Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of STM32 Crypto driver for Linux.
4 *
5 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 * Author(s): Lionel DEBIEVE <lionel.debieve@st.com> for STMicroelectronics.
7 */
8
9#include <linux/clk.h>
10#include <linux/crypto.h>
11#include <linux/delay.h>
12#include <linux/dmaengine.h>
13#include <linux/interrupt.h>
14#include <linux/io.h>
15#include <linux/iopoll.h>
16#include <linux/kernel.h>
17#include <linux/module.h>
18#include <linux/of_device.h>
19#include <linux/platform_device.h>
20#include <linux/pm_runtime.h>
21#include <linux/reset.h>
22
23#include <crypto/engine.h>
24#include <crypto/hash.h>
25#include <crypto/md5.h>
26#include <crypto/scatterwalk.h>
27#include <crypto/sha.h>
28#include <crypto/internal/hash.h>
29
30#define HASH_CR 0x00
31#define HASH_DIN 0x04
32#define HASH_STR 0x08
33#define HASH_IMR 0x20
34#define HASH_SR 0x24
35#define HASH_CSR(x) (0x0F8 + ((x) * 0x04))
36#define HASH_HREG(x) (0x310 + ((x) * 0x04))
37#define HASH_HWCFGR 0x3F0
38#define HASH_VER 0x3F4
39#define HASH_ID 0x3F8
40
41/* Control Register */
42#define HASH_CR_INIT BIT(2)
43#define HASH_CR_DMAE BIT(3)
44#define HASH_CR_DATATYPE_POS 4
45#define HASH_CR_MODE BIT(6)
46#define HASH_CR_MDMAT BIT(13)
47#define HASH_CR_DMAA BIT(14)
48#define HASH_CR_LKEY BIT(16)
49
50#define HASH_CR_ALGO_SHA1 0x0
51#define HASH_CR_ALGO_MD5 0x80
52#define HASH_CR_ALGO_SHA224 0x40000
53#define HASH_CR_ALGO_SHA256 0x40080
54
55/* Interrupt */
56#define HASH_DINIE BIT(0)
57#define HASH_DCIE BIT(1)
58
59/* Interrupt Mask */
60#define HASH_MASK_CALC_COMPLETION BIT(0)
61#define HASH_MASK_DATA_INPUT BIT(1)
62
63/* Context swap register */
64#define HASH_CSR_REGISTER_NUMBER 53
65
66/* Status Flags */
67#define HASH_SR_DATA_INPUT_READY BIT(0)
68#define HASH_SR_OUTPUT_READY BIT(1)
69#define HASH_SR_DMA_ACTIVE BIT(2)
70#define HASH_SR_BUSY BIT(3)
71
72/* STR Register */
73#define HASH_STR_NBLW_MASK GENMASK(4, 0)
74#define HASH_STR_DCAL BIT(8)
75
76#define HASH_FLAGS_INIT BIT(0)
77#define HASH_FLAGS_OUTPUT_READY BIT(1)
78#define HASH_FLAGS_CPU BIT(2)
79#define HASH_FLAGS_DMA_READY BIT(3)
80#define HASH_FLAGS_DMA_ACTIVE BIT(4)
81#define HASH_FLAGS_HMAC_INIT BIT(5)
82#define HASH_FLAGS_HMAC_FINAL BIT(6)
83#define HASH_FLAGS_HMAC_KEY BIT(7)
84
85#define HASH_FLAGS_FINAL BIT(15)
86#define HASH_FLAGS_FINUP BIT(16)
87#define HASH_FLAGS_ALGO_MASK GENMASK(21, 18)
88#define HASH_FLAGS_MD5 BIT(18)
89#define HASH_FLAGS_SHA1 BIT(19)
90#define HASH_FLAGS_SHA224 BIT(20)
91#define HASH_FLAGS_SHA256 BIT(21)
92#define HASH_FLAGS_ERRORS BIT(22)
93#define HASH_FLAGS_HMAC BIT(23)
94
95#define HASH_OP_UPDATE 1
96#define HASH_OP_FINAL 2
97
98enum stm32_hash_data_format {
99 HASH_DATA_32_BITS = 0x0,
100 HASH_DATA_16_BITS = 0x1,
101 HASH_DATA_8_BITS = 0x2,
102 HASH_DATA_1_BIT = 0x3
103};
104
105#define HASH_BUFLEN 256
106#define HASH_LONG_KEY 64
107#define HASH_MAX_KEY_SIZE (SHA256_BLOCK_SIZE * 8)
108#define HASH_QUEUE_LENGTH 16
109#define HASH_DMA_THRESHOLD 50
110
111#define HASH_AUTOSUSPEND_DELAY 50
112
113struct stm32_hash_ctx {
114 struct crypto_engine_ctx enginectx;
115 struct stm32_hash_dev *hdev;
116 unsigned long flags;
117
118 u8 key[HASH_MAX_KEY_SIZE];
119 int keylen;
120};
121
122struct stm32_hash_request_ctx {
123 struct stm32_hash_dev *hdev;
124 unsigned long flags;
125 unsigned long op;
126
127 u8 digest[SHA256_DIGEST_SIZE] __aligned(sizeof(u32));
128 size_t digcnt;
129 size_t bufcnt;
130 size_t buflen;
131
132 /* DMA */
133 struct scatterlist *sg;
134 unsigned int offset;
135 unsigned int total;
136 struct scatterlist sg_key;
137
138 dma_addr_t dma_addr;
139 size_t dma_ct;
140 int nents;
141
142 u8 data_type;
143
144 u8 buffer[HASH_BUFLEN] __aligned(sizeof(u32));
145
146 /* Export Context */
147 u32 *hw_context;
148};
149
150struct stm32_hash_algs_info {
151 struct ahash_alg *algs_list;
152 size_t size;
153};
154
155struct stm32_hash_pdata {
156 struct stm32_hash_algs_info *algs_info;
157 size_t algs_info_size;
158};
159
160struct stm32_hash_dev {
161 struct list_head list;
162 struct device *dev;
163 struct clk *clk;
164 struct reset_control *rst;
165 void __iomem *io_base;
166 phys_addr_t phys_base;
167 u32 dma_mode;
168 u32 dma_maxburst;
169
170 struct ahash_request *req;
171 struct crypto_engine *engine;
172
173 int err;
174 unsigned long flags;
175
176 struct dma_chan *dma_lch;
177 struct completion dma_completion;
178
179 const struct stm32_hash_pdata *pdata;
180};
181
182struct stm32_hash_drv {
183 struct list_head dev_list;
184 spinlock_t lock; /* List protection access */
185};
186
187static struct stm32_hash_drv stm32_hash = {
188 .dev_list = LIST_HEAD_INIT(stm32_hash.dev_list),
189 .lock = __SPIN_LOCK_UNLOCKED(stm32_hash.lock),
190};
191
192static void stm32_hash_dma_callback(void *param);
193
194static inline u32 stm32_hash_read(struct stm32_hash_dev *hdev, u32 offset)
195{
196 return readl_relaxed(hdev->io_base + offset);
197}
198
199static inline void stm32_hash_write(struct stm32_hash_dev *hdev,
200 u32 offset, u32 value)
201{
202 writel_relaxed(value, hdev->io_base + offset);
203}
204
205static inline int stm32_hash_wait_busy(struct stm32_hash_dev *hdev)
206{
207 u32 status;
208
209 return readl_relaxed_poll_timeout(hdev->io_base + HASH_SR, status,
210 !(status & HASH_SR_BUSY), 10, 10000);
211}
212
213static void stm32_hash_set_nblw(struct stm32_hash_dev *hdev, int length)
214{
215 u32 reg;
216
217 reg = stm32_hash_read(hdev, HASH_STR);
218 reg &= ~(HASH_STR_NBLW_MASK);
219 reg |= (8U * ((length) % 4U));
220 stm32_hash_write(hdev, HASH_STR, reg);
221}
222
223static int stm32_hash_write_key(struct stm32_hash_dev *hdev)
224{
225 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
226 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
227 u32 reg;
228 int keylen = ctx->keylen;
229 void *key = ctx->key;
230
231 if (keylen) {
232 stm32_hash_set_nblw(hdev, keylen);
233
234 while (keylen > 0) {
235 stm32_hash_write(hdev, HASH_DIN, *(u32 *)key);
236 keylen -= 4;
237 key += 4;
238 }
239
240 reg = stm32_hash_read(hdev, HASH_STR);
241 reg |= HASH_STR_DCAL;
242 stm32_hash_write(hdev, HASH_STR, reg);
243
244 return -EINPROGRESS;
245 }
246
247 return 0;
248}
249
250static void stm32_hash_write_ctrl(struct stm32_hash_dev *hdev)
251{
252 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
253 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
254 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
255
256 u32 reg = HASH_CR_INIT;
257
258 if (!(hdev->flags & HASH_FLAGS_INIT)) {
259 switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
260 case HASH_FLAGS_MD5:
261 reg |= HASH_CR_ALGO_MD5;
262 break;
263 case HASH_FLAGS_SHA1:
264 reg |= HASH_CR_ALGO_SHA1;
265 break;
266 case HASH_FLAGS_SHA224:
267 reg |= HASH_CR_ALGO_SHA224;
268 break;
269 case HASH_FLAGS_SHA256:
270 reg |= HASH_CR_ALGO_SHA256;
271 break;
272 default:
273 reg |= HASH_CR_ALGO_MD5;
274 }
275
276 reg |= (rctx->data_type << HASH_CR_DATATYPE_POS);
277
278 if (rctx->flags & HASH_FLAGS_HMAC) {
279 hdev->flags |= HASH_FLAGS_HMAC;
280 reg |= HASH_CR_MODE;
281 if (ctx->keylen > HASH_LONG_KEY)
282 reg |= HASH_CR_LKEY;
283 }
284
285 stm32_hash_write(hdev, HASH_IMR, HASH_DCIE);
286
287 stm32_hash_write(hdev, HASH_CR, reg);
288
289 hdev->flags |= HASH_FLAGS_INIT;
290
291 dev_dbg(hdev->dev, "Write Control %x\n", reg);
292 }
293}
294
295static void stm32_hash_append_sg(struct stm32_hash_request_ctx *rctx)
296{
297 size_t count;
298
299 while ((rctx->bufcnt < rctx->buflen) && rctx->total) {
300 count = min(rctx->sg->length - rctx->offset, rctx->total);
301 count = min(count, rctx->buflen - rctx->bufcnt);
302
303 if (count <= 0) {
304 if ((rctx->sg->length == 0) && !sg_is_last(rctx->sg)) {
305 rctx->sg = sg_next(rctx->sg);
306 continue;
307 } else {
308 break;
309 }
310 }
311
312 scatterwalk_map_and_copy(rctx->buffer + rctx->bufcnt, rctx->sg,
313 rctx->offset, count, 0);
314
315 rctx->bufcnt += count;
316 rctx->offset += count;
317 rctx->total -= count;
318
319 if (rctx->offset == rctx->sg->length) {
320 rctx->sg = sg_next(rctx->sg);
321 if (rctx->sg)
322 rctx->offset = 0;
323 else
324 rctx->total = 0;
325 }
326 }
327}
328
329static int stm32_hash_xmit_cpu(struct stm32_hash_dev *hdev,
330 const u8 *buf, size_t length, int final)
331{
332 unsigned int count, len32;
333 const u32 *buffer = (const u32 *)buf;
334 u32 reg;
335
336 if (final)
337 hdev->flags |= HASH_FLAGS_FINAL;
338
339 len32 = DIV_ROUND_UP(length, sizeof(u32));
340
341 dev_dbg(hdev->dev, "%s: length: %zd, final: %x len32 %i\n",
342 __func__, length, final, len32);
343
344 hdev->flags |= HASH_FLAGS_CPU;
345
346 stm32_hash_write_ctrl(hdev);
347
348 if (stm32_hash_wait_busy(hdev))
349 return -ETIMEDOUT;
350
351 if ((hdev->flags & HASH_FLAGS_HMAC) &&
352 (!(hdev->flags & HASH_FLAGS_HMAC_KEY))) {
353 hdev->flags |= HASH_FLAGS_HMAC_KEY;
354 stm32_hash_write_key(hdev);
355 if (stm32_hash_wait_busy(hdev))
356 return -ETIMEDOUT;
357 }
358
359 for (count = 0; count < len32; count++)
360 stm32_hash_write(hdev, HASH_DIN, buffer[count]);
361
362 if (final) {
363 stm32_hash_set_nblw(hdev, length);
364 reg = stm32_hash_read(hdev, HASH_STR);
365 reg |= HASH_STR_DCAL;
366 stm32_hash_write(hdev, HASH_STR, reg);
367 if (hdev->flags & HASH_FLAGS_HMAC) {
368 if (stm32_hash_wait_busy(hdev))
369 return -ETIMEDOUT;
370 stm32_hash_write_key(hdev);
371 }
372 return -EINPROGRESS;
373 }
374
375 return 0;
376}
377
378static int stm32_hash_update_cpu(struct stm32_hash_dev *hdev)
379{
380 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
381 int bufcnt, err = 0, final;
382
383 dev_dbg(hdev->dev, "%s flags %lx\n", __func__, rctx->flags);
384
385 final = (rctx->flags & HASH_FLAGS_FINUP);
386
387 while ((rctx->total >= rctx->buflen) ||
388 (rctx->bufcnt + rctx->total >= rctx->buflen)) {
389 stm32_hash_append_sg(rctx);
390 bufcnt = rctx->bufcnt;
391 rctx->bufcnt = 0;
392 err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt, 0);
393 }
394
395 stm32_hash_append_sg(rctx);
396
397 if (final) {
398 bufcnt = rctx->bufcnt;
399 rctx->bufcnt = 0;
400 err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt,
401 (rctx->flags & HASH_FLAGS_FINUP));
402 }
403
404 return err;
405}
406
407static int stm32_hash_xmit_dma(struct stm32_hash_dev *hdev,
408 struct scatterlist *sg, int length, int mdma)
409{
410 struct dma_async_tx_descriptor *in_desc;
411 dma_cookie_t cookie;
412 u32 reg;
413 int err;
414
415 in_desc = dmaengine_prep_slave_sg(hdev->dma_lch, sg, 1,
416 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT |
417 DMA_CTRL_ACK);
418 if (!in_desc) {
419 dev_err(hdev->dev, "dmaengine_prep_slave error\n");
420 return -ENOMEM;
421 }
422
423 reinit_completion(&hdev->dma_completion);
424 in_desc->callback = stm32_hash_dma_callback;
425 in_desc->callback_param = hdev;
426
