
652 d40_desc_remove(desc);
653 desc->is_in_client_list = false;
654 list_add_tail(&desc->node, &d40c->pending_queue);
655}
656
657static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
658{
659 struct d40_desc *d;
660
661 if (list_empty(&d40c->pending_queue))
662 return NULL;
663
664 d = list_first_entry(&d40c->pending_queue,
665 struct d40_desc,
666 node);
667 return d;
668}
669
670static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
671{
672 struct d40_desc *d;
673
674 if (list_empty(&d40c->queue))
675 return NULL;
676
677 d = list_first_entry(&d40c->queue,
678 struct d40_desc,
679 node);
680 return d;
681}
682
683static int d40_psize_2_burst_size(bool is_log, int psize)
684{
685 if (is_log) {
686 if (psize == STEDMA40_PSIZE_LOG_1)
687 return 1;
688 } else {
689 if (psize == STEDMA40_PSIZE_PHY_1)
690 return 1;
691 }
692
693 return 2 << psize;
694}
695
696/*
697 * The dma only supports transmitting packages up to
698 * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
699 * dma elements required to send the entire sg list
700 */
701static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
702{
703 int dmalen;
704 u32 max_w = max(data_width1, data_width2);
705 u32 min_w = min(data_width1, data_width2);
706 u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
707
708 if (seg_max > STEDMA40_MAX_SEG_SIZE)
709 seg_max -= (1 << max_w);
710
711 if (!IS_ALIGNED(size, 1 << max_w))
712 return -EINVAL;
713
714 if (size <= seg_max)
715 dmalen = 1;
716 else {
717 dmalen = size / seg_max;
718 if (dmalen * seg_max < size)
719 dmalen++;
720 }
721 return dmalen;
722}
723
724static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
725 u32 data_width1, u32 data_width2)
726{
727 struct scatterlist *sg;
728 int i;
729 int len = 0;
730 int ret;
731
732 for_each_sg(sgl, sg, sg_len, i) {
733 ret = d40_size_2_dmalen(sg_dma_len(sg),
734 data_width1, data_width2);
735 if (ret < 0)
736 return ret;
737 len += ret;
738 }
739 return len;
740}
741
742/* Support functions for logical channels */
743
744static int d40_channel_execute_command(struct d40_chan *d40c,
745 enum d40_command command)
746{
747 u32 status;
748 int i;
749 void __iomem *active_reg;
750 int ret = 0;
751 unsigned long flags;
752 u32 wmask;
753
754 spin_lock_irqsave(&d40c->base->execmd_lock, flags);
755
756 if (d40c->phy_chan->num % 2 == 0)
757 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
758 else
759 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
760
761 if (command == D40_DMA_SUSPEND_REQ) {
762 status = (readl(active_reg) &
763 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
764 D40_CHAN_POS(d40c->phy_chan->num);
765
766 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
767 goto done;
768 }
769
770 wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
771 writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
772 active_reg);
773
774 if (command == D40_DMA_SUSPEND_REQ) {
775
776 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
777 status = (readl(active_reg) &
778 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
779 D40_CHAN_POS(d40c->phy_chan->num);
780
781 cpu_relax();
782 /*
783 * Reduce the number of bus accesses while
784 * waiting for the DMA to suspend.
785 */
786 udelay(3);
787
788 if (status == D40_DMA_STOP ||
789 status == D40_DMA_SUSPENDED)
790 break;
791 }
792
793 if (i == D40_SUSPEND_MAX_IT) {
794 chan_err(d40c,
795 "unable to suspend the chl %d (log: %d) status %x\n",
796 d40c->phy_chan->num, d40c->log_num,
797 status);
798 dump_stack();
799 ret = -EBUSY;
800 }
801
802 }
803done:
804 spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
805 return ret;
806}
807
808static void d40_term_all(struct d40_chan *d40c)
809{
810 struct d40_desc *d40d;
811 struct d40_desc *_d;
812
813 /* Release active descriptors */
814 while ((d40d = d40_first_active_get(d40c))) {
815 d40_desc_remove(d40d);
816 d40_desc_free(d40c, d40d);
817 }
818
819 /* Release queued descriptors waiting for transfer */
820 while ((d40d = d40_first_queued(d40c))) {
821 d40_desc_remove(d40d);
822 d40_desc_free(d40c, d40d);
823 }
824
825 /* Release pending descriptors */
826 while ((d40d = d40_first_pending(d40c))) {
827 d40_desc_remove(d40d);
828 d40_desc_free(d40c, d40d);
829 }
830
831 /* Release client owned descriptors */
832 if (!list_empty(&d40c->client))
833 list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
834 d40_desc_remove(d40d);
835 d40_desc_free(d40c, d40d);
836 }
837
838 /* Release descriptors in prepare queue */
839 if (!list_empty(&d40c->prepare_queue))
840 list_for_each_entry_safe(d40d, _d,
841 &d40c->prepare_queue, node) {
842 d40_desc_remove(d40d);
843 d40_desc_free(d40c, d40d);
844 }
845
846 d40c->pending_tx = 0;
847 d40c->busy = false;
848}
849
850static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
851 u32 event, int reg)
852{
853 void __iomem *addr = chan_base(d40c) + reg;
854 int tries;
855
856 if (!enable) {
857 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
858 | ~D40_EVENTLINE_MASK(event), addr);
859 return;
860 }
861
862 /*
863 * The hardware sometimes doesn't register the enable when src and dst
864 * event lines are active on the same logical channel. Retry to ensure
865 * it does. Usually only one retry is sufficient.
866 */
867 tries = 100;
868 while (--tries) {
869 writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
870 | ~D40_EVENTLINE_MASK(event), addr);
871
872 if (readl(addr) & D40_EVENTLINE_MASK(event))
873 break;
874 }
875
876 if (tries != 99)
877 dev_dbg(chan2dev(d40c),
878 "[%s] workaround enable S%cLNK (%d tries)\n",
879 __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
880 100 - tries);
881
882 WARN_ON(!tries);
883}
884
885static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
886{
887 unsigned long flags;
888
889 spin_lock_irqsave(&d40c->phy_chan->lock, flags);
890
891 /* Enable event line connected to device (or memcpy) */
892 if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
893 (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
894 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
895
896 __d40_config_set_event(d40c, do_enable, event,
897 D40_CHAN_REG_SSLNK);
898 }
899
900 if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
901 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
902
903 __d40_config_set_event(d40c, do_enable, event,
904 D40_CHAN_REG_SDLNK);
905 }
906
907 spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
908}
909
910static u32 d40_chan_has_events(struct d40_chan *d40c)
911{
912 void __iomem *chanbase = chan_base(d40c);
913 u32 val;
914
915 val = readl(chanbase + D40_CHAN_REG_SSLNK);
916 val |= readl(chanbase + D40_CHAN_REG_SDLNK);
917
918 return val;
919}
920
921static u32 d40_get_prmo(struct d40_chan *d40c)
922{
923 static const unsigned int phy_map[] = {
924 [STEDMA40_PCHAN_BASIC_MODE]
925 = D40_DREG_PRMO_PCHAN_BASIC,
926 [STEDMA40_PCHAN_MODULO_MODE]
927 = D40_DREG_PRMO_PCHAN_MODULO,
928 [STEDMA40_PCHAN_DOUBLE_DST_MODE]
929 = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
930 };
931 static const unsigned int log_map[] = {
932 [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
933 = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
934 [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
