Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2// Copyright (c) 2017-2018 MediaTek Inc.
   3
   4/*
   5 * Driver for MediaTek High-Speed DMA Controller
   6 *
   7 * Author: Sean Wang <sean.wang@mediatek.com>
   8 *
   9 */
  10
  11#include <linux/bitops.h>
  12#include <linux/clk.h>
  13#include <linux/dmaengine.h>
  14#include <linux/dma-mapping.h>
  15#include <linux/err.h>
  16#include <linux/iopoll.h>
  17#include <linux/list.h>
  18#include <linux/module.h>
  19#include <linux/of.h>
  20#include <linux/of_device.h>
  21#include <linux/of_dma.h>
  22#include <linux/platform_device.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/refcount.h>
  25#include <linux/slab.h>
  26
  27#include "../virt-dma.h"
  28
  29#define MTK_HSDMA_USEC_POLL		20
  30#define MTK_HSDMA_TIMEOUT_POLL		200000
  31#define MTK_HSDMA_DMA_BUSWIDTHS		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
  32
  33/* The default number of virtual channel */
  34#define MTK_HSDMA_NR_VCHANS		3
  35
  36/* Only one physical channel supported */
  37#define MTK_HSDMA_NR_MAX_PCHANS		1
  38
  39/* Macro for physical descriptor (PD) manipulation */
  40/* The number of PD which must be 2 of power */
  41#define MTK_DMA_SIZE			64
  42#define MTK_HSDMA_NEXT_DESP_IDX(x, y)	(((x) + 1) & ((y) - 1))
  43#define MTK_HSDMA_LAST_DESP_IDX(x, y)	(((x) - 1) & ((y) - 1))
  44#define MTK_HSDMA_MAX_LEN		0x3f80
  45#define MTK_HSDMA_ALIGN_SIZE		4
  46#define MTK_HSDMA_PLEN_MASK		0x3fff
  47#define MTK_HSDMA_DESC_PLEN(x)		(((x) & MTK_HSDMA_PLEN_MASK) << 16)
  48#define MTK_HSDMA_DESC_PLEN_GET(x)	(((x) >> 16) & MTK_HSDMA_PLEN_MASK)
  49
  50/* Registers for underlying ring manipulation */
  51#define MTK_HSDMA_TX_BASE		0x0
  52#define MTK_HSDMA_TX_CNT		0x4
  53#define MTK_HSDMA_TX_CPU		0x8
  54#define MTK_HSDMA_TX_DMA		0xc
  55#define MTK_HSDMA_RX_BASE		0x100
  56#define MTK_HSDMA_RX_CNT		0x104
  57#define MTK_HSDMA_RX_CPU		0x108
  58#define MTK_HSDMA_RX_DMA		0x10c
  59
  60/* Registers for global setup */
  61#define MTK_HSDMA_GLO			0x204
  62#define MTK_HSDMA_GLO_MULTI_DMA		BIT(10)
  63#define MTK_HSDMA_TX_WB_DDONE		BIT(6)
  64#define MTK_HSDMA_BURST_64BYTES		(0x2 << 4)
  65#define MTK_HSDMA_GLO_RX_BUSY		BIT(3)
  66#define MTK_HSDMA_GLO_RX_DMA		BIT(2)
  67#define MTK_HSDMA_GLO_TX_BUSY		BIT(1)
  68#define MTK_HSDMA_GLO_TX_DMA		BIT(0)
  69#define MTK_HSDMA_GLO_DMA		(MTK_HSDMA_GLO_TX_DMA |	\
  70					 MTK_HSDMA_GLO_RX_DMA)
  71#define MTK_HSDMA_GLO_BUSY		(MTK_HSDMA_GLO_RX_BUSY | \
  72					 MTK_HSDMA_GLO_TX_BUSY)
  73#define MTK_HSDMA_GLO_DEFAULT		(MTK_HSDMA_GLO_TX_DMA | \
  74					 MTK_HSDMA_GLO_RX_DMA | \
  75					 MTK_HSDMA_TX_WB_DDONE | \
  76					 MTK_HSDMA_BURST_64BYTES | \
  77					 MTK_HSDMA_GLO_MULTI_DMA)
  78
  79/* Registers for reset */
  80#define MTK_HSDMA_RESET			0x208
  81#define MTK_HSDMA_RST_TX		BIT(0)
  82#define MTK_HSDMA_RST_RX		BIT(16)
  83
  84/* Registers for interrupt control */
  85#define MTK_HSDMA_DLYINT		0x20c
  86#define MTK_HSDMA_RXDLY_INT_EN		BIT(15)
  87
  88/* Interrupt fires when the pending number's more than the specified */
  89#define MTK_HSDMA_RXMAX_PINT(x)		(((x) & 0x7f) << 8)
  90
  91/* Interrupt fires when the pending time's more than the specified in 20 us */
  92#define MTK_HSDMA_RXMAX_PTIME(x)	((x) & 0x7f)
  93#define MTK_HSDMA_DLYINT_DEFAULT	(MTK_HSDMA_RXDLY_INT_EN | \
  94					 MTK_HSDMA_RXMAX_PINT(20) | \
  95					 MTK_HSDMA_RXMAX_PTIME(20))
  96#define MTK_HSDMA_INT_STATUS		0x220
  97#define MTK_HSDMA_INT_ENABLE		0x228
  98#define MTK_HSDMA_INT_RXDONE		BIT(16)
  99
 100enum mtk_hsdma_vdesc_flag {
 101	MTK_HSDMA_VDESC_FINISHED	= 0x01,
 102};
 103
 104#define IS_MTK_HSDMA_VDESC_FINISHED(x) ((x) == MTK_HSDMA_VDESC_FINISHED)
 105
 106/**
 107 * struct mtk_hsdma_pdesc - This is the struct holding info describing physical
 108 *			    descriptor (PD) and its placement must be kept at
 109 *			    4-bytes alignment in little endian order.
 110 * @desc1:		    | The control pad used to indicate hardware how to
 111 * @desc2:		    | deal with the descriptor such as source and
 112 * @desc3:		    | destination address and data length. The maximum
 113 * @desc4:		    | data length each pdesc can handle is 0x3f80 bytes
 114 */
 115struct mtk_hsdma_pdesc {
 116	__le32 desc1;
 117	__le32 desc2;
 118	__le32 desc3;
 119	__le32 desc4;
 120} __packed __aligned(4);
 121
 122/**
 123 * struct mtk_hsdma_vdesc - This is the struct holding info describing virtual
 124 *			    descriptor (VD)
 125 * @vd:			    An instance for struct virt_dma_desc
 126 * @len:		    The total data size device wants to move
 127 * @residue:		    The remaining data size device will move
 128 * @dest:		    The destination address device wants to move to
 129 * @src:		    The source address device wants to move from
 130 */
 131struct mtk_hsdma_vdesc {
 132	struct virt_dma_desc vd;
 133	size_t len;
 134	size_t residue;
 135	dma_addr_t dest;
 136	dma_addr_t src;
 137};
 138
 139/**
 140 * struct mtk_hsdma_cb - This is the struct holding extra info required for RX
 141 *			 ring to know what relevant VD the the PD is being
 142 *			 mapped to.
 143 * @vd:			 Pointer to the relevant VD.
 144 * @flag:		 Flag indicating what action should be taken when VD
 145 *			 is completed.
 146 */
 147struct mtk_hsdma_cb {
 148	struct virt_dma_desc *vd;
 149	enum mtk_hsdma_vdesc_flag flag;
 150};
 151
 152/**
 153 * struct mtk_hsdma_ring - This struct holds info describing underlying ring
 154 *			   space
 155 * @txd:		   The descriptor TX ring which describes DMA source
 156 *			   information
 157 * @rxd:		   The descriptor RX ring which describes DMA
 158 *			   destination information
 159 * @cb:			   The extra information pointed at by RX ring
 160 * @tphys:		   The physical addr of TX ring
 161 * @rphys:		   The physical addr of RX ring
 162 * @cur_tptr:		   Pointer to the next free descriptor used by the host
 163 * @cur_rptr:		   Pointer to the last done descriptor by the device
 164 */
 165struct mtk_hsdma_ring {
 166	struct mtk_hsdma_pdesc *txd;
 167	struct mtk_hsdma_pdesc *rxd;
 168	struct mtk_hsdma_cb *cb;
 169	dma_addr_t tphys;
 170	dma_addr_t rphys;
 171	u16 cur_tptr;
 172	u16 cur_rptr;
 173};
 174
 175/**
 176 * struct mtk_hsdma_pchan - This is the struct holding info describing physical
 177 *			   channel (PC)
 178 * @ring:		   An instance for the underlying ring
 179 * @sz_ring:		   Total size allocated for the ring
 180 * @nr_free:		   Total number of free rooms in the ring. It would
 181 *			   be accessed and updated frequently between IRQ
 182 *			   context and user context to reflect whether ring
 183 *			   can accept requests from VD.