427 hdev->flags |= HASH_FLAGS_FINAL;
428 hdev->flags |= HASH_FLAGS_DMA_ACTIVE;
429
430 reg = stm32_hash_read(hdev, HASH_CR);
431
432 if (mdma)
433 reg |= HASH_CR_MDMAT;
434 else
435 reg &= ~HASH_CR_MDMAT;
436
437 reg |= HASH_CR_DMAE;
438
439 stm32_hash_write(hdev, HASH_CR, reg);
440
441 stm32_hash_set_nblw(hdev, length);
442
443 cookie = dmaengine_submit(in_desc);
444 err = dma_submit_error(cookie);
445 if (err)
446 return -ENOMEM;
447
448 dma_async_issue_pending(hdev->dma_lch);
449
450 if (!wait_for_completion_timeout(&hdev->dma_completion,
451 msecs_to_jiffies(100)))
452 err = -ETIMEDOUT;
453
454 if (dma_async_is_tx_complete(hdev->dma_lch, cookie,
455 NULL, NULL) != DMA_COMPLETE)
456 err = -ETIMEDOUT;
457
458 if (err) {
459 dev_err(hdev->dev, "DMA Error %i\n", err);
460 dmaengine_terminate_all(hdev->dma_lch);
461 return err;
462 }
463
464 return -EINPROGRESS;
465}
466
467static void stm32_hash_dma_callback(void *param)
468{
469 struct stm32_hash_dev *hdev = param;
470
471 complete(&hdev->dma_completion);
472
473 hdev->flags |= HASH_FLAGS_DMA_READY;
474}
475
476static int stm32_hash_hmac_dma_send(struct stm32_hash_dev *hdev)
477{
478 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
479 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
480 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
481 int err;
482
483 if (ctx->keylen < HASH_DMA_THRESHOLD || (hdev->dma_mode == 1)) {
484 err = stm32_hash_write_key(hdev);
485 if (stm32_hash_wait_busy(hdev))
486 return -ETIMEDOUT;
487 } else {
488 if (!(hdev->flags & HASH_FLAGS_HMAC_KEY))
489 sg_init_one(&rctx->sg_key, ctx->key,
490 ALIGN(ctx->keylen, sizeof(u32)));
491
492 rctx->dma_ct = dma_map_sg(hdev->dev, &rctx->sg_key, 1,
493 DMA_TO_DEVICE);
494 if (rctx->dma_ct == 0) {
495 dev_err(hdev->dev, "dma_map_sg error\n");
496 return -ENOMEM;
497 }
498
499 err = stm32_hash_xmit_dma(hdev, &rctx->sg_key, ctx->keylen, 0);
500
501 dma_unmap_sg(hdev->dev, &rctx->sg_key, 1, DMA_TO_DEVICE);
502 }
503
504 return err;
505}
506
507static int stm32_hash_dma_init(struct stm32_hash_dev *hdev)
508{
509 struct dma_slave_config dma_conf;
510 struct dma_chan *chan;
511 int err;
512
513 memset(&dma_conf, 0, sizeof(dma_conf));
514
515 dma_conf.direction = DMA_MEM_TO_DEV;
516 dma_conf.dst_addr = hdev->phys_base + HASH_DIN;
517 dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
518 dma_conf.src_maxburst = hdev->dma_maxburst;
519 dma_conf.dst_maxburst = hdev->dma_maxburst;
520 dma_conf.device_fc = false;
521
522 chan = dma_request_chan(hdev->dev, "in");
523 if (IS_ERR(chan))
524 return PTR_ERR(chan);
525
526 hdev->dma_lch = chan;
527
528 err = dmaengine_slave_config(hdev->dma_lch, &dma_conf);
529 if (err) {
530 dma_release_channel(hdev->dma_lch);
531 hdev->dma_lch = NULL;
532 dev_err(hdev->dev, "Couldn't configure DMA slave.\n");
533 return err;
534 }
535
536 init_completion(&hdev->dma_completion);
537
538 return 0;
539}
540
541static int stm32_hash_dma_send(struct stm32_hash_dev *hdev)
542{
543 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
544 struct scatterlist sg[1], *tsg;
545 int err = 0, len = 0, reg, ncp = 0;
546 unsigned int i;
547 u32 *buffer = (void *)rctx->buffer;
548
549 rctx->sg = hdev->req->src;
550 rctx->total = hdev->req->nbytes;
551
552 rctx->nents = sg_nents(rctx->sg);
553
554 if (rctx->nents < 0)
555 return -EINVAL;
556
557 stm32_hash_write_ctrl(hdev);
558
559 if (hdev->flags & HASH_FLAGS_HMAC) {
560 err = stm32_hash_hmac_dma_send(hdev);
561 if (err != -EINPROGRESS)
562 return err;
563 }
564
565 for_each_sg(rctx->sg, tsg, rctx->nents, i) {
566 len = sg->length;
567
568 sg[0] = *tsg;
569 if (sg_is_last(sg)) {
570 if (hdev->dma_mode == 1) {
571 len = (ALIGN(sg->length, 16) - 16);
572
573 ncp = sg_pcopy_to_buffer(
574 rctx->sg, rctx->nents,
575 rctx->buffer, sg->length - len,
576 rctx->total - sg->length + len);
577
578 sg->length = len;
579 } else {
580 if (!(IS_ALIGNED(sg->length, sizeof(u32)))) {
581 len = sg->length;
582 sg->length = ALIGN(sg->length,
583 sizeof(u32));
584 }
585 }
586 }
587
588 rctx->dma_ct = dma_map_sg(hdev->dev, sg, 1,
589 DMA_TO_DEVICE);
590 if (rctx->dma_ct == 0) {
591 dev_err(hdev->dev, "dma_map_sg error\n");
592 return -ENOMEM;
593 }
594
595 err = stm32_hash_xmit_dma(hdev, sg, len,
596 !sg_is_last(sg));
597
598 dma_unmap_sg(hdev->dev, sg, 1, DMA_TO_DEVICE);
599
600 if (err == -ENOMEM)
601 return err;
602 }
603
604 if (hdev->dma_mode == 1) {
605 if (stm32_hash_wait_busy(hdev))
606 return -ETIMEDOUT;
607 reg = stm32_hash_read(hdev, HASH_CR);
608 reg &= ~HASH_CR_DMAE;
609 reg |= HASH_CR_DMAA;
610 stm32_hash_write(hdev, HASH_CR, reg);
611
612 if (ncp) {
613 memset(buffer + ncp, 0,
614 DIV_ROUND_UP(ncp, sizeof(u32)) - ncp);
615 writesl(hdev->io_base + HASH_DIN, buffer,
616 DIV_ROUND_UP(ncp, sizeof(u32)));
617 }
618 stm32_hash_set_nblw(hdev, ncp);
619 reg = stm32_hash_read(hdev, HASH_STR);
620 reg |= HASH_STR_DCAL;
621 stm32_hash_write(hdev, HASH_STR, reg);
622 err = -EINPROGRESS;
623 }
624
625 if (hdev->flags & HASH_FLAGS_HMAC) {
626 if (stm32_hash_wait_busy(hdev))
627 return -ETIMEDOUT;
628 err = stm32_hash_hmac_dma_send(hdev);
629 }
630
631 return err;
632}
633
634static struct stm32_hash_dev *stm32_hash_find_dev(struct stm32_hash_ctx *ctx)
635{
636 struct stm32_hash_dev *hdev = NULL, *tmp;
637
638 spin_lock_bh(&stm32_hash.lock);
639 if (!ctx->hdev) {
640 list_for_each_entry(tmp, &stm32_hash.dev_list, list) {
641 hdev = tmp;
642 break;
643 }
644 ctx->hdev = hdev;
645 } else {
646 hdev = ctx->hdev;
647 }
648
649 spin_unlock_bh(&stm32_hash.lock);
650
651 return hdev;
652}
653
654static bool stm32_hash_dma_aligned_data(struct ahash_request *req)
655{
656 struct scatterlist *sg;
657 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
658 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
659 int i;
660
661 if (req->nbytes <= HASH_DMA_THRESHOLD)
662 return false;
663
664 if (sg_nents(req->src) > 1) {
665 if (hdev->dma_mode == 1)
666 return false;
667 for_each_sg(req->src, sg, sg_nents(req->src), i) {
668 if ((!IS_ALIGNED(sg->length, sizeof(u32))) &&
669 (!sg_is_last(sg)))
670 return false;
671 }
672 }
673
674 if (req->src->offset % 4)
675 return false;
676
677 return true;
678}
679
680static int stm32_hash_init(struct ahash_request *req)
681{
682 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
683 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
684 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
685 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
686
687 rctx->hdev = hdev;
688
689 rctx->flags = HASH_FLAGS_CPU;
690
691 rctx->digcnt = crypto_ahash_digestsize(tfm);
692 switch (rctx->digcnt) {
693 case MD5_DIGEST_SIZE:
694 rctx->flags |= HASH_FLAGS_MD5;
695 break;
696 case SHA1_DIGEST_SIZE:
697 rctx->flags |= HASH_FLAGS_SHA1;
698 break;
699 case SHA224_DIGEST_SIZE:
700 rctx->flags |= HASH_FLAGS_SHA224;
701 break;
702 case SHA256_DIGEST_SIZE:
703 rctx->flags |= HASH_FLAGS_SHA256;
704 break;
705 default:
706 return -EINVAL;
707 }
708
709 rctx->bufcnt = 0;
710 rctx->buflen = HASH_BUFLEN;
711 rctx->total = 0;
712 rctx->offset = 0;
713 rctx->data_type = HASH_DATA_8_BITS;
714
715 memset(rctx->buffer, 0, HASH_BUFLEN);
716
717 if (ctx->flags & HASH_FLAGS_HMAC)
718 rctx->flags |= HASH_FLAGS_HMAC;
719
720 dev_dbg(hdev->dev, "%s Flags %lx\n", __func__, rctx->flags);
721
722 return 0;
723}
724
725static int stm32_hash_update_req(struct stm32_hash_dev *hdev)
726{
727 return stm32_hash_update_cpu(hdev);
728}
729
730static int stm32_hash_final_req(struct stm32_hash_dev *hdev)
731{
732 struct ahash_request *req = hdev->req;
733 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
734 int err;
735 int buflen = rctx->bufcnt;
736
737 rctx->bufcnt = 0;
738
739 if (!(rctx->flags & HASH_FLAGS_CPU))
740 err = stm32_hash_dma_send(hdev);
741 else
742 err = stm32_hash_xmit_cpu(hdev, rctx->buffer, buflen, 1);
743
744
745 return err;
746}
747
748static void stm32_hash_copy_hash(struct ahash_request *req)
749{
750 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
751 u32 *hash = (u32 *)rctx->digest;
752 unsigned int i, hashsize;
753
754 switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
755 case HASH_FLAGS_MD5:
756 hashsize = MD5_DIGEST_SIZE;
757 break;
758 case HASH_FLAGS_SHA1:
759 hashsize = SHA1_DIGEST_SIZE;
760 break;
761 case HASH_FLAGS_SHA224:
762 hashsize = SHA224_DIGEST_SIZE;
763 break;
764 case HASH_FLAGS_SHA256:
765 hashsize = SHA256_DIGEST_SIZE;
766 break;
767 default:
768 return;
769 }
770
771 for (i = 0; i < hashsize / sizeof(u32); i++)
772 hash[i] = be32_to_cpu(stm32_hash_read(rctx->hdev,
773 HASH_HREG(i)));
774}
775
776static int stm32_hash_finish(struct ahash_request *req)
777{
778 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
779
780 if (!req->result)
781 return -EINVAL;
782
783 memcpy(req->result, rctx->digest, rctx->digcnt);
784
785 return 0;
786}
787
788static void stm32_hash_finish_req(struct ahash_request *req, int err)
789{
790 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
791 struct stm32_hash_dev *hdev = rctx->hdev;
792
793 if (!err && (HASH_FLAGS_FINAL & hdev->flags)) {
794 stm32_hash_copy_hash(req);
795 err = stm32_hash_finish(req);
796 hdev->flags &= ~(HASH_FLAGS_FINAL | HASH_FLAGS_CPU |
797 HASH_FLAGS_INIT | HASH_FLAGS_DMA_READY |
798 HASH_FLAGS_OUTPUT_READY | HASH_FLAGS_HMAC |
799 HASH_FLAGS_HMAC_INIT | HASH_FLAGS_HMAC_FINAL |
800 HASH_FLAGS_HMAC_KEY);
801 } else {
802 rctx->flags |= HASH_FLAGS_ERRORS;
803 }
804
805 pm_runtime_mark_last_busy(hdev->dev);
806 pm_runtime_put_autosuspend(hdev->dev);
807
808 crypto_finalize_hash_request(hdev->engine, req, err);
809}
810
811static int stm32_hash_hw_init(struct stm32_hash_dev *hdev,
812 struct stm32_hash_request_ctx *rctx)
813{
814 pm_runtime_get_sync(hdev->dev);
815
816 if (!(HASH_FLAGS_INIT & hdev->flags)) {
817 stm32_hash_write(hdev, HASH_CR, HASH_CR_INIT);
818 stm32_hash_write(hdev, HASH_STR, 0);
819 stm32_hash_write(hdev, HASH_DIN, 0);
820 stm32_hash_write(hdev, HASH_IMR, 0);
821 hdev->err = 0;
822 }
823
824 return 0;
825}
826
827static int stm32_hash_one_request(struct crypto_engine *engine, void *areq);
828static int stm32_hash_prepare_req(struct crypto_engine *engine, void *areq);
829
830static int stm32_hash_handle_queue(struct stm32_hash_dev *hdev,
831 struct ahash_request *req)
832{
833 return crypto_transfer_hash_request_to_engine(hdev->engine, req);
834}
835
836static int stm32_hash_prepare_req(struct crypto_engine *engine, void *areq)
837{
838 struct ahash_request *req = container_of(areq, struct ahash_request,
839 base);
840 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
841 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
842 struct stm32_hash_request_ctx *rctx;
843
844 if (!hdev)
845 return -ENODEV;
846
847 hdev->req = req;
848
849 rctx = ahash_request_ctx(req);