935 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
936 [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
937 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
938 };
939
940 if (chan_is_physical(d40c))
941 return phy_map[d40c->dma_cfg.mode_opt];
942 else
943 return log_map[d40c->dma_cfg.mode_opt];
944}
945
946static void d40_config_write(struct d40_chan *d40c)
947{
948 u32 addr_base;
949 u32 var;
950
951 /* Odd addresses are even addresses + 4 */
952 addr_base = (d40c->phy_chan->num % 2) * 4;
953 /* Setup channel mode to logical or physical */
954 var = ((u32)(chan_is_logical(d40c)) + 1) <<
955 D40_CHAN_POS(d40c->phy_chan->num);
956 writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
957
958 /* Setup operational mode option register */
959 var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
960
961 writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
962
963 if (chan_is_logical(d40c)) {
964 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
965 & D40_SREG_ELEM_LOG_LIDX_MASK;
966 void __iomem *chanbase = chan_base(d40c);
967
968 /* Set default config for CFG reg */
969 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
970 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
971
972 /* Set LIDX for lcla */
973 writel(lidx, chanbase + D40_CHAN_REG_SSELT);
974 writel(lidx, chanbase + D40_CHAN_REG_SDELT);
975 }
976}
977
978static u32 d40_residue(struct d40_chan *d40c)
979{
980 u32 num_elt;
981
982 if (chan_is_logical(d40c))
983 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
984 >> D40_MEM_LCSP2_ECNT_POS;
985 else {
986 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
987 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
988 >> D40_SREG_ELEM_PHY_ECNT_POS;
989 }
990
991 return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
992}
993
994static bool d40_tx_is_linked(struct d40_chan *d40c)
995{
996 bool is_link;
997
998 if (chan_is_logical(d40c))
999 is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
1000 else
1001 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1002 & D40_SREG_LNK_PHYS_LNK_MASK;
1003
1004 return is_link;
1005}
1006
1007static int d40_pause(struct d40_chan *d40c)
1008{
1009 int res = 0;
1010 unsigned long flags;
1011
1012 if (!d40c->busy)
1013 return 0;
1014
1015 spin_lock_irqsave(&d40c->lock, flags);
1016
1017 res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1018 if (res == 0) {
1019 if (chan_is_logical(d40c)) {
1020 d40_config_set_event(d40c, false);
1021 /* Resume the other logical channels if any */
1022 if (d40_chan_has_events(d40c))
1023 res = d40_channel_execute_command(d40c,
1024 D40_DMA_RUN);
1025 }
1026 }
1027
1028 spin_unlock_irqrestore(&d40c->lock, flags);
1029 return res;
1030}
1031
1032static int d40_resume(struct d40_chan *d40c)
1033{
1034 int res = 0;
1035 unsigned long flags;
1036
1037 if (!d40c->busy)
1038 return 0;
1039
1040 spin_lock_irqsave(&d40c->lock, flags);
1041
1042 if (d40c->base->rev == 0)
1043 if (chan_is_logical(d40c)) {
1044 res = d40_channel_execute_command(d40c,
1045 D40_DMA_SUSPEND_REQ);
1046 goto no_suspend;
1047 }
1048
1049 /* If bytes left to transfer or linked tx resume job */
1050 if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
1051
1052 if (chan_is_logical(d40c))
1053 d40_config_set_event(d40c, true);
1054
1055 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1056 }
1057
1058no_suspend:
1059 spin_unlock_irqrestore(&d40c->lock, flags);
1060 return res;
1061}
1062
1063static int d40_terminate_all(struct d40_chan *chan)
1064{
1065 unsigned long flags;
1066 int ret = 0;
1067
1068 ret = d40_pause(chan);
1069 if (!ret && chan_is_physical(chan))
1070 ret = d40_channel_execute_command(chan, D40_DMA_STOP);
1071
1072 spin_lock_irqsave(&chan->lock, flags);
1073 d40_term_all(chan);
1074 spin_unlock_irqrestore(&chan->lock, flags);
1075
1076 return ret;
1077}
1078
1079static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1080{
1081 struct d40_chan *d40c = container_of(tx->chan,
1082 struct d40_chan,
1083 chan);
1084 struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1085 unsigned long flags;
1086
1087 spin_lock_irqsave(&d40c->lock, flags);
1088
1089 d40c->chan.cookie++;
1090
1091 if (d40c->chan.cookie < 0)
1092 d40c->chan.cookie = 1;
1093
1094 d40d->txd.cookie = d40c->chan.cookie;
1095
1096 d40_desc_queue(d40c, d40d);
1097
1098 spin_unlock_irqrestore(&d40c->lock, flags);
1099
1100 return tx->cookie;
1101}
1102
1103static int d40_start(struct d40_chan *d40c)
1104{
1105 if (d40c->base->rev == 0) {
1106 int err;
1107
1108 if (chan_is_logical(d40c)) {
1109 err = d40_channel_execute_command(d40c,
1110 D40_DMA_SUSPEND_REQ);
1111 if (err)
1112 return err;
1113 }
1114 }
1115
1116 if (chan_is_logical(d40c))
1117 d40_config_set_event(d40c, true);
1118
1119 return d40_channel_execute_command(d40c, D40_DMA_RUN);
1120}
1121
1122static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1123{
1124 struct d40_desc *d40d;
1125 int err;
1126
1127 /* Start queued jobs, if any */
1128 d40d = d40_first_queued(d40c);
1129
1130 if (d40d != NULL) {
1131 d40c->busy = true;
1132
1133 /* Remove from queue */
1134 d40_desc_remove(d40d);
1135
1136 /* Add to active queue */
1137 d40_desc_submit(d40c, d40d);
1138
1139 /* Initiate DMA job */
1140 d40_desc_load(d40c, d40d);
1141
1142 /* Start dma job */
1143 err = d40_start(d40c);
1144
1145 if (err)
1146 return NULL;
1147 }
1148
1149 return d40d;
1150}
1151
1152/* called from interrupt context */
1153static void dma_tc_handle(struct d40_chan *d40c)
1154{
1155 struct d40_desc *d40d;
1156
1157 /* Get first active entry from list */
1158 d40d = d40_first_active_get(d40c);
1159
1160 if (d40d == NULL)
1161 return;
1162
1163 if (d40d->cyclic) {
1164 /*
1165 * If this was a paritially loaded list, we need to reloaded
1166 * it, and only when the list is completed. We need to check
1167 * for done because the interrupt will hit for every link, and
1168 * not just the last one.
1169 */
1170 if (d40d->lli_current < d40d->lli_len
1171 && !d40_tx_is_linked(d40c)
1172 && !d40_residue(d40c)) {
1173 d40_lcla_free_all(d40c, d40d);
1174 d40_desc_load(d40c, d40d);
1175 (void) d40_start(d40c);
1176
1177 if (d40d->lli_current == d40d->lli_len)
1178 d40d->lli_current = 0;
1179 }
1180 } else {
1181 d40_lcla_free_all(d40c, d40d);
1182
1183 if (d40d->lli_current < d40d->lli_len) {
1184 d40_desc_load(d40c, d40d);
1185 /* Start dma job */
1186 (void) d40_start(d40c);
1187 return;
1188 }
1189
1190 if (d40_queue_start(d40c) == NULL)
1191 d40c->busy = false;
1192 }
1193
1194 d40c->pending_tx++;
1195 tasklet_schedule(&d40c->tasklet);
1196
1197}
1198
1199static void dma_tasklet(unsigned long data)
1200{
1201 struct d40_chan *d40c = (struct d40_chan *) data;
1202 struct d40_desc *d40d;
1203 unsigned long flags;
1204 dma_async_tx_callback callback;
1205 void *callback_param;
1206
1207 spin_lock_irqsave(&d40c->lock, flags);
1208
1209 /* Get first active entry from list */
1210 d40d = d40_first_active_get(d40c);
1211 if (d40d == NULL)
1212 goto err;
1213
1214 if (!d40d->cyclic)
1215 d40c->completed = d40d->txd.cookie;
1216
1217 /*
1218 * If terminating a channel pending_tx is set to zero.
1219 * This prevents any finished active jobs to return to the client.