 184 */
 185struct mtk_hsdma_pchan {
 186	struct mtk_hsdma_ring ring;
 187	size_t sz_ring;
 188	atomic_t nr_free;
 189};
 190
 191/**
 192 * struct mtk_hsdma_vchan - This is the struct holding info describing virtual
 193 *			   channel (VC)
 194 * @vc:			   An instance for struct virt_dma_chan
 195 * @issue_completion:	   The wait for all issued descriptors completited
 196 * @issue_synchronize:	   Bool indicating channel synchronization starts
 197 * @desc_hw_processing:	   List those descriptors the hardware is processing,
 198 *			   which is protected by vc.lock
 199 */
 200struct mtk_hsdma_vchan {
 201	struct virt_dma_chan vc;
 202	struct completion issue_completion;
 203	bool issue_synchronize;
 204	struct list_head desc_hw_processing;
 205};
 206
 207/**
 208 * struct mtk_hsdma_soc - This is the struct holding differences among SoCs
 209 * @ddone:		  Bit mask for DDONE
 210 * @ls0:		  Bit mask for LS0
 211 */
 212struct mtk_hsdma_soc {
 213	__le32 ddone;
 214	__le32 ls0;
 215};
 216
 217/**
 218 * struct mtk_hsdma_device - This is the struct holding info describing HSDMA
 219 *			     device
 220 * @ddev:		     An instance for struct dma_device
 221 * @base:		     The mapped register I/O base
 222 * @clk:		     The clock that device internal is using
 223 * @irq:		     The IRQ that device are using
 224 * @dma_requests:	     The number of VCs the device supports to
 225 * @vc:			     The pointer to all available VCs
 226 * @pc:			     The pointer to the underlying PC
 227 * @pc_refcnt:		     Track how many VCs are using the PC
 228 * @lock:		     Lock protect agaisting multiple VCs access PC
 229 * @soc:		     The pointer to area holding differences among
 230 *			     vaious platform
 231 */
 232struct mtk_hsdma_device {
 233	struct dma_device ddev;
 234	void __iomem *base;
 235	struct clk *clk;
 236	u32 irq;
 237
 238	u32 dma_requests;
 239	struct mtk_hsdma_vchan *vc;
 240	struct mtk_hsdma_pchan *pc;
 241	refcount_t pc_refcnt;
 242
 243	/* Lock used to protect against multiple VCs access PC */
 244	spinlock_t lock;
 245
 246	const struct mtk_hsdma_soc *soc;
 247};
 248
 249static struct mtk_hsdma_device *to_hsdma_dev(struct dma_chan *chan)
 250{
 251	return container_of(chan->device, struct mtk_hsdma_device, ddev);
 252}
 253
 254static inline struct mtk_hsdma_vchan *to_hsdma_vchan(struct dma_chan *chan)
 255{
 256	return container_of(chan, struct mtk_hsdma_vchan, vc.chan);
 257}
 258
 259static struct mtk_hsdma_vdesc *to_hsdma_vdesc(struct virt_dma_desc *vd)
 260{
 261	return container_of(vd, struct mtk_hsdma_vdesc, vd);
 262}
 263
 264static struct device *hsdma2dev(struct mtk_hsdma_device *hsdma)
 265{
 266	return hsdma->ddev.dev;
 267}
 268
 269static u32 mtk_dma_read(struct mtk_hsdma_device *hsdma, u32 reg)
 270{
 271	return readl(hsdma->base + reg);
 272}
 273
 274static void mtk_dma_write(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
 275{
 276	writel(val, hsdma->base + reg);
 277}
 278
 279static void mtk_dma_rmw(struct mtk_hsdma_device *hsdma, u32 reg,
 280			u32 mask, u32 set)
 281{
 282	u32 val;
 283
 284	val = mtk_dma_read(hsdma, reg);
 285	val &= ~mask;
 286	val |= set;
 287	mtk_dma_write(hsdma, reg, val);
 288}
 289
 290static void mtk_dma_set(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
 291{
 292	mtk_dma_rmw(hsdma, reg, 0, val);
 293}
 294
 295static void mtk_dma_clr(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
 296{
 297	mtk_dma_rmw(hsdma, reg, val, 0);
 298}
 299
 300static void mtk_hsdma_vdesc_free(struct virt_dma_desc *vd)
 301{
 302	kfree(container_of(vd, struct mtk_hsdma_vdesc, vd));
 303}
 304
 305static int mtk_hsdma_busy_wait(struct mtk_hsdma_device *hsdma)
 306{
 307	u32 status = 0;
 308
 309	return readl_poll_timeout(hsdma->base + MTK_HSDMA_GLO, status,
 310				  !(status & MTK_HSDMA_GLO_BUSY),
 311				  MTK_HSDMA_USEC_POLL,
 312				  MTK_HSDMA_TIMEOUT_POLL);
 313}
 314
 315static int mtk_hsdma_alloc_pchan(struct mtk_hsdma_device *hsdma,
 316				 struct mtk_hsdma_pchan *pc)
 317{
 318	struct mtk_hsdma_ring *ring = &pc->ring;
 319	int err;
 320
 321	memset(pc, 0, sizeof(*pc));
 322
 323	/*
 324	 * Allocate ring space where [0 ... MTK_DMA_SIZE - 1] is for TX ring
 325	 * and [MTK_DMA_SIZE ... 2 * MTK_DMA_SIZE - 1] is for RX ring.
 326	 */
 327	pc->sz_ring = 2 * MTK_DMA_SIZE * sizeof(*ring->txd);
 328	ring->txd = dma_alloc_coherent(hsdma2dev(hsdma), pc->sz_ring,
 329				       &ring->tphys, GFP_NOWAIT);
 330	if (!ring->txd)
 331		return -ENOMEM;
 332
 333	ring->rxd = &ring->txd[MTK_DMA_SIZE];
 334	ring->rphys = ring->tphys + MTK_DMA_SIZE * sizeof(*ring->txd);
 335	ring->cur_tptr = 0;
 336	ring->cur_rptr = MTK_DMA_SIZE - 1;
 337
 338	ring->cb = kcalloc(MTK_DMA_SIZE, sizeof(*ring->cb), GFP_NOWAIT);
 339	if (!ring->cb) {
 340		err = -ENOMEM;
 341		goto err_free_dma;
 342	}
 343
 344	atomic_set(&pc->nr_free, MTK_DMA_SIZE - 1);
 345
 346	/* Disable HSDMA and wait for the completion */
 347	mtk_dma_clr(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
 348	err = mtk_hsdma_busy_wait(hsdma);
 349	if (err)
 350		goto err_free_cb;
 351
 352	/* Reset */
 353	mtk_dma_set(hsdma, MTK_HSDMA_RESET,
 354		    MTK_HSDMA_RST_TX | MTK_HSDMA_RST_RX);
 355	mtk_dma_clr(hsdma, MTK_HSDMA_RESET,
 356		    MTK_HSDMA_RST_TX | MTK_HSDMA_RST_RX);
 357
 358	/* Setup HSDMA initial pointer in the ring */
 359	mtk_dma_write(hsdma, MTK_HSDMA_TX_BASE, ring->tphys);
 360	mtk_dma_write(hsdma, MTK_HSDMA_TX_CNT, MTK_DMA_SIZE);
 361	mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, ring->cur_tptr);
 362	mtk_dma_write(hsdma, MTK_HSDMA_TX_DMA, 0);
 363	mtk_dma_write(hsdma, MTK_HSDMA_RX_BASE, ring->rphys);
 364	mtk_dma_write(hsdma, MTK_HSDMA_RX_CNT, MTK_DMA_SIZE);
 365	mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, ring->cur_rptr);
 366	mtk_dma_write(hsdma, MTK_HSDMA_RX_DMA, 0);
 367
 368	/* Enable HSDMA */
 369	mtk_dma_set(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
 370
 371	/* Setup delayed interrupt */
 372	mtk_dma_write(hsdma, MTK_HSDMA_DLYINT, MTK_HSDMA_DLYINT_DEFAULT);
 373
 374	/* Enable interrupt */
 375	mtk_dma_set(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
 376
 377	return 0;
 378
 379err_free_cb:
 380	kfree(ring->cb);
 381
 382err_free_dma:
 383	dma_free_coherent(hsdma2dev(hsdma),
 384			  pc->sz_ring, ring->txd, ring->tphys);
 385	return err;
 386}
 387
 388static void mtk_hsdma_free_pchan(struct mtk_hsdma_device *hsdma,
 389				 struct mtk_hsdma_pchan *pc)
 390{
 391	struct mtk_hsdma_ring *ring = &pc->ring;
 392
 393	/* Disable HSDMA and then wait for the completion */
 394	mtk_dma_clr(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
 395	mtk_hsdma_busy_wait(hsdma);
 396
 397	/* Reset pointer in the ring */
 398	mtk_dma_clr(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
 399	mtk_dma_write(hsdma, MTK_HSDMA_TX_BASE, 0);
 400	mtk_dma_write(hsdma, MTK_HSDMA_TX_CNT, 0);
 401	mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, 0);
 402	mtk_dma_write(hsdma, MTK_HSDMA_RX_BASE, 0);
 403	mtk_dma_write(hsdma, MTK_HSDMA_RX_CNT, 0);
 404	mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, MTK_DMA_SIZE - 1);
 405
 406	kfree(ring->cb);
 407
 408	dma_free_coherent(hsdma2dev(hsdma),
 409			  pc->sz_ring, ring->txd, ring->tphys);
 410}
 411
 412static int mtk_hsdma_issue_pending_vdesc(struct mtk_hsdma_device *hsdma,
 413					 struct mtk_hsdma_pchan *pc,
 414					 struct mtk_hsdma_vdesc *hvd)
 415{
 416	struct mtk_hsdma_ring *ring = &pc->ring;
 417	struct mtk_hsdma_pdesc *txd, *rxd;
 418	u16 reserved, prev, tlen, num_sgs;
 419	unsigned long flags;
 420
 421	/* Protect against PC is accessed by multiple VCs simultaneously */
 422	spin_lock_irqsave(&hsdma->lock, flags);
 423
 424	/*
 425	 * Reserve rooms, where pc->nr_free is used to track how many free
 426	 * rooms in the ring being updated in user and IRQ context.
 427	 */
 428	num_sgs = DIV_ROUND_UP(hvd->len, MTK_HSDMA_MAX_LEN);
 429	reserved = min_t(u16, num_sgs, atomic_read(&pc->nr_free));
 430
 431	if (!reserved) {
 432		spin_unlock_irqrestore(&hsdma->lock, flags);
 433		return -ENOSPC;
 434	}
 435
 436	atomic_sub(reserved, &pc->nr_free);
 437
 438	while (reserved--) {
 439		/* Limit size by PD capability for valid data moving */
 440		tlen = (hvd->len > MTK_HSDMA_MAX_LEN) ?
 441		       MTK_HSDMA_MAX_LEN : hvd->len;
 442
 443		/*
 444		 * Setup PDs using the remaining VD info mapped on those
 445		 * reserved rooms. And since RXD is shared memory between the
 446		 * host and the device allocated by dma_alloc_coherent call,
 447		 * the helper macro WRITE_ONCE can ensure the data written to
 448		 * RAM would really happens.
 449		 */
 450		txd = &ring->txd[ring->cur_tptr];
 451		WRITE_ONCE(txd->desc1, hvd->src);
 452		WRITE_ONCE(txd->desc2,
 453			   hsdma->soc->ls0 | MTK_HSDMA_DESC_PLEN(tlen));
 454
 455		rxd = &ring->rxd[ring->cur_tptr];
 456		WRITE_ONCE(rxd->desc1, hvd->dest);
 457		WRITE_ONCE(rxd->desc2, MTK_HSDMA_DESC_PLEN(tlen));
 458
 459		/* Associate VD, the PD belonged to */
 460		ring->cb[ring->cur_tptr].vd = &hvd->vd;
 461
 462		/* Move forward the pointer of TX ring */
 463		ring->cur_tptr = MTK_HSDMA_NEXT_DESP_IDX(ring->cur_tptr,
 464							 MTK_DMA_SIZE);
 465
 466		/* Update VD with remaining data */
 467		hvd->src  += tlen;
 468		hvd->dest += tlen;
 469		hvd->len  -= tlen;
 470	}
 471
 472	/*
 473	 * Tagging flag for the last PD for VD will be responsible for
 474	 * completing VD.
 475	 */
 476	if (!hvd->len) {
 477		prev = MTK_HSDMA_LAST_DESP_IDX(ring->cur_tptr, MTK_DMA_SIZE);
 478		ring->cb[prev].flag = MTK_HSDMA_VDESC_FINISHED;
 479	}
 480
 481	/* Ensure all changes indeed done before we're going on */
 482	wmb();
 483
 484	/*
 485	 * Updating into hardware the pointer of TX ring lets HSDMA to take
 486	 * action for those pending PDs.