850
851 dev_dbg(hdev->dev, "processing new req, op: %lu, nbytes %d\n",
852 rctx->op, req->nbytes);
853
854 return stm32_hash_hw_init(hdev, rctx);
855}
856
857static int stm32_hash_one_request(struct crypto_engine *engine, void *areq)
858{
859 struct ahash_request *req = container_of(areq, struct ahash_request,
860 base);
861 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
862 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
863 struct stm32_hash_request_ctx *rctx;
864 int err = 0;
865
866 if (!hdev)
867 return -ENODEV;
868
869 hdev->req = req;
870
871 rctx = ahash_request_ctx(req);
872
873 if (rctx->op == HASH_OP_UPDATE)
874 err = stm32_hash_update_req(hdev);
875 else if (rctx->op == HASH_OP_FINAL)
876 err = stm32_hash_final_req(hdev);
877
878 if (err != -EINPROGRESS)
879 /* done task will not finish it, so do it here */
880 stm32_hash_finish_req(req, err);
881
882 return 0;
883}
884
885static int stm32_hash_enqueue(struct ahash_request *req, unsigned int op)
886{
887 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
888 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
889 struct stm32_hash_dev *hdev = ctx->hdev;
890
891 rctx->op = op;
892
893 return stm32_hash_handle_queue(hdev, req);
894}
895
896static int stm32_hash_update(struct ahash_request *req)
897{
898 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
899
900 if (!req->nbytes || !(rctx->flags & HASH_FLAGS_CPU))
901 return 0;
902
903 rctx->total = req->nbytes;
904 rctx->sg = req->src;
905 rctx->offset = 0;
906
907 if ((rctx->bufcnt + rctx->total < rctx->buflen)) {
908 stm32_hash_append_sg(rctx);
909 return 0;
910 }
911
912 return stm32_hash_enqueue(req, HASH_OP_UPDATE);
913}
914
915static int stm32_hash_final(struct ahash_request *req)
916{
917 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
918
919 rctx->flags |= HASH_FLAGS_FINUP;
920
921 return stm32_hash_enqueue(req, HASH_OP_FINAL);
922}
923
924static int stm32_hash_finup(struct ahash_request *req)
925{
926 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
927 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
928 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
929 int err1, err2;
930
931 rctx->flags |= HASH_FLAGS_FINUP;
932
933 if (hdev->dma_lch && stm32_hash_dma_aligned_data(req))
934 rctx->flags &= ~HASH_FLAGS_CPU;
935
936 err1 = stm32_hash_update(req);
937
938 if (err1 == -EINPROGRESS || err1 == -EBUSY)
939 return err1;
940
941 /*
942 * final() has to be always called to cleanup resources
943 * even if update() failed, except EINPROGRESS
944 */
945 err2 = stm32_hash_final(req);
946
947 return err1 ?: err2;
948}
949
950static int stm32_hash_digest(struct ahash_request *req)
951{
952 return stm32_hash_init(req) ?: stm32_hash_finup(req);
953}
954
955static int stm32_hash_export(struct ahash_request *req, void *out)
956{
957 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
958 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
959 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
960 u32 *preg;
961 unsigned int i;
962
963 pm_runtime_get_sync(hdev->dev);
964
965 while ((stm32_hash_read(hdev, HASH_SR) & HASH_SR_BUSY))
966 cpu_relax();
967
968 rctx->hw_context = kmalloc_array(3 + HASH_CSR_REGISTER_NUMBER,
969 sizeof(u32),
970 GFP_KERNEL);
971
972 preg = rctx->hw_context;
973
974 *preg++ = stm32_hash_read(hdev, HASH_IMR);
975 *preg++ = stm32_hash_read(hdev, HASH_STR);
976 *preg++ = stm32_hash_read(hdev, HASH_CR);
977 for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
978 *preg++ = stm32_hash_read(hdev, HASH_CSR(i));
979
980 pm_runtime_mark_last_busy(hdev->dev);
981 pm_runtime_put_autosuspend(hdev->dev);
982
983 memcpy(out, rctx, sizeof(*rctx));
984
985 return 0;
986}
987
988static int stm32_hash_import(struct ahash_request *req, const void *in)
989{
990 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
991 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
992 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
993 const u32 *preg = in;
994 u32 reg;
995 unsigned int i;
996
997 memcpy(rctx, in, sizeof(*rctx));
998
999 preg = rctx->hw_context;
1000
1001 pm_runtime_get_sync(hdev->dev);
1002
1003 stm32_hash_write(hdev, HASH_IMR, *preg++);
1004 stm32_hash_write(hdev, HASH_STR, *preg++);
1005 stm32_hash_write(hdev, HASH_CR, *preg);
1006 reg = *preg++ | HASH_CR_INIT;
1007 stm32_hash_write(hdev, HASH_CR, reg);
1008
1009 for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
1010 stm32_hash_write(hdev, HASH_CSR(i), *preg++);
1011
1012 pm_runtime_mark_last_busy(hdev->dev);
1013 pm_runtime_put_autosuspend(hdev->dev);
1014
1015 kfree(rctx->hw_context);
1016
1017 return 0;
1018}
1019
1020static int stm32_hash_setkey(struct crypto_ahash *tfm,
1021 const u8 *key, unsigned int keylen)
1022{
1023 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
1024
1025 if (keylen <= HASH_MAX_KEY_SIZE) {
1026 memcpy(ctx->key, key, keylen);
1027 ctx->keylen = keylen;
1028 } else {
1029 return -ENOMEM;
1030 }
1031
1032 return 0;
1033}
1034
1035static int stm32_hash_cra_init_algs(struct crypto_tfm *tfm,
1036 const char *algs_hmac_name)
1037{
1038 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
1039
1040 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1041 sizeof(struct stm32_hash_request_ctx));
1042
1043 ctx->keylen = 0;
1044
1045 if (algs_hmac_name)
1046 ctx->flags |= HASH_FLAGS_HMAC;
1047
1048 ctx->enginectx.op.do_one_request = stm32_hash_one_request;
1049 ctx->enginectx.op.prepare_request = stm32_hash_prepare_req;
1050 ctx->enginectx.op.unprepare_request = NULL;
1051 return 0;
1052}
1053
1054static int stm32_hash_cra_init(struct crypto_tfm *tfm)
1055{
1056 return stm32_hash_cra_init_algs(tfm, NULL);
1057}
1058
1059static int stm32_hash_cra_md5_init(struct crypto_tfm *tfm)
1060{
1061 return stm32_hash_cra_init_algs(tfm, "md5");
1062}
1063
1064static int stm32_hash_cra_sha1_init(struct crypto_tfm *tfm)
1065{
1066 return stm32_hash_cra_init_algs(tfm, "sha1");
1067}
1068
1069static int stm32_hash_cra_sha224_init(struct crypto_tfm *tfm)
1070{
1071 return stm32_hash_cra_init_algs(tfm, "sha224");
1072}
1073
1074static int stm32_hash_cra_sha256_init(struct crypto_tfm *tfm)
1075{
1076 return stm32_hash_cra_init_algs(tfm, "sha256");
1077}
1078
1079static irqreturn_t stm32_hash_irq_thread(int irq, void *dev_id)
1080{
1081 struct stm32_hash_dev *hdev = dev_id;
1082
1083 if (HASH_FLAGS_CPU & hdev->flags) {
1084 if (HASH_FLAGS_OUTPUT_READY & hdev->flags) {
1085 hdev->flags &= ~HASH_FLAGS_OUTPUT_READY;
1086 goto finish;
1087 }
1088 } else if (HASH_FLAGS_DMA_READY & hdev->flags) {
1089 if (HASH_FLAGS_DMA_ACTIVE & hdev->flags) {
1090 hdev->flags &= ~HASH_FLAGS_DMA_ACTIVE;
1091 goto finish;
1092 }
1093 }
1094
1095 return IRQ_HANDLED;
1096
1097finish:
1098 /* Finish current request */
1099 stm32_hash_finish_req(hdev->req, 0);
1100
1101 return IRQ_HANDLED;
1102}
1103
1104static irqreturn_t stm32_hash_irq_handler(int irq, void *dev_id)
1105{
1106 struct stm32_hash_dev *hdev = dev_id;
1107 u32 reg;
1108
1109 reg = stm32_hash_read(hdev, HASH_SR);
1110 if (reg & HASH_SR_OUTPUT_READY) {
1111 reg &= ~HASH_SR_OUTPUT_READY;
1112 stm32_hash_write(hdev, HASH_SR, reg);
1113 hdev->flags |= HASH_FLAGS_OUTPUT_READY;
1114 /* Disable IT*/
1115 stm32_hash_write(hdev, HASH_IMR, 0);
1116 return IRQ_WAKE_THREAD;
1117 }
1118
1119 return IRQ_NONE;
1120}
1121
1122static struct ahash_alg algs_md5_sha1[] = {
1123 {
1124 .init = stm32_hash_init,
1125 .update = stm32_hash_update,
1126 .final = stm32_hash_final,
1127 .finup = stm32_hash_finup,
1128 .digest = stm32_hash_digest,
1129 .export = stm32_hash_export,
1130 .import = stm32_hash_import,
1131 .halg = {
1132 .digestsize = MD5_DIGEST_SIZE,
1133 .statesize = sizeof(struct stm32_hash_request_ctx),
1134 .base = {
1135 .cra_name = "md5",
1136 .cra_driver_name = "stm32-md5",
1137 .cra_priority = 200,
1138 .cra_flags = CRYPTO_ALG_ASYNC |
1139 CRYPTO_ALG_KERN_DRIVER_ONLY,
1140 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1141 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1142 .cra_alignmask = 3,
1143 .cra_init = stm32_hash_cra_init,
1144 .cra_module = THIS_MODULE,
1145 }
1146 }
1147 },
1148 {
1149 .init = stm32_hash_init,
1150 .update = stm32_hash_update,
1151 .final = stm32_hash_final,
1152 .finup = stm32_hash_finup,
1153 .digest = stm32_hash_digest,
1154 .export = stm32_hash_export,
1155 .import = stm32_hash_import,
1156 .setkey = stm32_hash_setkey,
1157 .halg = {
1158 .digestsize = MD5_DIGEST_SIZE,
1159 .statesize = sizeof(struct stm32_hash_request_ctx),
1160 .base = {
1161 .cra_name = "hmac(md5)",
1162 .cra_driver_name = "stm32-hmac-md5",
1163 .cra_priority = 200,
1164 .cra_flags = CRYPTO_ALG_ASYNC |
1165 CRYPTO_ALG_KERN_DRIVER_ONLY,
1166 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1167 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1168 .cra_alignmask = 3,
1169 .cra_init = stm32_hash_cra_md5_init,
1170 .cra_module = THIS_MODULE,
1171 }
1172 }
1173 },
1174 {
1175 .init = stm32_hash_init,
1176 .update = stm32_hash_update,
1177 .final = stm32_hash_final,
1178 .finup = stm32_hash_finup,
1179 .digest = stm32_hash_digest,
1180 .export = stm32_hash_export,
1181 .import = stm32_hash_import,
1182 .halg = {
1183 .digestsize = SHA1_DIGEST_SIZE,
1184 .statesize = sizeof(struct stm32_hash_request_ctx),
1185 .base = {
1186 .cra_name = "sha1",
1187 .cra_driver_name = "stm32-sha1",
1188 .cra_priority = 200,
1189 .cra_flags = CRYPTO_ALG_ASYNC |
1190 CRYPTO_ALG_KERN_DRIVER_ONLY,
1191 .cra_blocksize = SHA1_BLOCK_SIZE,
1192 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1193 .cra_alignmask = 3,
1194 .cra_init = stm32_hash_cra_init,
1195 .cra_module = THIS_MODULE,
1196 }
1197 }
1198 },
1199 {
1200 .init = stm32_hash_init,
1201 .update = stm32_hash_update,
1202 .final = stm32_hash_final,
1203 .finup = stm32_hash_finup,
1204 .digest = stm32_hash_digest,
1205 .export = stm32_hash_export,
1206 .import = stm32_hash_import,
1207 .setkey = stm32_hash_setkey,
1208 .halg = {
1209 .digestsize = SHA1_DIGEST_SIZE,
1210 .statesize = sizeof(struct stm32_hash_request_ctx),
1211 .base = {
1212 .cra_name = "hmac(sha1)",
1213 .cra_driver_name = "stm32-hmac-sha1",
1214 .cra_priority = 200,
1215 .cra_flags = CRYPTO_ALG_ASYNC |
1216 CRYPTO_ALG_KERN_DRIVER_ONLY,
1217 .cra_blocksize = SHA1_BLOCK_SIZE,
1218 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1219 .cra_alignmask = 3,
1220 .cra_init = stm32_hash_cra_sha1_init,
1221 .cra_module = THIS_MODULE,
1222 }
1223 }
1224 },
1225};
1226
1227static struct ahash_alg algs_sha224_sha256[] = {
1228 {
1229 .init = stm32_hash_init,
1230 .update = stm32_hash_update,
1231 .final = stm32_hash_final,
1232 .finup = stm32_hash_finup,
1233 .digest = stm32_hash_digest,
1234 .export = stm32_hash_export,
1235 .import = stm32_hash_import,
1236 .halg = {