1220 */
1221 if (d40c->pending_tx == 0) {
1222 spin_unlock_irqrestore(&d40c->lock, flags);
1223 return;
1224 }
1225
1226 /* Callback to client */
1227 callback = d40d->txd.callback;
1228 callback_param = d40d->txd.callback_param;
1229
1230 if (!d40d->cyclic) {
1231 if (async_tx_test_ack(&d40d->txd)) {
1232 d40_desc_remove(d40d);
1233 d40_desc_free(d40c, d40d);
1234 } else {
1235 if (!d40d->is_in_client_list) {
1236 d40_desc_remove(d40d);
1237 d40_lcla_free_all(d40c, d40d);
1238 list_add_tail(&d40d->node, &d40c->client);
1239 d40d->is_in_client_list = true;
1240 }
1241 }
1242 }
1243
1244 d40c->pending_tx--;
1245
1246 if (d40c->pending_tx)
1247 tasklet_schedule(&d40c->tasklet);
1248
1249 spin_unlock_irqrestore(&d40c->lock, flags);
1250
1251 if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1252 callback(callback_param);
1253
1254 return;
1255
1256 err:
1257 /* Rescue manoeuvre if receiving double interrupts */
1258 if (d40c->pending_tx > 0)
1259 d40c->pending_tx--;
1260 spin_unlock_irqrestore(&d40c->lock, flags);
1261}
1262
1263static irqreturn_t d40_handle_interrupt(int irq, void *data)
1264{
1265 static const struct d40_interrupt_lookup il[] = {
1266 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
1267 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
1268 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
1269 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
1270 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
1271 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
1272 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
1273 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
1274 {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
1275 {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
1276 };
1277
1278 int i;
1279 u32 regs[ARRAY_SIZE(il)];
1280 u32 idx;
1281 u32 row;
1282 long chan = -1;
1283 struct d40_chan *d40c;
1284 unsigned long flags;
1285 struct d40_base *base = data;
1286
1287 spin_lock_irqsave(&base->interrupt_lock, flags);
1288
1289 /* Read interrupt status of both logical and physical channels */
1290 for (i = 0; i < ARRAY_SIZE(il); i++)
1291 regs[i] = readl(base->virtbase + il[i].src);
1292
1293 for (;;) {
1294
1295 chan = find_next_bit((unsigned long *)regs,
1296 BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
1297
1298 /* No more set bits found? */
1299 if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
1300 break;
1301
1302 row = chan / BITS_PER_LONG;
1303 idx = chan & (BITS_PER_LONG - 1);
1304
1305 /* ACK interrupt */
1306 writel(1 << idx, base->virtbase + il[row].clr);
1307
1308 if (il[row].offset == D40_PHY_CHAN)
1309 d40c = base->lookup_phy_chans[idx];
1310 else
1311 d40c = base->lookup_log_chans[il[row].offset + idx];
1312 spin_lock(&d40c->lock);
1313
1314 if (!il[row].is_error)
1315 dma_tc_handle(d40c);
1316 else
1317 d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1318 chan, il[row].offset, idx);
1319
1320 spin_unlock(&d40c->lock);
1321 }
1322
1323 spin_unlock_irqrestore(&base->interrupt_lock, flags);
1324
1325 return IRQ_HANDLED;
1326}
1327
1328static int d40_validate_conf(struct d40_chan *d40c,
1329 struct stedma40_chan_cfg *conf)
1330{
1331 int res = 0;
1332 u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
1333 u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1334 bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1335
1336 if (!conf->dir) {
1337 chan_err(d40c, "Invalid direction.\n");
1338 res = -EINVAL;
1339 }
1340
1341 if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
1342 d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
1343 d40c->runtime_addr == 0) {
1344
1345 chan_err(d40c, "Invalid TX channel address (%d)\n",
1346 conf->dst_dev_type);
1347 res = -EINVAL;
1348 }
1349
1350 if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
1351 d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
1352 d40c->runtime_addr == 0) {
1353 chan_err(d40c, "Invalid RX channel address (%d)\n",
1354 conf->src_dev_type);
1355 res = -EINVAL;
1356 }
1357
1358 if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1359 dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1360 chan_err(d40c, "Invalid dst\n");
1361 res = -EINVAL;
1362 }
1363
1364 if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1365 src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1366 chan_err(d40c, "Invalid src\n");
1367 res = -EINVAL;
1368 }
1369
1370 if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
1371 dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1372 chan_err(d40c, "No event line\n");
1373 res = -EINVAL;
1374 }
1375
1376 if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1377 (src_event_group != dst_event_group)) {
1378 chan_err(d40c, "Invalid event group\n");
1379 res = -EINVAL;
1380 }
1381
1382 if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1383 /*
1384 * DMAC HW supports it. Will be added to this driver,
1385 * in case any dma client requires it.
1386 */
1387 chan_err(d40c, "periph to periph not supported\n");
1388 res = -EINVAL;
1389 }
1390
1391 if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1392 (1 << conf->src_info.data_width) !=
1393 d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1394 (1 << conf->dst_info.data_width)) {
1395 /*
1396 * The DMAC hardware only supports
1397 * src (burst x width) == dst (burst x width)
1398 */
1399
1400 chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1401 res = -EINVAL;
1402 }
1403
1404 return res;
1405}
1406
1407static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
1408 int log_event_line, bool is_log)
1409{
1410 unsigned long flags;
1411 spin_lock_irqsave(&phy->lock, flags);
1412 if (!is_log) {
1413 /* Physical interrupts are masked per physical full channel */
1414 if (phy->allocated_src == D40_ALLOC_FREE &&
1415 phy->allocated_dst == D40_ALLOC_FREE) {
1416 phy->allocated_dst = D40_ALLOC_PHY;
1417 phy->allocated_src = D40_ALLOC_PHY;
1418 goto found;
1419 } else
1420 goto not_found;
1421 }
1422
1423 /* Logical channel */
1424 if (is_src) {
1425 if (phy->allocated_src == D40_ALLOC_PHY)
1426 goto not_found;
1427
1428 if (phy->allocated_src == D40_ALLOC_FREE)
1429 phy->allocated_src = D40_ALLOC_LOG_FREE;
1430
1431 if (!(phy->allocated_src & (1 << log_event_line))) {
1432 phy->allocated_src |= 1 << log_event_line;
1433 goto found;
1434 } else
1435 goto not_found;
1436 } else {
1437 if (phy->allocated_dst == D40_ALLOC_PHY)
1438 goto not_found;
1439
1440 if (phy->allocated_dst == D40_ALLOC_FREE)
1441 phy->allocated_dst = D40_ALLOC_LOG_FREE;
1442
1443 if (!(phy->allocated_dst & (1 << log_event_line))) {
1444 phy->allocated_dst |= 1 << log_event_line;
1445 goto found;
1446 } else
1447 goto not_found;
1448 }
1449
1450not_found:
1451 spin_unlock_irqrestore(&phy->lock, flags);
1452 return false;
1453found:
1454 spin_unlock_irqrestore(&phy->lock, flags);
1455 return true;
1456}
1457
1458static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1459 int log_event_line)
1460{
1461 unsigned long flags;
1462 bool is_free = false;
1463
1464 spin_lock_irqsave(&phy->lock, flags);
1465 if (!log_event_line) {
1466 phy->allocated_dst = D40_ALLOC_FREE;
1467 phy->allocated_src = D40_ALLOC_FREE;
1468 is_free = true;
1469 goto out;
1470 }
1471
1472 /* Logical channel */
1473 if (is_src) {
1474 phy->allocated_src &= ~(1 << log_event_line);
1475 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1476 phy->allocated_src = D40_ALLOC_FREE;
1477 } else {
1478 phy->allocated_dst &= ~(1 << log_event_line);
1479 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1480 phy->allocated_dst = D40_ALLOC_FREE;
1481 }
1482
1483 is_free = ((phy->allocated_src | phy->allocated_dst) ==
1484 D40_ALLOC_FREE);
1485
1486out:
1487 spin_unlock_irqrestore(&phy->lock, flags);
1488
1489 return is_free;
1490}
1491
1492static int d40_allocate_channel(struct d40_chan *d40c)
1493{
1494 int dev_type;
1495 int event_group;
1496 int event_line;
1497 struct d40_phy_res *phys;
1498 int i;
1499 int j;
1500 int log_num;
1501 bool is_src;
1502 bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1503
1504 phys = d40c->base->phy_res;
1505
1506 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1507 dev_type = d40c->dma_cfg.src_dev_type;
1508 log_num = 2 * dev_type;
1509 is_src = true;
1510 } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1511 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1512 /* dst event lines are used for logical memcpy */
1513 dev_type = d40c->dma_cfg.dst_dev_type;
1514 log_num = 2 * dev_type + 1;
1515 is_src = false;
1516 } else
1517 return -EINVAL;
1518
1519 event_group = D40_TYPE_TO_GROUP(dev_type);
1520 event_line = D40_TYPE_TO_EVENT(dev_type);
1521
1522 if (!is_log) {
1523 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1524 /* Find physical half channel */
1525 for (i = 0; i < d40c->base->num_phy_chans; i++) {
1526
1527 if (d40_alloc_mask_set(&phys[i], is_src,
1528 0, is_log))
1529 goto found_phy;
1530 }
1531 } else
1532 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1533 int phy_num = j + event_group * 2;
1534 for (i = phy_num; i < phy_num + 2; i++) {
1535 if (d40_alloc_mask_set(&phys[i],
1536 is_src,
1537 0,
1538 is_log))
1539 goto found_phy;
1540 }
1541 }
1542 return -EINVAL;
1543found_phy:
1544 d40c->phy_chan = &phys[i];
1545 d40c->log_num = D40_PHY_CHAN;
1546 goto out;
1547 }
1548 if (dev_type == -1)
1549 return -EINVAL;
1550
1551 /* Find logical channel */
1552 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1553 int phy_num = j + event_group * 2;
1554 /*
1555 * Spread logical channels across all available physical rather
1556 * than pack every logical channel at the first available phy
1557 * channels.