 487	 */
 488	mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, ring->cur_tptr);
 489
 490	spin_unlock_irqrestore(&hsdma->lock, flags);
 491
 492	return 0;
 493}
 494
 495static void mtk_hsdma_issue_vchan_pending(struct mtk_hsdma_device *hsdma,
 496					  struct mtk_hsdma_vchan *hvc)
 497{
 498	struct virt_dma_desc *vd, *vd2;
 499	int err;
 500
 501	lockdep_assert_held(&hvc->vc.lock);
 502
 503	list_for_each_entry_safe(vd, vd2, &hvc->vc.desc_issued, node) {
 504		struct mtk_hsdma_vdesc *hvd;
 505
 506		hvd = to_hsdma_vdesc(vd);
 507
 508		/* Map VD into PC and all VCs shares a single PC */
 509		err = mtk_hsdma_issue_pending_vdesc(hsdma, hsdma->pc, hvd);
 510
 511		/*
 512		 * Move VD from desc_issued to desc_hw_processing when entire
 513		 * VD is fit into available PDs. Otherwise, the uncompleted
 514		 * VDs would stay in list desc_issued and then restart the
 515		 * processing as soon as possible once underlying ring space
 516		 * got freed.
 517		 */
 518		if (err == -ENOSPC || hvd->len > 0)
 519			break;
 520
 521		/*
 522		 * The extra list desc_hw_processing is used because
 523		 * hardware can't provide sufficient information allowing us
 524		 * to know what VDs are still working on the underlying ring.
 525		 * Through the additional list, it can help us to implement
 526		 * terminate_all, residue calculation and such thing needed
 527		 * to know detail descriptor status on the hardware.
 528		 */
 529		list_move_tail(&vd->node, &hvc->desc_hw_processing);
 530	}
 531}
 532
 533static void mtk_hsdma_free_rooms_in_ring(struct mtk_hsdma_device *hsdma)
 534{
 535	struct mtk_hsdma_vchan *hvc;
 536	struct mtk_hsdma_pdesc *rxd;
 537	struct mtk_hsdma_vdesc *hvd;
 538	struct mtk_hsdma_pchan *pc;
 539	struct mtk_hsdma_cb *cb;
 540	int i = MTK_DMA_SIZE;
 541	__le32 desc2;
 542	u32 status;
 543	u16 next;
 544
 545	/* Read IRQ status */
 546	status = mtk_dma_read(hsdma, MTK_HSDMA_INT_STATUS);
 547	if (unlikely(!(status & MTK_HSDMA_INT_RXDONE)))
 548		goto rx_done;
 549
 550	pc = hsdma->pc;
 551
 552	/*
 553	 * Using a fail-safe loop with iterations of up to MTK_DMA_SIZE to
 554	 * reclaim these finished descriptors: The most number of PDs the ISR
 555	 * can handle at one time shouldn't be more than MTK_DMA_SIZE so we
 556	 * take it as limited count instead of just using a dangerous infinite
 557	 * poll.
 558	 */
 559	while (i--) {
 560		next = MTK_HSDMA_NEXT_DESP_IDX(pc->ring.cur_rptr,
 561					       MTK_DMA_SIZE);
 562		rxd = &pc->ring.rxd[next];
 563
 564		/*
 565		 * If MTK_HSDMA_DESC_DDONE is no specified, that means data
 566		 * moving for the PD is still under going.
 567		 */
 568		desc2 = READ_ONCE(rxd->desc2);
 569		if (!(desc2 & hsdma->soc->ddone))
 570			break;
 571
 572		cb = &pc->ring.cb[next];
 573		if (unlikely(!cb->vd)) {
 574			dev_err(hsdma2dev(hsdma), "cb->vd cannot be null\n");
 575			break;
 576		}
 577
 578		/* Update residue of VD the associated PD belonged to */
 579		hvd = to_hsdma_vdesc(cb->vd);
 580		hvd->residue -= MTK_HSDMA_DESC_PLEN_GET(rxd->desc2);
 581
 582		/* Complete VD until the relevant last PD is finished */
 583		if (IS_MTK_HSDMA_VDESC_FINISHED(cb->flag)) {
 584			hvc = to_hsdma_vchan(cb->vd->tx.chan);
 585
 586			spin_lock(&hvc->vc.lock);
 587
 588			/* Remove VD from list desc_hw_processing */
 589			list_del(&cb->vd->node);
 590
 591			/* Add VD into list desc_completed */
 592			vchan_cookie_complete(cb->vd);
 593
 594			if (hvc->issue_synchronize &&
 595			    list_empty(&hvc->desc_hw_processing)) {
 596				complete(&hvc->issue_completion);
 597				hvc->issue_synchronize = false;
 598			}
 599			spin_unlock(&hvc->vc.lock);
 600
 601			cb->flag = 0;
 602		}
 603
 604		cb->vd = 0;
 605
 606		/*
 607		 * Recycle the RXD with the helper WRITE_ONCE that can ensure
 608		 * data written into RAM would really happens.
 609		 */
 610		WRITE_ONCE(rxd->desc1, 0);
 611		WRITE_ONCE(rxd->desc2, 0);
 612		pc->ring.cur_rptr = next;
 613
 614		/* Release rooms */
 615		atomic_inc(&pc->nr_free);
 616	}
 617
 618	/* Ensure all changes indeed done before we're going on */
 619	wmb();
 620
 621	/* Update CPU pointer for those completed PDs */
 622	mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, pc->ring.cur_rptr);
 623
 624	/*
 625	 * Acking the pending IRQ allows hardware no longer to keep the used
 626	 * IRQ line in certain trigger state when software has completed all
 627	 * the finished physical descriptors.
 628	 */
 629	if (atomic_read(&pc->nr_free) >= MTK_DMA_SIZE - 1)
 630		mtk_dma_write(hsdma, MTK_HSDMA_INT_STATUS, status);
 631
 632	/* ASAP handles pending VDs in all VCs after freeing some rooms */
 633	for (i = 0; i < hsdma->dma_requests; i++) {
 634		hvc = &hsdma->vc[i];
 635		spin_lock(&hvc->vc.lock);
 636		mtk_hsdma_issue_vchan_pending(hsdma, hvc);
 637		spin_unlock(&hvc->vc.lock);
 638	}
 639
 640rx_done:
 641	/* All completed PDs are cleaned up, so enable interrupt again */
 642	mtk_dma_set(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
 643}
 644
 645static irqreturn_t mtk_hsdma_irq(int irq, void *devid)
 646{
 647	struct mtk_hsdma_device *hsdma = devid;
 648
 649	/*
 650	 * Disable interrupt until all completed PDs are cleaned up in
 651	 * mtk_hsdma_free_rooms call.
 652	 */
 653	mtk_dma_clr(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
 654
 655	mtk_hsdma_free_rooms_in_ring(hsdma);
 656
 657	return IRQ_HANDLED;
 658}
 659
 660static struct virt_dma_desc *mtk_hsdma_find_active_desc(struct dma_chan *c,
 661							dma_cookie_t cookie)
 662{
 663	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
 664	struct virt_dma_desc *vd;
 665
 666	list_for_each_entry(vd, &hvc->desc_hw_processing, node)
 667		if (vd->tx.cookie == cookie)
 668			return vd;
 669
 670	list_for_each_entry(vd, &hvc->vc.desc_issued, node)
 671		if (vd->tx.cookie == cookie)
 672			return vd;
 673
 674	return NULL;
 675}
 676
 677static enum dma_status mtk_hsdma_tx_status(struct dma_chan *c,
 678					   dma_cookie_t cookie,
 679					   struct dma_tx_state *txstate)
 680{
 681	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
 682	struct mtk_hsdma_vdesc *hvd;
 683	struct virt_dma_desc *vd;
 684	enum dma_status ret;
 685	unsigned long flags;
 686	size_t bytes = 0;
 687
 688	ret = dma_cookie_status(c, cookie, txstate);
 689	if (ret == DMA_COMPLETE || !txstate)
 690		return ret;
 691
 692	spin_lock_irqsave(&hvc->vc.lock, flags);
 693	vd = mtk_hsdma_find_active_desc(c, cookie);
 694	spin_unlock_irqrestore(&hvc->vc.lock, flags);
 695
 696	if (vd) {
 697		hvd = to_hsdma_vdesc(vd);
 698		bytes = hvd->residue;
 699	}
 700
 701	dma_set_residue(txstate, bytes);
 702
 703	return ret;
 704}
 705
 706static void mtk_hsdma_issue_pending(struct dma_chan *c)
 707{
 708	struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
 709	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
 710	unsigned long flags;
 711
 712	spin_lock_irqsave(&hvc->vc.lock, flags);
 713
 714	if (vchan_issue_pending(&hvc->vc))
 715		mtk_hsdma_issue_vchan_pending(hsdma, hvc);
 716
 717	spin_unlock_irqrestore(&hvc->vc.lock, flags);
 718}
 719
 720static struct dma_async_tx_descriptor *
 721mtk_hsdma_prep_dma_memcpy(struct dma_chan *c, dma_addr_t dest,
 722			  dma_addr_t src, size_t len, unsigned long flags)
 723{
 724	struct mtk_hsdma_vdesc *hvd;
 725
 726	hvd = kzalloc(sizeof(*hvd), GFP_NOWAIT);
 727	if (!hvd)
 728		return NULL;
 729
 730	hvd->len = len;
 731	hvd->residue = len;
 732	hvd->src = src;
 733	hvd->dest = dest;
 734
 735	return vchan_tx_prep(to_virt_chan(c), &hvd->vd, flags);
 736}
 737
 738static int mtk_hsdma_free_inactive_desc(struct dma_chan *c)
 739{
 740	struct virt_dma_chan *vc = to_virt_chan(c);
 741	unsigned long flags;
 742	LIST_HEAD(head);
 743
 744	spin_lock_irqsave(&vc->lock, flags);
 745	list_splice_tail_init(&vc->desc_allocated, &head);
 746	list_splice_tail_init(&vc->desc_submitted, &head);
 747	list_splice_tail_init(&vc->desc_issued, &head);
 748	spin_unlock_irqrestore(&vc->lock, flags);
 749
 750	/* At the point, we don't expect users put descriptor into VC again */
 751	vchan_dma_desc_free_list(vc, &head);
 752
 753	return 0;
 754}
 755
 756static void mtk_hsdma_free_active_desc(struct dma_chan *c)
 757{
 758	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
 759	bool sync_needed = false;
 760
 761	/*
 762	 * Once issue_synchronize is being set, which means once the hardware
 763	 * consumes all descriptors for the channel in the ring, the
 764	 * synchronization must be be notified immediately it is completed.
 765	 */
 766	spin_lock(&hvc->vc.lock);
 767	if (!list_empty(&hvc->desc_hw_processing)) {
 768		hvc->issue_synchronize = true;
 769		sync_needed = true;
 770	}
 771	spin_unlock(&hvc->vc.lock);
 772
 773	if (sync_needed)
 774		wait_for_completion(&hvc->issue_completion);
 775	/*
 776	 * At the point, we expect that all remaining descriptors in the ring
 777	 * for the channel should be all processing done.