1237 .digestsize = SHA224_DIGEST_SIZE,
1238 .statesize = sizeof(struct stm32_hash_request_ctx),
1239 .base = {
1240 .cra_name = "sha224",
1241 .cra_driver_name = "stm32-sha224",
1242 .cra_priority = 200,
1243 .cra_flags = CRYPTO_ALG_ASYNC |
1244 CRYPTO_ALG_KERN_DRIVER_ONLY,
1245 .cra_blocksize = SHA224_BLOCK_SIZE,
1246 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1247 .cra_alignmask = 3,
1248 .cra_init = stm32_hash_cra_init,
1249 .cra_module = THIS_MODULE,
1250 }
1251 }
1252 },
1253 {
1254 .init = stm32_hash_init,
1255 .update = stm32_hash_update,
1256 .final = stm32_hash_final,
1257 .finup = stm32_hash_finup,
1258 .digest = stm32_hash_digest,
1259 .setkey = stm32_hash_setkey,
1260 .export = stm32_hash_export,
1261 .import = stm32_hash_import,
1262 .halg = {
1263 .digestsize = SHA224_DIGEST_SIZE,
1264 .statesize = sizeof(struct stm32_hash_request_ctx),
1265 .base = {
1266 .cra_name = "hmac(sha224)",
1267 .cra_driver_name = "stm32-hmac-sha224",
1268 .cra_priority = 200,
1269 .cra_flags = CRYPTO_ALG_ASYNC |
1270 CRYPTO_ALG_KERN_DRIVER_ONLY,
1271 .cra_blocksize = SHA224_BLOCK_SIZE,
1272 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1273 .cra_alignmask = 3,
1274 .cra_init = stm32_hash_cra_sha224_init,
1275 .cra_module = THIS_MODULE,
1276 }
1277 }
1278 },
1279 {
1280 .init = stm32_hash_init,
1281 .update = stm32_hash_update,
1282 .final = stm32_hash_final,
1283 .finup = stm32_hash_finup,
1284 .digest = stm32_hash_digest,
1285 .export = stm32_hash_export,
1286 .import = stm32_hash_import,
1287 .halg = {
1288 .digestsize = SHA256_DIGEST_SIZE,
1289 .statesize = sizeof(struct stm32_hash_request_ctx),
1290 .base = {
1291 .cra_name = "sha256",
1292 .cra_driver_name = "stm32-sha256",
1293 .cra_priority = 200,
1294 .cra_flags = CRYPTO_ALG_ASYNC |
1295 CRYPTO_ALG_KERN_DRIVER_ONLY,
1296 .cra_blocksize = SHA256_BLOCK_SIZE,
1297 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1298 .cra_alignmask = 3,
1299 .cra_init = stm32_hash_cra_init,
1300 .cra_module = THIS_MODULE,
1301 }
1302 }
1303 },
1304 {
1305 .init = stm32_hash_init,
1306 .update = stm32_hash_update,
1307 .final = stm32_hash_final,
1308 .finup = stm32_hash_finup,
1309 .digest = stm32_hash_digest,
1310 .export = stm32_hash_export,
1311 .import = stm32_hash_import,
1312 .setkey = stm32_hash_setkey,
1313 .halg = {
1314 .digestsize = SHA256_DIGEST_SIZE,
1315 .statesize = sizeof(struct stm32_hash_request_ctx),
1316 .base = {
1317 .cra_name = "hmac(sha256)",
1318 .cra_driver_name = "stm32-hmac-sha256",
1319 .cra_priority = 200,
1320 .cra_flags = CRYPTO_ALG_ASYNC |
1321 CRYPTO_ALG_KERN_DRIVER_ONLY,
1322 .cra_blocksize = SHA256_BLOCK_SIZE,
1323 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1324 .cra_alignmask = 3,
1325 .cra_init = stm32_hash_cra_sha256_init,
1326 .cra_module = THIS_MODULE,
1327 }
1328 }
1329 },
1330};
1331
1332static int stm32_hash_register_algs(struct stm32_hash_dev *hdev)
1333{
1334 unsigned int i, j;
1335 int err;
1336
1337 for (i = 0; i < hdev->pdata->algs_info_size; i++) {
1338 for (j = 0; j < hdev->pdata->algs_info[i].size; j++) {
1339 err = crypto_register_ahash(
1340 &hdev->pdata->algs_info[i].algs_list[j]);
1341 if (err)
1342 goto err_algs;
1343 }
1344 }
1345
1346 return 0;
1347err_algs:
1348 dev_err(hdev->dev, "Algo %d : %d failed\n", i, j);
1349 for (; i--; ) {
1350 for (; j--;)
1351 crypto_unregister_ahash(
1352 &hdev->pdata->algs_info[i].algs_list[j]);
1353 }
1354
1355 return err;
1356}
1357
1358static int stm32_hash_unregister_algs(struct stm32_hash_dev *hdev)
1359{
1360 unsigned int i, j;
1361
1362 for (i = 0; i < hdev->pdata->algs_info_size; i++) {
1363 for (j = 0; j < hdev->pdata->algs_info[i].size; j++)
1364 crypto_unregister_ahash(
1365 &hdev->pdata->algs_info[i].algs_list[j]);
1366 }
1367
1368 return 0;
1369}
1370
1371static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f4[] = {
1372 {
1373 .algs_list = algs_md5_sha1,
1374 .size = ARRAY_SIZE(algs_md5_sha1),
1375 },
1376};
1377
1378static const struct stm32_hash_pdata stm32_hash_pdata_stm32f4 = {
1379 .algs_info = stm32_hash_algs_info_stm32f4,
1380 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f4),
1381};
1382
1383static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f7[] = {
1384 {
1385 .algs_list = algs_md5_sha1,
1386 .size = ARRAY_SIZE(algs_md5_sha1),
1387 },
1388 {
1389 .algs_list = algs_sha224_sha256,
1390 .size = ARRAY_SIZE(algs_sha224_sha256),
1391 },
1392};
1393
1394static const struct stm32_hash_pdata stm32_hash_pdata_stm32f7 = {
1395 .algs_info = stm32_hash_algs_info_stm32f7,
1396 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f7),
1397};
1398
1399static const struct of_device_id stm32_hash_of_match[] = {
1400 {
1401 .compatible = "st,stm32f456-hash",
1402 .data = &stm32_hash_pdata_stm32f4,
1403 },
1404 {
1405 .compatible = "st,stm32f756-hash",
1406 .data = &stm32_hash_pdata_stm32f7,
1407 },
1408 {},
1409};
1410
1411MODULE_DEVICE_TABLE(of, stm32_hash_of_match);
1412
1413static int stm32_hash_get_of_match(struct stm32_hash_dev *hdev,
1414 struct device *dev)
1415{
1416 hdev->pdata = of_device_get_match_data(dev);
1417 if (!hdev->pdata) {
1418 dev_err(dev, "no compatible OF match\n");
1419 return -EINVAL;
1420 }
1421
1422 if (of_property_read_u32(dev->of_node, "dma-maxburst",
1423 &hdev->dma_maxburst)) {
1424 dev_info(dev, "dma-maxburst not specified, using 0\n");
1425 hdev->dma_maxburst = 0;
1426 }
1427
1428 return 0;
1429}
1430
1431static int stm32_hash_probe(struct platform_device *pdev)
1432{
1433 struct stm32_hash_dev *hdev;
1434 struct device *dev = &pdev->dev;
1435 struct resource *res;
1436 int ret, irq;
1437
1438 hdev = devm_kzalloc(dev, sizeof(*hdev), GFP_KERNEL);
1439 if (!hdev)
1440 return -ENOMEM;
1441
1442 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1443 hdev->io_base = devm_ioremap_resource(dev, res);
1444 if (IS_ERR(hdev->io_base))
1445 return PTR_ERR(hdev->io_base);
1446
1447 hdev->phys_base = res->start;
1448
1449 ret = stm32_hash_get_of_match(hdev, dev);
1450 if (ret)
1451 return ret;
1452
1453 irq = platform_get_irq(pdev, 0);
1454 if (irq < 0)
1455 return irq;
1456
1457 ret = devm_request_threaded_irq(dev, irq, stm32_hash_irq_handler,
1458 stm32_hash_irq_thread, IRQF_ONESHOT,
1459 dev_name(dev), hdev);
1460 if (ret) {
1461 dev_err(dev, "Cannot grab IRQ\n");
1462 return ret;
1463 }
1464
1465 hdev->clk = devm_clk_get(&pdev->dev, NULL);
1466 if (IS_ERR(hdev->clk)) {
1467 if (PTR_ERR(hdev->clk) != -EPROBE_DEFER) {
1468 dev_err(dev, "failed to get clock for hash (%lu)\n",
1469 PTR_ERR(hdev->clk));
1470 }
1471
1472 return PTR_ERR(hdev->clk);
1473 }
1474
1475 ret = clk_prepare_enable(hdev->clk);
1476 if (ret) {
1477 dev_err(dev, "failed to enable hash clock (%d)\n", ret);
1478 return ret;
1479 }
1480
1481 pm_runtime_set_autosuspend_delay(dev, HASH_AUTOSUSPEND_DELAY);
1482 pm_runtime_use_autosuspend(dev);
1483
1484 pm_runtime_get_noresume(dev);
1485 pm_runtime_set_active(dev);
1486 pm_runtime_enable(dev);
1487
1488 hdev->rst = devm_reset_control_get(&pdev->dev, NULL);
1489 if (IS_ERR(hdev->rst)) {
1490 if (PTR_ERR(hdev->rst) == -EPROBE_DEFER) {
1491 ret = -EPROBE_DEFER;
1492 goto err_reset;
1493 }
1494 } else {
1495 reset_control_assert(hdev->rst);
1496 udelay(2);
1497 reset_control_deassert(hdev->rst);
1498 }
1499
1500 hdev->dev = dev;
1501
1502 platform_set_drvdata(pdev, hdev);
1503
1504 ret = stm32_hash_dma_init(hdev);
1505 switch (ret) {
1506 case 0:
1507 break;
1508 case -ENOENT:
1509 dev_dbg(dev, "DMA mode not available\n");
1510 break;
1511 default:
1512 goto err_dma;
1513 }
1514
1515 spin_lock(&stm32_hash.lock);
1516 list_add_tail(&hdev->list, &stm32_hash.dev_list);
1517 spin_unlock(&stm32_hash.lock);
1518
1519 /* Initialize crypto engine */
1520 hdev->engine = crypto_engine_alloc_init(dev, 1);
1521 if (!hdev->engine) {
1522 ret = -ENOMEM;
1523 goto err_engine;
1524 }
1525
1526 ret = crypto_engine_start(hdev->engine);
1527 if (ret)
1528 goto err_engine_start;
1529
1530 hdev->dma_mode = stm32_hash_read(hdev, HASH_HWCFGR);
1531
1532 /* Register algos */
1533 ret = stm32_hash_register_algs(hdev);
1534 if (ret)
1535 goto err_algs;
1536
1537 dev_info(dev, "Init HASH done HW ver %x DMA mode %u\n",
1538 stm32_hash_read(hdev, HASH_VER), hdev->dma_mode);
1539
1540 pm_runtime_put_sync(dev);
1541
1542 return 0;
1543
1544err_algs:
1545err_engine_start:
1546 crypto_engine_exit(hdev->engine);
1547err_engine:
1548 spin_lock(&stm32_hash.lock);
1549 list_del(&hdev->list);
1550 spin_unlock(&stm32_hash.lock);
1551err_dma:
1552 if (hdev->dma_lch)
1553 dma_release_channel(hdev->dma_lch);
1554err_reset:
1555 pm_runtime_disable(dev);
1556 pm_runtime_put_noidle(dev);
1557
1558 clk_disable_unprepare(hdev->clk);
1559
1560 return ret;
1561}
1562
1563static int stm32_hash_remove(struct platform_device *pdev)
1564{
1565 struct stm32_hash_dev *hdev;
1566 int ret;
1567
1568 hdev = platform_get_drvdata(pdev);
1569 if (!hdev)
1570 return -ENODEV;
1571
1572 ret = pm_runtime_get_sync(hdev->dev);
1573 if (ret < 0)
1574 return ret;
1575
1576 stm32_hash_unregister_algs(hdev);
1577
1578 crypto_engine_exit(hdev->engine);
1579
1580 spin_lock(&stm32_hash.lock);
1581 list_del(&hdev->list);
1582 spin_unlock(&stm32_hash.lock);
1583
1584 if (hdev->dma_lch)
1585 dma_release_channel(hdev->dma_lch);
1586
1587 pm_runtime_disable(hdev->dev);
1588 pm_runtime_put_noidle(hdev->dev);
1589
1590 clk_disable_unprepare(hdev->clk);
1591
1592 return 0;
1593}
1594
1595#ifdef CONFIG_PM
1596static int stm32_hash_runtime_suspend(struct device *dev)
1597{
1598 struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
1599
1600 clk_disable_unprepare(hdev->clk);
1601
1602 return 0;
1603}
1604
1605static int stm32_hash_runtime_resume(struct device *dev)
1606{
1607 struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
1608 int ret;
1609
1610 ret = clk_prepare_enable(hdev->clk);
1611 if (ret) {
1612 dev_err(hdev->dev, "Failed to prepare_enable clock\n");
1613 return ret;
1614 }
1615
1616 return 0;
1617}
1618#endif
1619
1620static const struct dev_pm_ops stm32_hash_pm_ops = {
1621 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1622 pm_runtime_force_resume)
1623 SET_RUNTIME_PM_OPS(stm32_hash_runtime_suspend,
1624 stm32_hash_runtime_resume, NULL)
1625};
1626
1627static struct platform_driver stm32_hash_driver = {
1628 .probe = stm32_hash_probe,
1629 .remove = stm32_hash_remove,
1630 .driver = {
1631 .name = "stm32-hash",
1632 .pm = &stm32_hash_pm_ops,
1633 .of_match_table = stm32_hash_of_match,
1634 }
1635};
1636
1637module_platform_driver(stm32_hash_driver);
1638
1639MODULE_DESCRIPTION("STM32 SHA1/224/256 & MD5 (HMAC) hw accelerator driver");
1640MODULE_AUTHOR("Lionel Debieve <lionel.debieve@st.com>");
1641MODULE_LICENSE("GPL v2");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of STM32 Crypto driver for Linux.