1558 */
1559 if (is_src) {
1560 for (i = phy_num; i < phy_num + 2; i++) {
1561 if (d40_alloc_mask_set(&phys[i], is_src,
1562 event_line, is_log))
1563 goto found_log;
1564 }
1565 } else {
1566 for (i = phy_num + 1; i >= phy_num; i--) {
1567 if (d40_alloc_mask_set(&phys[i], is_src,
1568 event_line, is_log))
1569 goto found_log;
1570 }
1571 }
1572 }
1573 return -EINVAL;
1574
1575found_log:
1576 d40c->phy_chan = &phys[i];
1577 d40c->log_num = log_num;
1578out:
1579
1580 if (is_log)
1581 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1582 else
1583 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1584
1585 return 0;
1586
1587}
1588
1589static int d40_config_memcpy(struct d40_chan *d40c)
1590{
1591 dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1592
1593 if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1594 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1595 d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1596 d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1597 memcpy[d40c->chan.chan_id];
1598
1599 } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1600 dma_has_cap(DMA_SLAVE, cap)) {
1601 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
1602 } else {
1603 chan_err(d40c, "No memcpy\n");
1604 return -EINVAL;
1605 }
1606
1607 return 0;
1608}
1609
1610
1611static int d40_free_dma(struct d40_chan *d40c)
1612{
1613
1614 int res = 0;
1615 u32 event;
1616 struct d40_phy_res *phy = d40c->phy_chan;
1617 bool is_src;
1618
1619 /* Terminate all queued and active transfers */
1620 d40_term_all(d40c);
1621
1622 if (phy == NULL) {
1623 chan_err(d40c, "phy == null\n");
1624 return -EINVAL;
1625 }
1626
1627 if (phy->allocated_src == D40_ALLOC_FREE &&
1628 phy->allocated_dst == D40_ALLOC_FREE) {
1629 chan_err(d40c, "channel already free\n");
1630 return -EINVAL;
1631 }
1632
1633 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1634 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1635 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1636 is_src = false;
1637 } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1638 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1639 is_src = true;
1640 } else {
1641 chan_err(d40c, "Unknown direction\n");
1642 return -EINVAL;
1643 }
1644
1645 res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1646 if (res) {
1647 chan_err(d40c, "suspend failed\n");
1648 return res;
1649 }
1650
1651 if (chan_is_logical(d40c)) {
1652 /* Release logical channel, deactivate the event line */
1653
1654 d40_config_set_event(d40c, false);
1655 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1656
1657 /*
1658 * Check if there are more logical allocation
1659 * on this phy channel.
1660 */
1661 if (!d40_alloc_mask_free(phy, is_src, event)) {
1662 /* Resume the other logical channels if any */
1663 if (d40_chan_has_events(d40c)) {
1664 res = d40_channel_execute_command(d40c,
1665 D40_DMA_RUN);
1666 if (res) {
1667 chan_err(d40c,
1668 "Executing RUN command\n");
1669 return res;
1670 }
1671 }
1672 return 0;
1673 }
1674 } else {
1675 (void) d40_alloc_mask_free(phy, is_src, 0);
1676 }
1677
1678 /* Release physical channel */
1679 res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1680 if (res) {
1681 chan_err(d40c, "Failed to stop channel\n");
1682 return res;
1683 }
1684 d40c->phy_chan = NULL;
1685 d40c->configured = false;
1686 d40c->base->lookup_phy_chans[phy->num] = NULL;
1687
1688 return 0;
1689}
1690
1691static bool d40_is_paused(struct d40_chan *d40c)
1692{
1693 void __iomem *chanbase = chan_base(d40c);
1694 bool is_paused = false;
1695 unsigned long flags;
1696 void __iomem *active_reg;
1697 u32 status;
1698 u32 event;
1699
1700 spin_lock_irqsave(&d40c->lock, flags);
1701
1702 if (chan_is_physical(d40c)) {
1703 if (d40c->phy_chan->num % 2 == 0)
1704 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1705 else
1706 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1707
1708 status = (readl(active_reg) &
1709 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1710 D40_CHAN_POS(d40c->phy_chan->num);
1711 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1712 is_paused = true;
1713
1714 goto _exit;
1715 }
1716
1717 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1718 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1719 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1720 status = readl(chanbase + D40_CHAN_REG_SDLNK);
1721 } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1722 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1723 status = readl(chanbase + D40_CHAN_REG_SSLNK);
1724 } else {
1725 chan_err(d40c, "Unknown direction\n");
1726 goto _exit;
1727 }
1728
1729 status = (status & D40_EVENTLINE_MASK(event)) >>
1730 D40_EVENTLINE_POS(event);
1731
1732 if (status != D40_DMA_RUN)
1733 is_paused = true;
1734_exit:
1735 spin_unlock_irqrestore(&d40c->lock, flags);
1736 return is_paused;
1737
1738}
1739
1740
1741static u32 stedma40_residue(struct dma_chan *chan)
1742{
1743 struct d40_chan *d40c =
1744 container_of(chan, struct d40_chan, chan);
1745 u32 bytes_left;
1746 unsigned long flags;
1747
1748 spin_lock_irqsave(&d40c->lock, flags);
1749 bytes_left = d40_residue(d40c);
1750 spin_unlock_irqrestore(&d40c->lock, flags);
1751
1752 return bytes_left;
1753}
1754
1755static int
1756d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
1757 struct scatterlist *sg_src, struct scatterlist *sg_dst,
1758 unsigned int sg_len, dma_addr_t src_dev_addr,
1759 dma_addr_t dst_dev_addr)
1760{
1761 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1762 struct stedma40_half_channel_info *src_info = &cfg->src_info;
1763 struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1764 int ret;
1765
1766 ret = d40_log_sg_to_lli(sg_src, sg_len,
1767 src_dev_addr,
1768 desc->lli_log.src,
1769 chan->log_def.lcsp1,
1770 src_info->data_width,
1771 dst_info->data_width);
1772
1773 ret = d40_log_sg_to_lli(sg_dst, sg_len,
1774 dst_dev_addr,
1775 desc->lli_log.dst,
1776 chan->log_def.lcsp3,
1777 dst_info->data_width,
1778 src_info->data_width);
1779
1780 return ret < 0 ? ret : 0;
1781}
1782
1783static int
1784d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
1785 struct scatterlist *sg_src, struct scatterlist *sg_dst,
1786 unsigned int sg_len, dma_addr_t src_dev_addr,
1787 dma_addr_t dst_dev_addr)
1788{
1789 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1790 struct stedma40_half_channel_info *src_info = &cfg->src_info;
1791 struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1792 unsigned long flags = 0;
1793 int ret;
1794
1795 if (desc->cyclic)
1796 flags |= LLI_CYCLIC | LLI_TERM_INT;
1797
1798 ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
1799 desc->lli_phy.src,
1800 virt_to_phys(desc->lli_phy.src),
1801 chan->src_def_cfg,
1802 src_info, dst_info, flags);
1803
1804 ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
1805 desc->lli_phy.dst,
1806 virt_to_phys(desc->lli_phy.dst),
1807 chan->dst_def_cfg,
1808 dst_info, src_info, flags);
1809
1810 dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
1811 desc->lli_pool.size, DMA_TO_DEVICE);
1812
1813 return ret < 0 ? ret : 0;
1814}
1815
1816
1817static struct d40_desc *
1818d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
1819 unsigned int sg_len, unsigned long dma_flags)
1820{
1821 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1822 struct d40_desc *desc;
1823 int ret;
1824
1825 desc = d40_desc_get(chan);
1826 if (!desc)
1827 return NULL;
1828
1829 desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
1830 cfg->dst_info.data_width);
1831 if (desc->lli_len < 0) {
1832 chan_err(chan, "Unaligned size\n");
1833 goto err;
1834 }
1835
1836 ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
1837 if (ret < 0) {
1838 chan_err(chan, "Could not allocate lli\n");
1839 goto err;
1840 }
1841
1842
1843 desc->lli_current = 0;
1844 desc->txd.flags = dma_flags;
1845 desc->txd.tx_submit = d40_tx_submit;
1846
1847 dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
1848
1849 return desc;
1850
1851err:
1852 d40_desc_free(chan, desc);
1853 return NULL;
1854}
1855
1856static dma_addr_t
1857d40_get_dev_addr(struct d40_chan *chan, enum dma_data_direction direction)
1858{
1859 struct stedma40_platform_data *plat = chan->base->plat_data;
1860 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1861 dma_addr_t addr = 0;
1862
1863 if (chan->runtime_addr)
1864 return chan->runtime_addr;
1865
1866 if (direction == DMA_FROM_DEVICE)
1867 addr = plat->dev_rx[cfg->src_dev_type];
1868 else if (direction == DMA_TO_DEVICE)
1869 addr = plat->dev_tx[cfg->dst_dev_type];
1870
1871 return addr;
1872}
1873
1874static struct dma_async_tx_descriptor *
1875d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
1876 struct scatterlist *sg_dst, unsigned int sg_len,
1877 enum dma_data_direction direction, unsigned long dma_flags)
1878{
1879 struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
1880 dma_addr_t src_dev_addr = 0;
1881 dma_addr_t dst_dev_addr = 0;
1882 struct d40_desc *desc;
1883 unsigned long flags;
1884 int ret;
1885