 778	 */
 779	WARN_ONCE(!list_empty(&hvc->desc_hw_processing),
 780		  "Desc pending still in list desc_hw_processing\n");
 781
 782	/* Free all descriptors in list desc_completed */
 783	vchan_synchronize(&hvc->vc);
 784
 785	WARN_ONCE(!list_empty(&hvc->vc.desc_completed),
 786		  "Desc pending still in list desc_completed\n");
 787}
 788
 789static int mtk_hsdma_terminate_all(struct dma_chan *c)
 790{
 791	/*
 792	 * Free pending descriptors not processed yet by hardware that have
 793	 * previously been submitted to the channel.
 794	 */
 795	mtk_hsdma_free_inactive_desc(c);
 796
 797	/*
 798	 * However, the DMA engine doesn't provide any way to stop these
 799	 * descriptors being processed currently by hardware. The only way is
 800	 * to just waiting until these descriptors are all processed completely
 801	 * through mtk_hsdma_free_active_desc call.
 802	 */
 803	mtk_hsdma_free_active_desc(c);
 804
 805	return 0;
 806}
 807
 808static int mtk_hsdma_alloc_chan_resources(struct dma_chan *c)
 809{
 810	struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
 811	int err;
 812
 813	/*
 814	 * Since HSDMA has only one PC, the resource for PC is being allocated
 815	 * when the first VC is being created and the other VCs would run on
 816	 * the same PC.
 817	 */
 818	if (!refcount_read(&hsdma->pc_refcnt)) {
 819		err = mtk_hsdma_alloc_pchan(hsdma, hsdma->pc);
 820		if (err)
 821			return err;
 822		/*
 823		 * refcount_inc would complain increment on 0; use-after-free.
 824		 * Thus, we need to explicitly set it as 1 initially.
 825		 */
 826		refcount_set(&hsdma->pc_refcnt, 1);
 827	} else {
 828		refcount_inc(&hsdma->pc_refcnt);
 829	}
 830
 831	return 0;
 832}
 833
 834static void mtk_hsdma_free_chan_resources(struct dma_chan *c)
 835{
 836	struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
 837
 838	/* Free all descriptors in all lists on the VC */
 839	mtk_hsdma_terminate_all(c);
 840
 841	/* The resource for PC is not freed until all the VCs are destroyed */
 842	if (!refcount_dec_and_test(&hsdma->pc_refcnt))
 843		return;
 844
 845	mtk_hsdma_free_pchan(hsdma, hsdma->pc);
 846}
 847
 848static int mtk_hsdma_hw_init(struct mtk_hsdma_device *hsdma)
 849{
 850	int err;
 851
 852	pm_runtime_enable(hsdma2dev(hsdma));
 853	pm_runtime_get_sync(hsdma2dev(hsdma));
 854
 855	err = clk_prepare_enable(hsdma->clk);
 856	if (err)
 857		return err;
 858
 859	mtk_dma_write(hsdma, MTK_HSDMA_INT_ENABLE, 0);
 860	mtk_dma_write(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DEFAULT);
 861
 862	return 0;
 863}
 864
 865static int mtk_hsdma_hw_deinit(struct mtk_hsdma_device *hsdma)
 866{
 867	mtk_dma_write(hsdma, MTK_HSDMA_GLO, 0);
 868
 869	clk_disable_unprepare(hsdma->clk);
 870
 871	pm_runtime_put_sync(hsdma2dev(hsdma));
 872	pm_runtime_disable(hsdma2dev(hsdma));
 873
 874	return 0;
 875}
 876
 877static const struct mtk_hsdma_soc mt7623_soc = {
 878	.ddone = BIT(31),
 879	.ls0 = BIT(30),
 880};
 881
 882static const struct mtk_hsdma_soc mt7622_soc = {
 883	.ddone = BIT(15),
 884	.ls0 = BIT(14),
 885};
 886
 887static const struct of_device_id mtk_hsdma_match[] = {
 888	{ .compatible = "mediatek,mt7623-hsdma", .data = &mt7623_soc},
 889	{ .compatible = "mediatek,mt7622-hsdma", .data = &mt7622_soc},
 890	{ /* sentinel */ }
 891};
 892MODULE_DEVICE_TABLE(of, mtk_hsdma_match);
 893
 894static int mtk_hsdma_probe(struct platform_device *pdev)
 895{
 896	struct mtk_hsdma_device *hsdma;
 897	struct mtk_hsdma_vchan *vc;
 898	struct dma_device *dd;
 899	struct resource *res;
 900	int i, err;
 901
 902	hsdma = devm_kzalloc(&pdev->dev, sizeof(*hsdma), GFP_KERNEL);
 903	if (!hsdma)
 904		return -ENOMEM;
 905
 906	dd = &hsdma->ddev;
 907
 908	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 909	hsdma->base = devm_ioremap_resource(&pdev->dev, res);
 910	if (IS_ERR(hsdma->base))
 911		return PTR_ERR(hsdma->base);
 912
 913	hsdma->soc = of_device_get_match_data(&pdev->dev);
 914	if (!hsdma->soc) {
 915		dev_err(&pdev->dev, "No device match found\n");
 916		return -ENODEV;
 917	}
 918
 919	hsdma->clk = devm_clk_get(&pdev->dev, "hsdma");
 920	if (IS_ERR(hsdma->clk)) {
 921		dev_err(&pdev->dev, "No clock for %s\n",
 922			dev_name(&pdev->dev));
 923		return PTR_ERR(hsdma->clk);
 924	}
 925
 926	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
 927	if (!res) {
 928		dev_err(&pdev->dev, "No irq resource for %s\n",
 929			dev_name(&pdev->dev));
 930		return -EINVAL;
 931	}
 932	hsdma->irq = res->start;
 933
 934	refcount_set(&hsdma->pc_refcnt, 0);
 935	spin_lock_init(&hsdma->lock);
 936
 937	dma_cap_set(DMA_MEMCPY, dd->cap_mask);
 938
 939	dd->copy_align = MTK_HSDMA_ALIGN_SIZE;
 940	dd->device_alloc_chan_resources = mtk_hsdma_alloc_chan_resources;
 941	dd->device_free_chan_resources = mtk_hsdma_free_chan_resources;
 942	dd->device_tx_status = mtk_hsdma_tx_status;
 943	dd->device_issue_pending = mtk_hsdma_issue_pending;
 944	dd->device_prep_dma_memcpy = mtk_hsdma_prep_dma_memcpy;
 945	dd->device_terminate_all = mtk_hsdma_terminate_all;
 946	dd->src_addr_widths = MTK_HSDMA_DMA_BUSWIDTHS;
 947	dd->dst_addr_widths = MTK_HSDMA_DMA_BUSWIDTHS;
 948	dd->directions = BIT(DMA_MEM_TO_MEM);
 949	dd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
 950	dd->dev = &pdev->dev;
 951	INIT_LIST_HEAD(&dd->channels);
 952
 953	hsdma->dma_requests = MTK_HSDMA_NR_VCHANS;
 954	if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node,
 955						      "dma-requests",
 956						      &hsdma->dma_requests)) {
 957		dev_info(&pdev->dev,
 958			 "Using %u as missing dma-requests property\n",
 959			 MTK_HSDMA_NR_VCHANS);
 960	}
 961
 962	hsdma->pc = devm_kcalloc(&pdev->dev, MTK_HSDMA_NR_MAX_PCHANS,
 963				 sizeof(*hsdma->pc), GFP_KERNEL);
 964	if (!hsdma->pc)
 965		return -ENOMEM;
 966
 967	hsdma->vc = devm_kcalloc(&pdev->dev, hsdma->dma_requests,
 968				 sizeof(*hsdma->vc), GFP_KERNEL);
 969	if (!hsdma->vc)
 970		return -ENOMEM;
 971
 972	for (i = 0; i < hsdma->dma_requests; i++) {
 973		vc = &hsdma->vc[i];
 974		vc->vc.desc_free = mtk_hsdma_vdesc_free;
 975		vchan_init(&vc->vc, dd);
 976		init_completion(&vc->issue_completion);
 977		INIT_LIST_HEAD(&vc->desc_hw_processing);
 978	}
 979
 980	err = dma_async_device_register(dd);
 981	if (err)
 982		return err;
 983
 984	err = of_dma_controller_register(pdev->dev.of_node,
 985					 of_dma_xlate_by_chan_id, hsdma);
 986	if (err) {
 987		dev_err(&pdev->dev,
 988			"MediaTek HSDMA OF registration failed %d\n", err);
 989		goto err_unregister;
 990	}
 991
 992	mtk_hsdma_hw_init(hsdma);
 993
 994	err = devm_request_irq(&pdev->dev, hsdma->irq,
 995			       mtk_hsdma_irq, 0,
 996			       dev_name(&pdev->dev), hsdma);
 997	if (err) {
 998		dev_err(&pdev->dev,
 999			"request_irq failed with err %d\n", err);
1000		goto err_free;
1001	}
1002
1003	platform_set_drvdata(pdev, hsdma);
1004
1005	dev_info(&pdev->dev, "MediaTek HSDMA driver registered\n");
1006
1007	return 0;
1008
1009err_free:
 
1010	of_dma_controller_free(pdev->dev.of_node);
1011err_unregister:
1012	dma_async_device_unregister(dd);
1013
1014	return err;
1015}
1016
1017static int mtk_hsdma_remove(struct platform_device *pdev)
1018{
1019	struct mtk_hsdma_device *hsdma = platform_get_drvdata(pdev);
1020	struct mtk_hsdma_vchan *vc;
1021	int i;
1022
1023	/* Kill VC task */
1024	for (i = 0; i < hsdma->dma_requests; i++) {
1025		vc = &hsdma->vc[i];
1026
1027		list_del(&vc->vc.chan.device_node);
1028		tasklet_kill(&vc->vc.task);
1029	}
1030
1031	/* Disable DMA interrupt */
1032	mtk_dma_write(hsdma, MTK_HSDMA_INT_ENABLE, 0);
1033
1034	/* Waits for any pending IRQ handlers to complete */
1035	synchronize_irq(hsdma->irq);
1036
1037	/* Disable hardware */
1038	mtk_hsdma_hw_deinit(hsdma);
1039
1040	dma_async_device_unregister(&hsdma->ddev);
1041	of_dma_controller_free(pdev->dev.of_node);
1042
1043	return 0;
1044}
1045
1046static struct platform_driver mtk_hsdma_driver = {
1047	.probe		= mtk_hsdma_probe,
1048	.remove		= mtk_hsdma_remove,
1049	.driver = {
1050		.name		= KBUILD_MODNAME,
1051		.of_match_table	= mtk_hsdma_match,
1052	},
1053};
1054module_platform_driver(mtk_hsdma_driver);
1055
1056MODULE_DESCRIPTION("MediaTek High-Speed DMA Controller Driver");
1057MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
1058MODULE_LICENSE("GPL v2");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2// Copyright (c) 2017-2018 MediaTek Inc.