4 *
5 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 * Author(s): Lionel DEBIEVE <lionel.debieve@st.com> for STMicroelectronics.
7 */
8
9#include <linux/clk.h>
10#include <linux/crypto.h>
11#include <linux/delay.h>
12#include <linux/dma-mapping.h>
13#include <linux/dmaengine.h>
14#include <linux/interrupt.h>
15#include <linux/io.h>
16#include <linux/iopoll.h>
17#include <linux/kernel.h>
18#include <linux/module.h>
19#include <linux/of_device.h>
20#include <linux/platform_device.h>
21#include <linux/pm_runtime.h>
22#include <linux/reset.h>
23
24#include <crypto/engine.h>
25#include <crypto/hash.h>
26#include <crypto/md5.h>
27#include <crypto/scatterwalk.h>
28#include <crypto/sha1.h>
29#include <crypto/sha2.h>
30#include <crypto/internal/hash.h>
31
32#define HASH_CR 0x00
33#define HASH_DIN 0x04
34#define HASH_STR 0x08
35#define HASH_IMR 0x20
36#define HASH_SR 0x24
37#define HASH_CSR(x) (0x0F8 + ((x) * 0x04))
38#define HASH_HREG(x) (0x310 + ((x) * 0x04))
39#define HASH_HWCFGR 0x3F0
40#define HASH_VER 0x3F4
41#define HASH_ID 0x3F8
42
43/* Control Register */
44#define HASH_CR_INIT BIT(2)
45#define HASH_CR_DMAE BIT(3)
46#define HASH_CR_DATATYPE_POS 4
47#define HASH_CR_MODE BIT(6)
48#define HASH_CR_MDMAT BIT(13)
49#define HASH_CR_DMAA BIT(14)
50#define HASH_CR_LKEY BIT(16)
51
52#define HASH_CR_ALGO_SHA1 0x0
53#define HASH_CR_ALGO_MD5 0x80
54#define HASH_CR_ALGO_SHA224 0x40000
55#define HASH_CR_ALGO_SHA256 0x40080
56
57/* Interrupt */
58#define HASH_DINIE BIT(0)
59#define HASH_DCIE BIT(1)
60
61/* Interrupt Mask */
62#define HASH_MASK_CALC_COMPLETION BIT(0)
63#define HASH_MASK_DATA_INPUT BIT(1)
64
65/* Context swap register */
66#define HASH_CSR_REGISTER_NUMBER 53
67
68/* Status Flags */
69#define HASH_SR_DATA_INPUT_READY BIT(0)
70#define HASH_SR_OUTPUT_READY BIT(1)
71#define HASH_SR_DMA_ACTIVE BIT(2)
72#define HASH_SR_BUSY BIT(3)
73
74/* STR Register */
75#define HASH_STR_NBLW_MASK GENMASK(4, 0)
76#define HASH_STR_DCAL BIT(8)
77
78#define HASH_FLAGS_INIT BIT(0)
79#define HASH_FLAGS_OUTPUT_READY BIT(1)
80#define HASH_FLAGS_CPU BIT(2)
81#define HASH_FLAGS_DMA_READY BIT(3)
82#define HASH_FLAGS_DMA_ACTIVE BIT(4)
83#define HASH_FLAGS_HMAC_INIT BIT(5)
84#define HASH_FLAGS_HMAC_FINAL BIT(6)
85#define HASH_FLAGS_HMAC_KEY BIT(7)
86
87#define HASH_FLAGS_FINAL BIT(15)
88#define HASH_FLAGS_FINUP BIT(16)
89#define HASH_FLAGS_ALGO_MASK GENMASK(21, 18)
90#define HASH_FLAGS_MD5 BIT(18)
91#define HASH_FLAGS_SHA1 BIT(19)
92#define HASH_FLAGS_SHA224 BIT(20)
93#define HASH_FLAGS_SHA256 BIT(21)
94#define HASH_FLAGS_ERRORS BIT(22)
95#define HASH_FLAGS_HMAC BIT(23)
96
97#define HASH_OP_UPDATE 1
98#define HASH_OP_FINAL 2
99
100enum stm32_hash_data_format {
101 HASH_DATA_32_BITS = 0x0,
102 HASH_DATA_16_BITS = 0x1,
103 HASH_DATA_8_BITS = 0x2,
104 HASH_DATA_1_BIT = 0x3
105};
106
107#define HASH_BUFLEN 256
108#define HASH_LONG_KEY 64
109#define HASH_MAX_KEY_SIZE (SHA256_BLOCK_SIZE * 8)
110#define HASH_QUEUE_LENGTH 16
111#define HASH_DMA_THRESHOLD 50
112
113#define HASH_AUTOSUSPEND_DELAY 50
114
115struct stm32_hash_ctx {
116 struct crypto_engine_ctx enginectx;
117 struct stm32_hash_dev *hdev;
118 unsigned long flags;
119
120 u8 key[HASH_MAX_KEY_SIZE];
121 int keylen;
122};
123
124struct stm32_hash_request_ctx {
125 struct stm32_hash_dev *hdev;
126 unsigned long flags;
127 unsigned long op;
128
129 u8 digest[SHA256_DIGEST_SIZE] __aligned(sizeof(u32));
130 size_t digcnt;
131 size_t bufcnt;
132 size_t buflen;
133
134 /* DMA */
135 struct scatterlist *sg;
136 unsigned int offset;
137 unsigned int total;
138 struct scatterlist sg_key;
139
140 dma_addr_t dma_addr;
141 size_t dma_ct;
142 int nents;
143
144 u8 data_type;
145
146 u8 buffer[HASH_BUFLEN] __aligned(sizeof(u32));
147
148 /* Export Context */
149 u32 *hw_context;
150};
151
152struct stm32_hash_algs_info {
153 struct ahash_alg *algs_list;
154 size_t size;
155};
156
157struct stm32_hash_pdata {
158 struct stm32_hash_algs_info *algs_info;
159 size_t algs_info_size;
160};
161
162struct stm32_hash_dev {
163 struct list_head list;
164 struct device *dev;
165 struct clk *clk;
166 struct reset_control *rst;
167 void __iomem *io_base;
168 phys_addr_t phys_base;
169 u32 dma_mode;
170 u32 dma_maxburst;
171
172 struct ahash_request *req;
173 struct crypto_engine *engine;
174
175 int err;
176 unsigned long flags;
177
178 struct dma_chan *dma_lch;
179 struct completion dma_completion;
180
181 const struct stm32_hash_pdata *pdata;
182};
183
184struct stm32_hash_drv {
185 struct list_head dev_list;
186 spinlock_t lock; /* List protection access */
187};
188
189static struct stm32_hash_drv stm32_hash = {
190 .dev_list = LIST_HEAD_INIT(stm32_hash.dev_list),
191 .lock = __SPIN_LOCK_UNLOCKED(stm32_hash.lock),
192};
193
194static void stm32_hash_dma_callback(void *param);
195
196static inline u32 stm32_hash_read(struct stm32_hash_dev *hdev, u32 offset)
197{
198 return readl_relaxed(hdev->io_base + offset);
199}
200
201static inline void stm32_hash_write(struct stm32_hash_dev *hdev,
202 u32 offset, u32 value)
203{
204 writel_relaxed(value, hdev->io_base + offset);
205}
206
207static inline int stm32_hash_wait_busy(struct stm32_hash_dev *hdev)
208{
209 u32 status;
210
211 return readl_relaxed_poll_timeout(hdev->io_base + HASH_SR, status,
212 !(status & HASH_SR_BUSY), 10, 10000);
213}
214
215static void stm32_hash_set_nblw(struct stm32_hash_dev *hdev, int length)
216{
217 u32 reg;
218
219 reg = stm32_hash_read(hdev, HASH_STR);
220 reg &= ~(HASH_STR_NBLW_MASK);
221 reg |= (8U * ((length) % 4U));
222 stm32_hash_write(hdev, HASH_STR, reg);
223}
224
225static int stm32_hash_write_key(struct stm32_hash_dev *hdev)
226{
227 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
228 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
229 u32 reg;
230 int keylen = ctx->keylen;
231 void *key = ctx->key;
232
233 if (keylen) {
234 stm32_hash_set_nblw(hdev, keylen);
235
236 while (keylen > 0) {
237 stm32_hash_write(hdev, HASH_DIN, *(u32 *)key);
238 keylen -= 4;
239 key += 4;
240 }
241
242 reg = stm32_hash_read(hdev, HASH_STR);
243 reg |= HASH_STR_DCAL;
244 stm32_hash_write(hdev, HASH_STR, reg);
245
246 return -EINPROGRESS;
247 }
248
249 return 0;
250}
251
252static void stm32_hash_write_ctrl(struct stm32_hash_dev *hdev)
253{
254 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
255 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
256 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
257
258 u32 reg = HASH_CR_INIT;
259
260 if (!(hdev->flags & HASH_FLAGS_INIT)) {
261 switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
262 case HASH_FLAGS_MD5:
263 reg |= HASH_CR_ALGO_MD5;
264 break;
265 case HASH_FLAGS_SHA1:
266 reg |= HASH_CR_ALGO_SHA1;
267 break;
268 case HASH_FLAGS_SHA224:
269 reg |= HASH_CR_ALGO_SHA224;
270 break;
271 case HASH_FLAGS_SHA256:
272 reg |= HASH_CR_ALGO_SHA256;
273 break;
274 default:
275 reg |= HASH_CR_ALGO_MD5;
276 }
277
278 reg |= (rctx->data_type << HASH_CR_DATATYPE_POS);
279
280 if (rctx->flags & HASH_FLAGS_HMAC) {
281 hdev->flags |= HASH_FLAGS_HMAC;
282 reg |= HASH_CR_MODE;
283 if (ctx->keylen > HASH_LONG_KEY)
284 reg |= HASH_CR_LKEY;
285 }
286
287 stm32_hash_write(hdev, HASH_IMR, HASH_DCIE);
288
289 stm32_hash_write(hdev, HASH_CR, reg);
290
291 hdev->flags |= HASH_FLAGS_INIT;
292
293 dev_dbg(hdev->dev, "Write Control %x\n", reg);
294 }
295}
296
297static void stm32_hash_append_sg(struct stm32_hash_request_ctx *rctx)
298{
299 size_t count;
300
301 while ((rctx->bufcnt < rctx->buflen) && rctx->total) {
302 count = min(rctx->sg->length - rctx->offset, rctx->total);
303 count = min(count, rctx->buflen - rctx->bufcnt);
304
305 if (count <= 0) {
306 if ((rctx->sg->length == 0) && !sg_is_last(rctx->sg)) {
307 rctx->sg = sg_next(rctx->sg);
308 continue;
309 } else {
310 break;
311 }
312 }
313
314 scatterwalk_map_and_copy(rctx->buffer + rctx->bufcnt, rctx->sg,
315 rctx->offset, count, 0);
316
317 rctx->bufcnt += count;
318 rctx->offset += count;
319 rctx->total -= count;
320
321 if (rctx->offset == rctx->sg->length) {
322 rctx->sg = sg_next(rctx->sg);
323 if (rctx->sg)
324 rctx->offset = 0;
325 else
326 rctx->total = 0;
327 }
328 }
329}
330
331static int stm32_hash_xmit_cpu(struct stm32_hash_dev *hdev,
332 const u8 *buf, size_t length, int final)
333{
334 unsigned int count, len32;
335 const u32 *buffer = (const u32 *)buf;
336 u32 reg;
337
338 if (final)
339 hdev->flags |= HASH_FLAGS_FINAL;
340
341 len32 = DIV_ROUND_UP(length, sizeof(u32));
342
343 dev_dbg(hdev->dev, "%s: length: %zd, final: %x len32 %i\n",
344 __func__, length, final, len32);
345
346 hdev->flags |= HASH_FLAGS_CPU;
347
348 stm32_hash_write_ctrl(hdev);
349
350 if (stm32_hash_wait_busy(hdev))
351 return -ETIMEDOUT;
352
353 if ((hdev->flags & HASH_FLAGS_HMAC) &&
354 (!(hdev->flags & HASH_FLAGS_HMAC_KEY))) {
355 hdev->flags |= HASH_FLAGS_HMAC_KEY;
356 stm32_hash_write_key(hdev);
357 if (stm32_hash_wait_busy(hdev))
358 return -ETIMEDOUT;
359 }
360
361 for (count = 0; count < len32; count++)
362 stm32_hash_write(hdev, HASH_DIN, buffer[count]);
363
364 if (final) {
365 stm32_hash_set_nblw(hdev, length);
366 reg = stm32_hash_read(hdev, HASH_STR);
367 reg |= HASH_STR_DCAL;
368 stm32_hash_write(hdev, HASH_STR, reg);
369 if (hdev->flags & HASH_FLAGS_HMAC) {
370 if (stm32_hash_wait_busy(hdev))
371 return -ETIMEDOUT;
372 stm32_hash_write_key(hdev);
373 }
374 return -EINPROGRESS;
375 }
376
377 return 0;
378}
379
380static int stm32_hash_update_cpu(struct stm32_hash_dev *hdev)
381{
382 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
383 int bufcnt, err = 0, final;
384
385 dev_dbg(hdev->dev, "%s flags %lx\n", __func__, rctx->flags);
386
387 final = (rctx->flags & HASH_FLAGS_FINUP);
388
389 while ((rctx->total >= rctx->buflen) ||
390 (rctx->bufcnt + rctx->total >= rctx->buflen)) {
391 stm32_hash_append_sg(rctx);
392 bufcnt = rctx->bufcnt;
393 rctx->bufcnt = 0;
394 err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt, 0);
395 }
396
397 stm32_hash_append_sg(rctx);
398
399 if (final) {
400 bufcnt = rctx->bufcnt;
401 rctx->bufcnt = 0;
402 err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt,
403 (rctx->flags & HASH_FLAGS_FINUP));
404 }
405
406 return err;
407}
408
409static int stm32_hash_xmit_dma(struct stm32_hash_dev *hdev,
410 struct scatterlist *sg, int length, int mdma)
411{
412 struct dma_async_tx_descriptor *in_desc;
413 dma_cookie_t cookie;
414 u32 reg;
415 int err;
416
417 in_desc = dmaengine_prep_slave_sg(hdev->dma_lch, sg, 1,
418 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT |
419 DMA_CTRL_ACK);
420 if (!in_desc) {
421 dev_err(hdev->dev, "dmaengine_prep_slave error\n");
422 return -ENOMEM;
423 }
424
425 reinit_completion(&hdev->dma_completion);
426 in_desc->callback = stm32_hash_dma_callback;
427 in_desc->callback_param = hdev;