1886 if (!chan->phy_chan) {
1887 chan_err(chan, "Cannot prepare unallocated channel\n");
1888 return NULL;
1889 }
1890
1891
1892 spin_lock_irqsave(&chan->lock, flags);
1893
1894 desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
1895 if (desc == NULL)
1896 goto err;
1897
1898 if (sg_next(&sg_src[sg_len - 1]) == sg_src)
1899 desc->cyclic = true;
1900
1901 if (direction != DMA_NONE) {
1902 dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
1903
1904 if (direction == DMA_FROM_DEVICE)
1905 src_dev_addr = dev_addr;
1906 else if (direction == DMA_TO_DEVICE)
1907 dst_dev_addr = dev_addr;
1908 }
1909
1910 if (chan_is_logical(chan))
1911 ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
1912 sg_len, src_dev_addr, dst_dev_addr);
1913 else
1914 ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
1915 sg_len, src_dev_addr, dst_dev_addr);
1916
1917 if (ret) {
1918 chan_err(chan, "Failed to prepare %s sg job: %d\n",
1919 chan_is_logical(chan) ? "log" : "phy", ret);
1920 goto err;
1921 }
1922
1923 /*
1924 * add descriptor to the prepare queue in order to be able
1925 * to free them later in terminate_all
1926 */
1927 list_add_tail(&desc->node, &chan->prepare_queue);
1928
1929 spin_unlock_irqrestore(&chan->lock, flags);
1930
1931 return &desc->txd;
1932
1933err:
1934 if (desc)
1935 d40_desc_free(chan, desc);
1936 spin_unlock_irqrestore(&chan->lock, flags);
1937 return NULL;
1938}
1939
1940bool stedma40_filter(struct dma_chan *chan, void *data)
1941{
1942 struct stedma40_chan_cfg *info = data;
1943 struct d40_chan *d40c =
1944 container_of(chan, struct d40_chan, chan);
1945 int err;
1946
1947 if (data) {
1948 err = d40_validate_conf(d40c, info);
1949 if (!err)
1950 d40c->dma_cfg = *info;
1951 } else
1952 err = d40_config_memcpy(d40c);
1953
1954 if (!err)
1955 d40c->configured = true;
1956
1957 return err == 0;
1958}
1959EXPORT_SYMBOL(stedma40_filter);
1960
1961static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
1962{
1963 bool realtime = d40c->dma_cfg.realtime;
1964 bool highprio = d40c->dma_cfg.high_priority;
1965 u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
1966 u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
1967 u32 event = D40_TYPE_TO_EVENT(dev_type);
1968 u32 group = D40_TYPE_TO_GROUP(dev_type);
1969 u32 bit = 1 << event;
1970
1971 /* Destination event lines are stored in the upper halfword */
1972 if (!src)
1973 bit <<= 16;
1974
1975 writel(bit, d40c->base->virtbase + prioreg + group * 4);
1976 writel(bit, d40c->base->virtbase + rtreg + group * 4);
1977}
1978
1979static void d40_set_prio_realtime(struct d40_chan *d40c)
1980{
1981 if (d40c->base->rev < 3)
1982 return;
1983
1984 if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
1985 (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1986 __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
1987
1988 if ((d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH) ||
1989 (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1990 __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
1991}
1992
1993/* DMA ENGINE functions */
1994static int d40_alloc_chan_resources(struct dma_chan *chan)
1995{
1996 int err;
1997 unsigned long flags;
1998 struct d40_chan *d40c =
1999 container_of(chan, struct d40_chan, chan);
2000 bool is_free_phy;
2001 spin_lock_irqsave(&d40c->lock, flags);
2002
2003 d40c->completed = chan->cookie = 1;
2004
2005 /* If no dma configuration is set use default configuration (memcpy) */
2006 if (!d40c->configured) {
2007 err = d40_config_memcpy(d40c);
2008 if (err) {
2009 chan_err(d40c, "Failed to configure memcpy channel\n");
2010 goto fail;
2011 }
2012 }
2013 is_free_phy = (d40c->phy_chan == NULL);
2014
2015 err = d40_allocate_channel(d40c);
2016 if (err) {
2017 chan_err(d40c, "Failed to allocate channel\n");
2018 goto fail;
2019 }
2020
2021 /* Fill in basic CFG register values */
2022 d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
2023 &d40c->dst_def_cfg, chan_is_logical(d40c));
2024
2025 d40_set_prio_realtime(d40c);
2026
2027 if (chan_is_logical(d40c)) {
2028 d40_log_cfg(&d40c->dma_cfg,
2029 &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2030
2031 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
2032 d40c->lcpa = d40c->base->lcpa_base +
2033 d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
2034 else
2035 d40c->lcpa = d40c->base->lcpa_base +
2036 d40c->dma_cfg.dst_dev_type *
2037 D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2038 }
2039
2040 /*
2041 * Only write channel configuration to the DMA if the physical
2042 * resource is free. In case of multiple logical channels
2043 * on the same physical resource, only the first write is necessary.
2044 */
2045 if (is_free_phy)
2046 d40_config_write(d40c);
2047fail:
2048 spin_unlock_irqrestore(&d40c->lock, flags);
2049 return err;
2050}
2051
2052static void d40_free_chan_resources(struct dma_chan *chan)
2053{
2054 struct d40_chan *d40c =
2055 container_of(chan, struct d40_chan, chan);
2056 int err;
2057 unsigned long flags;
2058
2059 if (d40c->phy_chan == NULL) {
2060 chan_err(d40c, "Cannot free unallocated channel\n");
2061 return;
2062 }
2063
2064
2065 spin_lock_irqsave(&d40c->lock, flags);
2066
2067 err = d40_free_dma(d40c);
2068
2069 if (err)
2070 chan_err(d40c, "Failed to free channel\n");
2071 spin_unlock_irqrestore(&d40c->lock, flags);
2072}
2073
2074static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2075 dma_addr_t dst,
2076 dma_addr_t src,
2077 size_t size,
2078 unsigned long dma_flags)
2079{
2080 struct scatterlist dst_sg;
2081 struct scatterlist src_sg;
2082
2083 sg_init_table(&dst_sg, 1);
2084 sg_init_table(&src_sg, 1);
2085
2086 sg_dma_address(&dst_sg) = dst;
2087 sg_dma_address(&src_sg) = src;
2088
2089 sg_dma_len(&dst_sg) = size;
2090 sg_dma_len(&src_sg) = size;
2091
2092 return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2093}
2094
2095static struct dma_async_tx_descriptor *
2096d40_prep_memcpy_sg(struct dma_chan *chan,
2097 struct scatterlist *dst_sg, unsigned int dst_nents,
2098 struct scatterlist *src_sg, unsigned int src_nents,
2099 unsigned long dma_flags)
2100{
2101 if (dst_nents != src_nents)
2102 return NULL;
2103
2104 return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2105}
2106
2107static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
2108 struct scatterlist *sgl,
2109 unsigned int sg_len,
2110 enum dma_data_direction direction,
2111 unsigned long dma_flags)
2112{
2113 if (direction != DMA_FROM_DEVICE && direction != DMA_TO_DEVICE)
2114 return NULL;
2115
2116 return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2117}
2118
2119static struct dma_async_tx_descriptor *
2120dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2121 size_t buf_len, size_t period_len,
2122 enum dma_data_direction direction)
2123{
2124 unsigned int periods = buf_len / period_len;
2125 struct dma_async_tx_descriptor *txd;
2126 struct scatterlist *sg;
2127 int i;
2128
2129 sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2130 for (i = 0; i < periods; i++) {
2131 sg_dma_address(&sg[i]) = dma_addr;
2132 sg_dma_len(&sg[i]) = period_len;
2133 dma_addr += period_len;
2134 }
2135
2136 sg[periods].offset = 0;
2137 sg[periods].length = 0;
2138 sg[periods].page_link =
2139 ((unsigned long)sg | 0x01) & ~0x02;
2140
2141 txd = d40_prep_sg(chan, sg, sg, periods, direction,
2142 DMA_PREP_INTERRUPT);
2143
2144 kfree(sg);
2145
2146 return txd;
2147}
2148
2149static enum dma_status d40_tx_status(struct dma_chan *chan,
2150 dma_cookie_t cookie,
2151 struct dma_tx_state *txstate)
2152{
2153 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2154 dma_cookie_t last_used;
2155 dma_cookie_t last_complete;
2156 int ret;
2157
2158 if (d40c->phy_chan == NULL) {
2159 chan_err(d40c, "Cannot read status of unallocated channel\n");
2160 return -EINVAL;
2161 }
2162
2163 last_complete = d40c->completed;
2164 last_used = chan->cookie;
2165
2166 if (d40_is_paused(d40c))
2167 ret = DMA_PAUSED;
2168 else
2169 ret = dma_async_is_complete(cookie, last_complete, last_used);
2170
2171 dma_set_tx_state(txstate, last_complete, last_used,
2172 stedma40_residue(chan));
2173
2174 return ret;
2175}
2176
2177static void d40_issue_pending(struct dma_chan *chan)
2178{
2179 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2180 unsigned long flags;
2181
2182 if (d40c->phy_chan == NULL) {
2183 chan_err(d40c, "Channel is not allocated!\n");
2184 return;
2185 }
2186
2187 spin_lock_irqsave(&d40c->lock, flags);
2188
2189 list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2190
2191 /* Busy means that queued jobs are already being processed */
2192 if (!d40c->busy)
2193 (void) d40_queue_start(d40c);
2194
2195 spin_unlock_irqrestore(&d40c->lock, flags);
2196}
2197
2198static int
2199dma40_config_to_halfchannel(struct d40_chan *d40c,
2200 struct stedma40_half_channel_info *info,
2201 enum dma_slave_buswidth width,
2202 u32 maxburst)
2203{
2204 enum stedma40_periph_data_width addr_width;
2205 int psize;
2206
2207 switch (width) {
2208 case DMA_SLAVE_BUSWIDTH_1_BYTE:
2209 addr_width = STEDMA40_BYTE_WIDTH;
2210 break;
2211 case DMA_SLAVE_BUSWIDTH_2_BYTES:
2212 addr_width = STEDMA40_HALFWORD_WIDTH;
2213 break;
2214 case DMA_SLAVE_BUSWIDTH_4_BYTES:
2215 addr_width = STEDMA40_WORD_WIDTH;
2216 break;
2217 case DMA_SLAVE_BUSWIDTH_8_BYTES:
2218 addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2219 break;
2220 default:
2221 dev_err(d40c->base->dev,
2222 "illegal peripheral address width "
2223 "requested (%d)\n",
2224 width);
2225 return -EINVAL;
2226 }
2227
2228 if (chan_is_logical(d40c)) {
2229 if (maxburst >= 16)
2230 psize = STEDMA40_PSIZE_LOG_16;
2231 else if (maxburst >= 8)
2232 psize = STEDMA40_PSIZE_LOG_8;
2233 else if (maxburst >= 4)
2234 psize = STEDMA40_PSIZE_LOG_4;
2235 else
2236 psize = STEDMA40_PSIZE_LOG_1;
2237 } else {
2238 if (maxburst >= 16)
2239 psize = STEDMA40_PSIZE_PHY_16;
2240 else if (maxburst >= 8)
2241 psize = STEDMA40_PSIZE_PHY_8;
2242 else if (maxburst >= 4)
2243 psize = STEDMA40_PSIZE_PHY_4;
2244 else
2245 psize = STEDMA40_PSIZE_PHY_1;
2246 }
2247
2248 info->data_width = addr_width;
2249 info->psize = psize;
2250 info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2251
2252 return 0;
2253}
2254
2255/* Runtime reconfiguration extension */
2256static int d40_set_runtime_config(struct dma_chan *chan,
2257 struct dma_slave_config *config)
2258{
2259 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2260 struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2261 enum dma_slave_buswidth src_addr_width, dst_addr_width;
2262 dma_addr_t config_addr;
2263 u32 src_maxburst, dst_maxburst;
2264 int ret;
2265
2266 src_addr_width = config->src_addr_width;
2267 src_maxburst = config->src_maxburst;
2268 dst_addr_width = config->dst_addr_width;
2269 dst_maxburst = config->dst_maxburst;
2270
2271 if (config->direction == DMA_FROM_DEVICE) {
2272 dma_addr_t dev_addr_rx =
2273 d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2274
2275 config_addr = config->src_addr;
2276 if (dev_addr_rx)
2277 dev_dbg(d40c->base->dev,
2278 "channel has a pre-wired RX address %08x "
2279 "overriding with %08x\n",
2280 dev_addr_rx, config_addr);
2281 if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2282 dev_dbg(d40c->base->dev,
2283 "channel was not configured for peripheral "
2284 "to memory transfer (%d) overriding\n",
2285 cfg->dir);
2286 cfg->dir = STEDMA40_PERIPH_TO_MEM;
2287
2288 /* Configure the memory side */
2289 if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2290 dst_addr_width = src_addr_width;
2291 if (dst_maxburst == 0)
2292 dst_maxburst = src_maxburst;
2293
2294 } else if (config->direction == DMA_TO_DEVICE) {
2295 dma_addr_t dev_addr_tx =
2296 d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2297
2298 config_addr = config->dst_addr;
2299 if (dev_addr_tx)
2300 dev_dbg(d40c->base->dev,
2301 "channel has a pre-wired TX address %08x "
2302 "overriding with %08x\n",
2303 dev_addr_tx, config_addr);
2304 if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2305 dev_dbg(d40c->base->dev,
2306 "channel was not configured for memory "
2307 "to peripheral transfer (%d) overriding\n",
2308 cfg->dir);
2309 cfg->dir = STEDMA40_MEM_TO_PERIPH;
2310
2311 /* Configure the memory side */
2312 if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2313 src_addr_width = dst_addr_width;
2314 if (src_maxburst == 0)
2315 src_maxburst = dst_maxburst;
2316 } else {
2317 dev_err(d40c->base->dev,
2318 "unrecognized channel direction %d\n",
2319 config->direction);
2320 return -EINVAL;
2321 }
2322
2323 if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2324 dev_err(d40c->base->dev,
2325 "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2326 src_maxburst,
2327 src_addr_width,
2328 dst_maxburst,
2329 dst_addr_width);
2330 return -EINVAL;
2331 }
2332
2333 ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2334 src_addr_width,
2335 src_maxburst);
2336 if (ret)
2337 return ret;
2338
2339 ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2340 dst_addr_width,
2341 dst_maxburst);
2342 if (ret)
2343 return ret;
2344
2345 /* Fill in register values */
2346 if (chan_is_logical(d40c))
2347 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2348 else
2349 d40_phy_cfg(cfg, &d40c->src_def_cfg,
2350 &d40c->dst_def_cfg, false);
2351
2352 /* These settings will take precedence later */
2353 d40c->runtime_addr = config_addr;
2354 d40c->runtime_direction = config->direction;
2355 dev_dbg(d40c->base->dev,
2356 "configured channel %s for %s, data width %d/%d, "
2357 "maxburst %d/%d elements, LE, no flow control\n",
2358 dma_chan_name(chan),
2359 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
2360 src_addr_width, dst_addr_width,
2361 src_maxburst, dst_maxburst);
2362
2363 return 0;
2364}
2365
2366static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2367 unsigned long arg)
2368{
2369 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2370
2371 if (d40c->phy_chan == NULL) {
2372 chan_err(d40c, "Channel is not allocated!\n");
2373 return -EINVAL;
2374 }
2375
2376 switch (cmd) {
2377 case DMA_TERMINATE_ALL:
2378 return d40_terminate_all(d40c);
2379 case DMA_PAUSE:
2380 return d40_pause(d40c);
2381 case DMA_RESUME:
2382 return d40_resume(d40c);
2383 case DMA_SLAVE_CONFIG:
2384 return d40_set_runtime_config(chan,
2385 (struct dma_slave_config *) arg);
2386 default:
2387 break;
2388 }
2389
2390 /* Other commands are unimplemented */
2391 return -ENXIO;
2392}
2393
2394/* Initialization functions */
2395
2396static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2397 struct d40_chan *chans, int offset,
2398 int num_chans)
2399{
2400 int i = 0;
2401 struct d40_chan *d40c;
2402
2403 INIT_LIST_HEAD(&dma->channels);
2404
2405 for (i = offset; i < offset + num_chans; i++) {
2406 d40c = &chans[i];
2407 d40c->base = base;
2408 d40c->chan.device = dma;
2409
2410 spin_lock_init(&d40c->lock);
2411
2412 d40c->log_num = D40_PHY_CHAN;
2413
2414 INIT_LIST_HEAD(&d40c->active);
2415 INIT_LIST_HEAD(&d40c->queue);
2416 INIT_LIST_HEAD(&d40c->pending_queue);
2417 INIT_LIST_HEAD(&d40c->client);
2418 INIT_LIST_HEAD(&d40c->prepare_queue);
2419
2420 tasklet_init(&d40c->tasklet, dma_tasklet,
2421 (unsigned long) d40c);
2422
2423 list_add_tail(&d40c->chan.device_node,
2424 &dma->channels);
2425 }
2426}
2427
2428static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2429{
2430 if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
2431 dev->device_prep_slave_sg = d40_prep_slave_sg;
2432
2433 if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2434 dev->device_prep_dma_memcpy = d40_prep_memcpy;
2435
2436 /*
2437 * This controller can only access address at even
2438 * 32bit boundaries, i.e. 2^2
2439 */
2440 dev->copy_align = 2;
2441 }
2442
2443 if (dma_has_cap(DMA_SG, dev->cap_mask))
2444 dev->device_prep_dma_sg = d40_prep_memcpy_sg;
2445
2446 if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2447 dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2448
2449 dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2450 dev->device_free_chan_resources = d40_free_chan_resources;
2451 dev->device_issue_pending = d40_issue_pending;
2452 dev->device_tx_status = d40_tx_status;
2453 dev->device_control = d40_control;
2454 dev->dev = base->dev;
2455}
2456
2457static int __init d40_dmaengine_init(struct d40_base *base,
2458 int num_reserved_chans)
2459{
2460 int err ;
2461
2462 d40_chan_init(base, &base->dma_slave, base->log_chans,
2463 0, base->num_log_chans);
2464
2465 dma_cap_zero(base->dma_slave.cap_mask);
2466 dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2467 dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2468
2469 d40_ops_init(base, &base->dma_slave);
2470
2471 err = dma_async_device_register(&base->dma_slave);
2472
2473 if (err) {
2474 d40_err(base->dev, "Failed to register slave channels\n");
2475 goto failure1;
2476 }
2477
2478 d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2479 base->num_log_chans, base->plat_data->memcpy_len);
2480
2481 dma_cap_zero(base->dma_memcpy.cap_mask);
2482 dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2483 dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
2484
2485 d40_ops_init(base, &base->dma_memcpy);
2486
2487 err = dma_async_device_register(&base->dma_memcpy);
2488
2489 if (err) {
2490 d40_err(base->dev,
2491 "Failed to regsiter memcpy only channels\n");
2492 goto failure2;
2493 }
2494
2495 d40_chan_init(base, &base->dma_both, base->phy_chans,
2496 0, num_reserved_chans);
2497
2498 dma_cap_zero(base->dma_both.cap_mask);
2499 dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2500 dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2501 dma_cap_set(DMA_SG, base->dma_both.cap_mask);
2502 dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2503
2504 d40_ops_init(base, &base->dma_both);
2505 err = dma_async_device_register(&base->dma_both);
2506
2507 if (err) {
2508 d40_err(base->dev,
2509 "Failed to register logical and physical capable channels\n");
2510 goto failure3;
2511 }
2512 return 0;
2513failure3:
2514 dma_async_device_unregister(&base->dma_memcpy);
2515failure2:
2516 dma_async_device_unregister(&base->dma_slave);
2517failure1:
2518 return err;
2519}
2520
2521/* Initialization functions. */
2522
2523static int __init d40_phy_res_init(struct d40_base *base)
2524{
2525 int i;
2526 int num_phy_chans_avail = 0;
2527 u32 val[2];
2528 int odd_even_bit = -2;
2529
2530 val[0] = readl(base->virtbase + D40_DREG_PRSME);
2531 val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2532
2533 for (i = 0; i < base->num_phy_chans; i++) {
2534 base->phy_res[i].num = i;
2535 odd_even_bit += 2 * ((i % 2) == 0);
2536 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2537 /* Mark security only channels as occupied */
2538 base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2539 base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2540 } else {
2541 base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2542 base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2543 num_phy_chans_avail++;
2544 }
2545 spin_lock_init(&base->phy_res[i].lock);
2546 }
2547
2548 /* Mark disabled channels as occupied */
2549 for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2550 int chan = base->plat_data->disabled_channels[i];
2551
2552 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
2553 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
2554 num_phy_chans_avail--;
2555 }
2556
2557 dev_info(base->dev, "%d of %d physical DMA channels available\n",
2558 num_phy_chans_avail, base->num_phy_chans);
2559
2560 /* Verify settings extended vs standard */
2561 val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2562
2563 for (i = 0; i < base->num_phy_chans; i++) {
2564
2565 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2566 (val[0] & 0x3) != 1)
2567 dev_info(base->dev,
2568 "[%s] INFO: channel %d is misconfigured (%d)\n",
2569 __func__, i, val[0] & 0x3);
2570
2571 val[0] = val[0] >> 2;
2572 }
2573
2574 return num_phy_chans_avail;
2575}
2576
2577static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2578{
2579 struct stedma40_platform_data *plat_data;
2580 struct clk *clk = NULL;
2581 void __iomem *virtbase = NULL;
2582 struct resource *res = NULL;
2583 struct d40_base *base = NULL;
2584 int num_log_chans = 0;
2585 int num_phy_chans;
2586 int i;
2587 u32 pid;
2588 u32 cid;
2589 u8 rev;
2590
2591 clk = clk_get(&pdev->dev, NULL);
2592
2593 if (IS_ERR(clk)) {
2594 d40_err(&pdev->dev, "No matching clock found\n");
2595 goto failure;
2596 }
2597
2598 clk_enable(clk);
2599
2600 /* Get IO for DMAC base address */
2601 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2602 if (!res)
2603 goto failure;
2604
2605 if (request_mem_region(res->start, resource_size(res),
2606 D40_NAME " I/O base") == NULL)
2607 goto failure;
2608
2609 virtbase = ioremap(res->start, resource_size(res));
2610 if (!virtbase)
2611 goto failure;
2612
2613 /* This is just a regular AMBA PrimeCell ID actually */
2614 for (pid = 0, i = 0; i < 4; i++)
2615 pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
2616 & 255) << (i * 8);
2617 for (cid = 0, i = 0; i < 4; i++)
2618 cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
2619 & 255) << (i * 8);
2620
2621 if (cid != AMBA_CID) {
2622 d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
2623 goto failure;
2624 }
2625 if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
2626 d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
2627 AMBA_MANF_BITS(pid),
2628 AMBA_VENDOR_ST);
2629 goto failure;
2630 }
2631 /*
2632 * HW revision:
2633 * DB8500ed has revision 0
2634 * ? has revision 1
2635 * DB8500v1 has revision 2
2636 * DB8500v2 has revision 3
2637 */
2638 rev = AMBA_REV_BITS(pid);
2639
2640 /* The number of physical channels on this HW */
2641 num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2642
2643 dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2644 rev, res->start);
2645
2646 plat_data = pdev->dev.platform_data;
2647
2648 /* Count the number of logical channels in use */
2649 for (i = 0; i < plat_data->dev_len; i++)
2650 if (plat_data->dev_rx[i] != 0)
2651 num_log_chans++;
2652
2653 for (i = 0; i < plat_data->dev_len; i++)
2654 if (plat_data->dev_tx[i] != 0)
2655 num_log_chans++;
2656
2657 base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
2658 (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
2659 sizeof(struct d40_chan), GFP_KERNEL);
2660
2661 if (base == NULL) {
2662 d40_err(&pdev->dev, "Out of memory\n");
2663 goto failure;
2664 }
2665
2666 base->rev = rev;
2667 base->clk = clk;
2668 base->num_phy_chans = num_phy_chans;
2669 base->num_log_chans = num_log_chans;
2670 base->phy_start = res->start;
2671 base->phy_size = resource_size(res);
2672 base->virtbase = virtbase;
2673 base->plat_data = plat_data;
2674 base->dev = &pdev->dev;
2675 base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
2676 base->log_chans = &base->phy_chans[num_phy_chans];
2677
2678 base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
2679 GFP_KERNEL);
2680 if (!base->phy_res)
2681 goto failure;
2682
2683 base->lookup_phy_chans = kzalloc(num_phy_chans *
2684 sizeof(struct d40_chan *),
2685 GFP_KERNEL);
2686 if (!base->lookup_phy_chans)
2687 goto failure;
2688
2689 if (num_log_chans + plat_data->memcpy_len) {
2690 /*
2691 * The max number of logical channels are event lines for all
2692 * src devices and dst devices
2693 */
2694 base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
2695 sizeof(struct d40_chan *),
2696 GFP_KERNEL);
2697 if (!base->lookup_log_chans)
2698 goto failure;
2699 }
2700
2701 base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
2702 sizeof(struct d40_desc *) *
2703 D40_LCLA_LINK_PER_EVENT_GRP,
2704 GFP_KERNEL);
2705 if (!base->lcla_pool.alloc_map)
2706 goto failure;
2707
2708 base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
2709 0, SLAB_HWCACHE_ALIGN,
2710 NULL);
2711 if (base->desc_slab == NULL)
2712 goto failure;
2713
2714 return base;
2715
2716failure:
2717 if (!IS_ERR(clk)) {
2718 clk_disable(clk);
2719 clk_put(clk);
2720 }
2721 if (virtbase)
2722 iounmap(virtbase);
2723 if (res)
2724 release_mem_region(res->start,
2725 resource_size(res));
2726 if (virtbase)
2727 iounmap(virtbase);
2728
2729 if (base) {
2730 kfree(base->lcla_pool.alloc_map);
2731 kfree(base->lookup_log_chans);
2732 kfree(base->lookup_phy_chans);
2733 kfree(base->phy_res);
2734 kfree(base);
2735 }
2736
2737 return NULL;
2738}
2739
2740static void __init d40_hw_init(struct d40_base *base)
2741{
2742
2743 static const struct d40_reg_val dma_init_reg[] = {
2744 /* Clock every part of the DMA block from start */
2745 { .reg = D40_DREG_GCC, .val = 0x0000ff01},
2746
2747 /* Interrupts on all logical channels */
2748 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
2749 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
2750 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
2751 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
2752 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
2753 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
2754 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
2755 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
2756 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
2757 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
2758 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
2759 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
2760 };
2761 int i;
2762 u32 prmseo[2] = {0, 0};
2763 u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
2764 u32 pcmis = 0;
2765 u32 pcicr = 0;
2766
2767 for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
2768 writel(dma_init_reg[i].val,
2769 base->virtbase + dma_init_reg[i].reg);
2770
2771 /* Configure all our dma channels to default settings */
2772 for (i = 0; i < base->num_phy_chans; i++) {
2773
2774 activeo[i % 2] = activeo[i % 2] << 2;
2775
2776 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
2777 == D40_ALLOC_PHY) {
2778 activeo[i % 2] |= 3;
2779 continue;
2780 }
2781
2782 /* Enable interrupt # */
2783 pcmis = (pcmis << 1) | 1;
2784
2785 /* Clear interrupt # */
2786 pcicr = (pcicr << 1) | 1;
2787
2788 /* Set channel to physical mode */
2789 prmseo[i % 2] = prmseo[i % 2] << 2;
2790 prmseo[i % 2] |= 1;
2791
2792 }
2793
2794 writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
2795 writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
2796 writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
2797 writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
2798
2799 /* Write which interrupt to enable */
2800 writel(pcmis, base->virtbase + D40_DREG_PCMIS);
2801
2802 /* Write which interrupt to clear */
2803 writel(pcicr, base->virtbase + D40_DREG_PCICR);
2804
2805}
2806
2807static int __init d40_lcla_allocate(struct d40_base *base)
2808{
2809 struct d40_lcla_pool *pool = &base->lcla_pool;
2810 unsigned long *page_list;
2811 int i, j;
2812 int ret = 0;
2813
2814 /*
2815 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
2816 * To full fill this hardware requirement without wasting 256 kb
2817 * we allocate pages until we get an aligned one.