   3
   4/*
   5 * Driver for MediaTek High-Speed DMA Controller
   6 *
   7 * Author: Sean Wang <sean.wang@mediatek.com>
   8 *
   9 */
  10
  11#include <linux/bitops.h>
  12#include <linux/clk.h>
  13#include <linux/dmaengine.h>
  14#include <linux/dma-mapping.h>
  15#include <linux/err.h>
  16#include <linux/iopoll.h>
  17#include <linux/list.h>
  18#include <linux/module.h>
  19#include <linux/of.h>
  20#include <linux/of_device.h>
  21#include <linux/of_dma.h>
  22#include <linux/platform_device.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/refcount.h>
  25#include <linux/slab.h>
  26
  27#include "../virt-dma.h"
  28
  29#define MTK_HSDMA_USEC_POLL		20
  30#define MTK_HSDMA_TIMEOUT_POLL		200000
  31#define MTK_HSDMA_DMA_BUSWIDTHS		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
  32
  33/* The default number of virtual channel */
  34#define MTK_HSDMA_NR_VCHANS		3
  35
  36/* Only one physical channel supported */
  37#define MTK_HSDMA_NR_MAX_PCHANS		1
  38
  39/* Macro for physical descriptor (PD) manipulation */
  40/* The number of PD which must be 2 of power */
  41#define MTK_DMA_SIZE			64
  42#define MTK_HSDMA_NEXT_DESP_IDX(x, y)	(((x) + 1) & ((y) - 1))
  43#define MTK_HSDMA_LAST_DESP_IDX(x, y)	(((x) - 1) & ((y) - 1))
  44#define MTK_HSDMA_MAX_LEN		0x3f80
  45#define MTK_HSDMA_ALIGN_SIZE		4
  46#define MTK_HSDMA_PLEN_MASK		0x3fff
  47#define MTK_HSDMA_DESC_PLEN(x)		(((x) & MTK_HSDMA_PLEN_MASK) << 16)
  48#define MTK_HSDMA_DESC_PLEN_GET(x)	(((x) >> 16) & MTK_HSDMA_PLEN_MASK)
  49
  50/* Registers for underlying ring manipulation */
  51#define MTK_HSDMA_TX_BASE		0x0
  52#define MTK_HSDMA_TX_CNT		0x4
  53#define MTK_HSDMA_TX_CPU		0x8
  54#define MTK_HSDMA_TX_DMA		0xc
  55#define MTK_HSDMA_RX_BASE		0x100
  56#define MTK_HSDMA_RX_CNT		0x104
  57#define MTK_HSDMA_RX_CPU		0x108
  58#define MTK_HSDMA_RX_DMA		0x10c
  59
  60/* Registers for global setup */
  61#define MTK_HSDMA_GLO			0x204
  62#define MTK_HSDMA_GLO_MULTI_DMA		BIT(10)
  63#define MTK_HSDMA_TX_WB_DDONE		BIT(6)
  64#define MTK_HSDMA_BURST_64BYTES		(0x2 << 4)
  65#define MTK_HSDMA_GLO_RX_BUSY		BIT(3)
  66#define MTK_HSDMA_GLO_RX_DMA		BIT(2)
  67#define MTK_HSDMA_GLO_TX_BUSY		BIT(1)
  68#define MTK_HSDMA_GLO_TX_DMA		BIT(0)
  69#define MTK_HSDMA_GLO_DMA		(MTK_HSDMA_GLO_TX_DMA |	\
  70					 MTK_HSDMA_GLO_RX_DMA)
  71#define MTK_HSDMA_GLO_BUSY		(MTK_HSDMA_GLO_RX_BUSY | \
  72					 MTK_HSDMA_GLO_TX_BUSY)
  73#define MTK_HSDMA_GLO_DEFAULT		(MTK_HSDMA_GLO_TX_DMA | \
  74					 MTK_HSDMA_GLO_RX_DMA | \
  75					 MTK_HSDMA_TX_WB_DDONE | \
  76					 MTK_HSDMA_BURST_64BYTES | \
  77					 MTK_HSDMA_GLO_MULTI_DMA)
  78
  79/* Registers for reset */
  80#define MTK_HSDMA_RESET			0x208
  81#define MTK_HSDMA_RST_TX		BIT(0)
  82#define MTK_HSDMA_RST_RX		BIT(16)
  83
  84/* Registers for interrupt control */
  85#define MTK_HSDMA_DLYINT		0x20c
  86#define MTK_HSDMA_RXDLY_INT_EN		BIT(15)
  87
  88/* Interrupt fires when the pending number's more than the specified */
  89#define MTK_HSDMA_RXMAX_PINT(x)		(((x) & 0x7f) << 8)
  90
  91/* Interrupt fires when the pending time's more than the specified in 20 us */
  92#define MTK_HSDMA_RXMAX_PTIME(x)	((x) & 0x7f)
  93#define MTK_HSDMA_DLYINT_DEFAULT	(MTK_HSDMA_RXDLY_INT_EN | \
  94					 MTK_HSDMA_RXMAX_PINT(20) | \
  95					 MTK_HSDMA_RXMAX_PTIME(20))
  96#define MTK_HSDMA_INT_STATUS		0x220
  97#define MTK_HSDMA_INT_ENABLE		0x228
  98#define MTK_HSDMA_INT_RXDONE		BIT(16)
  99
 100enum mtk_hsdma_vdesc_flag {
 101	MTK_HSDMA_VDESC_FINISHED	= 0x01,
 102};
 103
 104#define IS_MTK_HSDMA_VDESC_FINISHED(x) ((x) == MTK_HSDMA_VDESC_FINISHED)
 105
 106/**
 107 * struct mtk_hsdma_pdesc - This is the struct holding info describing physical
 108 *			    descriptor (PD) and its placement must be kept at
 109 *			    4-bytes alignment in little endian order.
 110 * @desc1:		    | The control pad used to indicate hardware how to
 111 * @desc2:		    | deal with the descriptor such as source and
 112 * @desc3:		    | destination address and data length. The maximum
 113 * @desc4:		    | data length each pdesc can handle is 0x3f80 bytes
 114 */
 115struct mtk_hsdma_pdesc {
 116	__le32 desc1;
 117	__le32 desc2;
 118	__le32 desc3;
 119	__le32 desc4;
 120} __packed __aligned(4);
 121
 122/**
 123 * struct mtk_hsdma_vdesc - This is the struct holding info describing virtual
 124 *			    descriptor (VD)
 125 * @vd:			    An instance for struct virt_dma_desc
 126 * @len:		    The total data size device wants to move
 127 * @residue:		    The remaining data size device will move
 128 * @dest:		    The destination address device wants to move to
 129 * @src:		    The source address device wants to move from
 130 */
 131struct mtk_hsdma_vdesc {
 132	struct virt_dma_desc vd;
 133	size_t len;
 134	size_t residue;
 135	dma_addr_t dest;
 136	dma_addr_t src;
 137};
 138
 139/**
 140 * struct mtk_hsdma_cb - This is the struct holding extra info required for RX
 141 *			 ring to know what relevant VD the the PD is being
 142 *			 mapped to.
 143 * @vd:			 Pointer to the relevant VD.
 144 * @flag:		 Flag indicating what action should be taken when VD
 145 *			 is completed.
 146 */
 147struct mtk_hsdma_cb {
 148	struct virt_dma_desc *vd;
 149	enum mtk_hsdma_vdesc_flag flag;
 150};
 151
 152/**
 153 * struct mtk_hsdma_ring - This struct holds info describing underlying ring
 154 *			   space
 155 * @txd:		   The descriptor TX ring which describes DMA source
 156 *			   information
 157 * @rxd:		   The descriptor RX ring which describes DMA
 158 *			   destination information
 159 * @cb:			   The extra information pointed at by RX ring
 160 * @tphys:		   The physical addr of TX ring
 161 * @rphys:		   The physical addr of RX ring
 162 * @cur_tptr:		   Pointer to the next free descriptor used by the host
 163 * @cur_rptr:		   Pointer to the last done descriptor by the device
 164 */
 165struct mtk_hsdma_ring {
 166	struct mtk_hsdma_pdesc *txd;
 167	struct mtk_hsdma_pdesc *rxd;
 168	struct mtk_hsdma_cb *cb;
 169	dma_addr_t tphys;
 170	dma_addr_t rphys;
 171	u16 cur_tptr;
 172	u16 cur_rptr;
 173};
 174
 175/**
 176 * struct mtk_hsdma_pchan - This is the struct holding info describing physical
 177 *			   channel (PC)
 178 * @ring:		   An instance for the underlying ring
 179 * @sz_ring:		   Total size allocated for the ring
 180 * @nr_free:		   Total number of free rooms in the ring. It would
 181 *			   be accessed and updated frequently between IRQ
 182 *			   context and user context to reflect whether ring
 183 *			   can accept requests from VD.