428
429 hdev->flags |= HASH_FLAGS_FINAL;
430 hdev->flags |= HASH_FLAGS_DMA_ACTIVE;
431
432 reg = stm32_hash_read(hdev, HASH_CR);
433
434 if (mdma)
435 reg |= HASH_CR_MDMAT;
436 else
437 reg &= ~HASH_CR_MDMAT;
438
439 reg |= HASH_CR_DMAE;
440
441 stm32_hash_write(hdev, HASH_CR, reg);
442
443 stm32_hash_set_nblw(hdev, length);
444
445 cookie = dmaengine_submit(in_desc);
446 err = dma_submit_error(cookie);
447 if (err)
448 return -ENOMEM;
449
450 dma_async_issue_pending(hdev->dma_lch);
451
452 if (!wait_for_completion_timeout(&hdev->dma_completion,
453 msecs_to_jiffies(100)))
454 err = -ETIMEDOUT;
455
456 if (dma_async_is_tx_complete(hdev->dma_lch, cookie,
457 NULL, NULL) != DMA_COMPLETE)
458 err = -ETIMEDOUT;
459
460 if (err) {
461 dev_err(hdev->dev, "DMA Error %i\n", err);
462 dmaengine_terminate_all(hdev->dma_lch);
463 return err;
464 }
465
466 return -EINPROGRESS;
467}
468
469static void stm32_hash_dma_callback(void *param)
470{
471 struct stm32_hash_dev *hdev = param;
472
473 complete(&hdev->dma_completion);
474
475 hdev->flags |= HASH_FLAGS_DMA_READY;
476}
477
478static int stm32_hash_hmac_dma_send(struct stm32_hash_dev *hdev)
479{
480 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
481 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
482 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
483 int err;
484
485 if (ctx->keylen < HASH_DMA_THRESHOLD || (hdev->dma_mode == 1)) {
486 err = stm32_hash_write_key(hdev);
487 if (stm32_hash_wait_busy(hdev))
488 return -ETIMEDOUT;
489 } else {
490 if (!(hdev->flags & HASH_FLAGS_HMAC_KEY))
491 sg_init_one(&rctx->sg_key, ctx->key,
492 ALIGN(ctx->keylen, sizeof(u32)));
493
494 rctx->dma_ct = dma_map_sg(hdev->dev, &rctx->sg_key, 1,
495 DMA_TO_DEVICE);
496 if (rctx->dma_ct == 0) {
497 dev_err(hdev->dev, "dma_map_sg error\n");
498 return -ENOMEM;
499 }
500
501 err = stm32_hash_xmit_dma(hdev, &rctx->sg_key, ctx->keylen, 0);
502
503 dma_unmap_sg(hdev->dev, &rctx->sg_key, 1, DMA_TO_DEVICE);
504 }
505
506 return err;
507}
508
509static int stm32_hash_dma_init(struct stm32_hash_dev *hdev)
510{
511 struct dma_slave_config dma_conf;
512 struct dma_chan *chan;
513 int err;
514
515 memset(&dma_conf, 0, sizeof(dma_conf));
516
517 dma_conf.direction = DMA_MEM_TO_DEV;
518 dma_conf.dst_addr = hdev->phys_base + HASH_DIN;
519 dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
520 dma_conf.src_maxburst = hdev->dma_maxburst;
521 dma_conf.dst_maxburst = hdev->dma_maxburst;
522 dma_conf.device_fc = false;
523
524 chan = dma_request_chan(hdev->dev, "in");
525 if (IS_ERR(chan))
526 return PTR_ERR(chan);
527
528 hdev->dma_lch = chan;
529
530 err = dmaengine_slave_config(hdev->dma_lch, &dma_conf);
531 if (err) {
532 dma_release_channel(hdev->dma_lch);
533 hdev->dma_lch = NULL;
534 dev_err(hdev->dev, "Couldn't configure DMA slave.\n");
535 return err;
536 }
537
538 init_completion(&hdev->dma_completion);
539
540 return 0;
541}
542
543static int stm32_hash_dma_send(struct stm32_hash_dev *hdev)
544{
545 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
546 struct scatterlist sg[1], *tsg;
547 int err = 0, len = 0, reg, ncp = 0;
548 unsigned int i;
549 u32 *buffer = (void *)rctx->buffer;
550
551 rctx->sg = hdev->req->src;
552 rctx->total = hdev->req->nbytes;
553
554 rctx->nents = sg_nents(rctx->sg);
555
556 if (rctx->nents < 0)
557 return -EINVAL;
558
559 stm32_hash_write_ctrl(hdev);
560
561 if (hdev->flags & HASH_FLAGS_HMAC) {
562 err = stm32_hash_hmac_dma_send(hdev);
563 if (err != -EINPROGRESS)
564 return err;
565 }
566
567 for_each_sg(rctx->sg, tsg, rctx->nents, i) {
568 len = sg->length;
569
570 sg[0] = *tsg;
571 if (sg_is_last(sg)) {
572 if (hdev->dma_mode == 1) {
573 len = (ALIGN(sg->length, 16) - 16);
574
575 ncp = sg_pcopy_to_buffer(
576 rctx->sg, rctx->nents,
577 rctx->buffer, sg->length - len,
578 rctx->total - sg->length + len);
579
580 sg->length = len;
581 } else {
582 if (!(IS_ALIGNED(sg->length, sizeof(u32)))) {
583 len = sg->length;
584 sg->length = ALIGN(sg->length,
585 sizeof(u32));
586 }
587 }
588 }
589
590 rctx->dma_ct = dma_map_sg(hdev->dev, sg, 1,
591 DMA_TO_DEVICE);
592 if (rctx->dma_ct == 0) {
593 dev_err(hdev->dev, "dma_map_sg error\n");
594 return -ENOMEM;
595 }
596
597 err = stm32_hash_xmit_dma(hdev, sg, len,
598 !sg_is_last(sg));
599
600 dma_unmap_sg(hdev->dev, sg, 1, DMA_TO_DEVICE);
601
602 if (err == -ENOMEM)
603 return err;
604 }
605
606 if (hdev->dma_mode == 1) {
607 if (stm32_hash_wait_busy(hdev))
608 return -ETIMEDOUT;
609 reg = stm32_hash_read(hdev, HASH_CR);
610 reg &= ~HASH_CR_DMAE;
611 reg |= HASH_CR_DMAA;
612 stm32_hash_write(hdev, HASH_CR, reg);
613
614 if (ncp) {
615 memset(buffer + ncp, 0,
616 DIV_ROUND_UP(ncp, sizeof(u32)) - ncp);
617 writesl(hdev->io_base + HASH_DIN, buffer,
618 DIV_ROUND_UP(ncp, sizeof(u32)));
619 }
620 stm32_hash_set_nblw(hdev, ncp);
621 reg = stm32_hash_read(hdev, HASH_STR);
622 reg |= HASH_STR_DCAL;
623 stm32_hash_write(hdev, HASH_STR, reg);
624 err = -EINPROGRESS;
625 }
626
627 if (hdev->flags & HASH_FLAGS_HMAC) {
628 if (stm32_hash_wait_busy(hdev))
629 return -ETIMEDOUT;
630 err = stm32_hash_hmac_dma_send(hdev);
631 }
632
633 return err;
634}
635
636static struct stm32_hash_dev *stm32_hash_find_dev(struct stm32_hash_ctx *ctx)
637{
638 struct stm32_hash_dev *hdev = NULL, *tmp;
639
640 spin_lock_bh(&stm32_hash.lock);
641 if (!ctx->hdev) {
642 list_for_each_entry(tmp, &stm32_hash.dev_list, list) {
643 hdev = tmp;
644 break;
645 }
646 ctx->hdev = hdev;
647 } else {
648 hdev = ctx->hdev;
649 }
650
651 spin_unlock_bh(&stm32_hash.lock);
652
653 return hdev;
654}
655
656static bool stm32_hash_dma_aligned_data(struct ahash_request *req)
657{
658 struct scatterlist *sg;
659 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
660 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
661 int i;
662
663 if (req->nbytes <= HASH_DMA_THRESHOLD)
664 return false;
665
666 if (sg_nents(req->src) > 1) {
667 if (hdev->dma_mode == 1)
668 return false;
669 for_each_sg(req->src, sg, sg_nents(req->src), i) {
670 if ((!IS_ALIGNED(sg->length, sizeof(u32))) &&
671 (!sg_is_last(sg)))
672 return false;
673 }
674 }
675
676 if (req->src->offset % 4)
677 return false;
678
679 return true;
680}
681
682static int stm32_hash_init(struct ahash_request *req)
683{
684 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
685 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
686 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
687 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
688
689 rctx->hdev = hdev;
690
691 rctx->flags = HASH_FLAGS_CPU;
692
693 rctx->digcnt = crypto_ahash_digestsize(tfm);
694 switch (rctx->digcnt) {
695 case MD5_DIGEST_SIZE:
696 rctx->flags |= HASH_FLAGS_MD5;
697 break;
698 case SHA1_DIGEST_SIZE:
699 rctx->flags |= HASH_FLAGS_SHA1;
700 break;
701 case SHA224_DIGEST_SIZE:
702 rctx->flags |= HASH_FLAGS_SHA224;
703 break;
704 case SHA256_DIGEST_SIZE:
705 rctx->flags |= HASH_FLAGS_SHA256;
706 break;
707 default:
708 return -EINVAL;
709 }
710
711 rctx->bufcnt = 0;
712 rctx->buflen = HASH_BUFLEN;
713 rctx->total = 0;
714 rctx->offset = 0;
715 rctx->data_type = HASH_DATA_8_BITS;
716
717 memset(rctx->buffer, 0, HASH_BUFLEN);
718
719 if (ctx->flags & HASH_FLAGS_HMAC)
720 rctx->flags |= HASH_FLAGS_HMAC;
721
722 dev_dbg(hdev->dev, "%s Flags %lx\n", __func__, rctx->flags);
723
724 return 0;
725}
726
727static int stm32_hash_update_req(struct stm32_hash_dev *hdev)
728{
729 return stm32_hash_update_cpu(hdev);
730}
731
732static int stm32_hash_final_req(struct stm32_hash_dev *hdev)
733{
734 struct ahash_request *req = hdev->req;
735 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
736 int err;
737 int buflen = rctx->bufcnt;
738
739 rctx->bufcnt = 0;
740
741 if (!(rctx->flags & HASH_FLAGS_CPU))
742 err = stm32_hash_dma_send(hdev);
743 else
744 err = stm32_hash_xmit_cpu(hdev, rctx->buffer, buflen, 1);
745
746
747 return err;
748}
749
750static void stm32_hash_copy_hash(struct ahash_request *req)
751{
752 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
753 __be32 *hash = (void *)rctx->digest;
754 unsigned int i, hashsize;
755
756 switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
757 case HASH_FLAGS_MD5:
758 hashsize = MD5_DIGEST_SIZE;
759 break;
760 case HASH_FLAGS_SHA1:
761 hashsize = SHA1_DIGEST_SIZE;
762 break;
763 case HASH_FLAGS_SHA224:
764 hashsize = SHA224_DIGEST_SIZE;
765 break;
766 case HASH_FLAGS_SHA256:
767 hashsize = SHA256_DIGEST_SIZE;
768 break;
769 default:
770 return;
771 }
772
773 for (i = 0; i < hashsize / sizeof(u32); i++)
774 hash[i] = cpu_to_be32(stm32_hash_read(rctx->hdev,
775 HASH_HREG(i)));
776}
777
778static int stm32_hash_finish(struct ahash_request *req)
779{
780 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
781
782 if (!req->result)
783 return -EINVAL;
784
785 memcpy(req->result, rctx->digest, rctx->digcnt);
786
787 return 0;
788}
789
790static void stm32_hash_finish_req(struct ahash_request *req, int err)
791{
792 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
793 struct stm32_hash_dev *hdev = rctx->hdev;
794
795 if (!err && (HASH_FLAGS_FINAL & hdev->flags)) {
796 stm32_hash_copy_hash(req);
797 err = stm32_hash_finish(req);
798 hdev->flags &= ~(HASH_FLAGS_FINAL | HASH_FLAGS_CPU |
799 HASH_FLAGS_INIT | HASH_FLAGS_DMA_READY |
800 HASH_FLAGS_OUTPUT_READY | HASH_FLAGS_HMAC |
801 HASH_FLAGS_HMAC_INIT | HASH_FLAGS_HMAC_FINAL |
802 HASH_FLAGS_HMAC_KEY);
803 } else {
804 rctx->flags |= HASH_FLAGS_ERRORS;
805 }
806
807 pm_runtime_mark_last_busy(hdev->dev);
808 pm_runtime_put_autosuspend(hdev->dev);
809
810 crypto_finalize_hash_request(hdev->engine, req, err);
811}
812
813static int stm32_hash_hw_init(struct stm32_hash_dev *hdev,
814 struct stm32_hash_request_ctx *rctx)
815{
816 pm_runtime_resume_and_get(hdev->dev);
817
818 if (!(HASH_FLAGS_INIT & hdev->flags)) {
819 stm32_hash_write(hdev, HASH_CR, HASH_CR_INIT);
820 stm32_hash_write(hdev, HASH_STR, 0);
821 stm32_hash_write(hdev, HASH_DIN, 0);
822 stm32_hash_write(hdev, HASH_IMR, 0);
823 hdev->err = 0;
824 }
825
826 return 0;
827}
828
829static int stm32_hash_one_request(struct crypto_engine *engine, void *areq);
830static int stm32_hash_prepare_req(struct crypto_engine *engine, void *areq);
831
832static int stm32_hash_handle_queue(struct stm32_hash_dev *hdev,
833 struct ahash_request *req)
834{
835 return crypto_transfer_hash_request_to_engine(hdev->engine, req);
836}
837
838static int stm32_hash_prepare_req(struct crypto_engine *engine, void *areq)
839{
840 struct ahash_request *req = container_of(areq, struct ahash_request,
841 base);
842 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
843 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
844 struct stm32_hash_request_ctx *rctx;
845
846 if (!hdev)