2818 */
2819 page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
2820 GFP_KERNEL);
2821
2822 if (!page_list) {
2823 ret = -ENOMEM;
2824 goto failure;
2825 }
2826
2827 /* Calculating how many pages that are required */
2828 base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
2829
2830 for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
2831 page_list[i] = __get_free_pages(GFP_KERNEL,
2832 base->lcla_pool.pages);
2833 if (!page_list[i]) {
2834
2835 d40_err(base->dev, "Failed to allocate %d pages.\n",
2836 base->lcla_pool.pages);
2837
2838 for (j = 0; j < i; j++)
2839 free_pages(page_list[j], base->lcla_pool.pages);
2840 goto failure;
2841 }
2842
2843 if ((virt_to_phys((void *)page_list[i]) &
2844 (LCLA_ALIGNMENT - 1)) == 0)
2845 break;
2846 }
2847
2848 for (j = 0; j < i; j++)
2849 free_pages(page_list[j], base->lcla_pool.pages);
2850
2851 if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
2852 base->lcla_pool.base = (void *)page_list[i];
2853 } else {
2854 /*
2855 * After many attempts and no succees with finding the correct
2856 * alignment, try with allocating a big buffer.
2857 */
2858 dev_warn(base->dev,
2859 "[%s] Failed to get %d pages @ 18 bit align.\n",
2860 __func__, base->lcla_pool.pages);
2861 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
2862 base->num_phy_chans +
2863 LCLA_ALIGNMENT,
2864 GFP_KERNEL);
2865 if (!base->lcla_pool.base_unaligned) {
2866 ret = -ENOMEM;
2867 goto failure;
2868 }
2869
2870 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
2871 LCLA_ALIGNMENT);
2872 }
2873
2874 pool->dma_addr = dma_map_single(base->dev, pool->base,
2875 SZ_1K * base->num_phy_chans,
2876 DMA_TO_DEVICE);
2877 if (dma_mapping_error(base->dev, pool->dma_addr)) {
2878 pool->dma_addr = 0;
2879 ret = -ENOMEM;
2880 goto failure;
2881 }
2882
2883 writel(virt_to_phys(base->lcla_pool.base),
2884 base->virtbase + D40_DREG_LCLA);
2885failure:
2886 kfree(page_list);
2887 return ret;
2888}
2889
2890static int __init d40_probe(struct platform_device *pdev)
2891{
2892 int err;
2893 int ret = -ENOENT;
2894 struct d40_base *base;
2895 struct resource *res = NULL;
2896 int num_reserved_chans;
2897 u32 val;
2898
2899 base = d40_hw_detect_init(pdev);
2900
2901 if (!base)
2902 goto failure;
2903
2904 num_reserved_chans = d40_phy_res_init(base);
2905
2906 platform_set_drvdata(pdev, base);
2907
2908 spin_lock_init(&base->interrupt_lock);
2909 spin_lock_init(&base->execmd_lock);
2910
2911 /* Get IO for logical channel parameter address */
2912 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
2913 if (!res) {
2914 ret = -ENOENT;
2915 d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
2916 goto failure;
2917 }
2918 base->lcpa_size = resource_size(res);
2919 base->phy_lcpa = res->start;
2920
2921 if (request_mem_region(res->start, resource_size(res),
2922 D40_NAME " I/O lcpa") == NULL) {
2923 ret = -EBUSY;
2924 d40_err(&pdev->dev,
2925 "Failed to request LCPA region 0x%x-0x%x\n",
2926 res->start, res->end);
2927 goto failure;
2928 }
2929
2930 /* We make use of ESRAM memory for this. */
2931 val = readl(base->virtbase + D40_DREG_LCPA);
2932 if (res->start != val && val != 0) {
2933 dev_warn(&pdev->dev,
2934 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
2935 __func__, val, res->start);
2936 } else
2937 writel(res->start, base->virtbase + D40_DREG_LCPA);
2938
2939 base->lcpa_base = ioremap(res->start, resource_size(res));
2940 if (!base->lcpa_base) {
2941 ret = -ENOMEM;
2942 d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
2943 goto failure;
2944 }
2945
2946 ret = d40_lcla_allocate(base);
2947 if (ret) {
2948 d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
2949 goto failure;
2950 }
2951
2952 spin_lock_init(&base->lcla_pool.lock);
2953
2954 base->irq = platform_get_irq(pdev, 0);
2955
2956 ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
2957 if (ret) {
2958 d40_err(&pdev->dev, "No IRQ defined\n");
2959 goto failure;
2960 }
2961
2962 err = d40_dmaengine_init(base, num_reserved_chans);
2963 if (err)
2964 goto failure;
2965
2966 d40_hw_init(base);
2967
2968 dev_info(base->dev, "initialized\n");
2969 return 0;
2970
2971failure:
2972 if (base) {
2973 if (base->desc_slab)
2974 kmem_cache_destroy(base->desc_slab);
2975 if (base->virtbase)
2976 iounmap(base->virtbase);
2977
2978 if (base->lcla_pool.dma_addr)
2979 dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
2980 SZ_1K * base->num_phy_chans,
2981 DMA_TO_DEVICE);
2982
2983 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
2984 free_pages((unsigned long)base->lcla_pool.base,
2985 base->lcla_pool.pages);
2986
2987 kfree(base->lcla_pool.base_unaligned);
2988
2989 if (base->phy_lcpa)
2990 release_mem_region(base->phy_lcpa,
2991 base->lcpa_size);
2992 if (base->phy_start)
2993 release_mem_region(base->phy_start,
2994 base->phy_size);
2995 if (base->clk) {
2996 clk_disable(base->clk);
2997 clk_put(base->clk);
2998 }
2999
3000 kfree(base->lcla_pool.alloc_map);
3001 kfree(base->lookup_log_chans);
3002 kfree(base->lookup_phy_chans);
3003 kfree(base->phy_res);
3004 kfree(base);
3005 }
3006
3007 d40_err(&pdev->dev, "probe failed\n");
3008 return ret;
3009}
3010
3011static struct platform_driver d40_driver = {
3012 .driver = {
3013 .owner = THIS_MODULE,
3014 .name = D40_NAME,
3015 },
3016};
3017
3018static int __init stedma40_init(void)
3019{
3020 return platform_driver_probe(&d40_driver, d40_probe);
3021}
3022subsys_initcall(stedma40_init);