 184 */
 185struct mtk_hsdma_pchan {
 186	struct mtk_hsdma_ring ring;
 187	size_t sz_ring;
 188	atomic_t nr_free;
 189};
 190
 191/**
 192 * struct mtk_hsdma_vchan - This is the struct holding info describing virtual
 193 *			   channel (VC)
 194 * @vc:			   An instance for struct virt_dma_chan
 195 * @issue_completion:	   The wait for all issued descriptors completited
 196 * @issue_synchronize:	   Bool indicating channel synchronization starts
 197 * @desc_hw_processing:	   List those descriptors the hardware is processing,
 198 *			   which is protected by vc.lock
 199 */
 200struct mtk_hsdma_vchan {
 201	struct virt_dma_chan vc;
 202	struct completion issue_completion;
 203	bool issue_synchronize;
 204	struct list_head desc_hw_processing;
 205};
 206
 207/**
 208 * struct mtk_hsdma_soc - This is the struct holding differences among SoCs
 209 * @ddone:		  Bit mask for DDONE
 210 * @ls0:		  Bit mask for LS0
 211 */
 212struct mtk_hsdma_soc {
 213	__le32 ddone;
 214	__le32 ls0;
 215};
 216
 217/**
 218 * struct mtk_hsdma_device - This is the struct holding info describing HSDMA
 219 *			     device
 220 * @ddev:		     An instance for struct dma_device
 221 * @base:		     The mapped register I/O base
 222 * @clk:		     The clock that device internal is using
 223 * @irq:		     The IRQ that device are using
 224 * @dma_requests:	     The number of VCs the device supports to
 225 * @vc:			     The pointer to all available VCs
 226 * @pc:			     The pointer to the underlying PC
 227 * @pc_refcnt:		     Track how many VCs are using the PC
 228 * @lock:		     Lock protect agaisting multiple VCs access PC
 229 * @soc:		     The pointer to area holding differences among
 230 *			     vaious platform
 231 */
 232struct mtk_hsdma_device {
 233	struct dma_device ddev;
 234	void __iomem *base;
 235	struct clk *clk;
 236	u32 irq;
 237
 238	u32 dma_requests;
 239	struct mtk_hsdma_vchan *vc;
 240	struct mtk_hsdma_pchan *pc;
 241	refcount_t pc_refcnt;
 242
 243	/* Lock used to protect against multiple VCs access PC */
 244	spinlock_t lock;
 245
 246	const struct mtk_hsdma_soc *soc;
 247};
 248
 249static struct mtk_hsdma_device *to_hsdma_dev(struct dma_chan *chan)
 250{
 251	return container_of(chan->device, struct mtk_hsdma_device, ddev);
 252}
 253
 254static inline struct mtk_hsdma_vchan *to_hsdma_vchan(struct dma_chan *chan)
 255{
 256	return container_of(chan, struct mtk_hsdma_vchan, vc.chan);
 257}
 258
 259static struct mtk_hsdma_vdesc *to_hsdma_vdesc(struct virt_dma_desc *vd)
 260{
 261	return container_of(vd, struct mtk_hsdma_vdesc, vd);
 262}
 263
 264static struct device *hsdma2dev(struct mtk_hsdma_device *hsdma)
 265{
 266	return hsdma->ddev.dev;
 267}
 268
 269static u32 mtk_dma_read(struct mtk_hsdma_device *hsdma, u32 reg)
 270{
 271	return readl(hsdma->base + reg);
 272}
 273
 274static void mtk_dma_write(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
 275{
 276	writel(val, hsdma->base + reg);
 277}
 278
 279static void mtk_dma_rmw(struct mtk_hsdma_device *hsdma, u32 reg,
 280			u32 mask, u32 set)
 281{
 282	u32 val;
 283
 284	val = mtk_dma_read(hsdma, reg);
 285	val &= ~mask;
 286	val |= set;
 287	mtk_dma_write(hsdma, reg, val);
 288}
 289
 290static void mtk_dma_set(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
 291{
 292	mtk_dma_rmw(hsdma, reg, 0, val);
 293}
 294
 295static void mtk_dma_clr(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
 296{
 297	mtk_dma_rmw(hsdma, reg, val, 0);
 298}
 299
 300static void mtk_hsdma_vdesc_free(struct virt_dma_desc *vd)
 301{
 302	kfree(container_of(vd, struct mtk_hsdma_vdesc, vd));
 303}
 304
 305static int mtk_hsdma_busy_wait(struct mtk_hsdma_device *hsdma)
 306{
 307	u32 status = 0;
 308
 309	return readl_poll_timeout(hsdma->base + MTK_HSDMA_GLO, status,
 310				  !(status & MTK_HSDMA_GLO_BUSY),
 311				  MTK_HSDMA_USEC_POLL,
 312				  MTK_HSDMA_TIMEOUT_POLL);
 313}
 314
 315static int mtk_hsdma_alloc_pchan(struct mtk_hsdma_device *hsdma,
 316				 struct mtk_hsdma_pchan *pc)
 317{
 318	struct mtk_hsdma_ring *ring = &pc->ring;
 319	int err;
 320
 321	memset(pc, 0, sizeof(*pc));
 322
 323	/*
 324	 * Allocate ring space where [0 ... MTK_DMA_SIZE - 1] is for TX ring
 325	 * and [MTK_DMA_SIZE ... 2 * MTK_DMA_SIZE - 1] is for RX ring.
 326	 */
 327	pc->sz_ring = 2 * MTK_DMA_SIZE * sizeof(*ring->txd);
 328	ring->txd = dma_alloc_coherent(hsdma2dev(hsdma), pc->sz_ring,
 329				       &ring->tphys, GFP_NOWAIT);
 330	if (!ring->txd)
 331		return -ENOMEM;
 332
 333	ring->rxd = &ring->txd[MTK_DMA_SIZE];
 334	ring->rphys = ring->tphys + MTK_DMA_SIZE * sizeof(*ring->txd);
 335	ring->cur_tptr = 0;
 336	ring->cur_rptr = MTK_DMA_SIZE - 1;
 337
 338	ring->cb = kcalloc(MTK_DMA_SIZE, sizeof(*ring->cb), GFP_NOWAIT);
 339	if (!ring->cb) {
 340		err = -ENOMEM;
 341		goto err_free_dma;
 342	}
 343
 344	atomic_set(&pc->nr_free, MTK_DMA_SIZE - 1);
 345
 346	/* Disable HSDMA and wait for the completion */
 347	mtk_dma_clr(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
 348	err = mtk_hsdma_busy_wait(hsdma);
 349	if (err)
 350		goto err_free_cb;
 351
 352	/* Reset */
 353	mtk_dma_set(hsdma, MTK_HSDMA_RESET,
 354		    MTK_HSDMA_RST_TX | MTK_HSDMA_RST_RX);
 355	mtk_dma_clr(hsdma, MTK_HSDMA_RESET,
 356		    MTK_HSDMA_RST_TX | MTK_HSDMA_RST_RX);
 357
 358	/* Setup HSDMA initial pointer in the ring */
 359	mtk_dma_write(hsdma, MTK_HSDMA_TX_BASE, ring->tphys);
 360	mtk_dma_write(hsdma, MTK_HSDMA_TX_CNT, MTK_DMA_SIZE);
 361	mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, ring->cur_tptr);
 362	mtk_dma_write(hsdma, MTK_HSDMA_TX_DMA, 0);
 363	mtk_dma_write(hsdma, MTK_HSDMA_RX_BASE, ring->rphys);
 364	mtk_dma_write(hsdma, MTK_HSDMA_RX_CNT, MTK_DMA_SIZE);
 365	mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, ring->cur_rptr);
 366	mtk_dma_write(hsdma, MTK_HSDMA_RX_DMA, 0);
 367
 368	/* Enable HSDMA */
 369	mtk_dma_set(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
 370
 371	/* Setup delayed interrupt */
 372	mtk_dma_write(hsdma, MTK_HSDMA_DLYINT, MTK_HSDMA_DLYINT_DEFAULT);
 373
 374	/* Enable interrupt */
 375	mtk_dma_set(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
 376
 377	return 0;
 378
 379err_free_cb:
 380	kfree(ring->cb);
 381
 382err_free_dma:
 383	dma_free_coherent(hsdma2dev(hsdma),
 384			  pc->sz_ring, ring->txd, ring->tphys);
 385	return err;
 386}
 387
 388static void mtk_hsdma_free_pchan(struct mtk_hsdma_device *hsdma,
 389				 struct mtk_hsdma_pchan *pc)
 390{
 391	struct mtk_hsdma_ring *ring = &pc->ring;
 392
 393	/* Disable HSDMA and then wait for the completion */
 394	mtk_dma_clr(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
 395	mtk_hsdma_busy_wait(hsdma);
 396
 397	/* Reset pointer in the ring */
 398	mtk_dma_clr(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
 399	mtk_dma_write(hsdma, MTK_HSDMA_TX_BASE, 0);
 400	mtk_dma_write(hsdma, MTK_HSDMA_TX_CNT, 0);
 401	mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, 0);
 402	mtk_dma_write(hsdma, MTK_HSDMA_RX_BASE, 0);
 403	mtk_dma_write(hsdma, MTK_HSDMA_RX_CNT, 0);
 404	mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, MTK_DMA_SIZE - 1);
 405
 406	kfree(ring->cb);
 407
 408	dma_free_coherent(hsdma2dev(hsdma),
 409			  pc->sz_ring, ring->txd, ring->tphys);
 410}
 411
 412static int mtk_hsdma_issue_pending_vdesc(struct mtk_hsdma_device *hsdma,
 413					 struct mtk_hsdma_pchan *pc,
 414					 struct mtk_hsdma_vdesc *hvd)
 415{
 416	struct mtk_hsdma_ring *ring = &pc->ring;
 417	struct mtk_hsdma_pdesc *txd, *rxd;
 418	u16 reserved, prev, tlen, num_sgs;
 419	unsigned long flags;
 420
 421	/* Protect against PC is accessed by multiple VCs simultaneously */
 422	spin_lock_irqsave(&hsdma->lock, flags);
 423
 424	/*
 425	 * Reserve rooms, where pc->nr_free is used to track how many free
 426	 * rooms in the ring being updated in user and IRQ context.
 427	 */
 428	num_sgs = DIV_ROUND_UP(hvd->len, MTK_HSDMA_MAX_LEN);
 429	reserved = min_t(u16, num_sgs, atomic_read(&pc->nr_free));
 430
 431	if (!reserved) {
 432		spin_unlock_irqrestore(&hsdma->lock, flags);
 433		return -ENOSPC;
 434	}
 435
 436	atomic_sub(reserved, &pc->nr_free);
 437
 438	while (reserved--) {
 439		/* Limit size by PD capability for valid data moving */
 440		tlen = (hvd->len > MTK_HSDMA_MAX_LEN) ?
 441		       MTK_HSDMA_MAX_LEN : hvd->len;
 442
 443		/*
 444		 * Setup PDs using the remaining VD info mapped on those
 445		 * reserved rooms. And since RXD is shared memory between the
 446		 * host and the device allocated by dma_alloc_coherent call,
 447		 * the helper macro WRITE_ONCE can ensure the data written to
 448		 * RAM would really happens.
 449		 */
 450		txd = &ring->txd[ring->cur_tptr];
 451		WRITE_ONCE(txd->desc1, hvd->src);
 452		WRITE_ONCE(txd->desc2,
 453			   hsdma->soc->ls0 | MTK_HSDMA_DESC_PLEN(tlen));
 454
 455		rxd = &ring->rxd[ring->cur_tptr];
 456		WRITE_ONCE(rxd->desc1, hvd->dest);
 457		WRITE_ONCE(rxd->desc2, MTK_HSDMA_DESC_PLEN(tlen));
 458
 459		/* Associate VD, the PD belonged to */
 460		ring->cb[ring->cur_tptr].vd = &hvd->vd;
 461
 462		/* Move forward the pointer of TX ring */
 463		ring->cur_tptr = MTK_HSDMA_NEXT_DESP_IDX(ring->cur_tptr,
 464							 MTK_DMA_SIZE);
 465
 466		/* Update VD with remaining data */
 467		hvd->src  += tlen;
 468		hvd->dest += tlen;
 469		hvd->len  -= tlen;
 470	}
 471
 472	/*
 473	 * Tagging flag for the last PD for VD will be responsible for
 474	 * completing VD.
 475	 */
 476	if (!hvd->len) {
 477		prev = MTK_HSDMA_LAST_DESP_IDX(ring->cur_tptr, MTK_DMA_SIZE);
 478		ring->cb[prev].flag = MTK_HSDMA_VDESC_FINISHED;
 479	}
 480
 481	/* Ensure all changes indeed done before we're going on */
 482	wmb();
 483
 484	/*
 485	 * Updating into hardware the pointer of TX ring lets HSDMA to take
 486	 * action for those pending PDs.