847 return -ENODEV;
848
849 hdev->req = req;
850
851 rctx = ahash_request_ctx(req);
852
853 dev_dbg(hdev->dev, "processing new req, op: %lu, nbytes %d\n",
854 rctx->op, req->nbytes);
855
856 return stm32_hash_hw_init(hdev, rctx);
857}
858
859static int stm32_hash_one_request(struct crypto_engine *engine, void *areq)
860{
861 struct ahash_request *req = container_of(areq, struct ahash_request,
862 base);
863 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
864 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
865 struct stm32_hash_request_ctx *rctx;
866 int err = 0;
867
868 if (!hdev)
869 return -ENODEV;
870
871 hdev->req = req;
872
873 rctx = ahash_request_ctx(req);
874
875 if (rctx->op == HASH_OP_UPDATE)
876 err = stm32_hash_update_req(hdev);
877 else if (rctx->op == HASH_OP_FINAL)
878 err = stm32_hash_final_req(hdev);
879
880 if (err != -EINPROGRESS)
881 /* done task will not finish it, so do it here */
882 stm32_hash_finish_req(req, err);
883
884 return 0;
885}
886
887static int stm32_hash_enqueue(struct ahash_request *req, unsigned int op)
888{
889 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
890 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
891 struct stm32_hash_dev *hdev = ctx->hdev;
892
893 rctx->op = op;
894
895 return stm32_hash_handle_queue(hdev, req);
896}
897
898static int stm32_hash_update(struct ahash_request *req)
899{
900 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
901
902 if (!req->nbytes || !(rctx->flags & HASH_FLAGS_CPU))
903 return 0;
904
905 rctx->total = req->nbytes;
906 rctx->sg = req->src;
907 rctx->offset = 0;
908
909 if ((rctx->bufcnt + rctx->total < rctx->buflen)) {
910 stm32_hash_append_sg(rctx);
911 return 0;
912 }
913
914 return stm32_hash_enqueue(req, HASH_OP_UPDATE);
915}
916
917static int stm32_hash_final(struct ahash_request *req)
918{
919 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
920
921 rctx->flags |= HASH_FLAGS_FINUP;
922
923 return stm32_hash_enqueue(req, HASH_OP_FINAL);
924}
925
926static int stm32_hash_finup(struct ahash_request *req)
927{
928 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
929 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
930 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
931 int err1, err2;
932
933 rctx->flags |= HASH_FLAGS_FINUP;
934
935 if (hdev->dma_lch && stm32_hash_dma_aligned_data(req))
936 rctx->flags &= ~HASH_FLAGS_CPU;
937
938 err1 = stm32_hash_update(req);
939
940 if (err1 == -EINPROGRESS || err1 == -EBUSY)
941 return err1;
942
943 /*
944 * final() has to be always called to cleanup resources
945 * even if update() failed, except EINPROGRESS
946 */
947 err2 = stm32_hash_final(req);
948
949 return err1 ?: err2;
950}
951
952static int stm32_hash_digest(struct ahash_request *req)
953{
954 return stm32_hash_init(req) ?: stm32_hash_finup(req);
955}
956
957static int stm32_hash_export(struct ahash_request *req, void *out)
958{
959 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
960 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
961 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
962 u32 *preg;
963 unsigned int i;
964
965 pm_runtime_resume_and_get(hdev->dev);
966
967 while ((stm32_hash_read(hdev, HASH_SR) & HASH_SR_BUSY))
968 cpu_relax();
969
970 rctx->hw_context = kmalloc_array(3 + HASH_CSR_REGISTER_NUMBER,
971 sizeof(u32),
972 GFP_KERNEL);
973
974 preg = rctx->hw_context;
975
976 *preg++ = stm32_hash_read(hdev, HASH_IMR);
977 *preg++ = stm32_hash_read(hdev, HASH_STR);
978 *preg++ = stm32_hash_read(hdev, HASH_CR);
979 for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
980 *preg++ = stm32_hash_read(hdev, HASH_CSR(i));
981
982 pm_runtime_mark_last_busy(hdev->dev);
983 pm_runtime_put_autosuspend(hdev->dev);
984
985 memcpy(out, rctx, sizeof(*rctx));
986
987 return 0;
988}
989
990static int stm32_hash_import(struct ahash_request *req, const void *in)
991{
992 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
993 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
994 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
995 const u32 *preg = in;
996 u32 reg;
997 unsigned int i;
998
999 memcpy(rctx, in, sizeof(*rctx));
1000
1001 preg = rctx->hw_context;
1002
1003 pm_runtime_resume_and_get(hdev->dev);
1004
1005 stm32_hash_write(hdev, HASH_IMR, *preg++);
1006 stm32_hash_write(hdev, HASH_STR, *preg++);
1007 stm32_hash_write(hdev, HASH_CR, *preg);
1008 reg = *preg++ | HASH_CR_INIT;
1009 stm32_hash_write(hdev, HASH_CR, reg);
1010
1011 for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
1012 stm32_hash_write(hdev, HASH_CSR(i), *preg++);
1013
1014 pm_runtime_mark_last_busy(hdev->dev);
1015 pm_runtime_put_autosuspend(hdev->dev);
1016
1017 kfree(rctx->hw_context);
1018
1019 return 0;
1020}
1021
1022static int stm32_hash_setkey(struct crypto_ahash *tfm,
1023 const u8 *key, unsigned int keylen)
1024{
1025 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
1026
1027 if (keylen <= HASH_MAX_KEY_SIZE) {
1028 memcpy(ctx->key, key, keylen);
1029 ctx->keylen = keylen;
1030 } else {
1031 return -ENOMEM;
1032 }
1033
1034 return 0;
1035}
1036
1037static int stm32_hash_cra_init_algs(struct crypto_tfm *tfm,
1038 const char *algs_hmac_name)
1039{
1040 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
1041
1042 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1043 sizeof(struct stm32_hash_request_ctx));
1044
1045 ctx->keylen = 0;
1046
1047 if (algs_hmac_name)
1048 ctx->flags |= HASH_FLAGS_HMAC;
1049
1050 ctx->enginectx.op.do_one_request = stm32_hash_one_request;
1051 ctx->enginectx.op.prepare_request = stm32_hash_prepare_req;
1052 ctx->enginectx.op.unprepare_request = NULL;
1053 return 0;
1054}
1055
1056static int stm32_hash_cra_init(struct crypto_tfm *tfm)
1057{
1058 return stm32_hash_cra_init_algs(tfm, NULL);
1059}
1060
1061static int stm32_hash_cra_md5_init(struct crypto_tfm *tfm)
1062{
1063 return stm32_hash_cra_init_algs(tfm, "md5");
1064}
1065
1066static int stm32_hash_cra_sha1_init(struct crypto_tfm *tfm)
1067{
1068 return stm32_hash_cra_init_algs(tfm, "sha1");
1069}
1070
1071static int stm32_hash_cra_sha224_init(struct crypto_tfm *tfm)
1072{
1073 return stm32_hash_cra_init_algs(tfm, "sha224");
1074}
1075
1076static int stm32_hash_cra_sha256_init(struct crypto_tfm *tfm)
1077{
1078 return stm32_hash_cra_init_algs(tfm, "sha256");
1079}
1080
1081static irqreturn_t stm32_hash_irq_thread(int irq, void *dev_id)
1082{
1083 struct stm32_hash_dev *hdev = dev_id;
1084
1085 if (HASH_FLAGS_CPU & hdev->flags) {
1086 if (HASH_FLAGS_OUTPUT_READY & hdev->flags) {
1087 hdev->flags &= ~HASH_FLAGS_OUTPUT_READY;
1088 goto finish;
1089 }
1090 } else if (HASH_FLAGS_DMA_READY & hdev->flags) {
1091 if (HASH_FLAGS_DMA_ACTIVE & hdev->flags) {
1092 hdev->flags &= ~HASH_FLAGS_DMA_ACTIVE;
1093 goto finish;
1094 }
1095 }
1096
1097 return IRQ_HANDLED;
1098
1099finish:
1100 /* Finish current request */
1101 stm32_hash_finish_req(hdev->req, 0);
1102
1103 return IRQ_HANDLED;
1104}
1105
1106static irqreturn_t stm32_hash_irq_handler(int irq, void *dev_id)
1107{
1108 struct stm32_hash_dev *hdev = dev_id;
1109 u32 reg;
1110
1111 reg = stm32_hash_read(hdev, HASH_SR);
1112 if (reg & HASH_SR_OUTPUT_READY) {
1113 reg &= ~HASH_SR_OUTPUT_READY;
1114 stm32_hash_write(hdev, HASH_SR, reg);
1115 hdev->flags |= HASH_FLAGS_OUTPUT_READY;
1116 /* Disable IT*/
1117 stm32_hash_write(hdev, HASH_IMR, 0);
1118 return IRQ_WAKE_THREAD;
1119 }
1120
1121 return IRQ_NONE;
1122}
1123
1124static struct ahash_alg algs_md5_sha1[] = {
1125 {
1126 .init = stm32_hash_init,
1127 .update = stm32_hash_update,
1128 .final = stm32_hash_final,
1129 .finup = stm32_hash_finup,
1130 .digest = stm32_hash_digest,
1131 .export = stm32_hash_export,
1132 .import = stm32_hash_import,
1133 .halg = {
1134 .digestsize = MD5_DIGEST_SIZE,
1135 .statesize = sizeof(struct stm32_hash_request_ctx),
1136 .base = {
1137 .cra_name = "md5",
1138 .cra_driver_name = "stm32-md5",
1139 .cra_priority = 200,
1140 .cra_flags = CRYPTO_ALG_ASYNC |
1141 CRYPTO_ALG_KERN_DRIVER_ONLY,
1142 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1143 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1144 .cra_alignmask = 3,
1145 .cra_init = stm32_hash_cra_init,
1146 .cra_module = THIS_MODULE,
1147 }
1148 }
1149 },
1150 {
1151 .init = stm32_hash_init,
1152 .update = stm32_hash_update,
1153 .final = stm32_hash_final,
1154 .finup = stm32_hash_finup,
1155 .digest = stm32_hash_digest,
1156 .export = stm32_hash_export,
1157 .import = stm32_hash_import,
1158 .setkey = stm32_hash_setkey,
1159 .halg = {
1160 .digestsize = MD5_DIGEST_SIZE,
1161 .statesize = sizeof(struct stm32_hash_request_ctx),
1162 .base = {
1163 .cra_name = "hmac(md5)",
1164 .cra_driver_name = "stm32-hmac-md5",
1165 .cra_priority = 200,
1166 .cra_flags = CRYPTO_ALG_ASYNC |
1167 CRYPTO_ALG_KERN_DRIVER_ONLY,
1168 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1169 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1170 .cra_alignmask = 3,
1171 .cra_init = stm32_hash_cra_md5_init,
1172 .cra_module = THIS_MODULE,
1173 }
1174 }
1175 },
1176 {
1177 .init = stm32_hash_init,
1178 .update = stm32_hash_update,
1179 .final = stm32_hash_final,
1180 .finup = stm32_hash_finup,
1181 .digest = stm32_hash_digest,
1182 .export = stm32_hash_export,
1183 .import = stm32_hash_import,
1184 .halg = {
1185 .digestsize = SHA1_DIGEST_SIZE,
1186 .statesize = sizeof(struct stm32_hash_request_ctx),
1187 .base = {
1188 .cra_name = "sha1",
1189 .cra_driver_name = "stm32-sha1",
1190 .cra_priority = 200,
1191 .cra_flags = CRYPTO_ALG_ASYNC |
1192 CRYPTO_ALG_KERN_DRIVER_ONLY,
1193 .cra_blocksize = SHA1_BLOCK_SIZE,
1194 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1195 .cra_alignmask = 3,
1196 .cra_init = stm32_hash_cra_init,
1197 .cra_module = THIS_MODULE,
1198 }
1199 }
1200 },
1201 {
1202 .init = stm32_hash_init,
1203 .update = stm32_hash_update,
1204 .final = stm32_hash_final,
1205 .finup = stm32_hash_finup,
1206 .digest = stm32_hash_digest,
1207 .export = stm32_hash_export,
1208 .import = stm32_hash_import,
1209 .setkey = stm32_hash_setkey,
1210 .halg = {
1211 .digestsize = SHA1_DIGEST_SIZE,
1212 .statesize = sizeof(struct stm32_hash_request_ctx),
1213 .base = {
1214 .cra_name = "hmac(sha1)",
1215 .cra_driver_name = "stm32-hmac-sha1",
1216 .cra_priority = 200,
1217 .cra_flags = CRYPTO_ALG_ASYNC |
1218 CRYPTO_ALG_KERN_DRIVER_ONLY,
1219 .cra_blocksize = SHA1_BLOCK_SIZE,
1220 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1221 .cra_alignmask = 3,
1222 .cra_init = stm32_hash_cra_sha1_init,
1223 .cra_module = THIS_MODULE,
1224 }
1225 }
1226 },
1227};
1228
1229static struct ahash_alg algs_sha224_sha256[] = {
1230 {
1231 .init = stm32_hash_init,
1232 .update = stm32_hash_update,
1233 .final = stm32_hash_final,
1234 .finup = stm32_hash_finup,
1235 .digest = stm32_hash_digest,
1236 .export = stm32_hash_export,
1237 .import = stm32_hash_import,
1238 .halg = {
1239 .digestsize = SHA224_DIGEST_SIZE,
1240 .statesize = sizeof(struct stm32_hash_request_ctx),
1241 .base = {
1242 .cra_name = "sha224",
1243 .cra_driver_name = "stm32-sha224",
1244 .cra_priority = 200,
1245 .cra_flags = CRYPTO_ALG_ASYNC |
1246 CRYPTO_ALG_KERN_DRIVER_ONLY,
1247 .cra_blocksize = SHA224_BLOCK_SIZE,
1248 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1249 .cra_alignmask = 3,
1250 .cra_init = stm32_hash_cra_init,
1251 .cra_module = THIS_MODULE,
1252 }
1253 }
1254 },
1255 {
1256 .init = stm32_hash_init,
1257 .update = stm32_hash_update,
1258 .final = stm32_hash_final,
1259 .finup = stm32_hash_finup,
1260 .digest = stm32_hash_digest,
1261 .setkey = stm32_hash_setkey,
1262 .export = stm32_hash_export,
1263 .import = stm32_hash_import,
1264 .halg = {
1265 .digestsize = SHA224_DIGEST_SIZE,
1266 .statesize = sizeof(struct stm32_hash_request_ctx),
1267 .base = {
1268 .cra_name = "hmac(sha224)",
1269 .cra_driver_name = "stm32-hmac-sha224",
1270 .cra_priority = 200,
1271 .cra_flags = CRYPTO_ALG_ASYNC |
1272 CRYPTO_ALG_KERN_DRIVER_ONLY,
1273 .cra_blocksize = SHA224_BLOCK_SIZE,
1274 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1275 .cra_alignmask = 3,
1276 .cra_init = stm32_hash_cra_sha224_init,
1277 .cra_module = THIS_MODULE,
1278 }
1279 }
1280 },
1281 {
1282 .init = stm32_hash_init,
1283 .update = stm32_hash_update,
1284 .final = stm32_hash_final,
1285 .finup = stm32_hash_finup,
1286 .digest = stm32_hash_digest,
1287 .export = stm32_hash_export,
1288 .import = stm32_hash_import,
1289 .halg = {
1290 .digestsize = SHA256_DIGEST_SIZE,
1291 .statesize = sizeof(struct stm32_hash_request_ctx),
1292 .base = {
1293 .cra_name = "sha256",
1294 .cra_driver_name = "stm32-sha256",
1295 .cra_priority = 200,
1296 .cra_flags = CRYPTO_ALG_ASYNC |
1297 CRYPTO_ALG_KERN_DRIVER_ONLY,
1298 .cra_blocksize = SHA256_BLOCK_SIZE,
1299 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1300 .cra_alignmask = 3,
1301 .cra_init = stm32_hash_cra_init,
1302 .cra_module = THIS_MODULE,
1303 }
1304 }
1305 },
1306 {
1307 .init = stm32_hash_init,
1308 .update = stm32_hash_update,
1309 .final = stm32_hash_final,
1310 .finup = stm32_hash_finup,
1311 .digest = stm32_hash_digest,
1312 .export = stm32_hash_export,
1313 .import = stm32_hash_import,
1314 .setkey = stm32_hash_setkey,
1315 .halg = {
1316 .digestsize = SHA256_DIGEST_SIZE,
1317 .statesize = sizeof(struct stm32_hash_request_ctx),
1318 .base = {
1319 .cra_name = "hmac(sha256)",
1320 .cra_driver_name = "stm32-hmac-sha256",
1321 .cra_priority = 200,
1322 .cra_flags = CRYPTO_ALG_ASYNC |
1323 CRYPTO_ALG_KERN_DRIVER_ONLY,
1324 .cra_blocksize = SHA256_BLOCK_SIZE,
1325 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1326 .cra_alignmask = 3,
1327 .cra_init = stm32_hash_cra_sha256_init,
1328 .cra_module = THIS_MODULE,
1329 }
1330 }
1331 },
1332};
1333
1334static int stm32_hash_register_algs(struct stm32_hash_dev *hdev)
1335{
1336 unsigned int i, j;
1337 int err;
1338
1339 for (i = 0; i < hdev->pdata->algs_info_size; i++) {
1340 for (j = 0; j < hdev->pdata->algs_info[i].size; j++) {
1341 err = crypto_register_ahash(
1342 &hdev->pdata->algs_info[i].algs_list[j]);
1343 if (err)
1344 goto err_algs;
1345 }
1346 }
1347
1348 return 0;
1349err_algs:
1350 dev_err(hdev->dev, "Algo %d : %d failed\n", i, j);
1351 for (; i--; ) {
1352 for (; j--;)
1353 crypto_unregister_ahash(
1354 &hdev->pdata->algs_info[i].algs_list[j]);
1355 }
1356
1357 return err;
1358}
1359
1360static int stm32_hash_unregister_algs(struct stm32_hash_dev *hdev)
1361{
1362 unsigned int i, j;
1363
1364 for (i = 0; i < hdev->pdata->algs_info_size; i++) {
1365 for (j = 0; j < hdev->pdata->algs_info[i].size; j++)
1366 crypto_unregister_ahash(
1367 &hdev->pdata->algs_info[i].algs_list[j]);
1368 }
1369
1370 return 0;
1371}
1372
1373static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f4[] = {
1374 {
1375 .algs_list = algs_md5_sha1,
1376 .size = ARRAY_SIZE(algs_md5_sha1),
1377 },
1378};
1379
1380static const struct stm32_hash_pdata stm32_hash_pdata_stm32f4 = {
1381 .algs_info = stm32_hash_algs_info_stm32f4,
1382 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f4),
1383};
1384
1385static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f7[] = {
1386 {
1387 .algs_list = algs_md5_sha1,
1388 .size = ARRAY_SIZE(algs_md5_sha1),
1389 },
1390 {
1391 .algs_list = algs_sha224_sha256,
1392 .size = ARRAY_SIZE(algs_sha224_sha256),
1393 },
1394};
1395
1396static const struct stm32_hash_pdata stm32_hash_pdata_stm32f7 = {
1397 .algs_info = stm32_hash_algs_info_stm32f7,
1398 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f7),
1399};
1400
1401static const struct of_device_id stm32_hash_of_match[] = {
1402 {
1403 .compatible = "st,stm32f456-hash",
1404 .data = &stm32_hash_pdata_stm32f4,
1405 },
1406 {
1407 .compatible = "st,stm32f756-hash",
1408 .data = &stm32_hash_pdata_stm32f7,
1409 },
1410 {},
1411};
1412
1413MODULE_DEVICE_TABLE(of, stm32_hash_of_match);
1414
1415static int stm32_hash_get_of_match(struct stm32_hash_dev *hdev,
1416 struct device *dev)
1417{
1418 hdev->pdata = of_device_get_match_data(dev);
1419 if (!hdev->pdata) {
1420 dev_err(dev, "no compatible OF match\n");
1421 return -EINVAL;
1422 }
1423
1424 if (of_property_read_u32(dev->of_node, "dma-maxburst",
1425 &hdev->dma_maxburst)) {
1426 dev_info(dev, "dma-maxburst not specified, using 0\n");
1427 hdev->dma_maxburst = 0;
1428 }
1429
1430 return 0;
1431}
1432
1433static int stm32_hash_probe(struct platform_device *pdev)
1434{
1435 struct stm32_hash_dev *hdev;
1436 struct device *dev = &pdev->dev;
1437 struct resource *res;
1438 int ret, irq;
1439
1440 hdev = devm_kzalloc(dev, sizeof(*hdev), GFP_KERNEL);
1441 if (!hdev)
1442 return -ENOMEM;
1443
1444 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1445 hdev->io_base = devm_ioremap_resource(dev, res);
1446 if (IS_ERR(hdev->io_base))
1447 return PTR_ERR(hdev->io_base);
1448
1449 hdev->phys_base = res->start;
1450
1451 ret = stm32_hash_get_of_match(hdev, dev);
1452 if (ret)
1453 return ret;
1454
1455 irq = platform_get_irq(pdev, 0);
1456 if (irq < 0)
1457 return irq;
1458
1459 ret = devm_request_threaded_irq(dev, irq, stm32_hash_irq_handler,
1460 stm32_hash_irq_thread, IRQF_ONESHOT,
1461 dev_name(dev), hdev);
1462 if (ret) {
1463 dev_err(dev, "Cannot grab IRQ\n");
1464 return ret;
1465 }
1466
1467 hdev->clk = devm_clk_get(&pdev->dev, NULL);
1468 if (IS_ERR(hdev->clk))
1469 return dev_err_probe(dev, PTR_ERR(hdev->clk),
1470 "failed to get clock for hash\n");
1471
1472 ret = clk_prepare_enable(hdev->clk);
1473 if (ret) {
1474 dev_err(dev, "failed to enable hash clock (%d)\n", ret);
1475 return ret;
1476 }
1477
1478 pm_runtime_set_autosuspend_delay(dev, HASH_AUTOSUSPEND_DELAY);
1479 pm_runtime_use_autosuspend(dev);
1480
1481 pm_runtime_get_noresume(dev);
1482 pm_runtime_set_active(dev);
1483 pm_runtime_enable(dev);
1484
1485 hdev->rst = devm_reset_control_get(&pdev->dev, NULL);
1486 if (IS_ERR(hdev->rst)) {
1487 if (PTR_ERR(hdev->rst) == -EPROBE_DEFER) {
1488 ret = -EPROBE_DEFER;
1489 goto err_reset;
1490 }
1491 } else {
1492 reset_control_assert(hdev->rst);
1493 udelay(2);
1494 reset_control_deassert(hdev->rst);
1495 }
1496
1497 hdev->dev = dev;
1498
1499 platform_set_drvdata(pdev, hdev);
1500
1501 ret = stm32_hash_dma_init(hdev);
1502 switch (ret) {
1503 case 0:
1504 break;
1505 case -ENOENT:
1506 dev_dbg(dev, "DMA mode not available\n");
1507 break;
1508 default:
1509 goto err_dma;
1510 }
1511
1512 spin_lock(&stm32_hash.lock);
1513 list_add_tail(&hdev->list, &stm32_hash.dev_list);
1514 spin_unlock(&stm32_hash.lock);
1515
1516 /* Initialize crypto engine */
1517 hdev->engine = crypto_engine_alloc_init(dev, 1);
1518 if (!hdev->engine) {
1519 ret = -ENOMEM;
1520 goto err_engine;
1521 }
1522
1523 ret = crypto_engine_start(hdev->engine);
1524 if (ret)
1525 goto err_engine_start;
1526
1527 hdev->dma_mode = stm32_hash_read(hdev, HASH_HWCFGR);
1528
1529 /* Register algos */
1530 ret = stm32_hash_register_algs(hdev);
1531 if (ret)
1532 goto err_algs;
1533
1534 dev_info(dev, "Init HASH done HW ver %x DMA mode %u\n",
1535 stm32_hash_read(hdev, HASH_VER), hdev->dma_mode);
1536
1537 pm_runtime_put_sync(dev);
1538
1539 return 0;
1540
1541err_algs:
1542err_engine_start:
1543 crypto_engine_exit(hdev->engine);
1544err_engine:
1545 spin_lock(&stm32_hash.lock);
1546 list_del(&hdev->list);
1547 spin_unlock(&stm32_hash.lock);
1548err_dma:
1549 if (hdev->dma_lch)
1550 dma_release_channel(hdev->dma_lch);
1551err_reset:
1552 pm_runtime_disable(dev);
1553 pm_runtime_put_noidle(dev);
1554
1555 clk_disable_unprepare(hdev->clk);
1556
1557 return ret;
1558}
1559
1560static int stm32_hash_remove(struct platform_device *pdev)
1561{
1562 struct stm32_hash_dev *hdev;
1563 int ret;
1564
1565 hdev = platform_get_drvdata(pdev);
1566 if (!hdev)
1567 return -ENODEV;
1568
1569 ret = pm_runtime_resume_and_get(hdev->dev);
1570 if (ret < 0)
1571 return ret;
1572
1573 stm32_hash_unregister_algs(hdev);
1574
1575 crypto_engine_exit(hdev->engine);
1576
1577 spin_lock(&stm32_hash.lock);
1578 list_del(&hdev->list);
1579 spin_unlock(&stm32_hash.lock);
1580
1581 if (hdev->dma_lch)
1582 dma_release_channel(hdev->dma_lch);
1583
1584 pm_runtime_disable(hdev->dev);
1585 pm_runtime_put_noidle(hdev->dev);
1586
1587 clk_disable_unprepare(hdev->clk);
1588
1589 return 0;
1590}
1591
1592#ifdef CONFIG_PM
1593static int stm32_hash_runtime_suspend(struct device *dev)
1594{
1595 struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
1596
1597 clk_disable_unprepare(hdev->clk);
1598
1599 return 0;
1600}
1601
1602static int stm32_hash_runtime_resume(struct device *dev)
1603{
1604 struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
1605 int ret;
1606
1607 ret = clk_prepare_enable(hdev->clk);
1608 if (ret) {
1609 dev_err(hdev->dev, "Failed to prepare_enable clock\n");
1610 return ret;
1611 }
1612
1613 return 0;
1614}
1615#endif
1616
1617static const struct dev_pm_ops stm32_hash_pm_ops = {
1618 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1619 pm_runtime_force_resume)
1620 SET_RUNTIME_PM_OPS(stm32_hash_runtime_suspend,
1621 stm32_hash_runtime_resume, NULL)
1622};
1623
1624static struct platform_driver stm32_hash_driver = {
1625 .probe = stm32_hash_probe,
1626 .remove = stm32_hash_remove,
1627 .driver = {
1628 .name = "stm32-hash",
1629 .pm = &stm32_hash_pm_ops,
1630 .of_match_table = stm32_hash_of_match,
1631 }
1632};
1633
1634module_platform_driver(stm32_hash_driver);
1635
1636MODULE_DESCRIPTION("STM32 SHA1/224/256 & MD5 (HMAC) hw accelerator driver");
1637MODULE_AUTHOR("Lionel Debieve <lionel.debieve@st.com>");
1638MODULE_LICENSE("GPL v2");