 487	 */
 488	mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, ring->cur_tptr);
 489
 490	spin_unlock_irqrestore(&hsdma->lock, flags);
 491
 492	return 0;
 493}
 494
 495static void mtk_hsdma_issue_vchan_pending(struct mtk_hsdma_device *hsdma,
 496					  struct mtk_hsdma_vchan *hvc)
 497{
 498	struct virt_dma_desc *vd, *vd2;
 499	int err;
 500
 501	lockdep_assert_held(&hvc->vc.lock);
 502
 503	list_for_each_entry_safe(vd, vd2, &hvc->vc.desc_issued, node) {
 504		struct mtk_hsdma_vdesc *hvd;
 505
 506		hvd = to_hsdma_vdesc(vd);
 507
 508		/* Map VD into PC and all VCs shares a single PC */
 509		err = mtk_hsdma_issue_pending_vdesc(hsdma, hsdma->pc, hvd);
 510
 511		/*
 512		 * Move VD from desc_issued to desc_hw_processing when entire
 513		 * VD is fit into available PDs. Otherwise, the uncompleted
 514		 * VDs would stay in list desc_issued and then restart the
 515		 * processing as soon as possible once underlying ring space
 516		 * got freed.
 517		 */
 518		if (err == -ENOSPC || hvd->len > 0)
 519			break;
 520
 521		/*
 522		 * The extra list desc_hw_processing is used because
 523		 * hardware can't provide sufficient information allowing us
 524		 * to know what VDs are still working on the underlying ring.
 525		 * Through the additional list, it can help us to implement
 526		 * terminate_all, residue calculation and such thing needed
 527		 * to know detail descriptor status on the hardware.
 528		 */
 529		list_move_tail(&vd->node, &hvc->desc_hw_processing);
 530	}
 531}
 532
 533static void mtk_hsdma_free_rooms_in_ring(struct mtk_hsdma_device *hsdma)
 534{
 535	struct mtk_hsdma_vchan *hvc;
 536	struct mtk_hsdma_pdesc *rxd;
 537	struct mtk_hsdma_vdesc *hvd;
 538	struct mtk_hsdma_pchan *pc;
 539	struct mtk_hsdma_cb *cb;
 540	int i = MTK_DMA_SIZE;
 541	__le32 desc2;
 542	u32 status;
 543	u16 next;
 544
 545	/* Read IRQ status */
 546	status = mtk_dma_read(hsdma, MTK_HSDMA_INT_STATUS);
 547	if (unlikely(!(status & MTK_HSDMA_INT_RXDONE)))
 548		goto rx_done;
 549
 550	pc = hsdma->pc;
 551
 552	/*
 553	 * Using a fail-safe loop with iterations of up to MTK_DMA_SIZE to
 554	 * reclaim these finished descriptors: The most number of PDs the ISR
 555	 * can handle at one time shouldn't be more than MTK_DMA_SIZE so we
 556	 * take it as limited count instead of just using a dangerous infinite
 557	 * poll.
 558	 */
 559	while (i--) {
 560		next = MTK_HSDMA_NEXT_DESP_IDX(pc->ring.cur_rptr,
 561					       MTK_DMA_SIZE);
 562		rxd = &pc->ring.rxd[next];
 563
 564		/*
 565		 * If MTK_HSDMA_DESC_DDONE is no specified, that means data
 566		 * moving for the PD is still under going.
 567		 */
 568		desc2 = READ_ONCE(rxd->desc2);
 569		if (!(desc2 & hsdma->soc->ddone))
 570			break;
 571
 572		cb = &pc->ring.cb[next];
 573		if (unlikely(!cb->vd)) {
 574			dev_err(hsdma2dev(hsdma), "cb->vd cannot be null\n");
 575			break;
 576		}
 577
 578		/* Update residue of VD the associated PD belonged to */
 579		hvd = to_hsdma_vdesc(cb->vd);
 580		hvd->residue -= MTK_HSDMA_DESC_PLEN_GET(rxd->desc2);
 581
 582		/* Complete VD until the relevant last PD is finished */
 583		if (IS_MTK_HSDMA_VDESC_FINISHED(cb->flag)) {
 584			hvc = to_hsdma_vchan(cb->vd->tx.chan);
 585
 586			spin_lock(&hvc->vc.lock);
 587
 588			/* Remove VD from list desc_hw_processing */
 589			list_del(&cb->vd->node);
 590
 591			/* Add VD into list desc_completed */
 592			vchan_cookie_complete(cb->vd);
 593
 594			if (hvc->issue_synchronize &&
 595			    list_empty(&hvc->desc_hw_processing)) {
 596				complete(&hvc->issue_completion);
 597				hvc->issue_synchronize = false;
 598			}
 599			spin_unlock(&hvc->vc.lock);
 600
 601			cb->flag = 0;
 602		}
 603
 604		cb->vd = 0;
 605
 606		/*
 607		 * Recycle the RXD with the helper WRITE_ONCE that can ensure
 608		 * data written into RAM would really happens.
 609		 */
 610		WRITE_ONCE(rxd->desc1, 0);
 611		WRITE_ONCE(rxd->desc2, 0);
 612		pc->ring.cur_rptr = next;
 613
 614		/* Release rooms */
 615		atomic_inc(&pc->nr_free);
 616	}
 617
 618	/* Ensure all changes indeed done before we're going on */
 619	wmb();
 620
 621	/* Update CPU pointer for those completed PDs */
 622	mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, pc->ring.cur_rptr);
 623
 624	/*
 625	 * Acking the pending IRQ allows hardware no longer to keep the used
 626	 * IRQ line in certain trigger state when software has completed all
 627	 * the finished physical descriptors.
 628	 */
 629	if (atomic_read(&pc->nr_free) >= MTK_DMA_SIZE - 1)
 630		mtk_dma_write(hsdma, MTK_HSDMA_INT_STATUS, status);
 631
 632	/* ASAP handles pending VDs in all VCs after freeing some rooms */
 633	for (i = 0; i < hsdma->dma_requests; i++) {
 634		hvc = &hsdma->vc[i];
 635		spin_lock(&hvc->vc.lock);
 636		mtk_hsdma_issue_vchan_pending(hsdma, hvc);
 637		spin_unlock(&hvc->vc.lock);
 638	}
 639
 640rx_done:
 641	/* All completed PDs are cleaned up, so enable interrupt again */
 642	mtk_dma_set(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
 643}
 644
 645static irqreturn_t mtk_hsdma_irq(int irq, void *devid)
 646{
 647	struct mtk_hsdma_device *hsdma = devid;
 648
 649	/*
 650	 * Disable interrupt until all completed PDs are cleaned up in
 651	 * mtk_hsdma_free_rooms call.
 652	 */
 653	mtk_dma_clr(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
 654
 655	mtk_hsdma_free_rooms_in_ring(hsdma);
 656
 657	return IRQ_HANDLED;
 658}
 659
 660static struct virt_dma_desc *mtk_hsdma_find_active_desc(struct dma_chan *c,
 661							dma_cookie_t cookie)
 662{
 663	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
 664	struct virt_dma_desc *vd;
 665
 666	list_for_each_entry(vd, &hvc->desc_hw_processing, node)
 667		if (vd->tx.cookie == cookie)
 668			return vd;
 669
 670	list_for_each_entry(vd, &hvc->vc.desc_issued, node)
 671		if (vd->tx.cookie == cookie)
 672			return vd;
 673
 674	return NULL;
 675}
 676
 677static enum dma_status mtk_hsdma_tx_status(struct dma_chan *c,
 678					   dma_cookie_t cookie,
 679					   struct dma_tx_state *txstate)
 680{
 681	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
 682	struct mtk_hsdma_vdesc *hvd;
 683	struct virt_dma_desc *vd;
 684	enum dma_status ret;
 685	unsigned long flags;
 686	size_t bytes = 0;
 687
 688	ret = dma_cookie_status(c, cookie, txstate);
 689	if (ret == DMA_COMPLETE || !txstate)
 690		return ret;
 691
 692	spin_lock_irqsave(&hvc->vc.lock, flags);
 693	vd = mtk_hsdma_find_active_desc(c, cookie);
 694	spin_unlock_irqrestore(&hvc->vc.lock, flags);
 695
 696	if (vd) {
 697		hvd = to_hsdma_vdesc(vd);
 698		bytes = hvd->residue;
 699	}
 700
 701	dma_set_residue(txstate, bytes);
 702
 703	return ret;
 704}
 705
 706static void mtk_hsdma_issue_pending(struct dma_chan *c)
 707{
 708	struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
 709	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
 710	unsigned long flags;
 711
 712	spin_lock_irqsave(&hvc->vc.lock, flags);
 713
 714	if (vchan_issue_pending(&hvc->vc))
 715		mtk_hsdma_issue_vchan_pending(hsdma, hvc);
 716
 717	spin_unlock_irqrestore(&hvc->vc.lock, flags);
 718}
 719
 720static struct dma_async_tx_descriptor *
 721mtk_hsdma_prep_dma_memcpy(struct dma_chan *c, dma_addr_t dest,
 722			  dma_addr_t src, size_t len, unsigned long flags)
 723{
 724	struct mtk_hsdma_vdesc *hvd;
 725
 726	hvd = kzalloc(sizeof(*hvd), GFP_NOWAIT);
 727	if (!hvd)
 728		return NULL;
 729
 730	hvd->len = len;
 731	hvd->residue = len;
 732	hvd->src = src;
 733	hvd->dest = dest;
 734
 735	return vchan_tx_prep(to_virt_chan(c), &hvd->vd, flags);
 736}
 737
 738static int mtk_hsdma_free_inactive_desc(struct dma_chan *c)
 739{
 740	struct virt_dma_chan *vc = to_virt_chan(c);
 741	unsigned long flags;
 742	LIST_HEAD(head);
 743
 744	spin_lock_irqsave(&vc->lock, flags);
 745	list_splice_tail_init(&vc->desc_allocated, &head);
 746	list_splice_tail_init(&vc->desc_submitted, &head);
 747	list_splice_tail_init(&vc->desc_issued, &head);
 748	spin_unlock_irqrestore(&vc->lock, flags);
 749
 750	/* At the point, we don't expect users put descriptor into VC again */
 751	vchan_dma_desc_free_list(vc, &head);
 752
 753	return 0;
 754}
 755
 756static void mtk_hsdma_free_active_desc(struct dma_chan *c)
 757{
 758	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
 759	bool sync_needed = false;
 760
 761	/*
 762	 * Once issue_synchronize is being set, which means once the hardware
 763	 * consumes all descriptors for the channel in the ring, the
 764	 * synchronization must be be notified immediately it is completed.
 765	 */
 766	spin_lock(&hvc->vc.lock);
 767	if (!list_empty(&hvc->desc_hw_processing)) {
 768		hvc->issue_synchronize = true;
 769		sync_needed = true;
 770	}
 771	spin_unlock(&hvc->vc.lock);
 772
 773	if (sync_needed)
 774		wait_for_completion(&hvc->issue_completion);
 775	/*
 776	 * At the point, we expect that all remaining descriptors in the ring
 777	 * for the channel should be all processing done.
 778	 */
 779	WARN_ONCE(!list_empty(&hvc->desc_hw_processing),
 780		  "Desc pending still in list desc_hw_processing\n");
 781
 782	/* Free all descriptors in list desc_completed */
 783	vchan_synchronize(&hvc->vc);
 784
 785	WARN_ONCE(!list_empty(&hvc->vc.desc_completed),
 786		  "Desc pending still in list desc_completed\n");
 787}
 788
 789static int mtk_hsdma_terminate_all(struct dma_chan *c)
 790{
 791	/*
 792	 * Free pending descriptors not processed yet by hardware that have
 793	 * previously been submitted to the channel.
 794	 */
 795	mtk_hsdma_free_inactive_desc(c);
 796
 797	/*
 798	 * However, the DMA engine doesn't provide any way to stop these
 799	 * descriptors being processed currently by hardware. The only way is
 800	 * to just waiting until these descriptors are all processed completely
 801	 * through mtk_hsdma_free_active_desc call.
 802	 */
 803	mtk_hsdma_free_active_desc(c);
 804
 805	return 0;
 806}
 807
 808static int mtk_hsdma_alloc_chan_resources(struct dma_chan *c)
 809{
 810	struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
 811	int err;
 812
 813	/*
 814	 * Since HSDMA has only one PC, the resource for PC is being allocated
 815	 * when the first VC is being created and the other VCs would run on
 816	 * the same PC.
 817	 */
 818	if (!refcount_read(&hsdma->pc_refcnt)) {
 819		err = mtk_hsdma_alloc_pchan(hsdma, hsdma->pc);
 820		if (err)
 821			return err;
 822		/*
 823		 * refcount_inc would complain increment on 0; use-after-free.
 824		 * Thus, we need to explicitly set it as 1 initially.
 825		 */
 826		refcount_set(&hsdma->pc_refcnt, 1);
 827	} else {
 828		refcount_inc(&hsdma->pc_refcnt);
 829	}
 830
 831	return 0;
 832}
 833
 834static void mtk_hsdma_free_chan_resources(struct dma_chan *c)
 835{
 836	struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
 837
 838	/* Free all descriptors in all lists on the VC */
 839	mtk_hsdma_terminate_all(c);
 840
 841	/* The resource for PC is not freed until all the VCs are destroyed */
 842	if (!refcount_dec_and_test(&hsdma->pc_refcnt))
 843		return;
 844
 845	mtk_hsdma_free_pchan(hsdma, hsdma->pc);
 846}
 847
 848static int mtk_hsdma_hw_init(struct mtk_hsdma_device *hsdma)
 849{
 850	int err;
 851
 852	pm_runtime_enable(hsdma2dev(hsdma));
 853	pm_runtime_get_sync(hsdma2dev(hsdma));
 854
 855	err = clk_prepare_enable(hsdma->clk);
 856	if (err)
 857		return err;
 858
 859	mtk_dma_write(hsdma, MTK_HSDMA_INT_ENABLE, 0);
 860	mtk_dma_write(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DEFAULT);
 861
 862	return 0;
 863}
 864
 865static int mtk_hsdma_hw_deinit(struct mtk_hsdma_device *hsdma)
 866{
 867	mtk_dma_write(hsdma, MTK_HSDMA_GLO, 0);
 868
 869	clk_disable_unprepare(hsdma->clk);
 870
 871	pm_runtime_put_sync(hsdma2dev(hsdma));
 872	pm_runtime_disable(hsdma2dev(hsdma));
 873
 874	return 0;
 875}
 876
 877static const struct mtk_hsdma_soc mt7623_soc = {
 878	.ddone = BIT(31),
 879	.ls0 = BIT(30),
 880};
 881
 882static const struct mtk_hsdma_soc mt7622_soc = {
 883	.ddone = BIT(15),
 884	.ls0 = BIT(14),
 885};
 886
 887static const struct of_device_id mtk_hsdma_match[] = {
 888	{ .compatible = "mediatek,mt7623-hsdma", .data = &mt7623_soc},
 889	{ .compatible = "mediatek,mt7622-hsdma", .data = &mt7622_soc},
 890	{ /* sentinel */ }
 891};
 892MODULE_DEVICE_TABLE(of, mtk_hsdma_match);
 893
 894static int mtk_hsdma_probe(struct platform_device *pdev)
 895{
 896	struct mtk_hsdma_device *hsdma;
 897	struct mtk_hsdma_vchan *vc;
 898	struct dma_device *dd;
 899	struct resource *res;
 900	int i, err;
 901
 902	hsdma = devm_kzalloc(&pdev->dev, sizeof(*hsdma), GFP_KERNEL);
 903	if (!hsdma)
 904		return -ENOMEM;
 905
 906	dd = &hsdma->ddev;
 907
 908	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 909	hsdma->base = devm_ioremap_resource(&pdev->dev, res);
 910	if (IS_ERR(hsdma->base))
 911		return PTR_ERR(hsdma->base);
 912
 913	hsdma->soc = of_device_get_match_data(&pdev->dev);
 914	if (!hsdma->soc) {
 915		dev_err(&pdev->dev, "No device match found\n");
 916		return -ENODEV;
 917	}
 918
 919	hsdma->clk = devm_clk_get(&pdev->dev, "hsdma");
 920	if (IS_ERR(hsdma->clk)) {
 921		dev_err(&pdev->dev, "No clock for %s\n",
 922			dev_name(&pdev->dev));
 923		return PTR_ERR(hsdma->clk);
 924	}
 925
 926	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
 927	if (!res) {
 928		dev_err(&pdev->dev, "No irq resource for %s\n",
 929			dev_name(&pdev->dev));
 930		return -EINVAL;
 931	}
 932	hsdma->irq = res->start;
 933
 934	refcount_set(&hsdma->pc_refcnt, 0);
 935	spin_lock_init(&hsdma->lock);
 936
 937	dma_cap_set(DMA_MEMCPY, dd->cap_mask);
 938
 939	dd->copy_align = MTK_HSDMA_ALIGN_SIZE;
 940	dd->device_alloc_chan_resources = mtk_hsdma_alloc_chan_resources;
 941	dd->device_free_chan_resources = mtk_hsdma_free_chan_resources;
 942	dd->device_tx_status = mtk_hsdma_tx_status;
 943	dd->device_issue_pending = mtk_hsdma_issue_pending;
 944	dd->device_prep_dma_memcpy = mtk_hsdma_prep_dma_memcpy;
 945	dd->device_terminate_all = mtk_hsdma_terminate_all;
 946	dd->src_addr_widths = MTK_HSDMA_DMA_BUSWIDTHS;
 947	dd->dst_addr_widths = MTK_HSDMA_DMA_BUSWIDTHS;
 948	dd->directions = BIT(DMA_MEM_TO_MEM);
 949	dd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
 950	dd->dev = &pdev->dev;
 951	INIT_LIST_HEAD(&dd->channels);
 952
 953	hsdma->dma_requests = MTK_HSDMA_NR_VCHANS;
 954	if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node,
 955						      "dma-requests",
 956						      &hsdma->dma_requests)) {
 957		dev_info(&pdev->dev,
 958			 "Using %u as missing dma-requests property\n",
 959			 MTK_HSDMA_NR_VCHANS);
 960	}
 961
 962	hsdma->pc = devm_kcalloc(&pdev->dev, MTK_HSDMA_NR_MAX_PCHANS,
 963				 sizeof(*hsdma->pc), GFP_KERNEL);
 964	if (!hsdma->pc)
 965		return -ENOMEM;
 966
 967	hsdma->vc = devm_kcalloc(&pdev->dev, hsdma->dma_requests,
 968				 sizeof(*hsdma->vc), GFP_KERNEL);
 969	if (!hsdma->vc)
 970		return -ENOMEM;
 971
 972	for (i = 0; i < hsdma->dma_requests; i++) {
 973		vc = &hsdma->vc[i];
 974		vc->vc.desc_free = mtk_hsdma_vdesc_free;
 975		vchan_init(&vc->vc, dd);
 976		init_completion(&vc->issue_completion);
 977		INIT_LIST_HEAD(&vc->desc_hw_processing);
 978	}
 979
 980	err = dma_async_device_register(dd);
 981	if (err)
 982		return err;
 983
 984	err = of_dma_controller_register(pdev->dev.of_node,
 985					 of_dma_xlate_by_chan_id, hsdma);
 986	if (err) {
 987		dev_err(&pdev->dev,
 988			"MediaTek HSDMA OF registration failed %d\n", err);
 989		goto err_unregister;
 990	}
 991
 992	mtk_hsdma_hw_init(hsdma);
 993
 994	err = devm_request_irq(&pdev->dev, hsdma->irq,
 995			       mtk_hsdma_irq, 0,
 996			       dev_name(&pdev->dev), hsdma);
 997	if (err) {
 998		dev_err(&pdev->dev,
 999			"request_irq failed with err %d\n", err);
1000		goto err_free;
1001	}
1002
1003	platform_set_drvdata(pdev, hsdma);
1004
1005	dev_info(&pdev->dev, "MediaTek HSDMA driver registered\n");
1006
1007	return 0;
1008
1009err_free:
1010	mtk_hsdma_hw_deinit(hsdma);
1011	of_dma_controller_free(pdev->dev.of_node);
1012err_unregister:
1013	dma_async_device_unregister(dd);
1014
1015	return err;
1016}
1017
1018static int mtk_hsdma_remove(struct platform_device *pdev)
1019{
1020	struct mtk_hsdma_device *hsdma = platform_get_drvdata(pdev);
1021	struct mtk_hsdma_vchan *vc;
1022	int i;
1023
1024	/* Kill VC task */
1025	for (i = 0; i < hsdma->dma_requests; i++) {
1026		vc = &hsdma->vc[i];
1027
1028		list_del(&vc->vc.chan.device_node);
1029		tasklet_kill(&vc->vc.task);
1030	}
1031
1032	/* Disable DMA interrupt */
1033	mtk_dma_write(hsdma, MTK_HSDMA_INT_ENABLE, 0);
1034
1035	/* Waits for any pending IRQ handlers to complete */
1036	synchronize_irq(hsdma->irq);
1037
1038	/* Disable hardware */
1039	mtk_hsdma_hw_deinit(hsdma);
1040
1041	dma_async_device_unregister(&hsdma->ddev);
1042	of_dma_controller_free(pdev->dev.of_node);
1043
1044	return 0;
1045}
1046
1047static struct platform_driver mtk_hsdma_driver = {
1048	.probe		= mtk_hsdma_probe,
1049	.remove		= mtk_hsdma_remove,
1050	.driver = {
1051		.name		= KBUILD_MODNAME,
1052		.of_match_table	= mtk_hsdma_match,
1053	},
1054};
1055module_platform_driver(mtk_hsdma_driver);
1056
1057MODULE_DESCRIPTION("MediaTek High-Speed DMA Controller Driver");
1058MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
1059MODULE_LICENSE("GPL v2");